Area under the Free-Response ROC Curve (FROC) and a Related Summary Index

Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the p...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 65; no. 1; pp. 247 - 256
Main Authors Bandos, Andriy I., Rockette, Howard E., Song, Tao, Gur, David
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.03.2009
Blackwell Publishing
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters.
AbstractList Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more 'abnormalities' within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or 'acceptance radius'). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial 'guessing' free-response process and it represents an analogy to the area between the ROC curve and the 'guessing' or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters.
Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters.Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters.
Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more “abnormalities” within a subject. A free‐response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free‐response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free‐response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or “acceptance radius”). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial “guessing” free‐response process and it represents an analogy to the area between the ROC curve and the “guessing” or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling‐free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters.
Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters. [PUBLICATION ABSTRACT]
Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more “abnormalities” within a subject. A free‐response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free‐response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free‐response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or “acceptance radius”). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial “guessing” free‐response process and it represents an analogy to the area between the ROC curve and the “guessing” or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling‐free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters.
Author Gur, David
Bandos, Andriy I.
Rockette, Howard E.
Song, Tao
AuthorAffiliation 1 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A
2 Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A
AuthorAffiliation_xml – name: 1 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A
– name: 2 Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A
Author_xml – sequence: 1
  givenname: Andriy I.
  surname: Bandos
  fullname: Bandos, Andriy I.
– sequence: 2
  givenname: Howard E.
  surname: Rockette
  fullname: Rockette, Howard E.
– sequence: 3
  givenname: Tao
  surname: Song
  fullname: Song, Tao
– sequence: 4
  givenname: David
  surname: Gur
  fullname: Gur, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18479482$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9v0zAUxS00xLrBRwAsHhA8JFz_T16QRkVHpUGhYxpvlps4W0oaFzsZ3bfHoaMDXgZ-sa3z87F97zlAe61rLUKYQErieLVMieAkAU4hpQBZCgR4nm7uodFO2EMjAJAJ4-TLPjoIYRm3uQD6AO2TjKucZ3SEpkfeGty3pfW4u7R44q1N5jasXRssns_GeNz7K4tfTOL6JTZtiQ2e28Z0tsSn_Wpl_DWexuObh-h-ZZpgH93Mh-hs8vbz-F1yMjuejo9OkkJymSdVwQ2vgImsqEAIk5cUzMJktIhCJY2pSqXEgiyMJIqYnJXZQoCyFaNMqUKwQ_R667vuFytbFrbtvGn02tfDW7Qztf5TaetLfeGuNFVKgqLR4PmNgXffehs6vapDYZvGtNb1QUtFgCqu7gS5pJTkLL8TZJwJynOI4LO_wKXrfRvLpSlhGWMsG6Anv39w97NfTYtAtgUK70LwtrpFQA_50Es9xEAPMdBDPvTPfOjNbfF2R4u6M13thlLVzX8YfK8be_3PF-s309n7YRkNHm8NlqFzfmdARUwmlTzqyVavQ2c3O934r7ExTAl9_uFYf_w0lueSCZ1F_umWr4zT5sLXQZ-dUiAMSOw2j_35AUkw8zA
CODEN BIOMA5
CitedBy_id crossref_primary_10_1007_s00261_020_02604_5
crossref_primary_10_1109_TMI_2019_2935553
crossref_primary_10_1259_bjr_45866310
crossref_primary_10_3389_fonc_2024_1365364
crossref_primary_10_1038_s41598_021_03002_7
crossref_primary_10_3390_biom13030421
crossref_primary_10_4018_jgc_2013010101
crossref_primary_10_1016_j_media_2020_101767
crossref_primary_10_1038_s41598_024_51240_2
crossref_primary_10_1136_neurintsurg_2020_015824
crossref_primary_10_1002_sim_8818
crossref_primary_10_1007_s44267_024_00052_z
crossref_primary_10_1016_j_neucom_2020_05_119
crossref_primary_10_1007_s10618_009_0158_x
crossref_primary_10_1016_j_ultras_2022_106891
crossref_primary_10_1148_radiol_211593
crossref_primary_10_3389_fgene_2022_816460
crossref_primary_10_1002_mp_14648
crossref_primary_10_3389_fninf_2020_00017
crossref_primary_10_3389_fphar_2022_904448
crossref_primary_10_3389_fmolb_2020_599333
crossref_primary_10_1016_j_acra_2013_03_001
crossref_primary_10_1016_j_ejrad_2021_110068
crossref_primary_10_2214_AJR_10_4760
crossref_primary_10_1016_j_artmed_2022_102386
crossref_primary_10_1155_2023_1069443
crossref_primary_10_1109_ACCESS_2021_3072997
crossref_primary_10_1096_fj_202402129R
crossref_primary_10_1136_gutjnl_2014_308513
crossref_primary_10_1186_s12891_023_06816_w
crossref_primary_10_1016_j_acra_2009_03_009
crossref_primary_10_1186_s40001_022_00883_w
crossref_primary_10_1097_GME_0000000000002493
crossref_primary_10_1002_mp_13029
crossref_primary_10_1109_ACCESS_2024_3487260
crossref_primary_10_2214_AJR_23_30345
crossref_primary_10_1088_1361_6560_abd66b
crossref_primary_10_1007_s13402_021_00616_x
crossref_primary_10_1109_ACCESS_2023_3344456
crossref_primary_10_1109_TCBB_2021_3062230
crossref_primary_10_1371_journal_pone_0231880
crossref_primary_10_1186_s10020_020_00208_9
crossref_primary_10_1186_s12885_020_07412_0
crossref_primary_10_1002_sim_7611
crossref_primary_10_1016_j_media_2022_102482
crossref_primary_10_1109_TMI_2012_2205267
crossref_primary_10_1016_j_radi_2014_04_005
crossref_primary_10_1007_s10554_020_02128_5
crossref_primary_10_1002_mp_16296
crossref_primary_10_1016_j_irbm_2014_04_002
crossref_primary_10_1016_j_engappai_2023_107597
crossref_primary_10_1016_j_neucom_2020_03_128
crossref_primary_10_14309_ctg_0000000000000265
crossref_primary_10_1148_radiol_2533091633
crossref_primary_10_1016_j_cmpb_2020_105620
crossref_primary_10_1111_iwj_14734
crossref_primary_10_1118_1_3633938
crossref_primary_10_1016_j_rcl_2021_06_005
crossref_primary_10_1002_sim_9400
crossref_primary_10_4018_jgc_2013070105
crossref_primary_10_3390_life14010090
crossref_primary_10_1002_mp_12134
crossref_primary_10_1109_ACCESS_2020_3026168
crossref_primary_10_1038_s41598_024_74577_0
crossref_primary_10_2139_ssrn_4072585
crossref_primary_10_2214_AJR_24_31972
crossref_primary_10_1016_j_stamet_2010_03_001
crossref_primary_10_1007_s10115_023_01894_7
crossref_primary_10_1016_j_athoracsur_2017_11_012
crossref_primary_10_3389_fonc_2022_1044496
crossref_primary_10_1109_ACCESS_2021_3086885
crossref_primary_10_1016_j_jtcvs_2016_10_019
crossref_primary_10_1364_JOSAA_32_000497
crossref_primary_10_1002_int_22622
crossref_primary_10_1111_jcmm_17846
crossref_primary_10_1016_j_ymeth_2019_02_010
crossref_primary_10_1093_biostatistics_kxq062
crossref_primary_10_1109_JBHI_2013_2285230
crossref_primary_10_1007_s10278_022_00749_x
crossref_primary_10_1038_s41551_018_0301_3
crossref_primary_10_1118_1_4816310
crossref_primary_10_1155_2022_5422698
crossref_primary_10_1177_0962280218776683
crossref_primary_10_1186_s12884_024_07122_6
crossref_primary_10_1016_j_acra_2012_09_006
crossref_primary_10_1016_j_jacr_2022_05_022
crossref_primary_10_1093_jamia_ocy098
crossref_primary_10_1097_JCMA_0000000000001190
crossref_primary_10_2147_DMSO_S352154
crossref_primary_10_1016_j_ejmp_2021_05_032
crossref_primary_10_1016_j_acra_2020_07_030
crossref_primary_10_1053_j_semnuclmed_2011_07_001
Cites_doi 10.1016/0022-2496(75)90001-2
10.1016/j.acra.2005.11.030
10.1016/S1076-6332(00)80381-5
10.2307/2533958
10.1002/9780470317082
10.1118/1.596358
10.1148/radiology.143.1.7063747
10.1007/978-1-4899-4541-9
10.1097/00004424-199002000-00006
10.1002/(SICI)1097-0258(19990615)18:11<1387::AID-SIM126>3.0.CO;2-V
10.1080/03610920701215811
10.1121/1.1908935
10.1118/1.1769352
10.1118/1.1524631
10.1088/0031-9155/51/14/012
ContentType Journal Article
Copyright Copyright 2009 The International Biometric Society
2008, The International Biometric Society
2009 International Biometric Society
Copyright_xml – notice: Copyright 2009 The International Biometric Society
– notice: 2008, The International Biometric Society
– notice: 2009 International Biometric Society
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7SC
7U5
8FD
L7M
L~C
L~D
7S9
L.6
7X8
5PM
DOI 10.1111/j.1541-0420.2008.01049.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic

CrossRef
MEDLINE
AGRICOLA
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 256
ExternalDocumentID PMC2776072
1663530441
18479482
10_1111_j_1541_0420_2008_01049_x
BIOM1049
25502264
ark_67375_WNG_PQC6W635_8
US201301607419
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB001694
– fundername: NIBIB NIH HHS
  grantid: EB003503
– fundername: NIBIB NIH HHS
  grantid: R01 EB003503
– fundername: NIBIB NIH HHS
  grantid: R01 EB006388
– fundername: NIBIB NIH HHS
  grantid: EB006388
– fundername: NIBIB NIH HHS
  grantid: EB001694
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAPXW
AAUAY
AAZSN
ABEJV
ABMNT
ABXSQ
ABXVV
ADACV
AJAOE
ALIPV
BSCLL
IPSME
KOP
OIG
OJZSN
ROX
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
JQ2
7SC
7U5
8FD
L7M
L~C
L~D
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c6469-fc4a4f0358cf055a9d20aba82cc4af6aafd775b1ba6171a93d8b507ef32377c53
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Thu Aug 21 18:02:07 EDT 2025
Fri Jul 11 00:56:39 EDT 2025
Fri Jul 11 18:38:01 EDT 2025
Fri Jul 11 08:00:56 EDT 2025
Fri Jul 25 19:34:47 EDT 2025
Fri May 30 11:01:45 EDT 2025
Tue Jul 01 00:57:58 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Wed Jan 22 16:46:53 EST 2025
Thu Jul 03 21:22:34 EDT 2025
Wed Oct 30 10:06:06 EDT 2024
Wed Dec 27 19:21:53 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6469-fc4a4f0358cf055a9d20aba82cc4af6aafd775b1ba6171a93d8b507ef32377c53
Notes http://dx.doi.org/10.1111/j.1541-0420.2008.01049.x
istex:D2AE0EFA8165D520BD20832A5DBE5F84F40F5980
ark:/67375/WNG-PQC6W635-8
ArticleID:BIOM1049
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
anb61@pitt.edu
OpenAccessLink http://doi.org/10.1111/j.1541-0420.2008.01049.x
PMID 18479482
PQID 213833380
PQPubID 35366
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2776072
proquest_miscellaneous_67102747
proquest_miscellaneous_46221939
proquest_miscellaneous_34352490
proquest_journals_213833380
pubmed_primary_18479482
crossref_primary_10_1111_j_1541_0420_2008_01049_x
crossref_citationtrail_10_1111_j_1541_0420_2008_01049_x
wiley_primary_10_1111_j_1541_0420_2008_01049_x_BIOM1049
jstor_primary_25502264
istex_primary_ark_67375_WNG_PQC6W635_8
fao_agris_US201301607419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2009
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: March 2009
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: England
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2009
Publisher Blackwell Publishing Inc
Blackwell Publishing
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing
– name: Blackwell Publishing Ltd
References Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under receiver operating characteristic (ROC) curve. Radiology 143, 29-36.
Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York : Chapman & Hall.
Bunch, P. C., Hamilton, J. F., Sanderson, G. K., and Simmons, A. H. (1978). A free-response approach to the measurement and characterization of radiographic-observer performance. Journal of Applied Photographic Engineering 4(4), 165-171.
Egan, J. P., Greenberg, G. Z., and Schulman, A. I. (1961). Operating characteristics, signal detectability, and the methods of free response. Journal of the Acoustical Society of America 33(8), 993-1007.
Rutter, C. M. (2000). Bootstrap estimation of diagnostic accuracy with patient-clustered data. Academic Radiology 7, 413-419.
Edwards, D. C., Kupinski, M. A., Metz, C. E., and Nishikawa, R. M. (2002). Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Medical Physics 29(12), 2861-2870.
Chakraborty, D. P. (1989). Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Medical Physics 16(4), 561-568.
Gallas B. (2006). One-shot estimate of MRMC variance: AUC. Academic Radiology 13, 353-362.
Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12, 387-415.
Obuchowski, N. A. (1997). Nonparametric analysis of clustered ROC curve data. Biometrics 53, 567-578.
Chakraborty, D. P. and Berbaum, K. S. (2004). Observer studies involving detection and localization: Modeling, analysis and validation. Medical Physics 31(8), 2313-2330.
Zhou, X. H., Obuchowski, N. A., and McClish D. K. (2002). Statistical Methods in Diagnostic Medicine. New York : Wiley & Sons, Inc.
Bandos, A. I., Rockette, H. E., and Gur, D. (2007). Exact bootstrap variances of the area under the ROC curve. Communications in Statistics-Theory & Methods 36(13), 2443-2461.
Chakraborty, D. P. (2006). A search model and figure of merit for observer data acquired to the free-response paradigm. Physics in Medicine and Biology 51, 3449-3462.
Rosner, D. and Grove, D. (1999). Use of the Mann-Whitney U-test for clustered data. Statistics in Medicine 18, 1387-1400.
Berbaum, K. S., Franken, E. A., Dorfman, D. D., Rooholamini, S. A., Kathol, M. H., Barloon, T. J., Behlke, F. M., Sato, Y., Lu, C. C., El-Khoury, G. Y., Flickinger, F. W., and Montgomery, W. J. (1990). Satisfaction of search in diagnostic radiology. Investigative Radiology 25, 133-140.
2004; 31
2002; 29
1990; 25
2006; 51
2006; 13
1997; 53
1999; 18
2000; 7
1978; 4
1975; 12
1982; 143
2006
1993
2002
1961; 33
1989; 16
2007; 36
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
Bunch P. C. (e_1_2_9_5_1) 1978; 4
e_1_2_9_18_1
References_xml – reference: Edwards, D. C., Kupinski, M. A., Metz, C. E., and Nishikawa, R. M. (2002). Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Medical Physics 29(12), 2861-2870.
– reference: Chakraborty, D. P. (2006). A search model and figure of merit for observer data acquired to the free-response paradigm. Physics in Medicine and Biology 51, 3449-3462.
– reference: Gallas B. (2006). One-shot estimate of MRMC variance: AUC. Academic Radiology 13, 353-362.
– reference: Rosner, D. and Grove, D. (1999). Use of the Mann-Whitney U-test for clustered data. Statistics in Medicine 18, 1387-1400.
– reference: Berbaum, K. S., Franken, E. A., Dorfman, D. D., Rooholamini, S. A., Kathol, M. H., Barloon, T. J., Behlke, F. M., Sato, Y., Lu, C. C., El-Khoury, G. Y., Flickinger, F. W., and Montgomery, W. J. (1990). Satisfaction of search in diagnostic radiology. Investigative Radiology 25, 133-140.
– reference: Egan, J. P., Greenberg, G. Z., and Schulman, A. I. (1961). Operating characteristics, signal detectability, and the methods of free response. Journal of the Acoustical Society of America 33(8), 993-1007.
– reference: Obuchowski, N. A. (1997). Nonparametric analysis of clustered ROC curve data. Biometrics 53, 567-578.
– reference: Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12, 387-415.
– reference: Rutter, C. M. (2000). Bootstrap estimation of diagnostic accuracy with patient-clustered data. Academic Radiology 7, 413-419.
– reference: Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York : Chapman & Hall.
– reference: Chakraborty, D. P. and Berbaum, K. S. (2004). Observer studies involving detection and localization: Modeling, analysis and validation. Medical Physics 31(8), 2313-2330.
– reference: Bandos, A. I., Rockette, H. E., and Gur, D. (2007). Exact bootstrap variances of the area under the ROC curve. Communications in Statistics-Theory & Methods 36(13), 2443-2461.
– reference: Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under receiver operating characteristic (ROC) curve. Radiology 143, 29-36.
– reference: Zhou, X. H., Obuchowski, N. A., and McClish D. K. (2002). Statistical Methods in Diagnostic Medicine. New York : Wiley & Sons, Inc.
– reference: Bunch, P. C., Hamilton, J. F., Sanderson, G. K., and Simmons, A. H. (1978). A free-response approach to the measurement and characterization of radiographic-observer performance. Journal of Applied Photographic Engineering 4(4), 165-171.
– reference: Chakraborty, D. P. (1989). Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Medical Physics 16(4), 561-568.
– volume: 25
  start-page: 133
  year: 1990
  end-page: 140
  article-title: Satisfaction of search in diagnostic radiology
  publication-title: Investigative Radiology
– start-page: 1312
  year: 2006
  end-page: 1315
– volume: 16
  start-page: 561
  issue: 4
  year: 1989
  end-page: 568
  article-title: Maximum likelihood analysis of free‐response receiver operating characteristic (FROC) data
  publication-title: Medical Physics
– volume: 7
  start-page: 413
  year: 2000
  end-page: 419
  article-title: Bootstrap estimation of diagnostic accuracy with patient‐clustered data
  publication-title: Academic Radiology
– volume: 13
  start-page: 353
  year: 2006
  end-page: 362
  article-title: One‐shot estimate of MRMC variance: AUC
  publication-title: Academic Radiology
– year: 2002
– volume: 33
  start-page: 993
  issue: 8
  year: 1961
  end-page: 1007
  article-title: Operating characteristics, signal detectability, and the methods of free response
  publication-title: Journal of the Acoustical Society of America
– volume: 31
  start-page: 2313
  issue: 8
  year: 2004
  end-page: 2330
  article-title: Observer studies involving detection and localization: Modeling, analysis and validation
  publication-title: Medical Physics
– volume: 36
  start-page: 2443
  issue: 13
  year: 2007
  end-page: 2461
  article-title: Exact bootstrap variances of the area under the ROC curve
  publication-title: Communications in Statistics—Theory & Methods
– volume: 53
  start-page: 567
  year: 1997
  end-page: 578
  article-title: Nonparametric analysis of clustered ROC curve data
  publication-title: Biometrics
– volume: 4
  start-page: 165
  issue: 4
  year: 1978
  end-page: 171
  article-title: A free‐response approach to the measurement and characterization of radiographic‐observer performance
  publication-title: Journal of Applied Photographic Engineering
– volume: 51
  start-page: 3449
  year: 2006
  end-page: 3462
  article-title: A search model and figure of merit for observer data acquired to the free‐response paradigm
  publication-title: Physics in Medicine and Biology
– volume: 18
  start-page: 1387
  year: 1999
  end-page: 1400
  article-title: Use of the Mann‐Whitney U‐test for clustered data
  publication-title: Statistics in Medicine
– volume: 29
  start-page: 2861
  issue: 12
  year: 2002
  end-page: 2870
  article-title: Maximum likelihood fitting of FROC curves under an initial‐detection‐and‐candidate‐analysis model
  publication-title: Medical Physics
– year: 1993
– volume: 12
  start-page: 387
  year: 1975
  end-page: 415
  article-title: The area above the ordinal dominance graph and the area below the receiver operating characteristic graph
  publication-title: Journal of Mathematical Psychology
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  article-title: The meaning and use of the area under receiver operating characteristic (ROC) curve
  publication-title: Radiology
– ident: e_1_2_9_2_1
  doi: 10.1016/0022-2496(75)90001-2
– ident: e_1_2_9_12_1
  doi: 10.1016/j.acra.2005.11.030
– ident: e_1_2_9_16_1
  doi: 10.1016/S1076-6332(00)80381-5
– ident: e_1_2_9_14_1
  doi: 10.2307/2533958
– ident: e_1_2_9_18_1
  doi: 10.1002/9780470317082
– ident: e_1_2_9_6_1
  doi: 10.1118/1.596358
– ident: e_1_2_9_13_1
  doi: 10.1148/radiology.143.1.7063747
– ident: e_1_2_9_17_1
– ident: e_1_2_9_10_1
  doi: 10.1007/978-1-4899-4541-9
– ident: e_1_2_9_4_1
  doi: 10.1097/00004424-199002000-00006
– volume: 4
  start-page: 165
  issue: 4
  year: 1978
  ident: e_1_2_9_5_1
  article-title: A free‐response approach to the measurement and characterization of radiographic‐observer performance
  publication-title: Journal of Applied Photographic Engineering
– ident: e_1_2_9_15_1
  doi: 10.1002/(SICI)1097-0258(19990615)18:11<1387::AID-SIM126>3.0.CO;2-V
– ident: e_1_2_9_3_1
  doi: 10.1080/03610920701215811
– ident: e_1_2_9_11_1
  doi: 10.1121/1.1908935
– ident: e_1_2_9_8_1
  doi: 10.1118/1.1769352
– ident: e_1_2_9_9_1
  doi: 10.1118/1.1524631
– ident: e_1_2_9_7_1
  doi: 10.1088/0031-9155/51/14/012
SSID ssj0009502
Score 2.2873216
Snippet Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more...
Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one...
Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one...
Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 247
SubjectTerms Algebra
Area Under Curve
Area under the FROC curve
Biometric Methodology
Biometrics
biometry
Bootstrap
Computer Simulation
Confidence interval
Data analysis
data collection
Datasets
Decision Making, Computer-Assisted
Diagnostic Imaging - standards
Diagnostic Imaging - statistics & numerical data
Estimating techniques
Estimators
FROC
Humans
image analysis
Imaging
Interval estimators
Radiology
Random variables
ROC
ROC Curve
Sample size
Simulation
Statistical variance
variance
Title Area under the Free-Response ROC Curve (FROC) and a Related Summary Index
URI https://api.istex.fr/ark:/67375/WNG-PQC6W635-8/fulltext.pdf
https://www.jstor.org/stable/25502264
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2008.01049.x
https://www.ncbi.nlm.nih.gov/pubmed/18479482
https://www.proquest.com/docview/213833380
https://www.proquest.com/docview/34352490
https://www.proquest.com/docview/46221939
https://www.proquest.com/docview/67102747
https://pubmed.ncbi.nlm.nih.gov/PMC2776072
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagElI58FhoG8rDB4TgkCrxI06OZcXSgraFLavuzbITB9CiLNoHKpz4CfxGfgkzcTbsQkEV4hbJ40g7Ox5_E3_-hpCHCcSsYTwLJZdZKIrMhtYkSWhF6myZFya3-EG_f5QcDMWLkRw1_Ce8C-P1IdoPbrgy6nyNC9zY2foilwJKYcGihhIJlUW2h3gSqVuIjwZsRX838sLhSPUS8Wid1HPui9Z2qsulmQB-RdefLamL54HS37mVq5i33rR618l4-XM9V2W8t5jbvfzLL0qQ_8cfN8i1BtvSfR-MN8klV3XIFd_t8nOHXO23ErGzDtlEmOtVom-Rl_uAXSneZ5tSsKG9qXPfv34beAKvo4PjLu0upp8cfdyD5yfUVAU1tGbyuYKe-Bt49BClH2-TYe_Zm-5B2LR5CPMEivOwzIURZcRlmpeRlCYrWGSsSVkOA2ViTFkoJW0MMRSr2GS8SC2gWFdyxpXKJd8iG9WkcjuEKptErJAlQ1kl7jIbo95MIaTiQkaFDIha_qU6bzTQsRXHB71SC4EXNXqx6dCJXtRnAYnbmR-9DsgF5uxA1GjzFtK1Hp4wPCRGPT8RZwF5VIdS-y4zHSPFTkl9evRcv3rdTU4BCuo0IFt1rLWGUAJGePk5ILvL4NNN2plpFvOUc55GAXnQjkK-wEMgU7nJYqY54GMouf9iIRIG2xjP_myRICyFOjQg2z7Yf7okxY4FKQNHry2D1gDVzNdHqvfvalVzphT4BmfWUX5hL-unh8d9fLzzzzN3yaY_JERq4V2yMZ8u3D3AmnN7v84iPwBzGWlL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCDEeGBTGwgbzA0LwkCrxJZfHUSgtWzvoVq1vlp04gDalqBc0eOIn8Bv5JZyTpKGFgSbEWyTbkXJyfPwd-_N3CHkcgM9qxmNXchm7Io2Na3QQuEZE1mRJqhODG_q9ftAZitcjOarKAeFdmFIfot5ww5lRxGuc4LghvTrLpYBcWDCv4kRCahE3AVBewwLfKKT_YsCWFHi9UjocyV7CH63Sei5808padTXTY0CwaPzzBXnxIlj6O7tyGfUWy1Z7g5wtPrhkq5w25zPTTL78ogX5nyxym9yq4C3dK_3xDrli8wa5Xha8_NwgN3u1Suy0QdYR6ZZC0XfJ_h7AV4pX2iYU-tD2xNrvX78NSg6vpYPDFm3NJ58sfdqG52dU5ynVtCDz2ZQelZfwaBfVH--RYfvlcavjVpUe3CSA_NzNEqFF5nEZJZknpY5T5mmjI5ZAQxZonaVhKI0PbuSHvo55GhkAsjbjjIdhIvkmWcvHud0iNDSBx1KZMVRW4jY2PkrOpEKGXEgvlQ4JF_9UJZUMOlbjOFNL6RBYUaEVqyKdaEV17hC_HvmxlAK5xJgtcBul30HEVsMjhufEKOkn_NghTwpfqt-lJ6fIsgulOum_Um_etoITQIMqcshm4Wx1R8gCPbz_7JDthfepKvJMFfN5xDmPPIfs1q0QMvAcSOd2PJ8qDhAZsu6_9BABg5WMx3_uESAyhVTUIfdLb_9pkgiLFkQMDL0yD-oOKGi-2pJ_eF8Im7MwBNvgyMLNL21l9bx72MPHB_88cpfc6Bz3DtRBt7-_TdbLM0NkGu6Qtdlkbh8C9JyZR0VI-QEA-W1n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BK1A5UAiUmgLdA0JwcGTvw49jSQkNJWlJiZrbatdeAwpyqjxQ4cRP4DfyS5ixHZNAQRXiZmlnLWUyO_uN99tvCHkcQMxqxmNXchm7Io2Na3QQuEZE1mRJqhODH_S7veBgIF4N5bDiP-FdmFIfov7ghiujyNe4wM_SbHWRSwGlsGBeRYmEyiJuAp5cF4EXYxuH_T5bEuD1SuVw5HoJf7jK6rnwTStb1dVMjwHAou_PF9zFi1Dp7-TKZdBb7FrtTTJa_N6SrDJqzmemmXz5RQry_zjkFrlZgVu6V0bjbXLF5g1yrWx3-blBbnRrjdhpg2wgzi1lou-Qwz0ArxQvtE0o2ND2xNrvX7_1Swavpf2jFm3NJ58sfdqG52dU5ynVtKDy2ZSelFfwaAe1H--SQfvF29aBW_V5cJMAqnM3S4QWmcdllGSelDpOmaeNjlgCA1mgdZaGoTQ-BJEf-jrmaWQAxtqMMx6GieRbZC0f53ab0NAEHktlxlBXidvY-Cg4kwoZciG9VDokXPylKqlE0LEXx0e1VAyBFxV6sWrRiV5U5w7x65lnpRDIJeZsQ9Qo_Q7ytRqcMDwlRkE_4ccOeVKEUv0uPRkhxy6U6rT3Uh2_aQWngAVV5JCtItZqQ6gBPbz97JCdRfCpKu9MFfN5xDmPPIfs1qOQMPAUSOd2PJ8qDgAZau6_WIiAwT7G4z9bBIhLoRB1yL0y2H-6JMKWBREDR68sg9oA5cxXR_IP7wtZcxaG4BucWUT5pb2snneOuvh4_59n7pLrx_tt9brTO9whG-WBIdIMH5C12WRuHwLunJlHRUL5AT11bBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Area+under+the+Free%E2%80%90Response+ROC+Curve+%28FROC%29+and+a+Related+Summary+Index&rft.jtitle=Biometrics&rft.au=Bandos%2C+Andriy+I.&rft.au=Rockette%2C+Howard+E.&rft.au=Song%2C+Tao&rft.au=Gur%2C+David&rft.date=2009-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=65&rft.issue=1&rft.spage=247&rft.epage=256&rft_id=info:doi/10.1111%2Fj.1541-0420.2008.01049.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1541_0420_2008_01049_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon