Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific bu...
Saved in:
Published in | Metabolic Engineering Communications Vol. 12; p. e00169 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2021
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer.
•Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes.•A stable yeast strain that produced naringenin from l-phenylalanine was constructed.•A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin.•AnaPT catalyzed the first microbial production of 3′-prenylnaringenin.•Microbial prenyltransferases permit the production of various prenylated compounds. |
---|---|
AbstractList | Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l -phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo , the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. • Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes. • A stable yeast strain that produced naringenin from l -phenylalanine was constructed. • A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin. • AnaPT catalyzed the first microbial production of 3′-prenylnaringenin. • Microbial prenyltransferases permit the production of various prenylated compounds. Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3' prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3'-prenylnaringenin (3'-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer.Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3' prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3'-prenylnaringenin (3'-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3' prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. , the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3'-prenylnaringenin (3'-PN), in contrast to the previously reported production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. •Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes.•A stable yeast strain that produced naringenin from l-phenylalanine was constructed.•A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin.•AnaPT catalyzed the first microbial production of 3′-prenylnaringenin.•Microbial prenyltransferases permit the production of various prenylated compounds. |
ArticleNumber | e00169 |
Author | Isogai, Shota Ishii, Jun Kondo, Akihiko Okahashi, Nobuyuki Matsuda, Fumio Nakamura, Tomomi Asama, Ririka Hasunuma, Tomohisa |
Author_xml | – sequence: 1 givenname: Shota orcidid: 0000-0001-7697-7502 surname: Isogai fullname: Isogai, Shota organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 2 givenname: Nobuyuki orcidid: 0000-0001-9582-355X surname: Okahashi fullname: Okahashi, Nobuyuki organization: Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan – sequence: 3 givenname: Ririka surname: Asama fullname: Asama, Ririka organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 4 givenname: Tomomi surname: Nakamura fullname: Nakamura, Tomomi organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 5 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 6 givenname: Fumio orcidid: 0000-0003-1091-778X surname: Matsuda fullname: Matsuda, Fumio organization: Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan – sequence: 7 givenname: Jun surname: Ishii fullname: Ishii, Jun email: junjun@port.kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 8 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan |
BackLink | https://cir.nii.ac.jp/crid/1871428067821342080$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/33868922$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQjVARLaU_gAvKgQOXXfwVxxESUlXxUakSB-Bs2c5461XWXuyk0v57JmSpWg4VFyeevPfyZua9rE5iilBVrylZU0Ll--16B27NCKNrIFjonlVnjFGxIpzQkwfvp9VFKVuCGC6poPRFdcq5kqpj7Kzy3w9xvIUxuHqfUz-5MaRYJ483iIfBjNDX0eQQNxBDLHWI9QFMGeupYG3m7EJxU5pKvQsuJxvMcOSO2cTiIZsC5VX13JuhwMXxeV79_Pzpx9XX1c23L9dXlzcrJ0UzrpiUQvmG9I5gwXLroXetFK7nTvWNkC23rRcEpJLCU98a1UtnhPe24YQZfl5dL7p9Mlu9z2Fn8kEnE_SfQsobbTI2O4BWnbENs6wT81Sc7CxQ1jQWLXTW8g61Pi5a-8nu0AdE7Gh4JPr4Swy3epPutCKCMMVQ4N1RIKdfE5RRz7OCYTARcGCaNUwwPFT7H1DakJYKxRH65qGtez9_d4oAugBwHaVk8PcQSvQcHb3VGB09R0cv0UFO-w_HhdHMWcDOwvAk8-3CjCEgaT6pQqdMEdkqRrlgRBGEfVhggNu_C5B1cQGigz5kcCOuJzzxk9_78Oo4 |
CitedBy_id | crossref_primary_10_1016_j_bioorg_2025_108261 crossref_primary_10_1016_j_greenca_2024_11_005 crossref_primary_10_1128_aem_00978_22 crossref_primary_10_1186_s12934_024_02625_5 crossref_primary_10_1016_j_foodchem_2025_143061 crossref_primary_10_3389_fbioe_2022_1017190 crossref_primary_10_3389_fceng_2022_880694 crossref_primary_10_1016_j_ijfoodmicro_2022_109588 crossref_primary_10_1016_j_phytochem_2022_113380 crossref_primary_10_1021_acssynbio_2c00111 crossref_primary_10_3390_life11111201 crossref_primary_10_1080_07352689_2023_2256103 crossref_primary_10_1039_D3NP00036B crossref_primary_10_1021_acs_jafc_2c07287 crossref_primary_10_1021_acsomega_4c05007 |
Cites_doi | 10.1016/S1367-5931(03)00019-X 10.1111/1567-1364.12138 10.1186/1475-2859-11-155 10.1021/np060477+ 10.1016/j.fitote.2010.03.011 10.1104/pp.114.253682 10.1016/j.bmc.2008.07.052 10.1016/j.ejmech.2011.03.047 10.1073/pnas.0904897106 10.1152/ajpregu.00521.2015 10.1016/j.jsbmb.2009.08.005 10.1016/j.abb.2014.04.002 10.1021/acs.jafc.9b01367 10.1073/pnas.1000532107 10.1099/mic.0.27759-0 10.1186/s12934-015-0321-6 10.1007/s00018-008-7579-3 10.1371/journal.pone.0027336 10.1099/mic.0.27962-0 10.1038/nature03668 10.1126/science.1071006 10.1016/j.enzmictec.2012.06.005 10.1073/pnas.77.4.1814 10.1104/pp.103.025213 10.1186/1472-6882-14-340 10.1002/cbic.201402160 10.1074/jbc.M807606200 10.1002/cbic.200700079 10.1007/s00253-011-3351-y 10.1093/genetics/122.1.19 10.1074/jbc.M114.623413 10.1002/adsc.201300196 10.1128/AEM.02496-13 10.1038/srep27156 10.1016/j.ymben.2011.07.003 10.1038/nchembio.2263 10.1128/jb.157.1.283-290.1984 10.1093/nar/20.6.1425 10.1073/pnas.1423555112 10.1371/journal.pone.0045048 10.1038/ncomms10849 10.1021/acs.jnatprod.5b00422 10.1100/2012/979218 10.1074/jbc.M114.608265 10.1126/science.1191652 10.1038/ja.2009.48 10.1007/s002530051138 10.1016/j.jmb.2010.09.067 10.1104/pp.107.110544 10.1271/bbb.100731 10.1016/j.phytochem.2009.08.023 10.1074/jbc.M111.317982 10.1021/acs.chemrestox.6b00112 10.1021/acsomega.9b00364 10.1039/c000587h 10.1016/j.cell.2015.02.029 10.1021/ja106817c 10.2174/0929867053202241 10.1104/pp.108.123679 10.1074/jbc.M111.244426 10.1016/j.tifs.2015.03.007 10.1099/mic.0.2007/009019-0 10.1271/bbb.80729 10.1046/j.1365-313x.1998.00237.x 10.1093/pcp/pcw178 10.1104/pp.112.195271 10.1002/cbic.201400046 10.3109/13880209.2013.853809 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) 2021 The Author(s). 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
DBID | 6I. AAFTH RYH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.mec.2021.e00169 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CiNii Complete CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-0301 |
ExternalDocumentID | oai_doaj_org_article_89ab52b2946141c69be1255b6649bb39 PMC8040282 33868922 10_1016_j_mec_2021_e00169 S2214030121000092 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP RYH AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c645t-26648f50dc0c64b3bfedc764cd3c8d54673b7f40e6864f1f7a8d6ca4ffb5302a3 |
IEDL.DBID | DOA |
ISSN | 2214-0301 |
IngestDate | Wed Aug 27 01:30:04 EDT 2025 Thu Aug 21 14:01:31 EDT 2025 Fri Jul 11 15:56:18 EDT 2025 Thu Jul 10 19:30:06 EDT 2025 Mon Jul 21 06:02:30 EDT 2025 Tue Jul 01 04:03:42 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Jun 27 00:14:00 EDT 2025 Tue Jul 25 21:00:20 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Prenylflavonoids Prenyltransferase Naringenin Yeast Prenylnaringenin |
Language | English |
License | This is an open access article under the CC BY license. 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c645t-26648f50dc0c64b3bfedc764cd3c8d54673b7f40e6864f1f7a8d6ca4ffb5302a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7697-7502 0000-0001-9582-355X 0000-0003-1091-778X 0000-0003-1527-5288 0000-0003-2568-515X 0000-0002-8382-2362 |
OpenAccessLink | https://doaj.org/article/89ab52b2946141c69be1255b6649bb39 |
PMID | 33868922 |
PQID | 2515071483 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_89ab52b2946141c69be1255b6649bb39 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040282 proquest_miscellaneous_2524225287 proquest_miscellaneous_2515071483 pubmed_primary_33868922 crossref_primary_10_1016_j_mec_2021_e00169 crossref_citationtrail_10_1016_j_mec_2021_e00169 nii_cinii_1871428067821342080 elsevier_sciencedirect_doi_10_1016_j_mec_2021_e00169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Metabolic Engineering Communications |
PublicationTitleAlternate | Metab Eng Commun |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Futcher, Cox (bib12) 1984; 157 Cui, Ndinteh, Na, Thuong, Silike-Muruumu, Njamen, Mbafor, Fomum, Jong, Won (bib10) 2007; 70 Seki, Carninci, Nishiyama, Hayashizaki, Shinozaki (bib47) 1998; 15 Yoneyama, Akashi, Aoki (bib66) 2016; 57 Brown, Clastre, Courdavault, O’Connor (bib6) 2015; 112 Gietz, St Jean, Woods, Schiestl (bib14) 1992; 20 Ajikumar, Xiao, Tyo, Wang, Simeon, Leonard, Mucha, Phon, Pfeifer, Stephanopoulos (bib1) 2010 Roggenkamp, Numa, Schweizer (bib43) 1980; 77 Mori, Zhang, Awakawa, Hoshino, Okada, Morita, Abe (bib34) 2016; 7 Metzger, Keller, Stevenson, Heide, Lawson (bib32) 2010; 404 Sasaki, Mito, Ohara, Yamamoto, Yazaki (bib44) 2008; 146 Sasaki, Tsurumaru, Yamamoto, Yazaki (bib45) 2011; 286 Yazaki, Sasaki, Tsurumaru (bib62) 2009; 70 Yu, Liu, Xie, Zheng, Li (bib67) 2012; 287 Gerlt, Raushel (bib13) 2003; 7 Unsöld, Li (bib56) 2005; 151 Terao, Mukai (bib55) 2014; 559 Zhou, Yu, Xie, Li (bib70) 2015; 78 Mukai, Horikawa, Fujikura, Kawamura, Nemoto, Nikawa, Terao (bib35) 2012; 7 Yu, Xie, Li (bib68) 2011; 92 Sugiyama, Linley, Sasaki, Kumano, Yamamoto, Shitan, Ohara, Takanashi, Harada, Hasegawa, Terakawa, Kuzuyama, Yazaki (bib53) 2011; 13 Ozaki, Mishima, Nishiyama, Kuzuyama (bib40) 2009; 62 Grienke, Richter, Walther, Hoffmann, Kirchmair, Makarov, Nietzsche, Schmidtke, Rollinger (bib15) 2016; 6 Zhao (bib69) 2003; 133 Sasaki, Tsurumaru, Yazaki (bib46) 2009; 73 Li, Chen, Wang, Liu, Xie, Zou, Dai (bib29) 2014; 15 Chen, Mukwaya, Wong, Zhang (bib9) 2014; 52 Neves, Cidade, Pinto, Silva, Gales, Damas, Lima, Vasconcelos, Nascimento (bib37) 2011; 46 Sikorski, Hieter (bib52) 1989; 122 Koopman, Beekwilder, Crimi, van Houwelingen, Hall, Bosch, van Maris, Pronk, Daran (bib21) 2012; 11 Metzger, Schall, Zocher, Unsold, Stec, Li, Heide, Stehle (bib33) 2009; 106 Bonitz, Alva, Saleh, Lupas, Heide (bib4) 2011; 6 Kuete, Ango, Yeboah, Mbaveng, Mapitse, Kapche, Ngadjui, Efferth (bib24) 2014; 14 Winkelblech, Li (bib60) 2014; 15 Shin, Jung, Kim, Han, Seo (bib50) 2012; 51 Chen, Gao, Liu, Ruan, Zhang, Lou, Feng, Wunsch, Li, Dai, Sun (bib7) 2016; 13 Botta, Vitali, Menendez, Misiti, Monache (bib5) 2005; 12 Li, Ban, Qin, Ma, King, Wang (bib28) 2015; 167 Grotewold (bib16) 2006 Kretzschmar, Zierau, Wober, Tischer, Metz, Vollmer (bib23) 2010; 118 Fan, Zocher, Stec, Stehle, Li (bib11) 2015; 290 Vos, de la Torre Cortés, van Gulik, Pronk, Daran-Lapujade (bib57) 2015; 14 Liu, Noike, Minami, Oikawa, Dairi, Noike, Toshima, Oikawa, Dairi (bib30) 2013; 79 Chen, Liu, Zou, Yin, Ou, Li, Wang, Xie, Zhang, Dai (bib8) 2013; 355 Wang, Dunlap, Howell, Mbachu, Rue, Phansalkar, Chen, Pauli, Dietz, Bolton (bib59) 2016; 29 Ishii, Kondo, Makino, Ogura, Matsuda, Kondo (bib18) 2014; 14 Jost, Zocher, Tarcz, Matuschek, Xie, Li S (bib19) 2010; 132 Kumano, Richard, Noel, Nishiyama, Kuzuyama (bib25) 2008; 16 Wang, Chen, Li, Liu, Xie, Chen, Yin, Tao, Xie, Zou, Yang, Dai (bib58) 2014; 289 Levisson, Araya-Cloutier, de Bruijn, van der Heide, Salvador López, Daran, Vincken, Beekwilder (bib27) 2019 Kuzuyama, Noel, Richard (bib26) 2005; 435 Akashi, Sasaki, Aoki, Ayabe, Yazaki (bib2) 2009; 149 Kremer, Westrich, Li (bib22) 2007; 153 Grundmann, Li (bib17) 2005; 151 Yin, Yu, Xie, Li (bib63) 2010; 8 Presnyak, Alhusaini, Chen, Martin, Morris, Kline, Olson, Weinberg, Baker, Graveley, Coller (bib42) 2015; 160 Kawamura, Hayashi, Mukai, Terao, Nemoto (bib20) 2014; 46 Mark, Lyu, Ng, Chen (bib31) 2019; 4 Shen, Huhman, Lei, Snyder, Sumner, Dixon (bib49) 2012; 159 Mukai, Horikawa, Lin, Tsukumo, Nikawa, Kawamura, Nemoto, Terao (bib36) 2016; 311 Arung, Shimizu, Tanaka, Kondo (bib3) 2010; 81 Tello, Kuzuyama, Heide, Noel, Richard (bib54) 2008; 65 Yin, Grundmann, Cheng, Li (bib64) 2009; 284 Seki, Narusaka, Kamiya, Ishida, Satou, Sakurai, Nakajima, Enju, Akiyama, Oono, Muramatsu, Hayashizaki, Kawai, Carninci, Itoh, Ishii, Arakawa, Shibata, Shinagawa, Shinozaki (bib48) 2002; 296 Yin, Ruan, Westrich, Grundmann, Li (bib65) 2007; 8 Yang, Jiang, Yang, He, Sun, Chen, Zhang, Yang (bib61) 2015; 44 Okamura, Tomita, Sawa, Nishiyama, Kuzuyama (bib39) 2010; 107 Polakowski, Stahl, Lang (bib41) 1998; 49 Norkiene, Gedvilaite (bib38) 2012 Shindo, Tachibana, Tanaka, Toba, Yuki, Ozaki, Kumano, Nishiyama, Misawa, Kuzuyama (bib51) 2011; 75 Ishii (10.1016/j.mec.2021.e00169_bib18) 2014; 14 Kremer (10.1016/j.mec.2021.e00169_bib22) 2007; 153 Brown (10.1016/j.mec.2021.e00169_bib6) 2015; 112 Kawamura (10.1016/j.mec.2021.e00169_bib20) 2014; 46 Kuzuyama (10.1016/j.mec.2021.e00169_bib26) 2005; 435 Akashi (10.1016/j.mec.2021.e00169_bib2) 2009; 149 Sasaki (10.1016/j.mec.2021.e00169_bib45) 2011; 286 Koopman (10.1016/j.mec.2021.e00169_bib21) 2012; 11 Shin (10.1016/j.mec.2021.e00169_bib50) 2012; 51 Chen (10.1016/j.mec.2021.e00169_bib8) 2013; 355 Okamura (10.1016/j.mec.2021.e00169_bib39) 2010; 107 Polakowski (10.1016/j.mec.2021.e00169_bib41) 1998; 49 Gietz (10.1016/j.mec.2021.e00169_bib14) 1992; 20 Sikorski (10.1016/j.mec.2021.e00169_bib52) 1989; 122 Seki (10.1016/j.mec.2021.e00169_bib47) 1998; 15 Vos (10.1016/j.mec.2021.e00169_bib57) 2015; 14 Ozaki (10.1016/j.mec.2021.e00169_bib40) 2009; 62 Seki (10.1016/j.mec.2021.e00169_bib48) 2002; 296 Liu (10.1016/j.mec.2021.e00169_bib30) 2013; 79 Kuete (10.1016/j.mec.2021.e00169_bib24) 2014; 14 Futcher (10.1016/j.mec.2021.e00169_bib12) 1984; 157 Mukai (10.1016/j.mec.2021.e00169_bib35) 2012; 7 Cui (10.1016/j.mec.2021.e00169_bib10) 2007; 70 Botta (10.1016/j.mec.2021.e00169_bib5) 2005; 12 Tello (10.1016/j.mec.2021.e00169_bib54) 2008; 65 Unsöld (10.1016/j.mec.2021.e00169_bib56) 2005; 151 Grienke (10.1016/j.mec.2021.e00169_bib15) 2016; 6 Metzger (10.1016/j.mec.2021.e00169_bib33) 2009; 106 Wang (10.1016/j.mec.2021.e00169_bib59) 2016; 29 Wang (10.1016/j.mec.2021.e00169_bib58) 2014; 289 Li (10.1016/j.mec.2021.e00169_bib29) 2014; 15 Norkiene (10.1016/j.mec.2021.e00169_bib38) 2012 Roggenkamp (10.1016/j.mec.2021.e00169_bib43) 1980; 77 Yang (10.1016/j.mec.2021.e00169_bib61) 2015; 44 Grotewold (10.1016/j.mec.2021.e00169_bib16) 2006 Levisson (10.1016/j.mec.2021.e00169_bib27) 2019 Zhao (10.1016/j.mec.2021.e00169_bib69) 2003; 133 Yin (10.1016/j.mec.2021.e00169_bib64) 2009; 284 Zhou (10.1016/j.mec.2021.e00169_bib70) 2015; 78 Grundmann (10.1016/j.mec.2021.e00169_bib17) 2005; 151 Li (10.1016/j.mec.2021.e00169_bib28) 2015; 167 Sugiyama (10.1016/j.mec.2021.e00169_bib53) 2011; 13 Jost (10.1016/j.mec.2021.e00169_bib19) 2010; 132 Shindo (10.1016/j.mec.2021.e00169_bib51) 2011; 75 Yazaki (10.1016/j.mec.2021.e00169_bib62) 2009; 70 Kumano (10.1016/j.mec.2021.e00169_bib25) 2008; 16 Bonitz (10.1016/j.mec.2021.e00169_bib4) 2011; 6 Mark (10.1016/j.mec.2021.e00169_bib31) 2019; 4 Arung (10.1016/j.mec.2021.e00169_bib3) 2010; 81 Yu (10.1016/j.mec.2021.e00169_bib68) 2011; 92 Kretzschmar (10.1016/j.mec.2021.e00169_bib23) 2010; 118 Shen (10.1016/j.mec.2021.e00169_bib49) 2012; 159 Mukai (10.1016/j.mec.2021.e00169_bib36) 2016; 311 Yin (10.1016/j.mec.2021.e00169_bib65) 2007; 8 Gerlt (10.1016/j.mec.2021.e00169_bib13) 2003; 7 Neves (10.1016/j.mec.2021.e00169_bib37) 2011; 46 Yoneyama (10.1016/j.mec.2021.e00169_bib66) 2016; 57 Chen (10.1016/j.mec.2021.e00169_bib9) 2014; 52 Metzger (10.1016/j.mec.2021.e00169_bib32) 2010; 404 Winkelblech (10.1016/j.mec.2021.e00169_bib60) 2014; 15 Sasaki (10.1016/j.mec.2021.e00169_bib46) 2009; 73 Chen (10.1016/j.mec.2021.e00169_bib7) 2016; 13 Terao (10.1016/j.mec.2021.e00169_bib55) 2014; 559 Yu (10.1016/j.mec.2021.e00169_bib67) 2012; 287 Fan (10.1016/j.mec.2021.e00169_bib11) 2015; 290 Ajikumar (10.1016/j.mec.2021.e00169_bib1) 2010 Presnyak (10.1016/j.mec.2021.e00169_bib42) 2015; 160 Yin (10.1016/j.mec.2021.e00169_bib63) 2010; 8 Mori (10.1016/j.mec.2021.e00169_bib34) 2016; 7 Sasaki (10.1016/j.mec.2021.e00169_bib44) 2008; 146 |
References_xml | – year: 2006 ident: bib16 article-title: The science of flavonoids publication-title: The Science of Flavonoids – volume: 435 start-page: 983 year: 2005 end-page: 987 ident: bib26 article-title: Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products publication-title: Nature – volume: 151 start-page: 2199 year: 2005 end-page: 2207 ident: bib17 article-title: Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus publication-title: Microbiology – volume: 73 start-page: 759 year: 2009 end-page: 761 ident: bib46 article-title: Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1 publication-title: Biosci. Biotechnol. Biochem. – volume: 15 start-page: 707 year: 1998 end-page: 720 ident: bib47 article-title: High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper publication-title: Plant J. – volume: 286 start-page: 24125 year: 2011 end-page: 24134 ident: bib45 article-title: Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens publication-title: J. Biol. Chem. – volume: 12 start-page: 713 year: 2005 end-page: 739 ident: bib5 article-title: Prenylated flavonoids: pharmacology and biotechnology publication-title: Curr. Med. Chem. – volume: 65 start-page: 1459 year: 2008 end-page: 1463 ident: bib54 article-title: The ABBA family of aromatic prenyltransferases: broadening natural product diversity publication-title: Cell. Mol. Life Sci. – volume: 29 start-page: 1142 year: 2016 end-page: 1150 ident: bib59 article-title: Hop (humulus lupulus L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation publication-title: Chem. Res. Toxicol. – volume: 8 start-page: 1154 year: 2007 end-page: 1161 ident: bib65 article-title: CdpNPT, an N-prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation publication-title: Chembiochem – volume: 7 start-page: 1 year: 2012 end-page: 11 ident: bib35 article-title: Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice publication-title: PloS One – volume: 311 start-page: 3 year: 2016 end-page: 18 ident: bib36 article-title: 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 14 start-page: 133 year: 2015 ident: bib57 article-title: Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain publication-title: Microb. Cell Factories – volume: 46 start-page: 170 year: 2014 end-page: 174 ident: bib20 article-title: The first synthesis of uralenol, 5’-prenylated quercetin, via palladium-catalyzed O-dimethylallylation reaction with concurrent acetyl migration publication-title: Synth. Met. – volume: 49 start-page: 66 year: 1998 end-page: 71 ident: bib41 article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast publication-title: Appl. Microbiol. Biotechnol. – start-page: 1 year: 2012 end-page: 6 ident: bib38 article-title: Influence of codon bias on heterologous production of human papillomavirus Type 16 major structural protein L1 in yeast publication-title: Sci. World J. – volume: 78 start-page: 2229 year: 2015 end-page: 2235 ident: bib70 article-title: Complementary flavonoid prenylations by fungal indole prenyltransferases publication-title: J. Nat. Prod. – volume: 149 start-page: 683 year: 2009 end-page: 693 ident: bib2 article-title: Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin publication-title: Plant Physiol. – volume: 20 start-page: 1425 year: 1992 ident: bib14 article-title: Improved method for high efficiency transformation of intact yeast cells publication-title: Nucleic Acids Res. – volume: 287 start-page: 1371 year: 2012 end-page: 1380 ident: bib67 article-title: Biochemical characterization of indole prenyltransferases: filling the lastgapofprenylation positions bya5-dimethylallyltryptophan synthase from aspergillus clavatus publication-title: J. Biol. Chem. – volume: 133 start-page: 1306 year: 2003 end-page: 1313 ident: bib69 article-title: Characterization of leachianone G 2’’ -dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of Sophoraflavanone G in Sophora flavescens ait. Cell suspension cultures publication-title: Plant Physiol. – volume: 57 start-page: 2497 year: 2016 end-page: 2509 ident: bib66 article-title: Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: local gene and whole-genome duplications of prenyltransferase genes led to the structural diversity of soybean prenylated isoflavonoids publication-title: Plant Cell Physiol. – volume: 355 start-page: 1817 year: 2013 end-page: 1828 ident: bib8 article-title: Regio- and stereospecific prenylation of flavonoids by Sophora flavescens prenyltransferase publication-title: Adv. Synth. Catal. – start-page: 70 year: 2010 end-page: 74 ident: bib1 article-title: Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli publication-title: Science – volume: 16 start-page: 8117 year: 2008 end-page: 8126 ident: bib25 article-title: Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities publication-title: Bioorg. Med. Chem. – volume: 151 start-page: 1499 year: 2005 end-page: 1505 ident: bib56 article-title: Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus publication-title: Microbiology – volume: 159 start-page: 70 year: 2012 end-page: 80 ident: bib49 article-title: Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus publication-title: Plant Physiol. – volume: 14 start-page: 340 year: 2014 ident: bib24 article-title: Cytotoxicity of four Aframomum species (A. arundinaceum, A. alboviolaceum, A. kayserianum and A. polyanthum) towards multi-factorial drug resistant cancer cell lines publication-title: BMC Compl. Alternative Med. – volume: 52 start-page: 655 year: 2014 end-page: 660 ident: bib9 article-title: A systematic review on biological activities of prenylated flavonoids publication-title: Pharm. Biol. – volume: 7 start-page: 252 year: 2003 end-page: 264 ident: bib13 article-title: Evolution of function in (β/α)8-barrel enzymes publication-title: Curr. Opin. Chem. Biol. – volume: 107 start-page: 11265 year: 2010 end-page: 11270 ident: bib39 article-title: Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 296 start-page: 141 year: 2002 end-page: 145 ident: bib48 article-title: Functional annotation of a full-length Arabidopsis cDNA collection publication-title: Science – volume: 75 start-page: 505 year: 2011 end-page: 510 ident: bib51 article-title: Production of novel antioxidative prenyl naphthalen-ols by combinational bioconversion with dioxygenase PhnA1A2A3A4 and prenyltransferase NphB or SCO7190 publication-title: Biosci. Biotechnol. Biochem. – volume: 559 start-page: 12 year: 2014 end-page: 16 ident: bib55 article-title: Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids publication-title: Arch. Biochem. Biophys. – volume: 13 start-page: 629 year: 2011 end-page: 637 ident: bib53 article-title: Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases publication-title: Metab. Eng. – volume: 79 start-page: 199 year: 2013 end-page: 206 ident: bib30 article-title: Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD publication-title: Appl. Environ. Microbiol. – volume: 70 start-page: 1739 year: 2009 end-page: 1745 ident: bib62 article-title: Prenylation of aromatic compounds, a key diversification of plant secondary metabolites publication-title: Phytochemistry – volume: 153 start-page: 3409 year: 2007 end-page: 3416 ident: bib22 article-title: A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization publication-title: Microbiology – volume: 167 start-page: 650 year: 2015 end-page: 659 ident: bib28 article-title: A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway publication-title: Plant Physiol. – volume: 51 start-page: 211 year: 2012 end-page: 216 ident: bib50 article-title: Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae publication-title: Enzym. Microb. Technol. – volume: 62 start-page: 385 year: 2009 end-page: 392 ident: bib40 article-title: NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids publication-title: J. Antibiot. (Tokyo) – volume: 112 start-page: 3205 year: 2015 end-page: 3210 ident: bib6 article-title: De novo production of the plant-derived alkaloid strictosidine in yeast publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 11 start-page: 155 year: 2012 ident: bib21 article-title: De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae publication-title: Microb. Cell Factories – volume: 46 start-page: 2562 year: 2011 end-page: 2574 ident: bib37 article-title: Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis publication-title: Eur. J. Med. Chem. – volume: 92 start-page: 737 year: 2011 end-page: 748 ident: bib68 article-title: Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases publication-title: Appl. Microbiol. Biotechnol. – volume: 15 start-page: 1030 year: 2014 end-page: 1039 ident: bib60 article-title: Biochemical investigations of two 6-DMATS enzymes from streptomyces reveal new features of l -tryptophan prenyltransferases publication-title: Chembiochem – volume: 8 start-page: 2430 year: 2010 ident: bib63 article-title: Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT publication-title: Org. Biomol. Chem. – volume: 4 start-page: 12872 year: 2019 end-page: 12879 ident: bib31 article-title: Gene source screening as a tool for naringenin production in engineered saccharomyces cerevisiae publication-title: ACS Omega – volume: 284 start-page: 100 year: 2009 end-page: 109 ident: bib64 article-title: Acetylaszonalenin biosynthesis in neosartorya fischeri identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation publication-title: J. Biol. Chem. – volume: 146 start-page: 1075 year: 2008 end-page: 1084 ident: bib44 article-title: Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens publication-title: Plant Physiol. – volume: 6 start-page: 2 year: 2011 end-page: 9 ident: bib4 article-title: Evolutionary relationships of microbial aromatic prenyltransferases publication-title: PloS One – volume: 157 start-page: 283 year: 1984 end-page: 290 ident: bib12 article-title: Copy number and the stability of 2-μm circle-based artificial plasmids of Saccharomyces cerevisiae publication-title: J. Bacteriol. – volume: 404 start-page: 611 year: 2010 end-page: 626 ident: bib32 article-title: Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway publication-title: J. Mol. Biol. – volume: 160 start-page: 1111 year: 2015 end-page: 1124 ident: bib42 article-title: Codon optimality is a major determinant of mRNA stability publication-title: Cell – volume: 81 start-page: 640 year: 2010 end-page: 643 ident: bib3 article-title: 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus publication-title: Fitoterapia – volume: 290 start-page: 1364 year: 2015 end-page: 1373 ident: bib11 article-title: Site-directed mutagenesis switching a dimethylallyl tryptophan synthase to a specific tyrosine C3-prenylating enzyme publication-title: J. Biol. Chem. – volume: 14 start-page: 399 year: 2014 end-page: 411 ident: bib18 article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae publication-title: FEMS Yeast Res. – volume: 118 start-page: 1 year: 2010 end-page: 6 ident: bib23 article-title: Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein publication-title: J. Steroid Biochem. Mol. Biol. – volume: 77 start-page: 1814 year: 1980 end-page: 1817 ident: bib43 article-title: Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – year: 2019 ident: bib27 article-title: Toward developing a yeast cell factory for the production of prenylated flavonoids publication-title: J. Agric. Food Chem. ACS.jafc.9b01367 – volume: 289 start-page: 35815 year: 2014 end-page: 35825 ident: bib58 article-title: Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from morus alba and cudrania tricuspidata publication-title: J. Biol. Chem. – volume: 132 start-page: 17849 year: 2010 end-page: 17858 ident: bib19 article-title: Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 226 year: 2016 end-page: 234 ident: bib7 article-title: Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase publication-title: Nat. Chem. Biol. – volume: 6 start-page: 27156 year: 2016 ident: bib15 article-title: Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae publication-title: Sci. Rep. – volume: 106 start-page: 14309 year: 2009 end-page: 14314 ident: bib33 article-title: The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 44 start-page: 93 year: 2015 end-page: 104 ident: bib61 article-title: Prenylated flavonoids, promising nutraceuticals with impressive biological activities publication-title: Trends Food Sci. Technol. – volume: 7 start-page: 10849 year: 2016 ident: bib34 article-title: Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases publication-title: Nat. Commun. – volume: 15 start-page: 1673 year: 2014 end-page: 1681 ident: bib29 article-title: GuA6DT, a regiospecific prenyltransferase from glycyrrhiza uralensis, catalyzes the 6-prenylation of flavones publication-title: Chembiochem – volume: 70 start-page: 1039 year: 2007 end-page: 1042 ident: bib10 article-title: Isoprenylated flavonoids from the stem bark of Erythrina abyssinica publication-title: J. Nat. Prod. – volume: 122 start-page: 19 year: 1989 end-page: 27 ident: bib52 article-title: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae publication-title: Genetics – volume: 7 start-page: 252 year: 2003 ident: 10.1016/j.mec.2021.e00169_bib13 article-title: Evolution of function in (β/α)8-barrel enzymes publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(03)00019-X – volume: 14 start-page: 399 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib18 article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae publication-title: FEMS Yeast Res. doi: 10.1111/1567-1364.12138 – volume: 11 start-page: 155 year: 2012 ident: 10.1016/j.mec.2021.e00169_bib21 article-title: De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-11-155 – volume: 70 start-page: 1039 year: 2007 ident: 10.1016/j.mec.2021.e00169_bib10 article-title: Isoprenylated flavonoids from the stem bark of Erythrina abyssinica publication-title: J. Nat. Prod. doi: 10.1021/np060477+ – volume: 81 start-page: 640 year: 2010 ident: 10.1016/j.mec.2021.e00169_bib3 article-title: 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus publication-title: Fitoterapia doi: 10.1016/j.fitote.2010.03.011 – volume: 167 start-page: 650 year: 2015 ident: 10.1016/j.mec.2021.e00169_bib28 article-title: A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway publication-title: Plant Physiol. doi: 10.1104/pp.114.253682 – volume: 16 start-page: 8117 year: 2008 ident: 10.1016/j.mec.2021.e00169_bib25 article-title: Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2008.07.052 – volume: 46 start-page: 2562 year: 2011 ident: 10.1016/j.mec.2021.e00169_bib37 article-title: Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2011.03.047 – volume: 106 start-page: 14309 year: 2009 ident: 10.1016/j.mec.2021.e00169_bib33 article-title: The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0904897106 – volume: 311 start-page: 3 year: 2016 ident: 10.1016/j.mec.2021.e00169_bib36 article-title: 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00521.2015 – volume: 118 start-page: 1 year: 2010 ident: 10.1016/j.mec.2021.e00169_bib23 article-title: Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2009.08.005 – volume: 559 start-page: 12 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib55 article-title: Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2014.04.002 – year: 2019 ident: 10.1016/j.mec.2021.e00169_bib27 article-title: Toward developing a yeast cell factory for the production of prenylated flavonoids publication-title: J. Agric. Food Chem. ACS.jafc.9b01367 doi: 10.1021/acs.jafc.9b01367 – volume: 107 start-page: 11265 year: 2010 ident: 10.1016/j.mec.2021.e00169_bib39 article-title: Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1000532107 – volume: 151 start-page: 1499 year: 2005 ident: 10.1016/j.mec.2021.e00169_bib56 article-title: Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus publication-title: Microbiology doi: 10.1099/mic.0.27759-0 – volume: 14 start-page: 133 year: 2015 ident: 10.1016/j.mec.2021.e00169_bib57 article-title: Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain publication-title: Microb. Cell Factories doi: 10.1186/s12934-015-0321-6 – volume: 65 start-page: 1459 year: 2008 ident: 10.1016/j.mec.2021.e00169_bib54 article-title: The ABBA family of aromatic prenyltransferases: broadening natural product diversity publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-7579-3 – volume: 6 start-page: 2 year: 2011 ident: 10.1016/j.mec.2021.e00169_bib4 article-title: Evolutionary relationships of microbial aromatic prenyltransferases publication-title: PloS One doi: 10.1371/journal.pone.0027336 – volume: 151 start-page: 2199 year: 2005 ident: 10.1016/j.mec.2021.e00169_bib17 article-title: Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus publication-title: Microbiology doi: 10.1099/mic.0.27962-0 – volume: 435 start-page: 983 year: 2005 ident: 10.1016/j.mec.2021.e00169_bib26 article-title: Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products publication-title: Nature doi: 10.1038/nature03668 – volume: 296 start-page: 141 year: 2002 ident: 10.1016/j.mec.2021.e00169_bib48 article-title: Functional annotation of a full-length Arabidopsis cDNA collection publication-title: Science doi: 10.1126/science.1071006 – volume: 51 start-page: 211 year: 2012 ident: 10.1016/j.mec.2021.e00169_bib50 article-title: Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2012.06.005 – volume: 77 start-page: 1814 year: 1980 ident: 10.1016/j.mec.2021.e00169_bib43 article-title: Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.77.4.1814 – volume: 133 start-page: 1306 year: 2003 ident: 10.1016/j.mec.2021.e00169_bib69 article-title: Characterization of leachianone G 2’’ -dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of Sophoraflavanone G in Sophora flavescens ait. Cell suspension cultures publication-title: Plant Physiol. doi: 10.1104/pp.103.025213 – volume: 14 start-page: 340 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib24 article-title: Cytotoxicity of four Aframomum species (A. arundinaceum, A. alboviolaceum, A. kayserianum and A. polyanthum) towards multi-factorial drug resistant cancer cell lines publication-title: BMC Compl. Alternative Med. doi: 10.1186/1472-6882-14-340 – volume: 15 start-page: 1673 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib29 article-title: GuA6DT, a regiospecific prenyltransferase from glycyrrhiza uralensis, catalyzes the 6-prenylation of flavones publication-title: Chembiochem doi: 10.1002/cbic.201402160 – volume: 284 start-page: 100 year: 2009 ident: 10.1016/j.mec.2021.e00169_bib64 article-title: Acetylaszonalenin biosynthesis in neosartorya fischeri identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807606200 – volume: 8 start-page: 1154 year: 2007 ident: 10.1016/j.mec.2021.e00169_bib65 article-title: CdpNPT, an N-prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation publication-title: Chembiochem doi: 10.1002/cbic.200700079 – volume: 92 start-page: 737 year: 2011 ident: 10.1016/j.mec.2021.e00169_bib68 article-title: Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3351-y – volume: 122 start-page: 19 year: 1989 ident: 10.1016/j.mec.2021.e00169_bib52 article-title: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/122.1.19 – volume: 290 start-page: 1364 year: 2015 ident: 10.1016/j.mec.2021.e00169_bib11 article-title: Site-directed mutagenesis switching a dimethylallyl tryptophan synthase to a specific tyrosine C3-prenylating enzyme publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.623413 – volume: 355 start-page: 1817 year: 2013 ident: 10.1016/j.mec.2021.e00169_bib8 article-title: Regio- and stereospecific prenylation of flavonoids by Sophora flavescens prenyltransferase publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201300196 – volume: 79 start-page: 199 year: 2013 ident: 10.1016/j.mec.2021.e00169_bib30 article-title: Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02496-13 – volume: 6 start-page: 27156 year: 2016 ident: 10.1016/j.mec.2021.e00169_bib15 article-title: Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae publication-title: Sci. Rep. doi: 10.1038/srep27156 – volume: 13 start-page: 629 year: 2011 ident: 10.1016/j.mec.2021.e00169_bib53 article-title: Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases publication-title: Metab. Eng. doi: 10.1016/j.ymben.2011.07.003 – volume: 13 start-page: 226 year: 2016 ident: 10.1016/j.mec.2021.e00169_bib7 article-title: Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2263 – volume: 157 start-page: 283 year: 1984 ident: 10.1016/j.mec.2021.e00169_bib12 article-title: Copy number and the stability of 2-μm circle-based artificial plasmids of Saccharomyces cerevisiae publication-title: J. Bacteriol. doi: 10.1128/jb.157.1.283-290.1984 – volume: 46 start-page: 170 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib20 article-title: The first synthesis of uralenol, 5’-prenylated quercetin, via palladium-catalyzed O-dimethylallylation reaction with concurrent acetyl migration publication-title: Synth. Met. – year: 2006 ident: 10.1016/j.mec.2021.e00169_bib16 article-title: The science of flavonoids – volume: 20 start-page: 1425 year: 1992 ident: 10.1016/j.mec.2021.e00169_bib14 article-title: Improved method for high efficiency transformation of intact yeast cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/20.6.1425 – volume: 112 start-page: 3205 year: 2015 ident: 10.1016/j.mec.2021.e00169_bib6 article-title: De novo production of the plant-derived alkaloid strictosidine in yeast publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1423555112 – volume: 7 start-page: 1 year: 2012 ident: 10.1016/j.mec.2021.e00169_bib35 article-title: Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice publication-title: PloS One doi: 10.1371/journal.pone.0045048 – volume: 7 start-page: 10849 year: 2016 ident: 10.1016/j.mec.2021.e00169_bib34 article-title: Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases publication-title: Nat. Commun. doi: 10.1038/ncomms10849 – volume: 78 start-page: 2229 year: 2015 ident: 10.1016/j.mec.2021.e00169_bib70 article-title: Complementary flavonoid prenylations by fungal indole prenyltransferases publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.5b00422 – start-page: 1 year: 2012 ident: 10.1016/j.mec.2021.e00169_bib38 article-title: Influence of codon bias on heterologous production of human papillomavirus Type 16 major structural protein L1 in yeast publication-title: Sci. World J. doi: 10.1100/2012/979218 – volume: 289 start-page: 35815 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib58 article-title: Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from morus alba and cudrania tricuspidata publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.608265 – start-page: 70 issue: 330 year: 2010 ident: 10.1016/j.mec.2021.e00169_bib1 article-title: Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli publication-title: Science doi: 10.1126/science.1191652 – volume: 62 start-page: 385 year: 2009 ident: 10.1016/j.mec.2021.e00169_bib40 article-title: NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids publication-title: J. Antibiot. (Tokyo) doi: 10.1038/ja.2009.48 – volume: 49 start-page: 66 year: 1998 ident: 10.1016/j.mec.2021.e00169_bib41 article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051138 – volume: 404 start-page: 611 year: 2010 ident: 10.1016/j.mec.2021.e00169_bib32 article-title: Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.09.067 – volume: 146 start-page: 1075 year: 2008 ident: 10.1016/j.mec.2021.e00169_bib44 article-title: Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens publication-title: Plant Physiol. doi: 10.1104/pp.107.110544 – volume: 75 start-page: 505 year: 2011 ident: 10.1016/j.mec.2021.e00169_bib51 article-title: Production of novel antioxidative prenyl naphthalen-ols by combinational bioconversion with dioxygenase PhnA1A2A3A4 and prenyltransferase NphB or SCO7190 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.100731 – volume: 70 start-page: 1739 year: 2009 ident: 10.1016/j.mec.2021.e00169_bib62 article-title: Prenylation of aromatic compounds, a key diversification of plant secondary metabolites publication-title: Phytochemistry doi: 10.1016/j.phytochem.2009.08.023 – volume: 287 start-page: 1371 year: 2012 ident: 10.1016/j.mec.2021.e00169_bib67 article-title: Biochemical characterization of indole prenyltransferases: filling the lastgapofprenylation positions bya5-dimethylallyltryptophan synthase from aspergillus clavatus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.317982 – volume: 29 start-page: 1142 year: 2016 ident: 10.1016/j.mec.2021.e00169_bib59 article-title: Hop (humulus lupulus L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.6b00112 – volume: 4 start-page: 12872 year: 2019 ident: 10.1016/j.mec.2021.e00169_bib31 article-title: Gene source screening as a tool for naringenin production in engineered saccharomyces cerevisiae publication-title: ACS Omega doi: 10.1021/acsomega.9b00364 – volume: 8 start-page: 2430 year: 2010 ident: 10.1016/j.mec.2021.e00169_bib63 article-title: Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT publication-title: Org. Biomol. Chem. doi: 10.1039/c000587h – volume: 160 start-page: 1111 year: 2015 ident: 10.1016/j.mec.2021.e00169_bib42 article-title: Codon optimality is a major determinant of mRNA stability publication-title: Cell doi: 10.1016/j.cell.2015.02.029 – volume: 132 start-page: 17849 year: 2010 ident: 10.1016/j.mec.2021.e00169_bib19 article-title: Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106817c – volume: 12 start-page: 713 year: 2005 ident: 10.1016/j.mec.2021.e00169_bib5 article-title: Prenylated flavonoids: pharmacology and biotechnology publication-title: Curr. Med. Chem. doi: 10.2174/0929867053202241 – volume: 149 start-page: 683 year: 2009 ident: 10.1016/j.mec.2021.e00169_bib2 article-title: Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin publication-title: Plant Physiol. doi: 10.1104/pp.108.123679 – volume: 286 start-page: 24125 year: 2011 ident: 10.1016/j.mec.2021.e00169_bib45 article-title: Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.244426 – volume: 44 start-page: 93 year: 2015 ident: 10.1016/j.mec.2021.e00169_bib61 article-title: Prenylated flavonoids, promising nutraceuticals with impressive biological activities publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2015.03.007 – volume: 153 start-page: 3409 year: 2007 ident: 10.1016/j.mec.2021.e00169_bib22 article-title: A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization publication-title: Microbiology doi: 10.1099/mic.0.2007/009019-0 – volume: 73 start-page: 759 year: 2009 ident: 10.1016/j.mec.2021.e00169_bib46 article-title: Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.80729 – volume: 15 start-page: 707 year: 1998 ident: 10.1016/j.mec.2021.e00169_bib47 article-title: High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper publication-title: Plant J. doi: 10.1046/j.1365-313x.1998.00237.x – volume: 57 start-page: 2497 year: 2016 ident: 10.1016/j.mec.2021.e00169_bib66 article-title: Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: local gene and whole-genome duplications of prenyltransferase genes led to the structural diversity of soybean prenylated isoflavonoids publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw178 – volume: 159 start-page: 70 year: 2012 ident: 10.1016/j.mec.2021.e00169_bib49 article-title: Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus publication-title: Plant Physiol. doi: 10.1104/pp.112.195271 – volume: 15 start-page: 1030 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib60 article-title: Biochemical investigations of two 6-DMATS enzymes from streptomyces reveal new features of l -tryptophan prenyltransferases publication-title: Chembiochem doi: 10.1002/cbic.201400046 – volume: 52 start-page: 655 year: 2014 ident: 10.1016/j.mec.2021.e00169_bib9 article-title: A systematic review on biological activities of prenylated flavonoids publication-title: Pharm. Biol. doi: 10.3109/13880209.2013.853809 |
SSID | ssj0001361411 |
Score | 2.2788997 |
Snippet | Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative... |
SourceID | doaj pubmedcentral proquest pubmed crossref nii elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e00169 |
SubjectTerms | biochemical pathways Biology (General) Biotechnology dimethylallyltranstransferase Full Length genomics Naringenin phenylalanine Prenylflavonoids Prenylnaringenin Prenyltransferase QH301-705.5 regioselectivity synthesis TP248.13-248.65 tryptophan Yeast yeasts |
Title | Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases |
URI | https://dx.doi.org/10.1016/j.mec.2021.e00169 https://cir.nii.ac.jp/crid/1871428067821342080 https://www.ncbi.nlm.nih.gov/pubmed/33868922 https://www.proquest.com/docview/2515071483 https://www.proquest.com/docview/2524225287 https://pubmed.ncbi.nlm.nih.gov/PMC8040282 https://doaj.org/article/89ab52b2946141c69be1255b6649bb39 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOBQUb6aQisjcUIKJLFjO8eCWlVUcAAqerNix4ag1lt1dw_77ztjJ6sNQsuFS1ZKxhvZM5v3xpl9Q8gbB5AqbetzwEbcujE8b1HuTlrAPy7hw2Oi-PmLOLvgny7ry41WX1gTluSB08K9V01r6spUDQcgKa1ojANMro0QvDGGxb_uAeZtJFNxd4WhNWZbVVXyHHn_-EozFnddO5QvrMp3DjlPMwGlqN0_wab7oe__xkD_LKTcQKbTx2R3oJT0OE1lj9xz4Ql5tCE0-JT4b6sATA8M6E2SeAV30JmnqGi5ugK-2dHQxi2-0Ic57QNdYVMfimXxP3EMhINdzpZzet1H6Sa4YRq7iMzX3QIazp-Ri9OT7x_P8qHDQm4Frxc5oDNXvi46W8AJw4yHuUjBbces6mp4iDIjPS-cUIL70stWdcK23HuD3YZa9pzshFlw-4R2FXO8k50wpePKSAPEgAM7gpRONsKJjBTjEms7yI9jF4wrPdaZ_dbgFY1e0ckrGXm7HnKTtDe2GX9Av60NUTY7noBg0kMw6X8FU0b46HU9MJDELOCr-m33PoQIgWnhsYQUlOP7auBeJcPqhSIjr8fY0egurGsLDnymgV0iIeeKbbMBGgUHJTPyIsXbepaMKaGaqsqInETiZBmmV0L_K6qIK3h8g3MO_se6vSQPcTlSCd0rsrO4XbpDIGsLc0QeHJ9__XF-FH-fd4omOpI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+production+of+prenylated+naringenins+in+yeast+using+promiscuous+microbial+prenyltransferases&rft.jtitle=Metabolic+engineering+communications&rft.au=Isogai%2C+Shota&rft.au=Okahashi%2C+Nobuyuki&rft.au=Asama%2C+Ririka&rft.au=Nakamura%2C+Tomomi&rft.date=2021-06-01&rft.eissn=2214-0301&rft.volume=12&rft.spage=e00169&rft_id=info:doi/10.1016%2Fj.mec.2021.e00169&rft_id=info%3Apmid%2F33868922&rft.externalDocID=33868922 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon |