A KDM6A–KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction

Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that K...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 11; no. 5; pp. 1 - n/a
Main Authors Lin, Chun‐Liang, Hsu, Yung‐Chien, Huang, Yu‐Ting, Shih, Ya‐Hsueh, Wang, Ching‐Jen, Chiang, Wen‐Chih, Chang, Pey‐Jium
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2019
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text
ISSN1757-4676
1757-4684
1757-4684
DOI10.15252/emmm.201809828

Cover

Loading…
Abstract Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Synopsis Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. Both KDM6A and KLF10 are up‐regulated in podocytes under diabetic conditions. Activation of the positive inter‐regulation between KDM6A and KLF10 results in repression of multiple podocyte‐specific marker proteins. Inactivation or podocyte‐specific knockout of KDM6A in mice attenuates diabetes‐induced kidney injury. Kidney injury is also reduced in KLF10‐knockout mice under diabetic conditions. Elevated levels of urinary exosomal KDM6A and KLF10 mRNAs are observed in human diabetic nephropathy patients relative to control subjects. Graphical Abstract Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury.
AbstractList Abstract Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury.
Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Synopsis Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. Both KDM6A and KLF10 are up‐regulated in podocytes under diabetic conditions. Activation of the positive inter‐regulation between KDM6A and KLF10 results in repression of multiple podocyte‐specific marker proteins. Inactivation or podocyte‐specific knockout of KDM6A in mice attenuates diabetes‐induced kidney injury. Kidney injury is also reduced in KLF10‐knockout mice under diabetic conditions. Elevated levels of urinary exosomal KDM6A and KLF10 mRNAs are observed in human diabetic nephropathy patients relative to control subjects. Graphical Abstract Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury.
Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up-regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte-specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes-induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both and proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A-KLF10 feedback loop may be beneficial to attenuate diabetes-induced kidney injury.
Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM 6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF 10. Overexpression of KLF 10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM 6A expression. We further show that KLF 10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM 6A or KLF 10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM 6A and KLF 10 proteins or mRNA s are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM 6A– KLF 10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury.
Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up-regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte-specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes-induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A-KLF10 feedback loop may be beneficial to attenuate diabetes-induced kidney injury.Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up-regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte-specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes-induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A-KLF10 feedback loop may be beneficial to attenuate diabetes-induced kidney injury.
Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury.
Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Synopsis Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. Both KDM6A and KLF10 are up‐regulated in podocytes under diabetic conditions. Activation of the positive inter‐regulation between KDM6A and KLF10 results in repression of multiple podocyte‐specific marker proteins. Inactivation or podocyte‐specific knockout of KDM6A in mice attenuates diabetes‐induced kidney injury. Kidney injury is also reduced in KLF10‐knockout mice under diabetic conditions. Elevated levels of urinary exosomal KDM6A and KLF10 mRNAs are observed in human diabetic nephropathy patients relative to control subjects. Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury.
Author Lin, Chun‐Liang
Shih, Ya‐Hsueh
Huang, Yu‐Ting
Chiang, Wen‐Chih
Chang, Pey‐Jium
Hsu, Yung‐Chien
Wang, Ching‐Jen
AuthorAffiliation 4 Kidney and Diabetic Complications Research Team (KDCRT) Chang Gung Memorial Hospital Chiayi Taiwan
8 Graduate Institute of Clinical Medical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
3 College of Medicine Chang Gung University Taoyuan Taiwan
6 Department of Orthopedic Surgery Chang Gung Memorial Hospital Kaohsiung Taiwan
7 Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan
1 Departments of Nephrology Chang Gung Memorial Hospital Chiayi Taiwan
2 Kidney Research Center Chang Gung Memorial Hospital Taipei Taiwan
5 Center for Shockwave Medicine and Tissue Engineering Department of Medical Research Chang Gung Memorial Hospital Kaohsiung Taiwan
AuthorAffiliation_xml – name: 1 Departments of Nephrology Chang Gung Memorial Hospital Chiayi Taiwan
– name: 5 Center for Shockwave Medicine and Tissue Engineering Department of Medical Research Chang Gung Memorial Hospital Kaohsiung Taiwan
– name: 4 Kidney and Diabetic Complications Research Team (KDCRT) Chang Gung Memorial Hospital Chiayi Taiwan
– name: 7 Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan
– name: 3 College of Medicine Chang Gung University Taoyuan Taiwan
– name: 6 Department of Orthopedic Surgery Chang Gung Memorial Hospital Kaohsiung Taiwan
– name: 8 Graduate Institute of Clinical Medical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
– name: 2 Kidney Research Center Chang Gung Memorial Hospital Taipei Taiwan
Author_xml – sequence: 1
  givenname: Chun‐Liang
  surname: Lin
  fullname: Lin, Chun‐Liang
  organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital
– sequence: 2
  givenname: Yung‐Chien
  surname: Hsu
  fullname: Hsu, Yung‐Chien
  organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital
– sequence: 3
  givenname: Yu‐Ting
  surname: Huang
  fullname: Huang, Yu‐Ting
  organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital
– sequence: 4
  givenname: Ya‐Hsueh
  surname: Shih
  fullname: Shih, Ya‐Hsueh
  organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital
– sequence: 5
  givenname: Ching‐Jen
  surname: Wang
  fullname: Wang, Ching‐Jen
  organization: Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Department of Orthopedic Surgery, Chang Gung Memorial Hospital
– sequence: 6
  givenname: Wen‐Chih
  surname: Chiang
  fullname: Chiang, Wen‐Chih
  organization: Department of Internal Medicine, National Taiwan University Hospital
– sequence: 7
  givenname: Pey‐Jium
  orcidid: 0000-0002-6492-0346
  surname: Chang
  fullname: Chang, Pey‐Jium
  email: peyjiumc@mail.cgu.edu.tw
  organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30948420$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARfcCaHYrEhs20thM_wgJpVFqoOiM2IJaW41ynHhJ7sJOi2fEP_CFfgqcpQ1sJWNm6Pufcc33uYbbnvIMse47RMaaEkhPo-_6YICxQJYh4lB1gTvmsZKLc2905288OY1whxCjD4km2X6CqFCVBB9nneX75dsnmP7__uFycY5QHsM74oK1rcwPQ1Ep_yXvQV8rZ2OeqbYO6VgPEvLGqhsHqfO0brzcD5M0mmtHpwXr3NHtsVBfh2e15lH06P_t4-n62-PDu4nS-mGlWUjFToDUGwVhVIgEKkaYgUCMoSlxjQ6kmNQjgAijCjBGqiDE1MdBUNBUrXhxlF5Nu49VKroPtVdhIr6y8KfjQShWSyQ6koLxWSBVGG17SAgteVSVUjCrFhOE6ab2ZtNZj3UOjwQ1BdfdE7784eyVbfy0ZRZTyrZlXtwLBfx0hDrK3UUPXKQd-jJIQVLKKVEWRoC8fQFd-DC59VUIxUfAUL06oF3cd7az8zi8BTiaADj7GAGYHwUjebIjcbojcbUhi0AcMbQe1jSyNZLt_8F5PvG-2g83_2siz5XJ5l4wmckw810L4M-3f-v0CJDDhaQ
CitedBy_id crossref_primary_10_1016_j_cellsig_2022_110308
crossref_primary_10_1172_JCI141279
crossref_primary_10_3389_fnmol_2021_718241
crossref_primary_10_1161_HYPERTENSIONAHA_120_15587
crossref_primary_10_1016_j_bbadis_2023_166685
crossref_primary_10_1007_s00109_022_02247_7
crossref_primary_10_1007_s10157_022_02181_5
crossref_primary_10_3390_biomedicines12112622
crossref_primary_10_1007_s11596_023_2765_y
crossref_primary_10_2337_db20_1157
crossref_primary_10_1038_s41420_023_01381_6
crossref_primary_10_1177_14791641231172139
crossref_primary_10_3390_molecules27092644
crossref_primary_10_3390_ijms25021276
crossref_primary_10_3390_jcm12237349
crossref_primary_10_1159_000541923
crossref_primary_10_1074_jbc_RA120_012522
crossref_primary_10_1152_ajpheart_00261_2021
crossref_primary_10_1242_dmm_049991
crossref_primary_10_18632_aging_203057
crossref_primary_10_1126_sciadv_aba1187
crossref_primary_10_3389_fphar_2021_759299
crossref_primary_10_1016_j_gendis_2022_06_005
crossref_primary_10_1007_s12020_023_03559_5
crossref_primary_10_1126_scitranslmed_abm2090
crossref_primary_10_1016_j_bioorg_2023_106409
crossref_primary_10_1007_s11033_022_07565_0
crossref_primary_10_1155_2020_6126490
crossref_primary_10_1038_s41419_022_05120_0
crossref_primary_10_1016_j_trsl_2023_10_002
crossref_primary_10_3390_ijms23169407
crossref_primary_10_3389_fcvm_2022_841928
crossref_primary_10_1007_s10620_022_07790_4
crossref_primary_10_1016_j_ygeno_2022_110283
crossref_primary_10_1007_s00109_021_02066_2
crossref_primary_10_1016_j_jphs_2023_08_009
crossref_primary_10_3390_life14121671
crossref_primary_10_1002_ddr_21988
crossref_primary_10_3390_ijms25168986
crossref_primary_10_1016_j_biocel_2024_106664
crossref_primary_10_3390_ijms24087679
crossref_primary_10_1155_2021_8814163
crossref_primary_10_1016_j_vph_2021_106933
crossref_primary_10_3390_cancers15215212
crossref_primary_10_1038_s41401_023_01203_6
crossref_primary_10_1080_21655979_2022_2084534
crossref_primary_10_3892_ijmm_2024_5428
crossref_primary_10_3390_cells9010125
crossref_primary_10_3390_ijms24066007
crossref_primary_10_17925_EE_2023_19_1_46
crossref_primary_10_3390_ijms222111857
crossref_primary_10_18632_aging_202664
crossref_primary_10_2302_kjm_2022_0017_IR
crossref_primary_10_1016_j_metabol_2022_155293
Cites_doi 10.1002/hep.510300620
10.2337/diacare.25.8.1410
10.1681/ASN.2008101059
10.1006/excr.1997.3739
10.1159/000101794
10.1038/srep33676
10.1002/biof.67
10.1016/j.celrep.2017.09.078
10.1097/01.ASN.0000043081.65110.C4
10.3390/cancers10060161
10.1152/physrev.00058.2009
10.1016/j.bone.2006.05.021
10.1053/j.ajkd.2013.11.001
10.1152/japplphysiol.00356.2010
10.1172/JCI77084
10.1152/ajprenal.00086.2009
10.1093/ndt/gfr576
10.1152/japplphysiol.00800.2005
10.1681/ASN.2013050527
10.1371/journal.pgen.1001142
10.3389/fendo.2014.00148
10.1101/gad.1882610
10.1016/S0002-9440(10)64239-3
10.1073/pnas.0703577104
10.1038/labinvest.3700518
10.1038/ki.2014.111
10.1038/s41467-017-00498-4
10.1172/JCI95946
10.1093/ndt/gfs482
10.1159/000066790
10.1038/nature11262
10.1056/NEJMoa052187
10.2337/db10-1110
10.1016/j.jdiacomp.2015.07.015
10.1093/nar/23.23.4907
10.1007/s00125-017-4412-2
10.1016/j.ajpath.2016.03.018
10.1681/ASN.2015060672
10.1016/j.febslet.2007.07.008
10.1242/dev.145441
10.1073/pnas.1218667110
10.1038/ki.2015.178
10.1038/sj.ki.5002222
10.1681/ASN.V1191667
10.1038/sj.onc.1205681
10.1097/01.ASN.0000143474.91362.C4
10.2337/db09-0663
10.1038/ki.2015.224
10.1142/S0218957709002304
10.1073/pnas.0511257103
10.1177/1947601911417976
10.1074/jbc.M112.345983
10.3389/fendo.2014.00166
10.4161/epi.28298
10.1016/j.biocel.2012.11.007
10.1038/ki.2014.286
10.1001/jama.290.16.2159
10.1159/000245062
10.1172/JCI69557
10.1002/dvdy.23971
ContentType Journal Article
Copyright The Author(s) 2019
2019 The Authors. Published under the terms of the CC BY 4.0 license
2019 The Authors. Published under the terms of the CC BY 4.0 license.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.15252/emmm.201809828
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Chun‐Liang Lin et al
EISSN 1757-4684
EndPage n/a
ExternalDocumentID oai_doaj_org_article_857ba0a3fcf7453187994e965aa68f7c
PMC6505577
30948420
10_15252_emmm_201809828
EMMM201809828
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: 104‐2314‐B‐182A‐068‐MY3; 107‐2314‐B‐182A‐029‐MY3
  funderid: 10.13039/501100004663
– fundername: Chang Gung Memorial Hospital (CGMH)
  grantid: CMRPG6E0381˜3; CMRPG6H0361
  funderid: 10.13039/100012553
– fundername: Chang Gung Memorial Hospital (CGMH)
  funderid: CMRPG6E0381˜3; CMRPG6H0361
– fundername: Ministry of Science and Technology, Taiwan (MOST)
  funderid: 104‐2314‐B‐182A‐068‐MY3; 107‐2314‐B‐182A‐029‐MY3
– fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: 104‐2314‐B‐182A‐068‐MY3; 107‐2314‐B‐182A‐029‐MY3
– fundername: Chang Gung Memorial Hospital (CGMH)
  grantid: CMRPG6E0381˜3; CMRPG6H0361
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAJSJ
AAMMB
AAZKR
ABOCM
ABUWG
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFKRA
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
M48
M7P
NNB
O9-
OIG
OK1
OVD
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
31~
AAHHS
ABJNI
ACCFJ
ADPDF
ADRAZ
ADZOD
AEEZP
AEQDE
AFZJQ
AIWBW
AJBDE
EBLON
GODZA
H13
LW6
M~E
OVEED
RHF
AASML
AAYXX
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6458-aecc1e8669408ea02d32eb0e341b1f55c2be8e78e5016625a2ffb2fed9578e973
IEDL.DBID M48
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:28:07 EDT 2025
Thu Aug 21 18:42:03 EDT 2025
Fri Jul 11 10:50:24 EDT 2025
Wed Aug 13 03:44:26 EDT 2025
Wed Feb 19 02:30:36 EST 2025
Tue Jul 01 01:53:00 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Wed Jan 22 17:07:56 EST 2025
Tue Aug 12 01:11:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords KLF10
podocyte dysfunction
diabetic nephropathy
epigenetics
KDM6A
Language English
License Attribution
2019 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6458-aecc1e8669408ea02d32eb0e341b1f55c2be8e78e5016625a2ffb2fed9578e973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6492-0346
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201809828
PMID 30948420
PQID 2268371521
PQPubID 866378
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_857ba0a3fcf7453187994e965aa68f7c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6505577
proquest_miscellaneous_2204692933
proquest_journals_2268371521
pubmed_primary_30948420
crossref_primary_10_15252_emmm_201809828
crossref_citationtrail_10_15252_emmm_201809828
wiley_primary_10_15252_emmm_201809828_EMMM201809828
springer_journals_10_15252_emmm_201809828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Frankfurt
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2019
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2007; 104
1997; 236
2017; 8
2012; 287
2013; 28
2007; 106
2018; 128
2010; 108
2011; 60
2007; 581
2003; 14
2014; 25
2007; 71
2013; 242
2014; 63
2012; 488
2016; 186
2009; 12
2014; 5
2010; 24
2010; 114
1995; 23
2000; 11
2015; 88
2015; 87
2013; 110
2012; 27
2014; 9
2010; 6
2014; 124
2011; 2
2010; 36
2017; 60
2005; 353
2017; 28
2015; 125
2013; 45
2017; 21
2010a; 59
2006b; 101
2009; 297
2006a; 39
2003; 290
2014; 86
2002; 25
2016; 6
2002; 161
2015; 29
2004; 15
2002; 21
1999; 30
2017; 144
2010b; 21
2007; 87
2010; 90
2018; 10
2006; 103
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 71
  start-page: 1205
  year: 2007
  end-page: 1214
  article-title: The spectrum of podocytopathies: a unifying view of glomerular diseases
  publication-title: Kidney Int
– volume: 236
  start-page: 248
  year: 1997
  end-page: 258
  article-title: Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines
  publication-title: Exp Cell Res
– volume: 87
  start-page: 382
  year: 2015
  end-page: 395
  article-title: Reduced Kruppel‐like factor 2 expression may aggravate the endothelial injury of diabetic nephropathy
  publication-title: Kidney Int
– volume: 581
  start-page: 3826
  year: 2007
  end-page: 3832
  article-title: TIEG1 induces apoptosis through mitochondrial apoptotic pathway and promotes apoptosis induced by homoharringtonine and velcade
  publication-title: FEBS Lett
– volume: 125
  start-page: 1347
  year: 2015
  end-page: 1361
  article-title: Kruppel‐like factor 6 regulates mitochondrial function in the kidney
  publication-title: J Clin Invest
– volume: 87
  start-page: 273
  year: 2007
  end-page: 283
  article-title: Snail, a transcriptional regulator, represses nephrin expression in glomerular epithelial cells of nephrotic rats
  publication-title: Lab Invest
– volume: 14
  start-page: 352
  year: 2003
  end-page: 358
  article-title: Alternatively used promoters and distinct elements direct tissue‐specific expression of nephrin
  publication-title: J Am Soc Nephrol
– volume: 15
  start-page: 2851
  year: 2004
  end-page: 2856
  article-title: WT1 activates a glomerular‐specific enhancer identified from the human nephrin gene
  publication-title: J Am Soc Nephrol
– volume: 28
  start-page: 166
  year: 2017
  end-page: 184
  article-title: Kruppel‐like factor 15 mediates glucocorticoid‐induced restoration of podocyte differentiation markers
  publication-title: J Am Soc Nephrol
– volume: 5
  start-page: 148
  year: 2014
  article-title: Podocyte dedifferentiation: a specialized process for a specialized cell
  publication-title: Front Endocrinol (Lausanne)
– volume: 114
  start-page: e15
  year: 2010
  end-page: e22
  article-title: Sp1 specifically binds to an evolutionarily conserved DNA segment within a region necessary for podocyte‐specific expression of nephrin
  publication-title: Nephron Exp Nephrol
– volume: 36
  start-page: 8
  year: 2010
  end-page: 18
  article-title: Functional role of KLF10 in multiple disease processes
  publication-title: BioFactors
– volume: 8
  start-page: 413
  year: 2017
  article-title: Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling
  publication-title: Nat Commun
– volume: 353
  start-page: 2643
  year: 2005
  end-page: 2653
  article-title: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes
  publication-title: N Engl J Med
– volume: 39
  start-page: 1244
  year: 2006a
  end-page: 1251
  article-title: TGFbeta inducible early gene‐1 knockout mice display defects in bone strength and microarchitecture
  publication-title: Bone
– volume: 90
  start-page: 1337
  year: 2010
  end-page: 1381
  article-title: Mammalian Kruppel‐like factors in health and diseases
  publication-title: Physiol Rev
– volume: 124
  start-page: 2523
  year: 2014
  end-page: 2537
  article-title: KLF4‐dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria
  publication-title: J Clin Invest
– volume: 21
  start-page: 5783
  year: 2002
  end-page: 5790
  article-title: TGFbeta inducible early gene enhances TGFbeta/Smad‐dependent transcriptional responses
  publication-title: Oncogene
– volume: 28
  start-page: 846
  year: 2013
  end-page: 855
  article-title: Regulation of nephrin gene by the Ets transcription factor, GA‐binding protein
  publication-title: Nephrol Dial Transplant
– volume: 12
  start-page: 127
  year: 2009
  end-page: 136
  article-title: Tieg1‐null osteocytes display defects in their morphology, density and surrounding bone matrix
  publication-title: J Musculoskelet Res
– volume: 2
  start-page: 663
  year: 2011
  end-page: 679
  article-title: Targeting histone demethylases: a new avenue for the fight against cancer
  publication-title: Genes Cancer
– volume: 88
  start-page: 745
  year: 2015
  end-page: 753
  article-title: Renin‐angiotensin blockade resets podocyte epigenome through Kruppel‐like Factor 4 and attenuates proteinuria
  publication-title: Kidney Int
– volume: 9
  start-page: 658
  year: 2014
  end-page: 668
  article-title: The H3K27me3 demethylase UTX in normal development and disease
  publication-title: Epigenetics
– volume: 104
  start-page: 14448
  year: 2007
  end-page: 14453
  article-title: Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 296
  year: 2002
  end-page: 302
  article-title: Effect of angiotensin II on ANP‐dependent guanylyl cyclase activity in cultured mouse and rat podocytes
  publication-title: Kidney Blood Press Res
– volume: 287
  start-page: 19122
  year: 2012
  end-page: 19135
  article-title: Kruppel‐like factor 15 (KLF15) is a key regulator of podocyte differentiation
  publication-title: J Biol Chem
– volume: 29
  start-page: 1337
  year: 2015
  end-page: 1344
  article-title: The epigenetic regulation of podocyte function in diabetes
  publication-title: J Diabetes Complications
– volume: 24
  start-page: 327
  year: 2010
  end-page: 332
  article-title: The histone demethylase UTX enables RB‐dependent cell fate control
  publication-title: Genes Dev
– volume: 30
  start-page: 1490
  year: 1999
  end-page: 1497
  article-title: The transforming growth factor beta(1)‐inducible transcription factor TIEG1, mediates apoptosis through oxidative stress
  publication-title: Hepatology
– volume: 60
  start-page: 2443
  year: 2017
  end-page: 2452
  article-title: KLF10 transcription factor regulates hepatic glucose metabolism in mice
  publication-title: Diabetologia
– volume: 161
  start-page: 799
  year: 2002
  end-page: 805
  article-title: A new method for large scale isolation of kidney glomeruli from mice
  publication-title: Am J Pathol
– volume: 86
  start-page: 712
  year: 2014
  end-page: 725
  article-title: Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy
  publication-title: Kidney Int
– volume: 10
  start-page: E161
  year: 2018
  article-title: KLF10 as a tumor suppressor gene and its TGF‐beta signaling
  publication-title: Cancers (Basel)
– volume: 128
  start-page: 483
  year: 2018
  end-page: 499
  article-title: Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease
  publication-title: J Clin Invest
– volume: 60
  start-page: 1779
  year: 2011
  end-page: 1788
  article-title: Dedifferentiation of immortalized human podocytes in response to transforming growth factor‐beta: a model for diabetic podocytopathy
  publication-title: Diabetes
– volume: 45
  start-page: 419
  year: 2013
  end-page: 428
  article-title: Kruppel‐like factor 10 upregulates the expression of cyclooxygenase 1 and further modulates angiogenesis in endothelial cell and platelet aggregation in gene‐deficient mice
  publication-title: Int J Biochem Cell Biol
– volume: 103
  start-page: 5682
  year: 2006
  end-page: 5687
  article-title: Comparative promoter analysis allows identification of specialized cell junction‐associated proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1410
  year: 2002
  end-page: 1417
  article-title: Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes?: U.K. prospective diabetes study 61
  publication-title: Diabetes Care
– volume: 21
  start-page: 628
  year: 2017
  end-page: 640
  article-title: UTX/KDM6A loss enhances the malignant phenotype of multiple myeloma and sensitizes cells to EZH2 inhibition
  publication-title: Cell Rep
– volume: 6
  start-page: e1001142
  year: 2010
  article-title: Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype
  publication-title: PLoS Genet
– volume: 108
  start-page: 1706
  year: 2010
  end-page: 1710
  article-title: Molecular structure of tail tendon fibers in TIEG1 knockout mice using synchrotron diffraction technology
  publication-title: J Appl Physiol (1985)
– volume: 21
  start-page: 124
  year: 2010b
  end-page: 135
  article-title: Dickkopf‐1 promotes hyperglycemia‐induced accumulation of mesangial matrix and renal dysfunction
  publication-title: J Am Soc Nephrol
– volume: 297
  start-page: F729
  year: 2009
  end-page: F739
  article-title: Histone deacetylase‐2 is a key regulator of diabetes‐ and transforming growth factor‐beta1‐induced renal injury
  publication-title: Am J Physiol Renal Physiol
– volume: 11
  start-page: 1667
  year: 2000
  end-page: 1673
  article-title: Type 2 diabetic patients with nephropathy show structural‐functional relationships that are similar to type 1 disease
  publication-title: J Am Soc Nephrol
– volume: 23
  start-page: 4907
  year: 1995
  end-page: 4912
  article-title: Identification of a novel TGF‐beta‐regulated gene encoding a putative zinc finger protein in human osteoblasts
  publication-title: Nucleic Acids Res
– volume: 88
  start-page: 668
  year: 2015
  end-page: 670
  article-title: Epigenetic control of podocyte differentiation: a new target of the renin‐angiotensin system in kidney disease
  publication-title: Kidney Int
– volume: 59
  start-page: 1915
  year: 2010a
  end-page: 1925
  article-title: Modulation of notch‐1 signaling alleviates vascular endothelial growth factor‐mediated diabetic nephropathy
  publication-title: Diabetes
– volume: 110
  start-page: 648
  year: 2013
  end-page: 653
  article-title: Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 33676
  year: 2016
  article-title: Silencing of histone deacetylase 9 expression in podocytes attenuates kidney injury in diabetic nephropathy
  publication-title: Sci Rep
– volume: 488
  start-page: 404
  year: 2012
  end-page: 408
  article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response
  publication-title: Nature
– volume: 63
  start-page: A7
  year: 2014
  article-title: US renal data system 2013 annual data report
  publication-title: Am J Kidney Dis
– volume: 5
  start-page: 166
  year: 2014
  article-title: The role of SIRT1 in diabetic kidney disease
  publication-title: Front Endocrinol (Lausanne)
– volume: 106
  start-page: e60
  year: 2007
  end-page: e66
  article-title: Role of transcription factors in podocytes
  publication-title: Nephron Exp Nephrol
– volume: 27
  start-page: 1737
  year: 2012
  end-page: 1745
  article-title: Transcription of nephrin‐Neph3 gene pair is synergistically activated by WT1 and NF‐kappaB and silenced by DNA methylation
  publication-title: Nephrol Dial Transplant
– volume: 186
  start-page: 2021
  year: 2016
  end-page: 2031
  article-title: Reduced kruppel‐like factor 2 aggravates glomerular endothelial cell injury and kidney disease in mice with unilateral nephrectomy
  publication-title: Am J Pathol
– volume: 25
  start-page: 1698
  year: 2014
  end-page: 1709
  article-title: MicroRNA‐29a promotion of nephrin acetylation ameliorates hyperglycemia‐induced podocyte dysfunction
  publication-title: J Am Soc Nephrol
– volume: 101
  start-page: 1419
  year: 2006b
  end-page: 24
  article-title: Age‐dependent changes in the mechanical properties of tail tendons in TGF‐beta inducible early gene‐1 knockout mice
  publication-title: J Appl Physiol (1985)
– volume: 144
  start-page: 737
  year: 2017
  end-page: 754
  article-title: Kruppel‐like factors in mammalian stem cells and development
  publication-title: Development
– volume: 290
  start-page: 2159
  year: 2003
  end-page: 2167
  article-title: Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study
  publication-title: JAMA
– volume: 242
  start-page: 790
  year: 2013
  end-page: 799
  article-title: The transcription factor Sry‐related HMG box‐4 (SOX4) is required for normal renal development
  publication-title: Dev Dyn
– ident: e_1_2_10_44_1
  doi: 10.1002/hep.510300620
– ident: e_1_2_10_10_1
  doi: 10.2337/diacare.25.8.1410
– ident: e_1_2_10_27_1
  doi: 10.1681/ASN.2008101059
– ident: e_1_2_10_40_1
  doi: 10.1006/excr.1997.3739
– ident: e_1_2_10_43_1
  doi: 10.1159/000101794
– ident: e_1_2_10_29_1
  doi: 10.1038/srep33676
– ident: e_1_2_10_49_1
  doi: 10.1002/biof.67
– ident: e_1_2_10_12_1
  doi: 10.1016/j.celrep.2017.09.078
– ident: e_1_2_10_3_1
  doi: 10.1097/01.ASN.0000043081.65110.C4
– ident: e_1_2_10_39_1
  doi: 10.3390/cancers10060161
– ident: e_1_2_10_38_1
  doi: 10.1152/physrev.00058.2009
– ident: e_1_2_10_4_1
  doi: 10.1016/j.bone.2006.05.021
– ident: e_1_2_10_11_1
  doi: 10.1053/j.ajkd.2013.11.001
– ident: e_1_2_10_15_1
  doi: 10.1152/japplphysiol.00356.2010
– ident: e_1_2_10_34_1
  doi: 10.1172/JCI77084
– ident: e_1_2_10_42_1
  doi: 10.1152/ajprenal.00086.2009
– ident: e_1_2_10_45_1
  doi: 10.1093/ndt/gfr576
– ident: e_1_2_10_5_1
  doi: 10.1152/japplphysiol.00800.2005
– ident: e_1_2_10_28_1
  doi: 10.1681/ASN.2013050527
– ident: e_1_2_10_25_1
  doi: 10.1371/journal.pgen.1001142
– ident: e_1_2_10_37_1
  doi: 10.3389/fendo.2014.00148
– ident: e_1_2_10_52_1
  doi: 10.1101/gad.1882610
– ident: e_1_2_10_50_1
  doi: 10.1016/S0002-9440(10)64239-3
– ident: e_1_2_10_2_1
  doi: 10.1073/pnas.0703577104
– ident: e_1_2_10_36_1
  doi: 10.1038/labinvest.3700518
– ident: e_1_2_10_53_1
  doi: 10.1038/ki.2014.111
– ident: e_1_2_10_30_1
  doi: 10.1038/s41467-017-00498-4
– ident: e_1_2_10_32_1
  doi: 10.1172/JCI95946
– ident: e_1_2_10_46_1
  doi: 10.1093/ndt/gfs482
– ident: e_1_2_10_14_1
  doi: 10.1159/000066790
– ident: e_1_2_10_24_1
  doi: 10.1038/nature11262
– ident: e_1_2_10_41_1
  doi: 10.1056/NEJMoa052187
– ident: e_1_2_10_20_1
  doi: 10.2337/db10-1110
– ident: e_1_2_10_31_1
  doi: 10.1016/j.jdiacomp.2015.07.015
– ident: e_1_2_10_48_1
  doi: 10.1093/nar/23.23.4907
– ident: e_1_2_10_59_1
  doi: 10.1007/s00125-017-4412-2
– ident: e_1_2_10_61_1
  doi: 10.1016/j.ajpath.2016.03.018
– ident: e_1_2_10_35_1
  doi: 10.1681/ASN.2015060672
– ident: e_1_2_10_22_1
  doi: 10.1016/j.febslet.2007.07.008
– ident: e_1_2_10_7_1
  doi: 10.1242/dev.145441
– ident: e_1_2_10_8_1
  doi: 10.1073/pnas.1218667110
– ident: e_1_2_10_19_1
  doi: 10.1038/ki.2015.178
– ident: e_1_2_10_55_1
  doi: 10.1038/sj.ki.5002222
– ident: e_1_2_10_54_1
  doi: 10.1681/ASN.V1191667
– ident: e_1_2_10_23_1
  doi: 10.1038/sj.onc.1205681
– ident: e_1_2_10_16_1
  doi: 10.1097/01.ASN.0000143474.91362.C4
– ident: e_1_2_10_26_1
  doi: 10.2337/db09-0663
– ident: e_1_2_10_13_1
  doi: 10.1038/ki.2015.224
– ident: e_1_2_10_17_1
  doi: 10.1142/S0218957709002304
– ident: e_1_2_10_9_1
  doi: 10.1073/pnas.0511257103
– ident: e_1_2_10_47_1
  doi: 10.1177/1947601911417976
– ident: e_1_2_10_33_1
  doi: 10.1074/jbc.M112.345983
– ident: e_1_2_10_57_1
  doi: 10.3389/fendo.2014.00166
– ident: e_1_2_10_51_1
  doi: 10.4161/epi.28298
– ident: e_1_2_10_58_1
  doi: 10.1016/j.biocel.2012.11.007
– ident: e_1_2_10_60_1
  doi: 10.1038/ki.2014.286
– ident: e_1_2_10_56_1
  doi: 10.1001/jama.290.16.2159
– ident: e_1_2_10_6_1
  doi: 10.1159/000245062
– ident: e_1_2_10_18_1
  doi: 10.1172/JCI69557
– ident: e_1_2_10_21_1
  doi: 10.1002/dvdy.23971
SSID ssj0065618
Score 2.4717457
Snippet Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is...
Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is...
Abstract Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animals
Base Sequence
Cell Line, Transformed
Deoxyribonucleic acid
Diabetes
Diabetes mellitus
Diabetic Nephropathies - metabolism
Diabetic Nephropathies - pathology
Diabetic Nephropathies - physiopathology
Diabetic Nephropathies - urine
Diabetic nephropathy
DNA
DNA methylation
DNMT1 protein
Down-Regulation
Early Growth Response Transcription Factors - genetics
Early Growth Response Transcription Factors - metabolism
EMBO21
EMBO45
Enzymes
Epigenesis, Genetic
Epigenetics
Epithelial cells
Exosomes
Exosomes - metabolism
Experiments
Feedback
Feedback, Physiological
Gene expression
Histone Demethylases - genetics
Histone Demethylases - metabolism
Hospitals
Humans
KDM6A
Kidney - metabolism
Kidney - pathology
Kidney - physiopathology
Kidneys
KLF10
Kruppel-Like Transcription Factors - genetics
Kruppel-Like Transcription Factors - metabolism
Laboratory animals
Lysine
Male
Medical research
Membrane Proteins - metabolism
Methyltransferase
Mice, Inbred C57BL
Mice, Knockout
Nephropathy
Phenotype
podocyte dysfunction
Podocytes - metabolism
Podocytes - pathology
Promoter Regions, Genetic - genetics
Protein Binding
Proteins
Proteinuria
Renal function
Research Article
Signal transduction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJRAXBOUrUJCROMAhNOv487hAq4oSTlT0FtnOuKxg06q7PeyN_8A_5Jcwk2RDV1D1wnHX3pUzM_Z7z3ZmGHspZAwuiZA7VchcJqB1sPF5aoQ3hL8aaB-y-qQPjuSHY3V8qdQX3Qnr0wP3htu1ygRf-DLFZCQGjDXOSXBaea9tMpFWX8S8tZjq12AkKd3OHmKjyXEp0ENSHyWU2IX5nF5Bp8RVloqwX8KjLm3_v7jm31cmx3PTTVbbwdL-XXZn4JN82j_HPXYD2m12s68wudpmt6rh7Pw--zLlh-8rPf314-fhR9TR_By6rKnYesITgljw8RufA70KPFvMuT-h0kRERXm_QTuL_AxFbFwtgTerBSEiefUBO9rf-_zuIB_KKuRRS2Vzj16bgNXaycKCL0RTCggFIJ6FSVIqigAWjAWFdBDlkRcpBZGgcTi7wZnyIdtqT1t4zDiKy0ZLFOeOyqgnFZSOEuGunEySLFKRsTdr49ZxyDlOpS--16Q9yBs1eaMevZGxV-MPzvp0G1d3fUveGrtRnuzuC4yeeoie-rroydjO2tf1MHkXNTJSlO1EbDL2YmzGaUdnKb6F0wvqQxsLyJXKjD3qQ2McSYmS2UqBT282gmZjqJst7exrl9ob-bJSxmTs9Tq8_gzrSjuUXfxdZ696r6qq8dOT_2G9p-w2_qHr73_usK3l-QU8Q462DM-76fgbkhEz3g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BEagXBOVlKMhIHOBg6qz3eUIBWlUUc6IiN2t3vZtGECdN0kNu_Af-Ib-EGXvjEkHhmOxaWu88vm9m1zOEvKDMWR2ozTTPWcaCRz9YmyzU1EjEX-ExD1l-Esen7MOIj2LCbRmvVW58Yuuo65nDHPkB0ASIpRBt3szPM-wahaersYXGdXIDS5fhlS456gMuoCptfg8QUmbgEEQs7cMppwd-OsUP0bF8lcJW7L-hUlu8_2-M88-Lk_3p6Ta3bcHp6A65HVllOuzU4C655ps9crPrM7neI7fKeIJ-j3wZpifvSzH8-f3HyUeIptOFb2unwug4DQBl1riv6dTjB8GT5TQ1Y2xQhIQ07dK0E5fOIZR165VP6_UScRFle5-cHh1-fnecxeYKmROMq8yA7AZeCaFZrrzJaV1Qb3MPqGYHgXNHrVdeKs-BFEKQZGgIlgZfa7Bxr2XxgOw0s8Y_IimEmLVgEKJrbKYeuOXCMQC9YjAILA95Ql5vNrdysfI4NsD4VmEEgtKoUBpVL42EvOwfmHdFN66e-hal1U_DatntH7PFuIrGVykurclNEVyQDJyOklozrwU3RqggXUL2N7Kuogkvq0uFS8jzfhiMD09UTONnFzgH0wvAmIqEPOxUo19JAYGzYhTeXm4pzdZSt0eayVlb4BtYM-dSJuTVRr0ul3XlPhSt_v1vv6rDsiz7X4___eJPyC5M1d39zn2ys1pc-KfAwVb2WWtovwDH7Str
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagCMQFQfkLFGQkDnAIZB3_xMdlaVVRwomK3iLbGbcr2LTqbg974x14Q56EmSQbiGiFuCWxkzieGc_32fEMYy-FDN5G4VOrMpnKCDQO1i6NtXCG_K8GmocsP-n9Q_nhSB31QZJoL8yf6_dKKPEWFgvaME5hppAcXGc31CTXpL4zPdsMuYhJ2ok8dIUmRcvXfQyfSx4wcj9tlP7LoOXff0gOy6RjENt6ob277E4PH_m0k_c9dg2abXazSyi53ma3yn6p_D77MuUH70s9_fn9x8FHpM38HNogqVh6zCP6LO_CV74A2vk7Xy64O6ZMRIQ8eTcfOw_8DDlrWK-A1-slOUAS4gN2uLf7ebaf9lkU0qClKlKHQppAobWVWQEuE3UuwGeA7stPolJBeCjAFKAQ_SEbciJGLyLUFo0ZrMkfsq3mtIHHjCOXrLVELm4pa3pUXukg0bvlk0mUWcwS9mbTuVXoQ4xTpotvFVENkkZF0qgGaSTs1XDDWRdd4-qq70haQzUKi91eQG2peiurCmW8y1weQzQSR5fCWCvBauWcLqIJCdvZyLrqbXVZIQBFlk44JmEvhmK0Mlo6cQ2cXlAdmkdAaJQn7FGnGkNLcmTIhRT49WakNKOmjkua-UkbyRvhsVLGJOz1Rr1-N-vKfshb_ftXf1W7ZVkOZ0_-4w1P2W08tt1fnTtsa3V-Ac8Qea3889bqfgHiViQW
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgEYgLguUVWJCROMAhkDp-xMcCu1qxBHFgBbfIdsalgrartnvojf_AP-SXMJMXimCFxK2tncj1zHi-GdvfMPZUyOBtFD61KpOpjEDrYO3SWAtnyP9qoDxk-V4fn8q3n1V_mpDuwrT8EEPCjSyjWa_JwJ3f9BV7iDUUFgu6Sk4EVBg2XGZX6IIt0ecL-aFfjBGtNCk-dJImxTVBd-w-9IqX4xeMHFPD3_830Pnn2clhA3UMbxv_dHST3eiAJZ-2mnCLXYLlPrvalprc7bNrZbeJfpt9mvKTN6We_vz-4-QdBtR8DQ19KrbOeERv5l34yhdAd4LnmwV3M6pRRJiUt5naeeBnGM2G3RZ4vduQayTx3mGnR4cfXx-nXX2FNGipitSh-CZQaG1lVoDLRJ0L8BmgY_OTqFQQHgowBSjEhRgnORGjFxFqi2YO1uR32d5ytYT7jGOUWWuJUbqleupReaWDRL-XTyZRZjFL2It-cqvQkY9TDYxvFQUhJI2KpFEN0kjYs-GBs5Z34-Kur0haQzcizG5-WK1nVWd_VaGMd5nLY4hG4rpTGGslWK2c00U0IWEHvayrzoo3FUJTjN8J4STsydCM9kebKm4Jq3PqQxkGBE15wu61qjGMJMfYuZAC_70ZKc1oqOOW5fxLw_GNwFkpYxL2vFev38O6cB7yRv_-NV_VYVmWw7cH__XUQ3YdP9v25OcB29uuz-ERorOtf9zY3y-Try-o
  priority: 102
  providerName: Wiley-Blackwell
Title A KDM6A–KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction
URI https://link.springer.com/article/10.15252/emmm.201809828
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201809828
https://www.ncbi.nlm.nih.gov/pubmed/30948420
https://www.proquest.com/docview/2268371521
https://www.proquest.com/docview/2204692933
https://pubmed.ncbi.nlm.nih.gov/PMC6505577
https://doaj.org/article/857ba0a3fcf7453187994e965aa68f7c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB7RViAuCAoUlxIZiQMcXJz1_tgHhNKQqqK4qhARuVlrezdENE6bpBK58Q68IU_CjO24skgFlyjObqLN_Ox836w9A_CK8SyNLEu9SPjc49bQPphrz-ZMK4q_0lAeMj6TJ0P-cSRGN-2AagEuNlI76ic1nF8c_rhavUeHf1d372FvzXRKD5VTKSokEFuwg2FJkZfGvDlSQNxSJvswXCoPdwdZ1_nZ8AOtEFVW8t8EP_--i7I5Sm0D3TJSHT-EBzXEdHuVTTyCO6bYhbtV08nVLtyL6-P0x_C1555-iGXv989fp5-QWrtzUxZSxdGxazGupTr77k4NPR08WUxdPaZuRYRO3SpnO8ncS-S12Wpp3Hy1oCBJin4Cw-PBl_6JV3da8DLJRehpVGTXhFJG3A-N9lkeMJP6BkNc2rVCZCw1oVGhEYgQkTFpZm3KrMkjdHgTqeApbBezwjwDF_lmLjny9Yg6q1uRCplxjIBBt2u5b30HDtfCTbK6DDl1w7hIiI6QNhLSRtJow4HXzRcuqwoct089Im0106h0dvnBbD5Oak9MQqFS7evAZlZx3IFCFUXcRFJoLUOrMgcO1rpO1uaYIEhFJk9Yx4GXzTB6Ih2v6MLMrmkO5RoQPgUO7FWm0awkQBYdcob_XrWMprXU9kgx-VZW-0YILYRSDrxZm9fNsm6VQ1Da37_klQziOG6u9v9f0M_hPr6Pqhs_D2B7Ob82LxCcLdMObDF-jq9qpDqwczQ4O_-MV33Z75Tpjk7plH8AVAA3Vg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCMrLUMBIIMHB1Fnv-nFAKKWpUhJHCLVqb2bX3g0RxAlJKpQb_4H_wY_ilzDjV4mgcOox3nW03pmd-b7Z3RmAp4ynKjJMOZFwucONJjuYScdkTAbkf31Ncch46PeO-NsTcbIBP-q7MHSssraJhaHOpinFyHcQJiCXIm_zevbFoapRtLtal9Ao1aKvV1-Rsi1eHeyhfJ8xtt89fNNzqqoCTupzEToSB93Woe9H3A21dFnmMa1cjeZctY0QKVM61EGoBaIhZAeSGaOY0VmEyq2jwMP_vQSb3EMq04LN3e7w3fva9iM4KiKK6JMDB02QXyUTEkywHT2Z0NV3SpgVUvH33_xgUS7gbxj3z6OazX7tOpou3OH-Dbhe4Vi7UyreTdjQ-RZcLitbrrbgSlzt2d-C447d34v9zs9v3_sD5O_2XBfZWrF1ZBt0nkqmn-yJpivI48XEliMqiUQQ2C4Dw-PUniF5TldLbWerBXli0qbbcHQhE38HWvk01_fARlKb-VwrFlH5diOU8FOObtZrtw13jWvBy3pyk7TKdU4lNz4nxHlIGglJI2mkYcHz5oVZmebj_K67JK2mG-XnLh5M56OkWu5JKAIlXemZ1AQczVwYRBHXkS-k9EMTpBZs17JOKqOxSM5U3IInTTMud9rDkbmenlIfCmggRvMsuFuqRjMSD6l6yBl-fbCmNGtDXW_Jxx-LlOKI04UIAgte1Op1Nqxz58Er9O9_85V04zhuft3_94c_hqu9w3iQDA6G_QdwDV-LytOl29Bazk_1Q0SAS_WoWnY2fLjolf4L8kJpzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKERUXBOUVKBAkkOAQNuv4kRwQWtiuWrapOFCxt9R27O2q7IPdrdDe-A_8G34Ov4SZvMoKCqceEzuR7Xl9M7ZnCHlGmdGJozpIeMgC5izqwVwFLqdKov0VFuOQ6aHYO2LvB3ywQX7Ud2HwWGWtEwtFnU8NxshbABPAl0Jr03LVsYgP3d6b2ZcAK0jhTmtdTqNkkb5dfQX3bfF6vwu0fk5pb_fju72gqjAQGMF4HCiYQNvGQiQsjK0KaR5Rq0MLql23HeeGahtbGVsOyAg8BUWd09TZPAFGt4mM4L9XyFUZ8TbKmBw0zh7ApCK2CNZZBqCMRJVWiFNOW3Y8xkvwmDorxjLwv1nEonDA39Dun4c2m53bdVxdGMbeTXKjQrR-p2TBW2TDTrbJtbLG5WqbbKXV7v1t8qnj97up6Pz89r1_AJ68P7dF3lZoHfoOzKhW5tQfW7yMPFqMfTXE4kgIhv0yRDwy_gzcaLNaWj9fLdAmI1_dIUeXsux3yeZkOrH3iQ_ubS6Y1TTBQu6Oay4MA4MbtduOhS70yKt6cTNTZT3H4hufM_R-kBoZUiNrqOGRF80HszLhx8Vd3yK1mm6Yqbt4MZ0Ps0rws5hLrUIVOeMkA4UXyyRhNhFcKRE7aTyyU9M6q9THIjtndo88bZpB8HE3R03s9Az7YGgD0FrkkXslazQjicBpjxmF2cs1plkb6nrLZHRSJBcHxM65lB55WbPX-bAuXIeo4L__rVe2m6Zp8_Tg3xN_QrZAvrOD_cP-Q3IdvkrKY6Y7ZHM5P7OPAAou9eNC5nxyfNlC_gvqwGye
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+KDM6A%E2%80%93KLF10+reinforcing+feedback+mechanism+aggravates+diabetic+podocyte+dysfunction&rft.jtitle=EMBO+molecular+medicine&rft.au=Lin%2C+Chun%E2%80%90Liang&rft.au=Hsu%2C+Yung%E2%80%90Chien&rft.au=Huang%2C+Yu%E2%80%90Ting&rft.au=Shih%2C+Ya%E2%80%90Hsueh&rft.date=2019-05-01&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=11&rft.issue=5&rft_id=info:doi/10.15252%2Femmm.201809828&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_emmm_201809828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon