Progress in Research and Development on Hybrid Rice: A Super-domesticate in China

BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in Chi...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 100; no. 5; pp. 959 - 966
Main Authors Cheng, Shi-Hua, Zhuang, Jie-Yun, Fan, Ye-Yang, Du, Jing-Hong, Cao, Li-Yong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2007
Oxford Publishing Limited (England)
SeriesReview
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. SCOPE: By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. CONCLUSIONS: Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.
AbstractList Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. Scope By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. Conclusions Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.
China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits.BACKGROUNDChina has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits.By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region.SCOPEBy exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region.Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.CONCLUSIONSAdvances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.
China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.
Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. Scope By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. Conclusions Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.
• Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on finemapping quantitative trait loci (QTLs) for yield traits. • Scope By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined andyopomca-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. • Conclusions Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.
Author Fan, Ye-Yang
Zhuang, Jie-Yun
Du, Jing-Hong
Cao, Li-Yong
Cheng, Shi-Hua
AuthorAffiliation Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology , China National Rice Research Institute (CNRRI) , Hangzhou 310006 , China
AuthorAffiliation_xml – name: Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology , China National Rice Research Institute (CNRRI) , Hangzhou 310006 , China
Author_xml – sequence: 1
  fullname: Cheng, Shi-Hua
– sequence: 2
  fullname: Zhuang, Jie-Yun
– sequence: 3
  fullname: Fan, Ye-Yang
– sequence: 4
  fullname: Du, Jing-Hong
– sequence: 5
  fullname: Cao, Li-Yong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17704538$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1v0zAUxS00xLrBC-9AhAQPSGH-tsMD0lYYBU0C1iIhXizHcVqXJO7sZGL_Pa4yCkyIPVny_Z3je67vAdjrfGcBeIjgSwQLcqR9edSaFmF0B0zSDcslLuAemEACWS4Ip_vgIMY1hBDzAt0D-0gISBmRE_D5U_DLYGPMXJed22h1MKtMd1X2xl7axm9a2_WZ77LZVRlclZ07Y19lx9l82NiQV761sXdG93arn65cp--Du7Vuon1wfR6CxenbxXSWn3189356fJYbTlmfo5qjEtWS1ZChQsi6IAxXEhnBWcU1pgwJpmthKoGIQEyWrK5EBUVZY04xOQSvR9vNULa2MqnNoBu1Ca7V4Up57dTflc6t1NJfKixYgSFMBs-vDYK_GFIM1bpobNPozvohKi4pRJyRW0EqKC9o6vI2EEOOCiJ5Ap_eANd-CF2alkIFg6yQcvvs4z8D7pL9-rsEvBgBE3yMwda_Eai2i6HSYqhxMRIMb8DG9bp3fjsc1_xb8myU-GHzf-tHI7eOvQ87kmIJESHbtPlYd7G3P3Z1Hb4rLohgavb1m5qT6fREni7Uh8Q_Gflae6WXwUX1ZY6TF4QSSZpG8xORpujx
CitedBy_id crossref_primary_10_1007_s10725_010_9444_2
crossref_primary_10_3923_ijpbg_2011_194_208
crossref_primary_10_1007_s11103_021_01228_7
crossref_primary_10_1016_j_cj_2020_11_002
crossref_primary_10_1016_S2095_3119_16_61620_9
crossref_primary_10_26508_lsa_201900551
crossref_primary_10_3389_fpls_2021_621561
crossref_primary_10_3390_plants11070999
crossref_primary_10_3389_fpls_2023_1098125
crossref_primary_10_3389_fpls_2017_02023
crossref_primary_10_3390_agronomy10020171
crossref_primary_10_1017_S0014479724000048
crossref_primary_10_3724_SP_J_1006_2010_00133
crossref_primary_10_3390_genes12111688
crossref_primary_10_1093_jxb_eru337
crossref_primary_10_1111_eva_13022
crossref_primary_10_1080_17429145_2019_1629036
crossref_primary_10_1016_j_rsci_2022_08_001
crossref_primary_10_1038_cr_2016_115
crossref_primary_10_3389_fhort_2023_1250875
crossref_primary_10_1016_j_jgg_2018_10_002
crossref_primary_10_1186_s12284_023_00670_z
crossref_primary_10_1093_jxb_erp095
crossref_primary_10_1016_j_fcr_2013_06_012
crossref_primary_10_1016_S2095_3119_15_61165_0
crossref_primary_10_3390_agronomy12102541
crossref_primary_10_3389_fpls_2017_02117
crossref_primary_10_1007_s10681_019_2528_9
crossref_primary_10_1016_j_fcr_2012_04_005
crossref_primary_10_3390_agronomy15010152
crossref_primary_10_1017_S0014479721000120
crossref_primary_10_1016_j_scienta_2016_12_031
crossref_primary_10_1016_j_fcr_2019_107625
crossref_primary_10_1186_s12870_021_03062_x
crossref_primary_10_1073_pnas_2010255117
crossref_primary_10_3389_fpls_2016_00514
crossref_primary_10_3390_ijms252212344
crossref_primary_10_1016_S2095_3119_17_61802_1
crossref_primary_10_15586_QAS2020_699
crossref_primary_10_3390_plants12040892
crossref_primary_10_1016_j_xplc_2024_101192
crossref_primary_10_1016_S1671_2927_09_60194_2
crossref_primary_10_1016_j_crope_2023_10_001
crossref_primary_10_1093_pcp_pcx072
crossref_primary_10_3389_fpls_2017_02132
crossref_primary_10_1186_s12870_020_02442_z
crossref_primary_10_1007_s00438_008_0422_6
crossref_primary_10_1002_pmic_200701164
crossref_primary_10_1007_s42106_021_00156_2
crossref_primary_10_1080_01904167_2016_1264421
crossref_primary_10_1093_plphys_kiad078
crossref_primary_10_1007_s11104_021_04877_1
crossref_primary_10_3724_SP_J_1006_2010_00466
crossref_primary_10_1016_j_gpb_2018_12_001
crossref_primary_10_1186_s12864_020_6561_9
crossref_primary_10_1146_annurev_arplant_050213_040119
crossref_primary_10_1016_j_aquaculture_2009_12_017
crossref_primary_10_2983_035_031_0425
crossref_primary_10_1002_agj2_20157
crossref_primary_10_3389_fpls_2022_1050882
crossref_primary_10_1007_s11032_019_1028_x
crossref_primary_10_1016_j_fcr_2015_10_011
crossref_primary_10_1038_s42003_020_0887_3
crossref_primary_10_3724_SP_J_1005_2011_00414
crossref_primary_10_1007_s11427_016_0412_6
crossref_primary_10_1111_nph_16288
crossref_primary_10_1186_s12284_017_0182_1
crossref_primary_10_3389_fgene_2022_811124
crossref_primary_10_1016_j_rsci_2019_08_001
crossref_primary_10_1016_j_ygeno_2019_12_006
crossref_primary_10_1038_nbt_3709
crossref_primary_10_3389_fpls_2022_982240
crossref_primary_10_1111_jipb_12070
crossref_primary_10_1073_pnas_1213041110
crossref_primary_10_3389_fpls_2018_00999
crossref_primary_10_1111_j_1744_7909_2012_01172_x
crossref_primary_10_1038_nplants_2016_77
crossref_primary_10_3390_plants12061309
crossref_primary_10_1007_s11032_020_01162_4
crossref_primary_10_1016_j_fcr_2014_07_017
crossref_primary_10_3390_genes13050808
crossref_primary_10_1111_pbi_13886
crossref_primary_10_1111_pbi_13766
crossref_primary_10_1016_S1875_2780_08_60119_4
crossref_primary_10_1038_srep26878
crossref_primary_10_1093_plphys_kiae385
crossref_primary_10_3390_ijms23115941
crossref_primary_10_1002_ldr_5417
crossref_primary_10_3390_agronomy13122961
crossref_primary_10_1016_j_agee_2011_05_005
crossref_primary_10_1016_j_cj_2013_11_002
crossref_primary_10_1007_s11434_009_0322_0
crossref_primary_10_1007_s00203_016_1325_2
crossref_primary_10_1007_s10725_017_0359_z
crossref_primary_10_1016_S2095_3119_17_61771_4
crossref_primary_10_1007_s00122_009_1222_z
crossref_primary_10_1016_S1002_0160_19_60809_X
crossref_primary_10_1111_jph_13037
crossref_primary_10_1016_S1672_6308_13_60116_X
crossref_primary_10_3389_fpls_2019_00094
crossref_primary_10_1038_s41598_017_02338_3
crossref_primary_10_1093_plphys_kiac076
crossref_primary_10_1007_s00425_024_04512_0
crossref_primary_10_1071_FP21346
crossref_primary_10_1007_s11099_016_0204_z
crossref_primary_10_3390_agriculture13020384
crossref_primary_10_1016_j_hpj_2020_01_004
crossref_primary_10_1093_jrr_rrx024
crossref_primary_10_1002_pmic_201500070
crossref_primary_10_1080_1522886X_2010_518433
crossref_primary_10_1073_pnas_1511748112
crossref_primary_10_1080_15592324_2019_1679015
crossref_primary_10_1038_cr_2012_28
crossref_primary_10_1038_s41598_018_29338_1
crossref_primary_10_3390_agronomy13041094
crossref_primary_10_2135_cropsci2009_04_0175
crossref_primary_10_1007_s11032_018_0878_y
crossref_primary_10_1038_s41467_017_01400_y
crossref_primary_10_3390_ijms241310834
crossref_primary_10_15835_nbha49412555
crossref_primary_10_3390_agriculture11030226
crossref_primary_10_1016_j_molp_2017_01_001
crossref_primary_10_1007_s40003_014_0120_z
crossref_primary_10_1016_S2095_3119_17_61819_7
crossref_primary_10_3390_agronomy9090516
crossref_primary_10_3390_agronomy8120290
crossref_primary_10_1007_s11032_019_1018_z
crossref_primary_10_1007_s11104_024_06570_5
crossref_primary_10_3390_genes14040776
crossref_primary_10_1007_s42161_019_00336_0
crossref_primary_10_3390_life12081278
crossref_primary_10_1080_11263500903454237
crossref_primary_10_1038_nature19760
crossref_primary_10_1073_pnas_1306579110
crossref_primary_10_1080_00103624_2019_1589482
crossref_primary_10_1038_ncomms5884
crossref_primary_10_3389_fpls_2021_729021
crossref_primary_10_1016_j_fcr_2012_07_021
crossref_primary_10_3390_agronomy11010026
crossref_primary_10_15446_abc_v27n1_84269
crossref_primary_10_1016_j_jplph_2016_07_008
crossref_primary_10_1016_j_pbi_2007_12_006
crossref_primary_10_1016_j_xplc_2024_100811
crossref_primary_10_1016_j_fcr_2011_05_015
crossref_primary_10_1016_j_envint_2016_04_042
crossref_primary_10_1111_eea_12080
crossref_primary_10_1016_j_fcr_2013_08_016
crossref_primary_10_1002_pmic_201400103
crossref_primary_10_3389_fpls_2024_1505679
crossref_primary_10_1186_s12870_020_2291_z
crossref_primary_10_1016_j_isprsjprs_2018_08_015
crossref_primary_10_1016_j_fcr_2022_108784
crossref_primary_10_1111_jipb_12053
crossref_primary_10_1007_s00497_017_0308_z
crossref_primary_10_3389_fpls_2021_815401
crossref_primary_10_1002_jpln_201400304
crossref_primary_10_1016_j_fcr_2021_108124
crossref_primary_10_1016_j_fcr_2021_108123
crossref_primary_10_48130_seedbio_0024_0018
crossref_primary_10_1093_aob_mcn256
crossref_primary_10_15302_J_FASE_2015055
crossref_primary_10_1371_journal_pone_0107733
crossref_primary_10_3389_fpls_2021_630997
crossref_primary_10_1007_s11032_013_9835_y
crossref_primary_10_1016_j_ncrops_2024_100056
crossref_primary_10_1038_s41598_018_27940_x
crossref_primary_10_1016_j_molp_2020_03_002
crossref_primary_10_1111_jipb_13456
crossref_primary_10_1016_j_carbpol_2020_116237
crossref_primary_10_3389_fpls_2020_580050
crossref_primary_10_1186_s12870_019_1666_5
crossref_primary_10_3389_fsufs_2023_1071234
crossref_primary_10_1186_s12870_022_03502_2
crossref_primary_10_3724_SP_J_1006_2011_00842
crossref_primary_10_1186_s12284_017_0163_4
crossref_primary_10_1007_s10681_019_2368_7
crossref_primary_10_1016_j_jgg_2022_01_002
crossref_primary_10_1093_jxb_erx251
crossref_primary_10_3390_ijms241512395
crossref_primary_10_3389_fpls_2016_01394
crossref_primary_10_1016_j_rsci_2019_01_003
crossref_primary_10_1016_j_cj_2021_07_002
crossref_primary_10_1093_nsr_nww006
crossref_primary_10_1016_S2095_3119_17_61873_2
crossref_primary_10_1007_s11356_021_15956_2
crossref_primary_10_3390_plants11172249
crossref_primary_10_1016_j_atmosenv_2015_06_018
crossref_primary_10_1111_j_1365_2486_2009_02145_x
crossref_primary_10_1038_srep21255
crossref_primary_10_1080_00220380903151033
crossref_primary_10_1186_s12284_014_0013_6
crossref_primary_10_1016_S2095_3119_13_60205_1
crossref_primary_10_1186_s12284_024_00688_x
crossref_primary_10_1016_S1875_2780_09_60041_9
crossref_primary_10_1007_s10681_015_1384_5
crossref_primary_10_1088_1748_9326_aaa135
crossref_primary_10_1007_s00122_011_1755_9
crossref_primary_10_1007_s11356_017_9350_5
crossref_primary_10_3389_fpls_2022_778738
crossref_primary_10_1371_journal_pone_0181061
crossref_primary_10_1007_s00299_011_1004_3
crossref_primary_10_1016_S1875_2780_09_60030_4
crossref_primary_10_1007_s11434_008_0281_x
crossref_primary_10_2134_agronj2017_07_0400
crossref_primary_10_1007_s11427_010_4094_1
crossref_primary_10_1186_1471_2229_12_215
crossref_primary_10_1038_srep37395
crossref_primary_10_1007_s00122_018_3085_7
crossref_primary_10_3390_plants13233404
crossref_primary_10_1111_pbr_12155
crossref_primary_10_1111_pbr_13241
crossref_primary_10_1111_jipb_12564
crossref_primary_10_1007_s10722_017_0600_7
crossref_primary_10_1016_S2095_3119_15_61215_1
crossref_primary_10_1016_j_gpb_2019_01_001
crossref_primary_10_1186_s12864_021_08163_3
crossref_primary_10_1016_j_rsci_2015_05_010
crossref_primary_10_3389_fpls_2018_01128
crossref_primary_10_1007_s12374_015_0402_4
crossref_primary_10_2135_cropsci2018_08_0486
crossref_primary_10_3390_plants12122276
crossref_primary_10_1007_s11032_015_0394_2
crossref_primary_10_1016_j_plaphy_2022_03_010
crossref_primary_10_1111_jipb_13640
crossref_primary_10_1007_s00299_016_1949_3
crossref_primary_10_1371_journal_pone_0160104
crossref_primary_10_1007_s10681_008_9653_1
crossref_primary_10_1016_j_rsci_2023_06_004
crossref_primary_10_1016_j_eja_2015_11_006
crossref_primary_10_3390_plants13081130
crossref_primary_10_3390_agronomy11020282
crossref_primary_10_1007_s11032_024_01471_y
crossref_primary_10_3390_ijms24032212
crossref_primary_10_3390_plants13010062
crossref_primary_10_1007_s00477_016_1215_9
crossref_primary_10_1007_s11032_011_9555_0
crossref_primary_10_1007_s11103_018_0811_0
crossref_primary_10_1016_S1672_6308_12_60038_9
crossref_primary_10_1007_s00344_022_10606_4
crossref_primary_10_1007_s12041_011_0019_4
crossref_primary_10_1016_S2095_3119_15_61082_6
crossref_primary_10_1093_jxb_ery243
crossref_primary_10_1016_j_cj_2015_03_007
crossref_primary_10_1016_S1672_6308_12_60003_1
crossref_primary_10_3389_fpls_2020_00933
crossref_primary_10_1016_S2095_3119_16_61506_X
crossref_primary_10_1002_ecs2_2646
crossref_primary_10_1073_pnas_1613792113
crossref_primary_10_1111_pbi_13189
crossref_primary_10_1073_pnas_1919086117
crossref_primary_10_1080_02664763_2021_2004581
crossref_primary_10_1016_j_fcr_2017_02_021
crossref_primary_10_1134_S2079059717040049
crossref_primary_10_1002_pld3_174
crossref_primary_10_1038_s41598_017_10727_x
crossref_primary_10_1146_annurev_arplant_050718_100320
crossref_primary_10_3389_fpls_2018_01173
crossref_primary_10_3390_plants13162278
crossref_primary_10_1093_mp_ssq046
crossref_primary_10_1016_S1673_8527_09_60097_7
crossref_primary_10_1186_s12284_017_0179_9
crossref_primary_10_1038_s43016_021_00280_2
crossref_primary_10_1371_journal_pone_0093122
crossref_primary_10_1016_j_gene_2013_05_063
crossref_primary_10_1186_s12870_019_1944_2
crossref_primary_10_1038_s41598_023_36618_y
crossref_primary_10_1111_jipb_12871
crossref_primary_10_1186_s12284_014_0022_5
crossref_primary_10_1007_s00425_020_03444_9
crossref_primary_10_1186_s12864_019_5435_5
crossref_primary_10_2135_cropsci2014_03_0185
crossref_primary_10_3732_ajb_1400119
crossref_primary_10_1007_s13355_017_0515_y
crossref_primary_10_3390_d9030027
crossref_primary_10_1111_jipb_12425
crossref_primary_10_1007_s11694_018_9751_2
crossref_primary_10_1007_s11738_010_0523_9
crossref_primary_10_1371_journal_pone_0146242
crossref_primary_10_1038_s41467_019_11017_y
crossref_primary_10_1016_j_pld_2020_07_003
crossref_primary_10_1038_srep40139
crossref_primary_10_1007_s11427_019_9531_7
crossref_primary_10_1016_j_jia_2022_08_076
crossref_primary_10_1016_j_rsci_2018_12_006
crossref_primary_10_1111_tpj_17004
crossref_primary_10_1016_j_molp_2021_08_007
crossref_primary_10_1111_jipb_13503
crossref_primary_10_1007_s00122_014_2289_8
crossref_primary_10_1016_S2095_3119_15_61228_X
crossref_primary_10_1007_s11356_016_7089_z
crossref_primary_10_1093_jxb_erp348
crossref_primary_10_3390_agronomy15020312
crossref_primary_10_1007_s10722_021_01249_7
crossref_primary_10_1016_j_jgg_2016_04_011
crossref_primary_10_3390_cells11111753
crossref_primary_10_1111_j_1744_7909_2011_01055_x
crossref_primary_10_3390_agronomy10020209
crossref_primary_10_1007_s12010_011_9471_0
crossref_primary_10_1016_j_tplants_2009_12_003
crossref_primary_10_1016_j_ecolmodel_2015_10_026
crossref_primary_10_1270_jsbbs_16138
crossref_primary_10_1002_fes3_355
crossref_primary_10_1007_s11738_011_0765_1
crossref_primary_10_1111_pbr_12435
crossref_primary_10_1002_csc2_20150
crossref_primary_10_1007_s00122_019_03363_8
crossref_primary_10_1016_j_cj_2021_03_018
crossref_primary_10_1371_journal_pone_0168134
crossref_primary_10_1007_s40362_014_0018_y
crossref_primary_10_1016_j_jksus_2022_101906
crossref_primary_10_1111_pbi_12181
crossref_primary_10_1016_j_plaphy_2018_04_020
crossref_primary_10_1038_s41598_017_15241_8
crossref_primary_10_1038_ng_2570
crossref_primary_10_1371_journal_pone_0104950
crossref_primary_10_1111_pbr_12329
crossref_primary_10_1007_s10681_017_2091_1
crossref_primary_10_1111_pbr_12689
crossref_primary_10_1186_1471_2164_14_19
crossref_primary_10_1007_s10681_018_2128_0
crossref_primary_10_1155_2016_9236573
crossref_primary_10_1038_s41598_020_59751_4
crossref_primary_10_1007_s13258_014_0205_x
crossref_primary_10_1016_j_cj_2018_12_011
crossref_primary_10_3389_fgene_2022_876198
crossref_primary_10_3390_agronomy14061218
crossref_primary_10_1007_s00438_017_1396_z
crossref_primary_10_1002_fes3_210
crossref_primary_10_1080_23311932_2024_2302209
crossref_primary_10_3724_SP_J_1006_2012_01471
crossref_primary_10_1093_jxb_erab382
crossref_primary_10_1007_s13562_023_00869_7
crossref_primary_10_1016_j_xplc_2024_101220
crossref_primary_10_1038_s41477_022_01142_w
crossref_primary_10_1093_plphys_kiad654
crossref_primary_10_1111_pbi_14140
crossref_primary_10_3390_ijms22115585
crossref_primary_10_1590_1678_4685_gmb_2016_0093
crossref_primary_10_1016_j_sjbs_2021_04_058
crossref_primary_10_1093_jxb_err205
crossref_primary_10_1016_j_jgg_2020_10_006
crossref_primary_10_1007_s10681_014_1103_7
crossref_primary_10_3390_rs13010086
crossref_primary_10_1016_j_fcr_2017_01_001
crossref_primary_10_1111_jph_13087
crossref_primary_10_1111_jipb_12804
crossref_primary_10_1007_s11427_023_2547_2
crossref_primary_10_1186_1471_2164_14_61
crossref_primary_10_1186_s12284_021_00521_9
crossref_primary_10_3136_fstr_24_687
crossref_primary_10_3724_SP_J_1006_2009_02225
crossref_primary_10_32615_ps_2019_106
crossref_primary_10_1016_j_cj_2021_02_003
crossref_primary_10_3389_fpls_2017_00711
crossref_primary_10_1016_S1002_0160_17_60393_X
crossref_primary_10_1016_j_fcr_2009_04_004
crossref_primary_10_1111_pbr_12751
crossref_primary_10_1016_S1672_6308_13_60184_5
crossref_primary_10_1016_S2095_3119_19_62838_8
crossref_primary_10_3389_fpls_2016_01960
crossref_primary_10_1038_s41598_017_06742_7
crossref_primary_10_1007_s11032_025_01545_5
crossref_primary_10_1111_jipb_12912
crossref_primary_10_3390_agronomy12061249
crossref_primary_10_1007_s11032_016_0592_6
crossref_primary_10_1093_jxb_err263
crossref_primary_10_3389_fpls_2017_01818
crossref_primary_10_1016_j_rsci_2018_04_001
crossref_primary_10_1038_ncomms7258
crossref_primary_10_1111_tpj_16217
crossref_primary_10_1038_srep38205
crossref_primary_10_1186_s12870_022_03695_6
crossref_primary_10_1270_jsbbs_17155
crossref_primary_10_1016_S1875_2780_11_60024_2
crossref_primary_10_1007_s00425_021_03700_6
crossref_primary_10_1016_j_jgg_2024_01_007
crossref_primary_10_1016_j_fcr_2012_09_001
crossref_primary_10_1021_jf405688d
crossref_primary_10_1007_s11032_021_01256_7
crossref_primary_10_3389_fpls_2020_00619
crossref_primary_10_3390_ijms23158354
crossref_primary_10_1093_jxb_erp294
crossref_primary_10_3724_SP_J_1006_2011_01020
crossref_primary_10_1016_S2095_3119_12_60159_2
crossref_primary_10_1038_s41598_018_23977_0
crossref_primary_10_1007_s11032_012_9829_1
crossref_primary_10_1186_s12284_021_00510_y
crossref_primary_10_3390_agronomy8120305
crossref_primary_10_3724_SP_J_1006_2009_01106
crossref_primary_10_1270_jsbbs_16044
crossref_primary_10_1186_1471_2156_15_49
crossref_primary_10_3390_ijms15033799
crossref_primary_10_1016_j_fcr_2014_04_013
crossref_primary_10_1111_pbr_12668
crossref_primary_10_3390_agronomy8090191
crossref_primary_10_3389_fpls_2022_945105
crossref_primary_10_1186_s12284_019_0294_x
ContentType Journal Article
Copyright Annals of Botany Company 2007
2007 The Author(s) 2007
2007 The Author(s)
Copyright_xml – notice: Annals of Botany Company 2007
– notice: 2007 The Author(s) 2007
– notice: 2007 The Author(s)
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
7T7
7TM
8FD
C1K
FR3
K9.
P64
RC3
F1W
H95
L.G
7S9
L.6
7X8
5PM
DOI 10.1093/aob/mcm121
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
AGRICOLA
MEDLINE - Academic
MEDLINE
Genetics Abstracts



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 1095-8290
EndPage 966
ExternalDocumentID PMC2759200
1368656751
17704538
10_1093_aob_mcm121
10.1093/aob/mcm121
42801336
ark_67375_HXZ_S3CCB8FT_J
US201300818483
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GeographicLocations China
China, People's Rep
GeographicLocations_xml – name: China
– name: China, People's Rep
GroupedDBID ---
--K
-DZ
-E4
-~X
.2P
.I3
0R~
1B1
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
53G
5GY
5VS
5WA
5WD
6.Y
6J9
7-5
70D
71M
79B
A8Z
AABJS
AABMN
AACTN
AAEDT
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AALCJ
AALRI
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAQFI
AAQXK
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
AAXUO
ABBHK
ABDBF
ABEFU
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFGL
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMUD
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFDAS
AFFNX
AFFZL
AFGWE
AFIYH
AFMIJ
AFOFC
AFRAH
AFSWV
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
AOIJS
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DATOO
DFEDG
DFGAJ
DILTD
DM4
DPORF
DPPUQ
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
ELUNK
EMOBN
ESTFP
ESX
F5P
F9B
FA8
FBQ
FDB
FEDTE
FGOYB
FHSFR
FIRID
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HYE
HZ~
IHE
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
LG5
M-Z
M49
MBTAY
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O-L
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
OZT
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R2-
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RW1
RXO
RZF
RZO
SA0
SSZ
SV3
TCN
TEORI
TLC
TN5
TR2
UHS
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
XPP
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZCG
ZKX
ZMT
~02
~91
~KM
AARHZ
AAUAY
AAYWO
ABDFA
ABDPE
ABEJV
ABGNP
ABIME
ABMNT
ABNGD
ABPIB
ABPQP
ABVGC
ABWVN
ABXSQ
ABXVV
ABZEO
ACHIC
ACRPL
ACUHS
ACUKT
ACVCV
ACZBC
ADNBA
ADNMO
ADQBN
ADXHL
AEHUL
AFSHK
AGMDO
AGORE
AGQPQ
AHGBF
AJBYB
AJDVS
AJNCP
AKRWK
AQVQM
ATGXG
BSCLL
H13
IPSME
JXSIZ
AASNB
ACMRT
ADACV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
7T7
7TM
8FD
C1K
FR3
K9.
P64
RC3
F1W
H95
L.G
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c645t-1f61b1f85f051978f9352d81c765d6a245175af7cd7137158b5fd7d07bf26423
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 14:14:26 EDT 2025
Fri Jul 11 10:30:37 EDT 2025
Fri Jul 11 10:20:19 EDT 2025
Fri Jul 11 13:15:36 EDT 2025
Mon Jun 30 08:50:03 EDT 2025
Mon Jul 21 06:03:26 EDT 2025
Tue Jul 01 01:39:01 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Wed Aug 28 03:24:03 EDT 2024
Sun Aug 24 12:10:22 EDT 2025
Tue Aug 05 16:49:11 EDT 2025
Wed Dec 27 19:12:13 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Hybrid rice
inter-subspecies
molecular marker-assisted selection
quantitative trait loci
cytoplasmic male sterility
DNA marker
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c645t-1f61b1f85f051978f9352d81c765d6a245175af7cd7137158b5fd7d07bf26423
Notes http://aob.oupjournals.org/
istex:1D763E215AE643D0A66E4A3B13EECBD5CF354080
ArticleID:mcm121
ark:/67375/HXZ-S3CCB8FT-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2759200
PMID 17704538
PQID 195059883
PQPubID 32848
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2759200
proquest_miscellaneous_68401653
proquest_miscellaneous_47469471
proquest_miscellaneous_20619386
proquest_journals_195059883
pubmed_primary_17704538
crossref_primary_10_1093_aob_mcm121
crossref_citationtrail_10_1093_aob_mcm121
oup_primary_10_1093_aob_mcm121
jstor_primary_42801336
istex_primary_ark_67375_HXZ_S3CCB8FT_J
fao_agris_US201300818483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationSeriesTitle Review
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2007
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References 24185883 - Theor Appl Genet. 1994 Apr;88(1):65-9
12582891 - Theor Appl Genet. 2002 Dec;105(8):1137-1145
11514459 - Genetics. 2001 Aug;158(4):1737-53
24166385 - Theor Appl Genet. 1996 May;92(6):637-43
18726413 - Sci China C Life Sci. 2001 Jun;44(3):327-36
11038567 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226-31
15657740 - Theor Appl Genet. 2005 Feb;110(4):634-9
15966313 - Sheng Wu Gong Cheng Xue Bao. 2003 Mar;19(2):153-7
24162533 - Theor Appl Genet. 1996 Dec;93(8):1218-24
15856160 - Theor Appl Genet. 2005 Jun;111(1):50-6
7498751 - Genetics. 1995 Jun;140(2):745-54
12524357 - Genetics. 2002 Dec;162(4):1885-95
24172933 - Theor Appl Genet. 1995 May;90(6):878-84
References_xml – reference: 15856160 - Theor Appl Genet. 2005 Jun;111(1):50-6
– reference: 24166385 - Theor Appl Genet. 1996 May;92(6):637-43
– reference: 24162533 - Theor Appl Genet. 1996 Dec;93(8):1218-24
– reference: 11038567 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226-31
– reference: 12582891 - Theor Appl Genet. 2002 Dec;105(8):1137-1145
– reference: 15966313 - Sheng Wu Gong Cheng Xue Bao. 2003 Mar;19(2):153-7
– reference: 15657740 - Theor Appl Genet. 2005 Feb;110(4):634-9
– reference: 11514459 - Genetics. 2001 Aug;158(4):1737-53
– reference: 12524357 - Genetics. 2002 Dec;162(4):1885-95
– reference: 18726413 - Sci China C Life Sci. 2001 Jun;44(3):327-36
– reference: 24185883 - Theor Appl Genet. 1994 Apr;88(1):65-9
– reference: 7498751 - Genetics. 1995 Jun;140(2):745-54
– reference: 24172933 - Theor Appl Genet. 1995 May;90(6):878-84
SSID ssj0002691
Score 2.4259663
SecondaryResourceType review_article
Snippet BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better...
Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better...
• Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential,...
Background China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better...
China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 959
SubjectTerms abiotic stress
Agriculture
Agriculture - trends
Breeding
China
Chromosome Mapping
Crop production
Crops, Agricultural
Crops, Agricultural - genetics
crossing
cytoplasmic male sterility
Disease resistance
DNA marker
Freshwater
Gene mapping
Genetic diversity
Genetic Markers
genetic variation
genetics
Grains
Heterosis
Hybrid rice
Hybridity
Hybridization, Genetic
Hybrids
inter-subspecies
major genes
Male sterility
marker-assisted selection
Molecular genetics
molecular marker-assisted selection
Oryza
Oryza - genetics
Oryza sativa
Phenotypic traits
Plant breeding
Plant Infertility
Population characteristics
Population genetics
Quantitative Trait Loci
R&D
Research & development
research and development
restorer lines
REVIEW
Rice
trends
Title Progress in Research and Development on Hybrid Rice: A Super-domesticate in China
URI https://api.istex.fr/ark:/67375/HXZ-S3CCB8FT-J/fulltext.pdf
https://www.jstor.org/stable/42801336
https://www.ncbi.nlm.nih.gov/pubmed/17704538
https://www.proquest.com/docview/195059883
https://www.proquest.com/docview/20619386
https://www.proquest.com/docview/47469471
https://www.proquest.com/docview/68401653
https://pubmed.ncbi.nlm.nih.gov/PMC2759200
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZK4cAF8SoNhRIJhMTB7eZhO-FWqlarqiqgbqVtL5bzcHcFm1RtIgE_g1_MTOykSV8CLlFkT-IkMxl_M54ZE_IOphXlZ5pRQN-KhpwnNOFxQL1EZzkAdgXWHEZbHPDxUbg3ZdOlpd-9qKW6SjbSXzfmlfwPV6EN-IpZsv_A2e6m0ADnwF84Aofh-Fc8_oLBVaiq5kUXQmdji7tQIFwNGP_EvCxMoreZ6If1WX5Os3KBNTYwJqpJ_mu30t64Vlw5KatWaTShALl1Ms_mdFx3iv1kVlvv8948p8d1J3e7xst6DI3KzpQNdjakxSkdl7a59T-ILpKt6uc19pxmNjMLEbLdiKR1atg8rRGjIjC1yzdyo3YB6FFc0h3o5dGoJ4Csp2VjU0T8mvY3lbFUmcBxkS48k3s9LLJ98FnuHu3vy8nOdDLsNTZRwCOAuAKz8u_7YHr4rQfIzu4-N7swtm_RlryNg00YeNMMOwA597QqwfTBv_ZHG_V6JZ2yZ9VcDc7toZ3JY_LIminulpG5J2QpL56SB58aMXhGvraC584LtxU8F1jg9gTPLQvXCJ6LgvfR3XKviR1e34jdczLZ3Zlsj6ndm4OmPGQV9TT3Ek9HTKMNICIdA5LPIi8VnGVc-SEDXKq0SDPhBcJjUcJ0JrKRSDRAcD9YIctFWeSrxI3gNn6WcZ2oPEzTUPmjONOaJwjfcp055EP7LWVq69bj9infpYmfCCR8d2m-u0PedrRnplrLjVSrwBKpTmEalUeHPi7eY2XHMAoc8r7hU3e1Ov-GoY-CyfH0RB4G29vof5Z7DllpGNkRghkP9wm4Q9aBs3eOvtYyXVpdciFxM2YWR_gAb7peUPS4eqeKvKwvpA_IOw4ifjtFKEIeA9i8nQIrO3mcwSgvjJBdPqcQYNwFkUPEQPw6AixDP-wp5rOmHL0vWAyK4eWd77VGHl4qj1dkuTqv89cA56tkvfm__gBifPSr
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+Research+and+Development+on+Hybrid+Rice%3A+A+Super-domesticate+in+China&rft.jtitle=Annals+of+botany&rft.au=Cheng%2C+Shi-Hua&rft.au=Zhuang%2C+Jie-Yun&rft.au=Fan%2C+Ye-Yang&rft.au=Du%2C+Jing-Hong&rft.date=2007-10-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=100&rft.issue=5&rft.spage=959&rft_id=info:doi/10.1093%2Faob%2Fmcm121&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1368656751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon