Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy

Purpose Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. Methods A systematic search was performed in PubM...

Full description

Saved in:
Bibliographic Details
Published inIntensive care medicine Vol. 46; no. 3; pp. 383 - 400
Main Authors Fleuren, Lucas M., Klausch, Thomas L. T., Zwager, Charlotte L., Schoonmade, Linda J., Guo, Tingjie, Roggeveen, Luca F., Swart, Eleonora L., Girbes, Armand R. J., Thoral, Patrick, Ercole, Ari, Hoogendoorn, Mark, Elbers, Paul W. G.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. Methods A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance. Results After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n  = 15; 54%), followed by hospital wards ( n  = 7; 25%), the emergency department (ED, n  = 4; 14%) and all of these settings ( n  = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68–0.99 in the ICU, to 0.96–0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance. Conclusion This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
AbstractList Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis.PURPOSEEarly clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis.A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance.METHODSA systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance.After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68-0.99 in the ICU, to 0.96-0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance.RESULTSAfter screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68-0.99 in the ICU, to 0.96-0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance.This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.CONCLUSIONThis systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance. After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68-0.99 in the ICU, to 0.96-0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance. This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
Purpose Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. Methods A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance. Results After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68-0.99 in the ICU, to 0.96-0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance. Conclusion This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
PurposeEarly clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis.MethodsA systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance.ResultsAfter screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68–0.99 in the ICU, to 0.96–0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance.ConclusionThis systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance. After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68-0.99 in the ICU, to 0.96-0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance. This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
Purpose Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. Methods A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance. Results After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n  = 15; 54%), followed by hospital wards ( n  = 7; 25%), the emergency department (ED, n  = 4; 14%) and all of these settings ( n  = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68–0.99 in the ICU, to 0.96–0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance. Conclusion This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside.
Audience Academic
Author Guo, Tingjie
Ercole, Ari
Fleuren, Lucas M.
Zwager, Charlotte L.
Roggeveen, Luca F.
Klausch, Thomas L. T.
Schoonmade, Linda J.
Swart, Eleonora L.
Hoogendoorn, Mark
Thoral, Patrick
Girbes, Armand R. J.
Elbers, Paul W. G.
Author_xml – sequence: 1
  givenname: Lucas M.
  orcidid: 0000-0002-4056-1692
  surname: Fleuren
  fullname: Fleuren, Lucas M.
  email: l.fleuren@amsterdamumc.nl
  organization: Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, location VUmc, VU Amsterdam, Computational Intelligence Group, Department of Computer Science, VU Amsterdam
– sequence: 2
  givenname: Thomas L. T.
  surname: Klausch
  fullname: Klausch, Thomas L. T.
  organization: Department of Epidemiology and Biostatistics, Amsterdam UMC, location VUmc, VU Amsterdam
– sequence: 3
  givenname: Charlotte L.
  surname: Zwager
  fullname: Zwager, Charlotte L.
  organization: Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, location VUmc, VU Amsterdam
– sequence: 4
  givenname: Linda J.
  surname: Schoonmade
  fullname: Schoonmade, Linda J.
  organization: Medical Library, Amsterdam UMC, location VUmc, VU Amsterdam
– sequence: 5
  givenname: Tingjie
  surname: Guo
  fullname: Guo, Tingjie
  organization: Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, location VUmc, VU Amsterdam
– sequence: 6
  givenname: Luca F.
  surname: Roggeveen
  fullname: Roggeveen, Luca F.
  organization: Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, location VUmc, VU Amsterdam, Computational Intelligence Group, Department of Computer Science, VU Amsterdam
– sequence: 7
  givenname: Eleonora L.
  surname: Swart
  fullname: Swart, Eleonora L.
  organization: Department of Pharmacy, Amsterdam UMC, location VUmc, VU Amsterdam
– sequence: 8
  givenname: Armand R. J.
  surname: Girbes
  fullname: Girbes, Armand R. J.
  organization: Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, location VUmc, VU Amsterdam
– sequence: 9
  givenname: Patrick
  surname: Thoral
  fullname: Thoral, Patrick
  organization: Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, location VUmc, VU Amsterdam
– sequence: 10
  givenname: Ari
  surname: Ercole
  fullname: Ercole, Ari
  organization: Division of Anaesthesia, University of Cambridge, Data Science Section, European Society of Intensive Care Medicine
– sequence: 11
  givenname: Mark
  surname: Hoogendoorn
  fullname: Hoogendoorn, Mark
  organization: Computational Intelligence Group, Department of Computer Science, VU Amsterdam
– sequence: 12
  givenname: Paul W. G.
  surname: Elbers
  fullname: Elbers, Paul W. G.
  organization: Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, location VUmc, VU Amsterdam, Data Science Section, European Society of Intensive Care Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31965266$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURKeFP8ACWWLDJsWv2AkLpKriJRWxgbV1x7nJuErswc4U5d_jdFpoq1HlhSX7O8f28TkpjnzwWBSvGT1jlOr3iVImZElZU9Kq1rycnxUrJgUvGRf1UbGiQvJSKsmPi5OUrjKuVcVeFMeCNariSq2K7XewG-eRDAjRO9-TLkQybZBsI7bOTi54EjqScJtc-kCApDlNOMLkLIl47fAPAd-SEScowcMwZ2wRtA56H9KCTZgmAtbuItj5ZfG8gyHhq9v5tPj1-dPPi6_l5Y8v3y7OL0urZDWVTChbM9FC23QKOcg1tkw2nGsF6xaV6ipBtaVNLS3tamBraIUQoJVao4VanBYf977b3XrE1qKfIgxmG90IcTYBnHm4493G9OHaaKq0liwbvLs1iOH3Lj_BjC5ZHAbwGHbJcCFFRUVzg759hF6FXcxhLFSOnCql71E9DGic70I-1y6m5lxz0XCtWZOp8gDVo8d8yfz_ncvLD_izA3weLY7OHhS8uR_Mv0TuOpGBeg_YGFKK2BnrJliKkJ3dYBg1S_3Mvn4m18_c1M_MWcofSe_cnxSJvShl2PcY_6f3hOovB9Dtnw
CitedBy_id crossref_primary_10_1016_j_ccc_2023_02_003
crossref_primary_10_1038_s41598_023_28421_6
crossref_primary_10_1007_s00129_024_05253_7
crossref_primary_10_3389_fmed_2022_1043589
crossref_primary_10_3390_jcm12103493
crossref_primary_10_3390_app13169049
crossref_primary_10_12998_wjcc_v12_i25_5681
crossref_primary_10_2196_59649
crossref_primary_10_1016_j_annemergmed_2020_11_007
crossref_primary_10_3389_frhem_2024_1331109
crossref_primary_10_3389_fmed_2021_617486
crossref_primary_10_1016_j_tranon_2025_102306
crossref_primary_10_3389_fsurg_2022_857218
crossref_primary_10_1007_s11908_023_00818_4
crossref_primary_10_3390_jcm12175658
crossref_primary_10_1097_SHK_0000000000002181
crossref_primary_10_1186_s12911_021_01653_0
crossref_primary_10_1007_s00431_024_05441_6
crossref_primary_10_3389_fcvm_2022_911987
crossref_primary_10_1136_bmjopen_2022_071430
crossref_primary_10_1007_s00134_020_06000_x
crossref_primary_10_1093_jamiaopen_ooac022
crossref_primary_10_1186_s12911_022_01803_y
crossref_primary_10_3390_antibiotics11030304
crossref_primary_10_1186_s12879_024_09203_5
crossref_primary_10_1371_journal_pone_0294557
crossref_primary_10_2196_63216
crossref_primary_10_1080_07853890_2023_2179104
crossref_primary_10_31083_j_rcm2411315
crossref_primary_10_3389_fmed_2022_935366
crossref_primary_10_1038_s41591_020_1037_7
crossref_primary_10_17116_labs20221102118
crossref_primary_10_1093_clinchem_hvab239
crossref_primary_10_7717_peerj_12997
crossref_primary_10_2217_bmm_2022_0433
crossref_primary_10_1111_ijlh_13549
crossref_primary_10_1016_S2589_7500_20_30218_1
crossref_primary_10_3390_jcm11020312
crossref_primary_10_1007_s11908_021_00765_y
crossref_primary_10_3934_mbe_2023595
crossref_primary_10_3390_medicina58070844
crossref_primary_10_3390_diagnostics11101844
crossref_primary_10_1136_bmjopen_2022_065429
crossref_primary_10_1097_ACO_0000000000001193
crossref_primary_10_1002_ams2_70037
crossref_primary_10_1016_j_ijmedinf_2022_104706
crossref_primary_10_2196_28000
crossref_primary_10_1016_j_cll_2023_10_009
crossref_primary_10_2196_27275
crossref_primary_10_1007_s42979_022_01507_0
crossref_primary_10_1097_CCE_0000000000000302
crossref_primary_10_1109_JBHI_2021_3092835
crossref_primary_10_1017_ash_2023_494
crossref_primary_10_3389_fmed_2021_661309
crossref_primary_10_1007_s00134_021_06446_7
crossref_primary_10_1007_s11547_024_01825_8
crossref_primary_10_2196_67488
crossref_primary_10_1515_mr_2023_0039
crossref_primary_10_1038_s41746_021_00529_x
crossref_primary_10_1109_JSAIT_2023_3342569
crossref_primary_10_1007_s00464_020_08168_1
crossref_primary_10_1186_s12911_024_02647_4
crossref_primary_10_3389_fpubh_2024_1381328
crossref_primary_10_12677_MOS_2023_123212
crossref_primary_10_1002_biof_2128
crossref_primary_10_2139_ssrn_4149256
crossref_primary_10_2147_IJN_S441133
crossref_primary_10_2196_55492
crossref_primary_10_1016_j_phrs_2023_107056
crossref_primary_10_5492_wjccm_v12_i2_89
crossref_primary_10_1001_jamanetworkopen_2023_35377
crossref_primary_10_1016_j_acra_2021_05_014
crossref_primary_10_1038_s41598_021_00220_x
crossref_primary_10_1186_s13054_022_03916_2
crossref_primary_10_1007_s00134_023_07102_y
crossref_primary_10_1016_S2589_7500_20_30219_3
crossref_primary_10_1007_s40272_024_00638_6
crossref_primary_10_1016_j_jgar_2022_03_019
crossref_primary_10_1186_s40001_024_01849_w
crossref_primary_10_3389_fmed_2023_1284081
crossref_primary_10_1016_j_gie_2020_04_039
crossref_primary_10_3748_wjg_v27_i26_4088
crossref_primary_10_1097_CCM_0000000000005758
crossref_primary_10_3390_biomedicines12061220
crossref_primary_10_3389_fonc_2023_1289050
crossref_primary_10_1186_s12879_024_09421_x
crossref_primary_10_1097_MCC_0000000000001150
crossref_primary_10_3389_fmed_2021_663739
crossref_primary_10_1016_j_eclinm_2024_102820
crossref_primary_10_1016_j_jinf_2021_02_019
crossref_primary_10_1109_JBHI_2022_3171673
crossref_primary_10_1002_mds_29376
crossref_primary_10_1007_s00521_021_06631_1
crossref_primary_10_3389_fmed_2021_777142
crossref_primary_10_1186_s12893_023_02151_y
crossref_primary_10_1016_j_jss_2020_07_047
crossref_primary_10_1016_j_jcrc_2023_154400
crossref_primary_10_1109_ACCESS_2024_3519219
crossref_primary_10_1111_jog_15266
crossref_primary_10_1186_s12873_022_00764_9
crossref_primary_10_1016_j_ijmedinf_2022_104689
crossref_primary_10_1016_j_rtbm_2023_101031
crossref_primary_10_1007_s41782_021_00149_1
crossref_primary_10_1088_2632_2153_acc1c0
crossref_primary_10_1097_FM9_0000000000000257
crossref_primary_10_2147_IJGM_S348797
crossref_primary_10_3390_electronics13224405
crossref_primary_10_1001_jamainternmed_2023_7965
crossref_primary_10_1002_jcla_24053
crossref_primary_10_1016_j_scitotenv_2025_179018
crossref_primary_10_1016_j_ccc_2023_03_007
crossref_primary_10_1007_s11948_024_00522_z
crossref_primary_10_1016_j_sopen_2023_09_013
crossref_primary_10_3390_biology11040490
crossref_primary_10_1080_10837450_2024_2448777
crossref_primary_10_1093_clinchem_hvab201
crossref_primary_10_1093_jamia_ocab236
crossref_primary_10_1016_j_clinbiochem_2022_02_011
crossref_primary_10_1177_14777509221138750
crossref_primary_10_3390_diagnostics14040445
crossref_primary_10_3389_fmed_2023_1109411
crossref_primary_10_1186_s12911_020_01284_x
crossref_primary_10_3390_electronics11091507
crossref_primary_10_1016_j_cmpb_2024_108335
crossref_primary_10_2196_42452
crossref_primary_10_1111_dom_15457
crossref_primary_10_1016_j_ejrad_2022_110457
crossref_primary_10_1097_CCE_0000000000000453
crossref_primary_10_1155_2021_5592472
crossref_primary_10_1136_bmj_m3164
crossref_primary_10_3389_fmed_2024_1491358
crossref_primary_10_1186_s12911_024_02623_y
crossref_primary_10_2196_56155
crossref_primary_10_2196_57486
crossref_primary_10_1186_s12967_022_03469_6
crossref_primary_10_1016_j_neunet_2023_02_020
crossref_primary_10_1109_ACCESS_2022_3230324
crossref_primary_10_3390_computation13010008
crossref_primary_10_1016_j_jik_2024_100517
crossref_primary_10_1016_j_ijmedinf_2025_105874
crossref_primary_10_1007_s42979_025_03818_4
crossref_primary_10_1109_JBHI_2023_3253208
crossref_primary_10_3390_biomedicines8110494
crossref_primary_10_37882_2223_2966_2021_11_39
crossref_primary_10_1371_journal_pone_0296355
crossref_primary_10_1016_j_ijmedinf_2023_105151
crossref_primary_10_3389_fpubh_2022_1006955
crossref_primary_10_13004_kjnt_2023_19_e63
crossref_primary_10_1371_journal_pdig_0000459
crossref_primary_10_1542_peds_2023_062967
crossref_primary_10_1007_s10238_022_00895_0
crossref_primary_10_1186_s40249_022_00946_4
crossref_primary_10_1186_s12871_022_01888_y
crossref_primary_10_1016_j_medine_2022_06_024
crossref_primary_10_1186_s12911_023_02383_1
crossref_primary_10_3389_fmed_2025_1521660
crossref_primary_10_1093_jamia_ocad075
crossref_primary_10_1016_j_bbe_2021_06_009
crossref_primary_10_1016_j_procs_2023_12_198
crossref_primary_10_1186_s12911_022_01751_7
crossref_primary_10_1186_s13054_024_04948_6
crossref_primary_10_1038_s41598_021_99105_2
crossref_primary_10_1371_journal_pone_0251800
crossref_primary_10_1080_0886022X_2022_2151468
crossref_primary_10_1093_clinchem_hvae001
crossref_primary_10_1007_s40746_020_00212_5
crossref_primary_10_1186_s40560_025_00776_0
crossref_primary_10_26633_RPSP_2024_12
crossref_primary_10_3390_jcm10020301
crossref_primary_10_26633_RPSP_2024_13
crossref_primary_10_3390_e26080625
crossref_primary_10_1177_0272989X221121279
crossref_primary_10_3390_diagnostics15030302
crossref_primary_10_1007_s40688_023_00455_7
crossref_primary_10_1016_j_heliyon_2023_e22458
crossref_primary_10_1093_bmb_ldac001
crossref_primary_10_1016_j_jointm_2023_10_001
crossref_primary_10_1016_j_bspc_2024_106854
crossref_primary_10_1017_ice_2022_218
crossref_primary_10_2139_ssrn_4176362
crossref_primary_10_1016_j_eclinm_2023_102124
crossref_primary_10_3390_diagnostics15030307
crossref_primary_10_1016_j_isci_2021_102106
crossref_primary_10_1016_j_rcsop_2023_100317
crossref_primary_10_2139_ssrn_4130480
crossref_primary_10_1155_2022_5682599
crossref_primary_10_1111_1742_6723_14345
crossref_primary_10_1186_s13054_024_04860_z
crossref_primary_10_3389_fmed_2021_607952
crossref_primary_10_4103_jpgm_jpgm_357_24
crossref_primary_10_3389_fmmed_2023_1250508
crossref_primary_10_1093_jamiaopen_ooaf015
crossref_primary_10_1080_10255842_2025_2453922
crossref_primary_10_1016_j_cca_2024_119724
crossref_primary_10_1038_s41598_023_46021_2
crossref_primary_10_18231_j_ijmr_2024_029
crossref_primary_10_7759_cureus_80095
crossref_primary_10_3390_make7010006
crossref_primary_10_1186_s40635_021_00400_z
crossref_primary_10_1038_s41591_020_1034_x
crossref_primary_10_1093_postmj_qgad024
crossref_primary_10_3389_fphys_2025_1549138
crossref_primary_10_1016_j_medin_2022_06_004
crossref_primary_10_3390_jcm9030875
crossref_primary_10_1177_20552076241289732
crossref_primary_10_11124_JBIES_24_00042
crossref_primary_10_3390_jcm13175002
crossref_primary_10_1097_PCC_0000000000003039
crossref_primary_10_32604_cmes_2024_055065
crossref_primary_10_1097_SHK_0000000000002335
crossref_primary_10_7717_peerj_18213
crossref_primary_10_2196_26426
crossref_primary_10_1016_j_eclinm_2025_103112
crossref_primary_10_1007_s11739_024_03535_5
crossref_primary_10_1016_j_cmpb_2024_108017
crossref_primary_10_1002_sim_9311
crossref_primary_10_1016_j_heliyon_2024_e28143
crossref_primary_10_1016_j_fertnstert_2023_05_148
crossref_primary_10_1016_j_ibmed_2023_100115
crossref_primary_10_3390_diagnostics13101781
crossref_primary_10_1016_j_compbiomed_2024_109251
crossref_primary_10_1001_jamainternmed_2021_3333
crossref_primary_10_1186_s12874_023_02078_1
crossref_primary_10_3918_jsicm_28_415
crossref_primary_10_1111_acem_14962
crossref_primary_10_2147_JIR_S505813
crossref_primary_10_3389_fimmu_2022_905601
crossref_primary_10_3390_app13148289
crossref_primary_10_1038_s41746_023_00961_1
crossref_primary_10_1371_journal_pone_0304133
crossref_primary_10_1002_phar_2683
crossref_primary_10_1093_gigascience_giad041
crossref_primary_10_1093_jamiaopen_ooac080
crossref_primary_10_3389_fonc_2022_946038
crossref_primary_10_1016_j_numecd_2024_05_020
crossref_primary_10_2196_48320
crossref_primary_10_1016_j_isci_2021_103651
crossref_primary_10_1007_s00011_023_01787_z
crossref_primary_10_1016_j_eswa_2023_122982
crossref_primary_10_1016_j_ebiom_2022_104394
crossref_primary_10_1177_08850666221085181
crossref_primary_10_2147_IDR_S427790
crossref_primary_10_2196_37689
crossref_primary_10_1016_j_cll_2022_09_002
crossref_primary_10_1038_s41390_022_02380_6
crossref_primary_10_1007_s12020_023_03637_8
crossref_primary_10_1016_j_jhqr_2022_09_006
crossref_primary_10_1109_TCBB_2021_3122405
crossref_primary_10_1111_acem_14190
crossref_primary_10_1109_JBHI_2022_3216055
crossref_primary_10_1016_j_semradonc_2023_06_004
crossref_primary_10_1016_j_ijmedinf_2022_104776
crossref_primary_10_1007_s00134_024_07629_8
crossref_primary_10_1016_j_jbo_2024_100622
crossref_primary_10_1097_MLR_0000000000001421
crossref_primary_10_3389_fmed_2021_634197
crossref_primary_10_1186_s12245_022_00472_y
crossref_primary_10_1016_j_imu_2023_101236
crossref_primary_10_2147_JIR_S499512
crossref_primary_10_1093_ageing_afad182
crossref_primary_10_2196_48330
crossref_primary_10_1371_journal_pdig_0000365
crossref_primary_10_1016_j_jointm_2024_04_006
crossref_primary_10_1093_milmed_usab220
crossref_primary_10_1186_s12911_022_01817_6
crossref_primary_10_1111_jebm_12565
crossref_primary_10_1016_j_icte_2023_07_007
crossref_primary_10_1016_j_artmed_2024_103008
crossref_primary_10_1038_s41746_021_00504_6
crossref_primary_10_3390_machines12120867
crossref_primary_10_1001_jamanetworkopen_2021_4514
crossref_primary_10_1016_j_heliyon_2024_e29603
crossref_primary_10_1097_MCC_0000000000000945
crossref_primary_10_1155_2024_7347876
crossref_primary_10_1177_20552076241297729
crossref_primary_10_4240_wjgs_v16_i2_345
crossref_primary_10_3390_nu15122705
crossref_primary_10_2196_43251
crossref_primary_10_1080_13102818_2024_2349587
crossref_primary_10_1287_ijoc_2022_1176
crossref_primary_10_1097_CCM_0000000000005793
crossref_primary_10_1007_s11356_022_23392_z
crossref_primary_10_1016_j_heliyon_2023_e19526
crossref_primary_10_1056_AIoa2400867
crossref_primary_10_1186_s12874_021_01284_z
crossref_primary_10_2196_29986
crossref_primary_10_1159_000511429
crossref_primary_10_1016_j_compbiomed_2024_109284
crossref_primary_10_1159_000538639
crossref_primary_10_1038_s41746_024_01066_z
crossref_primary_10_1371_journal_pone_0319460
crossref_primary_10_1080_22221751_2025_2479634
crossref_primary_10_1186_s13054_021_03787_z
crossref_primary_10_1038_s41598_022_27134_6
crossref_primary_10_1007_s00101_024_01480_8
crossref_primary_10_1055_s_0042_1742369
crossref_primary_10_1097_AOG_0000000000005513
crossref_primary_10_3390_jcm10235710
crossref_primary_10_3390_jcm14020350
crossref_primary_10_1093_infdis_jiae348
crossref_primary_10_1007_s11908_021_00747_0
crossref_primary_10_1038_s41391_023_00704_z
crossref_primary_10_3389_fdgth_2022_848599
crossref_primary_10_2196_22421
crossref_primary_10_1016_j_ijantimicag_2022_106684
crossref_primary_10_1016_j_csbj_2024_04_020
crossref_primary_10_3389_fgene_2023_1100352
crossref_primary_10_1038_s41598_023_38858_4
crossref_primary_10_4266_acc_2024_00031
crossref_primary_10_1038_s41598_022_12497_7
crossref_primary_10_1093_ehjdh_ztae098
crossref_primary_10_1016_j_jns_2022_120529
crossref_primary_10_1109_ACCESS_2025_3534803
crossref_primary_10_1093_brain_awab453
crossref_primary_10_3389_fimmu_2025_1526174
crossref_primary_10_1016_j_resuscitation_2022_07_026
crossref_primary_10_1097_MAO_0000000000004205
crossref_primary_10_2147_CLEP_S404580
crossref_primary_10_2196_54490
crossref_primary_10_3389_fnins_2023_1130831
crossref_primary_10_1007_s00234_022_03098_2
crossref_primary_10_1089_sur_2022_363
crossref_primary_10_1080_0886022X_2024_2337289
crossref_primary_10_3390_jpm11111055
crossref_primary_10_1098_rsta_2020_0252
crossref_primary_10_1080_14787210_2023_2237192
crossref_primary_10_1159_000516891
crossref_primary_10_1016_j_bspc_2023_105146
crossref_primary_10_1016_j_cmi_2022_03_029
crossref_primary_10_1186_s40001_023_01255_8
crossref_primary_10_1200_CCI_21_00023
crossref_primary_10_1016_j_eclinm_2024_103048
crossref_primary_10_3389_fmed_2024_1510792
crossref_primary_10_5664_jcsm_8388
crossref_primary_10_1038_s41746_024_01361_9
crossref_primary_10_1038_s41746_024_01369_1
crossref_primary_10_4258_hir_2021_27_3_241
crossref_primary_10_1016_j_chaos_2023_113718
crossref_primary_10_1155_2023_8819052
crossref_primary_10_1183_23120541_00166_2024
crossref_primary_10_3390_diagnostics13193091
crossref_primary_10_1109_ACCESS_2023_3349242
crossref_primary_10_23736_S0375_9393_21_16241_8
crossref_primary_10_3389_fmed_2023_1174429
crossref_primary_10_1136_bmj_m3210
crossref_primary_10_1007_s13755_023_00210_5
crossref_primary_10_1097_PTS_0000000000001069
crossref_primary_10_1038_s41598_024_57712_9
crossref_primary_10_1016_j_jad_2023_04_026
crossref_primary_10_1016_j_pdpdt_2025_104528
crossref_primary_10_1016_j_procs_2021_10_040
crossref_primary_10_1016_j_ijmedinf_2022_104855
crossref_primary_10_1142_S0218488522400013
crossref_primary_10_1016_j_smhl_2022_100335
crossref_primary_10_3389_fmed_2021_793815
crossref_primary_10_1016_j_compbiomed_2023_107156
crossref_primary_10_1016_j_artmed_2021_102036
crossref_primary_10_1016_j_ijnurstu_2023_104529
crossref_primary_10_3389_fmed_2021_775047
crossref_primary_10_1097_INF_0000000000004409
crossref_primary_10_1097_CCE_0000000000001165
crossref_primary_10_3389_fmed_2021_759013
Cites_doi 10.1007/s00134-019-05680-4
10.1002/jhm.2347
10.2196/medinform.5909
10.1097/CCM.0000000000001738
10.1016/j.amsu.2016.04.023
10.1001/jama.2017.19163
10.1145/2975167.2985841
10.1016/j.ajic.2017.04.005
10.1371/journal.pone.0155705
10.1016/j.jelectrocard.2017.08.013
10.1088/1361-6579/aa9772
10.1136/bmjopen-2017-017833
10.3389/fimmu.2018.01502
10.1007/s00134-018-5389-0
10.1371/journal.pmed.1002022
10.1007/s00134-018-5228-3
10.1186/s12873-016-0095-0
10.1097/CCM.0000000000002936
10.1016/J.CHEST.2017.12.015
10.1126/scitranslmed.aab3719
10.7717/peerj.343
10.1186/s12911-014-0105-7
10.1016/j.annemergmed.2010.12.008
10.1371/journal.pone.0198847
10.1016/j.compbiomed.2019.04.027
10.1056/NEJMoa1703058
10.1007/s42242-018-0030-1
10.1016/j.compbiomed.2019.103395
10.1016/s2589-7500(19)30123-2
10.1002/jhm.530
10.1371/journal.pone.0174708
10.1109/TKDE.2008.239
10.1164/rccm.201504-0781OC
10.7326/0003-4819-155-8-201110180-00009
10.1109/JBHI.2019.2894570
10.1001/jama.2017.13836
10.7861/clinmedicine.12-6-501
10.1164/rccm.201609-1848OC
10.1016/j.compbiomed.2017.08.015
10.1186/s13054-016-1497-9
10.1097/ccm.0000000000003891
10.1097/SLA.0000000000002706
10.1136/bmjresp-2017-000234
10.1097/CCM.0b013e318250a887
10.1097/CCM.0000000000000330
10.1001/jama.2016.0287
10.1097/CCM.0000000000003891
10.1186/s12963-018-0160-x
10.1038/s41551-018-0305-z
10.1136/bmjoq-2017-000158
10.1097/01.CCM.0000217961.75225.E9
10.1001/jama.2016.0288
10.1016/j.annemergmed.2018.11.036
10.1007/s00134-018-5134-8
10.1016/j.ijmedinf.2018.12.002
10.1007/s00134-017-4683-6
10.1001/jama.2017.18391
10.1016/j.compbiomed.2016.05.003
10.3414/ME18-01-0014
10.1109/ICHI.2018.00033
10.1109/SIEDS.2015.7116970
10.1109/ICHI.2018.00068
10.1109/ICHI.2018.00032
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 Springer
Intensive Care Medicine is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 Springer
– notice: Intensive Care Medicine is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
K9.
M0S
M1P
M7Z
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00134-019-05872-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Technology Research Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1238
EndPage 400
ExternalDocumentID PMC7067741
A723927719
31965266
10_1007_s00134_019_05872_y
Genre Meta-Analysis
Systematic Review
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAQQT
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEA
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
LMP
M1P
M4Y
MA-
MJL
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
X7M
YCJ
YLTOR
Z45
Z5O
Z7U
Z7X
Z82
Z83
Z86
Z87
Z8O
Z8V
Z8W
Z8Z
Z91
ZGI
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
AEIIB
PMFND
7XB
8FD
8FK
FR3
K9.
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c645t-136c813dad9f6e2a4bed1492276abde66f5307c0984c0f8a1bad333a766beca83
IEDL.DBID C6C
ISSN 0342-4642
1432-1238
IngestDate Thu Aug 21 14:04:04 EDT 2025
Thu Jul 10 23:47:48 EDT 2025
Sat Aug 23 14:54:35 EDT 2025
Tue Jun 17 21:39:22 EDT 2025
Thu Jun 12 23:25:02 EDT 2025
Tue Jun 10 20:47:53 EDT 2025
Mon Jul 21 05:57:36 EDT 2025
Tue Jul 01 03:51:16 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:35:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Sepsis
Septic shock
Systematic review
Machine learning
Prediction
Meta-analysis
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-136c813dad9f6e2a4bed1492276abde66f5307c0984c0f8a1bad333a766beca83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
ORCID 0000-0002-4056-1692
OpenAccessLink https://doi.org/10.1007/s00134-019-05872-y
PMID 31965266
PQID 2376506671
PQPubID 48752
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7067741
proquest_miscellaneous_2343503941
proquest_journals_2376506671
gale_infotracmisc_A723927719
gale_infotracgeneralonefile_A723927719
gale_infotracacademiconefile_A723927719
pubmed_primary_31965266
crossref_citationtrail_10_1007_s00134_019_05872_y
crossref_primary_10_1007_s00134_019_05872_y
springer_journals_10_1007_s00134_019_05872_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Intensive care medicine
PublicationTitleAbbrev Intensive Care Med
PublicationTitleAlternate Intensive Care Med
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Alsolamy, Al Salamah, Al Thagafi (CR39) 2014; 14
Thottakkara, Ozrazgat-Baslanti, Hupf (CR16) 2016; 11
Liu, Faes, Kale (CR61) 2019; 1
Liu, Fielding-Singh, Greene (CR5) 2017; 196
Talisa, Yende, Seymour, Angus (CR10) 2018; 9
Moss, Lake, Calland (CR36) 2016; 44
Brown, Jones, Kuttler (CR28) 2016; 16
Desautels, Calvert, Hoffman (CR54) 2016; 4
Brown, Jones, Kuttler (CR47) 2016; 16
Singer, Deutschman, Seymour (CR19) 2016; 315
Thiel, Rosini, Shannon (CR29) 2010; 5
McInnes, Moher, Thombs (CR18) 2018; 319
Møller, Alhazzani, Shankar-Hari (CR37) 2019; 45
Yu, Beam, Kohane (CR13) 2018; 2
Fleischmann, Scherag, Adhikari (CR1) 2016; 193
Ferrer, Martin-Loeches, Phillips (CR7) 2014; 42
Delahanty, Alvarez, Flynn (CR63) 2018
Nemati, Holder, Razmi (CR55) 2018; 46
Makam, Nguyen, Auerbach (CR38) 2015; 10
Shankar-Hari, Datta, Wilson, Assi, Stephen, Weir, Rennie, Antonelli, Bateman, Felton, Warner, Judge, Keenan, Wang, Burpee, Brown, Lewis, Mare, Roy, Wright, Hulme, Dimmick, Gray, Rossi, Simpson, Conway Morris, Walsh (CR43) 2018; 44
Mao, Jay, Hoffman (CR71) 2018; 8
Van, Khojandi, Mohammed (CR69) 2019; 122
McCoy, Das (CR31) 2017; 6
Kam, Kim (CR53) 2017; 89
Beam, Kohane (CR12) 2018; 319
Haug, Ferraro (CR62) 2016
Seymour, Liu, Iwashyna (CR34) 2016; 315
Rhodes, Evans, Alhazzani (CR6) 2017; 43
Giannini, Ginestra, Chivers (CR51) 2019
Mao, Jay, Hoffman (CR25) 2018; 8
Rhee, Dantes, Epstein (CR2) 2017; 318
Horng, Sontag, Halpern (CR35) 2017; 12
He, Garcia (CR60) 2009; 21
Van Wyk, Khojandi, Kamaleswaran (CR70) 2018; 2018
Giannini, Ginestra, Chivers (CR30) 2019
Serafim, Gomes, Salluh, Póvoa (CR40) 2018; 153
Khojandi, Tansakul, Li (CR64) 2018; 57
Hooper, Weavind, Wheeler (CR50) 2012; 40
Shashikumar, Li, Clifford, Nemati (CR68) 2017; 38
CR14
CR58
CR57
Shimabukuro, Barton, Feldman (CR32) 2017; 4
Bihorac, Ozrazgat-Baslanti, Ebadi (CR17) 2019; 269
Vincent (CR9) 2016; 13
Nguyen, Mwakalindile, Booth (CR48) 2014; 2
Nachimuthu, Haug (CR15) 2012; 2012
Fleischmann-Struzek, Thomas-Rüddel, Schettler (CR44) 2018; 13
Hiensch, Poeran, Saunders-Hao (CR41) 2017; 45
Calvert, Price, Chettipally (CR52) 2016; 74
Whiting, Rutjes, Westwood (CR22) 2011; 155
de Grooth, Postema, Loer (CR11) 2018; 44
Calvert, Desautels, Chettipally (CR33) 2016; 8
Jones (CR46) 2012; 12
CR23
Shashikumar, Stanley, Sadiq (CR67) 2017; 50
Kwong, Colopy, Weber (CR24) 2019; 2
Nelson, Smith, Jared, Younger (CR49) 2011; 57
CR66
Álvaro-Meca, Jiménez-Sousa, Micheloud (CR3) 2018; 16
CR21
CR65
CR20
Parlato, Philippart, Rouquette (CR42) 2018; 44
Barton, Chettipally, Zhou (CR27) 2019; 109
Core Team (CR26) 2019
Scherpf, Gräßer, Malberg, Zaunseder (CR59) 2019; 113
Seymour, Gesten, Prescott (CR4) 2017; 376
Kumar, Roberts, Wood (CR8) 2006; 34
Henry, Hager, Pronovost, Saria (CR56) 2015; 7
Bouza, Lopez-Cuadrado, Amate-Blanco (CR45) 2016; 20
A Kumar (5872_CR8) 2006; 34
Manu Shankar-Hari (5872_CR43) 2018; 44
SP Shashikumar (5872_CR68) 2017; 38
C Fleischmann (5872_CR1) 2016; 193
P Thottakkara (5872_CR16) 2016; 11
JL Nelson (5872_CR49) 2011; 57
MH Møller (5872_CR37) 2019; 45
R Ferrer (5872_CR7) 2014; 42
A Bihorac (5872_CR17) 2019; 269
A Khojandi (5872_CR64) 2018; 57
R Core Team (5872_CR26) 2019
A Álvaro-Meca (5872_CR3) 2018; 16
TJ Moss (5872_CR36) 2016; 44
Katharine E. Henry (5872_CR56) 2015; 7
J-L Vincent (5872_CR9) 2016; 13
SM Brown (5872_CR47) 2016; 16
SQ Nguyen (5872_CR48) 2014; 2
A McCoy (5872_CR31) 2017; 6
SK Nachimuthu (5872_CR15) 2012; 2012
HM Giannini (5872_CR51) 2019
M Scherpf (5872_CR59) 2019; 113
F Van Wyk (5872_CR70) 2018; 2018
5872_CR57
5872_CR14
S Nemati (5872_CR55) 2018; 46
5872_CR58
Q Mao (5872_CR71) 2018; 8
SM Brown (5872_CR28) 2016; 16
CW Seymour (5872_CR34) 2016; 315
CW Seymour (5872_CR4) 2017; 376
DW Shimabukuro (5872_CR32) 2017; 4
K-H Yu (5872_CR13) 2018; 2
C Barton (5872_CR27) 2019; 109
JS Calvert (5872_CR52) 2016; 74
VX Liu (5872_CR5) 2017; 196
H-J de Grooth (5872_CR11) 2018; 44
5872_CR66
5872_CR23
MT Kwong (5872_CR24) 2019; 2
HJ Kam (5872_CR53) 2017; 89
Wyk F Van (5872_CR69) 2019; 122
PF Whiting (5872_CR22) 2011; 155
M Singer (5872_CR19) 2016; 315
J Calvert (5872_CR33) 2016; 8
A Rhodes (5872_CR6) 2017; 43
M Parlato (5872_CR42) 2018; 44
P Haug (5872_CR62) 2016
R Serafim (5872_CR40) 2018; 153
5872_CR20
5872_CR21
5872_CR65
VB Talisa (5872_CR10) 2018; 9
MDF McInnes (5872_CR18) 2018; 319
C Bouza (5872_CR45) 2016; 20
SW Thiel (5872_CR29) 2010; 5
R Hiensch (5872_CR41) 2017; 45
SP Shashikumar (5872_CR67) 2017; 50
C Fleischmann-Struzek (5872_CR44) 2018; 13
AN Makam (5872_CR38) 2015; 10
Q Mao (5872_CR25) 2018; 8
S Horng (5872_CR35) 2017; 12
MH Hooper (5872_CR50) 2012; 40
S Alsolamy (5872_CR39) 2014; 14
HM Giannini (5872_CR30) 2019
AL Beam (5872_CR12) 2018; 319
Haibo He (5872_CR60) 2009; 21
T Desautels (5872_CR54) 2016; 4
X Liu (5872_CR61) 2019; 1
RJ Delahanty (5872_CR63) 2018
C Rhee (5872_CR2) 2017; 318
M Jones (5872_CR46) 2012; 12
References_xml – volume: 45
  start-page: 1459
  year: 2019
  end-page: 1461
  ident: CR37
  article-title: Focus on sepsis
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-019-05680-4
– volume: 10
  start-page: 396
  year: 2015
  end-page: 402
  ident: CR38
  article-title: Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: a systematic review
  publication-title: J Hosp Med
  doi: 10.1002/jhm.2347
– volume: 4
  start-page: e28
  year: 2016
  ident: CR54
  article-title: Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach
  publication-title: JMIR Med Inf
  doi: 10.2196/medinform.5909
– volume: 44
  start-page: 1639
  year: 2016
  end-page: 1648
  ident: CR36
  article-title: Signatures of subacute potentially catastrophic illness in the ICU: model development and validation
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001738
– volume: 8
  start-page: 50
  year: 2016
  end-page: 55
  ident: CR33
  article-title: High-performance detection and early prediction of septic shock for alcohol-use disorder patients
  publication-title: Ann Med Surg
  doi: 10.1016/j.amsu.2016.04.023
– volume: 319
  start-page: 388
  year: 2018
  end-page: 396
  ident: CR18
  article-title: Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies the PRISMA-DTA statement
  publication-title: JAMA J Am Med Assoc
  doi: 10.1001/jama.2017.19163
– year: 2016
  ident: CR62
  article-title: Using a semi-automated modeling environment to construct a Bayesian, sepsis diagnostic system
  publication-title: BCB '16
  doi: 10.1145/2975167.2985841
– volume: 45
  start-page: 1091
  year: 2017
  end-page: 1100
  ident: CR41
  article-title: Impact of an electronic sepsis initiative on antibiotic use and health care facility–onset clostridium difficile infection rates
  publication-title: Am J Infect Control
  doi: 10.1016/j.ajic.2017.04.005
– volume: 11
  start-page: e0155705
  year: 2016
  ident: CR16
  article-title: Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155705
– volume: 50
  start-page: 739
  year: 2017
  end-page: 743
  ident: CR67
  article-title: Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2017.08.013
– volume: 38
  start-page: 2235
  year: 2017
  end-page: 2248
  ident: CR68
  article-title: Multiscale network representation of physiological time series for early prediction of sepsis
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aa9772
– ident: CR58
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR25
  article-title: Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-017833
– volume: 9
  start-page: 1502
  year: 2018
  ident: CR10
  article-title: Arguing for adaptive clinical trials in sepsis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01502
– volume: 44
  start-page: 1836
  issue: 11
  year: 2018
  end-page: 1848
  ident: CR43
  article-title: Early PREdiction of sepsis using leukocyte surface biomarkers: the ExPRES-sepsis cohort study
  publication-title: Intensive Care Medicine
  doi: 10.1007/s00134-018-5389-0
– ident: CR21
– volume: 13
  start-page: e1002022
  year: 2016
  ident: CR9
  article-title: The clinical challenge of sepsis identification and monitoring
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002022
– volume: 44
  start-page: 1061
  year: 2018
  end-page: 1070
  ident: CR42
  article-title: Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-018-5228-3
– volume: 16
  start-page: 31
  year: 2016
  ident: CR47
  article-title: Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department
  publication-title: BMC Emerg Med
  doi: 10.1186/s12873-016-0095-0
– volume: 46
  start-page: 547
  year: 2018
  end-page: 553
  ident: CR55
  article-title: An interpretable machine learning model for accurate prediction of sepsis in the ICU
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000002936
– volume: 153
  start-page: 646
  year: 2018
  end-page: 655
  ident: CR40
  article-title: A comparison of the quick-SOFA and systemic inflammatory response syndrome criteria for the diagnosis of sepsis and prediction of mortality: a systematic review and meta-analysis
  publication-title: Chest
  doi: 10.1016/J.CHEST.2017.12.015
– volume: 7
  start-page: 299ra122
  issue: 299
  year: 2015
  end-page: 299ra122
  ident: CR56
  article-title: A targeted real-time early warning score (TREWScore) for septic shock
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.aab3719
– volume: 2012
  start-page: 653
  year: 2012
  end-page: 662
  ident: CR15
  article-title: Early detection of sepsis in the emergency department using dynamic Bayesian networks
  publication-title: AMIA Annu Symp Proc AMIA Symp
– volume: 2
  start-page: e343
  year: 2014
  ident: CR48
  article-title: Automated electronic medical record sepsis detection in the emergency department
  publication-title: PeerJ
  doi: 10.7717/peerj.343
– volume: 14
  start-page: 105
  year: 2014
  ident: CR39
  article-title: Diagnostic accuracy of a screening electronic alert tool for severe sepsis and septic shock in the emergency department
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-014-0105-7
– volume: 57
  start-page: 500
  year: 2011
  end-page: 504
  ident: CR49
  article-title: Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis
  publication-title: Ann Emerg Med
  doi: 10.1016/j.annemergmed.2010.12.008
– volume: 13
  start-page: e0198847
  year: 2018
  ident: CR44
  article-title: Comparing the validity of different ICD coding abstraction strategies for sepsis case identification in German claims data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198847
– ident: CR57
– volume: 109
  start-page: 79
  year: 2019
  end-page: 84
  ident: CR27
  article-title: Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.04.027
– volume: 376
  start-page: 2235
  year: 2017
  end-page: 2244
  ident: CR4
  article-title: Time to treatment and mortality during mandated emergency care for sepsis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1703058
– volume: 2
  start-page: 31
  year: 2019
  end-page: 40
  ident: CR24
  article-title: The efficacy and effectiveness of machine learning for weaning in mechanically ventilated patients at the intensive care unit: a systematic review
  publication-title: Bio-Design Manuf
  doi: 10.1007/s42242-018-0030-1
– volume: 113
  start-page: 103395
  year: 2019
  ident: CR59
  article-title: Predicting sepsis with a recurrent neural network using the MIMIC III database
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103395
– volume: 1
  start-page: e271
  year: 2019
  end-page: e297
  ident: CR61
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis
  publication-title: Lancet Digit Heal
  doi: 10.1016/s2589-7500(19)30123-2
– volume: 5
  start-page: 19
  year: 2010
  end-page: 25
  ident: CR29
  article-title: Early prediction of septic shock in hospitalized patients
  publication-title: J Hosp Med
  doi: 10.1002/jhm.530
– volume: 12
  start-page: e0174708
  year: 2017
  ident: CR35
  article-title: Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174708
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: CR60
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.239
– volume: 193
  start-page: 259
  year: 2016
  end-page: 272
  ident: CR1
  article-title: Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201504-0781OC
– volume: 8
  start-page: e017833
  year: 2018
  ident: CR71
  article-title: Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-017833
– volume: 155
  start-page: 529
  year: 2011
  ident: CR22
  article-title: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-155-8-201110180-00009
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR70
  article-title: Improving prediction performance using hierarchical analysis of real-time data : a sepsis case study
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2894570
– ident: CR66
– volume: 318
  start-page: 1241
  year: 2017
  ident: CR2
  article-title: Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014
  publication-title: JAMA
  doi: 10.1001/jama.2017.13836
– volume: 12
  start-page: 501
  year: 2012
  end-page: 503
  ident: CR46
  article-title: NEWSDIG: the national early warning score development and implementation group
  publication-title: Clin Med
  doi: 10.7861/clinmedicine.12-6-501
– volume: 196
  start-page: 856
  year: 2017
  end-page: 863
  ident: CR5
  article-title: The timing of early antibiotics and hospital mortality in sepsis
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201609-1848OC
– volume: 16
  start-page: 1
  year: 2016
  end-page: 7
  ident: CR28
  article-title: Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department
  publication-title: BMC Emerg Med
  doi: 10.1186/s12873-016-0095-0
– ident: CR14
– volume: 89
  start-page: 248
  year: 2017
  end-page: 255
  ident: CR53
  article-title: Learning representations for the early detection of sepsis with deep neural networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.08.015
– volume: 20
  start-page: 313
  year: 2016
  ident: CR45
  article-title: Use of explicit ICD9-CM codes to identify adult severe sepsis: impacts on epidemiological estimates
  publication-title: Crit Care
  doi: 10.1186/s13054-016-1497-9
– year: 2019
  ident: CR30
  article-title: A machine learning algorithm to predict severe sepsis and septic shock
  publication-title: Crit Care Med
  doi: 10.1097/ccm.0000000000003891
– volume: 269
  start-page: 652
  year: 2019
  end-page: 662
  ident: CR17
  article-title: My surgery risk
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002706
– volume: 4
  start-page: e000234
  year: 2017
  ident: CR32
  article-title: Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial
  publication-title: BMJ Open Respir Res
  doi: 10.1136/bmjresp-2017-000234
– ident: CR23
– volume: 40
  start-page: 2096
  year: 2012
  end-page: 2101
  ident: CR50
  article-title: Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e318250a887
– volume: 42
  start-page: 1749
  year: 2014
  end-page: 1755
  ident: CR7
  article-title: Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000000330
– volume: 315
  start-page: 801
  year: 2016
  ident: CR19
  article-title: The third international consensus definitions for sepsis and septic shock (sepsis-3)
  publication-title: JAMA
  doi: 10.1001/jama.2016.0287
– year: 2019
  ident: CR51
  article-title: A machine learning algorithm to predict severe sepsis and septic shock: development, implementation, and impact on clinical practice
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000003891
– ident: CR65
– volume: 16
  start-page: 4
  year: 2018
  ident: CR3
  article-title: Epidemiological trends of sepsis in the twenty-first century (2000–2013): an analysis of incidence, mortality, and associated costs in Spain
  publication-title: Popul Health Metr
  doi: 10.1186/s12963-018-0160-x
– volume: 2
  start-page: 719
  year: 2018
  end-page: 731
  ident: CR13
  article-title: Artificial intelligence in healthcare
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0305-z
– volume: 6
  start-page: e000158
  year: 2017
  ident: CR31
  article-title: Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
  publication-title: BMJ open Qual
  doi: 10.1136/bmjoq-2017-000158
– volume: 34
  start-page: 1589
  year: 2006
  end-page: 1596
  ident: CR8
  article-title: Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000217961.75225.E9
– volume: 315
  start-page: 762
  year: 2016
  ident: CR34
  article-title: Assessment of clinical criteria for sepsis
  publication-title: JAMA
  doi: 10.1001/jama.2016.0288
– year: 2018
  ident: CR63
  article-title: Development and evaluation of a machine learning model for the early identification of patients at risk for sepsis
  publication-title: Ann Emerg Med
  doi: 10.1016/j.annemergmed.2018.11.036
– volume: 44
  start-page: 311
  year: 2018
  end-page: 322
  ident: CR11
  article-title: Unexplained mortality differences between septic shock trials: a systematic analysis of population characteristics and control-group mortality rates
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-018-5134-8
– volume: 122
  start-page: 55
  year: 2019
  end-page: 62
  ident: CR69
  article-title: A minimal set of physiomarkers in continuous high frequency data streams predict adult sepsis onset earlier
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2018.12.002
– volume: 43
  start-page: 304
  year: 2017
  end-page: 377
  ident: CR6
  article-title: Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-017-4683-6
– volume: 319
  start-page: 1317
  year: 2018
  ident: CR12
  article-title: Big data and machine learning in health care
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– year: 2019
  ident: CR26
  publication-title: R: a language and environment for statistical computing
– volume: 74
  start-page: 69
  year: 2016
  end-page: 73
  ident: CR52
  article-title: A computational approach to early sepsis detection
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.05.003
– ident: CR20
– volume: 57
  start-page: 185
  year: 2018
  end-page: 193
  ident: CR64
  article-title: Prediction of sepsis and in-hospital mortality using electronic health records
  publication-title: Methods Inf Med
  doi: 10.3414/ME18-01-0014
– volume: 46
  start-page: 547
  year: 2018
  ident: 5872_CR55
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000002936
– year: 2019
  ident: 5872_CR30
  publication-title: Crit Care Med
  doi: 10.1097/ccm.0000000000003891
– volume: 74
  start-page: 69
  year: 2016
  ident: 5872_CR52
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.05.003
– ident: 5872_CR14
  doi: 10.1109/ICHI.2018.00033
– volume: 20
  start-page: 313
  year: 2016
  ident: 5872_CR45
  publication-title: Crit Care
  doi: 10.1186/s13054-016-1497-9
– volume: 376
  start-page: 2235
  year: 2017
  ident: 5872_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1703058
– volume: 122
  start-page: 55
  year: 2019
  ident: 5872_CR69
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2018.12.002
– volume: 50
  start-page: 739
  year: 2017
  ident: 5872_CR67
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2017.08.013
– volume: 2018
  start-page: 1
  year: 2018
  ident: 5872_CR70
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2894570
– volume: 2
  start-page: 719
  year: 2018
  ident: 5872_CR13
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0305-z
– volume: 44
  start-page: 1061
  year: 2018
  ident: 5872_CR42
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-018-5228-3
– volume: 44
  start-page: 1836
  issue: 11
  year: 2018
  ident: 5872_CR43
  publication-title: Intensive Care Medicine
  doi: 10.1007/s00134-018-5389-0
– ident: 5872_CR23
– volume: 2012
  start-page: 653
  year: 2012
  ident: 5872_CR15
  publication-title: AMIA Annu Symp Proc AMIA Symp
– volume: 318
  start-page: 1241
  year: 2017
  ident: 5872_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2017.13836
– ident: 5872_CR65
– volume: 196
  start-page: 856
  year: 2017
  ident: 5872_CR5
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201609-1848OC
– year: 2018
  ident: 5872_CR63
  publication-title: Ann Emerg Med
  doi: 10.1016/j.annemergmed.2018.11.036
– volume: 10
  start-page: 396
  year: 2015
  ident: 5872_CR38
  publication-title: J Hosp Med
  doi: 10.1002/jhm.2347
– volume: 2
  start-page: 31
  year: 2019
  ident: 5872_CR24
  publication-title: Bio-Design Manuf
  doi: 10.1007/s42242-018-0030-1
– volume: 1
  start-page: e271
  year: 2019
  ident: 5872_CR61
  publication-title: Lancet Digit Heal
  doi: 10.1016/s2589-7500(19)30123-2
– volume: 44
  start-page: 311
  year: 2018
  ident: 5872_CR11
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-018-5134-8
– volume: 21
  start-page: 1263
  year: 2009
  ident: 5872_CR60
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.239
– volume: 38
  start-page: 2235
  year: 2017
  ident: 5872_CR68
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aa9772
– volume: 193
  start-page: 259
  year: 2016
  ident: 5872_CR1
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201504-0781OC
– volume: 4
  start-page: e000234
  year: 2017
  ident: 5872_CR32
  publication-title: BMJ Open Respir Res
  doi: 10.1136/bmjresp-2017-000234
– volume: 44
  start-page: 1639
  year: 2016
  ident: 5872_CR36
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001738
– volume: 45
  start-page: 1459
  year: 2019
  ident: 5872_CR37
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-019-05680-4
– ident: 5872_CR58
  doi: 10.1109/SIEDS.2015.7116970
– volume: 8
  start-page: 50
  year: 2016
  ident: 5872_CR33
  publication-title: Ann Med Surg
  doi: 10.1016/j.amsu.2016.04.023
– volume: 40
  start-page: 2096
  year: 2012
  ident: 5872_CR50
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e318250a887
– volume: 16
  start-page: 31
  year: 2016
  ident: 5872_CR47
  publication-title: BMC Emerg Med
  doi: 10.1186/s12873-016-0095-0
– volume: 16
  start-page: 1
  year: 2016
  ident: 5872_CR28
  publication-title: BMC Emerg Med
  doi: 10.1186/s12873-016-0095-0
– ident: 5872_CR57
  doi: 10.1109/ICHI.2018.00068
– volume: 57
  start-page: 185
  year: 2018
  ident: 5872_CR64
  publication-title: Methods Inf Med
  doi: 10.3414/ME18-01-0014
– volume: 11
  start-page: e0155705
  year: 2016
  ident: 5872_CR16
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155705
– volume: 319
  start-page: 1317
  year: 2018
  ident: 5872_CR12
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: 14
  start-page: 105
  year: 2014
  ident: 5872_CR39
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-014-0105-7
– volume: 42
  start-page: 1749
  year: 2014
  ident: 5872_CR7
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000000330
– volume: 109
  start-page: 79
  year: 2019
  ident: 5872_CR27
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.04.027
– volume-title: R: a language and environment for statistical computing
  year: 2019
  ident: 5872_CR26
– year: 2019
  ident: 5872_CR51
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000003891
– volume: 269
  start-page: 652
  year: 2019
  ident: 5872_CR17
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002706
– ident: 5872_CR21
– volume: 315
  start-page: 762
  year: 2016
  ident: 5872_CR34
  publication-title: JAMA
  doi: 10.1001/jama.2016.0288
– volume: 12
  start-page: 501
  year: 2012
  ident: 5872_CR46
  publication-title: Clin Med
  doi: 10.7861/clinmedicine.12-6-501
– volume: 315
  start-page: 801
  year: 2016
  ident: 5872_CR19
  publication-title: JAMA
  doi: 10.1001/jama.2016.0287
– volume: 34
  start-page: 1589
  year: 2006
  ident: 5872_CR8
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000217961.75225.E9
– volume: 8
  start-page: 1
  year: 2018
  ident: 5872_CR25
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-017833
– ident: 5872_CR66
  doi: 10.1109/ICHI.2018.00032
– volume: 9
  start-page: 1502
  year: 2018
  ident: 5872_CR10
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01502
– volume: 57
  start-page: 500
  year: 2011
  ident: 5872_CR49
  publication-title: Ann Emerg Med
  doi: 10.1016/j.annemergmed.2010.12.008
– volume: 153
  start-page: 646
  year: 2018
  ident: 5872_CR40
  publication-title: Chest
  doi: 10.1016/J.CHEST.2017.12.015
– volume: 89
  start-page: 248
  year: 2017
  ident: 5872_CR53
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.08.015
– volume: 6
  start-page: e000158
  year: 2017
  ident: 5872_CR31
  publication-title: BMJ open Qual
  doi: 10.1136/bmjoq-2017-000158
– volume: 16
  start-page: 4
  year: 2018
  ident: 5872_CR3
  publication-title: Popul Health Metr
  doi: 10.1186/s12963-018-0160-x
– volume: 45
  start-page: 1091
  year: 2017
  ident: 5872_CR41
  publication-title: Am J Infect Control
  doi: 10.1016/j.ajic.2017.04.005
– volume: 113
  start-page: 103395
  year: 2019
  ident: 5872_CR59
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103395
– volume: 43
  start-page: 304
  year: 2017
  ident: 5872_CR6
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-017-4683-6
– volume: 319
  start-page: 388
  year: 2018
  ident: 5872_CR18
  publication-title: JAMA J Am Med Assoc
  doi: 10.1001/jama.2017.19163
– volume: 12
  start-page: e0174708
  year: 2017
  ident: 5872_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174708
– volume: 7
  start-page: 299ra122
  issue: 299
  year: 2015
  ident: 5872_CR56
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.aab3719
– ident: 5872_CR20
– volume: 8
  start-page: e017833
  year: 2018
  ident: 5872_CR71
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-017833
– volume: 2
  start-page: e343
  year: 2014
  ident: 5872_CR48
  publication-title: PeerJ
  doi: 10.7717/peerj.343
– volume: 5
  start-page: 19
  year: 2010
  ident: 5872_CR29
  publication-title: J Hosp Med
  doi: 10.1002/jhm.530
– year: 2016
  ident: 5872_CR62
  publication-title: BCB '16
  doi: 10.1145/2975167.2985841
– volume: 155
  start-page: 529
  year: 2011
  ident: 5872_CR22
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-155-8-201110180-00009
– volume: 13
  start-page: e0198847
  year: 2018
  ident: 5872_CR44
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198847
– volume: 13
  start-page: e1002022
  year: 2016
  ident: 5872_CR9
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002022
– volume: 4
  start-page: e28
  year: 2016
  ident: 5872_CR54
  publication-title: JMIR Med Inf
  doi: 10.2196/medinform.5909
SSID ssj0017651
Score 2.690662
SecondaryResourceType review_article
Snippet Purpose Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have...
Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged....
Purpose Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have...
PurposeEarly clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 383
SubjectTerms Accuracy
Analysis
Anesthesiology
Critical Care Medicine
Diagnostic systems
Diagnostic tests
Diagnostic Tests, Routine
Emergency medical care
Emergency medical services
Emergency Medicine
Humans
Infection
Intensive
Intensive care
Learning algorithms
Machine Learning
Medical diagnosis
Medical tests
Medicine
Medicine & Public Health
Meta-analysis
Multivariate analysis
Pain Medicine
Pediatrics
Pneumology/Respiratory System
Predictions
Quality assessment
Quality control
Real time
Retrospective Studies
Reviews
Sepsis
Sepsis - diagnosis
Septic shock
Shock, Septic
Systematic Review
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgSIhLVT6bUpCREBzAIrETO-kFVYiqQlpOVNqb5dhOqQTZdLN72H_PjOPNkhX07OcoyYzHz_b4DSFvZWNFVRvHskYKBuuNhtVAY5n3HMWOUuM8nujOvsvLq_zbvJjHDbc-plVuY2II1G5hcY_8E2ZvFJiRmX3ubhlWjcLT1VhC4z55gNJl6NVqPi64MugRKuaJnLMciHa8NBOuziH3wfyLiqVFqTjbTCam_fD81_y0nzu5d4Aa5qWLI3IYCSU9HzzgMbnn2yfk4SwemT8l3SykS3oa60NcU6CpFGgf7ZYIQsPQRUN73_U3_Rk1dCfuTIeLLdS0jv72K8NMlDDBDm5I0kMY0NUVNdaul8ZunpGri68_vlyyWGaBWZkXWIxe2jITzriqkZ6bvPYO1k2cK2lq56VsCggENq3K3KZNaTIwrRDCKCnBAUwpnpODdtH6Y0IzD_TNqdLUNs8FT-uyAT7jeVNZWNm5IiHZ9h9rGzXIsRTGLz2qJwe7aLCLDnbRm4R8GPt0gwLHnej3aDqNwxOebE28ZQDvh0JX-lxxYIRKZVVC3k2Q14PM97-ApxMgjD87bd56iY7jv9c7b03Im7EZe2JOW-sXa8QAVU1FlQPmxeBU4wdiYCyAOyVETdxtBKAq-LSlvfkZ1MEVagLiMz9uHXP3Wv__byd3f8VL8ojjRkNIvjslB6vl2r8CNraqX4ch9wc4TzGq
  priority: 102
  providerName: ProQuest
Title Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
URI https://link.springer.com/article/10.1007/s00134-019-05872-y
https://www.ncbi.nlm.nih.gov/pubmed/31965266
https://www.proquest.com/docview/2376506671
https://www.proquest.com/docview/2343503941
https://pubmed.ncbi.nlm.nih.gov/PMC7067741
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbYJiEuiPEzMCojITiApcRO7IRbW7VMoFYIUamcIsd2tkmQVv1x6H_Pe4mbLdWYtEtz8GcrzfOLP-c9f4-Q97I0Iiu0ZVEpBYP9RskKoLHMOY5iR6G2DiO6k6k8n8Xf5sncy-TgWZiD-D2KfUYC8yQyFiap4mx3RE6SSCgs0zCUwzZioGRdahEV7VgMpNofkLl9jM4idPgqvrEWHeZJHgRL6zVo_IQ89uSR9htrn5IHrnpKHk58ePwZWU7q1EhHfS2ICwqUlALFo8sVgtAIdFHStVuur9ZfqKbXQs60OcRCdWXpX7fRTHu5Euxgm4Q8hAE13VBtzHalze45mY1Hv4bnzJdUYEbGCRaelyaNhNU2K6XjOi6chT0S50rqwjopywSc3oRZGpuwTHUEZhRCaCUlGFun4gU5rhaVe0Vo5ICqWZXqwsSx4GGRlsBdHC8zA7s4mwQk2j_j3Hi9cSx78SdvlZJru-Rgl7y2S74LyKe2z7JR27gT_RFNl6MrwshG-xMFcH8oapX3FQf2p1SUBeRDB3nRSHrfBjzrAMHXTLd5P0ty7-vrHPOKEswVjgLyrm3Gnpi_VrnFFjFAS0ORxYB52Uyq9g_iSzABnhQQ1ZluLQAVwLst1dVlrQSuUP8Px_y8n5jXt_X_5_b6fvA35BHHjwx14t0ZOd6stu4tMLFN0SNHaq565KQ_HgymeP36-_sIroPR9MfPXu2g8Dvj_X-5uTFt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4k2ggJF4HMAicRI7QUKoAqot7fbUSntzHdsplSC7bHaF9k_xG5lxHktW0FvPHlt2Zmx_E898Q8gLUZo4L7RlUSliBv5GyQqAscw5jmRHobYOX3THR2J0knydpJMt8rvLhcGwyu5M9Ae1nRr8R_4OozdSjMiMPs5-Mqwaha-rXQmNxiwO3OoXuGz1h_3PoN-XnO99Of40Ym1VAWZEkmLtdWGyKLba5qVwXCeFs-AmcC6FLqwTokzB7k2YZ4kJy0xHsJI4jrUUAtarsxjGvUKuwsUborMnJ72DF8EMfYW-OOEsAWDfJun4VD3EWhjvkbMwzSRnq8FFuHkd_HUfbsZqbjzY-ntw7xa52QJYuttY3G2y5ao75Nq4faK_S2ZjH57paFuP4owCLKYAM-lsjkJoCHRa0trN6vP6PdV0TSZNm0QaqitLf7iFZrqlTMEOtgkKRDGAxwuqjVnOtVndIyeXooD7ZLuaVu4hoZEDuGhlpguTJDEPi6wE_OR4mRvwJG0akKj7xsq0nOdYeuO76tmavV4U6EV5vahVQN70fWYN48eF0q9RdQqPAxjZ6DarAeaHxFpqV3JAoFJGeUBeDSTPGlrxfwnuDARhv5thc2clqj1varXeHQF53jdjT4yhq9x0iTIAjcM4T0DmQWNU_QLxIE4BqwVEDsytF0AW8mFLdf7Ns5FL5CDEMd92hrme1v-_26OLV_GMXB8djw_V4f7RwWNyg-NPDh_4t0O2F_OlewJIcFE89duPktPL3u9_AN7xb10
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbxZKGAkHgewmjiJkyAhVGhXLWVXFaJSb6ljO6USZJd9CO1f49cxkzhZsoLeevbYsjMz9ufM-BuA57LQQZorw_1CBhzvGwXPEcZyawWRHXnKWIroDkfy4CT8dBqdbsDv5i0MpVU2e2K1UZuxpn_kO5S9EVFGpr9TuLSI473B-8lPThWkKNLalNOoTeTILn_h9W327nAPdf1CiMH-148H3FUY4FqGEdVhlzrxA6NMWkgrVJhbg1cGIWKpcmOlLCL0Ae2lSai9IlE-rioIAhVLiWtXSYDjXoPNmG5FPdj8sD86_tLGMHC-Vb2-IBQ8RJjvnuxUD_cIeVH2R8q9KIkFX3aOxfXD4a_TcT1zcy18W52Kg5tww8FZtlvb3y3YsOVt2Bq6gP0dmAyrZE3LXHWKc4YgmSHoZJMpCZFZsHHBZnYyu5i9ZYqtqKVZ_ayGqdKwH3auuHIEKtTB1CmCJIZgec6U1oup0su7cHIlKrgHvXJc2gfAfIvg0cSJynUYBsLLkwLRlBVFqvFeaaI--M03zrRjQKdCHN-zlru50kuGeskqvWTLPrxu-0xq_o9LpV-R6jLaHHBkrdwbB5wf0Wxlu7FAPBrHftqHlx3J85pk_F-C2x1B9H7dbW6sJHO7zyxb-UofnrXN1JMy6ko7XpAMAmUvSEOUuV8bVbtA2pYjRG59iDvm1goQJ3m3pbz4VnGTx8RISGO-aQxzNa3_f7eHl6_iKWyhr2efD0dHj-C6oD8eVRbgNvTm04V9jLBwnj9x_sfg7Kpd_g9ldnT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+the+prediction+of+sepsis%3A+a+systematic+review+and+meta-analysis+of+diagnostic+test+accuracy&rft.jtitle=Intensive+care+medicine&rft.au=Fleuren%2C+Lucas+M&rft.au=Klausch%2C+Thomas+L.+T&rft.au=Zwager%2C+Charlotte+L&rft.au=Schoonmade%2C+Linda+J&rft.date=2020-03-01&rft.pub=Springer&rft.issn=0342-4642&rft.volume=46&rft.issue=3&rft.spage=383&rft_id=info:doi/10.1007%2Fs00134-019-05872-y&rft.externalDocID=A723927719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0342-4642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0342-4642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0342-4642&client=summon