COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architec...
Saved in:
Published in | PeerJ. Computer science Vol. 7; p. e655 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
29.07.2021
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient. |
---|---|
AbstractList | In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient. In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient.In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient. |
ArticleNumber | e655 |
Audience | Academic |
Author | Abdalla, Mohamed Linse, Christoph Martinetz, Thomas Barth, Erhardt Alshazly, Hammam |
Author_xml | – sequence: 1 givenname: Hammam surname: Alshazly fullname: Alshazly, Hammam organization: Institut für Neuro- und Bioinformatik, University of Lübeck, Lübeck, Germany, Faculty of Computers and Information, South Valley University, Qena, Egypt – sequence: 2 givenname: Christoph surname: Linse fullname: Linse, Christoph organization: Faculty of Computers and Information, South Valley University, Qena, Egypt – sequence: 3 givenname: Mohamed surname: Abdalla fullname: Abdalla, Mohamed organization: Mathematics Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia, Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt – sequence: 4 givenname: Erhardt surname: Barth fullname: Barth, Erhardt organization: Faculty of Computers and Information, South Valley University, Qena, Egypt – sequence: 5 givenname: Thomas surname: Martinetz fullname: Martinetz, Thomas organization: Faculty of Computers and Information, South Valley University, Qena, Egypt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34401477$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAUhSNUREvpjjWKxAYkMsTvmAVSNbxGqqYSFLaWc3Mz41EmHuwEwb_H6ZTSqWov_PrusXx8nmZHve8xy56TcqYUUW93iGFTQJxJIR5lJ5QpWQit6dGd-XF2FuOmLEsiSGr6SXbMOC8JV-okW84vfyw-FEsc4ru8Qdzl8-UytwHWbkAYxoAxb31IR9PS9at8X0B0PsZpCWuMQz6_yiPYPj7LHre2i3h2M55m3z99vJp_KS4uPy_m5xcFSC6GwhLUjQYlWMtrxUmtGUjFlMK2rCvBCVrgdVnxCkhTCQl1paWtFWWksSAtO80We93G243ZBbe14Y_x1pnrDR9WxobBQYdGUs2ZRouUKF41VJMaGk6ZlQpKWTdJ6_1eazfWW2wA-yHY7kD08KR3a7Pyv0zFWMkZTwKvbgSC_zkmO8zWRcCusz36MRoqJKVMCCIT-vIeuvFj6JNViRIy_QnT9D-1sukBrm99uhcmUXMupdaKEaISNXuASr3BrYOUk9al_YOC1wcFiRnw97CyY4xm8e3rIfvirim3bvxLTgLe7AEIPsaA7S1CSjNl01xn00A0KZsJp_dwcIMdnJ8sdd3DRX8BkOvkaw |
CitedBy_id | crossref_primary_10_1007_s12530_023_09565_2 crossref_primary_10_29328_journal_jprr_1001044 crossref_primary_10_1007_s00521_022_07608_4 crossref_primary_10_1109_ACCESS_2024_3396728 crossref_primary_10_1155_2022_6595799 crossref_primary_10_3390_app122010535 crossref_primary_10_3390_jpm11111172 crossref_primary_10_32604_iasc_2022_024812 crossref_primary_10_3389_fpubh_2022_1046296 crossref_primary_10_3390_su132413642 crossref_primary_10_3390_signals3020019 crossref_primary_10_1080_13682199_2023_2173543 crossref_primary_10_32604_cmc_2022_021149 crossref_primary_10_1155_2022_7377502 crossref_primary_10_1016_j_jvcir_2023_103949 crossref_primary_10_1155_2022_6216273 crossref_primary_10_1007_s00521_023_09346_7 crossref_primary_10_3389_fpubh_2022_948205 crossref_primary_10_1007_s43069_023_00278_5 crossref_primary_10_1109_ACCESS_2021_3109441 crossref_primary_10_3390_diagnostics13101783 crossref_primary_10_1371_journal_pone_0296352 crossref_primary_10_1155_2021_2392395 crossref_primary_10_1007_s12194_023_00754_x |
Cites_doi | 10.1016/j.bbe.2020.08.005 10.1038/s41598-020-74164-z 10.59275/j.melba.2020-48g7 10.1007/s10489-020-02149-6 10.1109/TII.2021.3051952 10.1088/1361-6560/abe838 10.1148/radiol.2020200642 10.1145/3469678.3469719 10.1016/j.chaos.2020.110122 10.1016/j.ejrad.2020.108961 10.1148/radiol.2020201343 10.1007/s00330-020-06801-0 10.3390/s21020455 10.7717/peerj-cs.306 10.1136/bmjopen-2020-042946 10.1186/s12967-019-02189-8 10.1007/978-3-030-55258-9_17 10.1007/s13755-020-00135-3 10.1080/07391102.2020.1788642 10.1016/j.asoc.2020.106912 10.1080/09720502.2020.1857905 10.1007/s10096-020-03901-z 10.2196/25535 10.1016/j.asoc.2020.106885 10.1109/ACCESS.2020.3010287 10.1038/s41467-020-18685-1 10.1016/j.asoc.2021.107160 10.1016/j.media.2020.101913 10.1016/j.patcog.2020.107613 10.5812/archcid.106868 10.7717/peerj.10086 10.1007/s11263-015-0816-y 10.1016/j.diii.2020.03.014 10.1016/j.cmpb.2020.105608 10.1109/JBHI.2020.3023246 10.1007/s12559-020-09787-5 10.1109/TCBB.2021.3065361 10.1016/j.asoc.2021.107184 10.1109/ACCESS.2020.3024116 10.1016/j.eng.2020.04.010 10.1038/s41598-020-76550-z 10.3390/sym11121493 10.1016/j.compbiomed.2020.103795 10.1007/s00330-020-07042-x 10.7717/peerj-cs.555 10.1148/radiol.2020200241 10.1109/TMI.2020.2995508 10.1148/radiol.2020200432 10.1002/ima.22469 10.3389/fmed.2020.608525 10.3390/s19194139 10.1016/j.imu.2021.100709 10.1016/j.asoc.2020.106897 |
ContentType | Journal Article |
Copyright | 2021 Alshazly et al. COPYRIGHT 2021 PeerJ. Ltd. 2021 Alshazly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Alshazly et al. 2021 Alshazly et al. |
Copyright_xml | – notice: 2021 Alshazly et al. – notice: COPYRIGHT 2021 PeerJ. Ltd. – notice: 2021 Alshazly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Alshazly et al. 2021 Alshazly et al. |
DBID | AAYXX CITATION NPM ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.655 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_629439eae21748d291bcd423a67c06bd PMC8330434 A669973117 34401477 10_7717_peerj_cs_655 |
Genre | Journal Article |
GeographicLocations | United States Taiwan |
GeographicLocations_xml | – name: Taiwan – name: United States |
GrantInformation_xml | – fundername: Bundesministeriums für Wirtschaft und Energie (BMWi) through the Mittelstand 4.0-Kompetenzzentrum Kiel Project – fundername: Deanship of Scientific Research at King Khalid University grantid: RGP.1/3/42 |
GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RPM ARCSS NPM PQGLB PMFND 3V. 7XB 8AL 8FK COVID JQ2 M0N PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c645t-a1e9d9c753f4b741b93c67377ef0b8541eac4b0848c1d856cb896ab7231dac6a3 |
IEDL.DBID | DOA |
ISSN | 2376-5992 |
IngestDate | Wed Aug 27 01:20:37 EDT 2025 Thu Aug 21 18:30:42 EDT 2025 Fri Jul 11 15:31:00 EDT 2025 Fri Jul 25 06:41:21 EDT 2025 Tue Jun 17 21:27:21 EDT 2025 Tue Jun 10 20:14:55 EDT 2025 Fri Jun 27 03:36:43 EDT 2025 Mon Jul 21 05:25:53 EDT 2025 Tue Jul 01 01:00:34 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Multi-class classification SARS-CoV-2 COVID-19 detection Computed tomography Automated diagnosis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2021 Alshazly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c645t-a1e9d9c753f4b741b93c67377ef0b8541eac4b0848c1d856cb896ab7231dac6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/629439eae21748d291bcd423a67c06bd |
PMID | 34401477 |
PQID | 2556147392 |
PQPubID | 2045934 |
PageCount | e655 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_629439eae21748d291bcd423a67c06bd pubmedcentral_primary_oai_pubmedcentral_nih_gov_8330434 proquest_miscellaneous_2562235516 proquest_journals_2556147392 gale_infotracmisc_A669973117 gale_infotracacademiconefile_A669973117 gale_incontextgauss_ISR_A669973117 pubmed_primary_34401477 crossref_primary_10_7717_peerj_cs_655 crossref_citationtrail_10_7717_peerj_cs_655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-29 |
PublicationDateYYYYMMDD | 2021-07-29 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationTitleAlternate | PeerJ Comput Sci |
PublicationYear | 2021 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Alshazly (10.7717/peerj-cs.655/ref-4) 2019; 11 Pham (10.7717/peerj-cs.655/ref-48) 2020; 10 Szegedy (10.7717/peerj-cs.655/ref-60) 2015 Borakati (10.7717/peerj-cs.655/ref-12) 2020; 10 Ardakani (10.7717/peerj-cs.655/ref-7) 2020; 121 Aslan (10.7717/peerj-cs.655/ref-8) 2020; 98 Swapnarekha (10.7717/peerj-cs.655/ref-59) 2021; 24 Wang (10.7717/peerj-cs.655/ref-63) 2017 Ai (10.7717/peerj-cs.655/ref-2) 2020; 296 Long (10.7717/peerj-cs.655/ref-40) 2020; 126 Özkaya (10.7717/peerj-cs.655/ref-44) 2020 Hasan (10.7717/peerj-cs.655/ref-24) 2020 Pham (10.7717/peerj-cs.655/ref-49) 2021; 9 Wang (10.7717/peerj-cs.655/ref-67) 2020; 24 Shi (10.7717/peerj-cs.655/ref-53) 2021; 66 Ibrahim (10.7717/peerj-cs.655/ref-31) 2021 Jin (10.7717/peerj-cs.655/ref-34) 2020; 11 Gunraj (10.7717/peerj-cs.655/ref-22) 2020; 7 Bahgat (10.7717/peerj-cs.655/ref-10) 2021; 7 Soares (10.7717/peerj-cs.655/ref-57) 2020 Pachetti (10.7717/peerj-cs.655/ref-47) 2020; 18 Singh (10.7717/peerj-cs.655/ref-56) 2021; 51 Kanne (10.7717/peerj-cs.655/ref-35) 2020; 295 You (10.7717/peerj-cs.655/ref-76) 2020 Di Radiologia Medica e Interventistica (10.7717/peerj-cs.655/ref-19) 2021 Huang (10.7717/peerj-cs.655/ref-28) 2017 Russakovsky (10.7717/peerj-cs.655/ref-52) 2015; 115 Nair (10.7717/peerj-cs.655/ref-42) 2010 Wang (10.7717/peerj-cs.655/ref-66) 2020; 10 Yazdani (10.7717/peerj-cs.655/ref-73) 2020 Simonyan (10.7717/peerj-cs.655/ref-54) 2015 Singh (10.7717/peerj-cs.655/ref-55) 2020; 39 Ye (10.7717/peerj-cs.655/ref-74) 2020; 30 Zhang (10.7717/peerj-cs.655/ref-77) 2021; 17 Demir (10.7717/peerj-cs.655/ref-17) 2021; 103 Ouyang (10.7717/peerj-cs.655/ref-43) 2020; 39 Chowdhury (10.7717/peerj-cs.655/ref-14) 2020; 8 Szegedy (10.7717/peerj-cs.655/ref-61) 2016 Abraham (10.7717/peerj-cs.655/ref-1) 2020; 40 Fang (10.7717/peerj-cs.655/ref-20) 2020; 296 Cucinotta (10.7717/peerj-cs.655/ref-16) 2020; 91 Krizhevsky (10.7717/peerj-cs.655/ref-38) 2012 Cohen (10.7717/peerj-cs.655/ref-15) 2020 Ioffe (10.7717/peerj-cs.655/ref-32) 2015 Xu (10.7717/peerj-cs.655/ref-72) 2021; 23 Zhao (10.7717/peerj-cs.655/ref-78) 2020 Öztürk (10.7717/peerj-cs.655/ref-46) 2021; 31 Wang (10.7717/peerj-cs.655/ref-68) 2021; 110 Alshazly (10.7717/peerj-cs.655/ref-5) 2020; 8 Zhou (10.7717/peerj-cs.655/ref-79) 2020; 98 Kedia (10.7717/peerj-cs.655/ref-36) 2021; 104 Xu (10.7717/peerj-cs.655/ref-71) 2020 Yilmaz (10.7717/peerj-cs.655/ref-75) 2020; 15 Barstugan (10.7717/peerj-cs.655/ref-11) 2020 Wu (10.7717/peerj-cs.655/ref-70) 2021; 68 Huang (10.7717/peerj-cs.655/ref-29) 2021 Song (10.7717/peerj-cs.655/ref-58) 2021 Farooq (10.7717/peerj-cs.655/ref-21) 2020 Li (10.7717/peerj-cs.655/ref-39) 2020; 30 Iandola (10.7717/peerj-cs.655/ref-30) 2017 Kim (10.7717/peerj-cs.655/ref-37) 2020; 296 Wang (10.7717/peerj-cs.655/ref-65) 2021 Hani (10.7717/peerj-cs.655/ref-23) 2020; 101 Ragab (10.7717/peerj-cs.655/ref-50) 2020; 6 Alshazly (10.7717/peerj-cs.655/ref-6) 2021; 21 Hasan (10.7717/peerj-cs.655/ref-25) 2021 Brunese (10.7717/peerj-cs.655/ref-13) 2020; 196 Wang (10.7717/peerj-cs.655/ref-64) 2021; 98 Jaiswal (10.7717/peerj-cs.655/ref-33) 2020 Özkaya (10.7717/peerj-cs.655/ref-45) 2020 Ronneberger (10.7717/peerj-cs.655/ref-51) 2015 He (10.7717/peerj-cs.655/ref-26) 2020 Toraman (10.7717/peerj-cs.655/ref-62) 2020; 140 WHO (10.7717/peerj-cs.655/ref-69) 2021 Deng (10.7717/peerj-cs.655/ref-18) 2009 Milletari (10.7717/peerj-cs.655/ref-41) 2016 Attallah (10.7717/peerj-cs.655/ref-9) 2020; 8 He (10.7717/peerj-cs.655/ref-27) 2016 Alshazly (10.7717/peerj-cs.655/ref-3) 2019; 19 |
References_xml | – volume: 40 start-page: 1436 issue: 4 year: 2020 ident: 10.7717/peerj-cs.655/ref-1 article-title: Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2020.08.005 – volume: 10 start-page: 16942 year: 2020 ident: 10.7717/peerj-cs.655/ref-48 article-title: A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks publication-title: Scientific Reports doi: 10.1038/s41598-020-74164-z – year: 2020 ident: 10.7717/peerj-cs.655/ref-15 article-title: Covid-19 image data collection: prospective predictions are the future doi: 10.59275/j.melba.2020-48g7 – volume: 51 start-page: 3044 year: 2021 ident: 10.7717/peerj-cs.655/ref-56 article-title: Densely connected convolutional networks-based COVID-19 screening model publication-title: Applied Intelligence doi: 10.1007/s10489-020-02149-6 – volume: 17 start-page: 6510 issue: 9 year: 2021 ident: 10.7717/peerj-cs.655/ref-77 article-title: Residual Learning Diagnosis Detection: An advanced residual learning diagnosis detection system for COVID-19 in Industrial Internet of Things publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3051952 – volume: 66 start-page: 065031 issue: 6 year: 2021 ident: 10.7717/peerj-cs.655/ref-53 article-title: Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/abe838 – start-page: 1097 year: 2012 ident: 10.7717/peerj-cs.655/ref-38 article-title: ImageNet classification with deep convolutional neural networks – volume: 296 start-page: E32 issue: 2 year: 2020 ident: 10.7717/peerj-cs.655/ref-2 article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases publication-title: Radiology doi: 10.1148/radiol.2020200642 – year: 2021 ident: 10.7717/peerj-cs.655/ref-29 article-title: Covid-19 classification with deep neural network and belief functions doi: 10.1145/3469678.3469719 – volume: 140 start-page: 110122 year: 2020 ident: 10.7717/peerj-cs.655/ref-62 article-title: Convolutional capsnet: a novel artificial neural network approach to detect covid-19 disease from X-ray images using capsule networks publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110122 – volume: 126 start-page: 108961 year: 2020 ident: 10.7717/peerj-cs.655/ref-40 article-title: Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? publication-title: European Journal of Radiology doi: 10.1016/j.ejrad.2020.108961 – volume: 296 start-page: E145–E155 year: 2020 ident: 10.7717/peerj-cs.655/ref-37 article-title: Diagnostic performance of CT and Reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysis publication-title: Radiology doi: 10.1148/radiol.2020201343 – volume: 30 start-page: 4381 year: 2020 ident: 10.7717/peerj-cs.655/ref-74 article-title: Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review publication-title: European Radiology doi: 10.1007/s00330-020-06801-0 – volume: 21 start-page: 455 year: 2021 ident: 10.7717/peerj-cs.655/ref-6 article-title: Explainable COVID-19 detection using chest CT scans and deep learning publication-title: Sensors doi: 10.3390/s21020455 – year: 2020 ident: 10.7717/peerj-cs.655/ref-21 article-title: COVID-ResNet: a deep learning framework for screening of COVID19 from radiographs – start-page: 807 year: 2010 ident: 10.7717/peerj-cs.655/ref-42 article-title: Rectified linear units improve restricted boltzmann machines – year: 2021 ident: 10.7717/peerj-cs.655/ref-69 article-title: WHO Coronavirus (COVID-19) dashboard – volume: 6 start-page: e306 year: 2020 ident: 10.7717/peerj-cs.655/ref-50 article-title: FUSI-CAD: coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.306 – start-page: 2818 year: 2016 ident: 10.7717/peerj-cs.655/ref-61 article-title: Rethinking the inception architecture for computer vision – start-page: 3156 year: 2017 ident: 10.7717/peerj-cs.655/ref-63 article-title: Residual attention network for image classification – volume: 10 start-page: e042946 issue: 11 year: 2020 ident: 10.7717/peerj-cs.655/ref-12 article-title: Diagnostic accuracy of X-ray versus ct in covid-19: a propensity-matched database study publication-title: BMJ Open doi: 10.1136/bmjopen-2020-042946 – volume: 18 start-page: 1 year: 2020 ident: 10.7717/peerj-cs.655/ref-47 article-title: Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant publication-title: Journal of Translational Medicine doi: 10.1186/s12967-019-02189-8 – year: 2020 ident: 10.7717/peerj-cs.655/ref-76 article-title: Large batch optimization for deep learning: training bert in 76 min – year: 2020 ident: 10.7717/peerj-cs.655/ref-44 article-title: Coronavirus (COVID-19) classification using deep features fusion and ranking technique doi: 10.1007/978-3-030-55258-9_17 – volume: 9 start-page: 2 issue: 1 year: 2021 ident: 10.7717/peerj-cs.655/ref-49 article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? publication-title: Health Information Science and Systems doi: 10.1007/s13755-020-00135-3 – year: 2021 ident: 10.7717/peerj-cs.655/ref-19 article-title: Covid-19 database – year: 2020 ident: 10.7717/peerj-cs.655/ref-33 article-title: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning publication-title: Journal of Biomolecular Structure and Dynamics doi: 10.1080/07391102.2020.1788642 – year: 2020 ident: 10.7717/peerj-cs.655/ref-78 article-title: COVID-CT-Dataset: a CT scan dataset about COVID-19 – start-page: 1 year: 2015 ident: 10.7717/peerj-cs.655/ref-60 article-title: Going deeper with convolutions – volume: 98 start-page: 106912 year: 2020 ident: 10.7717/peerj-cs.655/ref-8 article-title: CNN-based transfer learning–BiLSTM network: a novel approach for COVID-19 infection detection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106912 – year: 2020 ident: 10.7717/peerj-cs.655/ref-11 article-title: Coronavirus (COVID-19) classification using CT images by machine learning methods – volume: 24 start-page: 327 issue: 2 year: 2021 ident: 10.7717/peerj-cs.655/ref-59 article-title: Covid CT-net: a deep learning framework for COVID-19 prognosis using CT images publication-title: Journal of Interdisciplinary Mathematics doi: 10.1080/09720502.2020.1857905 – volume: 39 start-page: 1379 year: 2020 ident: 10.7717/peerj-cs.655/ref-55 article-title: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks publication-title: European Journal of Clinical Microbiology & Infectious Diseases doi: 10.1007/s10096-020-03901-z – volume: 23 start-page: e25535 issue: 1 year: 2021 ident: 10.7717/peerj-cs.655/ref-72 article-title: Accurately differentiating between patients With COVID-19, patients with other viral infections, and healthy individuals: multimodal late fusion learning approach publication-title: Journal of Medical Internet Research doi: 10.2196/25535 – volume: 98 start-page: 106885 year: 2020 ident: 10.7717/peerj-cs.655/ref-79 article-title: The ensemble deep learning model for novel COVID-19 on CT images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106885 – year: 2020 ident: 10.7717/peerj-cs.655/ref-24 article-title: CVR-Net: a deep convolutional neural network for coronavirus recognition from chest radiography images – start-page: 4700 year: 2017 ident: 10.7717/peerj-cs.655/ref-28 article-title: Densely connected convolutional networks – start-page: 234 year: 2015 ident: 10.7717/peerj-cs.655/ref-51 article-title: U-Net: convolutional networks for biomedical image segmentation – volume: 8 start-page: 132665 year: 2020 ident: 10.7717/peerj-cs.655/ref-14 article-title: Can AI help in screening viral and COVID-19 pneumonia? publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010287 – volume: 11 start-page: 5088 issue: 1 year: 2020 ident: 10.7717/peerj-cs.655/ref-34 article-title: Development and evaluation of an artificial intelligence system for COVID-19 diagnosis publication-title: Nature Communications doi: 10.1038/s41467-020-18685-1 – volume: 103 start-page: 107160 year: 2021 ident: 10.7717/peerj-cs.655/ref-17 article-title: DeepCoroNet: a deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107160 – volume: 68 start-page: 101913 year: 2021 ident: 10.7717/peerj-cs.655/ref-70 article-title: COVID-AL: the diagnosis of COVID-19 with deep active learning publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101913 – year: 2020 ident: 10.7717/peerj-cs.655/ref-57 article-title: SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification publication-title: medRxiv – volume: 110 start-page: 107613 year: 2021 ident: 10.7717/peerj-cs.655/ref-68 article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107613 – year: 2020 ident: 10.7717/peerj-cs.655/ref-26 article-title: Sample-efficient deep learning for COVID-19 diagnosis based on CT scans publication-title: medrxiv – volume: 15 start-page: e106868 issue: 5 year: 2020 ident: 10.7717/peerj-cs.655/ref-75 article-title: Early computed tomography findings of novel coronavirus disease 2019 (COVID-19) Pneumonia publication-title: Archives of Clinical Infectious Diseases doi: 10.5812/archcid.106868 – volume: 8 start-page: e10086 year: 2020 ident: 10.7717/peerj-cs.655/ref-9 article-title: MULTI-DEEP: a novel CAD system for coronavirus (COVID-19) diagnosis from CT images using multiple convolution neural networks publication-title: PeerJ doi: 10.7717/peerj.10086 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.7717/peerj-cs.655/ref-52 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – volume: 101 start-page: 263 issue: 5 year: 2020 ident: 10.7717/peerj-cs.655/ref-23 article-title: COVID-19 pneumonia: a review of typical CT findings and differential diagnosis publication-title: Diagnostic and Interventional Imaging doi: 10.1016/j.diii.2020.03.014 – volume: 196 start-page: 105608 year: 2020 ident: 10.7717/peerj-cs.655/ref-13 article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105608 – year: 2020 ident: 10.7717/peerj-cs.655/ref-45 article-title: Classification of COVID-19 in chest CT images using convolutional support vector machines – start-page: 565 year: 2016 ident: 10.7717/peerj-cs.655/ref-41 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation – volume: 24 start-page: 2806 issue: 10 year: 2020 ident: 10.7717/peerj-cs.655/ref-67 article-title: Contrastive cross-site learning with redesigned net for COVID-19 CT classification publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.3023246 – year: 2021 ident: 10.7717/peerj-cs.655/ref-31 article-title: Pneumonia classification using deep learning from chest X-ray images during COVID-19 publication-title: Cognitive Computation doi: 10.1007/s12559-020-09787-5 – year: 2021 ident: 10.7717/peerj-cs.655/ref-58 article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images doi: 10.1109/TCBB.2021.3065361 – volume: 104 start-page: 107184 year: 2021 ident: 10.7717/peerj-cs.655/ref-36 article-title: CoVNet-19: a deep learning model for the detection and analysis of COVID-19 patients publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107184 – volume: 91 start-page: 157 issue: 1 year: 2020 ident: 10.7717/peerj-cs.655/ref-16 article-title: WHO declares COVID-19 a pandemic publication-title: Acta Biomedica – volume: 8 start-page: 170295 year: 2020 ident: 10.7717/peerj-cs.655/ref-5 article-title: Deep convolutional neural networks for unconstrained ear recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024116 – year: 2020 ident: 10.7717/peerj-cs.655/ref-71 article-title: A deep learning system to screen novel coronavirus disease 2019 pneumonia publication-title: Engineering doi: 10.1016/j.eng.2020.04.010 – year: 2017 ident: 10.7717/peerj-cs.655/ref-30 article-title: Squeezenet: alexnet-level accuracy with 50x fewer parameters and >0.5 mb model size – volume: 10 start-page: 19549 issue: 1 year: 2020 ident: 10.7717/peerj-cs.655/ref-66 article-title: COVID-Net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images publication-title: Scientific Reports doi: 10.1038/s41598-020-76550-z – volume: 11 start-page: 1493 issue: 12 year: 2019 ident: 10.7717/peerj-cs.655/ref-4 article-title: Handcrafted versus CNN features for ear recognition publication-title: Symmetry doi: 10.3390/sym11121493 – volume: 121 start-page: 103795 year: 2020 ident: 10.7717/peerj-cs.655/ref-7 article-title: Application of deep learning technique to manage covid-19 in routine clinical practice using ct images: results of 10 convolutional neural networks publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103795 – volume: 30 start-page: 6828 issue: 12 year: 2020 ident: 10.7717/peerj-cs.655/ref-39 article-title: From community-acquired pneumonia to COVID-19: a deep learning–based method for quantitative analysis of COVID-19 on thick-section CT scans publication-title: European Radiology doi: 10.1007/s00330-020-07042-x – volume: 7 start-page: e555 year: 2021 ident: 10.7717/peerj-cs.655/ref-10 article-title: An optimized transfer learning-based approach for automatic diagnosis of COVID-19 from chest X-ray images publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.555 – start-page: 1 year: 2015 ident: 10.7717/peerj-cs.655/ref-54 article-title: Very deep convolutional networks for large-scale image recognition – volume: 295 start-page: 16 issue: 1 year: 2020 ident: 10.7717/peerj-cs.655/ref-35 article-title: Chest ct findings in 2019 novel coronavirus (2019-ncov) infections from wuhan, China: key points for the radiologist publication-title: Radiology doi: 10.1148/radiol.2020200241 – volume: 39 start-page: 2595 issue: 8 year: 2020 ident: 10.7717/peerj-cs.655/ref-43 article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.2995508 – year: 2020 ident: 10.7717/peerj-cs.655/ref-73 article-title: COVID CT-Net: predicting Covid-19 From Chest CT Images Using Attentional Convolutional Network – start-page: 770 year: 2016 ident: 10.7717/peerj-cs.655/ref-27 article-title: Deep residual learning for image recognition – volume: 296 start-page: 200432 issue: 2 year: 2020 ident: 10.7717/peerj-cs.655/ref-20 article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR publication-title: Radiology doi: 10.1148/radiol.2020200432 – volume: 31 start-page: 5 issue: 1 year: 2021 ident: 10.7717/peerj-cs.655/ref-46 article-title: Classification of Coronavirus (COVID-19) from X-ray and CT images using shrunken features publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22469 – start-page: 1 year: 2021 ident: 10.7717/peerj-cs.655/ref-65 article-title: A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19) publication-title: European Radiology – volume: 7 start-page: 1025 year: 2020 ident: 10.7717/peerj-cs.655/ref-22 article-title: COVIDNet-CT: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest CT images publication-title: Frontiers in Medicine doi: 10.3389/fmed.2020.608525 – volume: 19 start-page: 4139 issue: 19 year: 2019 ident: 10.7717/peerj-cs.655/ref-3 article-title: Ensembles of deep learning models and transfer learning for ear recognition publication-title: Sensors doi: 10.3390/s19194139 – start-page: 248 year: 2009 ident: 10.7717/peerj-cs.655/ref-18 article-title: ImageNet: a large-scale hierarchical image database – year: 2021 ident: 10.7717/peerj-cs.655/ref-25 article-title: COVID-19 identification from volumetric chest CT scans using a progressively resized 3D-CNN incorporating segmentation, augmentation, and class-rebalancing doi: 10.1016/j.imu.2021.100709 – start-page: 448 year: 2015 ident: 10.7717/peerj-cs.655/ref-32 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – volume: 98 start-page: 106897 year: 2021 ident: 10.7717/peerj-cs.655/ref-64 article-title: AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106897 |
SSID | ssj0001511119 |
Score | 2.3894455 |
Snippet | In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e655 |
SubjectTerms | Artificial Intelligence Automated diagnosis Automation Bioinformatics Cable television broadcasting industry Classification Computed tomography Computer architecture Computer Vision Coronaviruses COVID-19 detection CT imaging Data Mining and Machine Learning Datasets Deep learning Health aspects Medical imaging Medical imaging equipment Multi-class classification Pneumonia SARS-CoV-2 Sensitivity Viral infections |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXDhDQ0UZBCIAzLdbBw_uKB2adUisUKlRb1ZfmUBoWTZ7P5_ZhLvdiMEx8STKBnbM_PZ428IeaWUttXIVyx3gTNeKM9sBZeWuyi11TaPeBr581ScXvJPV-VVWnBrU1rl2iZ2hjo0HtfID5AqK-cS3PmH-W-GVaNwdzWV0LhJdsEEKwBfu0fH0y_n16ssJZoE3We8S4AuB_MYFz-Zb98JPN235Ys6yv6_DfOWZxpmTW65oZO75HaKH-lh3-H3yI1Y3yd31rUZaJqqDwhg9W9nH9k0Ltv3NMQ4p5PplG5vG7QU4lVowkvwX7R_INcUU-FntCukRScXtAXltw_J5cnxxeSUpdoJzAteLhnoWAftAYxU3EHU4HThsSSNjNXIqZLnYHC5QzJ9nwdVCu-UFtZJCPeC9cIWj8hO3dRxj1AQq6rSaUAejnOvLHi0KggAKhqPtdqMvF1r0fhELI71LX4ZABioc9Pp3PjWgM4z8nojPe8JNf4hd4QdspFBGuzuRrOYmTSrjBhrCKiijQisVBjr3PkAAaIV0o-ECxl5id1pkOiixkyamV21rTn7em4OhdBYtiuXGXmThKoGvtvbdDAB_h65sQaS-wNJmIl-2LweNSZZgtZcj9uMvNg045OY3VbHZoUyAqI03LLMyON-kG3-u-CAgLmEl8vB8BsoZthS__je8YQrXKsq-JP_f9ZTcmuMeTojycZ6n-wsF6v4DAKtpXueZtMfnhop5g priority: 102 providerName: ProQuest |
Title | COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34401477 https://www.proquest.com/docview/2556147392 https://www.proquest.com/docview/2562235516 https://pubmed.ncbi.nlm.nih.gov/PMC8330434 https://doaj.org/article/629439eae21748d291bcd423a67c06bd |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BuXCB8qzbEi0IxAGZxvF6H9za0NAiYaHSot5Wu-t1AVVOVCf_nxnbiWyhikuPzo4j-_PsPOyZbwDeKqVtOfZlnLiCxzxVPrYlHlrugtRW2yRQN_K3XJxc8K-X2WVv1BfVhLX0wC1wB2Ki0WcGGyh2VsVEJ84XGANYIf1YuIKsL_q8XjLV9geTKdBtpbvElOVgEcLNn9jXHwV19fV8UEPV_69B7nmkYbVkz_3MtuFRFzeyw_Z6n8C9UD2Fx-uZDKzbos8Ac_Sfp5_jPCzrT6wIYcGmec76nwtqhnEqLtEh-i3WnpBoRiXwV6wZoMWm56xG0OvncDE7Pp-exN3MhNgLni1jxFYX2mMSUnKH0YLTqadRNDKUY6cynqCh5Y5I9H1SqEx4p7SwTmKYV1gvbPoCtqp5FXaAoVhZZk5jxuE498qiJysLgQmKpnZWG8GHNYrGd4TiNNfi2mBiQZibBnPja4OYR_BuI71oiTRukTuiB7KRIfrr5gdUCtMphfmfUkTwhh6nIYKLiiporuyqrs3pjzNzKISmcV2JjOB9J1TO8bq97RoS8O6JE2sguT-QxB3oh8trrTGdBagNUbslXGL4GcHrzTKdSVVtVZivSEZgdEafKiN42SrZ5r5Tjpkvl_jncqB-A2CGK9XvXw0_uKJ3VCnfvQsk9-DhhKp4xjKe6H3YWt6swisMw5ZuBPfV7MsIHhwd59_PRs3--wvGhzMz |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrjAV7GnQUGGMTEAwprEseOkRAaHaVlW5BYh_ZmbMcpIJSWphXip_hGzsmla4TgbY-JTxLn-FztcyHkaZJInfds7gcmYz6LEuvrHC41M05ILXXgMBv5OOXDU_b-LD7bIL_bXBgMq2xlYiWos6nFPfI9LJUVMAHq_PXsh49do_B0tW2hUZPFofv1E1y28tXoANZ3NwwHb8f9od90FfAtZ_HCh6_LTFow03NmQJ8aGVls1iJc3jNJzAIQRcxgmXkbZEnMrUkk10aAIZRpy3UE771ELrMokshRyeDd-Z5OjAJI1vH1AhylvZlz82--LV9wzCVc03xVg4C_1cCaHuzGaK4pvcF1stVYq3S_Jq8bZMMVN8m1thMEbQTDLZL2P3waHfipW5QvaebcjPbTlK4fUpQUrGMYwkvQlrR-IJAUA-8ntGrbRftjWsJSl7fJ6YXg9A7ZLKaF2yYUwPI8NhL8HMOYTTTozzzj4BZJTKLVHnneYlHZpow5dtP4rsCdQZyrCufKlgpw7pHdFfSsLt_xD7g3uCArGCy6Xd2Yzieq4WHFQwnmm9MO3bgkC2VgbAbmqObC9rjJPPIEl1NhWY0C43YmelmWanTyUe1zLrFJWCA88qwByqcwb6ubNAj4e6zE1YHc6UAC39vucEs1qpE7pTrnEo88Xg3jkxhLV7jpEmE42IR4QOqRuzWRrf47YuBvMwEvFx3y6yCmO1J8_VJVJU9wZyxi9_4_rUfkynB8fKSORunhfXI1xAihnvBDuUM2F_OlewAm3sI8rPiKks8Xzch_ALsYZaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdhHjhzggMMIiJB5S1SR07RkJoa1etDMI0NrQ3YztOAaG0NK0Qv8bXcU4uXSMEb3tMfBLZx-dqnwshz-NY6qxnMz8wKfNZP7a-zuBRM-OE1FIHDrOR3yf88Iy9PY_ON8jvJhcGwyobmVgK6nRq8Yy8i6WyAiZAnXezOizieDh6M_vhYwcpvGlt2mlUJHLkfv0E9614PR7CXu-E4ejgdHDo1x0GfMtZtPBhJjKVFkz2jBnQrUb2LTZuES7rmThiAYglZrDkvA3SOOLWxJJrI8AoSrXlug__vUI2BXhFvQ7Z3D9Ijk8uTngiFEeyirYX4DZ1Z87Nv_m22OWYWbimB8t2AX8rhTWt2I7YXFOBo5vkem270r2K2G6RDZffJjeavhC0FhN3SDL48Gk89BO3KF7R1LkZHSQJXb-yKCjYyjCEj6A7afVBICmG4U9o2cSLDk5pARtf3CVnl4LVe6STT3N3n1AAy7LISPB6DGM21qBNs5SDkyQxpVZ75GWDRWXroubYW-O7AucGca5KnCtbKMC5R3ZW0LOqmMc_4PZxQ1YwWIK7fDGdT1TN0YqHEow5px06dXEaysDYFIxTzYXtcZN65Blup8IiGzmS60Qvi0KNP56oPc4ltgwLhEde1EDZFOZtdZ0UAavHulwtyO0WJEgB2x5uqEbVUqhQFzzjkaerYfwSI-tyN10iDAcLEa9LPbJVEdlq3X0G3jcT8HPRIr8WYtoj-dcvZY3yGM_J-uzB_6f1hFwFJlbvxsnRQ3ItxHChnvBDuU06i_nSPQJ7b2Ee14xFyefL5uU_T8RrNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-Nets%3A+deep+CNN+architectures+for+detecting+COVID-19+using+chest+CT+scans&rft.jtitle=PeerJ.+Computer+science&rft.au=Alshazly%2C+Hammam&rft.au=Linse%2C+Christoph&rft.au=Abdalla%2C+Mohamed&rft.au=Barth%2C+Erhardt&rft.date=2021-07-29&rft.eissn=2376-5992&rft.volume=7&rft.spage=e655&rft_id=info:doi/10.7717%2Fpeerj-cs.655&rft_id=info%3Apmid%2F34401477&rft.externalDocID=34401477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |