COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans

In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architec...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 7; p. e655
Main Authors Alshazly, Hammam, Linse, Christoph, Abdalla, Mohamed, Barth, Erhardt, Martinetz, Thomas
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 29.07.2021
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient.
AbstractList In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient.
In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient.In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient.
ArticleNumber e655
Audience Academic
Author Abdalla, Mohamed
Linse, Christoph
Martinetz, Thomas
Barth, Erhardt
Alshazly, Hammam
Author_xml – sequence: 1
  givenname: Hammam
  surname: Alshazly
  fullname: Alshazly, Hammam
  organization: Institut für Neuro- und Bioinformatik, University of Lübeck, Lübeck, Germany, Faculty of Computers and Information, South Valley University, Qena, Egypt
– sequence: 2
  givenname: Christoph
  surname: Linse
  fullname: Linse, Christoph
  organization: Faculty of Computers and Information, South Valley University, Qena, Egypt
– sequence: 3
  givenname: Mohamed
  surname: Abdalla
  fullname: Abdalla, Mohamed
  organization: Mathematics Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia, Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt
– sequence: 4
  givenname: Erhardt
  surname: Barth
  fullname: Barth, Erhardt
  organization: Faculty of Computers and Information, South Valley University, Qena, Egypt
– sequence: 5
  givenname: Thomas
  surname: Martinetz
  fullname: Martinetz, Thomas
  organization: Faculty of Computers and Information, South Valley University, Qena, Egypt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34401477$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhSNUREvpjjWKxAYkMsTvmAVSNbxGqqYSFLaWc3Mz41EmHuwEwb_H6ZTSqWov_PrusXx8nmZHve8xy56TcqYUUW93iGFTQJxJIR5lJ5QpWQit6dGd-XF2FuOmLEsiSGr6SXbMOC8JV-okW84vfyw-FEsc4ru8Qdzl8-UytwHWbkAYxoAxb31IR9PS9at8X0B0PsZpCWuMQz6_yiPYPj7LHre2i3h2M55m3z99vJp_KS4uPy_m5xcFSC6GwhLUjQYlWMtrxUmtGUjFlMK2rCvBCVrgdVnxCkhTCQl1paWtFWWksSAtO80We93G243ZBbe14Y_x1pnrDR9WxobBQYdGUs2ZRouUKF41VJMaGk6ZlQpKWTdJ6_1eazfWW2wA-yHY7kD08KR3a7Pyv0zFWMkZTwKvbgSC_zkmO8zWRcCusz36MRoqJKVMCCIT-vIeuvFj6JNViRIy_QnT9D-1sukBrm99uhcmUXMupdaKEaISNXuASr3BrYOUk9al_YOC1wcFiRnw97CyY4xm8e3rIfvirim3bvxLTgLe7AEIPsaA7S1CSjNl01xn00A0KZsJp_dwcIMdnJ8sdd3DRX8BkOvkaw
CitedBy_id crossref_primary_10_1007_s12530_023_09565_2
crossref_primary_10_29328_journal_jprr_1001044
crossref_primary_10_1007_s00521_022_07608_4
crossref_primary_10_1109_ACCESS_2024_3396728
crossref_primary_10_1155_2022_6595799
crossref_primary_10_3390_app122010535
crossref_primary_10_3390_jpm11111172
crossref_primary_10_32604_iasc_2022_024812
crossref_primary_10_3389_fpubh_2022_1046296
crossref_primary_10_3390_su132413642
crossref_primary_10_3390_signals3020019
crossref_primary_10_1080_13682199_2023_2173543
crossref_primary_10_32604_cmc_2022_021149
crossref_primary_10_1155_2022_7377502
crossref_primary_10_1016_j_jvcir_2023_103949
crossref_primary_10_1155_2022_6216273
crossref_primary_10_1007_s00521_023_09346_7
crossref_primary_10_3389_fpubh_2022_948205
crossref_primary_10_1007_s43069_023_00278_5
crossref_primary_10_1109_ACCESS_2021_3109441
crossref_primary_10_3390_diagnostics13101783
crossref_primary_10_1371_journal_pone_0296352
crossref_primary_10_1155_2021_2392395
crossref_primary_10_1007_s12194_023_00754_x
Cites_doi 10.1016/j.bbe.2020.08.005
10.1038/s41598-020-74164-z
10.59275/j.melba.2020-48g7
10.1007/s10489-020-02149-6
10.1109/TII.2021.3051952
10.1088/1361-6560/abe838
10.1148/radiol.2020200642
10.1145/3469678.3469719
10.1016/j.chaos.2020.110122
10.1016/j.ejrad.2020.108961
10.1148/radiol.2020201343
10.1007/s00330-020-06801-0
10.3390/s21020455
10.7717/peerj-cs.306
10.1136/bmjopen-2020-042946
10.1186/s12967-019-02189-8
10.1007/978-3-030-55258-9_17
10.1007/s13755-020-00135-3
10.1080/07391102.2020.1788642
10.1016/j.asoc.2020.106912
10.1080/09720502.2020.1857905
10.1007/s10096-020-03901-z
10.2196/25535
10.1016/j.asoc.2020.106885
10.1109/ACCESS.2020.3010287
10.1038/s41467-020-18685-1
10.1016/j.asoc.2021.107160
10.1016/j.media.2020.101913
10.1016/j.patcog.2020.107613
10.5812/archcid.106868
10.7717/peerj.10086
10.1007/s11263-015-0816-y
10.1016/j.diii.2020.03.014
10.1016/j.cmpb.2020.105608
10.1109/JBHI.2020.3023246
10.1007/s12559-020-09787-5
10.1109/TCBB.2021.3065361
10.1016/j.asoc.2021.107184
10.1109/ACCESS.2020.3024116
10.1016/j.eng.2020.04.010
10.1038/s41598-020-76550-z
10.3390/sym11121493
10.1016/j.compbiomed.2020.103795
10.1007/s00330-020-07042-x
10.7717/peerj-cs.555
10.1148/radiol.2020200241
10.1109/TMI.2020.2995508
10.1148/radiol.2020200432
10.1002/ima.22469
10.3389/fmed.2020.608525
10.3390/s19194139
10.1016/j.imu.2021.100709
10.1016/j.asoc.2020.106897
ContentType Journal Article
Copyright 2021 Alshazly et al.
COPYRIGHT 2021 PeerJ. Ltd.
2021 Alshazly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Alshazly et al. 2021 Alshazly et al.
Copyright_xml – notice: 2021 Alshazly et al.
– notice: COPYRIGHT 2021 PeerJ. Ltd.
– notice: 2021 Alshazly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Alshazly et al. 2021 Alshazly et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.655
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_629439eae21748d291bcd423a67c06bd
PMC8330434
A669973117
34401477
10_7717_peerj_cs_655
Genre Journal Article
GeographicLocations United States
Taiwan
GeographicLocations_xml – name: Taiwan
– name: United States
GrantInformation_xml – fundername: Bundesministeriums für Wirtschaft und Energie (BMWi) through the Mittelstand 4.0-Kompetenzzentrum Kiel Project
– fundername: Deanship of Scientific Research at King Khalid University
  grantid: RGP.1/3/42
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
ARCSS
NPM
PQGLB
PMFND
3V.
7XB
8AL
8FK
COVID
JQ2
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c645t-a1e9d9c753f4b741b93c67377ef0b8541eac4b0848c1d856cb896ab7231dac6a3
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Wed Aug 27 01:20:37 EDT 2025
Thu Aug 21 18:30:42 EDT 2025
Fri Jul 11 15:31:00 EDT 2025
Fri Jul 25 06:41:21 EDT 2025
Tue Jun 17 21:27:21 EDT 2025
Tue Jun 10 20:14:55 EDT 2025
Fri Jun 27 03:36:43 EDT 2025
Mon Jul 21 05:25:53 EDT 2025
Tue Jul 01 01:00:34 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multi-class classification
SARS-CoV-2
COVID-19 detection
Computed tomography
Automated diagnosis
Language English
License https://creativecommons.org/licenses/by/4.0
2021 Alshazly et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-a1e9d9c753f4b741b93c67377ef0b8541eac4b0848c1d856cb896ab7231dac6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/629439eae21748d291bcd423a67c06bd
PMID 34401477
PQID 2556147392
PQPubID 2045934
PageCount e655
ParticipantIDs doaj_primary_oai_doaj_org_article_629439eae21748d291bcd423a67c06bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8330434
proquest_miscellaneous_2562235516
proquest_journals_2556147392
gale_infotracmisc_A669973117
gale_infotracacademiconefile_A669973117
gale_incontextgauss_ISR_A669973117
pubmed_primary_34401477
crossref_primary_10_7717_peerj_cs_655
crossref_citationtrail_10_7717_peerj_cs_655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-29
PublicationDateYYYYMMDD 2021-07-29
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2021
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Alshazly (10.7717/peerj-cs.655/ref-4) 2019; 11
Pham (10.7717/peerj-cs.655/ref-48) 2020; 10
Szegedy (10.7717/peerj-cs.655/ref-60) 2015
Borakati (10.7717/peerj-cs.655/ref-12) 2020; 10
Ardakani (10.7717/peerj-cs.655/ref-7) 2020; 121
Aslan (10.7717/peerj-cs.655/ref-8) 2020; 98
Swapnarekha (10.7717/peerj-cs.655/ref-59) 2021; 24
Wang (10.7717/peerj-cs.655/ref-63) 2017
Ai (10.7717/peerj-cs.655/ref-2) 2020; 296
Long (10.7717/peerj-cs.655/ref-40) 2020; 126
Özkaya (10.7717/peerj-cs.655/ref-44) 2020
Hasan (10.7717/peerj-cs.655/ref-24) 2020
Pham (10.7717/peerj-cs.655/ref-49) 2021; 9
Wang (10.7717/peerj-cs.655/ref-67) 2020; 24
Shi (10.7717/peerj-cs.655/ref-53) 2021; 66
Ibrahim (10.7717/peerj-cs.655/ref-31) 2021
Jin (10.7717/peerj-cs.655/ref-34) 2020; 11
Gunraj (10.7717/peerj-cs.655/ref-22) 2020; 7
Bahgat (10.7717/peerj-cs.655/ref-10) 2021; 7
Soares (10.7717/peerj-cs.655/ref-57) 2020
Pachetti (10.7717/peerj-cs.655/ref-47) 2020; 18
Singh (10.7717/peerj-cs.655/ref-56) 2021; 51
Kanne (10.7717/peerj-cs.655/ref-35) 2020; 295
You (10.7717/peerj-cs.655/ref-76) 2020
Di Radiologia Medica e Interventistica (10.7717/peerj-cs.655/ref-19) 2021
Huang (10.7717/peerj-cs.655/ref-28) 2017
Russakovsky (10.7717/peerj-cs.655/ref-52) 2015; 115
Nair (10.7717/peerj-cs.655/ref-42) 2010
Wang (10.7717/peerj-cs.655/ref-66) 2020; 10
Yazdani (10.7717/peerj-cs.655/ref-73) 2020
Simonyan (10.7717/peerj-cs.655/ref-54) 2015
Singh (10.7717/peerj-cs.655/ref-55) 2020; 39
Ye (10.7717/peerj-cs.655/ref-74) 2020; 30
Zhang (10.7717/peerj-cs.655/ref-77) 2021; 17
Demir (10.7717/peerj-cs.655/ref-17) 2021; 103
Ouyang (10.7717/peerj-cs.655/ref-43) 2020; 39
Chowdhury (10.7717/peerj-cs.655/ref-14) 2020; 8
Szegedy (10.7717/peerj-cs.655/ref-61) 2016
Abraham (10.7717/peerj-cs.655/ref-1) 2020; 40
Fang (10.7717/peerj-cs.655/ref-20) 2020; 296
Cucinotta (10.7717/peerj-cs.655/ref-16) 2020; 91
Krizhevsky (10.7717/peerj-cs.655/ref-38) 2012
Cohen (10.7717/peerj-cs.655/ref-15) 2020
Ioffe (10.7717/peerj-cs.655/ref-32) 2015
Xu (10.7717/peerj-cs.655/ref-72) 2021; 23
Zhao (10.7717/peerj-cs.655/ref-78) 2020
Öztürk (10.7717/peerj-cs.655/ref-46) 2021; 31
Wang (10.7717/peerj-cs.655/ref-68) 2021; 110
Alshazly (10.7717/peerj-cs.655/ref-5) 2020; 8
Zhou (10.7717/peerj-cs.655/ref-79) 2020; 98
Kedia (10.7717/peerj-cs.655/ref-36) 2021; 104
Xu (10.7717/peerj-cs.655/ref-71) 2020
Yilmaz (10.7717/peerj-cs.655/ref-75) 2020; 15
Barstugan (10.7717/peerj-cs.655/ref-11) 2020
Wu (10.7717/peerj-cs.655/ref-70) 2021; 68
Huang (10.7717/peerj-cs.655/ref-29) 2021
Song (10.7717/peerj-cs.655/ref-58) 2021
Farooq (10.7717/peerj-cs.655/ref-21) 2020
Li (10.7717/peerj-cs.655/ref-39) 2020; 30
Iandola (10.7717/peerj-cs.655/ref-30) 2017
Kim (10.7717/peerj-cs.655/ref-37) 2020; 296
Wang (10.7717/peerj-cs.655/ref-65) 2021
Hani (10.7717/peerj-cs.655/ref-23) 2020; 101
Ragab (10.7717/peerj-cs.655/ref-50) 2020; 6
Alshazly (10.7717/peerj-cs.655/ref-6) 2021; 21
Hasan (10.7717/peerj-cs.655/ref-25) 2021
Brunese (10.7717/peerj-cs.655/ref-13) 2020; 196
Wang (10.7717/peerj-cs.655/ref-64) 2021; 98
Jaiswal (10.7717/peerj-cs.655/ref-33) 2020
Özkaya (10.7717/peerj-cs.655/ref-45) 2020
Ronneberger (10.7717/peerj-cs.655/ref-51) 2015
He (10.7717/peerj-cs.655/ref-26) 2020
Toraman (10.7717/peerj-cs.655/ref-62) 2020; 140
WHO (10.7717/peerj-cs.655/ref-69) 2021
Deng (10.7717/peerj-cs.655/ref-18) 2009
Milletari (10.7717/peerj-cs.655/ref-41) 2016
Attallah (10.7717/peerj-cs.655/ref-9) 2020; 8
He (10.7717/peerj-cs.655/ref-27) 2016
Alshazly (10.7717/peerj-cs.655/ref-3) 2019; 19
References_xml – volume: 40
  start-page: 1436
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-1
  article-title: Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2020.08.005
– volume: 10
  start-page: 16942
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-48
  article-title: A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-74164-z
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-15
  article-title: Covid-19 image data collection: prospective predictions are the future
  doi: 10.59275/j.melba.2020-48g7
– volume: 51
  start-page: 3044
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-56
  article-title: Densely connected convolutional networks-based COVID-19 screening model
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-02149-6
– volume: 17
  start-page: 6510
  issue: 9
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-77
  article-title: Residual Learning Diagnosis Detection: An advanced residual learning diagnosis detection system for COVID-19 in Industrial Internet of Things
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3051952
– volume: 66
  start-page: 065031
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-53
  article-title: Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/abe838
– start-page: 1097
  year: 2012
  ident: 10.7717/peerj-cs.655/ref-38
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 296
  start-page: E32
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-2
  article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– year: 2021
  ident: 10.7717/peerj-cs.655/ref-29
  article-title: Covid-19 classification with deep neural network and belief functions
  doi: 10.1145/3469678.3469719
– volume: 140
  start-page: 110122
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-62
  article-title: Convolutional capsnet: a novel artificial neural network approach to detect covid-19 disease from X-ray images using capsule networks
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110122
– volume: 126
  start-page: 108961
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-40
  article-title: Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT?
  publication-title: European Journal of Radiology
  doi: 10.1016/j.ejrad.2020.108961
– volume: 296
  start-page: E145–E155
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-37
  article-title: Diagnostic performance of CT and Reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysis
  publication-title: Radiology
  doi: 10.1148/radiol.2020201343
– volume: 30
  start-page: 4381
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-74
  article-title: Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review
  publication-title: European Radiology
  doi: 10.1007/s00330-020-06801-0
– volume: 21
  start-page: 455
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-6
  article-title: Explainable COVID-19 detection using chest CT scans and deep learning
  publication-title: Sensors
  doi: 10.3390/s21020455
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-21
  article-title: COVID-ResNet: a deep learning framework for screening of COVID19 from radiographs
– start-page: 807
  year: 2010
  ident: 10.7717/peerj-cs.655/ref-42
  article-title: Rectified linear units improve restricted boltzmann machines
– year: 2021
  ident: 10.7717/peerj-cs.655/ref-69
  article-title: WHO Coronavirus (COVID-19) dashboard
– volume: 6
  start-page: e306
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-50
  article-title: FUSI-CAD: coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.306
– start-page: 2818
  year: 2016
  ident: 10.7717/peerj-cs.655/ref-61
  article-title: Rethinking the inception architecture for computer vision
– start-page: 3156
  year: 2017
  ident: 10.7717/peerj-cs.655/ref-63
  article-title: Residual attention network for image classification
– volume: 10
  start-page: e042946
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-12
  article-title: Diagnostic accuracy of X-ray versus ct in covid-19: a propensity-matched database study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-042946
– volume: 18
  start-page: 1
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-47
  article-title: Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant
  publication-title: Journal of Translational Medicine
  doi: 10.1186/s12967-019-02189-8
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-76
  article-title: Large batch optimization for deep learning: training bert in 76 min
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-44
  article-title: Coronavirus (COVID-19) classification using deep features fusion and ranking technique
  doi: 10.1007/978-3-030-55258-9_17
– volume: 9
  start-page: 2
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-49
  article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-020-00135-3
– year: 2021
  ident: 10.7717/peerj-cs.655/ref-19
  article-title: Covid-19 database
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-33
  article-title: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning
  publication-title: Journal of Biomolecular Structure and Dynamics
  doi: 10.1080/07391102.2020.1788642
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-78
  article-title: COVID-CT-Dataset: a CT scan dataset about COVID-19
– start-page: 1
  year: 2015
  ident: 10.7717/peerj-cs.655/ref-60
  article-title: Going deeper with convolutions
– volume: 98
  start-page: 106912
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-8
  article-title: CNN-based transfer learning–BiLSTM network: a novel approach for COVID-19 infection detection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106912
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-11
  article-title: Coronavirus (COVID-19) classification using CT images by machine learning methods
– volume: 24
  start-page: 327
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-59
  article-title: Covid CT-net: a deep learning framework for COVID-19 prognosis using CT images
  publication-title: Journal of Interdisciplinary Mathematics
  doi: 10.1080/09720502.2020.1857905
– volume: 39
  start-page: 1379
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-55
  article-title: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks
  publication-title: European Journal of Clinical Microbiology & Infectious Diseases
  doi: 10.1007/s10096-020-03901-z
– volume: 23
  start-page: e25535
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-72
  article-title: Accurately differentiating between patients With COVID-19, patients with other viral infections, and healthy individuals: multimodal late fusion learning approach
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/25535
– volume: 98
  start-page: 106885
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-79
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106885
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-24
  article-title: CVR-Net: a deep convolutional neural network for coronavirus recognition from chest radiography images
– start-page: 4700
  year: 2017
  ident: 10.7717/peerj-cs.655/ref-28
  article-title: Densely connected convolutional networks
– start-page: 234
  year: 2015
  ident: 10.7717/peerj-cs.655/ref-51
  article-title: U-Net: convolutional networks for biomedical image segmentation
– volume: 8
  start-page: 132665
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-14
  article-title: Can AI help in screening viral and COVID-19 pneumonia?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010287
– volume: 11
  start-page: 5088
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-34
  article-title: Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-18685-1
– volume: 103
  start-page: 107160
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-17
  article-title: DeepCoroNet: a deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107160
– volume: 68
  start-page: 101913
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-70
  article-title: COVID-AL: the diagnosis of COVID-19 with deep active learning
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101913
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-57
  article-title: SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification
  publication-title: medRxiv
– volume: 110
  start-page: 107613
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-68
  article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107613
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-26
  article-title: Sample-efficient deep learning for COVID-19 diagnosis based on CT scans
  publication-title: medrxiv
– volume: 15
  start-page: e106868
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-75
  article-title: Early computed tomography findings of novel coronavirus disease 2019 (COVID-19) Pneumonia
  publication-title: Archives of Clinical Infectious Diseases
  doi: 10.5812/archcid.106868
– volume: 8
  start-page: e10086
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-9
  article-title: MULTI-DEEP: a novel CAD system for coronavirus (COVID-19) diagnosis from CT images using multiple convolution neural networks
  publication-title: PeerJ
  doi: 10.7717/peerj.10086
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.7717/peerj-cs.655/ref-52
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 101
  start-page: 263
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-23
  article-title: COVID-19 pneumonia: a review of typical CT findings and differential diagnosis
  publication-title: Diagnostic and Interventional Imaging
  doi: 10.1016/j.diii.2020.03.014
– volume: 196
  start-page: 105608
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-13
  article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105608
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-45
  article-title: Classification of COVID-19 in chest CT images using convolutional support vector machines
– start-page: 565
  year: 2016
  ident: 10.7717/peerj-cs.655/ref-41
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
– volume: 24
  start-page: 2806
  issue: 10
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-67
  article-title: Contrastive cross-site learning with redesigned net for COVID-19 CT classification
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.3023246
– year: 2021
  ident: 10.7717/peerj-cs.655/ref-31
  article-title: Pneumonia classification using deep learning from chest X-ray images during COVID-19
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-020-09787-5
– year: 2021
  ident: 10.7717/peerj-cs.655/ref-58
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  doi: 10.1109/TCBB.2021.3065361
– volume: 104
  start-page: 107184
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-36
  article-title: CoVNet-19: a deep learning model for the detection and analysis of COVID-19 patients
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107184
– volume: 91
  start-page: 157
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-16
  article-title: WHO declares COVID-19 a pandemic
  publication-title: Acta Biomedica
– volume: 8
  start-page: 170295
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-5
  article-title: Deep convolutional neural networks for unconstrained ear recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024116
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-71
  article-title: A deep learning system to screen novel coronavirus disease 2019 pneumonia
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.04.010
– year: 2017
  ident: 10.7717/peerj-cs.655/ref-30
  article-title: Squeezenet: alexnet-level accuracy with 50x fewer parameters and >0.5 mb model size
– volume: 10
  start-page: 19549
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-66
  article-title: COVID-Net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-76550-z
– volume: 11
  start-page: 1493
  issue: 12
  year: 2019
  ident: 10.7717/peerj-cs.655/ref-4
  article-title: Handcrafted versus CNN features for ear recognition
  publication-title: Symmetry
  doi: 10.3390/sym11121493
– volume: 121
  start-page: 103795
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-7
  article-title: Application of deep learning technique to manage covid-19 in routine clinical practice using ct images: results of 10 convolutional neural networks
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103795
– volume: 30
  start-page: 6828
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-39
  article-title: From community-acquired pneumonia to COVID-19: a deep learning–based method for quantitative analysis of COVID-19 on thick-section CT scans
  publication-title: European Radiology
  doi: 10.1007/s00330-020-07042-x
– volume: 7
  start-page: e555
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-10
  article-title: An optimized transfer learning-based approach for automatic diagnosis of COVID-19 from chest X-ray images
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.555
– start-page: 1
  year: 2015
  ident: 10.7717/peerj-cs.655/ref-54
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 295
  start-page: 16
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-35
  article-title: Chest ct findings in 2019 novel coronavirus (2019-ncov) infections from wuhan, China: key points for the radiologist
  publication-title: Radiology
  doi: 10.1148/radiol.2020200241
– volume: 39
  start-page: 2595
  issue: 8
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-43
  article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2995508
– year: 2020
  ident: 10.7717/peerj-cs.655/ref-73
  article-title: COVID CT-Net: predicting Covid-19 From Chest CT Images Using Attentional Convolutional Network
– start-page: 770
  year: 2016
  ident: 10.7717/peerj-cs.655/ref-27
  article-title: Deep residual learning for image recognition
– volume: 296
  start-page: 200432
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-20
  article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR
  publication-title: Radiology
  doi: 10.1148/radiol.2020200432
– volume: 31
  start-page: 5
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-46
  article-title: Classification of Coronavirus (COVID-19) from X-ray and CT images using shrunken features
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22469
– start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-65
  article-title: A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)
  publication-title: European Radiology
– volume: 7
  start-page: 1025
  year: 2020
  ident: 10.7717/peerj-cs.655/ref-22
  article-title: COVIDNet-CT: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest CT images
  publication-title: Frontiers in Medicine
  doi: 10.3389/fmed.2020.608525
– volume: 19
  start-page: 4139
  issue: 19
  year: 2019
  ident: 10.7717/peerj-cs.655/ref-3
  article-title: Ensembles of deep learning models and transfer learning for ear recognition
  publication-title: Sensors
  doi: 10.3390/s19194139
– start-page: 248
  year: 2009
  ident: 10.7717/peerj-cs.655/ref-18
  article-title: ImageNet: a large-scale hierarchical image database
– year: 2021
  ident: 10.7717/peerj-cs.655/ref-25
  article-title: COVID-19 identification from volumetric chest CT scans using a progressively resized 3D-CNN incorporating segmentation, augmentation, and class-rebalancing
  doi: 10.1016/j.imu.2021.100709
– start-page: 448
  year: 2015
  ident: 10.7717/peerj-cs.655/ref-32
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 98
  start-page: 106897
  year: 2021
  ident: 10.7717/peerj-cs.655/ref-64
  article-title: AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106897
SSID ssj0001511119
Score 2.3894455
Snippet In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e655
SubjectTerms Artificial Intelligence
Automated diagnosis
Automation
Bioinformatics
Cable television broadcasting industry
Classification
Computed tomography
Computer architecture
Computer Vision
Coronaviruses
COVID-19 detection
CT imaging
Data Mining and Machine Learning
Datasets
Deep learning
Health aspects
Medical imaging
Medical imaging equipment
Multi-class classification
Pneumonia
SARS-CoV-2
Sensitivity
Viral infections
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXDhDQ0UZBCIAzLdbBw_uKB2adUisUKlRb1ZfmUBoWTZ7P5_ZhLvdiMEx8STKBnbM_PZ428IeaWUttXIVyx3gTNeKM9sBZeWuyi11TaPeBr581ScXvJPV-VVWnBrU1rl2iZ2hjo0HtfID5AqK-cS3PmH-W-GVaNwdzWV0LhJdsEEKwBfu0fH0y_n16ssJZoE3We8S4AuB_MYFz-Zb98JPN235Ys6yv6_DfOWZxpmTW65oZO75HaKH-lh3-H3yI1Y3yd31rUZaJqqDwhg9W9nH9k0Ltv3NMQ4p5PplG5vG7QU4lVowkvwX7R_INcUU-FntCukRScXtAXltw_J5cnxxeSUpdoJzAteLhnoWAftAYxU3EHU4HThsSSNjNXIqZLnYHC5QzJ9nwdVCu-UFtZJCPeC9cIWj8hO3dRxj1AQq6rSaUAejnOvLHi0KggAKhqPtdqMvF1r0fhELI71LX4ZABioc9Pp3PjWgM4z8nojPe8JNf4hd4QdspFBGuzuRrOYmTSrjBhrCKiijQisVBjr3PkAAaIV0o-ECxl5id1pkOiixkyamV21rTn7em4OhdBYtiuXGXmThKoGvtvbdDAB_h65sQaS-wNJmIl-2LweNSZZgtZcj9uMvNg045OY3VbHZoUyAqI03LLMyON-kG3-u-CAgLmEl8vB8BsoZthS__je8YQrXKsq-JP_f9ZTcmuMeTojycZ6n-wsF6v4DAKtpXueZtMfnhop5g
  priority: 102
  providerName: ProQuest
Title COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
URI https://www.ncbi.nlm.nih.gov/pubmed/34401477
https://www.proquest.com/docview/2556147392
https://www.proquest.com/docview/2562235516
https://pubmed.ncbi.nlm.nih.gov/PMC8330434
https://doaj.org/article/629439eae21748d291bcd423a67c06bd
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BuXCB8qzbEi0IxAGZxvF6H9za0NAiYaHSot5Wu-t1AVVOVCf_nxnbiWyhikuPzo4j-_PsPOyZbwDeKqVtOfZlnLiCxzxVPrYlHlrugtRW2yRQN_K3XJxc8K-X2WVv1BfVhLX0wC1wB2Ki0WcGGyh2VsVEJ84XGANYIf1YuIKsL_q8XjLV9geTKdBtpbvElOVgEcLNn9jXHwV19fV8UEPV_69B7nmkYbVkz_3MtuFRFzeyw_Z6n8C9UD2Fx-uZDKzbos8Ac_Sfp5_jPCzrT6wIYcGmec76nwtqhnEqLtEh-i3WnpBoRiXwV6wZoMWm56xG0OvncDE7Pp-exN3MhNgLni1jxFYX2mMSUnKH0YLTqadRNDKUY6cynqCh5Y5I9H1SqEx4p7SwTmKYV1gvbPoCtqp5FXaAoVhZZk5jxuE498qiJysLgQmKpnZWG8GHNYrGd4TiNNfi2mBiQZibBnPja4OYR_BuI71oiTRukTuiB7KRIfrr5gdUCtMphfmfUkTwhh6nIYKLiiporuyqrs3pjzNzKISmcV2JjOB9J1TO8bq97RoS8O6JE2sguT-QxB3oh8trrTGdBagNUbslXGL4GcHrzTKdSVVtVZivSEZgdEafKiN42SrZ5r5Tjpkvl_jncqB-A2CGK9XvXw0_uKJ3VCnfvQsk9-DhhKp4xjKe6H3YWt6swisMw5ZuBPfV7MsIHhwd59_PRs3--wvGhzMz
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrjAV7GnQUGGMTEAwprEseOkRAaHaVlW5BYh_ZmbMcpIJSWphXip_hGzsmla4TgbY-JTxLn-FztcyHkaZJInfds7gcmYz6LEuvrHC41M05ILXXgMBv5OOXDU_b-LD7bIL_bXBgMq2xlYiWos6nFPfI9LJUVMAHq_PXsh49do_B0tW2hUZPFofv1E1y28tXoANZ3NwwHb8f9od90FfAtZ_HCh6_LTFow03NmQJ8aGVls1iJc3jNJzAIQRcxgmXkbZEnMrUkk10aAIZRpy3UE771ELrMokshRyeDd-Z5OjAJI1vH1AhylvZlz82--LV9wzCVc03xVg4C_1cCaHuzGaK4pvcF1stVYq3S_Jq8bZMMVN8m1thMEbQTDLZL2P3waHfipW5QvaebcjPbTlK4fUpQUrGMYwkvQlrR-IJAUA-8ntGrbRftjWsJSl7fJ6YXg9A7ZLKaF2yYUwPI8NhL8HMOYTTTozzzj4BZJTKLVHnneYlHZpow5dtP4rsCdQZyrCufKlgpw7pHdFfSsLt_xD7g3uCArGCy6Xd2Yzieq4WHFQwnmm9MO3bgkC2VgbAbmqObC9rjJPPIEl1NhWY0C43YmelmWanTyUe1zLrFJWCA88qwByqcwb6ubNAj4e6zE1YHc6UAC39vucEs1qpE7pTrnEo88Xg3jkxhLV7jpEmE42IR4QOqRuzWRrf47YuBvMwEvFx3y6yCmO1J8_VJVJU9wZyxi9_4_rUfkynB8fKSORunhfXI1xAihnvBDuUM2F_OlewAm3sI8rPiKks8Xzch_ALsYZaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdhHjhzggMMIiJB5S1SR07RkJoa1etDMI0NrQ3YztOAaG0NK0Qv8bXcU4uXSMEb3tMfBLZx-dqnwshz-NY6qxnMz8wKfNZP7a-zuBRM-OE1FIHDrOR3yf88Iy9PY_ON8jvJhcGwyobmVgK6nRq8Yy8i6WyAiZAnXezOizieDh6M_vhYwcpvGlt2mlUJHLkfv0E9614PR7CXu-E4ejgdHDo1x0GfMtZtPBhJjKVFkz2jBnQrUb2LTZuES7rmThiAYglZrDkvA3SOOLWxJJrI8AoSrXlug__vUI2BXhFvQ7Z3D9Ijk8uTngiFEeyirYX4DZ1Z87Nv_m22OWYWbimB8t2AX8rhTWt2I7YXFOBo5vkem270r2K2G6RDZffJjeavhC0FhN3SDL48Gk89BO3KF7R1LkZHSQJXb-yKCjYyjCEj6A7afVBICmG4U9o2cSLDk5pARtf3CVnl4LVe6STT3N3n1AAy7LISPB6DGM21qBNs5SDkyQxpVZ75GWDRWXroubYW-O7AucGca5KnCtbKMC5R3ZW0LOqmMc_4PZxQ1YwWIK7fDGdT1TN0YqHEow5px06dXEaysDYFIxTzYXtcZN65Blup8IiGzmS60Qvi0KNP56oPc4ltgwLhEde1EDZFOZtdZ0UAavHulwtyO0WJEgB2x5uqEbVUqhQFzzjkaerYfwSI-tyN10iDAcLEa9LPbJVEdlq3X0G3jcT8HPRIr8WYtoj-dcvZY3yGM_J-uzB_6f1hFwFJlbvxsnRQ3ItxHChnvBDuU06i_nSPQJ7b2Ee14xFyefL5uU_T8RrNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-Nets%3A+deep+CNN+architectures+for+detecting+COVID-19+using+chest+CT+scans&rft.jtitle=PeerJ.+Computer+science&rft.au=Alshazly%2C+Hammam&rft.au=Linse%2C+Christoph&rft.au=Abdalla%2C+Mohamed&rft.au=Barth%2C+Erhardt&rft.date=2021-07-29&rft.eissn=2376-5992&rft.volume=7&rft.spage=e655&rft_id=info:doi/10.7717%2Fpeerj-cs.655&rft_id=info%3Apmid%2F34401477&rft.externalDocID=34401477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon