Optimal electrical stimulation boosts stem cell therapy in nerve regeneration
Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potenti...
Saved in:
Published in | Biomaterials Vol. 181; pp. 347 - 359 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 1878-5905 |
DOI | 10.1016/j.biomaterials.2018.07.015 |
Cover
Loading…
Abstract | Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair. |
---|---|
AbstractList | Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair. Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair. Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. Optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair. Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair. |
Author | Yang, Xiuli Mao, Hai-Quan Jia, Xiaofeng Du, Jian Qing, Liming Zhen, Gehua Lee, Gabsang Zhang, Shuming Chen, Huanwen |
AuthorAffiliation | b Department of Orthopaedics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA c Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA d Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA e Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA i Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA h Department of Anatomy Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA a Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA f Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA g Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA |
AuthorAffiliation_xml | – name: b Department of Orthopaedics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – name: g Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA – name: h Department of Anatomy Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA – name: a Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA – name: i Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – name: c Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – name: e Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – name: d Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – name: f Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA |
Author_xml | – sequence: 1 givenname: Jian surname: Du fullname: Du, Jian organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA – sequence: 2 givenname: Gehua surname: Zhen fullname: Zhen, Gehua organization: Department of Orthopaedics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – sequence: 3 givenname: Huanwen surname: Chen fullname: Chen, Huanwen organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA – sequence: 4 givenname: Shuming surname: Zhang fullname: Zhang, Shuming organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – sequence: 5 givenname: Liming surname: Qing fullname: Qing, Liming organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA – sequence: 6 givenname: Xiuli surname: Yang fullname: Yang, Xiuli organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA – sequence: 7 givenname: Gabsang surname: Lee fullname: Lee, Gabsang organization: Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – sequence: 8 givenname: Hai-Quan surname: Mao fullname: Mao, Hai-Quan organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA – sequence: 9 givenname: Xiaofeng surname: Jia fullname: Jia, Xiaofeng email: xjia@som.umaryland.edu organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30098570$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFv4AiTlyS2k78EQ6IUmipVNQLnK3EnrReEnuxvSvtv8fplqrtpXvyePzOo5l5fYQOnHeA0AeCK4IJP1lWvfVTlyDYbowVxURWWFSYsFdoQaSQJWsxO0ALTBpatpzQQ3QU4xLnO27oG3RYY9xKJvAC_bxeJTt1YwEj6BSszmHMmfXYJetd0XsfU8wpmAoN41ikWwjdaltYVzgIGygC3ECO7uRv0eshtwTv7s9j9Pv8-6-zH-XV9cXl2elVqXnDUjn0dGASRAswNERy3DJpeiIGY7hgvDE1SE2JMVmudd02dNAGU26wIXzAsj5Gn3fc1bqfwGhwKXSjWoU8Stgq31n19MXZW3XjN4rnZVExAz7eA4L_u4aY1GTjPF_nwK-joqTOfbFWNC9LsRRMtpzO0veP23ro5_-6s-DTTqCDjzHA8CAhWM3eqqV67K2avVVYqOxtLv7yrFjbdLf2PKId90N82yEgm7OxEFTUFpwGY0O2Xxlv98N8fYbRo3Xz3_kD230h_wAfteLs |
CitedBy_id | crossref_primary_10_1186_s12967_021_02871_w crossref_primary_10_1002_adfm_202401654 crossref_primary_10_1016_j_actbio_2023_01_027 crossref_primary_10_1016_j_biomaterials_2019_01_010 crossref_primary_10_1177_15579883241296881 crossref_primary_10_1109_TNSRE_2023_3250641 crossref_primary_10_1039_D0BM01268H crossref_primary_10_1016_j_cej_2022_139424 crossref_primary_10_1016_j_msec_2020_111518 crossref_primary_10_1155_2019_2546367 crossref_primary_10_1002_smtd_202200883 crossref_primary_10_1002_adhm_202101556 crossref_primary_10_1021_acsabm_4c01079 crossref_primary_10_1134_S002209302201001X crossref_primary_10_1007_s00216_022_04265_3 crossref_primary_10_1002_adfm_202105169 crossref_primary_10_1021_acs_biomac_3c00311 crossref_primary_10_1007_s12015_021_10236_5 crossref_primary_10_1007_s12264_021_00667_y crossref_primary_10_1039_D2TB00527A crossref_primary_10_1096_fj_201903044R crossref_primary_10_3389_fchem_2021_599631 crossref_primary_10_1016_j_expneurol_2019_112963 crossref_primary_10_1021_acsabm_0c00595 crossref_primary_10_1016_j_apmt_2020_100870 crossref_primary_10_1002_sctm_20_0361 crossref_primary_10_1016_j_jneumeth_2020_108889 crossref_primary_10_1186_s13287_021_02200_4 crossref_primary_10_1016_j_bioactmat_2021_04_019 crossref_primary_10_1016_j_cobme_2023_100515 crossref_primary_10_4252_wjsc_v16_i1_19 crossref_primary_10_1016_j_apmt_2020_100841 crossref_primary_10_1016_j_neuroscience_2025_01_009 crossref_primary_10_1039_C9RA04855C crossref_primary_10_1007_s00018_019_03446_1 crossref_primary_10_1016_j_jare_2024_08_035 crossref_primary_10_1016_j_enchem_2023_100109 crossref_primary_10_1016_j_tice_2022_101899 crossref_primary_10_1016_j_ijbiomac_2022_07_037 crossref_primary_10_1155_2019_2490761 crossref_primary_10_3389_fbioe_2020_00709 crossref_primary_10_1039_D3BM00340J crossref_primary_10_1002_adma_202007502 crossref_primary_10_1088_2631_7990_acde21 crossref_primary_10_1021_acsabm_3c00852 crossref_primary_10_1002_adfm_202203829 crossref_primary_10_1159_000515351 crossref_primary_10_3390_molecules27238326 crossref_primary_10_1007_s12975_022_01047_y crossref_primary_10_1016_j_brainres_2022_148163 crossref_primary_10_3389_fcell_2022_901652 crossref_primary_10_1002_adfm_202309974 crossref_primary_10_1016_j_ijbiomac_2023_123738 crossref_primary_10_1016_j_bioactmat_2024_05_033 crossref_primary_10_1002_jbm_a_37471 crossref_primary_10_5812_jjcmb_158285 crossref_primary_10_1021_acs_analchem_0c01114 crossref_primary_10_1016_j_msec_2020_111680 crossref_primary_10_1007_s10856_023_06763_x crossref_primary_10_1016_j_bioactmat_2022_03_039 crossref_primary_10_1016_j_biomaterials_2020_120585 crossref_primary_10_1093_rb_rbae133 crossref_primary_10_1063_5_0032196 crossref_primary_10_3389_fbioe_2021_591838 crossref_primary_10_1097_JS9_0000000000002109 crossref_primary_10_1155_2021_6697574 crossref_primary_10_1002_smsc_202300255 crossref_primary_10_4103_1673_5374_262580 crossref_primary_10_1016_j_molmed_2023_08_005 crossref_primary_10_1186_s12938_024_01233_z crossref_primary_10_4103_1673_5374_303008 crossref_primary_10_1089_ten_teb_2021_0159 crossref_primary_10_1016_j_bios_2022_114134 crossref_primary_10_1002_mabi_202300078 crossref_primary_10_1177_0963689720905798 crossref_primary_10_1016_j_actbio_2019_08_044 crossref_primary_10_3389_fnbeh_2023_1147784 crossref_primary_10_3390_catal11010062 crossref_primary_10_1021_acs_nanolett_0c04635 crossref_primary_10_3389_fncel_2024_1368630 crossref_primary_10_1002_adma_202206933 crossref_primary_10_3390_cells12081190 crossref_primary_10_1186_s12974_021_02092_4 crossref_primary_10_1002_jcp_28302 crossref_primary_10_1016_j_procir_2020_05_116 crossref_primary_10_1038_s41420_024_01820_y crossref_primary_10_1523_ENEURO_0273_20_2020 crossref_primary_10_1007_s12015_021_10280_1 crossref_primary_10_1002_glia_24309 crossref_primary_10_1021_acsami_0c05286 crossref_primary_10_1002_adhm_202403983 crossref_primary_10_4103_NRR_NRR_D_24_00841 crossref_primary_10_1186_s12974_019_1631_0 crossref_primary_10_1080_10409238_2020_1726279 crossref_primary_10_3390_ijms222312801 crossref_primary_10_3390_biomedicines10112736 crossref_primary_10_1016_j_carbpol_2020_116829 crossref_primary_10_1016_j_cej_2024_150368 crossref_primary_10_1093_burnst_tkab011 crossref_primary_10_1002_smsc_202400354 crossref_primary_10_3390_jcm11206149 crossref_primary_10_1002_advs_202310010 crossref_primary_10_3390_biomedicines10010073 crossref_primary_10_1002_adhm_202101577 crossref_primary_10_1016_j_surfin_2023_102926 crossref_primary_10_1039_D3AN01045G crossref_primary_10_1007_s12015_020_09979_4 crossref_primary_10_1016_j_actbio_2023_07_054 crossref_primary_10_3389_fbioe_2022_1039777 |
Cites_doi | 10.1152/jn.00681.2011 10.1038/nprot.2010.35 10.1038/srep22773 10.1016/j.bbagen.2015.01.020 10.3390/ijms17091494 10.1007/s12015-017-9758-9 10.1002/anie.201402751 10.1089/ten.teb.2012.0716 10.1371/journal.pone.0018738 10.1002/adfm.200600441 10.1002/micr.20475 10.1523/JNEUROSCI.20-07-02602.2000 10.1155/2014/145304 10.1038/nm.3143 10.1634/stemcells.2006-0011 10.1016/S0928-4257(01)00076-6 10.3390/ijms18010094 10.1021/acsbiomaterials.6b00335 10.1152/physrev.00020.2004 10.1371/journal.pone.0162784 10.1002/brb3.61 10.3171/FOC.2009.26.2.E2 10.1089/ten.tea.2010.0519 10.1126/science.1248523 10.1002/adma.201101503 10.1016/j.biomaterials.2012.06.047 10.1016/j.biomaterials.2011.03.070 10.1002/jmri.22353 10.1038/srep11800 10.1016/j.jneumeth.2017.03.017 10.4161/cc.28401 10.1002/1097-4636(20011215)57:4<541::AID-JBM1200>3.0.CO;2-Y 10.1126/science.1206998 10.1109/TNSRE.2010.2098047 10.1016/j.stem.2014.07.013 10.1016/j.jhsa.2007.02.021 10.1177/1545968307313507 10.1016/j.biomaterials.2018.03.044 10.1089/neu.2008.0732 10.1002/adfm.201501760 10.1074/jbc.R113.463737 10.1016/j.expneurol.2009.09.020 10.1152/jn.1987.57.2.563 10.1179/174313208X362488 10.1155/2014/698256 10.1016/0896-6273(94)90209-7 10.1038/nbt1365 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.biomaterials.2018.07.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 359 |
ExternalDocumentID | PMC6201278 30098570 10_1016_j_biomaterials_2018_07_015 S0142961218304927 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL118084 – fundername: NINDS NIH HHS grantid: R01 NS110387 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c645t-fb2f58e79eef41860958db17fdd67564d3e8c21ddc64cc3942fcd026d0d16f083 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Aug 21 14:08:08 EDT 2025 Fri Sep 05 03:54:23 EDT 2025 Fri Sep 05 13:46:21 EDT 2025 Mon Feb 24 01:20:14 EST 2025 Wed Aug 20 07:44:57 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 23 02:46:34 EST 2024 Tue Aug 26 20:00:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrical stimulation Peripheral nerve injury Pluripotent stem cells Nerve regeneration Human neural crest stem cell |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c645t-fb2f58e79eef41860958db17fdd67564d3e8c21ddc64cc3942fcd026d0d16f083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6201278 |
PMID | 30098570 |
PQID | 2087589624 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6201278 proquest_miscellaneous_2131865974 proquest_miscellaneous_2087589624 pubmed_primary_30098570 crossref_primary_10_1016_j_biomaterials_2018_07_015 crossref_citationtrail_10_1016_j_biomaterials_2018_07_015 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_07_015 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_07_015 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Du, Chen, Zhou, Jia (bib33) 2018; 14 Lee, Xu, Kim, Kang, Lee, Park, Kim, Choi, Kim (bib41) 2012; 33 Chang, Kim, Kim, Lee, Kim, Suh, Kim, Kwon, Kim, Suh (bib12) 2011; 6 Kim, Song, Cho, Pan, Lee, Kim, Hwang (bib15) 2011; 17 Yamada, Tanemura, Okada, Iwanami, Nakamura, Mizuno, Ozawa, Ohyama-Goto, Kitamura, Kawano, Tan-Takeuchi, Ohtsuka, Miyawaki, Takashima, Ogawa, Toyama, Okano, Kondo (bib14) 2007; 25 Gordon, Amirjani, Edwards, Chan (bib18) 2010; 223 Jiang, Jones, Jia (bib9) 2017; 18 Vats, Benoit (bib45) 2013; 19 Wu, Xiong, Jia, Geocadin, Thakor (bib35) 2012; 107 Walsh, Midha (bib10) 2009; 26 Jia, Zhen, Puttgen, Zhang, Chen (bib31) 2008; 28 Lu, Tsai, Chen, Tsai, Yao, Chen (bib55) 2009; 67 McCaig, Rajnicek, Song, Zhao (bib11) 2005; 85 Shen, Duan, Cheng, Zhong, Guo, Zhang, Zhou, Liang (bib16) 2010; 32 Lewitus, Vogelstein, Zhen, Choi, Kohn, Harshbarger, Jia (bib4) 2011; 19 Yan, Liu, Ye, Huang, He, Xiao, Hu, Luo (bib46) 2016; 11 Chen, Du, Zhang, Barnes, Jia (bib38) 2017; 283 Kim, Lim, Li, Oh, Kovlyagina, Choi, Dong, Lee (bib58) 2014; 15 Al-Majed, Neumann, Brushart, Gordon (bib39) 2000; 20 Chen, Hu, Hsieh, Lin, Tsai, Chen, Yao (bib54) 2001; 15 Eftekhar, Teimoory, Miri, Nikfallah, Naeimi, Ghajarzadeh (bib5) 2014; 52 Jia, Chen, Chen, Zhang, Zhang, Si, Hu (bib49) 2004; 27 Jessen, Brennan, Morgan, Mirsky, Kent, Hashimoto, Gavrilovic (bib44) 1994; 12 Wang, Tang, Park, Zhu, Patel, Daley, Li (bib8) 2011; 32 Pires, Ferreira, Rodrigues, Morgado, Ferreira (bib26) 2015; 1850 Ikeda, Oka (bib34) 2012; 2 Jia, Chen, Zhang, Chen, Zhu, Han (bib28) 2003; 26 Bryson, Machado, Crossley, Stevenson, Bros-Facer, Burrone, Greensmith, Lieberam (bib7) 2014; 344 Chew, Mi, Hoke, Leong (bib27) 2007; 17 Jones, Eisenberg, Jia (bib3) 2016; 17 McCloy, Rogers, Caldon, Lorca, Castro, Burgess (bib32) 2014; 13 Li, Li, Wu, Zhao, Chen, Yuan, Xu, Zhang, Lu, Wang, Li, Jia, Xiao (bib51) 2018; 168 Grinsell, Keating (bib1) 2014; 2014 Lee, Chambers, Tomishima, Studer (bib57) 2010; 5 Park, Park, Sim, Sung, Kim, Hong, Hong (bib13) 2011; 23 Zhen, Chen, Tsai, Zhang, Chen, Jia (bib50) 2018 Apr 19 Loeb, Marks, Hoffer (bib25) 1987; 57 Lu, Ho, Hsu, Lee, Lin, Yao, Chen (bib24) 2008; 22 McCaig, Rajnicek, Song, Zhao (bib21) 2005; 85 Pavesi, Adriani, Rasponi, Zervantonakis, Fiore, Kamm (bib20) 2015; 5 Shi, Gao, Feng, Ding, Cao, Kuga, Wang, Zhang, Cai (bib52) 2014; 53 Jia, Romero-Ortega, Teng (bib2) 2014; 2014 Jiang, Jones, Jia (bib42) 2017; 18 Jia, Zhang, Chen, Chen, Zhu, Han, Qiu (bib30) 2002; 18 Lee, Kim, Elkabetz, Al Shamy, Panagiotakos, Barberi, Tabar, Studer (bib22) 2007; 25 Harding, Mirochnitchenko (bib56) 2014; 289 Jia, Koenig, Zhang, Zhang, Chen, Chen (bib29) 2007; 32 Jia, Chen, Chen, Zhang, Zhang, Si, Hu, Gao, Yang (bib48) 2004; 26 Sakaue, Sieber-Blum (bib47) 2015; 142 Zhou, Zhang, Wang, Chen, Yang, He, Jiang, Chen, Liu (bib53) 2016; 2 Johnson, Lancaster, Zhen, He, Gupta, Kong, Engel, Krick, Ju, Meng, Enquist, Jia, McAlpine (bib6) 2015; 25 Zhang, Zachary, Ren, Lee, Zeng, Hoke, Ming, Mao (bib23) 2011 Jiang, Wang, Tang, Peng, Wang, Guo, Guo, Li, Xiao, Zhang (bib36) 2016; 6 Gordon, Brushart, Chan (bib40) 2008; 30 Huang, Hu, Lu, Ye, Wang, Luo (bib17) 2009; 26 Zhen, Wen, Jia, Li, Crane, Mears, Askin, Frassica, Chang, Yao, Carrino, Cosgarea, Artemov, Chen, Zhao, Zhou, Riley, Sponseller, Wan, Lu, Cao (bib37) 2013; 19 Wake, Lee, Fields (bib19) 2011; 333 Mirsky, Jessen, Brennan, Parkinson, Dong, Meier, Parmantier, Lawson (bib43) 2002; 96 McCloy (10.1016/j.biomaterials.2018.07.015_bib32) 2014; 13 Zhou (10.1016/j.biomaterials.2018.07.015_bib53) 2016; 2 Bryson (10.1016/j.biomaterials.2018.07.015_bib7) 2014; 344 Jia (10.1016/j.biomaterials.2018.07.015_bib49) 2004; 27 Zhen (10.1016/j.biomaterials.2018.07.015_bib37) 2013; 19 Walsh (10.1016/j.biomaterials.2018.07.015_bib10) 2009; 26 Chew (10.1016/j.biomaterials.2018.07.015_bib27) 2007; 17 Eftekhar (10.1016/j.biomaterials.2018.07.015_bib5) 2014; 52 Wake (10.1016/j.biomaterials.2018.07.015_bib19) 2011; 333 Lee (10.1016/j.biomaterials.2018.07.015_bib22) 2007; 25 Jones (10.1016/j.biomaterials.2018.07.015_bib3) 2016; 17 Ikeda (10.1016/j.biomaterials.2018.07.015_bib34) 2012; 2 Lewitus (10.1016/j.biomaterials.2018.07.015_bib4) 2011; 19 Li (10.1016/j.biomaterials.2018.07.015_bib51) 2018; 168 Lee (10.1016/j.biomaterials.2018.07.015_bib57) 2010; 5 Jia (10.1016/j.biomaterials.2018.07.015_bib30) 2002; 18 Gordon (10.1016/j.biomaterials.2018.07.015_bib18) 2010; 223 Chen (10.1016/j.biomaterials.2018.07.015_bib38) 2017; 283 Johnson (10.1016/j.biomaterials.2018.07.015_bib6) 2015; 25 Jia (10.1016/j.biomaterials.2018.07.015_bib2) 2014; 2014 Yamada (10.1016/j.biomaterials.2018.07.015_bib14) 2007; 25 Jiang (10.1016/j.biomaterials.2018.07.015_bib9) 2017; 18 Yan (10.1016/j.biomaterials.2018.07.015_bib46) 2016; 11 Jia (10.1016/j.biomaterials.2018.07.015_bib48) 2004; 26 Vats (10.1016/j.biomaterials.2018.07.015_bib45) 2013; 19 Wang (10.1016/j.biomaterials.2018.07.015_bib8) 2011; 32 Pavesi (10.1016/j.biomaterials.2018.07.015_bib20) 2015; 5 Loeb (10.1016/j.biomaterials.2018.07.015_bib25) 1987; 57 Lee (10.1016/j.biomaterials.2018.07.015_bib41) 2012; 33 Harding (10.1016/j.biomaterials.2018.07.015_bib56) 2014; 289 Chang (10.1016/j.biomaterials.2018.07.015_bib12) 2011; 6 Huang (10.1016/j.biomaterials.2018.07.015_bib17) 2009; 26 Al-Majed (10.1016/j.biomaterials.2018.07.015_bib39) 2000; 20 Kim (10.1016/j.biomaterials.2018.07.015_bib15) 2011; 17 Park (10.1016/j.biomaterials.2018.07.015_bib13) 2011; 23 Jia (10.1016/j.biomaterials.2018.07.015_bib31) 2008; 28 Sakaue (10.1016/j.biomaterials.2018.07.015_bib47) 2015; 142 Zhen (10.1016/j.biomaterials.2018.07.015_bib50) 2018 Jiang (10.1016/j.biomaterials.2018.07.015_bib42) 2017; 18 Zhang (10.1016/j.biomaterials.2018.07.015_bib23) 2011 Wu (10.1016/j.biomaterials.2018.07.015_bib35) 2012; 107 Lu (10.1016/j.biomaterials.2018.07.015_bib24) 2008; 22 Chen (10.1016/j.biomaterials.2018.07.015_bib54) 2001; 15 Pires (10.1016/j.biomaterials.2018.07.015_bib26) 2015; 1850 Jiang (10.1016/j.biomaterials.2018.07.015_bib36) 2016; 6 Jia (10.1016/j.biomaterials.2018.07.015_bib29) 2007; 32 Jia (10.1016/j.biomaterials.2018.07.015_bib28) 2003; 26 Jessen (10.1016/j.biomaterials.2018.07.015_bib44) 1994; 12 Grinsell (10.1016/j.biomaterials.2018.07.015_bib1) 2014; 2014 Du (10.1016/j.biomaterials.2018.07.015_bib33) 2018; 14 Kim (10.1016/j.biomaterials.2018.07.015_bib58) 2014; 15 McCaig (10.1016/j.biomaterials.2018.07.015_bib21) 2005; 85 Lu (10.1016/j.biomaterials.2018.07.015_bib55) 2009; 67 Shen (10.1016/j.biomaterials.2018.07.015_bib16) 2010; 32 Shi (10.1016/j.biomaterials.2018.07.015_bib52) 2014; 53 Gordon (10.1016/j.biomaterials.2018.07.015_bib40) 2008; 30 McCaig (10.1016/j.biomaterials.2018.07.015_bib11) 2005; 85 Mirsky (10.1016/j.biomaterials.2018.07.015_bib43) 2002; 96 39986974 - Biomaterials. 2025 Feb 21:123172. doi: 10.1016/j.biomaterials.2025.123172. |
References_xml | – volume: 25 start-page: 1468 year: 2007 end-page: 1475 ident: bib22 article-title: Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells publication-title: Nat. Biotechnol. – volume: 57 start-page: 563 year: 1987 end-page: 573 ident: bib25 article-title: Cat hindlimb motoneurons during locomotion. IV. Participation in cutaneous reflexes publication-title: J. Neurophysiol. – start-page: 43 year: 2011 ident: bib23 article-title: Electric stimulation promotes the neuronal differentiation of human ESC-derived neural crest stem cells and neural stem cells publication-title: The 4th Annual Maryland Stem Cell Research Symposium, Towson, Maryland – volume: 26 start-page: 243 year: 2003 end-page: 245 ident: bib28 article-title: The application of modified intrafascicular electrodes in recording the electric signal of sciatic nerve of rabbits publication-title: Shanghai Medical Journal – volume: 11 year: 2016 ident: bib46 article-title: CaMKII-mediated CREB phosphorylation is involved in Ca2+-Induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation publication-title: PLoS One – volume: 18 start-page: 245 year: 2002 end-page: 247 ident: bib30 article-title: Experimental study on harvesting the electric signal of peripheral nerve at rabbits by intrafascicular microelectrodes publication-title: Chinese Journal of Hand Surgery – volume: 333 start-page: 1647 year: 2011 end-page: 1651 ident: bib19 article-title: Control of local protein synthesis and initial events in myelination by action potentials publication-title: Science – volume: 2 start-page: 382 year: 2012 end-page: 390 ident: bib34 article-title: The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration publication-title: Brain Behav – volume: 96 start-page: 17 year: 2002 end-page: 24 ident: bib43 article-title: Schwann cells as regulators of nerve development publication-title: J. Physiol. Paris – volume: 344 start-page: 94 year: 2014 end-page: 97 ident: bib7 article-title: Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice publication-title: Science – volume: 223 start-page: 192 year: 2010 end-page: 202 ident: bib18 article-title: Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients publication-title: Exp. Neurol. – volume: 30 start-page: 1012 year: 2008 end-page: 1022 ident: bib40 article-title: Augmenting nerve regeneration with electrical stimulation publication-title: Neurol. Res. – volume: 2014 year: 2014 ident: bib1 article-title: Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies publication-title: BioMed Res. Int. – volume: 85 start-page: 943 year: 2005 end-page: 978 ident: bib11 article-title: Controlling cell behavior electrically: current views and future potential publication-title: Physiol. Rev. – year: 2018 Apr 19 ident: bib50 article-title: Long-term feasibility and biocompatibility of directly microsurgically implanted intrafascicular electrodes in free roaming rabbits publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 18 start-page: 94 year: 2017 ident: bib9 article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities publication-title: Int. J. Mol. Sci. – volume: 107 start-page: 1164 year: 2012 end-page: 1171 ident: bib35 article-title: Short- and long-latency somatosensory neuronal responses reveal selective brain injury and effect of hypothermia in global hypoxic ischemia publication-title: J. Neurophysiol. – volume: 53 start-page: 5380 year: 2014 end-page: 5384 ident: bib52 article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration publication-title: Angew Chem. Int. Ed. Engl. – volume: 19 start-page: 704 year: 2013 end-page: 712 ident: bib37 article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis publication-title: Nat. Med. – volume: 283 start-page: 92 year: 2017 end-page: 100 ident: bib38 article-title: Establishing a reliable gait evaluation method for rodent studies publication-title: J. Neurosci. Meth. – volume: 15 start-page: 497 year: 2014 end-page: 506 ident: bib58 article-title: Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor publication-title: Cell Stem Cell – volume: 23 start-page: H263 year: 2011 end-page: H267 ident: bib13 article-title: Enhanced differentiation of human neural stem cells into neurons on graphene publication-title: Adv. Mater. – volume: 15 start-page: 541 year: 2001 end-page: 549 ident: bib54 article-title: Effects of percutaneous electrical stimulation on peripheral nerve regeneration using silicone rubber chambers publication-title: J. Biomed. Mater. Res. – volume: 20 start-page: 2602 year: 2000 end-page: 2608 ident: bib39 article-title: Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration publication-title: J. Neurosci. – volume: 28 start-page: 173 year: 2008 end-page: 178 ident: bib31 article-title: Improved long-term recording of nerve signal by modified intrafascicular electrodes in rabbits publication-title: Microsurgery – volume: 13 start-page: 1400 year: 2014 end-page: 1412 ident: bib32 article-title: Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events publication-title: Cell Cycle – volume: 19 start-page: 455 year: 2013 end-page: 469 ident: bib45 article-title: Dynamic manipulation of hydrogels to control cell behavior: a review publication-title: Tissue Eng. B Rev. – volume: 32 start-page: 5023 year: 2011 end-page: 5032 ident: bib8 article-title: Induced pluripotent stem cells for neural tissue engineering publication-title: Biomaterials – volume: 33 start-page: 7039 year: 2012 end-page: 7046 ident: bib41 article-title: Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells publication-title: Biomaterials – volume: 25 start-page: 562 year: 2007 end-page: 570 ident: bib14 article-title: Electrical stimulation modulates fate determination of differentiating embryonic stem cells publication-title: Stem Cell. – volume: 17 start-page: 1288 year: 2007 end-page: 1296 ident: bib27 article-title: Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform publication-title: Adv. Funct. Mater. – volume: 18 year: 2017 ident: bib42 article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities publication-title: Int. J. Mol. Sci. – volume: 17 start-page: 1494 year: 2016 ident: bib3 article-title: Advances and future applications of augmented peripheral nerve regeneration publication-title: Int. J. Mol. Sci. – volume: 12 start-page: 509 year: 1994 end-page: 527 ident: bib44 article-title: The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves publication-title: Neuron – volume: 19 start-page: 204 year: 2011 end-page: 212 ident: bib4 article-title: Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 142 start-page: 3188 year: 2015 end-page: 3197 ident: bib47 article-title: Human epidermal neural crest stem cells as a source of Schwann cells publication-title: Development – volume: 2 start-page: 1572 year: 2016 end-page: 1581 ident: bib53 article-title: Electrospinning of PELA/PPY fibrous conduits: promoting peripheral nerve regeneration in rats by self-originated electrical stimulation publication-title: ACS Biomater. Sci. Eng. – volume: 5 start-page: 688 year: 2010 end-page: 701 ident: bib57 article-title: Derivation of neural crest cells from human pluripotent stem cells publication-title: Nat. Protoc. – volume: 26 start-page: 20 year: 2004 end-page: 23 ident: bib48 article-title: The original report of the first experimental study on electric prosthesis controlled by signals of nerves in amputation stump of human publication-title: Chinese Journal of Physical Medicine and Rehabilitation – volume: 27 start-page: 24 year: 2004 end-page: 26 ident: bib49 article-title: Harvesting the signals of nerves in the remaining limb of human by intrafascicular microelectrodes publication-title: Chinese Journal of Microsurgery – volume: 52 start-page: 816 year: 2014 end-page: 821 ident: bib5 article-title: Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial publication-title: Acta Med. Iran. – volume: 32 start-page: 1076 year: 2010 end-page: 1085 ident: bib16 article-title: In vivo MR imaging tracking of transplanted mesenchymal stem cells in a rabbit model of acute peripheral nerve traction injury publication-title: J. Magn. Reson. Imag. – volume: 26 start-page: 1805 year: 2009 end-page: 1813 ident: bib17 article-title: Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats publication-title: J. Neurotrauma – volume: 85 start-page: 943 year: 2005 end-page: 978 ident: bib21 article-title: Controlling cell behavior electrically: current views and future potential publication-title: Physiol. Rev. – volume: 6 year: 2011 ident: bib12 article-title: Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells publication-title: PLoS One – volume: 1850 start-page: 1158 year: 2015 end-page: 1168 ident: bib26 article-title: Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering publication-title: Biochim. Biophys. Acta – volume: 67 start-page: 1066 year: 2009 end-page: 1072 ident: bib55 article-title: Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats publication-title: J. Trauma – volume: 25 start-page: 6205 year: 2015 end-page: 6217 ident: bib6 article-title: 3D printed anatomical nerve regeneration pathways publication-title: Adv. Funct. Mater. – volume: 26 start-page: E2 year: 2009 ident: bib10 article-title: Practical considerations concerning the use of stem cells for peripheral nerve repair publication-title: Neurosurg. Focus – volume: 289 start-page: 4585 year: 2014 end-page: 4593 ident: bib56 article-title: Preclinical studies for induced pluripotent stem cell-based therapeutics publication-title: J. Biol. Chem. – volume: 2014 year: 2014 ident: bib2 article-title: Peripheral nerve regeneration: mechanism, cell biology, and therapies publication-title: BioMed Res. Int. – volume: 17 start-page: 1327 year: 2011 end-page: 1340 ident: bib15 article-title: Biphasic electrical targeting plays a significant role in schwann cell activation publication-title: Tissue Eng. – volume: 5 start-page: 11800 year: 2015 ident: bib20 article-title: Controlled electromechanical cell stimulation on-a-chip publication-title: Sci. Rep. – volume: 6 start-page: 22773 year: 2016 ident: bib36 article-title: Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat publication-title: Sci. Rep. – volume: 22 start-page: 367 year: 2008 end-page: 373 ident: bib24 article-title: Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve publication-title: Neurorehabilitation Neural Repair – volume: 168 start-page: 24 year: 2018 end-page: 37 ident: bib51 article-title: Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats publication-title: Biomaterials – volume: 32 start-page: 657 year: 2007 end-page: 666 ident: bib29 article-title: Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb publication-title: J Hand Surg [Am] – volume: 14 start-page: 92 year: 2018 end-page: 100 ident: bib33 article-title: Quantitative multimodal evaluation of passaging human neural crest stem cells for peripheral nerve regeneration publication-title: Stem Cell Rev. – volume: 107 start-page: 1164 issue: 4 year: 2012 ident: 10.1016/j.biomaterials.2018.07.015_bib35 article-title: Short- and long-latency somatosensory neuronal responses reveal selective brain injury and effect of hypothermia in global hypoxic ischemia publication-title: J. Neurophysiol. doi: 10.1152/jn.00681.2011 – volume: 5 start-page: 688 issue: 4 year: 2010 ident: 10.1016/j.biomaterials.2018.07.015_bib57 article-title: Derivation of neural crest cells from human pluripotent stem cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.35 – volume: 6 start-page: 22773 year: 2016 ident: 10.1016/j.biomaterials.2018.07.015_bib36 article-title: Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat publication-title: Sci. Rep. doi: 10.1038/srep22773 – volume: 1850 start-page: 1158 issue: 6 year: 2015 ident: 10.1016/j.biomaterials.2018.07.015_bib26 article-title: Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2015.01.020 – volume: 17 start-page: 1494 issue: 9 year: 2016 ident: 10.1016/j.biomaterials.2018.07.015_bib3 article-title: Advances and future applications of augmented peripheral nerve regeneration publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17091494 – volume: 14 start-page: 92 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2018.07.015_bib33 article-title: Quantitative multimodal evaluation of passaging human neural crest stem cells for peripheral nerve regeneration publication-title: Stem Cell Rev. doi: 10.1007/s12015-017-9758-9 – volume: 53 start-page: 5380 issue: 21 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib52 article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201402751 – volume: 19 start-page: 455 issue: 6 year: 2013 ident: 10.1016/j.biomaterials.2018.07.015_bib45 article-title: Dynamic manipulation of hydrogels to control cell behavior: a review publication-title: Tissue Eng. B Rev. doi: 10.1089/ten.teb.2012.0716 – volume: 27 start-page: 24 issue: 1 year: 2004 ident: 10.1016/j.biomaterials.2018.07.015_bib49 article-title: Harvesting the signals of nerves in the remaining limb of human by intrafascicular microelectrodes publication-title: Chinese Journal of Microsurgery – volume: 67 start-page: 1066 issue: 5 year: 2009 ident: 10.1016/j.biomaterials.2018.07.015_bib55 article-title: Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats publication-title: J. Trauma – volume: 6 issue: 4 year: 2011 ident: 10.1016/j.biomaterials.2018.07.015_bib12 article-title: Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells publication-title: PLoS One doi: 10.1371/journal.pone.0018738 – volume: 17 start-page: 1288 issue: 8 year: 2007 ident: 10.1016/j.biomaterials.2018.07.015_bib27 article-title: Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600441 – volume: 28 start-page: 173 issue: 3 year: 2008 ident: 10.1016/j.biomaterials.2018.07.015_bib31 article-title: Improved long-term recording of nerve signal by modified intrafascicular electrodes in rabbits publication-title: Microsurgery doi: 10.1002/micr.20475 – volume: 20 start-page: 2602 issue: 7 year: 2000 ident: 10.1016/j.biomaterials.2018.07.015_bib39 article-title: Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-07-02602.2000 – volume: 2014 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib2 article-title: Peripheral nerve regeneration: mechanism, cell biology, and therapies publication-title: BioMed Res. Int. doi: 10.1155/2014/145304 – volume: 19 start-page: 704 issue: 6 year: 2013 ident: 10.1016/j.biomaterials.2018.07.015_bib37 article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis publication-title: Nat. Med. doi: 10.1038/nm.3143 – volume: 52 start-page: 816 issue: 11 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib5 article-title: Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial publication-title: Acta Med. Iran. – volume: 25 start-page: 562 issue: 3 year: 2007 ident: 10.1016/j.biomaterials.2018.07.015_bib14 article-title: Electrical stimulation modulates fate determination of differentiating embryonic stem cells publication-title: Stem Cell. doi: 10.1634/stemcells.2006-0011 – volume: 96 start-page: 17 issue: 1–2 year: 2002 ident: 10.1016/j.biomaterials.2018.07.015_bib43 article-title: Schwann cells as regulators of nerve development publication-title: J. Physiol. Paris doi: 10.1016/S0928-4257(01)00076-6 – volume: 18 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2018.07.015_bib42 article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18010094 – volume: 2 start-page: 1572 issue: 9 year: 2016 ident: 10.1016/j.biomaterials.2018.07.015_bib53 article-title: Electrospinning of PELA/PPY fibrous conduits: promoting peripheral nerve regeneration in rats by self-originated electrical stimulation publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00335 – volume: 85 start-page: 943 issue: 3 year: 2005 ident: 10.1016/j.biomaterials.2018.07.015_bib21 article-title: Controlling cell behavior electrically: current views and future potential publication-title: Physiol. Rev. doi: 10.1152/physrev.00020.2004 – volume: 11 issue: 9 year: 2016 ident: 10.1016/j.biomaterials.2018.07.015_bib46 article-title: CaMKII-mediated CREB phosphorylation is involved in Ca2+-Induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation publication-title: PLoS One doi: 10.1371/journal.pone.0162784 – volume: 85 start-page: 943 issue: 3 year: 2005 ident: 10.1016/j.biomaterials.2018.07.015_bib11 article-title: Controlling cell behavior electrically: current views and future potential publication-title: Physiol. Rev. doi: 10.1152/physrev.00020.2004 – volume: 2 start-page: 382 issue: 4 year: 2012 ident: 10.1016/j.biomaterials.2018.07.015_bib34 article-title: The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration publication-title: Brain Behav doi: 10.1002/brb3.61 – volume: 26 start-page: E2 issue: 2 year: 2009 ident: 10.1016/j.biomaterials.2018.07.015_bib10 article-title: Practical considerations concerning the use of stem cells for peripheral nerve repair publication-title: Neurosurg. Focus doi: 10.3171/FOC.2009.26.2.E2 – volume: 17 start-page: 1327 issue: 9–10 year: 2011 ident: 10.1016/j.biomaterials.2018.07.015_bib15 article-title: Biphasic electrical targeting plays a significant role in schwann cell activation publication-title: Tissue Eng. doi: 10.1089/ten.tea.2010.0519 – volume: 344 start-page: 94 issue: 6179 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib7 article-title: Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice publication-title: Science doi: 10.1126/science.1248523 – year: 2018 ident: 10.1016/j.biomaterials.2018.07.015_bib50 article-title: Long-term feasibility and biocompatibility of directly microsurgically implanted intrafascicular electrodes in free roaming rabbits publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 18 start-page: 94 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2018.07.015_bib9 article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18010094 – volume: 23 start-page: H263 issue: 36 year: 2011 ident: 10.1016/j.biomaterials.2018.07.015_bib13 article-title: Enhanced differentiation of human neural stem cells into neurons on graphene publication-title: Adv. Mater. doi: 10.1002/adma.201101503 – volume: 33 start-page: 7039 issue: 29 year: 2012 ident: 10.1016/j.biomaterials.2018.07.015_bib41 article-title: Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.047 – volume: 26 start-page: 243 issue: 4 year: 2003 ident: 10.1016/j.biomaterials.2018.07.015_bib28 article-title: The application of modified intrafascicular electrodes in recording the electric signal of sciatic nerve of rabbits publication-title: Shanghai Medical Journal – volume: 32 start-page: 5023 issue: 22 year: 2011 ident: 10.1016/j.biomaterials.2018.07.015_bib8 article-title: Induced pluripotent stem cells for neural tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.070 – volume: 32 start-page: 1076 issue: 5 year: 2010 ident: 10.1016/j.biomaterials.2018.07.015_bib16 article-title: In vivo MR imaging tracking of transplanted mesenchymal stem cells in a rabbit model of acute peripheral nerve traction injury publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.22353 – volume: 5 start-page: 11800 year: 2015 ident: 10.1016/j.biomaterials.2018.07.015_bib20 article-title: Controlled electromechanical cell stimulation on-a-chip publication-title: Sci. Rep. doi: 10.1038/srep11800 – volume: 283 start-page: 92 year: 2017 ident: 10.1016/j.biomaterials.2018.07.015_bib38 article-title: Establishing a reliable gait evaluation method for rodent studies publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2017.03.017 – volume: 13 start-page: 1400 issue: 9 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib32 article-title: Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events publication-title: Cell Cycle doi: 10.4161/cc.28401 – volume: 15 start-page: 541 issue: 57 year: 2001 ident: 10.1016/j.biomaterials.2018.07.015_bib54 article-title: Effects of percutaneous electrical stimulation on peripheral nerve regeneration using silicone rubber chambers publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(20011215)57:4<541::AID-JBM1200>3.0.CO;2-Y – volume: 26 start-page: 20 issue: 1 year: 2004 ident: 10.1016/j.biomaterials.2018.07.015_bib48 article-title: The original report of the first experimental study on electric prosthesis controlled by signals of nerves in amputation stump of human publication-title: Chinese Journal of Physical Medicine and Rehabilitation – volume: 333 start-page: 1647 issue: 6049 year: 2011 ident: 10.1016/j.biomaterials.2018.07.015_bib19 article-title: Control of local protein synthesis and initial events in myelination by action potentials publication-title: Science doi: 10.1126/science.1206998 – volume: 19 start-page: 204 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2018.07.015_bib4 article-title: Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2098047 – volume: 15 start-page: 497 issue: 4 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib58 article-title: Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.07.013 – volume: 32 start-page: 657 issue: 5 year: 2007 ident: 10.1016/j.biomaterials.2018.07.015_bib29 article-title: Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb publication-title: J Hand Surg [Am] doi: 10.1016/j.jhsa.2007.02.021 – volume: 22 start-page: 367 issue: 4 year: 2008 ident: 10.1016/j.biomaterials.2018.07.015_bib24 article-title: Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve publication-title: Neurorehabilitation Neural Repair doi: 10.1177/1545968307313507 – volume: 168 start-page: 24 year: 2018 ident: 10.1016/j.biomaterials.2018.07.015_bib51 article-title: Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.03.044 – volume: 26 start-page: 1805 issue: 10 year: 2009 ident: 10.1016/j.biomaterials.2018.07.015_bib17 article-title: Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats publication-title: J. Neurotrauma doi: 10.1089/neu.2008.0732 – volume: 25 start-page: 6205 issue: 39 year: 2015 ident: 10.1016/j.biomaterials.2018.07.015_bib6 article-title: 3D printed anatomical nerve regeneration pathways publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501760 – volume: 289 start-page: 4585 issue: 8 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib56 article-title: Preclinical studies for induced pluripotent stem cell-based therapeutics publication-title: J. Biol. Chem. doi: 10.1074/jbc.R113.463737 – volume: 18 start-page: 245 issue: 4 year: 2002 ident: 10.1016/j.biomaterials.2018.07.015_bib30 article-title: Experimental study on harvesting the electric signal of peripheral nerve at rabbits by intrafascicular microelectrodes publication-title: Chinese Journal of Hand Surgery – volume: 142 start-page: 3188 issue: 18 year: 2015 ident: 10.1016/j.biomaterials.2018.07.015_bib47 article-title: Human epidermal neural crest stem cells as a source of Schwann cells publication-title: Development – volume: 223 start-page: 192 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2018.07.015_bib18 article-title: Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.09.020 – start-page: 43 year: 2011 ident: 10.1016/j.biomaterials.2018.07.015_bib23 article-title: Electric stimulation promotes the neuronal differentiation of human ESC-derived neural crest stem cells and neural stem cells – volume: 57 start-page: 563 year: 1987 ident: 10.1016/j.biomaterials.2018.07.015_bib25 article-title: Cat hindlimb motoneurons during locomotion. IV. Participation in cutaneous reflexes publication-title: J. Neurophysiol. doi: 10.1152/jn.1987.57.2.563 – volume: 30 start-page: 1012 issue: 10 year: 2008 ident: 10.1016/j.biomaterials.2018.07.015_bib40 article-title: Augmenting nerve regeneration with electrical stimulation publication-title: Neurol. Res. doi: 10.1179/174313208X362488 – volume: 2014 year: 2014 ident: 10.1016/j.biomaterials.2018.07.015_bib1 article-title: Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies publication-title: BioMed Res. Int. doi: 10.1155/2014/698256 – volume: 12 start-page: 509 issue: 3 year: 1994 ident: 10.1016/j.biomaterials.2018.07.015_bib44 article-title: The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves publication-title: Neuron doi: 10.1016/0896-6273(94)90209-7 – volume: 25 start-page: 1468 issue: 12 year: 2007 ident: 10.1016/j.biomaterials.2018.07.015_bib22 article-title: Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt1365 – reference: 39986974 - Biomaterials. 2025 Feb 21:123172. doi: 10.1016/j.biomaterials.2025.123172. |
SSID | ssj0014042 |
Score | 2.581418 |
Snippet | Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 347 |
SubjectTerms | Animals autografting cathodes Cell Differentiation - physiology cell viability Cells, Cultured Electric Stimulation - methods Electrical stimulation electrical treatment gait Human neural crest stem cell Humans Immunohistochemistry muscles Nerve regeneration Nerve Regeneration - physiology nerve tissue neural crest Neural Crest - cytology Neural Stem Cells - cytology Neural Stem Cells - physiology Neurogenesis - physiology neurons people Peripheral Nerve Injuries - therapy Peripheral nerve injury Pluripotent stem cells Rats Stem Cell Transplantation - methods stem cells tissue transplantation United States |
Title | Optimal electrical stimulation boosts stem cell therapy in nerve regeneration |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218304927 https://dx.doi.org/10.1016/j.biomaterials.2018.07.015 https://www.ncbi.nlm.nih.gov/pubmed/30098570 https://www.proquest.com/docview/2087589624 https://www.proquest.com/docview/2131865974 https://pubmed.ncbi.nlm.nih.gov/PMC6201278 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB0hkKr2gCil7QJFrsQ1bOI4jiPEASHQttXCpUjcrDi220UlIAgHLnw7M3ES7bZVtVKVU5IZKfbY43H85g3AvhJJkTmRRTJ2JhJFwqMytiZSymZ5akwcyJ6n53JyKb5eZVcrcNLnwhCssvP9wae33rp7Mu56c3w3m40JlsQLIsBSdFTEKaNciJz48w-eB5gHscfwAGPkEUn3xKMtxotS3MsmmJpgXqol8qQSuX9fpP4MQn_HUs4tTmcbsN5Flew4fPhbWHH1JryZ4xrchFfT7hT9HUwv0E_coHyogUNmYjjTb7pKXgwD74fmgRHFM6Mf-ywkaT2xWc1qQkiye_ejpasm8S24PDv9fjKJurIKUSVF1kTecJ8plxfOeZEoYpxT1iS5txZ3D1LY1KmKJ9aieFWlheC-srhVs7FNpMeQ7T2s1re1-wisRFnJeWm8wIt7k7giLp2wmfQlL9UIir4fddVxjlPpi1-6B5dd63kbaLKBjnONNhhBOujeBeaNpbQOe3PpPrcUvaHGBWIp7aNBe2EULq3_uR8hGqcpmais3e0jCeHGUBWSi3_IJOhgJe3wRvAhjKqh5SkRv2Z5PIJ8YbwNAkQTvvimnv1s6cIlJ3iB2v7Ptu3Aa7oLQMZdWG3uH90nDMgas9fOuD1YO_7ybXL-AqgSO2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SBPo4lDZ9bZ8q9GrWlmVZpvQQQsOmyW4vCeQmLEtKtzROSJxD_31nLNnstqUsFN-sGbA0o9HI-vQNwAclsqpwokhk6kwiqowndWpNopQtytyYNJA9zxdydiq-nBVnW7A_3IUhWGWM_SGm99E6vpnG0ZxeLZdTgiXxigiwFB0V8fIO7BA7FTr7zt7h0WwxHiaItK-hQ_IJKQzcoz3Mi265112wNiG9VM_lSVVy_75O_ZmH_g6nXFmfDh7Bw5hYsr3w7Y9hy7W78GCFbnAX7s7jQfoTmH_FUHGB8qEMDlmK4WS_iMW8GObeN90NI5ZnRv_2Wbin9ZMtW9YSSJJdu_OesZrEn8LpweeT_VkSKyskjRRFl3jDfaFcWTnnRaaIdE5Zk5XeWtxASGFzpxqeWYviTZNXgvvG4m7NpjaTHrO2Z7DdXrbuBbAaZSXntfECH-5N5qq0dsIW0te8VhOohnHUTaQdp-oXP_SAL_uuV22gyQY6LTXaYAL5qHsVyDc20vo4mEsP10sxIGpcIzbS_jRqrznixvrvBw_ROFPJRHXrLm9JCPeGqpJc_EMmwxgraZM3gefBq8ae58T9WpTpBMo1fxsFiCl8vaVdfusZwyUnhIF6-Z99ewf3ZifzY318uDh6BfepJeAaX8N2d33r3mB-1pm3cf79AkZ5PhU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+electrical+stimulation+boosts+stem+cell+therapy+in+nerve+regeneration&rft.jtitle=Biomaterials&rft.au=Du%2C+Jian&rft.au=Zhen%2C+Gehua&rft.au=Chen%2C+Huanwen&rft.au=Zhang%2C+Shuming&rft.date=2018-10-01&rft.eissn=1878-5905&rft.volume=181&rft.spage=347&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.07.015&rft_id=info%3Apmid%2F30098570&rft.externalDocID=30098570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |