Mood variations decoded from multi-site intracranial human brain activity
Mood state changes are decoded using human neural activity data from electrodes implanted in seven epilepsy patients. The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding has not been demonstrated...
Saved in:
Published in | Nature biotechnology Vol. 36; no. 10; pp. 954 - 961 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer New York
01.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mood state changes are decoded using human neural activity data from electrodes implanted in seven epilepsy patients.
The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding has not been demonstrated, partly owing to the difficulty of modeling distributed mood-relevant neural dynamics while dealing with the sparsity of mood state measurements. Here we develop a modeling framework to decode mood state variations from multi-site intracranial recordings in seven human subjects with epilepsy who self-reported their mood state intermittently over multiple days. We built dynamic neural encoding models of mood state and corresponding decoders for each individual and demonstrated that mood state variations over time can be decoded from neural activity. Across subjects, the decoders largely recruited neural signals from limbic regions, whose spectro-spatial features were tuned to mood variations. The dynamic models also provided an analytical tool to compute the timescales of the decoded mood state. These results provide an initial line of evidence indicating the feasibility of mood state decoding. |
---|---|
AbstractList | The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding has not been demonstrated, partly owing to the difficulty of modeling distributed mood-relevant neural dynamics while dealing with the sparsity of mood state measurements. Here we develop a modeling framework to decode mood state variations from multi-site intracranial recordings in seven human subjects with epilepsy who self-reported their mood state intermittently over multiple days. We built dynamic neural encoding models of mood state and corresponding decoders for each individual and demonstrated that mood state variations over time can be decoded from neural activity. Across subjects, the decoders largely recruited neural signals from limbic regions, whose spectro-spatial features were tuned to mood variations. The dynamic models also provided an analytical tool to compute the timescales of the decoded mood state. These results provide an initial line of evidence indicating the feasibility of mood state decoding.The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding has not been demonstrated, partly owing to the difficulty of modeling distributed mood-relevant neural dynamics while dealing with the sparsity of mood state measurements. Here we develop a modeling framework to decode mood state variations from multi-site intracranial recordings in seven human subjects with epilepsy who self-reported their mood state intermittently over multiple days. We built dynamic neural encoding models of mood state and corresponding decoders for each individual and demonstrated that mood state variations over time can be decoded from neural activity. Across subjects, the decoders largely recruited neural signals from limbic regions, whose spectro-spatial features were tuned to mood variations. The dynamic models also provided an analytical tool to compute the timescales of the decoded mood state. These results provide an initial line of evidence indicating the feasibility of mood state decoding. The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding has not been demonstrated, partly owing to the difficulty of modeling distributed mood-relevant neural dynamics while dealing with the sparsity of mood state measurements. Here we develop a modeling framework to decode mood state variations from multi-site intracranial recordings in seven human subjects with epilepsy who self-reported their mood state intermittently over multiple days. We built dynamic neural encoding models of mood state and corresponding decoders for each individual and demonstrated that mood state variations over time can be decoded from neural activity. Across subjects, the decoders largely recruited neural signals from limbic regions, whose spectro-spatial features were tuned to mood variations. The dynamic models also provided an analytical tool to compute the timescales of the decoded mood state. These results provide an initial line of evidence indicating the feasibility of mood state decoding. Mood state changes are decoded using human neural activity data from electrodes implanted in seven epilepsy patients.The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding has not been demonstrated, partly owing to the difficulty of modeling distributed mood-relevant neural dynamics while dealing with the sparsity of mood state measurements. Here we develop a modeling framework to decode mood state variations from multi-site intracranial recordings in seven human subjects with epilepsy who self-reported their mood state intermittently over multiple days. We built dynamic neural encoding models of mood state and corresponding decoders for each individual and demonstrated that mood state variations over time can be decoded from neural activity. Across subjects, the decoders largely recruited neural signals from limbic regions, whose spectro-spatial features were tuned to mood variations. The dynamic models also provided an analytical tool to compute the timescales of the decoded mood state. These results provide an initial line of evidence indicating the feasibility of mood state decoding. Mood state changes are decoded using human neural activity data from electrodes implanted in seven epilepsy patients. The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding has not been demonstrated, partly owing to the difficulty of modeling distributed mood-relevant neural dynamics while dealing with the sparsity of mood state measurements. Here we develop a modeling framework to decode mood state variations from multi-site intracranial recordings in seven human subjects with epilepsy who self-reported their mood state intermittently over multiple days. We built dynamic neural encoding models of mood state and corresponding decoders for each individual and demonstrated that mood state variations over time can be decoded from neural activity. Across subjects, the decoders largely recruited neural signals from limbic regions, whose spectro-spatial features were tuned to mood variations. The dynamic models also provided an analytical tool to compute the timescales of the decoded mood state. These results provide an initial line of evidence indicating the feasibility of mood state decoding. |
Audience | Academic |
Author | Dawes, Heather E Shanechi, Maryam M Yang, Yuxiao Lee, Morgan B Chang, Edward F Sani, Omid G |
Author_xml | – sequence: 1 givenname: Omid G orcidid: 0000-0003-3032-5669 surname: Sani fullname: Sani, Omid G organization: Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California – sequence: 2 givenname: Yuxiao orcidid: 0000-0001-9208-7956 surname: Yang fullname: Yang, Yuxiao organization: Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California – sequence: 3 givenname: Morgan B orcidid: 0000-0001-6936-0109 surname: Lee fullname: Lee, Morgan B organization: Department of Neurological Surgery, University of California, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA., Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California, USA – sequence: 4 givenname: Heather E surname: Dawes fullname: Dawes, Heather E organization: Department of Neurological Surgery, University of California, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA., Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California, USA – sequence: 5 givenname: Edward F surname: Chang fullname: Chang, Edward F email: edward.chang@ucsf.edu organization: Department of Neurological Surgery, University of California, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA., Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California, USA – sequence: 6 givenname: Maryam M orcidid: 0000-0002-0544-7720 surname: Shanechi fullname: Shanechi, Maryam M email: shanechi@usc.edu organization: Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Neuroscience Graduate Program, University of Southern California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30199076$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkm9rFDEQxoNU7B8FP4Es-EbBPZPNZpJ9WYrWg0pBi29Dks1eU3aTmmSL_fbm2qvnaREJJGH4zSTPzHOI9nzwFqGXBC8IpuK913nRNhg_QQeEtVAT6GCv3LHgNSYM9tFhSlcYY2gBnqF9iknXYQ4HaPk5hL66UdGp7IJPVW9N6G1fDTFM1TSP2dXJZVs5n6MyUXmnxupynpSvdFTOV8pkd-Py7XP0dFBjsi825xG6-Pjh4uRTfXZ-ujw5PqsNtCzXFjTVjAveEKBCgMC8x5grbrSgHdegDaeDEQyYGAbTG8Ws0CViDNUC6BF6c1_2Oobvs01ZTi4ZO47K2zAn2ZCijRAgrKCv_0Cvwhx9-ZykTQOUUgL8X1RDGAfaNRi21EqNVjo_hHU71k_LY8YbjlvS0EItHqHK6u3kTJnZ4Ep8J-HtTkJhsv2RV2pOSS6_fvl_9vzbLvvuN1bPyXmbypbc6jKn-5Qd_NWmB7OebC-vo5tUvJUPPtkKMzGkFO0gjct3jikC3SgJlmsjymJEuTbidky_Eh5qPoJudKWC-JWN2wH8xf4Ex7nl3w |
CitedBy_id | crossref_primary_10_1088_1741_2552_adba8d crossref_primary_10_3390_brainsci10100669 crossref_primary_10_1016_j_bspc_2023_105249 crossref_primary_10_1038_s41593_020_00733_0 crossref_primary_10_1097_HRP_0000000000000367 crossref_primary_10_1038_s41551_023_01117_y crossref_primary_10_1109_TNSRE_2023_3327740 crossref_primary_10_1016_j_cobme_2018_11_004 crossref_primary_10_1038_s41531_022_00399_4 crossref_primary_10_3758_s13415_024_01216_6 crossref_primary_10_1088_1741_2552_ab5d47 crossref_primary_10_1088_1741_2552_ab3dbc crossref_primary_10_1088_1741_2552_ab51a5 crossref_primary_10_1088_1741_2552_ac02dc crossref_primary_10_3389_fnins_2021_789868 crossref_primary_10_7554_eLife_89421_3 crossref_primary_10_2139_ssrn_4124479 crossref_primary_10_1016_j_crmeth_2023_100691 crossref_primary_10_1146_annurev_pharmtox_010919_023253 crossref_primary_10_3389_fnins_2019_00152 crossref_primary_10_1007_s11948_020_00218_0 crossref_primary_10_1038_s41467_020_20197_x crossref_primary_10_1002_aisy_202200313 crossref_primary_10_1038_s41582_020_00426_z crossref_primary_10_1088_1741_2552_ac9b94 crossref_primary_10_1016_j_patter_2022_100602 crossref_primary_10_1088_1741_2552_abcefd crossref_primary_10_1371_journal_pcbi_1010401 crossref_primary_10_1088_1741_2552_ad3678 crossref_primary_10_1109_JSSC_2022_3204508 crossref_primary_10_1088_1741_2552_ac160f crossref_primary_10_1088_1741_2552_ac160e crossref_primary_10_3389_fnins_2022_818214 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_1016_j_eswa_2024_126311 crossref_primary_10_1088_1741_2552_ac857c crossref_primary_10_3389_fnins_2022_829755 crossref_primary_10_1109_TBME_2023_3319956 crossref_primary_10_31083_j_jin2301018 crossref_primary_10_1088_1741_2552_ac4e1c crossref_primary_10_1109_TNSRE_2019_2908156 crossref_primary_10_1016_j_neures_2020_01_002 crossref_primary_10_1038_s41587_019_0244_6 crossref_primary_10_1088_1741_2552_ace932 crossref_primary_10_1038_s41551_020_00666_w crossref_primary_10_1088_1741_2552_ad8839 crossref_primary_10_1002_EXP_20230146 crossref_primary_10_1016_j_neubiorev_2020_06_024 crossref_primary_10_7554_eLife_89421 crossref_primary_10_1016_j_crneur_2022_100071 crossref_primary_10_1016_j_psychres_2019_02_076 crossref_primary_10_3389_fnhum_2021_717401 crossref_primary_10_1088_1741_2552_ad038d crossref_primary_10_1088_1741_2552_abda0b crossref_primary_10_7554_eLife_72440 crossref_primary_10_1073_pnas_2409423122 crossref_primary_10_1088_1741_2552_acbe20 crossref_primary_10_3389_fnins_2021_658930 crossref_primary_10_1088_1741_2552_ac63e9 crossref_primary_10_1038_s41551_024_01314_3 crossref_primary_10_1109_TNSRE_2019_2913218 crossref_primary_10_1016_j_neuroimage_2022_118969 crossref_primary_10_1038_s41386_020_00805_6 crossref_primary_10_3389_fpsyt_2023_1129954 crossref_primary_10_1088_1741_2552_ac33e7 crossref_primary_10_1016_j_brs_2023_07_049 crossref_primary_10_1088_1741_2552_ab2214 crossref_primary_10_1016_j_brainres_2024_148914 crossref_primary_10_1016_j_yebeh_2024_109659 crossref_primary_10_3389_fnhum_2024_1332451 crossref_primary_10_3389_fnhum_2021_702605 crossref_primary_10_1016_j_jns_2021_120121 crossref_primary_10_1093_pnasnexus_pgad442 crossref_primary_10_1016_j_biopsych_2021_11_007 crossref_primary_10_1016_j_cell_2024_09_028 crossref_primary_10_1126_sciadv_adh0974 crossref_primary_10_3389_fncom_2024_1273053 crossref_primary_10_1016_j_biopsych_2022_09_032 crossref_primary_10_1088_1741_2552_ab225b crossref_primary_10_1002_ana_25821 crossref_primary_10_1088_1741_2552_ac6d7c crossref_primary_10_1360_TB_2024_0469 crossref_primary_10_1088_1741_2552_ad200e crossref_primary_10_1159_000540319 crossref_primary_10_1038_s41562_022_01310_0 crossref_primary_10_1038_s41551_023_01106_1 crossref_primary_10_1038_s41593_023_01338_z crossref_primary_10_1088_1741_2552_aaeb1a crossref_primary_10_1016_j_conb_2019_03_008 crossref_primary_10_1088_1741_2552_ad1053 crossref_primary_10_3389_fnhum_2024_1388267 crossref_primary_10_1126_scitranslmed_aay4682 crossref_primary_10_3389_fnins_2020_00123 crossref_primary_10_1016_j_pmip_2019_07_002 crossref_primary_10_1093_cercor_bhad517 crossref_primary_10_1176_appi_neuropsych_20100268 crossref_primary_10_1007_s11517_023_02865_4 crossref_primary_10_1016_j_wneu_2024_09_131 crossref_primary_10_3389_fnins_2021_748165 crossref_primary_10_3389_fncir_2021_701080 crossref_primary_10_1088_1741_2552_ac7005 crossref_primary_10_1162_neco_a_01491 crossref_primary_10_1073_pnas_2212887121 crossref_primary_10_1016_j_pmip_2024_100135 crossref_primary_10_1007_s11263_022_01713_6 crossref_primary_10_1016_j_biomaterials_2025_123288 crossref_primary_10_1038_s41386_023_01643_y crossref_primary_10_1016_S2215_0366_20_30187_5 crossref_primary_10_1038_s41467_023_43257_4 crossref_primary_10_3389_fnhum_2021_746499 crossref_primary_10_1109_JBHI_2023_3292452 crossref_primary_10_1016_j_neuron_2020_06_012 crossref_primary_10_1038_s41467_024_48367_1 crossref_primary_10_1088_1741_2552_ad5406 crossref_primary_10_3389_fncom_2023_1119685 crossref_primary_10_1038_s41593_019_0488_y crossref_primary_10_3390_brainsci13070977 crossref_primary_10_1016_j_conb_2019_06_008 crossref_primary_10_1038_s41587_019_0397_3 crossref_primary_10_1109_MSSC_2023_3309782 crossref_primary_10_3389_fnins_2021_653965 crossref_primary_10_1016_j_brs_2021_06_009 crossref_primary_10_1038_s41593_024_01731_2 crossref_primary_10_1161_JAHA_122_026067 crossref_primary_10_1088_1741_2552_acec14 crossref_primary_10_1016_j_conb_2020_11_016 crossref_primary_10_1038_s42003_019_0360_3 crossref_primary_10_1111_1744_1633_70002 crossref_primary_10_1088_1741_2552_ab2c58 crossref_primary_10_1038_s41551_021_00804_y crossref_primary_10_1039_D4CS00413B crossref_primary_10_3389_fpsyt_2022_938694 crossref_primary_10_1016_j_neuroimage_2020_117515 crossref_primary_10_1088_1741_2552_ab0ea4 crossref_primary_10_1088_1741_2552_ad9956 crossref_primary_10_1016_j_expneurol_2022_113993 crossref_primary_10_53053_MHCS4874 crossref_primary_10_1038_nbt_4258 crossref_primary_10_1016_j_biopsych_2023_01_020 crossref_primary_10_3171_2020_4_JNS2061 crossref_primary_10_1038_s44222_024_00177_2 crossref_primary_10_1177_08830738231167736 crossref_primary_10_1162_neco_a_01196 |
Cites_doi | 10.3389/fnhum.2012.00112 10.1371/journal.pcbi.1006168 10.1176/appi.ajp.2014.14020263 10.1016/j.neuroimage.2005.01.014 10.1002/ana.22613 10.1038/nn.4101 10.1088/1741-2560/13/2/026017 10.1016/j.neulet.2009.03.094 10.1016/j.neuroimage.2012.01.021 10.1007/978-0-387-21606-5 10.1016/j.jneumeth.2007.10.001 10.1038/sj.npp.1301408 10.2196/mhealth.6544 10.1016/j.neuron.2014.08.038 10.1093/brain/aws059 10.1038/mp.2014.2 10.1037/0021-843X.100.3.316 10.1371/journal.pone.0055344 10.1046/j.1525-1497.2001.016009606.x 10.1016/S0378-3758(99)00041-5 10.1016/j.biopsych.2016.02.032 10.1109/TNSRE.2017.2677443 10.1016/j.biopsych.2007.05.033 10.1371/journal.pone.0032508 10.1109/TNSRE.2016.2639501 10.1038/nature11911 10.1037/0033-295X.110.1.145 10.1371/journal.pcbi.1004730 10.1016/j.neuron.2006.09.019 10.1152/jn.2001.86.5.2125 10.1586/14737175.7.1.63 10.1038/nn.4553 10.1016/S0959-4388(00)00203-8 10.1088/1741-2560/12/3/036009 10.1038/ncomms13825 10.1093/bmb/65.1.193 10.1016/S0140-6736(06)67964-6 10.1016/j.neuroimage.2014.06.078 10.1176/ajp.156.5.675 10.1002/hbm.20426 10.1016/j.neuron.2011.10.020 10.1016/j.neuron.2005.02.014 10.1016/j.neubiorev.2015.07.014 10.1038/nature14366 10.1006/ebeh.2000.0046 10.1098/rstb.2001.0915 10.1007/978-1-4613-0465-4 10.1038/nrn3119 10.1016/j.tics.2010.06.007 10.1016/j.biopsych.2008.08.029 10.1038/s41598-017-12457-6 10.1038/nature12018 10.1371/journal.pbio.2000106 10.1088/1741-2560/1/2/001 10.1109/MSP.2008.4408438 10.1038/nrn2653 10.1016/S0140-6736(11)60602-8 10.1038/nature11740 10.1126/scitranslmed.3007303 10.1176/appi.ajp.2007.07030504 10.1038/nm.4246 10.1001/archinte.166.10.1092 10.1016/j.cell.2015.01.045 10.1016/j.cub.2014.07.068 10.1088/1741-2560/13/6/066019 10.1192/S0007125000298395 10.1088/1741-2560/11/2/026002 10.1016/j.neuron.2008.10.037 10.1038/nature13665 10.1016/j.jpain.2009.09.001 10.1017/S0954579405050340 10.1073/pnas.1417017112 10.1038/ncomms8759 10.1016/j.pnpbp.2007.06.030 10.1176/appi.books.9780890425596 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Oct 2018 Springer Nature America, Inc. 2018. |
Copyright_xml | – notice: Springer Nature America, Inc. 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Oct 2018 – notice: Springer Nature America, Inc. 2018. |
DBID | AAYXX CITATION NPM N95 IOV ISR 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 PRINS 7X8 |
DOI | 10.1038/nbt.4200 |
DatabaseName | CrossRef PubMed Gale Business Insights: Global Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Genetics Abstracts ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central China MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep Research Library Prep PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 961 |
ExternalDocumentID | A572704123 30199076 10_1038_nbt_4200 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAHBH AAIKC AAMNW AARCD AAYOK AAYZH ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMFV ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NFIDA NNMJJ NXXTH O9- ODYON P2P PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX CITATION PJZUB PPXIY PQGLB ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP NPM PMFND 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7XB 88A 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 PRINS 7X8 |
ID | FETCH-LOGICAL-c645t-e6b3b57872163886807d007a7cb8397b6bc73fc85658ffcdca5e8b3fccc3b863 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 1546-1696 |
IngestDate | Fri Jul 11 02:40:30 EDT 2025 Sat Aug 23 14:03:49 EDT 2025 Fri Jul 25 09:00:37 EDT 2025 Tue Jun 17 21:24:04 EDT 2025 Tue Jun 10 20:41:37 EDT 2025 Fri Jun 27 05:08:33 EDT 2025 Fri Jun 27 03:49:42 EDT 2025 Fri Jun 27 03:06:22 EDT 2025 Mon Jul 21 06:04:33 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Tue Aug 12 04:01:14 EDT 2025 Wed May 21 12:01:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c645t-e6b3b57872163886807d007a7cb8397b6bc73fc85658ffcdca5e8b3fccc3b863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0544-7720 0000-0001-9208-7956 0000-0003-3032-5669 0000-0001-6936-0109 |
OpenAccessLink | https://www.nature.com/articles/nbt.4200.pdf |
PMID | 30199076 |
PQID | 2157639206 |
PQPubID | 47191 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101911615 proquest_journals_3226333167 proquest_journals_2157639206 gale_infotracmisc_A572704123 gale_infotracacademiconefile_A572704123 gale_incontextgauss_ISR_A572704123 gale_incontextgauss_IOV_A572704123 gale_businessinsightsgauss_A572704123 pubmed_primary_30199076 crossref_citationtrail_10_1038_nbt_4200 crossref_primary_10_1038_nbt_4200 springer_journals_10_1038_nbt_4200 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2018 |
Publisher | Springer New York Nature Publishing Group |
Publisher_xml | – name: Springer New York – name: Nature Publishing Group |
References | BP Hermann (BFnbt4200_CR53) 2000; 41 JP Dmochowski (BFnbt4200_CR3) 2012; 6 PB Fitzgerald (BFnbt4200_CR29) 2008; 29 D Yekutieli (BFnbt4200_CR63) 1999; 82 S Grimm (BFnbt4200_CR21) 2008; 63 AF Leuchter (BFnbt4200_CR15) 2012; 7 DA Malone Jr. (BFnbt4200_CR17) 2009; 65 TE Schlaepfer (BFnbt4200_CR19) 2008; 33 MM Shanechi (BFnbt4200_CR68) 2016; 12 NG Hatsopoulos (BFnbt4200_CR33) 2011; 72 AK Mak (BFnbt4200_CR47) 2009; 457 KP Ebmeier (BFnbt4200_CR75) 2006; 367 MH Schieber (BFnbt4200_CR30) 2001; 86 NV Thakor (BFnbt4200_CR43) 2013; 5 S-Y Kim (BFnbt4200_CR76) 2013; 496 KE Bouchard (BFnbt4200_CR23) 2013; 495 J Posner (BFnbt4200_CR13) 2005; 17 K So (BFnbt4200_CR69) 2014; 11 LA Clark (BFnbt4200_CR12) 1991; 100 BFnbt4200_CR49 A Burgos-Robles (BFnbt4200_CR74) 2017; 20 A Korzeniewska (BFnbt4200_CR24) 2014; 101 HS Mayberg (BFnbt4200_CR10) 1999; 156 M Nahum (BFnbt4200_CR26) 2017; 5 T Pistohl (BFnbt4200_CR67) 2008; 167 RA Andersen (BFnbt4200_CR31) 2014; 24 KM Tye (BFnbt4200_CR80) 2013; 493 MM Shanechi (BFnbt4200_CR40) 2017; 25 L-L Zeng (BFnbt4200_CR11) 2012; 135 AT Drysdale (BFnbt4200_CR5) 2017; 23 B-T Lee (BFnbt4200_CR22) 2007; 31 JC Kao (BFnbt4200_CR66) 2015; 6 MA Nicolelis (BFnbt4200_CR36) 2009; 10 K Haroush (BFnbt4200_CR6) 2015; 160 MM Shanechi (BFnbt4200_CR41) 2017; 8 RL Spitzer (BFnbt4200_CR52) 2006; 166 HS Mayberg (BFnbt4200_CR18) 2005; 45 PT Sadtler (BFnbt4200_CR37) 2014; 512 PA Kragel (BFnbt4200_CR7) 2016; 14 DM Brandman (BFnbt4200_CR32) 2017; 25 JA Russell (BFnbt4200_CR50) 2003; 110 P Sajda (BFnbt4200_CR38) 2008; 25 MS George (BFnbt4200_CR55) 2007; 7 WC Drevets (BFnbt4200_CR4) 2001; 11 GG Calhoon (BFnbt4200_CR1) 2015; 18 T Yanagisawa (BFnbt4200_CR45) 2012; 71 H-L Hsieh (BFnbt4200_CR65) 2018; 14 BFnbt4200_CR73 U Habel (BFnbt4200_CR46) 2005; 26 K Kroenke (BFnbt4200_CR51) 2001; 16 RB Yaffe (BFnbt4200_CR25) 2014; 111 DJ Kupfer (BFnbt4200_CR8) 2012; 379 V Michopoulos (BFnbt4200_CR77) 2015; 172 P Namburi (BFnbt4200_CR79) 2015; 520 W Wang (BFnbt4200_CR44) 2013; 8 BFnbt4200_CR72 RZ Goldstein (BFnbt4200_CR57) 2011; 12 JP Donoghue (BFnbt4200_CR64) 2008; 60 A Etkin (BFnbt4200_CR56) 2007; 164 BFnbt4200_CR27 KV Shenoy (BFnbt4200_CR42) 2014; 84 BFnbt4200_CR28 EC Leuthardt (BFnbt4200_CR35) 2004; 1 Y Yang (BFnbt4200_CR71) 2016; 13 DL Clark (BFnbt4200_CR14) 2016; 80 WJ Neumann (BFnbt4200_CR16) 2014; 19 DA Clark (BFnbt4200_CR20) 2010; 14 R Dan (BFnbt4200_CR2) 2017; 7 J Mazziotta (BFnbt4200_CR62) 2001; 356 SD Stavisky (BFnbt4200_CR70) 2015; 12 PC Mulders (BFnbt4200_CR78) 2015; 56 N Sartorius (BFnbt4200_CR48) 1996; 1996 AB Schwartz (BFnbt4200_CR39) 2006; 52 B Fischl (BFnbt4200_CR61) 2012; 62 G Hotson (BFnbt4200_CR34) 2016; 13 HS Mayberg (BFnbt4200_CR9) 2003; 65 I Tracey (BFnbt4200_CR58) 2009; 10 Y Yang (BFnbt4200_CR60) 2017; 2017 CL Harden (BFnbt4200_CR54) 2000; 1 Y Yang (BFnbt4200_CR59) 2016; 2016 |
References_xml | – volume: 6 start-page: 112 year: 2012 ident: BFnbt4200_CR3 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00112 – volume: 14 start-page: e1006168 year: 2018 ident: BFnbt4200_CR65 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006168 – volume: 172 start-page: 353 year: 2015 ident: BFnbt4200_CR77 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2014.14020263 – volume: 26 start-page: 206 year: 2005 ident: BFnbt4200_CR46 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.01.014 – volume: 71 start-page: 353 year: 2012 ident: BFnbt4200_CR45 publication-title: Ann. Neurol. doi: 10.1002/ana.22613 – volume: 18 start-page: 1394 year: 2015 ident: BFnbt4200_CR1 publication-title: Nat. Neurosci. doi: 10.1038/nn.4101 – volume: 13 start-page: 026017 year: 2016 ident: BFnbt4200_CR34 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/2/026017 – volume: 457 start-page: 101 year: 2009 ident: BFnbt4200_CR47 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.03.094 – volume: 62 start-page: 774 year: 2012 ident: BFnbt4200_CR61 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – ident: BFnbt4200_CR27 doi: 10.1007/978-0-387-21606-5 – volume: 167 start-page: 105 year: 2008 ident: BFnbt4200_CR67 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.10.001 – volume: 33 start-page: 368 year: 2008 ident: BFnbt4200_CR19 publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301408 – volume: 5 start-page: e44 year: 2017 ident: BFnbt4200_CR26 publication-title: JMIR Mhealth Uhealth doi: 10.2196/mhealth.6544 – volume: 41 start-page: S31 issue: Suppl. 2 year: 2000 ident: BFnbt4200_CR53 publication-title: Epilepsia – volume: 84 start-page: 665 year: 2014 ident: BFnbt4200_CR42 publication-title: Neuron doi: 10.1016/j.neuron.2014.08.038 – volume: 135 start-page: 1498 year: 2012 ident: BFnbt4200_CR11 publication-title: Brain doi: 10.1093/brain/aws059 – volume: 19 start-page: 1186 year: 2014 ident: BFnbt4200_CR16 publication-title: Mol. Psychiatry doi: 10.1038/mp.2014.2 – volume: 100 start-page: 316 year: 1991 ident: BFnbt4200_CR12 publication-title: J. Abnorm. Psychol. doi: 10.1037/0021-843X.100.3.316 – volume: 8 start-page: e55344 year: 2013 ident: BFnbt4200_CR44 publication-title: PLoS One doi: 10.1371/journal.pone.0055344 – volume: 2016 start-page: 1766 year: 2016 ident: BFnbt4200_CR59 publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 16 start-page: 606 year: 2001 ident: BFnbt4200_CR51 publication-title: J. Gen. Intern. Med. doi: 10.1046/j.1525-1497.2001.016009606.x – volume: 82 start-page: 171 year: 1999 ident: BFnbt4200_CR63 publication-title: J. Stat. Plan. Inference doi: 10.1016/S0378-3758(99)00041-5 – ident: BFnbt4200_CR72 – volume: 80 start-page: e93 year: 2016 ident: BFnbt4200_CR14 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2016.02.032 – volume: 25 start-page: 1687 year: 2017 ident: BFnbt4200_CR32 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2677443 – volume: 63 start-page: 369 year: 2008 ident: BFnbt4200_CR21 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2007.05.033 – volume: 7 start-page: e32508 year: 2012 ident: BFnbt4200_CR15 publication-title: PLoS One doi: 10.1371/journal.pone.0032508 – volume: 25 start-page: 1725 year: 2017 ident: BFnbt4200_CR40 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2639501 – volume: 495 start-page: 327 year: 2013 ident: BFnbt4200_CR23 publication-title: Nature doi: 10.1038/nature11911 – volume: 110 start-page: 145 year: 2003 ident: BFnbt4200_CR50 publication-title: Psychol. Rev. doi: 10.1037/0033-295X.110.1.145 – volume: 12 start-page: e1004730 year: 2016 ident: BFnbt4200_CR68 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1004730 – volume: 52 start-page: 205 year: 2006 ident: BFnbt4200_CR39 publication-title: Neuron doi: 10.1016/j.neuron.2006.09.019 – volume: 86 start-page: 2125 year: 2001 ident: BFnbt4200_CR30 publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.5.2125 – volume: 7 start-page: 63 year: 2007 ident: BFnbt4200_CR55 publication-title: Expert Rev. Neurother. doi: 10.1586/14737175.7.1.63 – volume: 20 start-page: 824 year: 2017 ident: BFnbt4200_CR74 publication-title: Nat. Neurosci. doi: 10.1038/nn.4553 – volume: 11 start-page: 240 year: 2001 ident: BFnbt4200_CR4 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(00)00203-8 – volume: 12 start-page: 036009 year: 2015 ident: BFnbt4200_CR70 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/036009 – volume: 8 start-page: 13825 year: 2017 ident: BFnbt4200_CR41 publication-title: Nat. Commun. doi: 10.1038/ncomms13825 – volume: 65 start-page: 193 year: 2003 ident: BFnbt4200_CR9 publication-title: Br. Med. Bull. doi: 10.1093/bmb/65.1.193 – volume: 367 start-page: 153 year: 2006 ident: BFnbt4200_CR75 publication-title: Lancet doi: 10.1016/S0140-6736(06)67964-6 – volume: 101 start-page: 96 year: 2014 ident: BFnbt4200_CR24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.078 – volume: 156 start-page: 675 year: 1999 ident: BFnbt4200_CR10 publication-title: Am. J. Psychiatry doi: 10.1176/ajp.156.5.675 – volume: 29 start-page: 683 year: 2008 ident: BFnbt4200_CR29 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20426 – volume: 72 start-page: 477 year: 2011 ident: BFnbt4200_CR33 publication-title: Neuron doi: 10.1016/j.neuron.2011.10.020 – volume: 45 start-page: 651 year: 2005 ident: BFnbt4200_CR18 publication-title: Neuron doi: 10.1016/j.neuron.2005.02.014 – volume: 56 start-page: 330 year: 2015 ident: BFnbt4200_CR78 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.07.014 – volume: 520 start-page: 675 year: 2015 ident: BFnbt4200_CR79 publication-title: Nature doi: 10.1038/nature14366 – ident: BFnbt4200_CR73 – volume: 1 start-page: 93 year: 2000 ident: BFnbt4200_CR54 publication-title: Epilepsy Behav. doi: 10.1006/ebeh.2000.0046 – volume: 356 start-page: 1293 year: 2001 ident: BFnbt4200_CR62 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2001.0915 – ident: BFnbt4200_CR28 doi: 10.1007/978-1-4613-0465-4 – volume: 12 start-page: 652 year: 2011 ident: BFnbt4200_CR57 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3119 – volume: 14 start-page: 418 year: 2010 ident: BFnbt4200_CR20 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.06.007 – volume: 65 start-page: 267 year: 2009 ident: BFnbt4200_CR17 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2008.08.029 – volume: 7 start-page: 12164 year: 2017 ident: BFnbt4200_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-017-12457-6 – volume: 496 start-page: 219 year: 2013 ident: BFnbt4200_CR76 publication-title: Nature doi: 10.1038/nature12018 – volume: 2017 start-page: 1660 year: 2017 ident: BFnbt4200_CR60 publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 14 start-page: e2000106 year: 2016 ident: BFnbt4200_CR7 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2000106 – volume: 1 start-page: 63 year: 2004 ident: BFnbt4200_CR35 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/1/2/001 – volume: 25 start-page: 16 year: 2008 ident: BFnbt4200_CR38 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408438 – volume: 10 start-page: 530 year: 2009 ident: BFnbt4200_CR36 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2653 – volume: 379 start-page: 1045 year: 2012 ident: BFnbt4200_CR8 publication-title: Lancet doi: 10.1016/S0140-6736(11)60602-8 – volume: 493 start-page: 537 year: 2013 ident: BFnbt4200_CR80 publication-title: Nature doi: 10.1038/nature11740 – volume: 5 start-page: 210ps17 year: 2013 ident: BFnbt4200_CR43 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007303 – volume: 164 start-page: 1476 year: 2007 ident: BFnbt4200_CR56 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2007.07030504 – volume: 23 start-page: 28 year: 2017 ident: BFnbt4200_CR5 publication-title: Nat. Med. doi: 10.1038/nm.4246 – volume: 166 start-page: 1092 year: 2006 ident: BFnbt4200_CR52 publication-title: Arch. Intern. Med. doi: 10.1001/archinte.166.10.1092 – volume: 160 start-page: 1233 year: 2015 ident: BFnbt4200_CR6 publication-title: Cell doi: 10.1016/j.cell.2015.01.045 – volume: 24 start-page: R885 year: 2014 ident: BFnbt4200_CR31 publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.07.068 – volume: 13 start-page: 066019 year: 2016 ident: BFnbt4200_CR71 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/6/066019 – volume: 1996 start-page: 38 year: 1996 ident: BFnbt4200_CR48 publication-title: Br. J. Psychiatry Suppl. doi: 10.1192/S0007125000298395 – volume: 11 start-page: 026002 year: 2014 ident: BFnbt4200_CR69 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/2/026002 – volume: 60 start-page: 511 year: 2008 ident: BFnbt4200_CR64 publication-title: Neuron doi: 10.1016/j.neuron.2008.10.037 – volume: 512 start-page: 423 year: 2014 ident: BFnbt4200_CR37 publication-title: Nature doi: 10.1038/nature13665 – volume: 10 start-page: 1113 year: 2009 ident: BFnbt4200_CR58 publication-title: J. Pain doi: 10.1016/j.jpain.2009.09.001 – volume: 17 start-page: 715 year: 2005 ident: BFnbt4200_CR13 publication-title: Dev. Psychopathol. doi: 10.1017/S0954579405050340 – volume: 111 start-page: 18727 year: 2014 ident: BFnbt4200_CR25 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1417017112 – volume: 6 start-page: 7759 year: 2015 ident: BFnbt4200_CR66 publication-title: Nat. Commun. doi: 10.1038/ncomms8759 – volume: 31 start-page: 1487 year: 2007 ident: BFnbt4200_CR22 publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2007.06.030 – ident: BFnbt4200_CR49 doi: 10.1176/appi.books.9780890425596 |
SSID | ssj0006466 |
Score | 2.6196976 |
Snippet | Mood state changes are decoded using human neural activity data from electrodes implanted in seven epilepsy patients.
The ability to decode mood state over... The ability to decode mood state over time from neural activity could enable closed-loop systems to treat neuropsychiatric disorders. However, this decoding... Mood state changes are decoded using human neural activity data from electrodes implanted in seven epilepsy patients.The ability to decode mood state over time... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 954 |
SubjectTerms | 631/378/116/2394 631/378/1457 631/61 639/166/985 9/30 Agriculture Analysis Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Brain Closed loops Decoders Decoding Drug therapy Dynamic models Emotional disorders Epilepsy Feedback control Human performance Human subjects Life Sciences Medical imaging Mental disorders Modelling Mood Mood disorders Nervous system diseases Neural coding Neuroimaging Neurophysiology Sparsity Variation |
Title | Mood variations decoded from multi-site intracranial human brain activity |
URI | https://link.springer.com/article/10.1038/nbt.4200 https://www.ncbi.nlm.nih.gov/pubmed/30199076 https://www.proquest.com/docview/2157639206 https://www.proquest.com/docview/3226333167 https://www.proquest.com/docview/2101911615 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJhB7QFC-CmMyE2hP3tI4sZ2naUMrG1IHGgP1LYo_gpBQMpYWif-eu8Tp2mpCvOShPlnN5Xz3830CvM0i7bNUGK5GruCJjxUvvM94ZjMdCeVFUlCh8ORcnn5NPk7TaXC4NSGtsteJraJ2tSUf-QGaJjwKWRzJw6tfnKZGUXQ1jNC4C5vUuoykWk0XFy60tm2schRpSq9MZd98VuiDysz2k5jq2pbM0bpSXrJKa2HS1vqMH8HDABvZUfedH8MdXw3gXjdI8s8AtpbaCg7g_iQEzJ_A2aSuHfuNF-LOM8ecpyJ2x6ishLXZhJzekP0gJ69Fw4XyyNrBfczQ9AhGhQ80X-IpXI5PLt-f8jA9gVuZpDPupRGGzmNMkEtLHSmHgKBQ1iAoUkYaq0RpNSI6XZbW2SL12uAv1gqjpXgGG1Vd-RfA8JrmUhvbrHRZ4tB-SS8RKpnEGu9KL4ew1_Mwt6GzOA24-Jm3EW6hc-R2TtwewpsF5VXXTeMWmnf0GfIwhBMfDbkpmu_FvGnyoxQBF_UIE0PYbemoiUVFWTIdwdmnb_9B9OVihWgvEJU18boIlQn49tQca4Vye4USj6JdXe5FJw-qoMlvBPfWZVSoUgjqR4DMWSzTxpT9Vvl6TlsgEB8RNh_C804iF-xDBY2AQuHmu72I3my-ztuX__6Dr-AB4kHdlVpuw8bseu5fI-aamZ32YOFTjz_swObxyfnni7_Gfisl |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIl4HBOEVKLBUVD2ZOl57vT4gVAEhoU2RIKDeVt6HERKyC05A_VH8R2a8dppEFeLSSw7eTyNnPLMzu_MCeJ6F0mUJ10E6sHkQuygNcueyIDOZDHnqeJxTofDkSIw-x--Pk-MN-NPVwlBaZbcnNhu1rQzdke-haUJVyKJQvDr5EdDUKIqudiM0vFgcuNPfeGSrX47f4PfdiaLh2-nrUdBOFQiMiJNZ4ITmmuQ0IldEChmmFg1lnhqNzkKqhTYpL4xET0cWhbEmT5zU-MQYrqXgSPYSXI45YqkwffhusfELHxodhJKyORPR9brlcq_UsxdxRGV0S9Zv3QYsGcG1qGxj7Ia34GbrpbJ9L1a3YcOVPbji51ae9uDGUhfDHlydtPH5OzCeVJVlv_D87S8CmXVUM28ZVbGwJnkxIIayb3SnbNBOovizZk4g0zSsglGdBY2zuAvTi2DrPdgsq9I9AIanQpuYyGSFzWKL5lI4gZ6Zjo12tnCiD7sdD5VpG5nTPI3vqgmoc6mQ24q43YdnC-SJb95xDmaHPoNqZ37iT023IvXXfF7Xaj9B_45akvE-bDc46plRUlKOB4w_fPkP0KePK6DdFlRUxOu8LYTAf0-9uFaQWytI1HyzutyJjmp3nlqd6cm5y7h_C86p_QEyZ7FMhCnZrnTVnEig3z-go0Af7nuJXLAP7QH6LykS3-5E9Iz4Om8f_vsFn8K10XRyqA7HRweP4Dq6opFPk9yCzdnPuXuM7t5MP2mUjIG6YKX-C2wRZYI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSUcEBQXgFCiwVVU8mjtderw8IFdqooSRUpUW9Wd6HERKyC05A_TT-jhl7nSZRhbj0koN3NHLG89x5AbxKfGmTiCsvHpjMC20Qe5m1iZfoRPo8tjzMqFF4PBEHp-GHs-hsDf60vTBUVtnqxFpRm1LTHXkfTROKQhL4op-7soijveHb8x8ebZCiTGu7TqNhkUN78RvDt-rNaA-_9XYQDPdP3h94bsOAp0UYTT0rFFfEswG5JVJIPzZoNLNYK3QcYiWUjnmuJXo9Ms-10VlkpcInWnMlBUe0N2A9pqCoA-vv9idHx3MzIJpE6cCXVNsZiXbyLZf9Qk1fhwE11S3YwlWLsGASV3K0tekb3oU7zmdluw2T3YM1W3ThZrPF8qILtxdmGnZhY-yy9fdhNC5Lw35hNN5cCzJjqYPeMOppYXUpo0ckZd_ohlmj1URhYPXWQKZodQWjrgtabvEATq6DsA-hU5SFfQwMY0QT6UAnuUlCg8ZTWIF-mgq1sia3ogc7LQ1T7caa03aN72mdXucyRWqnRO0evJxDnjejPK6A2abPkLoNoPhT0R1J9TWbVVW6G6G3RwPKeA-2ajiaoFEQLzYAo09f_gPo8_ES0I4DykuidebaIvDf02SuJcjNJUjUA3r5uGWd1OmhKr2UmiuPUZsLzmkYAhJnfkyIqfSusOWMUGAUMKDAoAePGo6ckw-tA3ozMSLfaln0EvkqbZ_8-wVfwAYKdPpxNDl8CrfQL5VNy-cmdKY_Z_YZ-n5T9dxJGYP0muX6Ly6baxs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mood+variations+decoded+from+multi-site+intracranial+human+brain+activity&rft.jtitle=Nature+biotechnology&rft.au=Sani%2C+Omid+G&rft.au=Yang%2C+Yuxiao&rft.au=Lee%2C+Morgan+B&rft.au=Dawes%2C+Heather+E&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=36&rft.issue=10&rft.spage=954&rft_id=info:doi/10.1038%2Fnbt.4200&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |