Optimal electrical stimulation boosts stem cell therapy in nerve regeneration

Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potenti...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 181; pp. 347 - 359
Main Authors Du, Jian, Zhen, Gehua, Chen, Huanwen, Zhang, Shuming, Qing, Liming, Yang, Xiuli, Lee, Gabsang, Mao, Hai-Quan, Jia, Xiaofeng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2018
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2018.07.015

Cover

Loading…
Abstract Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.
AbstractList Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.
Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.
Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. Optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.
Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.
Author Yang, Xiuli
Mao, Hai-Quan
Jia, Xiaofeng
Du, Jian
Qing, Liming
Zhen, Gehua
Lee, Gabsang
Zhang, Shuming
Chen, Huanwen
AuthorAffiliation b Department of Orthopaedics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
c Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
d Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
e Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
i Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
h Department of Anatomy Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
a Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
f Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
g Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
AuthorAffiliation_xml – name: b Department of Orthopaedics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– name: g Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– name: h Department of Anatomy Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– name: a Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– name: i Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– name: c Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– name: e Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– name: d Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– name: f Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
Author_xml – sequence: 1
  givenname: Jian
  surname: Du
  fullname: Du, Jian
  organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– sequence: 2
  givenname: Gehua
  surname: Zhen
  fullname: Zhen, Gehua
  organization: Department of Orthopaedics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– sequence: 3
  givenname: Huanwen
  surname: Chen
  fullname: Chen, Huanwen
  organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– sequence: 4
  givenname: Shuming
  surname: Zhang
  fullname: Zhang, Shuming
  organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– sequence: 5
  givenname: Liming
  surname: Qing
  fullname: Qing, Liming
  organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– sequence: 6
  givenname: Xiuli
  surname: Yang
  fullname: Yang, Xiuli
  organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– sequence: 7
  givenname: Gabsang
  surname: Lee
  fullname: Lee, Gabsang
  organization: Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– sequence: 8
  givenname: Hai-Quan
  surname: Mao
  fullname: Mao, Hai-Quan
  organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
– sequence: 9
  givenname: Xiaofeng
  surname: Jia
  fullname: Jia, Xiaofeng
  email: xjia@som.umaryland.edu
  organization: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30098570$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFv4AiTlyS2k78EQ6IUmipVNQLnK3EnrReEnuxvSvtv8fplqrtpXvyePzOo5l5fYQOnHeA0AeCK4IJP1lWvfVTlyDYbowVxURWWFSYsFdoQaSQJWsxO0ALTBpatpzQQ3QU4xLnO27oG3RYY9xKJvAC_bxeJTt1YwEj6BSszmHMmfXYJetd0XsfU8wpmAoN41ikWwjdaltYVzgIGygC3ECO7uRv0eshtwTv7s9j9Pv8-6-zH-XV9cXl2elVqXnDUjn0dGASRAswNERy3DJpeiIGY7hgvDE1SE2JMVmudd02dNAGU26wIXzAsj5Gn3fc1bqfwGhwKXSjWoU8Stgq31n19MXZW3XjN4rnZVExAz7eA4L_u4aY1GTjPF_nwK-joqTOfbFWNC9LsRRMtpzO0veP23ro5_-6s-DTTqCDjzHA8CAhWM3eqqV67K2avVVYqOxtLv7yrFjbdLf2PKId90N82yEgm7OxEFTUFpwGY0O2Xxlv98N8fYbRo3Xz3_kD230h_wAfteLs
CitedBy_id crossref_primary_10_1186_s12967_021_02871_w
crossref_primary_10_1002_adfm_202401654
crossref_primary_10_1016_j_actbio_2023_01_027
crossref_primary_10_1016_j_biomaterials_2019_01_010
crossref_primary_10_1177_15579883241296881
crossref_primary_10_1109_TNSRE_2023_3250641
crossref_primary_10_1039_D0BM01268H
crossref_primary_10_1016_j_cej_2022_139424
crossref_primary_10_1016_j_msec_2020_111518
crossref_primary_10_1155_2019_2546367
crossref_primary_10_1002_smtd_202200883
crossref_primary_10_1002_adhm_202101556
crossref_primary_10_1021_acsabm_4c01079
crossref_primary_10_1134_S002209302201001X
crossref_primary_10_1007_s00216_022_04265_3
crossref_primary_10_1002_adfm_202105169
crossref_primary_10_1021_acs_biomac_3c00311
crossref_primary_10_1007_s12015_021_10236_5
crossref_primary_10_1007_s12264_021_00667_y
crossref_primary_10_1039_D2TB00527A
crossref_primary_10_1096_fj_201903044R
crossref_primary_10_3389_fchem_2021_599631
crossref_primary_10_1016_j_expneurol_2019_112963
crossref_primary_10_1021_acsabm_0c00595
crossref_primary_10_1016_j_apmt_2020_100870
crossref_primary_10_1002_sctm_20_0361
crossref_primary_10_1016_j_jneumeth_2020_108889
crossref_primary_10_1186_s13287_021_02200_4
crossref_primary_10_1016_j_bioactmat_2021_04_019
crossref_primary_10_1016_j_cobme_2023_100515
crossref_primary_10_4252_wjsc_v16_i1_19
crossref_primary_10_1016_j_apmt_2020_100841
crossref_primary_10_1016_j_neuroscience_2025_01_009
crossref_primary_10_1039_C9RA04855C
crossref_primary_10_1007_s00018_019_03446_1
crossref_primary_10_1016_j_jare_2024_08_035
crossref_primary_10_1016_j_enchem_2023_100109
crossref_primary_10_1016_j_tice_2022_101899
crossref_primary_10_1016_j_ijbiomac_2022_07_037
crossref_primary_10_1155_2019_2490761
crossref_primary_10_3389_fbioe_2020_00709
crossref_primary_10_1039_D3BM00340J
crossref_primary_10_1002_adma_202007502
crossref_primary_10_1088_2631_7990_acde21
crossref_primary_10_1021_acsabm_3c00852
crossref_primary_10_1002_adfm_202203829
crossref_primary_10_1159_000515351
crossref_primary_10_3390_molecules27238326
crossref_primary_10_1007_s12975_022_01047_y
crossref_primary_10_1016_j_brainres_2022_148163
crossref_primary_10_3389_fcell_2022_901652
crossref_primary_10_1002_adfm_202309974
crossref_primary_10_1016_j_ijbiomac_2023_123738
crossref_primary_10_1016_j_bioactmat_2024_05_033
crossref_primary_10_1002_jbm_a_37471
crossref_primary_10_5812_jjcmb_158285
crossref_primary_10_1021_acs_analchem_0c01114
crossref_primary_10_1016_j_msec_2020_111680
crossref_primary_10_1007_s10856_023_06763_x
crossref_primary_10_1016_j_bioactmat_2022_03_039
crossref_primary_10_1016_j_biomaterials_2020_120585
crossref_primary_10_1093_rb_rbae133
crossref_primary_10_1063_5_0032196
crossref_primary_10_3389_fbioe_2021_591838
crossref_primary_10_1097_JS9_0000000000002109
crossref_primary_10_1155_2021_6697574
crossref_primary_10_1002_smsc_202300255
crossref_primary_10_4103_1673_5374_262580
crossref_primary_10_1016_j_molmed_2023_08_005
crossref_primary_10_1186_s12938_024_01233_z
crossref_primary_10_4103_1673_5374_303008
crossref_primary_10_1089_ten_teb_2021_0159
crossref_primary_10_1016_j_bios_2022_114134
crossref_primary_10_1002_mabi_202300078
crossref_primary_10_1177_0963689720905798
crossref_primary_10_1016_j_actbio_2019_08_044
crossref_primary_10_3389_fnbeh_2023_1147784
crossref_primary_10_3390_catal11010062
crossref_primary_10_1021_acs_nanolett_0c04635
crossref_primary_10_3389_fncel_2024_1368630
crossref_primary_10_1002_adma_202206933
crossref_primary_10_3390_cells12081190
crossref_primary_10_1186_s12974_021_02092_4
crossref_primary_10_1002_jcp_28302
crossref_primary_10_1016_j_procir_2020_05_116
crossref_primary_10_1038_s41420_024_01820_y
crossref_primary_10_1523_ENEURO_0273_20_2020
crossref_primary_10_1007_s12015_021_10280_1
crossref_primary_10_1002_glia_24309
crossref_primary_10_1021_acsami_0c05286
crossref_primary_10_1002_adhm_202403983
crossref_primary_10_4103_NRR_NRR_D_24_00841
crossref_primary_10_1186_s12974_019_1631_0
crossref_primary_10_1080_10409238_2020_1726279
crossref_primary_10_3390_ijms222312801
crossref_primary_10_3390_biomedicines10112736
crossref_primary_10_1016_j_carbpol_2020_116829
crossref_primary_10_1016_j_cej_2024_150368
crossref_primary_10_1093_burnst_tkab011
crossref_primary_10_1002_smsc_202400354
crossref_primary_10_3390_jcm11206149
crossref_primary_10_1002_advs_202310010
crossref_primary_10_3390_biomedicines10010073
crossref_primary_10_1002_adhm_202101577
crossref_primary_10_1016_j_surfin_2023_102926
crossref_primary_10_1039_D3AN01045G
crossref_primary_10_1007_s12015_020_09979_4
crossref_primary_10_1016_j_actbio_2023_07_054
crossref_primary_10_3389_fbioe_2022_1039777
Cites_doi 10.1152/jn.00681.2011
10.1038/nprot.2010.35
10.1038/srep22773
10.1016/j.bbagen.2015.01.020
10.3390/ijms17091494
10.1007/s12015-017-9758-9
10.1002/anie.201402751
10.1089/ten.teb.2012.0716
10.1371/journal.pone.0018738
10.1002/adfm.200600441
10.1002/micr.20475
10.1523/JNEUROSCI.20-07-02602.2000
10.1155/2014/145304
10.1038/nm.3143
10.1634/stemcells.2006-0011
10.1016/S0928-4257(01)00076-6
10.3390/ijms18010094
10.1021/acsbiomaterials.6b00335
10.1152/physrev.00020.2004
10.1371/journal.pone.0162784
10.1002/brb3.61
10.3171/FOC.2009.26.2.E2
10.1089/ten.tea.2010.0519
10.1126/science.1248523
10.1002/adma.201101503
10.1016/j.biomaterials.2012.06.047
10.1016/j.biomaterials.2011.03.070
10.1002/jmri.22353
10.1038/srep11800
10.1016/j.jneumeth.2017.03.017
10.4161/cc.28401
10.1002/1097-4636(20011215)57:4<541::AID-JBM1200>3.0.CO;2-Y
10.1126/science.1206998
10.1109/TNSRE.2010.2098047
10.1016/j.stem.2014.07.013
10.1016/j.jhsa.2007.02.021
10.1177/1545968307313507
10.1016/j.biomaterials.2018.03.044
10.1089/neu.2008.0732
10.1002/adfm.201501760
10.1074/jbc.R113.463737
10.1016/j.expneurol.2009.09.020
10.1152/jn.1987.57.2.563
10.1179/174313208X362488
10.1155/2014/698256
10.1016/0896-6273(94)90209-7
10.1038/nbt1365
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.biomaterials.2018.07.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 359
ExternalDocumentID PMC6201278
30098570
10_1016_j_biomaterials_2018_07_015
S0142961218304927
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL118084
– fundername: NINDS NIH HHS
  grantid: R01 NS110387
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c645t-fb2f58e79eef41860958db17fdd67564d3e8c21ddc64cc3942fcd026d0d16f083
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Aug 21 14:08:08 EDT 2025
Fri Sep 05 03:54:23 EDT 2025
Fri Sep 05 13:46:21 EDT 2025
Mon Feb 24 01:20:14 EST 2025
Wed Aug 20 07:44:57 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Fri Feb 23 02:46:34 EST 2024
Tue Aug 26 20:00:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electrical stimulation
Peripheral nerve injury
Pluripotent stem cells
Nerve regeneration
Human neural crest stem cell
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-fb2f58e79eef41860958db17fdd67564d3e8c21ddc64cc3942fcd026d0d16f083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6201278
PMID 30098570
PQID 2087589624
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6201278
proquest_miscellaneous_2131865974
proquest_miscellaneous_2087589624
pubmed_primary_30098570
crossref_primary_10_1016_j_biomaterials_2018_07_015
crossref_citationtrail_10_1016_j_biomaterials_2018_07_015
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2018_07_015
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2018_07_015
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Du, Chen, Zhou, Jia (bib33) 2018; 14
Lee, Xu, Kim, Kang, Lee, Park, Kim, Choi, Kim (bib41) 2012; 33
Chang, Kim, Kim, Lee, Kim, Suh, Kim, Kwon, Kim, Suh (bib12) 2011; 6
Kim, Song, Cho, Pan, Lee, Kim, Hwang (bib15) 2011; 17
Yamada, Tanemura, Okada, Iwanami, Nakamura, Mizuno, Ozawa, Ohyama-Goto, Kitamura, Kawano, Tan-Takeuchi, Ohtsuka, Miyawaki, Takashima, Ogawa, Toyama, Okano, Kondo (bib14) 2007; 25
Gordon, Amirjani, Edwards, Chan (bib18) 2010; 223
Jiang, Jones, Jia (bib9) 2017; 18
Vats, Benoit (bib45) 2013; 19
Wu, Xiong, Jia, Geocadin, Thakor (bib35) 2012; 107
Walsh, Midha (bib10) 2009; 26
Jia, Zhen, Puttgen, Zhang, Chen (bib31) 2008; 28
Lu, Tsai, Chen, Tsai, Yao, Chen (bib55) 2009; 67
McCaig, Rajnicek, Song, Zhao (bib11) 2005; 85
Shen, Duan, Cheng, Zhong, Guo, Zhang, Zhou, Liang (bib16) 2010; 32
Lewitus, Vogelstein, Zhen, Choi, Kohn, Harshbarger, Jia (bib4) 2011; 19
Yan, Liu, Ye, Huang, He, Xiao, Hu, Luo (bib46) 2016; 11
Chen, Du, Zhang, Barnes, Jia (bib38) 2017; 283
Kim, Lim, Li, Oh, Kovlyagina, Choi, Dong, Lee (bib58) 2014; 15
Al-Majed, Neumann, Brushart, Gordon (bib39) 2000; 20
Chen, Hu, Hsieh, Lin, Tsai, Chen, Yao (bib54) 2001; 15
Eftekhar, Teimoory, Miri, Nikfallah, Naeimi, Ghajarzadeh (bib5) 2014; 52
Jia, Chen, Chen, Zhang, Zhang, Si, Hu (bib49) 2004; 27
Jessen, Brennan, Morgan, Mirsky, Kent, Hashimoto, Gavrilovic (bib44) 1994; 12
Wang, Tang, Park, Zhu, Patel, Daley, Li (bib8) 2011; 32
Pires, Ferreira, Rodrigues, Morgado, Ferreira (bib26) 2015; 1850
Ikeda, Oka (bib34) 2012; 2
Jia, Chen, Zhang, Chen, Zhu, Han (bib28) 2003; 26
Bryson, Machado, Crossley, Stevenson, Bros-Facer, Burrone, Greensmith, Lieberam (bib7) 2014; 344
Chew, Mi, Hoke, Leong (bib27) 2007; 17
Jones, Eisenberg, Jia (bib3) 2016; 17
McCloy, Rogers, Caldon, Lorca, Castro, Burgess (bib32) 2014; 13
Li, Li, Wu, Zhao, Chen, Yuan, Xu, Zhang, Lu, Wang, Li, Jia, Xiao (bib51) 2018; 168
Grinsell, Keating (bib1) 2014; 2014
Lee, Chambers, Tomishima, Studer (bib57) 2010; 5
Park, Park, Sim, Sung, Kim, Hong, Hong (bib13) 2011; 23
Zhen, Chen, Tsai, Zhang, Chen, Jia (bib50) 2018 Apr 19
Loeb, Marks, Hoffer (bib25) 1987; 57
Lu, Ho, Hsu, Lee, Lin, Yao, Chen (bib24) 2008; 22
McCaig, Rajnicek, Song, Zhao (bib21) 2005; 85
Pavesi, Adriani, Rasponi, Zervantonakis, Fiore, Kamm (bib20) 2015; 5
Shi, Gao, Feng, Ding, Cao, Kuga, Wang, Zhang, Cai (bib52) 2014; 53
Jia, Romero-Ortega, Teng (bib2) 2014; 2014
Jiang, Jones, Jia (bib42) 2017; 18
Jia, Zhang, Chen, Chen, Zhu, Han, Qiu (bib30) 2002; 18
Lee, Kim, Elkabetz, Al Shamy, Panagiotakos, Barberi, Tabar, Studer (bib22) 2007; 25
Harding, Mirochnitchenko (bib56) 2014; 289
Jia, Koenig, Zhang, Zhang, Chen, Chen (bib29) 2007; 32
Jia, Chen, Chen, Zhang, Zhang, Si, Hu, Gao, Yang (bib48) 2004; 26
Sakaue, Sieber-Blum (bib47) 2015; 142
Zhou, Zhang, Wang, Chen, Yang, He, Jiang, Chen, Liu (bib53) 2016; 2
Johnson, Lancaster, Zhen, He, Gupta, Kong, Engel, Krick, Ju, Meng, Enquist, Jia, McAlpine (bib6) 2015; 25
Zhang, Zachary, Ren, Lee, Zeng, Hoke, Ming, Mao (bib23) 2011
Jiang, Wang, Tang, Peng, Wang, Guo, Guo, Li, Xiao, Zhang (bib36) 2016; 6
Gordon, Brushart, Chan (bib40) 2008; 30
Huang, Hu, Lu, Ye, Wang, Luo (bib17) 2009; 26
Zhen, Wen, Jia, Li, Crane, Mears, Askin, Frassica, Chang, Yao, Carrino, Cosgarea, Artemov, Chen, Zhao, Zhou, Riley, Sponseller, Wan, Lu, Cao (bib37) 2013; 19
Wake, Lee, Fields (bib19) 2011; 333
Mirsky, Jessen, Brennan, Parkinson, Dong, Meier, Parmantier, Lawson (bib43) 2002; 96
McCloy (10.1016/j.biomaterials.2018.07.015_bib32) 2014; 13
Zhou (10.1016/j.biomaterials.2018.07.015_bib53) 2016; 2
Bryson (10.1016/j.biomaterials.2018.07.015_bib7) 2014; 344
Jia (10.1016/j.biomaterials.2018.07.015_bib49) 2004; 27
Zhen (10.1016/j.biomaterials.2018.07.015_bib37) 2013; 19
Walsh (10.1016/j.biomaterials.2018.07.015_bib10) 2009; 26
Chew (10.1016/j.biomaterials.2018.07.015_bib27) 2007; 17
Eftekhar (10.1016/j.biomaterials.2018.07.015_bib5) 2014; 52
Wake (10.1016/j.biomaterials.2018.07.015_bib19) 2011; 333
Lee (10.1016/j.biomaterials.2018.07.015_bib22) 2007; 25
Jones (10.1016/j.biomaterials.2018.07.015_bib3) 2016; 17
Ikeda (10.1016/j.biomaterials.2018.07.015_bib34) 2012; 2
Lewitus (10.1016/j.biomaterials.2018.07.015_bib4) 2011; 19
Li (10.1016/j.biomaterials.2018.07.015_bib51) 2018; 168
Lee (10.1016/j.biomaterials.2018.07.015_bib57) 2010; 5
Jia (10.1016/j.biomaterials.2018.07.015_bib30) 2002; 18
Gordon (10.1016/j.biomaterials.2018.07.015_bib18) 2010; 223
Chen (10.1016/j.biomaterials.2018.07.015_bib38) 2017; 283
Johnson (10.1016/j.biomaterials.2018.07.015_bib6) 2015; 25
Jia (10.1016/j.biomaterials.2018.07.015_bib2) 2014; 2014
Yamada (10.1016/j.biomaterials.2018.07.015_bib14) 2007; 25
Jiang (10.1016/j.biomaterials.2018.07.015_bib9) 2017; 18
Yan (10.1016/j.biomaterials.2018.07.015_bib46) 2016; 11
Jia (10.1016/j.biomaterials.2018.07.015_bib48) 2004; 26
Vats (10.1016/j.biomaterials.2018.07.015_bib45) 2013; 19
Wang (10.1016/j.biomaterials.2018.07.015_bib8) 2011; 32
Pavesi (10.1016/j.biomaterials.2018.07.015_bib20) 2015; 5
Loeb (10.1016/j.biomaterials.2018.07.015_bib25) 1987; 57
Lee (10.1016/j.biomaterials.2018.07.015_bib41) 2012; 33
Harding (10.1016/j.biomaterials.2018.07.015_bib56) 2014; 289
Chang (10.1016/j.biomaterials.2018.07.015_bib12) 2011; 6
Huang (10.1016/j.biomaterials.2018.07.015_bib17) 2009; 26
Al-Majed (10.1016/j.biomaterials.2018.07.015_bib39) 2000; 20
Kim (10.1016/j.biomaterials.2018.07.015_bib15) 2011; 17
Park (10.1016/j.biomaterials.2018.07.015_bib13) 2011; 23
Jia (10.1016/j.biomaterials.2018.07.015_bib31) 2008; 28
Sakaue (10.1016/j.biomaterials.2018.07.015_bib47) 2015; 142
Zhen (10.1016/j.biomaterials.2018.07.015_bib50) 2018
Jiang (10.1016/j.biomaterials.2018.07.015_bib42) 2017; 18
Zhang (10.1016/j.biomaterials.2018.07.015_bib23) 2011
Wu (10.1016/j.biomaterials.2018.07.015_bib35) 2012; 107
Lu (10.1016/j.biomaterials.2018.07.015_bib24) 2008; 22
Chen (10.1016/j.biomaterials.2018.07.015_bib54) 2001; 15
Pires (10.1016/j.biomaterials.2018.07.015_bib26) 2015; 1850
Jiang (10.1016/j.biomaterials.2018.07.015_bib36) 2016; 6
Jia (10.1016/j.biomaterials.2018.07.015_bib29) 2007; 32
Jia (10.1016/j.biomaterials.2018.07.015_bib28) 2003; 26
Jessen (10.1016/j.biomaterials.2018.07.015_bib44) 1994; 12
Grinsell (10.1016/j.biomaterials.2018.07.015_bib1) 2014; 2014
Du (10.1016/j.biomaterials.2018.07.015_bib33) 2018; 14
Kim (10.1016/j.biomaterials.2018.07.015_bib58) 2014; 15
McCaig (10.1016/j.biomaterials.2018.07.015_bib21) 2005; 85
Lu (10.1016/j.biomaterials.2018.07.015_bib55) 2009; 67
Shen (10.1016/j.biomaterials.2018.07.015_bib16) 2010; 32
Shi (10.1016/j.biomaterials.2018.07.015_bib52) 2014; 53
Gordon (10.1016/j.biomaterials.2018.07.015_bib40) 2008; 30
McCaig (10.1016/j.biomaterials.2018.07.015_bib11) 2005; 85
Mirsky (10.1016/j.biomaterials.2018.07.015_bib43) 2002; 96
39986974 - Biomaterials. 2025 Feb 21:123172. doi: 10.1016/j.biomaterials.2025.123172.
References_xml – volume: 25
  start-page: 1468
  year: 2007
  end-page: 1475
  ident: bib22
  article-title: Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells
  publication-title: Nat. Biotechnol.
– volume: 57
  start-page: 563
  year: 1987
  end-page: 573
  ident: bib25
  article-title: Cat hindlimb motoneurons during locomotion. IV. Participation in cutaneous reflexes
  publication-title: J. Neurophysiol.
– start-page: 43
  year: 2011
  ident: bib23
  article-title: Electric stimulation promotes the neuronal differentiation of human ESC-derived neural crest stem cells and neural stem cells
  publication-title: The 4th Annual Maryland Stem Cell Research Symposium, Towson, Maryland
– volume: 26
  start-page: 243
  year: 2003
  end-page: 245
  ident: bib28
  article-title: The application of modified intrafascicular electrodes in recording the electric signal of sciatic nerve of rabbits
  publication-title: Shanghai Medical Journal
– volume: 11
  year: 2016
  ident: bib46
  article-title: CaMKII-mediated CREB phosphorylation is involved in Ca2+-Induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation
  publication-title: PLoS One
– volume: 18
  start-page: 245
  year: 2002
  end-page: 247
  ident: bib30
  article-title: Experimental study on harvesting the electric signal of peripheral nerve at rabbits by intrafascicular microelectrodes
  publication-title: Chinese Journal of Hand Surgery
– volume: 333
  start-page: 1647
  year: 2011
  end-page: 1651
  ident: bib19
  article-title: Control of local protein synthesis and initial events in myelination by action potentials
  publication-title: Science
– volume: 2
  start-page: 382
  year: 2012
  end-page: 390
  ident: bib34
  article-title: The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration
  publication-title: Brain Behav
– volume: 96
  start-page: 17
  year: 2002
  end-page: 24
  ident: bib43
  article-title: Schwann cells as regulators of nerve development
  publication-title: J. Physiol. Paris
– volume: 344
  start-page: 94
  year: 2014
  end-page: 97
  ident: bib7
  article-title: Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice
  publication-title: Science
– volume: 223
  start-page: 192
  year: 2010
  end-page: 202
  ident: bib18
  article-title: Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients
  publication-title: Exp. Neurol.
– volume: 30
  start-page: 1012
  year: 2008
  end-page: 1022
  ident: bib40
  article-title: Augmenting nerve regeneration with electrical stimulation
  publication-title: Neurol. Res.
– volume: 2014
  year: 2014
  ident: bib1
  article-title: Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies
  publication-title: BioMed Res. Int.
– volume: 85
  start-page: 943
  year: 2005
  end-page: 978
  ident: bib11
  article-title: Controlling cell behavior electrically: current views and future potential
  publication-title: Physiol. Rev.
– year: 2018 Apr 19
  ident: bib50
  article-title: Long-term feasibility and biocompatibility of directly microsurgically implanted intrafascicular electrodes in free roaming rabbits
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 18
  start-page: 94
  year: 2017
  ident: bib9
  article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities
  publication-title: Int. J. Mol. Sci.
– volume: 107
  start-page: 1164
  year: 2012
  end-page: 1171
  ident: bib35
  article-title: Short- and long-latency somatosensory neuronal responses reveal selective brain injury and effect of hypothermia in global hypoxic ischemia
  publication-title: J. Neurophysiol.
– volume: 53
  start-page: 5380
  year: 2014
  end-page: 5384
  ident: bib52
  article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 19
  start-page: 704
  year: 2013
  end-page: 712
  ident: bib37
  article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
  publication-title: Nat. Med.
– volume: 283
  start-page: 92
  year: 2017
  end-page: 100
  ident: bib38
  article-title: Establishing a reliable gait evaluation method for rodent studies
  publication-title: J. Neurosci. Meth.
– volume: 15
  start-page: 497
  year: 2014
  end-page: 506
  ident: bib58
  article-title: Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor
  publication-title: Cell Stem Cell
– volume: 23
  start-page: H263
  year: 2011
  end-page: H267
  ident: bib13
  article-title: Enhanced differentiation of human neural stem cells into neurons on graphene
  publication-title: Adv. Mater.
– volume: 15
  start-page: 541
  year: 2001
  end-page: 549
  ident: bib54
  article-title: Effects of percutaneous electrical stimulation on peripheral nerve regeneration using silicone rubber chambers
  publication-title: J. Biomed. Mater. Res.
– volume: 20
  start-page: 2602
  year: 2000
  end-page: 2608
  ident: bib39
  article-title: Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration
  publication-title: J. Neurosci.
– volume: 28
  start-page: 173
  year: 2008
  end-page: 178
  ident: bib31
  article-title: Improved long-term recording of nerve signal by modified intrafascicular electrodes in rabbits
  publication-title: Microsurgery
– volume: 13
  start-page: 1400
  year: 2014
  end-page: 1412
  ident: bib32
  article-title: Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events
  publication-title: Cell Cycle
– volume: 19
  start-page: 455
  year: 2013
  end-page: 469
  ident: bib45
  article-title: Dynamic manipulation of hydrogels to control cell behavior: a review
  publication-title: Tissue Eng. B Rev.
– volume: 32
  start-page: 5023
  year: 2011
  end-page: 5032
  ident: bib8
  article-title: Induced pluripotent stem cells for neural tissue engineering
  publication-title: Biomaterials
– volume: 33
  start-page: 7039
  year: 2012
  end-page: 7046
  ident: bib41
  article-title: Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells
  publication-title: Biomaterials
– volume: 25
  start-page: 562
  year: 2007
  end-page: 570
  ident: bib14
  article-title: Electrical stimulation modulates fate determination of differentiating embryonic stem cells
  publication-title: Stem Cell.
– volume: 17
  start-page: 1288
  year: 2007
  end-page: 1296
  ident: bib27
  article-title: Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform
  publication-title: Adv. Funct. Mater.
– volume: 18
  year: 2017
  ident: bib42
  article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities
  publication-title: Int. J. Mol. Sci.
– volume: 17
  start-page: 1494
  year: 2016
  ident: bib3
  article-title: Advances and future applications of augmented peripheral nerve regeneration
  publication-title: Int. J. Mol. Sci.
– volume: 12
  start-page: 509
  year: 1994
  end-page: 527
  ident: bib44
  article-title: The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves
  publication-title: Neuron
– volume: 19
  start-page: 204
  year: 2011
  end-page: 212
  ident: bib4
  article-title: Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 142
  start-page: 3188
  year: 2015
  end-page: 3197
  ident: bib47
  article-title: Human epidermal neural crest stem cells as a source of Schwann cells
  publication-title: Development
– volume: 2
  start-page: 1572
  year: 2016
  end-page: 1581
  ident: bib53
  article-title: Electrospinning of PELA/PPY fibrous conduits: promoting peripheral nerve regeneration in rats by self-originated electrical stimulation
  publication-title: ACS Biomater. Sci. Eng.
– volume: 5
  start-page: 688
  year: 2010
  end-page: 701
  ident: bib57
  article-title: Derivation of neural crest cells from human pluripotent stem cells
  publication-title: Nat. Protoc.
– volume: 26
  start-page: 20
  year: 2004
  end-page: 23
  ident: bib48
  article-title: The original report of the first experimental study on electric prosthesis controlled by signals of nerves in amputation stump of human
  publication-title: Chinese Journal of Physical Medicine and Rehabilitation
– volume: 27
  start-page: 24
  year: 2004
  end-page: 26
  ident: bib49
  article-title: Harvesting the signals of nerves in the remaining limb of human by intrafascicular microelectrodes
  publication-title: Chinese Journal of Microsurgery
– volume: 52
  start-page: 816
  year: 2014
  end-page: 821
  ident: bib5
  article-title: Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial
  publication-title: Acta Med. Iran.
– volume: 32
  start-page: 1076
  year: 2010
  end-page: 1085
  ident: bib16
  article-title: In vivo MR imaging tracking of transplanted mesenchymal stem cells in a rabbit model of acute peripheral nerve traction injury
  publication-title: J. Magn. Reson. Imag.
– volume: 26
  start-page: 1805
  year: 2009
  end-page: 1813
  ident: bib17
  article-title: Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats
  publication-title: J. Neurotrauma
– volume: 85
  start-page: 943
  year: 2005
  end-page: 978
  ident: bib21
  article-title: Controlling cell behavior electrically: current views and future potential
  publication-title: Physiol. Rev.
– volume: 6
  year: 2011
  ident: bib12
  article-title: Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells
  publication-title: PLoS One
– volume: 1850
  start-page: 1158
  year: 2015
  end-page: 1168
  ident: bib26
  article-title: Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering
  publication-title: Biochim. Biophys. Acta
– volume: 67
  start-page: 1066
  year: 2009
  end-page: 1072
  ident: bib55
  article-title: Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats
  publication-title: J. Trauma
– volume: 25
  start-page: 6205
  year: 2015
  end-page: 6217
  ident: bib6
  article-title: 3D printed anatomical nerve regeneration pathways
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: E2
  year: 2009
  ident: bib10
  article-title: Practical considerations concerning the use of stem cells for peripheral nerve repair
  publication-title: Neurosurg. Focus
– volume: 289
  start-page: 4585
  year: 2014
  end-page: 4593
  ident: bib56
  article-title: Preclinical studies for induced pluripotent stem cell-based therapeutics
  publication-title: J. Biol. Chem.
– volume: 2014
  year: 2014
  ident: bib2
  article-title: Peripheral nerve regeneration: mechanism, cell biology, and therapies
  publication-title: BioMed Res. Int.
– volume: 17
  start-page: 1327
  year: 2011
  end-page: 1340
  ident: bib15
  article-title: Biphasic electrical targeting plays a significant role in schwann cell activation
  publication-title: Tissue Eng.
– volume: 5
  start-page: 11800
  year: 2015
  ident: bib20
  article-title: Controlled electromechanical cell stimulation on-a-chip
  publication-title: Sci. Rep.
– volume: 6
  start-page: 22773
  year: 2016
  ident: bib36
  article-title: Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat
  publication-title: Sci. Rep.
– volume: 22
  start-page: 367
  year: 2008
  end-page: 373
  ident: bib24
  article-title: Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve
  publication-title: Neurorehabilitation Neural Repair
– volume: 168
  start-page: 24
  year: 2018
  end-page: 37
  ident: bib51
  article-title: Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats
  publication-title: Biomaterials
– volume: 32
  start-page: 657
  year: 2007
  end-page: 666
  ident: bib29
  article-title: Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb
  publication-title: J Hand Surg [Am]
– volume: 14
  start-page: 92
  year: 2018
  end-page: 100
  ident: bib33
  article-title: Quantitative multimodal evaluation of passaging human neural crest stem cells for peripheral nerve regeneration
  publication-title: Stem Cell Rev.
– volume: 107
  start-page: 1164
  issue: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2018.07.015_bib35
  article-title: Short- and long-latency somatosensory neuronal responses reveal selective brain injury and effect of hypothermia in global hypoxic ischemia
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00681.2011
– volume: 5
  start-page: 688
  issue: 4
  year: 2010
  ident: 10.1016/j.biomaterials.2018.07.015_bib57
  article-title: Derivation of neural crest cells from human pluripotent stem cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.35
– volume: 6
  start-page: 22773
  year: 2016
  ident: 10.1016/j.biomaterials.2018.07.015_bib36
  article-title: Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat
  publication-title: Sci. Rep.
  doi: 10.1038/srep22773
– volume: 1850
  start-page: 1158
  issue: 6
  year: 2015
  ident: 10.1016/j.biomaterials.2018.07.015_bib26
  article-title: Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2015.01.020
– volume: 17
  start-page: 1494
  issue: 9
  year: 2016
  ident: 10.1016/j.biomaterials.2018.07.015_bib3
  article-title: Advances and future applications of augmented peripheral nerve regeneration
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17091494
– volume: 14
  start-page: 92
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2018.07.015_bib33
  article-title: Quantitative multimodal evaluation of passaging human neural crest stem cells for peripheral nerve regeneration
  publication-title: Stem Cell Rev.
  doi: 10.1007/s12015-017-9758-9
– volume: 53
  start-page: 5380
  issue: 21
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib52
  article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201402751
– volume: 19
  start-page: 455
  issue: 6
  year: 2013
  ident: 10.1016/j.biomaterials.2018.07.015_bib45
  article-title: Dynamic manipulation of hydrogels to control cell behavior: a review
  publication-title: Tissue Eng. B Rev.
  doi: 10.1089/ten.teb.2012.0716
– volume: 27
  start-page: 24
  issue: 1
  year: 2004
  ident: 10.1016/j.biomaterials.2018.07.015_bib49
  article-title: Harvesting the signals of nerves in the remaining limb of human by intrafascicular microelectrodes
  publication-title: Chinese Journal of Microsurgery
– volume: 67
  start-page: 1066
  issue: 5
  year: 2009
  ident: 10.1016/j.biomaterials.2018.07.015_bib55
  article-title: Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats
  publication-title: J. Trauma
– volume: 6
  issue: 4
  year: 2011
  ident: 10.1016/j.biomaterials.2018.07.015_bib12
  article-title: Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018738
– volume: 17
  start-page: 1288
  issue: 8
  year: 2007
  ident: 10.1016/j.biomaterials.2018.07.015_bib27
  article-title: Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600441
– volume: 28
  start-page: 173
  issue: 3
  year: 2008
  ident: 10.1016/j.biomaterials.2018.07.015_bib31
  article-title: Improved long-term recording of nerve signal by modified intrafascicular electrodes in rabbits
  publication-title: Microsurgery
  doi: 10.1002/micr.20475
– volume: 20
  start-page: 2602
  issue: 7
  year: 2000
  ident: 10.1016/j.biomaterials.2018.07.015_bib39
  article-title: Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-07-02602.2000
– volume: 2014
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib2
  article-title: Peripheral nerve regeneration: mechanism, cell biology, and therapies
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/145304
– volume: 19
  start-page: 704
  issue: 6
  year: 2013
  ident: 10.1016/j.biomaterials.2018.07.015_bib37
  article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3143
– volume: 52
  start-page: 816
  issue: 11
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib5
  article-title: Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial
  publication-title: Acta Med. Iran.
– volume: 25
  start-page: 562
  issue: 3
  year: 2007
  ident: 10.1016/j.biomaterials.2018.07.015_bib14
  article-title: Electrical stimulation modulates fate determination of differentiating embryonic stem cells
  publication-title: Stem Cell.
  doi: 10.1634/stemcells.2006-0011
– volume: 96
  start-page: 17
  issue: 1–2
  year: 2002
  ident: 10.1016/j.biomaterials.2018.07.015_bib43
  article-title: Schwann cells as regulators of nerve development
  publication-title: J. Physiol. Paris
  doi: 10.1016/S0928-4257(01)00076-6
– volume: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2018.07.015_bib42
  article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18010094
– volume: 2
  start-page: 1572
  issue: 9
  year: 2016
  ident: 10.1016/j.biomaterials.2018.07.015_bib53
  article-title: Electrospinning of PELA/PPY fibrous conduits: promoting peripheral nerve regeneration in rats by self-originated electrical stimulation
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00335
– volume: 85
  start-page: 943
  issue: 3
  year: 2005
  ident: 10.1016/j.biomaterials.2018.07.015_bib21
  article-title: Controlling cell behavior electrically: current views and future potential
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00020.2004
– volume: 11
  issue: 9
  year: 2016
  ident: 10.1016/j.biomaterials.2018.07.015_bib46
  article-title: CaMKII-mediated CREB phosphorylation is involved in Ca2+-Induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162784
– volume: 85
  start-page: 943
  issue: 3
  year: 2005
  ident: 10.1016/j.biomaterials.2018.07.015_bib11
  article-title: Controlling cell behavior electrically: current views and future potential
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00020.2004
– volume: 2
  start-page: 382
  issue: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2018.07.015_bib34
  article-title: The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration
  publication-title: Brain Behav
  doi: 10.1002/brb3.61
– volume: 26
  start-page: E2
  issue: 2
  year: 2009
  ident: 10.1016/j.biomaterials.2018.07.015_bib10
  article-title: Practical considerations concerning the use of stem cells for peripheral nerve repair
  publication-title: Neurosurg. Focus
  doi: 10.3171/FOC.2009.26.2.E2
– volume: 17
  start-page: 1327
  issue: 9–10
  year: 2011
  ident: 10.1016/j.biomaterials.2018.07.015_bib15
  article-title: Biphasic electrical targeting plays a significant role in schwann cell activation
  publication-title: Tissue Eng.
  doi: 10.1089/ten.tea.2010.0519
– volume: 344
  start-page: 94
  issue: 6179
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib7
  article-title: Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice
  publication-title: Science
  doi: 10.1126/science.1248523
– year: 2018
  ident: 10.1016/j.biomaterials.2018.07.015_bib50
  article-title: Long-term feasibility and biocompatibility of directly microsurgically implanted intrafascicular electrodes in free roaming rabbits
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 18
  start-page: 94
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2018.07.015_bib9
  article-title: Stem cell transplantation for peripheral nerve regeneration: current options and opportunities
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18010094
– volume: 23
  start-page: H263
  issue: 36
  year: 2011
  ident: 10.1016/j.biomaterials.2018.07.015_bib13
  article-title: Enhanced differentiation of human neural stem cells into neurons on graphene
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101503
– volume: 33
  start-page: 7039
  issue: 29
  year: 2012
  ident: 10.1016/j.biomaterials.2018.07.015_bib41
  article-title: Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.047
– volume: 26
  start-page: 243
  issue: 4
  year: 2003
  ident: 10.1016/j.biomaterials.2018.07.015_bib28
  article-title: The application of modified intrafascicular electrodes in recording the electric signal of sciatic nerve of rabbits
  publication-title: Shanghai Medical Journal
– volume: 32
  start-page: 5023
  issue: 22
  year: 2011
  ident: 10.1016/j.biomaterials.2018.07.015_bib8
  article-title: Induced pluripotent stem cells for neural tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.070
– volume: 32
  start-page: 1076
  issue: 5
  year: 2010
  ident: 10.1016/j.biomaterials.2018.07.015_bib16
  article-title: In vivo MR imaging tracking of transplanted mesenchymal stem cells in a rabbit model of acute peripheral nerve traction injury
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.22353
– volume: 5
  start-page: 11800
  year: 2015
  ident: 10.1016/j.biomaterials.2018.07.015_bib20
  article-title: Controlled electromechanical cell stimulation on-a-chip
  publication-title: Sci. Rep.
  doi: 10.1038/srep11800
– volume: 283
  start-page: 92
  year: 2017
  ident: 10.1016/j.biomaterials.2018.07.015_bib38
  article-title: Establishing a reliable gait evaluation method for rodent studies
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2017.03.017
– volume: 13
  start-page: 1400
  issue: 9
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib32
  article-title: Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events
  publication-title: Cell Cycle
  doi: 10.4161/cc.28401
– volume: 15
  start-page: 541
  issue: 57
  year: 2001
  ident: 10.1016/j.biomaterials.2018.07.015_bib54
  article-title: Effects of percutaneous electrical stimulation on peripheral nerve regeneration using silicone rubber chambers
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(20011215)57:4<541::AID-JBM1200>3.0.CO;2-Y
– volume: 26
  start-page: 20
  issue: 1
  year: 2004
  ident: 10.1016/j.biomaterials.2018.07.015_bib48
  article-title: The original report of the first experimental study on electric prosthesis controlled by signals of nerves in amputation stump of human
  publication-title: Chinese Journal of Physical Medicine and Rehabilitation
– volume: 333
  start-page: 1647
  issue: 6049
  year: 2011
  ident: 10.1016/j.biomaterials.2018.07.015_bib19
  article-title: Control of local protein synthesis and initial events in myelination by action potentials
  publication-title: Science
  doi: 10.1126/science.1206998
– volume: 19
  start-page: 204
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2018.07.015_bib4
  article-title: Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2098047
– volume: 15
  start-page: 497
  issue: 4
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib58
  article-title: Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.07.013
– volume: 32
  start-page: 657
  issue: 5
  year: 2007
  ident: 10.1016/j.biomaterials.2018.07.015_bib29
  article-title: Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb
  publication-title: J Hand Surg [Am]
  doi: 10.1016/j.jhsa.2007.02.021
– volume: 22
  start-page: 367
  issue: 4
  year: 2008
  ident: 10.1016/j.biomaterials.2018.07.015_bib24
  article-title: Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve
  publication-title: Neurorehabilitation Neural Repair
  doi: 10.1177/1545968307313507
– volume: 168
  start-page: 24
  year: 2018
  ident: 10.1016/j.biomaterials.2018.07.015_bib51
  article-title: Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.03.044
– volume: 26
  start-page: 1805
  issue: 10
  year: 2009
  ident: 10.1016/j.biomaterials.2018.07.015_bib17
  article-title: Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2008.0732
– volume: 25
  start-page: 6205
  issue: 39
  year: 2015
  ident: 10.1016/j.biomaterials.2018.07.015_bib6
  article-title: 3D printed anatomical nerve regeneration pathways
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501760
– volume: 289
  start-page: 4585
  issue: 8
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib56
  article-title: Preclinical studies for induced pluripotent stem cell-based therapeutics
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R113.463737
– volume: 18
  start-page: 245
  issue: 4
  year: 2002
  ident: 10.1016/j.biomaterials.2018.07.015_bib30
  article-title: Experimental study on harvesting the electric signal of peripheral nerve at rabbits by intrafascicular microelectrodes
  publication-title: Chinese Journal of Hand Surgery
– volume: 142
  start-page: 3188
  issue: 18
  year: 2015
  ident: 10.1016/j.biomaterials.2018.07.015_bib47
  article-title: Human epidermal neural crest stem cells as a source of Schwann cells
  publication-title: Development
– volume: 223
  start-page: 192
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2018.07.015_bib18
  article-title: Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.09.020
– start-page: 43
  year: 2011
  ident: 10.1016/j.biomaterials.2018.07.015_bib23
  article-title: Electric stimulation promotes the neuronal differentiation of human ESC-derived neural crest stem cells and neural stem cells
– volume: 57
  start-page: 563
  year: 1987
  ident: 10.1016/j.biomaterials.2018.07.015_bib25
  article-title: Cat hindlimb motoneurons during locomotion. IV. Participation in cutaneous reflexes
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1987.57.2.563
– volume: 30
  start-page: 1012
  issue: 10
  year: 2008
  ident: 10.1016/j.biomaterials.2018.07.015_bib40
  article-title: Augmenting nerve regeneration with electrical stimulation
  publication-title: Neurol. Res.
  doi: 10.1179/174313208X362488
– volume: 2014
  year: 2014
  ident: 10.1016/j.biomaterials.2018.07.015_bib1
  article-title: Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/698256
– volume: 12
  start-page: 509
  issue: 3
  year: 1994
  ident: 10.1016/j.biomaterials.2018.07.015_bib44
  article-title: The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves
  publication-title: Neuron
  doi: 10.1016/0896-6273(94)90209-7
– volume: 25
  start-page: 1468
  issue: 12
  year: 2007
  ident: 10.1016/j.biomaterials.2018.07.015_bib22
  article-title: Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1365
– reference: 39986974 - Biomaterials. 2025 Feb 21:123172. doi: 10.1016/j.biomaterials.2025.123172.
SSID ssj0014042
Score 2.581418
Snippet Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 347
SubjectTerms Animals
autografting
cathodes
Cell Differentiation - physiology
cell viability
Cells, Cultured
Electric Stimulation - methods
Electrical stimulation
electrical treatment
gait
Human neural crest stem cell
Humans
Immunohistochemistry
muscles
Nerve regeneration
Nerve Regeneration - physiology
nerve tissue
neural crest
Neural Crest - cytology
Neural Stem Cells - cytology
Neural Stem Cells - physiology
Neurogenesis - physiology
neurons
people
Peripheral Nerve Injuries - therapy
Peripheral nerve injury
Pluripotent stem cells
Rats
Stem Cell Transplantation - methods
stem cells
tissue transplantation
United States
Title Optimal electrical stimulation boosts stem cell therapy in nerve regeneration
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961218304927
https://dx.doi.org/10.1016/j.biomaterials.2018.07.015
https://www.ncbi.nlm.nih.gov/pubmed/30098570
https://www.proquest.com/docview/2087589624
https://www.proquest.com/docview/2131865974
https://pubmed.ncbi.nlm.nih.gov/PMC6201278
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB0hkKr2gCil7QJFrsQ1bOI4jiPEASHQttXCpUjcrDi220UlIAgHLnw7M3ES7bZVtVKVU5IZKfbY43H85g3AvhJJkTmRRTJ2JhJFwqMytiZSymZ5akwcyJ6n53JyKb5eZVcrcNLnwhCssvP9wae33rp7Mu56c3w3m40JlsQLIsBSdFTEKaNciJz48w-eB5gHscfwAGPkEUn3xKMtxotS3MsmmJpgXqol8qQSuX9fpP4MQn_HUs4tTmcbsN5Flew4fPhbWHH1JryZ4xrchFfT7hT9HUwv0E_coHyogUNmYjjTb7pKXgwD74fmgRHFM6Mf-ywkaT2xWc1qQkiye_ejpasm8S24PDv9fjKJurIKUSVF1kTecJ8plxfOeZEoYpxT1iS5txZ3D1LY1KmKJ9aieFWlheC-srhVs7FNpMeQ7T2s1re1-wisRFnJeWm8wIt7k7giLp2wmfQlL9UIir4fddVxjlPpi1-6B5dd63kbaLKBjnONNhhBOujeBeaNpbQOe3PpPrcUvaHGBWIp7aNBe2EULq3_uR8hGqcpmais3e0jCeHGUBWSi3_IJOhgJe3wRvAhjKqh5SkRv2Z5PIJ8YbwNAkQTvvimnv1s6cIlJ3iB2v7Ptu3Aa7oLQMZdWG3uH90nDMgas9fOuD1YO_7ybXL-AqgSO2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SBPo4lDZ9bZ8q9GrWlmVZpvQQQsOmyW4vCeQmLEtKtzROSJxD_31nLNnstqUsFN-sGbA0o9HI-vQNwAclsqpwokhk6kwiqowndWpNopQtytyYNJA9zxdydiq-nBVnW7A_3IUhWGWM_SGm99E6vpnG0ZxeLZdTgiXxigiwFB0V8fIO7BA7FTr7zt7h0WwxHiaItK-hQ_IJKQzcoz3Mi265112wNiG9VM_lSVVy_75O_ZmH_g6nXFmfDh7Bw5hYsr3w7Y9hy7W78GCFbnAX7s7jQfoTmH_FUHGB8qEMDlmK4WS_iMW8GObeN90NI5ZnRv_2Wbin9ZMtW9YSSJJdu_OesZrEn8LpweeT_VkSKyskjRRFl3jDfaFcWTnnRaaIdE5Zk5XeWtxASGFzpxqeWYviTZNXgvvG4m7NpjaTHrO2Z7DdXrbuBbAaZSXntfECH-5N5qq0dsIW0te8VhOohnHUTaQdp-oXP_SAL_uuV22gyQY6LTXaYAL5qHsVyDc20vo4mEsP10sxIGpcIzbS_jRqrznixvrvBw_ROFPJRHXrLm9JCPeGqpJc_EMmwxgraZM3gefBq8ae58T9WpTpBMo1fxsFiCl8vaVdfusZwyUnhIF6-Z99ewf3ZifzY318uDh6BfepJeAaX8N2d33r3mB-1pm3cf79AkZ5PhU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+electrical+stimulation+boosts+stem+cell+therapy+in+nerve+regeneration&rft.jtitle=Biomaterials&rft.au=Du%2C+Jian&rft.au=Zhen%2C+Gehua&rft.au=Chen%2C+Huanwen&rft.au=Zhang%2C+Shuming&rft.date=2018-10-01&rft.eissn=1878-5905&rft.volume=181&rft.spage=347&rft_id=info:doi/10.1016%2Fj.biomaterials.2018.07.015&rft_id=info%3Apmid%2F30098570&rft.externalDocID=30098570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon