Progress in Research and Development on Hybrid Rice: A Super-domesticate in China
BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in Chi...
Saved in:
Published in | Annals of botany Vol. 100; no. 5; pp. 959 - 966 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.10.2007
Oxford Publishing Limited (England) |
Series | Review |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. SCOPE: By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. CONCLUSIONS: Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs. |
---|---|
AbstractList | Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. Scope By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. Conclusions Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs. China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits.BACKGROUNDChina has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits.By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region.SCOPEBy exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region.Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.CONCLUSIONSAdvances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs. China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs. Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. Scope By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. Conclusions Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs. • Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on finemapping quantitative trait loci (QTLs) for yield traits. • Scope By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined andyopomca-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. • Conclusions Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs. |
Author | Fan, Ye-Yang Zhuang, Jie-Yun Du, Jing-Hong Cao, Li-Yong Cheng, Shi-Hua |
AuthorAffiliation | Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology , China National Rice Research Institute (CNRRI) , Hangzhou 310006 , China |
AuthorAffiliation_xml | – name: Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology , China National Rice Research Institute (CNRRI) , Hangzhou 310006 , China |
Author_xml | – sequence: 1 fullname: Cheng, Shi-Hua – sequence: 2 fullname: Zhuang, Jie-Yun – sequence: 3 fullname: Fan, Ye-Yang – sequence: 4 fullname: Du, Jing-Hong – sequence: 5 fullname: Cao, Li-Yong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17704538$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1v0zAUxS00xLrBC-9AhAQPSGH-tsMD0lYYBU0C1iIhXizHcVqXJO7sZGL_Pa4yCkyIPVny_Z3je67vAdjrfGcBeIjgSwQLcqR9edSaFmF0B0zSDcslLuAemEACWS4Ip_vgIMY1hBDzAt0D-0gISBmRE_D5U_DLYGPMXJed22h1MKtMd1X2xl7axm9a2_WZ77LZVRlclZ07Y19lx9l82NiQV761sXdG93arn65cp--Du7Vuon1wfR6CxenbxXSWn3189356fJYbTlmfo5qjEtWS1ZChQsi6IAxXEhnBWcU1pgwJpmthKoGIQEyWrK5EBUVZY04xOQSvR9vNULa2MqnNoBu1Ca7V4Up57dTflc6t1NJfKixYgSFMBs-vDYK_GFIM1bpobNPozvohKi4pRJyRW0EqKC9o6vI2EEOOCiJ5Ap_eANd-CF2alkIFg6yQcvvs4z8D7pL9-rsEvBgBE3yMwda_Eai2i6HSYqhxMRIMb8DG9bp3fjsc1_xb8myU-GHzf-tHI7eOvQ87kmIJESHbtPlYd7G3P3Z1Hb4rLohgavb1m5qT6fREni7Uh8Q_Gflae6WXwUX1ZY6TF4QSSZpG8xORpujx |
CitedBy_id | crossref_primary_10_1007_s10725_010_9444_2 crossref_primary_10_3923_ijpbg_2011_194_208 crossref_primary_10_1007_s11103_021_01228_7 crossref_primary_10_1016_j_cj_2020_11_002 crossref_primary_10_1016_S2095_3119_16_61620_9 crossref_primary_10_26508_lsa_201900551 crossref_primary_10_3389_fpls_2021_621561 crossref_primary_10_3390_plants11070999 crossref_primary_10_3389_fpls_2023_1098125 crossref_primary_10_3389_fpls_2017_02023 crossref_primary_10_3390_agronomy10020171 crossref_primary_10_1017_S0014479724000048 crossref_primary_10_3724_SP_J_1006_2010_00133 crossref_primary_10_3390_genes12111688 crossref_primary_10_1093_jxb_eru337 crossref_primary_10_1111_eva_13022 crossref_primary_10_1080_17429145_2019_1629036 crossref_primary_10_1016_j_rsci_2022_08_001 crossref_primary_10_1038_cr_2016_115 crossref_primary_10_3389_fhort_2023_1250875 crossref_primary_10_1016_j_jgg_2018_10_002 crossref_primary_10_1186_s12284_023_00670_z crossref_primary_10_1093_jxb_erp095 crossref_primary_10_1016_j_fcr_2013_06_012 crossref_primary_10_1016_S2095_3119_15_61165_0 crossref_primary_10_3390_agronomy12102541 crossref_primary_10_3389_fpls_2017_02117 crossref_primary_10_1007_s10681_019_2528_9 crossref_primary_10_1016_j_fcr_2012_04_005 crossref_primary_10_3390_agronomy15010152 crossref_primary_10_1017_S0014479721000120 crossref_primary_10_1016_j_scienta_2016_12_031 crossref_primary_10_1016_j_fcr_2019_107625 crossref_primary_10_1186_s12870_021_03062_x crossref_primary_10_1073_pnas_2010255117 crossref_primary_10_3389_fpls_2016_00514 crossref_primary_10_3390_ijms252212344 crossref_primary_10_1016_S2095_3119_17_61802_1 crossref_primary_10_15586_QAS2020_699 crossref_primary_10_3390_plants12040892 crossref_primary_10_1016_j_xplc_2024_101192 crossref_primary_10_1016_S1671_2927_09_60194_2 crossref_primary_10_1016_j_crope_2023_10_001 crossref_primary_10_1093_pcp_pcx072 crossref_primary_10_3389_fpls_2017_02132 crossref_primary_10_1186_s12870_020_02442_z crossref_primary_10_1007_s00438_008_0422_6 crossref_primary_10_1002_pmic_200701164 crossref_primary_10_1007_s42106_021_00156_2 crossref_primary_10_1080_01904167_2016_1264421 crossref_primary_10_1093_plphys_kiad078 crossref_primary_10_1007_s11104_021_04877_1 crossref_primary_10_3724_SP_J_1006_2010_00466 crossref_primary_10_1016_j_gpb_2018_12_001 crossref_primary_10_1186_s12864_020_6561_9 crossref_primary_10_1146_annurev_arplant_050213_040119 crossref_primary_10_1016_j_aquaculture_2009_12_017 crossref_primary_10_2983_035_031_0425 crossref_primary_10_1002_agj2_20157 crossref_primary_10_3389_fpls_2022_1050882 crossref_primary_10_1007_s11032_019_1028_x crossref_primary_10_1016_j_fcr_2015_10_011 crossref_primary_10_1038_s42003_020_0887_3 crossref_primary_10_3724_SP_J_1005_2011_00414 crossref_primary_10_1007_s11427_016_0412_6 crossref_primary_10_1111_nph_16288 crossref_primary_10_1186_s12284_017_0182_1 crossref_primary_10_3389_fgene_2022_811124 crossref_primary_10_1016_j_rsci_2019_08_001 crossref_primary_10_1016_j_ygeno_2019_12_006 crossref_primary_10_1038_nbt_3709 crossref_primary_10_3389_fpls_2022_982240 crossref_primary_10_1111_jipb_12070 crossref_primary_10_1073_pnas_1213041110 crossref_primary_10_3389_fpls_2018_00999 crossref_primary_10_1111_j_1744_7909_2012_01172_x crossref_primary_10_1038_nplants_2016_77 crossref_primary_10_3390_plants12061309 crossref_primary_10_1007_s11032_020_01162_4 crossref_primary_10_1016_j_fcr_2014_07_017 crossref_primary_10_3390_genes13050808 crossref_primary_10_1111_pbi_13886 crossref_primary_10_1111_pbi_13766 crossref_primary_10_1016_S1875_2780_08_60119_4 crossref_primary_10_1038_srep26878 crossref_primary_10_1093_plphys_kiae385 crossref_primary_10_3390_ijms23115941 crossref_primary_10_1002_ldr_5417 crossref_primary_10_3390_agronomy13122961 crossref_primary_10_1016_j_agee_2011_05_005 crossref_primary_10_1016_j_cj_2013_11_002 crossref_primary_10_1007_s11434_009_0322_0 crossref_primary_10_1007_s00203_016_1325_2 crossref_primary_10_1007_s10725_017_0359_z crossref_primary_10_1016_S2095_3119_17_61771_4 crossref_primary_10_1007_s00122_009_1222_z crossref_primary_10_1016_S1002_0160_19_60809_X crossref_primary_10_1111_jph_13037 crossref_primary_10_1016_S1672_6308_13_60116_X crossref_primary_10_3389_fpls_2019_00094 crossref_primary_10_1038_s41598_017_02338_3 crossref_primary_10_1093_plphys_kiac076 crossref_primary_10_1007_s00425_024_04512_0 crossref_primary_10_1071_FP21346 crossref_primary_10_1007_s11099_016_0204_z crossref_primary_10_3390_agriculture13020384 crossref_primary_10_1016_j_hpj_2020_01_004 crossref_primary_10_1093_jrr_rrx024 crossref_primary_10_1002_pmic_201500070 crossref_primary_10_1080_1522886X_2010_518433 crossref_primary_10_1073_pnas_1511748112 crossref_primary_10_1080_15592324_2019_1679015 crossref_primary_10_1038_cr_2012_28 crossref_primary_10_1038_s41598_018_29338_1 crossref_primary_10_3390_agronomy13041094 crossref_primary_10_2135_cropsci2009_04_0175 crossref_primary_10_1007_s11032_018_0878_y crossref_primary_10_1038_s41467_017_01400_y crossref_primary_10_3390_ijms241310834 crossref_primary_10_15835_nbha49412555 crossref_primary_10_3390_agriculture11030226 crossref_primary_10_1016_j_molp_2017_01_001 crossref_primary_10_1007_s40003_014_0120_z crossref_primary_10_1016_S2095_3119_17_61819_7 crossref_primary_10_3390_agronomy9090516 crossref_primary_10_3390_agronomy8120290 crossref_primary_10_1007_s11032_019_1018_z crossref_primary_10_1007_s11104_024_06570_5 crossref_primary_10_3390_genes14040776 crossref_primary_10_1007_s42161_019_00336_0 crossref_primary_10_3390_life12081278 crossref_primary_10_1080_11263500903454237 crossref_primary_10_1038_nature19760 crossref_primary_10_1073_pnas_1306579110 crossref_primary_10_1080_00103624_2019_1589482 crossref_primary_10_1038_ncomms5884 crossref_primary_10_3389_fpls_2021_729021 crossref_primary_10_1016_j_fcr_2012_07_021 crossref_primary_10_3390_agronomy11010026 crossref_primary_10_15446_abc_v27n1_84269 crossref_primary_10_1016_j_jplph_2016_07_008 crossref_primary_10_1016_j_pbi_2007_12_006 crossref_primary_10_1016_j_xplc_2024_100811 crossref_primary_10_1016_j_fcr_2011_05_015 crossref_primary_10_1016_j_envint_2016_04_042 crossref_primary_10_1111_eea_12080 crossref_primary_10_1016_j_fcr_2013_08_016 crossref_primary_10_1002_pmic_201400103 crossref_primary_10_3389_fpls_2024_1505679 crossref_primary_10_1186_s12870_020_2291_z crossref_primary_10_1016_j_isprsjprs_2018_08_015 crossref_primary_10_1016_j_fcr_2022_108784 crossref_primary_10_1111_jipb_12053 crossref_primary_10_1007_s00497_017_0308_z crossref_primary_10_3389_fpls_2021_815401 crossref_primary_10_1002_jpln_201400304 crossref_primary_10_1016_j_fcr_2021_108124 crossref_primary_10_1016_j_fcr_2021_108123 crossref_primary_10_48130_seedbio_0024_0018 crossref_primary_10_1093_aob_mcn256 crossref_primary_10_15302_J_FASE_2015055 crossref_primary_10_1371_journal_pone_0107733 crossref_primary_10_3389_fpls_2021_630997 crossref_primary_10_1007_s11032_013_9835_y crossref_primary_10_1016_j_ncrops_2024_100056 crossref_primary_10_1038_s41598_018_27940_x crossref_primary_10_1016_j_molp_2020_03_002 crossref_primary_10_1111_jipb_13456 crossref_primary_10_1016_j_carbpol_2020_116237 crossref_primary_10_3389_fpls_2020_580050 crossref_primary_10_1186_s12870_019_1666_5 crossref_primary_10_3389_fsufs_2023_1071234 crossref_primary_10_1186_s12870_022_03502_2 crossref_primary_10_3724_SP_J_1006_2011_00842 crossref_primary_10_1186_s12284_017_0163_4 crossref_primary_10_1007_s10681_019_2368_7 crossref_primary_10_1016_j_jgg_2022_01_002 crossref_primary_10_1093_jxb_erx251 crossref_primary_10_3390_ijms241512395 crossref_primary_10_3389_fpls_2016_01394 crossref_primary_10_1016_j_rsci_2019_01_003 crossref_primary_10_1016_j_cj_2021_07_002 crossref_primary_10_1093_nsr_nww006 crossref_primary_10_1016_S2095_3119_17_61873_2 crossref_primary_10_1007_s11356_021_15956_2 crossref_primary_10_3390_plants11172249 crossref_primary_10_1016_j_atmosenv_2015_06_018 crossref_primary_10_1111_j_1365_2486_2009_02145_x crossref_primary_10_1038_srep21255 crossref_primary_10_1080_00220380903151033 crossref_primary_10_1186_s12284_014_0013_6 crossref_primary_10_1016_S2095_3119_13_60205_1 crossref_primary_10_1186_s12284_024_00688_x crossref_primary_10_1016_S1875_2780_09_60041_9 crossref_primary_10_1007_s10681_015_1384_5 crossref_primary_10_1088_1748_9326_aaa135 crossref_primary_10_1007_s00122_011_1755_9 crossref_primary_10_1007_s11356_017_9350_5 crossref_primary_10_3389_fpls_2022_778738 crossref_primary_10_1371_journal_pone_0181061 crossref_primary_10_1007_s00299_011_1004_3 crossref_primary_10_1016_S1875_2780_09_60030_4 crossref_primary_10_1007_s11434_008_0281_x crossref_primary_10_2134_agronj2017_07_0400 crossref_primary_10_1007_s11427_010_4094_1 crossref_primary_10_1186_1471_2229_12_215 crossref_primary_10_1038_srep37395 crossref_primary_10_1007_s00122_018_3085_7 crossref_primary_10_3390_plants13233404 crossref_primary_10_1111_pbr_12155 crossref_primary_10_1111_pbr_13241 crossref_primary_10_1111_jipb_12564 crossref_primary_10_1007_s10722_017_0600_7 crossref_primary_10_1016_S2095_3119_15_61215_1 crossref_primary_10_1016_j_gpb_2019_01_001 crossref_primary_10_1186_s12864_021_08163_3 crossref_primary_10_1016_j_rsci_2015_05_010 crossref_primary_10_3389_fpls_2018_01128 crossref_primary_10_1007_s12374_015_0402_4 crossref_primary_10_2135_cropsci2018_08_0486 crossref_primary_10_3390_plants12122276 crossref_primary_10_1007_s11032_015_0394_2 crossref_primary_10_1016_j_plaphy_2022_03_010 crossref_primary_10_1111_jipb_13640 crossref_primary_10_1007_s00299_016_1949_3 crossref_primary_10_1371_journal_pone_0160104 crossref_primary_10_1007_s10681_008_9653_1 crossref_primary_10_1016_j_rsci_2023_06_004 crossref_primary_10_1016_j_eja_2015_11_006 crossref_primary_10_3390_plants13081130 crossref_primary_10_3390_agronomy11020282 crossref_primary_10_1007_s11032_024_01471_y crossref_primary_10_3390_ijms24032212 crossref_primary_10_3390_plants13010062 crossref_primary_10_1007_s00477_016_1215_9 crossref_primary_10_1007_s11032_011_9555_0 crossref_primary_10_1007_s11103_018_0811_0 crossref_primary_10_1016_S1672_6308_12_60038_9 crossref_primary_10_1007_s00344_022_10606_4 crossref_primary_10_1007_s12041_011_0019_4 crossref_primary_10_1016_S2095_3119_15_61082_6 crossref_primary_10_1093_jxb_ery243 crossref_primary_10_1016_j_cj_2015_03_007 crossref_primary_10_1016_S1672_6308_12_60003_1 crossref_primary_10_3389_fpls_2020_00933 crossref_primary_10_1016_S2095_3119_16_61506_X crossref_primary_10_1002_ecs2_2646 crossref_primary_10_1073_pnas_1613792113 crossref_primary_10_1111_pbi_13189 crossref_primary_10_1073_pnas_1919086117 crossref_primary_10_1080_02664763_2021_2004581 crossref_primary_10_1016_j_fcr_2017_02_021 crossref_primary_10_1134_S2079059717040049 crossref_primary_10_1002_pld3_174 crossref_primary_10_1038_s41598_017_10727_x crossref_primary_10_1146_annurev_arplant_050718_100320 crossref_primary_10_3389_fpls_2018_01173 crossref_primary_10_3390_plants13162278 crossref_primary_10_1093_mp_ssq046 crossref_primary_10_1016_S1673_8527_09_60097_7 crossref_primary_10_1186_s12284_017_0179_9 crossref_primary_10_1038_s43016_021_00280_2 crossref_primary_10_1371_journal_pone_0093122 crossref_primary_10_1016_j_gene_2013_05_063 crossref_primary_10_1186_s12870_019_1944_2 crossref_primary_10_1038_s41598_023_36618_y crossref_primary_10_1111_jipb_12871 crossref_primary_10_1186_s12284_014_0022_5 crossref_primary_10_1007_s00425_020_03444_9 crossref_primary_10_1186_s12864_019_5435_5 crossref_primary_10_2135_cropsci2014_03_0185 crossref_primary_10_3732_ajb_1400119 crossref_primary_10_1007_s13355_017_0515_y crossref_primary_10_3390_d9030027 crossref_primary_10_1111_jipb_12425 crossref_primary_10_1007_s11694_018_9751_2 crossref_primary_10_1007_s11738_010_0523_9 crossref_primary_10_1371_journal_pone_0146242 crossref_primary_10_1038_s41467_019_11017_y crossref_primary_10_1016_j_pld_2020_07_003 crossref_primary_10_1038_srep40139 crossref_primary_10_1007_s11427_019_9531_7 crossref_primary_10_1016_j_jia_2022_08_076 crossref_primary_10_1016_j_rsci_2018_12_006 crossref_primary_10_1111_tpj_17004 crossref_primary_10_1016_j_molp_2021_08_007 crossref_primary_10_1111_jipb_13503 crossref_primary_10_1007_s00122_014_2289_8 crossref_primary_10_1016_S2095_3119_15_61228_X crossref_primary_10_1007_s11356_016_7089_z crossref_primary_10_1093_jxb_erp348 crossref_primary_10_3390_agronomy15020312 crossref_primary_10_1007_s10722_021_01249_7 crossref_primary_10_1016_j_jgg_2016_04_011 crossref_primary_10_3390_cells11111753 crossref_primary_10_1111_j_1744_7909_2011_01055_x crossref_primary_10_3390_agronomy10020209 crossref_primary_10_1007_s12010_011_9471_0 crossref_primary_10_1016_j_tplants_2009_12_003 crossref_primary_10_1016_j_ecolmodel_2015_10_026 crossref_primary_10_1270_jsbbs_16138 crossref_primary_10_1002_fes3_355 crossref_primary_10_1007_s11738_011_0765_1 crossref_primary_10_1111_pbr_12435 crossref_primary_10_1002_csc2_20150 crossref_primary_10_1007_s00122_019_03363_8 crossref_primary_10_1016_j_cj_2021_03_018 crossref_primary_10_1371_journal_pone_0168134 crossref_primary_10_1007_s40362_014_0018_y crossref_primary_10_1016_j_jksus_2022_101906 crossref_primary_10_1111_pbi_12181 crossref_primary_10_1016_j_plaphy_2018_04_020 crossref_primary_10_1038_s41598_017_15241_8 crossref_primary_10_1038_ng_2570 crossref_primary_10_1371_journal_pone_0104950 crossref_primary_10_1111_pbr_12329 crossref_primary_10_1007_s10681_017_2091_1 crossref_primary_10_1111_pbr_12689 crossref_primary_10_1186_1471_2164_14_19 crossref_primary_10_1007_s10681_018_2128_0 crossref_primary_10_1155_2016_9236573 crossref_primary_10_1038_s41598_020_59751_4 crossref_primary_10_1007_s13258_014_0205_x crossref_primary_10_1016_j_cj_2018_12_011 crossref_primary_10_3389_fgene_2022_876198 crossref_primary_10_3390_agronomy14061218 crossref_primary_10_1007_s00438_017_1396_z crossref_primary_10_1002_fes3_210 crossref_primary_10_1080_23311932_2024_2302209 crossref_primary_10_3724_SP_J_1006_2012_01471 crossref_primary_10_1093_jxb_erab382 crossref_primary_10_1007_s13562_023_00869_7 crossref_primary_10_1016_j_xplc_2024_101220 crossref_primary_10_1038_s41477_022_01142_w crossref_primary_10_1093_plphys_kiad654 crossref_primary_10_1111_pbi_14140 crossref_primary_10_3390_ijms22115585 crossref_primary_10_1590_1678_4685_gmb_2016_0093 crossref_primary_10_1016_j_sjbs_2021_04_058 crossref_primary_10_1093_jxb_err205 crossref_primary_10_1016_j_jgg_2020_10_006 crossref_primary_10_1007_s10681_014_1103_7 crossref_primary_10_3390_rs13010086 crossref_primary_10_1016_j_fcr_2017_01_001 crossref_primary_10_1111_jph_13087 crossref_primary_10_1111_jipb_12804 crossref_primary_10_1007_s11427_023_2547_2 crossref_primary_10_1186_1471_2164_14_61 crossref_primary_10_1186_s12284_021_00521_9 crossref_primary_10_3136_fstr_24_687 crossref_primary_10_3724_SP_J_1006_2009_02225 crossref_primary_10_32615_ps_2019_106 crossref_primary_10_1016_j_cj_2021_02_003 crossref_primary_10_3389_fpls_2017_00711 crossref_primary_10_1016_S1002_0160_17_60393_X crossref_primary_10_1016_j_fcr_2009_04_004 crossref_primary_10_1111_pbr_12751 crossref_primary_10_1016_S1672_6308_13_60184_5 crossref_primary_10_1016_S2095_3119_19_62838_8 crossref_primary_10_3389_fpls_2016_01960 crossref_primary_10_1038_s41598_017_06742_7 crossref_primary_10_1007_s11032_025_01545_5 crossref_primary_10_1111_jipb_12912 crossref_primary_10_3390_agronomy12061249 crossref_primary_10_1007_s11032_016_0592_6 crossref_primary_10_1093_jxb_err263 crossref_primary_10_3389_fpls_2017_01818 crossref_primary_10_1016_j_rsci_2018_04_001 crossref_primary_10_1038_ncomms7258 crossref_primary_10_1111_tpj_16217 crossref_primary_10_1038_srep38205 crossref_primary_10_1186_s12870_022_03695_6 crossref_primary_10_1270_jsbbs_17155 crossref_primary_10_1016_S1875_2780_11_60024_2 crossref_primary_10_1007_s00425_021_03700_6 crossref_primary_10_1016_j_jgg_2024_01_007 crossref_primary_10_1016_j_fcr_2012_09_001 crossref_primary_10_1021_jf405688d crossref_primary_10_1007_s11032_021_01256_7 crossref_primary_10_3389_fpls_2020_00619 crossref_primary_10_3390_ijms23158354 crossref_primary_10_1093_jxb_erp294 crossref_primary_10_3724_SP_J_1006_2011_01020 crossref_primary_10_1016_S2095_3119_12_60159_2 crossref_primary_10_1038_s41598_018_23977_0 crossref_primary_10_1007_s11032_012_9829_1 crossref_primary_10_1186_s12284_021_00510_y crossref_primary_10_3390_agronomy8120305 crossref_primary_10_3724_SP_J_1006_2009_01106 crossref_primary_10_1270_jsbbs_16044 crossref_primary_10_1186_1471_2156_15_49 crossref_primary_10_3390_ijms15033799 crossref_primary_10_1016_j_fcr_2014_04_013 crossref_primary_10_1111_pbr_12668 crossref_primary_10_3390_agronomy8090191 crossref_primary_10_3389_fpls_2022_945105 crossref_primary_10_1186_s12284_019_0294_x |
ContentType | Journal Article |
Copyright | Annals of Botany Company 2007 2007 The Author(s) 2007 2007 The Author(s) |
Copyright_xml | – notice: Annals of Botany Company 2007 – notice: 2007 The Author(s) 2007 – notice: 2007 The Author(s) |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 7T7 7TM 8FD C1K FR3 K9. P64 RC3 F1W H95 L.G 7S9 L.6 7X8 5PM |
DOI | 10.1093/aob/mcm121 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources AGRICOLA MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Agriculture |
EISSN | 1095-8290 |
EndPage | 966 |
ExternalDocumentID | PMC2759200 1368656751 17704538 10_1093_aob_mcm121 10.1093/aob/mcm121 42801336 ark_67375_HXZ_S3CCB8FT_J US201300818483 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GeographicLocations | China China, People's Rep |
GeographicLocations_xml | – name: China – name: China, People's Rep |
GroupedDBID | --- --K -DZ -E4 -~X .2P .I3 0R~ 1B1 1TH 1~5 23M 2WC 2~F 4.4 482 48X 4G. 53G 5GY 5VS 5WA 5WD 6.Y 6J9 7-5 70D 71M 79B A8Z AABJS AABMN AACTN AAEDT AAESY AAIMJ AAIYJ AAJKP AAJQQ AALCJ AALRI AAMDB AAMVS AANRK AAOGV AAPQZ AAPXW AAQFI AAQXK AAUQX AAVAP AAVLN AAWDT AAXTN AAXUO ABBHK ABDBF ABEFU ABEUO ABIXL ABJNI ABLJU ABNKS ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABWST ABXZS ABZBJ ACFRR ACGFO ACGFS ACIWK ACNCT ACPQN ACPRK ACUFI ACUTJ ADBBV ADEIU ADEYI ADEZT ADFGL ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADMUD ADOCK ADORX ADQLU ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFDAS AFFNX AFFZL AFGWE AFIYH AFMIJ AFOFC AFRAH AFSWV AFXEN AFYAG AGINJ AGKEF AGKRT AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AIKOY AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD AOIJS APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATTQO AVWKF AXUDD AYOIW AZFZN AZQFJ BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BYORX C1A CAG CASEJ CDBKE COF CS3 CXTWN CZ4 DAKXR DATOO DFEDG DFGAJ DILTD DM4 DPORF DPPUQ D~K E3Z EBD EBS EDH EE~ EJD ELUNK EMOBN ESTFP ESX F5P F9B FA8 FBQ FDB FEDTE FGOYB FHSFR FIRID FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H5~ HAR HVGLF HW0 HYE HZ~ IHE IOX J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KAQDR KBUDW KC5 KOP KQ8 KSI KSN LG5 M-Z M49 MBTAY N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O-L O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF OZT O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R2- R44 RD5 RIG RNI ROL ROX ROZ RPM RPZ RUSNO RW1 RXO RZF RZO SA0 SSZ SV3 TCN TEORI TLC TN5 TR2 UHS UPT VH1 W8F WH7 WOQ X7H XOL XPP Y6R YAYTL YKOAZ YSK YXANX YZZ ZCG ZKX ZMT ~02 ~91 ~KM AARHZ AAUAY AAYWO ABDFA ABDPE ABEJV ABGNP ABIME ABMNT ABNGD ABPIB ABPQP ABVGC ABWVN ABXSQ ABXVV ABZEO ACHIC ACRPL ACUHS ACUKT ACVCV ACZBC ADNBA ADNMO ADQBN ADXHL AEHUL AFSHK AGMDO AGORE AGQPQ AHGBF AJBYB AJDVS AJNCP AKRWK AQVQM ATGXG BSCLL H13 IPSME JXSIZ AASNB ACMRT ADACV AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 7T7 7TM 8FD C1K FR3 K9. P64 RC3 F1W H95 L.G 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c645t-1f61b1f85f051978f9352d81c765d6a245175af7cd7137158b5fd7d07bf26423 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 14:14:26 EDT 2025 Fri Jul 11 10:30:37 EDT 2025 Fri Jul 11 10:20:19 EDT 2025 Fri Jul 11 13:15:36 EDT 2025 Mon Jun 30 08:50:03 EDT 2025 Mon Jul 21 06:03:26 EDT 2025 Tue Jul 01 01:39:01 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 Wed Aug 28 03:24:03 EDT 2024 Sun Aug 24 12:10:22 EDT 2025 Tue Aug 05 16:49:11 EDT 2025 Wed Dec 27 19:12:13 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Hybrid rice inter-subspecies molecular marker-assisted selection quantitative trait loci cytoplasmic male sterility DNA marker |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c645t-1f61b1f85f051978f9352d81c765d6a245175af7cd7137158b5fd7d07bf26423 |
Notes | http://aob.oupjournals.org/ istex:1D763E215AE643D0A66E4A3B13EECBD5CF354080 ArticleID:mcm121 ark:/67375/HXZ-S3CCB8FT-J ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2759200 |
PMID | 17704538 |
PQID | 195059883 |
PQPubID | 32848 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2759200 proquest_miscellaneous_68401653 proquest_miscellaneous_47469471 proquest_miscellaneous_20619386 proquest_journals_195059883 pubmed_primary_17704538 crossref_primary_10_1093_aob_mcm121 crossref_citationtrail_10_1093_aob_mcm121 oup_primary_10_1093_aob_mcm121 jstor_primary_42801336 istex_primary_ark_67375_HXZ_S3CCB8FT_J fao_agris_US201300818483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationSeriesTitle | Review |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2007 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | 24185883 - Theor Appl Genet. 1994 Apr;88(1):65-9 12582891 - Theor Appl Genet. 2002 Dec;105(8):1137-1145 11514459 - Genetics. 2001 Aug;158(4):1737-53 24166385 - Theor Appl Genet. 1996 May;92(6):637-43 18726413 - Sci China C Life Sci. 2001 Jun;44(3):327-36 11038567 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226-31 15657740 - Theor Appl Genet. 2005 Feb;110(4):634-9 15966313 - Sheng Wu Gong Cheng Xue Bao. 2003 Mar;19(2):153-7 24162533 - Theor Appl Genet. 1996 Dec;93(8):1218-24 15856160 - Theor Appl Genet. 2005 Jun;111(1):50-6 7498751 - Genetics. 1995 Jun;140(2):745-54 12524357 - Genetics. 2002 Dec;162(4):1885-95 24172933 - Theor Appl Genet. 1995 May;90(6):878-84 |
References_xml | – reference: 15856160 - Theor Appl Genet. 2005 Jun;111(1):50-6 – reference: 24166385 - Theor Appl Genet. 1996 May;92(6):637-43 – reference: 24162533 - Theor Appl Genet. 1996 Dec;93(8):1218-24 – reference: 11038567 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226-31 – reference: 12582891 - Theor Appl Genet. 2002 Dec;105(8):1137-1145 – reference: 15966313 - Sheng Wu Gong Cheng Xue Bao. 2003 Mar;19(2):153-7 – reference: 15657740 - Theor Appl Genet. 2005 Feb;110(4):634-9 – reference: 11514459 - Genetics. 2001 Aug;158(4):1737-53 – reference: 12524357 - Genetics. 2002 Dec;162(4):1885-95 – reference: 18726413 - Sci China C Life Sci. 2001 Jun;44(3):327-36 – reference: 24185883 - Theor Appl Genet. 1994 Apr;88(1):65-9 – reference: 7498751 - Genetics. 1995 Jun;140(2):745-54 – reference: 24172933 - Theor Appl Genet. 1995 May;90(6):878-84 |
SSID | ssj0002691 |
Score | 2.4259663 |
SecondaryResourceType | review_article |
Snippet | BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better... Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better... • Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential,... Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better... China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain... |
SourceID | pubmedcentral proquest pubmed crossref oup jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 959 |
SubjectTerms | abiotic stress Agriculture Agriculture - trends Breeding China Chromosome Mapping Crop production Crops, Agricultural Crops, Agricultural - genetics crossing cytoplasmic male sterility Disease resistance DNA marker Freshwater Gene mapping Genetic diversity Genetic Markers genetic variation genetics Grains Heterosis Hybrid rice Hybridity Hybridization, Genetic Hybrids inter-subspecies major genes Male sterility marker-assisted selection Molecular genetics molecular marker-assisted selection Oryza Oryza - genetics Oryza sativa Phenotypic traits Plant breeding Plant Infertility Population characteristics Population genetics Quantitative Trait Loci R&D Research & development research and development restorer lines REVIEW Rice trends |
Title | Progress in Research and Development on Hybrid Rice: A Super-domesticate in China |
URI | https://api.istex.fr/ark:/67375/HXZ-S3CCB8FT-J/fulltext.pdf https://www.jstor.org/stable/42801336 https://www.ncbi.nlm.nih.gov/pubmed/17704538 https://www.proquest.com/docview/195059883 https://www.proquest.com/docview/20619386 https://www.proquest.com/docview/47469471 https://www.proquest.com/docview/68401653 https://pubmed.ncbi.nlm.nih.gov/PMC2759200 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZK4cAF8SoNhRIJhMTB7eZhO-FWqlarqiqgbqVtL5bzcHcFm1RtIgE_g1_MTOykSV8CLlFkT-IkMxl_M54ZE_IOphXlZ5pRQN-KhpwnNOFxQL1EZzkAdgXWHEZbHPDxUbg3ZdOlpd-9qKW6SjbSXzfmlfwPV6EN-IpZsv_A2e6m0ADnwF84Aofh-Fc8_oLBVaiq5kUXQmdji7tQIFwNGP_EvCxMoreZ6If1WX5Os3KBNTYwJqpJ_mu30t64Vlw5KatWaTShALl1Ms_mdFx3iv1kVlvv8948p8d1J3e7xst6DI3KzpQNdjakxSkdl7a59T-ILpKt6uc19pxmNjMLEbLdiKR1atg8rRGjIjC1yzdyo3YB6FFc0h3o5dGoJ4Csp2VjU0T8mvY3lbFUmcBxkS48k3s9LLJ98FnuHu3vy8nOdDLsNTZRwCOAuAKz8u_7YHr4rQfIzu4-N7swtm_RlryNg00YeNMMOwA597QqwfTBv_ZHG_V6JZ2yZ9VcDc7toZ3JY_LIminulpG5J2QpL56SB58aMXhGvraC584LtxU8F1jg9gTPLQvXCJ6LgvfR3XKviR1e34jdczLZ3Zlsj6ndm4OmPGQV9TT3Ek9HTKMNICIdA5LPIi8VnGVc-SEDXKq0SDPhBcJjUcJ0JrKRSDRAcD9YIctFWeSrxI3gNn6WcZ2oPEzTUPmjONOaJwjfcp055EP7LWVq69bj9infpYmfCCR8d2m-u0PedrRnplrLjVSrwBKpTmEalUeHPi7eY2XHMAoc8r7hU3e1Ov-GoY-CyfH0RB4G29vof5Z7DllpGNkRghkP9wm4Q9aBs3eOvtYyXVpdciFxM2YWR_gAb7peUPS4eqeKvKwvpA_IOw4ifjtFKEIeA9i8nQIrO3mcwSgvjJBdPqcQYNwFkUPEQPw6AixDP-wp5rOmHL0vWAyK4eWd77VGHl4qj1dkuTqv89cA56tkvfm__gBifPSr |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+Research+and+Development+on+Hybrid+Rice%3A+A+Super-domesticate+in+China&rft.jtitle=Annals+of+botany&rft.au=Cheng%2C+Shi-Hua&rft.au=Zhuang%2C+Jie-Yun&rft.au=Fan%2C+Ye-Yang&rft.au=Du%2C+Jing-Hong&rft.date=2007-10-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=100&rft.issue=5&rft.spage=959&rft_id=info:doi/10.1093%2Faob%2Fmcm121&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1368656751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |