Area under the Free-Response ROC Curve (FROC) and a Related Summary Index
Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the p...
Saved in:
Published in | Biometrics Vol. 65; no. 1; pp. 247 - 256 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.03.2009
Blackwell Publishing Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters. |
---|---|
AbstractList | Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more 'abnormalities' within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or 'acceptance radius'). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial 'guessing' free-response process and it represents an analogy to the area between the ROC curve and the 'guessing' or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters. Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters.Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters. Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more “abnormalities” within a subject. A free‐response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free‐response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free‐response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or “acceptance radius”). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial “guessing” free‐response process and it represents an analogy to the area between the ROC curve and the “guessing” or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling‐free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters. Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more "abnormalities" within a subject. A free-response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free-response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free-response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or "acceptance radius"). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial "guessing" free-response process and it represents an analogy to the area between the ROC curve and the "guessing" or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling-free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters. [PUBLICATION ABSTRACT] Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more “abnormalities” within a subject. A free‐response receiver operating characteristic (FROC) curve is a tool for characterizing the performance of a free‐response system at all decision thresholds simultaneously. Although the importance of a single index summarizing the entire curve over all decision thresholds is well recognized in ROC analysis (e.g., area under the ROC curve), currently there is no widely accepted summary of a system being evaluated under the FROC paradigm. In this article, we propose a new index of the free‐response performance at all decision thresholds simultaneously, and develop a nonparametric method for its analysis. Algebraically, the proposed summary index is the area under the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction of detected abnormalities, and adjusted for the effect of the target size (or “acceptance radius”). Geometrically, the proposed index can be interpreted as a measure of average performance superiority over an artificial “guessing” free‐response process and it represents an analogy to the area between the ROC curve and the “guessing” or diagonal line. We derive the ideal bootstrap estimator of the variance, which can be used for a resampling‐free construction of asymptotic bootstrap confidence intervals and for sample size estimation using standard expressions. The proposed procedure is free from any parametric assumptions and does not require an assumption of independence of observations within a subject. We provide an example with a dataset sampled from a diagnostic imaging study and conduct simulations that demonstrate the appropriateness of the developed procedure for the considered sample sizes and ranges of parameters. |
Author | Gur, David Bandos, Andriy I. Rockette, Howard E. Song, Tao |
AuthorAffiliation | 1 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A 2 Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A – name: 2 Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, U.S.A |
Author_xml | – sequence: 1 givenname: Andriy I. surname: Bandos fullname: Bandos, Andriy I. – sequence: 2 givenname: Howard E. surname: Rockette fullname: Rockette, Howard E. – sequence: 3 givenname: Tao surname: Song fullname: Song, Tao – sequence: 4 givenname: David surname: Gur fullname: Gur, David |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18479482$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl9v0zAUxS00xLrBRwAsHhA8JFz_T16QRkVHpUGhYxpvlps4W0oaFzsZ3bfHoaMDXgZ-sa3z87F97zlAe61rLUKYQErieLVMieAkAU4hpQBZCgR4nm7uodFO2EMjAJAJ4-TLPjoIYRm3uQD6AO2TjKucZ3SEpkfeGty3pfW4u7R44q1N5jasXRssns_GeNz7K4tfTOL6JTZtiQ2e28Z0tsSn_Wpl_DWexuObh-h-ZZpgH93Mh-hs8vbz-F1yMjuejo9OkkJymSdVwQ2vgImsqEAIk5cUzMJktIhCJY2pSqXEgiyMJIqYnJXZQoCyFaNMqUKwQ_R667vuFytbFrbtvGn02tfDW7Qztf5TaetLfeGuNFVKgqLR4PmNgXffehs6vapDYZvGtNb1QUtFgCqu7gS5pJTkLL8TZJwJynOI4LO_wKXrfRvLpSlhGWMsG6Anv39w97NfTYtAtgUK70LwtrpFQA_50Es9xEAPMdBDPvTPfOjNbfF2R4u6M13thlLVzX8YfK8be_3PF-s309n7YRkNHm8NlqFzfmdARUwmlTzqyVavQ2c3O934r7ExTAl9_uFYf_w0lueSCZ1F_umWr4zT5sLXQZ-dUiAMSOw2j_35AUkw8zA |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1007_s00261_020_02604_5 crossref_primary_10_1109_TMI_2019_2935553 crossref_primary_10_1259_bjr_45866310 crossref_primary_10_3389_fonc_2024_1365364 crossref_primary_10_1038_s41598_021_03002_7 crossref_primary_10_3390_biom13030421 crossref_primary_10_4018_jgc_2013010101 crossref_primary_10_1016_j_media_2020_101767 crossref_primary_10_1038_s41598_024_51240_2 crossref_primary_10_1136_neurintsurg_2020_015824 crossref_primary_10_1002_sim_8818 crossref_primary_10_1007_s44267_024_00052_z crossref_primary_10_1016_j_neucom_2020_05_119 crossref_primary_10_1007_s10618_009_0158_x crossref_primary_10_1016_j_ultras_2022_106891 crossref_primary_10_1148_radiol_211593 crossref_primary_10_3389_fgene_2022_816460 crossref_primary_10_1002_mp_14648 crossref_primary_10_3389_fninf_2020_00017 crossref_primary_10_3389_fphar_2022_904448 crossref_primary_10_3389_fmolb_2020_599333 crossref_primary_10_1016_j_acra_2013_03_001 crossref_primary_10_1016_j_ejrad_2021_110068 crossref_primary_10_2214_AJR_10_4760 crossref_primary_10_1016_j_artmed_2022_102386 crossref_primary_10_1155_2023_1069443 crossref_primary_10_1109_ACCESS_2021_3072997 crossref_primary_10_1096_fj_202402129R crossref_primary_10_1136_gutjnl_2014_308513 crossref_primary_10_1186_s12891_023_06816_w crossref_primary_10_1016_j_acra_2009_03_009 crossref_primary_10_1186_s40001_022_00883_w crossref_primary_10_1097_GME_0000000000002493 crossref_primary_10_1002_mp_13029 crossref_primary_10_1109_ACCESS_2024_3487260 crossref_primary_10_2214_AJR_23_30345 crossref_primary_10_1088_1361_6560_abd66b crossref_primary_10_1007_s13402_021_00616_x crossref_primary_10_1109_ACCESS_2023_3344456 crossref_primary_10_1109_TCBB_2021_3062230 crossref_primary_10_1371_journal_pone_0231880 crossref_primary_10_1186_s10020_020_00208_9 crossref_primary_10_1186_s12885_020_07412_0 crossref_primary_10_1002_sim_7611 crossref_primary_10_1016_j_media_2022_102482 crossref_primary_10_1109_TMI_2012_2205267 crossref_primary_10_1016_j_radi_2014_04_005 crossref_primary_10_1007_s10554_020_02128_5 crossref_primary_10_1002_mp_16296 crossref_primary_10_1016_j_irbm_2014_04_002 crossref_primary_10_1016_j_engappai_2023_107597 crossref_primary_10_1016_j_neucom_2020_03_128 crossref_primary_10_14309_ctg_0000000000000265 crossref_primary_10_1148_radiol_2533091633 crossref_primary_10_1016_j_cmpb_2020_105620 crossref_primary_10_1111_iwj_14734 crossref_primary_10_1118_1_3633938 crossref_primary_10_1016_j_rcl_2021_06_005 crossref_primary_10_1002_sim_9400 crossref_primary_10_4018_jgc_2013070105 crossref_primary_10_3390_life14010090 crossref_primary_10_1002_mp_12134 crossref_primary_10_1109_ACCESS_2020_3026168 crossref_primary_10_1038_s41598_024_74577_0 crossref_primary_10_2139_ssrn_4072585 crossref_primary_10_2214_AJR_24_31972 crossref_primary_10_1016_j_stamet_2010_03_001 crossref_primary_10_1007_s10115_023_01894_7 crossref_primary_10_1016_j_athoracsur_2017_11_012 crossref_primary_10_3389_fonc_2022_1044496 crossref_primary_10_1109_ACCESS_2021_3086885 crossref_primary_10_1016_j_jtcvs_2016_10_019 crossref_primary_10_1364_JOSAA_32_000497 crossref_primary_10_1002_int_22622 crossref_primary_10_1111_jcmm_17846 crossref_primary_10_1016_j_ymeth_2019_02_010 crossref_primary_10_1093_biostatistics_kxq062 crossref_primary_10_1109_JBHI_2013_2285230 crossref_primary_10_1007_s10278_022_00749_x crossref_primary_10_1038_s41551_018_0301_3 crossref_primary_10_1118_1_4816310 crossref_primary_10_1155_2022_5422698 crossref_primary_10_1177_0962280218776683 crossref_primary_10_1186_s12884_024_07122_6 crossref_primary_10_1016_j_acra_2012_09_006 crossref_primary_10_1016_j_jacr_2022_05_022 crossref_primary_10_1093_jamia_ocy098 crossref_primary_10_1097_JCMA_0000000000001190 crossref_primary_10_2147_DMSO_S352154 crossref_primary_10_1016_j_ejmp_2021_05_032 crossref_primary_10_1016_j_acra_2020_07_030 crossref_primary_10_1053_j_semnuclmed_2011_07_001 |
Cites_doi | 10.1016/0022-2496(75)90001-2 10.1016/j.acra.2005.11.030 10.1016/S1076-6332(00)80381-5 10.2307/2533958 10.1002/9780470317082 10.1118/1.596358 10.1148/radiology.143.1.7063747 10.1007/978-1-4899-4541-9 10.1097/00004424-199002000-00006 10.1002/(SICI)1097-0258(19990615)18:11<1387::AID-SIM126>3.0.CO;2-V 10.1080/03610920701215811 10.1121/1.1908935 10.1118/1.1769352 10.1118/1.1524631 10.1088/0031-9155/51/14/012 |
ContentType | Journal Article |
Copyright | Copyright 2009 The International Biometric Society 2008, The International Biometric Society 2009 International Biometric Society |
Copyright_xml | – notice: Copyright 2009 The International Biometric Society – notice: 2008, The International Biometric Society – notice: 2009 International Biometric Society |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7SC 7U5 8FD L7M L~C L~D 7S9 L.6 7X8 5PM |
DOI | 10.1111/j.1541-0420.2008.01049.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection Technology Research Database Computer and Information Systems Abstracts – Academic Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef MEDLINE AGRICOLA ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 256 |
ExternalDocumentID | PMC2776072 1663530441 18479482 10_1111_j_1541_0420_2008_01049_x BIOM1049 25502264 ark_67375_WNG_PQC6W635_8 US201301607419 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB001694 – fundername: NIBIB NIH HHS grantid: EB003503 – fundername: NIBIB NIH HHS grantid: R01 EB003503 – fundername: NIBIB NIH HHS grantid: R01 EB006388 – fundername: NIBIB NIH HHS grantid: EB006388 – fundername: NIBIB NIH HHS grantid: EB001694 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAPXW AAUAY AAZSN ABEJV ABMNT ABXSQ ABXVV ADACV AJAOE ALIPV BSCLL IPSME KOP OIG OJZSN ROX AAMMB AANHP AAWIL AAYCA ABAWQ ABDFA ABGNP ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGORE AGQPQ AGXDD AIDQK AIDYY AIHAF AJNCP ALRMG NU- AAYXX AHGBF AJBYB CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND JQ2 7SC 7U5 8FD L7M L~C L~D 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c6469-fc4a4f0358cf055a9d20aba82cc4af6aafd775b1ba6171a93d8b507ef32377c53 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Thu Aug 21 18:02:07 EDT 2025 Fri Jul 11 00:56:39 EDT 2025 Fri Jul 11 18:38:01 EDT 2025 Fri Jul 11 08:00:56 EDT 2025 Fri Jul 25 19:34:47 EDT 2025 Fri May 30 11:01:45 EDT 2025 Tue Jul 01 00:57:58 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Wed Jan 22 16:46:53 EST 2025 Thu Jul 03 21:22:34 EDT 2025 Wed Oct 30 10:06:06 EDT 2024 Wed Dec 27 19:21:53 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6469-fc4a4f0358cf055a9d20aba82cc4af6aafd775b1ba6171a93d8b507ef32377c53 |
Notes | http://dx.doi.org/10.1111/j.1541-0420.2008.01049.x istex:D2AE0EFA8165D520BD20832A5DBE5F84F40F5980 ark:/67375/WNG-PQC6W635-8 ArticleID:BIOM1049 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 anb61@pitt.edu |
OpenAccessLink | http://doi.org/10.1111/j.1541-0420.2008.01049.x |
PMID | 18479482 |
PQID | 213833380 |
PQPubID | 35366 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2776072 proquest_miscellaneous_67102747 proquest_miscellaneous_46221939 proquest_miscellaneous_34352490 proquest_journals_213833380 pubmed_primary_18479482 crossref_primary_10_1111_j_1541_0420_2008_01049_x crossref_citationtrail_10_1111_j_1541_0420_2008_01049_x wiley_primary_10_1111_j_1541_0420_2008_01049_x_BIOM1049 jstor_primary_25502264 istex_primary_ark_67375_WNG_PQC6W635_8 fao_agris_US201301607419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2009 |
PublicationDateYYYYMMDD | 2009-03-01 |
PublicationDate_xml | – month: 03 year: 2009 text: March 2009 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: England – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Inc Blackwell Publishing Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell Publishing – name: Blackwell Publishing Ltd |
References | Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under receiver operating characteristic (ROC) curve. Radiology 143, 29-36. Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York : Chapman & Hall. Bunch, P. C., Hamilton, J. F., Sanderson, G. K., and Simmons, A. H. (1978). A free-response approach to the measurement and characterization of radiographic-observer performance. Journal of Applied Photographic Engineering 4(4), 165-171. Egan, J. P., Greenberg, G. Z., and Schulman, A. I. (1961). Operating characteristics, signal detectability, and the methods of free response. Journal of the Acoustical Society of America 33(8), 993-1007. Rutter, C. M. (2000). Bootstrap estimation of diagnostic accuracy with patient-clustered data. Academic Radiology 7, 413-419. Edwards, D. C., Kupinski, M. A., Metz, C. E., and Nishikawa, R. M. (2002). Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Medical Physics 29(12), 2861-2870. Chakraborty, D. P. (1989). Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Medical Physics 16(4), 561-568. Gallas B. (2006). One-shot estimate of MRMC variance: AUC. Academic Radiology 13, 353-362. Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12, 387-415. Obuchowski, N. A. (1997). Nonparametric analysis of clustered ROC curve data. Biometrics 53, 567-578. Chakraborty, D. P. and Berbaum, K. S. (2004). Observer studies involving detection and localization: Modeling, analysis and validation. Medical Physics 31(8), 2313-2330. Zhou, X. H., Obuchowski, N. A., and McClish D. K. (2002). Statistical Methods in Diagnostic Medicine. New York : Wiley & Sons, Inc. Bandos, A. I., Rockette, H. E., and Gur, D. (2007). Exact bootstrap variances of the area under the ROC curve. Communications in Statistics-Theory & Methods 36(13), 2443-2461. Chakraborty, D. P. (2006). A search model and figure of merit for observer data acquired to the free-response paradigm. Physics in Medicine and Biology 51, 3449-3462. Rosner, D. and Grove, D. (1999). Use of the Mann-Whitney U-test for clustered data. Statistics in Medicine 18, 1387-1400. Berbaum, K. S., Franken, E. A., Dorfman, D. D., Rooholamini, S. A., Kathol, M. H., Barloon, T. J., Behlke, F. M., Sato, Y., Lu, C. C., El-Khoury, G. Y., Flickinger, F. W., and Montgomery, W. J. (1990). Satisfaction of search in diagnostic radiology. Investigative Radiology 25, 133-140. 2004; 31 2002; 29 1990; 25 2006; 51 2006; 13 1997; 53 1999; 18 2000; 7 1978; 4 1975; 12 1982; 143 2006 1993 2002 1961; 33 1989; 16 2007; 36 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 Bunch P. C. (e_1_2_9_5_1) 1978; 4 e_1_2_9_18_1 |
References_xml | – reference: Edwards, D. C., Kupinski, M. A., Metz, C. E., and Nishikawa, R. M. (2002). Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Medical Physics 29(12), 2861-2870. – reference: Chakraborty, D. P. (2006). A search model and figure of merit for observer data acquired to the free-response paradigm. Physics in Medicine and Biology 51, 3449-3462. – reference: Gallas B. (2006). One-shot estimate of MRMC variance: AUC. Academic Radiology 13, 353-362. – reference: Rosner, D. and Grove, D. (1999). Use of the Mann-Whitney U-test for clustered data. Statistics in Medicine 18, 1387-1400. – reference: Berbaum, K. S., Franken, E. A., Dorfman, D. D., Rooholamini, S. A., Kathol, M. H., Barloon, T. J., Behlke, F. M., Sato, Y., Lu, C. C., El-Khoury, G. Y., Flickinger, F. W., and Montgomery, W. J. (1990). Satisfaction of search in diagnostic radiology. Investigative Radiology 25, 133-140. – reference: Egan, J. P., Greenberg, G. Z., and Schulman, A. I. (1961). Operating characteristics, signal detectability, and the methods of free response. Journal of the Acoustical Society of America 33(8), 993-1007. – reference: Obuchowski, N. A. (1997). Nonparametric analysis of clustered ROC curve data. Biometrics 53, 567-578. – reference: Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12, 387-415. – reference: Rutter, C. M. (2000). Bootstrap estimation of diagnostic accuracy with patient-clustered data. Academic Radiology 7, 413-419. – reference: Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York : Chapman & Hall. – reference: Chakraborty, D. P. and Berbaum, K. S. (2004). Observer studies involving detection and localization: Modeling, analysis and validation. Medical Physics 31(8), 2313-2330. – reference: Bandos, A. I., Rockette, H. E., and Gur, D. (2007). Exact bootstrap variances of the area under the ROC curve. Communications in Statistics-Theory & Methods 36(13), 2443-2461. – reference: Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under receiver operating characteristic (ROC) curve. Radiology 143, 29-36. – reference: Zhou, X. H., Obuchowski, N. A., and McClish D. K. (2002). Statistical Methods in Diagnostic Medicine. New York : Wiley & Sons, Inc. – reference: Bunch, P. C., Hamilton, J. F., Sanderson, G. K., and Simmons, A. H. (1978). A free-response approach to the measurement and characterization of radiographic-observer performance. Journal of Applied Photographic Engineering 4(4), 165-171. – reference: Chakraborty, D. P. (1989). Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Medical Physics 16(4), 561-568. – volume: 25 start-page: 133 year: 1990 end-page: 140 article-title: Satisfaction of search in diagnostic radiology publication-title: Investigative Radiology – start-page: 1312 year: 2006 end-page: 1315 – volume: 16 start-page: 561 issue: 4 year: 1989 end-page: 568 article-title: Maximum likelihood analysis of free‐response receiver operating characteristic (FROC) data publication-title: Medical Physics – volume: 7 start-page: 413 year: 2000 end-page: 419 article-title: Bootstrap estimation of diagnostic accuracy with patient‐clustered data publication-title: Academic Radiology – volume: 13 start-page: 353 year: 2006 end-page: 362 article-title: One‐shot estimate of MRMC variance: AUC publication-title: Academic Radiology – year: 2002 – volume: 33 start-page: 993 issue: 8 year: 1961 end-page: 1007 article-title: Operating characteristics, signal detectability, and the methods of free response publication-title: Journal of the Acoustical Society of America – volume: 31 start-page: 2313 issue: 8 year: 2004 end-page: 2330 article-title: Observer studies involving detection and localization: Modeling, analysis and validation publication-title: Medical Physics – volume: 36 start-page: 2443 issue: 13 year: 2007 end-page: 2461 article-title: Exact bootstrap variances of the area under the ROC curve publication-title: Communications in Statistics—Theory & Methods – volume: 53 start-page: 567 year: 1997 end-page: 578 article-title: Nonparametric analysis of clustered ROC curve data publication-title: Biometrics – volume: 4 start-page: 165 issue: 4 year: 1978 end-page: 171 article-title: A free‐response approach to the measurement and characterization of radiographic‐observer performance publication-title: Journal of Applied Photographic Engineering – volume: 51 start-page: 3449 year: 2006 end-page: 3462 article-title: A search model and figure of merit for observer data acquired to the free‐response paradigm publication-title: Physics in Medicine and Biology – volume: 18 start-page: 1387 year: 1999 end-page: 1400 article-title: Use of the Mann‐Whitney U‐test for clustered data publication-title: Statistics in Medicine – volume: 29 start-page: 2861 issue: 12 year: 2002 end-page: 2870 article-title: Maximum likelihood fitting of FROC curves under an initial‐detection‐and‐candidate‐analysis model publication-title: Medical Physics – year: 1993 – volume: 12 start-page: 387 year: 1975 end-page: 415 article-title: The area above the ordinal dominance graph and the area below the receiver operating characteristic graph publication-title: Journal of Mathematical Psychology – volume: 143 start-page: 29 year: 1982 end-page: 36 article-title: The meaning and use of the area under receiver operating characteristic (ROC) curve publication-title: Radiology – ident: e_1_2_9_2_1 doi: 10.1016/0022-2496(75)90001-2 – ident: e_1_2_9_12_1 doi: 10.1016/j.acra.2005.11.030 – ident: e_1_2_9_16_1 doi: 10.1016/S1076-6332(00)80381-5 – ident: e_1_2_9_14_1 doi: 10.2307/2533958 – ident: e_1_2_9_18_1 doi: 10.1002/9780470317082 – ident: e_1_2_9_6_1 doi: 10.1118/1.596358 – ident: e_1_2_9_13_1 doi: 10.1148/radiology.143.1.7063747 – ident: e_1_2_9_17_1 – ident: e_1_2_9_10_1 doi: 10.1007/978-1-4899-4541-9 – ident: e_1_2_9_4_1 doi: 10.1097/00004424-199002000-00006 – volume: 4 start-page: 165 issue: 4 year: 1978 ident: e_1_2_9_5_1 article-title: A free‐response approach to the measurement and characterization of radiographic‐observer performance publication-title: Journal of Applied Photographic Engineering – ident: e_1_2_9_15_1 doi: 10.1002/(SICI)1097-0258(19990615)18:11<1387::AID-SIM126>3.0.CO;2-V – ident: e_1_2_9_3_1 doi: 10.1080/03610920701215811 – ident: e_1_2_9_11_1 doi: 10.1121/1.1908935 – ident: e_1_2_9_8_1 doi: 10.1118/1.1769352 – ident: e_1_2_9_9_1 doi: 10.1118/1.1524631 – ident: e_1_2_9_7_1 doi: 10.1088/0031-9155/51/14/012 |
SSID | ssj0009502 |
Score | 2.2873216 |
Snippet | Free-response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more... Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one... Summary Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one... Free‐response assessment of diagnostic systems continues to gain acceptance in areas related to the detection, localization, and classification of one or more... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 247 |
SubjectTerms | Algebra Area Under Curve Area under the FROC curve Biometric Methodology Biometrics biometry Bootstrap Computer Simulation Confidence interval Data analysis data collection Datasets Decision Making, Computer-Assisted Diagnostic Imaging - standards Diagnostic Imaging - statistics & numerical data Estimating techniques Estimators FROC Humans image analysis Imaging Interval estimators Radiology Random variables ROC ROC Curve Sample size Simulation Statistical variance variance |
Title | Area under the Free-Response ROC Curve (FROC) and a Related Summary Index |
URI | https://api.istex.fr/ark:/67375/WNG-PQC6W635-8/fulltext.pdf https://www.jstor.org/stable/25502264 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2008.01049.x https://www.ncbi.nlm.nih.gov/pubmed/18479482 https://www.proquest.com/docview/213833380 https://www.proquest.com/docview/34352490 https://www.proquest.com/docview/46221939 https://www.proquest.com/docview/67102747 https://pubmed.ncbi.nlm.nih.gov/PMC2776072 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagElI58FhoG8rDB4TgkCrxI06OZcXSgraFLavuzbITB9CiLNoHKpz4CfxGfgkzcTbsQkEV4hbJ40g7Ox5_E3_-hpCHCcSsYTwLJZdZKIrMhtYkSWhF6myZFya3-EG_f5QcDMWLkRw1_Ce8C-P1IdoPbrgy6nyNC9zY2foilwJKYcGihhIJlUW2h3gSqVuIjwZsRX838sLhSPUS8Wid1HPui9Z2qsulmQB-RdefLamL54HS37mVq5i33rR618l4-XM9V2W8t5jbvfzLL0qQ_8cfN8i1BtvSfR-MN8klV3XIFd_t8nOHXO23ErGzDtlEmOtVom-Rl_uAXSneZ5tSsKG9qXPfv34beAKvo4PjLu0upp8cfdyD5yfUVAU1tGbyuYKe-Bt49BClH2-TYe_Zm-5B2LR5CPMEivOwzIURZcRlmpeRlCYrWGSsSVkOA2ViTFkoJW0MMRSr2GS8SC2gWFdyxpXKJd8iG9WkcjuEKptErJAlQ1kl7jIbo95MIaTiQkaFDIha_qU6bzTQsRXHB71SC4EXNXqx6dCJXtRnAYnbmR-9DsgF5uxA1GjzFtK1Hp4wPCRGPT8RZwF5VIdS-y4zHSPFTkl9evRcv3rdTU4BCuo0IFt1rLWGUAJGePk5ILvL4NNN2plpFvOUc55GAXnQjkK-wEMgU7nJYqY54GMouf9iIRIG2xjP_myRICyFOjQg2z7Yf7okxY4FKQNHry2D1gDVzNdHqvfvalVzphT4BmfWUX5hL-unh8d9fLzzzzN3yaY_JERq4V2yMZ8u3D3AmnN7v84iPwBzGWlL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCDEeGBTGwgbzA0LwkCrxJZfHUSgtWzvoVq1vlp04gDalqBc0eOIn8Bv5JZyTpKGFgSbEWyTbkXJyfPwd-_N3CHkcgM9qxmNXchm7Io2Na3QQuEZE1mRJqhODG_q9ftAZitcjOarKAeFdmFIfot5ww5lRxGuc4LghvTrLpYBcWDCv4kRCahE3AVBewwLfKKT_YsCWFHi9UjocyV7CH63Sei5808padTXTY0CwaPzzBXnxIlj6O7tyGfUWy1Z7g5wtPrhkq5w25zPTTL78ogX5nyxym9yq4C3dK_3xDrli8wa5Xha8_NwgN3u1Suy0QdYR6ZZC0XfJ_h7AV4pX2iYU-tD2xNrvX78NSg6vpYPDFm3NJ58sfdqG52dU5ynVtCDz2ZQelZfwaBfVH--RYfvlcavjVpUe3CSA_NzNEqFF5nEZJZknpY5T5mmjI5ZAQxZonaVhKI0PbuSHvo55GhkAsjbjjIdhIvkmWcvHud0iNDSBx1KZMVRW4jY2PkrOpEKGXEgvlQ4JF_9UJZUMOlbjOFNL6RBYUaEVqyKdaEV17hC_HvmxlAK5xJgtcBul30HEVsMjhufEKOkn_NghTwpfqt-lJ6fIsgulOum_Um_etoITQIMqcshm4Wx1R8gCPbz_7JDthfepKvJMFfN5xDmPPIfs1q0QMvAcSOd2PJ8qDhAZsu6_9BABg5WMx3_uESAyhVTUIfdLb_9pkgiLFkQMDL0yD-oOKGi-2pJ_eF8Im7MwBNvgyMLNL21l9bx72MPHB_88cpfc6Bz3DtRBt7-_TdbLM0NkGu6Qtdlkbh8C9JyZR0VI-QEA-W1n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BK1A5UAiUmgLdA0JwcGTvw49jSQkNJWlJiZrbatdeAwpyqjxQ4cRP4DfyS5ixHZNAQRXiZmlnLWUyO_uN99tvCHkcQMxqxmNXchm7Io2Na3QQuEZE1mRJqhODH_S7veBgIF4N5bDiP-FdmFIfov7ghiujyNe4wM_SbHWRSwGlsGBeRYmEyiJuAp5cF4EXYxuH_T5bEuD1SuVw5HoJf7jK6rnwTStb1dVMjwHAou_PF9zFi1Dp7-TKZdBb7FrtTTJa_N6SrDJqzmemmXz5RQry_zjkFrlZgVu6V0bjbXLF5g1yrWx3-blBbnRrjdhpg2wgzi1lou-Qwz0ArxQvtE0o2ND2xNrvX7_1Swavpf2jFm3NJ58sfdqG52dU5ynVtKDy2ZSelFfwaAe1H--SQfvF29aBW_V5cJMAqnM3S4QWmcdllGSelDpOmaeNjlgCA1mgdZaGoTQ-BJEf-jrmaWQAxtqMMx6GieRbZC0f53ab0NAEHktlxlBXidvY-Cg4kwoZciG9VDokXPylKqlE0LEXx0e1VAyBFxV6sWrRiV5U5w7x65lnpRDIJeZsQ9Qo_Q7ytRqcMDwlRkE_4ccOeVKEUv0uPRkhxy6U6rT3Uh2_aQWngAVV5JCtItZqQ6gBPbz97JCdRfCpKu9MFfN5xDmPPIfs1qOQMPAUSOd2PJ8qDgAZau6_WIiAwT7G4z9bBIhLoRB1yL0y2H-6JMKWBREDR68sg9oA5cxXR_IP7wtZcxaG4BucWUT5pb2snneOuvh4_59n7pLrx_tt9brTO9whG-WBIdIMH5C12WRuHwLunJlHRUL5AT11bBY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Area+under+the+Free%E2%80%90Response+ROC+Curve+%28FROC%29+and+a+Related+Summary+Index&rft.jtitle=Biometrics&rft.au=Bandos%2C+Andriy+I.&rft.au=Rockette%2C+Howard+E.&rft.au=Song%2C+Tao&rft.au=Gur%2C+David&rft.date=2009-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=65&rft.issue=1&rft.spage=247&rft.epage=256&rft_id=info:doi/10.1111%2Fj.1541-0420.2008.01049.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1541_0420_2008_01049_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |