Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases

Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific bu...

Full description

Saved in:
Bibliographic Details
Published inMetabolic Engineering Communications Vol. 12; p. e00169
Main Authors Isogai, Shota, Okahashi, Nobuyuki, Asama, Ririka, Nakamura, Tomomi, Hasunuma, Tomohisa, Matsuda, Fumio, Ishii, Jun, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2021
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. •Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes.•A stable yeast strain that produced naringenin from l-phenylalanine was constructed.•A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin.•AnaPT catalyzed the first microbial production of 3′-prenylnaringenin.•Microbial prenyltransferases permit the production of various prenylated compounds.
AbstractList Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer.
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l -phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo , the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. • Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes. • A stable yeast strain that produced naringenin from l -phenylalanine was constructed. • A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin. • AnaPT catalyzed the first microbial production of 3′-prenylnaringenin. • Microbial prenyltransferases permit the production of various prenylated compounds.
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3' prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3'-prenylnaringenin (3'-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer.Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3' prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3'-prenylnaringenin (3'-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer.
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3' prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. , the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3'-prenylnaringenin (3'-PN), in contrast to the previously reported production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer.
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. •Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes.•A stable yeast strain that produced naringenin from l-phenylalanine was constructed.•A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin.•AnaPT catalyzed the first microbial production of 3′-prenylnaringenin.•Microbial prenyltransferases permit the production of various prenylated compounds.
ArticleNumber e00169
Author Isogai, Shota
Ishii, Jun
Kondo, Akihiko
Okahashi, Nobuyuki
Matsuda, Fumio
Nakamura, Tomomi
Asama, Ririka
Hasunuma, Tomohisa
Author_xml – sequence: 1
  givenname: Shota
  orcidid: 0000-0001-7697-7502
  surname: Isogai
  fullname: Isogai, Shota
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 2
  givenname: Nobuyuki
  orcidid: 0000-0001-9582-355X
  surname: Okahashi
  fullname: Okahashi, Nobuyuki
  organization: Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
– sequence: 3
  givenname: Ririka
  surname: Asama
  fullname: Asama, Ririka
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 4
  givenname: Tomomi
  surname: Nakamura
  fullname: Nakamura, Tomomi
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 5
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 6
  givenname: Fumio
  orcidid: 0000-0003-1091-778X
  surname: Matsuda
  fullname: Matsuda, Fumio
  organization: Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
– sequence: 7
  givenname: Jun
  surname: Ishii
  fullname: Ishii, Jun
  email: junjun@port.kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 8
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
  email: akondo@kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
BackLink https://cir.nii.ac.jp/crid/1871428067821342080$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/33868922$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLaU_gAvKgQOXXfwVxxESUlXxUakSB-Bs2c5461XWXuyk0v57JmSpWg4VFyeevPfyZua9rE5iilBVrylZU0Ll--16B27NCKNrIFjonlVnjFGxIpzQkwfvp9VFKVuCGC6poPRFdcq5kqpj7Kzy3w9xvIUxuHqfUz-5MaRYJ483iIfBjNDX0eQQNxBDLHWI9QFMGeupYG3m7EJxU5pKvQsuJxvMcOSO2cTiIZsC5VX13JuhwMXxeV79_Pzpx9XX1c23L9dXlzcrJ0UzrpiUQvmG9I5gwXLroXetFK7nTvWNkC23rRcEpJLCU98a1UtnhPe24YQZfl5dL7p9Mlu9z2Fn8kEnE_SfQsobbTI2O4BWnbENs6wT81Sc7CxQ1jQWLXTW8g61Pi5a-8nu0AdE7Gh4JPr4Swy3epPutCKCMMVQ4N1RIKdfE5RRz7OCYTARcGCaNUwwPFT7H1DakJYKxRH65qGtez9_d4oAugBwHaVk8PcQSvQcHb3VGB09R0cv0UFO-w_HhdHMWcDOwvAk8-3CjCEgaT6pQqdMEdkqRrlgRBGEfVhggNu_C5B1cQGigz5kcCOuJzzxk9_78Oo4
CitedBy_id crossref_primary_10_1016_j_bioorg_2025_108261
crossref_primary_10_1016_j_greenca_2024_11_005
crossref_primary_10_1128_aem_00978_22
crossref_primary_10_1186_s12934_024_02625_5
crossref_primary_10_1016_j_foodchem_2025_143061
crossref_primary_10_3389_fbioe_2022_1017190
crossref_primary_10_3389_fceng_2022_880694
crossref_primary_10_1016_j_ijfoodmicro_2022_109588
crossref_primary_10_1016_j_phytochem_2022_113380
crossref_primary_10_1021_acssynbio_2c00111
crossref_primary_10_3390_life11111201
crossref_primary_10_1080_07352689_2023_2256103
crossref_primary_10_1039_D3NP00036B
crossref_primary_10_1021_acs_jafc_2c07287
crossref_primary_10_1021_acsomega_4c05007
Cites_doi 10.1016/S1367-5931(03)00019-X
10.1111/1567-1364.12138
10.1186/1475-2859-11-155
10.1021/np060477+
10.1016/j.fitote.2010.03.011
10.1104/pp.114.253682
10.1016/j.bmc.2008.07.052
10.1016/j.ejmech.2011.03.047
10.1073/pnas.0904897106
10.1152/ajpregu.00521.2015
10.1016/j.jsbmb.2009.08.005
10.1016/j.abb.2014.04.002
10.1021/acs.jafc.9b01367
10.1073/pnas.1000532107
10.1099/mic.0.27759-0
10.1186/s12934-015-0321-6
10.1007/s00018-008-7579-3
10.1371/journal.pone.0027336
10.1099/mic.0.27962-0
10.1038/nature03668
10.1126/science.1071006
10.1016/j.enzmictec.2012.06.005
10.1073/pnas.77.4.1814
10.1104/pp.103.025213
10.1186/1472-6882-14-340
10.1002/cbic.201402160
10.1074/jbc.M807606200
10.1002/cbic.200700079
10.1007/s00253-011-3351-y
10.1093/genetics/122.1.19
10.1074/jbc.M114.623413
10.1002/adsc.201300196
10.1128/AEM.02496-13
10.1038/srep27156
10.1016/j.ymben.2011.07.003
10.1038/nchembio.2263
10.1128/jb.157.1.283-290.1984
10.1093/nar/20.6.1425
10.1073/pnas.1423555112
10.1371/journal.pone.0045048
10.1038/ncomms10849
10.1021/acs.jnatprod.5b00422
10.1100/2012/979218
10.1074/jbc.M114.608265
10.1126/science.1191652
10.1038/ja.2009.48
10.1007/s002530051138
10.1016/j.jmb.2010.09.067
10.1104/pp.107.110544
10.1271/bbb.100731
10.1016/j.phytochem.2009.08.023
10.1074/jbc.M111.317982
10.1021/acs.chemrestox.6b00112
10.1021/acsomega.9b00364
10.1039/c000587h
10.1016/j.cell.2015.02.029
10.1021/ja106817c
10.2174/0929867053202241
10.1104/pp.108.123679
10.1074/jbc.M111.244426
10.1016/j.tifs.2015.03.007
10.1099/mic.0.2007/009019-0
10.1271/bbb.80729
10.1046/j.1365-313x.1998.00237.x
10.1093/pcp/pcw178
10.1104/pp.112.195271
10.1002/cbic.201400046
10.3109/13880209.2013.853809
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.mec.2021.e00169
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-0301
ExternalDocumentID oai_doaj_org_article_89ab52b2946141c69be1255b6649bb39
PMC8040282
33868922
10_1016_j_mec_2021_e00169
S2214030121000092
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
RYH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c645t-26648f50dc0c64b3bfedc764cd3c8d54673b7f40e6864f1f7a8d6ca4ffb5302a3
IEDL.DBID DOA
ISSN 2214-0301
IngestDate Wed Aug 27 01:30:04 EDT 2025
Thu Aug 21 14:01:31 EDT 2025
Fri Jul 11 15:56:18 EDT 2025
Thu Jul 10 19:30:06 EDT 2025
Mon Jul 21 06:02:30 EDT 2025
Tue Jul 01 04:03:42 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Jun 27 00:14:00 EDT 2025
Tue Jul 25 21:00:20 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Prenylflavonoids
Prenyltransferase
Naringenin
Yeast
Prenylnaringenin
Language English
License This is an open access article under the CC BY license.
2021 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-26648f50dc0c64b3bfedc764cd3c8d54673b7f40e6864f1f7a8d6ca4ffb5302a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7697-7502
0000-0001-9582-355X
0000-0003-1091-778X
0000-0003-1527-5288
0000-0003-2568-515X
0000-0002-8382-2362
OpenAccessLink https://doaj.org/article/89ab52b2946141c69be1255b6649bb39
PMID 33868922
PQID 2515071483
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_89ab52b2946141c69be1255b6649bb39
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040282
proquest_miscellaneous_2524225287
proquest_miscellaneous_2515071483
pubmed_primary_33868922
crossref_primary_10_1016_j_mec_2021_e00169
crossref_citationtrail_10_1016_j_mec_2021_e00169
nii_cinii_1871428067821342080
elsevier_sciencedirect_doi_10_1016_j_mec_2021_e00169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Metabolic Engineering Communications
PublicationTitleAlternate Metab Eng Commun
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Futcher, Cox (bib12) 1984; 157
Cui, Ndinteh, Na, Thuong, Silike-Muruumu, Njamen, Mbafor, Fomum, Jong, Won (bib10) 2007; 70
Seki, Carninci, Nishiyama, Hayashizaki, Shinozaki (bib47) 1998; 15
Yoneyama, Akashi, Aoki (bib66) 2016; 57
Brown, Clastre, Courdavault, O’Connor (bib6) 2015; 112
Gietz, St Jean, Woods, Schiestl (bib14) 1992; 20
Ajikumar, Xiao, Tyo, Wang, Simeon, Leonard, Mucha, Phon, Pfeifer, Stephanopoulos (bib1) 2010
Roggenkamp, Numa, Schweizer (bib43) 1980; 77
Mori, Zhang, Awakawa, Hoshino, Okada, Morita, Abe (bib34) 2016; 7
Metzger, Keller, Stevenson, Heide, Lawson (bib32) 2010; 404
Sasaki, Mito, Ohara, Yamamoto, Yazaki (bib44) 2008; 146
Sasaki, Tsurumaru, Yamamoto, Yazaki (bib45) 2011; 286
Yazaki, Sasaki, Tsurumaru (bib62) 2009; 70
Yu, Liu, Xie, Zheng, Li (bib67) 2012; 287
Gerlt, Raushel (bib13) 2003; 7
Unsöld, Li (bib56) 2005; 151
Terao, Mukai (bib55) 2014; 559
Zhou, Yu, Xie, Li (bib70) 2015; 78
Mukai, Horikawa, Fujikura, Kawamura, Nemoto, Nikawa, Terao (bib35) 2012; 7
Yu, Xie, Li (bib68) 2011; 92
Sugiyama, Linley, Sasaki, Kumano, Yamamoto, Shitan, Ohara, Takanashi, Harada, Hasegawa, Terakawa, Kuzuyama, Yazaki (bib53) 2011; 13
Ozaki, Mishima, Nishiyama, Kuzuyama (bib40) 2009; 62
Grienke, Richter, Walther, Hoffmann, Kirchmair, Makarov, Nietzsche, Schmidtke, Rollinger (bib15) 2016; 6
Zhao (bib69) 2003; 133
Sasaki, Tsurumaru, Yazaki (bib46) 2009; 73
Li, Chen, Wang, Liu, Xie, Zou, Dai (bib29) 2014; 15
Chen, Mukwaya, Wong, Zhang (bib9) 2014; 52
Neves, Cidade, Pinto, Silva, Gales, Damas, Lima, Vasconcelos, Nascimento (bib37) 2011; 46
Sikorski, Hieter (bib52) 1989; 122
Koopman, Beekwilder, Crimi, van Houwelingen, Hall, Bosch, van Maris, Pronk, Daran (bib21) 2012; 11
Metzger, Schall, Zocher, Unsold, Stec, Li, Heide, Stehle (bib33) 2009; 106
Bonitz, Alva, Saleh, Lupas, Heide (bib4) 2011; 6
Kuete, Ango, Yeboah, Mbaveng, Mapitse, Kapche, Ngadjui, Efferth (bib24) 2014; 14
Winkelblech, Li (bib60) 2014; 15
Shin, Jung, Kim, Han, Seo (bib50) 2012; 51
Chen, Gao, Liu, Ruan, Zhang, Lou, Feng, Wunsch, Li, Dai, Sun (bib7) 2016; 13
Botta, Vitali, Menendez, Misiti, Monache (bib5) 2005; 12
Li, Ban, Qin, Ma, King, Wang (bib28) 2015; 167
Grotewold (bib16) 2006
Kretzschmar, Zierau, Wober, Tischer, Metz, Vollmer (bib23) 2010; 118
Fan, Zocher, Stec, Stehle, Li (bib11) 2015; 290
Vos, de la Torre Cortés, van Gulik, Pronk, Daran-Lapujade (bib57) 2015; 14
Liu, Noike, Minami, Oikawa, Dairi, Noike, Toshima, Oikawa, Dairi (bib30) 2013; 79
Chen, Liu, Zou, Yin, Ou, Li, Wang, Xie, Zhang, Dai (bib8) 2013; 355
Wang, Dunlap, Howell, Mbachu, Rue, Phansalkar, Chen, Pauli, Dietz, Bolton (bib59) 2016; 29
Ishii, Kondo, Makino, Ogura, Matsuda, Kondo (bib18) 2014; 14
Jost, Zocher, Tarcz, Matuschek, Xie, Li S (bib19) 2010; 132
Kumano, Richard, Noel, Nishiyama, Kuzuyama (bib25) 2008; 16
Wang, Chen, Li, Liu, Xie, Chen, Yin, Tao, Xie, Zou, Yang, Dai (bib58) 2014; 289
Levisson, Araya-Cloutier, de Bruijn, van der Heide, Salvador López, Daran, Vincken, Beekwilder (bib27) 2019
Kuzuyama, Noel, Richard (bib26) 2005; 435
Akashi, Sasaki, Aoki, Ayabe, Yazaki (bib2) 2009; 149
Kremer, Westrich, Li (bib22) 2007; 153
Grundmann, Li (bib17) 2005; 151
Yin, Yu, Xie, Li (bib63) 2010; 8
Presnyak, Alhusaini, Chen, Martin, Morris, Kline, Olson, Weinberg, Baker, Graveley, Coller (bib42) 2015; 160
Kawamura, Hayashi, Mukai, Terao, Nemoto (bib20) 2014; 46
Mark, Lyu, Ng, Chen (bib31) 2019; 4
Shen, Huhman, Lei, Snyder, Sumner, Dixon (bib49) 2012; 159
Mukai, Horikawa, Lin, Tsukumo, Nikawa, Kawamura, Nemoto, Terao (bib36) 2016; 311
Arung, Shimizu, Tanaka, Kondo (bib3) 2010; 81
Tello, Kuzuyama, Heide, Noel, Richard (bib54) 2008; 65
Yin, Grundmann, Cheng, Li (bib64) 2009; 284
Seki, Narusaka, Kamiya, Ishida, Satou, Sakurai, Nakajima, Enju, Akiyama, Oono, Muramatsu, Hayashizaki, Kawai, Carninci, Itoh, Ishii, Arakawa, Shibata, Shinagawa, Shinozaki (bib48) 2002; 296
Yin, Ruan, Westrich, Grundmann, Li (bib65) 2007; 8
Yang, Jiang, Yang, He, Sun, Chen, Zhang, Yang (bib61) 2015; 44
Okamura, Tomita, Sawa, Nishiyama, Kuzuyama (bib39) 2010; 107
Polakowski, Stahl, Lang (bib41) 1998; 49
Norkiene, Gedvilaite (bib38) 2012
Shindo, Tachibana, Tanaka, Toba, Yuki, Ozaki, Kumano, Nishiyama, Misawa, Kuzuyama (bib51) 2011; 75
Ishii (10.1016/j.mec.2021.e00169_bib18) 2014; 14
Kremer (10.1016/j.mec.2021.e00169_bib22) 2007; 153
Brown (10.1016/j.mec.2021.e00169_bib6) 2015; 112
Kawamura (10.1016/j.mec.2021.e00169_bib20) 2014; 46
Kuzuyama (10.1016/j.mec.2021.e00169_bib26) 2005; 435
Akashi (10.1016/j.mec.2021.e00169_bib2) 2009; 149
Sasaki (10.1016/j.mec.2021.e00169_bib45) 2011; 286
Koopman (10.1016/j.mec.2021.e00169_bib21) 2012; 11
Shin (10.1016/j.mec.2021.e00169_bib50) 2012; 51
Chen (10.1016/j.mec.2021.e00169_bib8) 2013; 355
Okamura (10.1016/j.mec.2021.e00169_bib39) 2010; 107
Polakowski (10.1016/j.mec.2021.e00169_bib41) 1998; 49
Gietz (10.1016/j.mec.2021.e00169_bib14) 1992; 20
Sikorski (10.1016/j.mec.2021.e00169_bib52) 1989; 122
Seki (10.1016/j.mec.2021.e00169_bib47) 1998; 15
Vos (10.1016/j.mec.2021.e00169_bib57) 2015; 14
Ozaki (10.1016/j.mec.2021.e00169_bib40) 2009; 62
Seki (10.1016/j.mec.2021.e00169_bib48) 2002; 296
Liu (10.1016/j.mec.2021.e00169_bib30) 2013; 79
Kuete (10.1016/j.mec.2021.e00169_bib24) 2014; 14
Futcher (10.1016/j.mec.2021.e00169_bib12) 1984; 157
Mukai (10.1016/j.mec.2021.e00169_bib35) 2012; 7
Cui (10.1016/j.mec.2021.e00169_bib10) 2007; 70
Botta (10.1016/j.mec.2021.e00169_bib5) 2005; 12
Tello (10.1016/j.mec.2021.e00169_bib54) 2008; 65
Unsöld (10.1016/j.mec.2021.e00169_bib56) 2005; 151
Grienke (10.1016/j.mec.2021.e00169_bib15) 2016; 6
Metzger (10.1016/j.mec.2021.e00169_bib33) 2009; 106
Wang (10.1016/j.mec.2021.e00169_bib59) 2016; 29
Wang (10.1016/j.mec.2021.e00169_bib58) 2014; 289
Li (10.1016/j.mec.2021.e00169_bib29) 2014; 15
Norkiene (10.1016/j.mec.2021.e00169_bib38) 2012
Roggenkamp (10.1016/j.mec.2021.e00169_bib43) 1980; 77
Yang (10.1016/j.mec.2021.e00169_bib61) 2015; 44
Grotewold (10.1016/j.mec.2021.e00169_bib16) 2006
Levisson (10.1016/j.mec.2021.e00169_bib27) 2019
Zhao (10.1016/j.mec.2021.e00169_bib69) 2003; 133
Yin (10.1016/j.mec.2021.e00169_bib64) 2009; 284
Zhou (10.1016/j.mec.2021.e00169_bib70) 2015; 78
Grundmann (10.1016/j.mec.2021.e00169_bib17) 2005; 151
Li (10.1016/j.mec.2021.e00169_bib28) 2015; 167
Sugiyama (10.1016/j.mec.2021.e00169_bib53) 2011; 13
Jost (10.1016/j.mec.2021.e00169_bib19) 2010; 132
Shindo (10.1016/j.mec.2021.e00169_bib51) 2011; 75
Yazaki (10.1016/j.mec.2021.e00169_bib62) 2009; 70
Kumano (10.1016/j.mec.2021.e00169_bib25) 2008; 16
Bonitz (10.1016/j.mec.2021.e00169_bib4) 2011; 6
Mark (10.1016/j.mec.2021.e00169_bib31) 2019; 4
Arung (10.1016/j.mec.2021.e00169_bib3) 2010; 81
Yu (10.1016/j.mec.2021.e00169_bib68) 2011; 92
Kretzschmar (10.1016/j.mec.2021.e00169_bib23) 2010; 118
Shen (10.1016/j.mec.2021.e00169_bib49) 2012; 159
Mukai (10.1016/j.mec.2021.e00169_bib36) 2016; 311
Yin (10.1016/j.mec.2021.e00169_bib65) 2007; 8
Gerlt (10.1016/j.mec.2021.e00169_bib13) 2003; 7
Neves (10.1016/j.mec.2021.e00169_bib37) 2011; 46
Yoneyama (10.1016/j.mec.2021.e00169_bib66) 2016; 57
Chen (10.1016/j.mec.2021.e00169_bib9) 2014; 52
Metzger (10.1016/j.mec.2021.e00169_bib32) 2010; 404
Winkelblech (10.1016/j.mec.2021.e00169_bib60) 2014; 15
Sasaki (10.1016/j.mec.2021.e00169_bib46) 2009; 73
Chen (10.1016/j.mec.2021.e00169_bib7) 2016; 13
Terao (10.1016/j.mec.2021.e00169_bib55) 2014; 559
Yu (10.1016/j.mec.2021.e00169_bib67) 2012; 287
Fan (10.1016/j.mec.2021.e00169_bib11) 2015; 290
Ajikumar (10.1016/j.mec.2021.e00169_bib1) 2010
Presnyak (10.1016/j.mec.2021.e00169_bib42) 2015; 160
Yin (10.1016/j.mec.2021.e00169_bib63) 2010; 8
Mori (10.1016/j.mec.2021.e00169_bib34) 2016; 7
Sasaki (10.1016/j.mec.2021.e00169_bib44) 2008; 146
References_xml – year: 2006
  ident: bib16
  article-title: The science of flavonoids
  publication-title: The Science of Flavonoids
– volume: 435
  start-page: 983
  year: 2005
  end-page: 987
  ident: bib26
  article-title: Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products
  publication-title: Nature
– volume: 151
  start-page: 2199
  year: 2005
  end-page: 2207
  ident: bib17
  article-title: Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus
  publication-title: Microbiology
– volume: 73
  start-page: 759
  year: 2009
  end-page: 761
  ident: bib46
  article-title: Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 15
  start-page: 707
  year: 1998
  end-page: 720
  ident: bib47
  article-title: High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper
  publication-title: Plant J.
– volume: 286
  start-page: 24125
  year: 2011
  end-page: 24134
  ident: bib45
  article-title: Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 713
  year: 2005
  end-page: 739
  ident: bib5
  article-title: Prenylated flavonoids: pharmacology and biotechnology
  publication-title: Curr. Med. Chem.
– volume: 65
  start-page: 1459
  year: 2008
  end-page: 1463
  ident: bib54
  article-title: The ABBA family of aromatic prenyltransferases: broadening natural product diversity
  publication-title: Cell. Mol. Life Sci.
– volume: 29
  start-page: 1142
  year: 2016
  end-page: 1150
  ident: bib59
  article-title: Hop (humulus lupulus L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation
  publication-title: Chem. Res. Toxicol.
– volume: 8
  start-page: 1154
  year: 2007
  end-page: 1161
  ident: bib65
  article-title: CdpNPT, an N-prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation
  publication-title: Chembiochem
– volume: 7
  start-page: 1
  year: 2012
  end-page: 11
  ident: bib35
  article-title: Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice
  publication-title: PloS One
– volume: 311
  start-page: 3
  year: 2016
  end-page: 18
  ident: bib36
  article-title: 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 14
  start-page: 133
  year: 2015
  ident: bib57
  article-title: Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain
  publication-title: Microb. Cell Factories
– volume: 46
  start-page: 170
  year: 2014
  end-page: 174
  ident: bib20
  article-title: The first synthesis of uralenol, 5’-prenylated quercetin, via palladium-catalyzed O-dimethylallylation reaction with concurrent acetyl migration
  publication-title: Synth. Met.
– volume: 49
  start-page: 66
  year: 1998
  end-page: 71
  ident: bib41
  article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast
  publication-title: Appl. Microbiol. Biotechnol.
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib38
  article-title: Influence of codon bias on heterologous production of human papillomavirus Type 16 major structural protein L1 in yeast
  publication-title: Sci. World J.
– volume: 78
  start-page: 2229
  year: 2015
  end-page: 2235
  ident: bib70
  article-title: Complementary flavonoid prenylations by fungal indole prenyltransferases
  publication-title: J. Nat. Prod.
– volume: 149
  start-page: 683
  year: 2009
  end-page: 693
  ident: bib2
  article-title: Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin
  publication-title: Plant Physiol.
– volume: 20
  start-page: 1425
  year: 1992
  ident: bib14
  article-title: Improved method for high efficiency transformation of intact yeast cells
  publication-title: Nucleic Acids Res.
– volume: 287
  start-page: 1371
  year: 2012
  end-page: 1380
  ident: bib67
  article-title: Biochemical characterization of indole prenyltransferases: filling the lastgapofprenylation positions bya5-dimethylallyltryptophan synthase from aspergillus clavatus
  publication-title: J. Biol. Chem.
– volume: 133
  start-page: 1306
  year: 2003
  end-page: 1313
  ident: bib69
  article-title: Characterization of leachianone G 2’’ -dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of Sophoraflavanone G in Sophora flavescens ait. Cell suspension cultures
  publication-title: Plant Physiol.
– volume: 57
  start-page: 2497
  year: 2016
  end-page: 2509
  ident: bib66
  article-title: Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: local gene and whole-genome duplications of prenyltransferase genes led to the structural diversity of soybean prenylated isoflavonoids
  publication-title: Plant Cell Physiol.
– volume: 355
  start-page: 1817
  year: 2013
  end-page: 1828
  ident: bib8
  article-title: Regio- and stereospecific prenylation of flavonoids by Sophora flavescens prenyltransferase
  publication-title: Adv. Synth. Catal.
– start-page: 70
  year: 2010
  end-page: 74
  ident: bib1
  article-title: Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
  publication-title: Science
– volume: 16
  start-page: 8117
  year: 2008
  end-page: 8126
  ident: bib25
  article-title: Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities
  publication-title: Bioorg. Med. Chem.
– volume: 151
  start-page: 1499
  year: 2005
  end-page: 1505
  ident: bib56
  article-title: Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus
  publication-title: Microbiology
– volume: 159
  start-page: 70
  year: 2012
  end-page: 80
  ident: bib49
  article-title: Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus
  publication-title: Plant Physiol.
– volume: 14
  start-page: 340
  year: 2014
  ident: bib24
  article-title: Cytotoxicity of four Aframomum species (A. arundinaceum, A. alboviolaceum, A. kayserianum and A. polyanthum) towards multi-factorial drug resistant cancer cell lines
  publication-title: BMC Compl. Alternative Med.
– volume: 52
  start-page: 655
  year: 2014
  end-page: 660
  ident: bib9
  article-title: A systematic review on biological activities of prenylated flavonoids
  publication-title: Pharm. Biol.
– volume: 7
  start-page: 252
  year: 2003
  end-page: 264
  ident: bib13
  article-title: Evolution of function in (β/α)8-barrel enzymes
  publication-title: Curr. Opin. Chem. Biol.
– volume: 107
  start-page: 11265
  year: 2010
  end-page: 11270
  ident: bib39
  article-title: Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 296
  start-page: 141
  year: 2002
  end-page: 145
  ident: bib48
  article-title: Functional annotation of a full-length Arabidopsis cDNA collection
  publication-title: Science
– volume: 75
  start-page: 505
  year: 2011
  end-page: 510
  ident: bib51
  article-title: Production of novel antioxidative prenyl naphthalen-ols by combinational bioconversion with dioxygenase PhnA1A2A3A4 and prenyltransferase NphB or SCO7190
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 559
  start-page: 12
  year: 2014
  end-page: 16
  ident: bib55
  article-title: Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids
  publication-title: Arch. Biochem. Biophys.
– volume: 13
  start-page: 629
  year: 2011
  end-page: 637
  ident: bib53
  article-title: Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases
  publication-title: Metab. Eng.
– volume: 79
  start-page: 199
  year: 2013
  end-page: 206
  ident: bib30
  article-title: Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD
  publication-title: Appl. Environ. Microbiol.
– volume: 70
  start-page: 1739
  year: 2009
  end-page: 1745
  ident: bib62
  article-title: Prenylation of aromatic compounds, a key diversification of plant secondary metabolites
  publication-title: Phytochemistry
– volume: 153
  start-page: 3409
  year: 2007
  end-page: 3416
  ident: bib22
  article-title: A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization
  publication-title: Microbiology
– volume: 167
  start-page: 650
  year: 2015
  end-page: 659
  ident: bib28
  article-title: A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway
  publication-title: Plant Physiol.
– volume: 51
  start-page: 211
  year: 2012
  end-page: 216
  ident: bib50
  article-title: Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae
  publication-title: Enzym. Microb. Technol.
– volume: 62
  start-page: 385
  year: 2009
  end-page: 392
  ident: bib40
  article-title: NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids
  publication-title: J. Antibiot. (Tokyo)
– volume: 112
  start-page: 3205
  year: 2015
  end-page: 3210
  ident: bib6
  article-title: De novo production of the plant-derived alkaloid strictosidine in yeast
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 11
  start-page: 155
  year: 2012
  ident: bib21
  article-title: De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
– volume: 46
  start-page: 2562
  year: 2011
  end-page: 2574
  ident: bib37
  article-title: Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis
  publication-title: Eur. J. Med. Chem.
– volume: 92
  start-page: 737
  year: 2011
  end-page: 748
  ident: bib68
  article-title: Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 15
  start-page: 1030
  year: 2014
  end-page: 1039
  ident: bib60
  article-title: Biochemical investigations of two 6-DMATS enzymes from streptomyces reveal new features of l -tryptophan prenyltransferases
  publication-title: Chembiochem
– volume: 8
  start-page: 2430
  year: 2010
  ident: bib63
  article-title: Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT
  publication-title: Org. Biomol. Chem.
– volume: 4
  start-page: 12872
  year: 2019
  end-page: 12879
  ident: bib31
  article-title: Gene source screening as a tool for naringenin production in engineered saccharomyces cerevisiae
  publication-title: ACS Omega
– volume: 284
  start-page: 100
  year: 2009
  end-page: 109
  ident: bib64
  article-title: Acetylaszonalenin biosynthesis in neosartorya fischeri identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation
  publication-title: J. Biol. Chem.
– volume: 146
  start-page: 1075
  year: 2008
  end-page: 1084
  ident: bib44
  article-title: Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens
  publication-title: Plant Physiol.
– volume: 6
  start-page: 2
  year: 2011
  end-page: 9
  ident: bib4
  article-title: Evolutionary relationships of microbial aromatic prenyltransferases
  publication-title: PloS One
– volume: 157
  start-page: 283
  year: 1984
  end-page: 290
  ident: bib12
  article-title: Copy number and the stability of 2-μm circle-based artificial plasmids of Saccharomyces cerevisiae
  publication-title: J. Bacteriol.
– volume: 404
  start-page: 611
  year: 2010
  end-page: 626
  ident: bib32
  article-title: Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway
  publication-title: J. Mol. Biol.
– volume: 160
  start-page: 1111
  year: 2015
  end-page: 1124
  ident: bib42
  article-title: Codon optimality is a major determinant of mRNA stability
  publication-title: Cell
– volume: 81
  start-page: 640
  year: 2010
  end-page: 643
  ident: bib3
  article-title: 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus
  publication-title: Fitoterapia
– volume: 290
  start-page: 1364
  year: 2015
  end-page: 1373
  ident: bib11
  article-title: Site-directed mutagenesis switching a dimethylallyl tryptophan synthase to a specific tyrosine C3-prenylating enzyme
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 399
  year: 2014
  end-page: 411
  ident: bib18
  article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae
  publication-title: FEMS Yeast Res.
– volume: 118
  start-page: 1
  year: 2010
  end-page: 6
  ident: bib23
  article-title: Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 77
  start-page: 1814
  year: 1980
  end-page: 1817
  ident: bib43
  article-title: Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– year: 2019
  ident: bib27
  article-title: Toward developing a yeast cell factory for the production of prenylated flavonoids
  publication-title: J. Agric. Food Chem. ACS.jafc.9b01367
– volume: 289
  start-page: 35815
  year: 2014
  end-page: 35825
  ident: bib58
  article-title: Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from morus alba and cudrania tricuspidata
  publication-title: J. Biol. Chem.
– volume: 132
  start-page: 17849
  year: 2010
  end-page: 17858
  ident: bib19
  article-title: Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 226
  year: 2016
  end-page: 234
  ident: bib7
  article-title: Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase
  publication-title: Nat. Chem. Biol.
– volume: 6
  start-page: 27156
  year: 2016
  ident: bib15
  article-title: Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae
  publication-title: Sci. Rep.
– volume: 106
  start-page: 14309
  year: 2009
  end-page: 14314
  ident: bib33
  article-title: The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 44
  start-page: 93
  year: 2015
  end-page: 104
  ident: bib61
  article-title: Prenylated flavonoids, promising nutraceuticals with impressive biological activities
  publication-title: Trends Food Sci. Technol.
– volume: 7
  start-page: 10849
  year: 2016
  ident: bib34
  article-title: Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1673
  year: 2014
  end-page: 1681
  ident: bib29
  article-title: GuA6DT, a regiospecific prenyltransferase from glycyrrhiza uralensis, catalyzes the 6-prenylation of flavones
  publication-title: Chembiochem
– volume: 70
  start-page: 1039
  year: 2007
  end-page: 1042
  ident: bib10
  article-title: Isoprenylated flavonoids from the stem bark of Erythrina abyssinica
  publication-title: J. Nat. Prod.
– volume: 122
  start-page: 19
  year: 1989
  end-page: 27
  ident: bib52
  article-title: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 7
  start-page: 252
  year: 2003
  ident: 10.1016/j.mec.2021.e00169_bib13
  article-title: Evolution of function in (β/α)8-barrel enzymes
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/S1367-5931(03)00019-X
– volume: 14
  start-page: 399
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib18
  article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae
  publication-title: FEMS Yeast Res.
  doi: 10.1111/1567-1364.12138
– volume: 11
  start-page: 155
  year: 2012
  ident: 10.1016/j.mec.2021.e00169_bib21
  article-title: De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-11-155
– volume: 70
  start-page: 1039
  year: 2007
  ident: 10.1016/j.mec.2021.e00169_bib10
  article-title: Isoprenylated flavonoids from the stem bark of Erythrina abyssinica
  publication-title: J. Nat. Prod.
  doi: 10.1021/np060477+
– volume: 81
  start-page: 640
  year: 2010
  ident: 10.1016/j.mec.2021.e00169_bib3
  article-title: 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2010.03.011
– volume: 167
  start-page: 650
  year: 2015
  ident: 10.1016/j.mec.2021.e00169_bib28
  article-title: A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.253682
– volume: 16
  start-page: 8117
  year: 2008
  ident: 10.1016/j.mec.2021.e00169_bib25
  article-title: Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2008.07.052
– volume: 46
  start-page: 2562
  year: 2011
  ident: 10.1016/j.mec.2021.e00169_bib37
  article-title: Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2011.03.047
– volume: 106
  start-page: 14309
  year: 2009
  ident: 10.1016/j.mec.2021.e00169_bib33
  article-title: The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0904897106
– volume: 311
  start-page: 3
  year: 2016
  ident: 10.1016/j.mec.2021.e00169_bib36
  article-title: 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00521.2015
– volume: 118
  start-page: 1
  year: 2010
  ident: 10.1016/j.mec.2021.e00169_bib23
  article-title: Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2009.08.005
– volume: 559
  start-page: 12
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib55
  article-title: Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2014.04.002
– year: 2019
  ident: 10.1016/j.mec.2021.e00169_bib27
  article-title: Toward developing a yeast cell factory for the production of prenylated flavonoids
  publication-title: J. Agric. Food Chem. ACS.jafc.9b01367
  doi: 10.1021/acs.jafc.9b01367
– volume: 107
  start-page: 11265
  year: 2010
  ident: 10.1016/j.mec.2021.e00169_bib39
  article-title: Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1000532107
– volume: 151
  start-page: 1499
  year: 2005
  ident: 10.1016/j.mec.2021.e00169_bib56
  article-title: Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus
  publication-title: Microbiology
  doi: 10.1099/mic.0.27759-0
– volume: 14
  start-page: 133
  year: 2015
  ident: 10.1016/j.mec.2021.e00169_bib57
  article-title: Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-015-0321-6
– volume: 65
  start-page: 1459
  year: 2008
  ident: 10.1016/j.mec.2021.e00169_bib54
  article-title: The ABBA family of aromatic prenyltransferases: broadening natural product diversity
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-7579-3
– volume: 6
  start-page: 2
  year: 2011
  ident: 10.1016/j.mec.2021.e00169_bib4
  article-title: Evolutionary relationships of microbial aromatic prenyltransferases
  publication-title: PloS One
  doi: 10.1371/journal.pone.0027336
– volume: 151
  start-page: 2199
  year: 2005
  ident: 10.1016/j.mec.2021.e00169_bib17
  article-title: Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus
  publication-title: Microbiology
  doi: 10.1099/mic.0.27962-0
– volume: 435
  start-page: 983
  year: 2005
  ident: 10.1016/j.mec.2021.e00169_bib26
  article-title: Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products
  publication-title: Nature
  doi: 10.1038/nature03668
– volume: 296
  start-page: 141
  year: 2002
  ident: 10.1016/j.mec.2021.e00169_bib48
  article-title: Functional annotation of a full-length Arabidopsis cDNA collection
  publication-title: Science
  doi: 10.1126/science.1071006
– volume: 51
  start-page: 211
  year: 2012
  ident: 10.1016/j.mec.2021.e00169_bib50
  article-title: Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2012.06.005
– volume: 77
  start-page: 1814
  year: 1980
  ident: 10.1016/j.mec.2021.e00169_bib43
  article-title: Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.77.4.1814
– volume: 133
  start-page: 1306
  year: 2003
  ident: 10.1016/j.mec.2021.e00169_bib69
  article-title: Characterization of leachianone G 2’’ -dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of Sophoraflavanone G in Sophora flavescens ait. Cell suspension cultures
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.025213
– volume: 14
  start-page: 340
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib24
  article-title: Cytotoxicity of four Aframomum species (A. arundinaceum, A. alboviolaceum, A. kayserianum and A. polyanthum) towards multi-factorial drug resistant cancer cell lines
  publication-title: BMC Compl. Alternative Med.
  doi: 10.1186/1472-6882-14-340
– volume: 15
  start-page: 1673
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib29
  article-title: GuA6DT, a regiospecific prenyltransferase from glycyrrhiza uralensis, catalyzes the 6-prenylation of flavones
  publication-title: Chembiochem
  doi: 10.1002/cbic.201402160
– volume: 284
  start-page: 100
  year: 2009
  ident: 10.1016/j.mec.2021.e00169_bib64
  article-title: Acetylaszonalenin biosynthesis in neosartorya fischeri identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807606200
– volume: 8
  start-page: 1154
  year: 2007
  ident: 10.1016/j.mec.2021.e00169_bib65
  article-title: CdpNPT, an N-prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation
  publication-title: Chembiochem
  doi: 10.1002/cbic.200700079
– volume: 92
  start-page: 737
  year: 2011
  ident: 10.1016/j.mec.2021.e00169_bib68
  article-title: Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3351-y
– volume: 122
  start-page: 19
  year: 1989
  ident: 10.1016/j.mec.2021.e00169_bib52
  article-title: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/122.1.19
– volume: 290
  start-page: 1364
  year: 2015
  ident: 10.1016/j.mec.2021.e00169_bib11
  article-title: Site-directed mutagenesis switching a dimethylallyl tryptophan synthase to a specific tyrosine C3-prenylating enzyme
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.623413
– volume: 355
  start-page: 1817
  year: 2013
  ident: 10.1016/j.mec.2021.e00169_bib8
  article-title: Regio- and stereospecific prenylation of flavonoids by Sophora flavescens prenyltransferase
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201300196
– volume: 79
  start-page: 199
  year: 2013
  ident: 10.1016/j.mec.2021.e00169_bib30
  article-title: Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02496-13
– volume: 6
  start-page: 27156
  year: 2016
  ident: 10.1016/j.mec.2021.e00169_bib15
  article-title: Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae
  publication-title: Sci. Rep.
  doi: 10.1038/srep27156
– volume: 13
  start-page: 629
  year: 2011
  ident: 10.1016/j.mec.2021.e00169_bib53
  article-title: Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2011.07.003
– volume: 13
  start-page: 226
  year: 2016
  ident: 10.1016/j.mec.2021.e00169_bib7
  article-title: Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2263
– volume: 157
  start-page: 283
  year: 1984
  ident: 10.1016/j.mec.2021.e00169_bib12
  article-title: Copy number and the stability of 2-μm circle-based artificial plasmids of Saccharomyces cerevisiae
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.157.1.283-290.1984
– volume: 46
  start-page: 170
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib20
  article-title: The first synthesis of uralenol, 5’-prenylated quercetin, via palladium-catalyzed O-dimethylallylation reaction with concurrent acetyl migration
  publication-title: Synth. Met.
– year: 2006
  ident: 10.1016/j.mec.2021.e00169_bib16
  article-title: The science of flavonoids
– volume: 20
  start-page: 1425
  year: 1992
  ident: 10.1016/j.mec.2021.e00169_bib14
  article-title: Improved method for high efficiency transformation of intact yeast cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/20.6.1425
– volume: 112
  start-page: 3205
  year: 2015
  ident: 10.1016/j.mec.2021.e00169_bib6
  article-title: De novo production of the plant-derived alkaloid strictosidine in yeast
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1423555112
– volume: 7
  start-page: 1
  year: 2012
  ident: 10.1016/j.mec.2021.e00169_bib35
  article-title: Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice
  publication-title: PloS One
  doi: 10.1371/journal.pone.0045048
– volume: 7
  start-page: 10849
  year: 2016
  ident: 10.1016/j.mec.2021.e00169_bib34
  article-title: Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10849
– volume: 78
  start-page: 2229
  year: 2015
  ident: 10.1016/j.mec.2021.e00169_bib70
  article-title: Complementary flavonoid prenylations by fungal indole prenyltransferases
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.5b00422
– start-page: 1
  year: 2012
  ident: 10.1016/j.mec.2021.e00169_bib38
  article-title: Influence of codon bias on heterologous production of human papillomavirus Type 16 major structural protein L1 in yeast
  publication-title: Sci. World J.
  doi: 10.1100/2012/979218
– volume: 289
  start-page: 35815
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib58
  article-title: Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from morus alba and cudrania tricuspidata
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.608265
– start-page: 70
  issue: 330
  year: 2010
  ident: 10.1016/j.mec.2021.e00169_bib1
  article-title: Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1191652
– volume: 62
  start-page: 385
  year: 2009
  ident: 10.1016/j.mec.2021.e00169_bib40
  article-title: NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids
  publication-title: J. Antibiot. (Tokyo)
  doi: 10.1038/ja.2009.48
– volume: 49
  start-page: 66
  year: 1998
  ident: 10.1016/j.mec.2021.e00169_bib41
  article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051138
– volume: 404
  start-page: 611
  year: 2010
  ident: 10.1016/j.mec.2021.e00169_bib32
  article-title: Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.09.067
– volume: 146
  start-page: 1075
  year: 2008
  ident: 10.1016/j.mec.2021.e00169_bib44
  article-title: Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.110544
– volume: 75
  start-page: 505
  year: 2011
  ident: 10.1016/j.mec.2021.e00169_bib51
  article-title: Production of novel antioxidative prenyl naphthalen-ols by combinational bioconversion with dioxygenase PhnA1A2A3A4 and prenyltransferase NphB or SCO7190
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.100731
– volume: 70
  start-page: 1739
  year: 2009
  ident: 10.1016/j.mec.2021.e00169_bib62
  article-title: Prenylation of aromatic compounds, a key diversification of plant secondary metabolites
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.08.023
– volume: 287
  start-page: 1371
  year: 2012
  ident: 10.1016/j.mec.2021.e00169_bib67
  article-title: Biochemical characterization of indole prenyltransferases: filling the lastgapofprenylation positions bya5-dimethylallyltryptophan synthase from aspergillus clavatus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.317982
– volume: 29
  start-page: 1142
  year: 2016
  ident: 10.1016/j.mec.2021.e00169_bib59
  article-title: Hop (humulus lupulus L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.6b00112
– volume: 4
  start-page: 12872
  year: 2019
  ident: 10.1016/j.mec.2021.e00169_bib31
  article-title: Gene source screening as a tool for naringenin production in engineered saccharomyces cerevisiae
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00364
– volume: 8
  start-page: 2430
  year: 2010
  ident: 10.1016/j.mec.2021.e00169_bib63
  article-title: Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c000587h
– volume: 160
  start-page: 1111
  year: 2015
  ident: 10.1016/j.mec.2021.e00169_bib42
  article-title: Codon optimality is a major determinant of mRNA stability
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.029
– volume: 132
  start-page: 17849
  year: 2010
  ident: 10.1016/j.mec.2021.e00169_bib19
  article-title: Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106817c
– volume: 12
  start-page: 713
  year: 2005
  ident: 10.1016/j.mec.2021.e00169_bib5
  article-title: Prenylated flavonoids: pharmacology and biotechnology
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867053202241
– volume: 149
  start-page: 683
  year: 2009
  ident: 10.1016/j.mec.2021.e00169_bib2
  article-title: Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.123679
– volume: 286
  start-page: 24125
  year: 2011
  ident: 10.1016/j.mec.2021.e00169_bib45
  article-title: Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.244426
– volume: 44
  start-page: 93
  year: 2015
  ident: 10.1016/j.mec.2021.e00169_bib61
  article-title: Prenylated flavonoids, promising nutraceuticals with impressive biological activities
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2015.03.007
– volume: 153
  start-page: 3409
  year: 2007
  ident: 10.1016/j.mec.2021.e00169_bib22
  article-title: A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization
  publication-title: Microbiology
  doi: 10.1099/mic.0.2007/009019-0
– volume: 73
  start-page: 759
  year: 2009
  ident: 10.1016/j.mec.2021.e00169_bib46
  article-title: Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.80729
– volume: 15
  start-page: 707
  year: 1998
  ident: 10.1016/j.mec.2021.e00169_bib47
  article-title: High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00237.x
– volume: 57
  start-page: 2497
  year: 2016
  ident: 10.1016/j.mec.2021.e00169_bib66
  article-title: Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: local gene and whole-genome duplications of prenyltransferase genes led to the structural diversity of soybean prenylated isoflavonoids
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw178
– volume: 159
  start-page: 70
  year: 2012
  ident: 10.1016/j.mec.2021.e00169_bib49
  article-title: Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.195271
– volume: 15
  start-page: 1030
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib60
  article-title: Biochemical investigations of two 6-DMATS enzymes from streptomyces reveal new features of l -tryptophan prenyltransferases
  publication-title: Chembiochem
  doi: 10.1002/cbic.201400046
– volume: 52
  start-page: 655
  year: 2014
  ident: 10.1016/j.mec.2021.e00169_bib9
  article-title: A systematic review on biological activities of prenylated flavonoids
  publication-title: Pharm. Biol.
  doi: 10.3109/13880209.2013.853809
SSID ssj0001361411
Score 2.2788997
Snippet Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
nii
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e00169
SubjectTerms biochemical pathways
Biology (General)
Biotechnology
dimethylallyltranstransferase
Full Length
genomics
Naringenin
phenylalanine
Prenylflavonoids
Prenylnaringenin
Prenyltransferase
QH301-705.5
regioselectivity
synthesis
TP248.13-248.65
tryptophan
Yeast
yeasts
Title Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases
URI https://dx.doi.org/10.1016/j.mec.2021.e00169
https://cir.nii.ac.jp/crid/1871428067821342080
https://www.ncbi.nlm.nih.gov/pubmed/33868922
https://www.proquest.com/docview/2515071483
https://www.proquest.com/docview/2524225287
https://pubmed.ncbi.nlm.nih.gov/PMC8040282
https://doaj.org/article/89ab52b2946141c69be1255b6649bb39
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOBQUb6aQisjcUIKJLFjO8eCWlVUcAAqerNix4ag1lt1dw_77ztjJ6sNQsuFS1ZKxhvZM5v3xpl9Q8gbB5AqbetzwEbcujE8b1HuTlrAPy7hw2Oi-PmLOLvgny7ry41WX1gTluSB08K9V01r6spUDQcgKa1ojANMro0QvDGGxb_uAeZtJFNxd4WhNWZbVVXyHHn_-EozFnddO5QvrMp3DjlPMwGlqN0_wab7oe__xkD_LKTcQKbTx2R3oJT0OE1lj9xz4Ql5tCE0-JT4b6sATA8M6E2SeAV30JmnqGi5ugK-2dHQxi2-0Ic57QNdYVMfimXxP3EMhINdzpZzet1H6Sa4YRq7iMzX3QIazp-Ri9OT7x_P8qHDQm4Frxc5oDNXvi46W8AJw4yHuUjBbces6mp4iDIjPS-cUIL70stWdcK23HuD3YZa9pzshFlw-4R2FXO8k50wpePKSAPEgAM7gpRONsKJjBTjEms7yI9jF4wrPdaZ_dbgFY1e0ckrGXm7HnKTtDe2GX9Av60NUTY7noBg0kMw6X8FU0b46HU9MJDELOCr-m33PoQIgWnhsYQUlOP7auBeJcPqhSIjr8fY0egurGsLDnymgV0iIeeKbbMBGgUHJTPyIsXbepaMKaGaqsqInETiZBmmV0L_K6qIK3h8g3MO_se6vSQPcTlSCd0rsrO4XbpDIGsLc0QeHJ9__XF-FH-fd4omOpI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+production+of+prenylated+naringenins+in+yeast+using+promiscuous+microbial+prenyltransferases&rft.jtitle=Metabolic+engineering+communications&rft.au=Isogai%2C+Shota&rft.au=Okahashi%2C+Nobuyuki&rft.au=Asama%2C+Ririka&rft.au=Nakamura%2C+Tomomi&rft.date=2021-06-01&rft.eissn=2214-0301&rft.volume=12&rft.spage=e00169&rft_id=info:doi/10.1016%2Fj.mec.2021.e00169&rft_id=info%3Apmid%2F33868922&rft.externalDocID=33868922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon