A KDM6A–KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction
Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that K...
Saved in:
Published in | EMBO molecular medicine Vol. 11; no. 5; pp. 1 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2019
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1757-4676 1757-4684 1757-4684 |
DOI | 10.15252/emmm.201809828 |
Cover
Loading…
Abstract | Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both
KDM6A
and
KLF10
proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury.
Synopsis
Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury.
Both KDM6A and KLF10 are up‐regulated in podocytes under diabetic conditions.
Activation of the positive inter‐regulation between KDM6A and KLF10 results in repression of multiple podocyte‐specific marker proteins.
Inactivation or podocyte‐specific knockout of KDM6A in mice attenuates diabetes‐induced kidney injury.
Kidney injury is also reduced in KLF10‐knockout mice under diabetic conditions.
Elevated levels of urinary exosomal KDM6A and KLF10 mRNAs are observed in human diabetic nephropathy patients relative to control subjects.
Graphical Abstract
Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. |
---|---|
AbstractList | Abstract Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Synopsis Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. Both KDM6A and KLF10 are up‐regulated in podocytes under diabetic conditions. Activation of the positive inter‐regulation between KDM6A and KLF10 results in repression of multiple podocyte‐specific marker proteins. Inactivation or podocyte‐specific knockout of KDM6A in mice attenuates diabetes‐induced kidney injury. Kidney injury is also reduced in KLF10‐knockout mice under diabetic conditions. Elevated levels of urinary exosomal KDM6A and KLF10 mRNAs are observed in human diabetic nephropathy patients relative to control subjects. Graphical Abstract Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up-regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte-specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes-induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both and proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A-KLF10 feedback loop may be beneficial to attenuate diabetes-induced kidney injury. Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM 6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF 10. Overexpression of KLF 10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM 6A expression. We further show that KLF 10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM 6A or KLF 10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM 6A and KLF 10 proteins or mRNA s are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM 6A– KLF 10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up-regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte-specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes-induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A-KLF10 feedback loop may be beneficial to attenuate diabetes-induced kidney injury.Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up-regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte-specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes-induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A-KLF10 feedback loop may be beneficial to attenuate diabetes-induced kidney injury. Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury. Synopsis Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. Both KDM6A and KLF10 are up‐regulated in podocytes under diabetic conditions. Activation of the positive inter‐regulation between KDM6A and KLF10 results in repression of multiple podocyte‐specific marker proteins. Inactivation or podocyte‐specific knockout of KDM6A in mice attenuates diabetes‐induced kidney injury. Kidney injury is also reduced in KLF10‐knockout mice under diabetic conditions. Elevated levels of urinary exosomal KDM6A and KLF10 mRNAs are observed in human diabetic nephropathy patients relative to control subjects. Podocyte dysfunction is an early event in the development of diabetic nephropathy. This study reveals that activation of a KDM6A‐KLF10 positive feedback loop by hyperglycemia critically contributes to podocyte dysfunction. Blocking the KDM6A‐KLF10 signaling axis ameliorates diabetic kidney injury. |
Author | Lin, Chun‐Liang Shih, Ya‐Hsueh Huang, Yu‐Ting Chiang, Wen‐Chih Chang, Pey‐Jium Hsu, Yung‐Chien Wang, Ching‐Jen |
AuthorAffiliation | 4 Kidney and Diabetic Complications Research Team (KDCRT) Chang Gung Memorial Hospital Chiayi Taiwan 8 Graduate Institute of Clinical Medical Sciences College of Medicine Chang Gung University Taoyuan Taiwan 3 College of Medicine Chang Gung University Taoyuan Taiwan 6 Department of Orthopedic Surgery Chang Gung Memorial Hospital Kaohsiung Taiwan 7 Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan 1 Departments of Nephrology Chang Gung Memorial Hospital Chiayi Taiwan 2 Kidney Research Center Chang Gung Memorial Hospital Taipei Taiwan 5 Center for Shockwave Medicine and Tissue Engineering Department of Medical Research Chang Gung Memorial Hospital Kaohsiung Taiwan |
AuthorAffiliation_xml | – name: 1 Departments of Nephrology Chang Gung Memorial Hospital Chiayi Taiwan – name: 5 Center for Shockwave Medicine and Tissue Engineering Department of Medical Research Chang Gung Memorial Hospital Kaohsiung Taiwan – name: 4 Kidney and Diabetic Complications Research Team (KDCRT) Chang Gung Memorial Hospital Chiayi Taiwan – name: 7 Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan – name: 3 College of Medicine Chang Gung University Taoyuan Taiwan – name: 6 Department of Orthopedic Surgery Chang Gung Memorial Hospital Kaohsiung Taiwan – name: 8 Graduate Institute of Clinical Medical Sciences College of Medicine Chang Gung University Taoyuan Taiwan – name: 2 Kidney Research Center Chang Gung Memorial Hospital Taipei Taiwan |
Author_xml | – sequence: 1 givenname: Chun‐Liang surname: Lin fullname: Lin, Chun‐Liang organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital – sequence: 2 givenname: Yung‐Chien surname: Hsu fullname: Hsu, Yung‐Chien organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital – sequence: 3 givenname: Yu‐Ting surname: Huang fullname: Huang, Yu‐Ting organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital – sequence: 4 givenname: Ya‐Hsueh surname: Shih fullname: Shih, Ya‐Hsueh organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital – sequence: 5 givenname: Ching‐Jen surname: Wang fullname: Wang, Ching‐Jen organization: Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Department of Orthopedic Surgery, Chang Gung Memorial Hospital – sequence: 6 givenname: Wen‐Chih surname: Chiang fullname: Chiang, Wen‐Chih organization: Department of Internal Medicine, National Taiwan University Hospital – sequence: 7 givenname: Pey‐Jium orcidid: 0000-0002-6492-0346 surname: Chang fullname: Chang, Pey‐Jium email: peyjiumc@mail.cgu.edu.tw organization: Departments of Nephrology, Chang Gung Memorial Hospital, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30948420$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUjVARfcCaHYrEhs20thM_wgJpVFqoOiM2IJaW41ynHhJ7sJOi2fEP_CFfgqcpQ1sJWNm6Pufcc33uYbbnvIMse47RMaaEkhPo-_6YICxQJYh4lB1gTvmsZKLc2905288OY1whxCjD4km2X6CqFCVBB9nneX75dsnmP7__uFycY5QHsM74oK1rcwPQ1Ep_yXvQV8rZ2OeqbYO6VgPEvLGqhsHqfO0brzcD5M0mmtHpwXr3NHtsVBfh2e15lH06P_t4-n62-PDu4nS-mGlWUjFToDUGwVhVIgEKkaYgUCMoSlxjQ6kmNQjgAijCjBGqiDE1MdBUNBUrXhxlF5Nu49VKroPtVdhIr6y8KfjQShWSyQ6koLxWSBVGG17SAgteVSVUjCrFhOE6ab2ZtNZj3UOjwQ1BdfdE7784eyVbfy0ZRZTyrZlXtwLBfx0hDrK3UUPXKQd-jJIQVLKKVEWRoC8fQFd-DC59VUIxUfAUL06oF3cd7az8zi8BTiaADj7GAGYHwUjebIjcbojcbUhi0AcMbQe1jSyNZLt_8F5PvG-2g83_2siz5XJ5l4wmckw810L4M-3f-v0CJDDhaQ |
CitedBy_id | crossref_primary_10_1016_j_cellsig_2022_110308 crossref_primary_10_1172_JCI141279 crossref_primary_10_3389_fnmol_2021_718241 crossref_primary_10_1161_HYPERTENSIONAHA_120_15587 crossref_primary_10_1016_j_bbadis_2023_166685 crossref_primary_10_1007_s00109_022_02247_7 crossref_primary_10_1007_s10157_022_02181_5 crossref_primary_10_3390_biomedicines12112622 crossref_primary_10_1007_s11596_023_2765_y crossref_primary_10_2337_db20_1157 crossref_primary_10_1038_s41420_023_01381_6 crossref_primary_10_1177_14791641231172139 crossref_primary_10_3390_molecules27092644 crossref_primary_10_3390_ijms25021276 crossref_primary_10_3390_jcm12237349 crossref_primary_10_1159_000541923 crossref_primary_10_1074_jbc_RA120_012522 crossref_primary_10_1152_ajpheart_00261_2021 crossref_primary_10_1242_dmm_049991 crossref_primary_10_18632_aging_203057 crossref_primary_10_1126_sciadv_aba1187 crossref_primary_10_3389_fphar_2021_759299 crossref_primary_10_1016_j_gendis_2022_06_005 crossref_primary_10_1007_s12020_023_03559_5 crossref_primary_10_1126_scitranslmed_abm2090 crossref_primary_10_1016_j_bioorg_2023_106409 crossref_primary_10_1007_s11033_022_07565_0 crossref_primary_10_1155_2020_6126490 crossref_primary_10_1038_s41419_022_05120_0 crossref_primary_10_1016_j_trsl_2023_10_002 crossref_primary_10_3390_ijms23169407 crossref_primary_10_3389_fcvm_2022_841928 crossref_primary_10_1007_s10620_022_07790_4 crossref_primary_10_1016_j_ygeno_2022_110283 crossref_primary_10_1007_s00109_021_02066_2 crossref_primary_10_1016_j_jphs_2023_08_009 crossref_primary_10_3390_life14121671 crossref_primary_10_1002_ddr_21988 crossref_primary_10_3390_ijms25168986 crossref_primary_10_1016_j_biocel_2024_106664 crossref_primary_10_3390_ijms24087679 crossref_primary_10_1155_2021_8814163 crossref_primary_10_1016_j_vph_2021_106933 crossref_primary_10_3390_cancers15215212 crossref_primary_10_1038_s41401_023_01203_6 crossref_primary_10_1080_21655979_2022_2084534 crossref_primary_10_3892_ijmm_2024_5428 crossref_primary_10_3390_cells9010125 crossref_primary_10_3390_ijms24066007 crossref_primary_10_17925_EE_2023_19_1_46 crossref_primary_10_3390_ijms222111857 crossref_primary_10_18632_aging_202664 crossref_primary_10_2302_kjm_2022_0017_IR crossref_primary_10_1016_j_metabol_2022_155293 |
Cites_doi | 10.1002/hep.510300620 10.2337/diacare.25.8.1410 10.1681/ASN.2008101059 10.1006/excr.1997.3739 10.1159/000101794 10.1038/srep33676 10.1002/biof.67 10.1016/j.celrep.2017.09.078 10.1097/01.ASN.0000043081.65110.C4 10.3390/cancers10060161 10.1152/physrev.00058.2009 10.1016/j.bone.2006.05.021 10.1053/j.ajkd.2013.11.001 10.1152/japplphysiol.00356.2010 10.1172/JCI77084 10.1152/ajprenal.00086.2009 10.1093/ndt/gfr576 10.1152/japplphysiol.00800.2005 10.1681/ASN.2013050527 10.1371/journal.pgen.1001142 10.3389/fendo.2014.00148 10.1101/gad.1882610 10.1016/S0002-9440(10)64239-3 10.1073/pnas.0703577104 10.1038/labinvest.3700518 10.1038/ki.2014.111 10.1038/s41467-017-00498-4 10.1172/JCI95946 10.1093/ndt/gfs482 10.1159/000066790 10.1038/nature11262 10.1056/NEJMoa052187 10.2337/db10-1110 10.1016/j.jdiacomp.2015.07.015 10.1093/nar/23.23.4907 10.1007/s00125-017-4412-2 10.1016/j.ajpath.2016.03.018 10.1681/ASN.2015060672 10.1016/j.febslet.2007.07.008 10.1242/dev.145441 10.1073/pnas.1218667110 10.1038/ki.2015.178 10.1038/sj.ki.5002222 10.1681/ASN.V1191667 10.1038/sj.onc.1205681 10.1097/01.ASN.0000143474.91362.C4 10.2337/db09-0663 10.1038/ki.2015.224 10.1142/S0218957709002304 10.1073/pnas.0511257103 10.1177/1947601911417976 10.1074/jbc.M112.345983 10.3389/fendo.2014.00166 10.4161/epi.28298 10.1016/j.biocel.2012.11.007 10.1038/ki.2014.286 10.1001/jama.290.16.2159 10.1159/000245062 10.1172/JCI69557 10.1002/dvdy.23971 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019 The Authors. Published under the terms of the CC BY 4.0 license 2019 The Authors. Published under the terms of the CC BY 4.0 license. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.15252/emmm.201809828 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Chun‐Liang Lin et al |
EISSN | 1757-4684 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_857ba0a3fcf7453187994e965aa68f7c PMC6505577 30948420 10_15252_emmm_201809828 EMMM201809828 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan (MOST) grantid: 104‐2314‐B‐182A‐068‐MY3; 107‐2314‐B‐182A‐029‐MY3 funderid: 10.13039/501100004663 – fundername: Chang Gung Memorial Hospital (CGMH) grantid: CMRPG6E0381˜3; CMRPG6H0361 funderid: 10.13039/100012553 – fundername: Chang Gung Memorial Hospital (CGMH) funderid: CMRPG6E0381˜3; CMRPG6H0361 – fundername: Ministry of Science and Technology, Taiwan (MOST) funderid: 104‐2314‐B‐182A‐068‐MY3; 107‐2314‐B‐182A‐029‐MY3 – fundername: Ministry of Science and Technology, Taiwan (MOST) grantid: 104‐2314‐B‐182A‐068‐MY3; 107‐2314‐B‐182A‐029‐MY3 – fundername: Chang Gung Memorial Hospital (CGMH) grantid: CMRPG6E0381˜3; CMRPG6H0361 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAJSJ AAMMB AAZKR ABOCM ABUWG ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AFBPY AFKRA AGXDD AHMBA AIAGR AIDQK AIDYY ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 M48 M7P NNB O9- OIG OK1 OVD P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 31~ AAHHS ABJNI ACCFJ ADPDF ADRAZ ADZOD AEEZP AEQDE AFZJQ AIWBW AJBDE EBLON GODZA H13 LW6 M~E OVEED RHF AASML AAYXX CITATION NAO CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c6458-aecc1e8669408ea02d32eb0e341b1f55c2be8e78e5016625a2ffb2fed9578e973 |
IEDL.DBID | M48 |
ISSN | 1757-4676 1757-4684 |
IngestDate | Wed Aug 27 01:28:07 EDT 2025 Thu Aug 21 18:42:03 EDT 2025 Fri Jul 11 10:50:24 EDT 2025 Wed Aug 13 03:44:26 EDT 2025 Wed Feb 19 02:30:36 EST 2025 Tue Jul 01 01:53:00 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Wed Jan 22 17:07:56 EST 2025 Tue Aug 12 01:11:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | KLF10 podocyte dysfunction diabetic nephropathy epigenetics KDM6A |
Language | English |
License | Attribution 2019 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6458-aecc1e8669408ea02d32eb0e341b1f55c2be8e78e5016625a2ffb2fed9578e973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6492-0346 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201809828 |
PMID | 30948420 |
PQID | 2268371521 |
PQPubID | 866378 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_857ba0a3fcf7453187994e965aa68f7c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6505577 proquest_miscellaneous_2204692933 proquest_journals_2268371521 pubmed_primary_30948420 crossref_primary_10_15252_emmm_201809828 crossref_citationtrail_10_15252_emmm_201809828 wiley_primary_10_15252_emmm_201809828_EMMM201809828 springer_journals_10_15252_emmm_201809828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Frankfurt – name: Hoboken |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | 2007; 104 1997; 236 2017; 8 2012; 287 2013; 28 2007; 106 2018; 128 2010; 108 2011; 60 2007; 581 2003; 14 2014; 25 2007; 71 2013; 242 2014; 63 2012; 488 2016; 186 2009; 12 2014; 5 2010; 24 2010; 114 1995; 23 2000; 11 2015; 88 2015; 87 2013; 110 2012; 27 2014; 9 2010; 6 2014; 124 2011; 2 2010; 36 2017; 60 2005; 353 2017; 28 2015; 125 2013; 45 2017; 21 2010a; 59 2006b; 101 2009; 297 2006a; 39 2003; 290 2014; 86 2002; 25 2016; 6 2002; 161 2015; 29 2004; 15 2002; 21 1999; 30 2017; 144 2010b; 21 2007; 87 2010; 90 2018; 10 2006; 103 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 71 start-page: 1205 year: 2007 end-page: 1214 article-title: The spectrum of podocytopathies: a unifying view of glomerular diseases publication-title: Kidney Int – volume: 236 start-page: 248 year: 1997 end-page: 258 article-title: Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines publication-title: Exp Cell Res – volume: 87 start-page: 382 year: 2015 end-page: 395 article-title: Reduced Kruppel‐like factor 2 expression may aggravate the endothelial injury of diabetic nephropathy publication-title: Kidney Int – volume: 581 start-page: 3826 year: 2007 end-page: 3832 article-title: TIEG1 induces apoptosis through mitochondrial apoptotic pathway and promotes apoptosis induced by homoharringtonine and velcade publication-title: FEBS Lett – volume: 125 start-page: 1347 year: 2015 end-page: 1361 article-title: Kruppel‐like factor 6 regulates mitochondrial function in the kidney publication-title: J Clin Invest – volume: 87 start-page: 273 year: 2007 end-page: 283 article-title: Snail, a transcriptional regulator, represses nephrin expression in glomerular epithelial cells of nephrotic rats publication-title: Lab Invest – volume: 14 start-page: 352 year: 2003 end-page: 358 article-title: Alternatively used promoters and distinct elements direct tissue‐specific expression of nephrin publication-title: J Am Soc Nephrol – volume: 15 start-page: 2851 year: 2004 end-page: 2856 article-title: WT1 activates a glomerular‐specific enhancer identified from the human nephrin gene publication-title: J Am Soc Nephrol – volume: 28 start-page: 166 year: 2017 end-page: 184 article-title: Kruppel‐like factor 15 mediates glucocorticoid‐induced restoration of podocyte differentiation markers publication-title: J Am Soc Nephrol – volume: 5 start-page: 148 year: 2014 article-title: Podocyte dedifferentiation: a specialized process for a specialized cell publication-title: Front Endocrinol (Lausanne) – volume: 114 start-page: e15 year: 2010 end-page: e22 article-title: Sp1 specifically binds to an evolutionarily conserved DNA segment within a region necessary for podocyte‐specific expression of nephrin publication-title: Nephron Exp Nephrol – volume: 36 start-page: 8 year: 2010 end-page: 18 article-title: Functional role of KLF10 in multiple disease processes publication-title: BioFactors – volume: 8 start-page: 413 year: 2017 article-title: Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling publication-title: Nat Commun – volume: 353 start-page: 2643 year: 2005 end-page: 2653 article-title: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes publication-title: N Engl J Med – volume: 39 start-page: 1244 year: 2006a end-page: 1251 article-title: TGFbeta inducible early gene‐1 knockout mice display defects in bone strength and microarchitecture publication-title: Bone – volume: 90 start-page: 1337 year: 2010 end-page: 1381 article-title: Mammalian Kruppel‐like factors in health and diseases publication-title: Physiol Rev – volume: 124 start-page: 2523 year: 2014 end-page: 2537 article-title: KLF4‐dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria publication-title: J Clin Invest – volume: 21 start-page: 5783 year: 2002 end-page: 5790 article-title: TGFbeta inducible early gene enhances TGFbeta/Smad‐dependent transcriptional responses publication-title: Oncogene – volume: 28 start-page: 846 year: 2013 end-page: 855 article-title: Regulation of nephrin gene by the Ets transcription factor, GA‐binding protein publication-title: Nephrol Dial Transplant – volume: 12 start-page: 127 year: 2009 end-page: 136 article-title: Tieg1‐null osteocytes display defects in their morphology, density and surrounding bone matrix publication-title: J Musculoskelet Res – volume: 2 start-page: 663 year: 2011 end-page: 679 article-title: Targeting histone demethylases: a new avenue for the fight against cancer publication-title: Genes Cancer – volume: 88 start-page: 745 year: 2015 end-page: 753 article-title: Renin‐angiotensin blockade resets podocyte epigenome through Kruppel‐like Factor 4 and attenuates proteinuria publication-title: Kidney Int – volume: 9 start-page: 658 year: 2014 end-page: 668 article-title: The H3K27me3 demethylase UTX in normal development and disease publication-title: Epigenetics – volume: 104 start-page: 14448 year: 2007 end-page: 14453 article-title: Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 296 year: 2002 end-page: 302 article-title: Effect of angiotensin II on ANP‐dependent guanylyl cyclase activity in cultured mouse and rat podocytes publication-title: Kidney Blood Press Res – volume: 287 start-page: 19122 year: 2012 end-page: 19135 article-title: Kruppel‐like factor 15 (KLF15) is a key regulator of podocyte differentiation publication-title: J Biol Chem – volume: 29 start-page: 1337 year: 2015 end-page: 1344 article-title: The epigenetic regulation of podocyte function in diabetes publication-title: J Diabetes Complications – volume: 24 start-page: 327 year: 2010 end-page: 332 article-title: The histone demethylase UTX enables RB‐dependent cell fate control publication-title: Genes Dev – volume: 30 start-page: 1490 year: 1999 end-page: 1497 article-title: The transforming growth factor beta(1)‐inducible transcription factor TIEG1, mediates apoptosis through oxidative stress publication-title: Hepatology – volume: 60 start-page: 2443 year: 2017 end-page: 2452 article-title: KLF10 transcription factor regulates hepatic glucose metabolism in mice publication-title: Diabetologia – volume: 161 start-page: 799 year: 2002 end-page: 805 article-title: A new method for large scale isolation of kidney glomeruli from mice publication-title: Am J Pathol – volume: 86 start-page: 712 year: 2014 end-page: 725 article-title: Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy publication-title: Kidney Int – volume: 10 start-page: E161 year: 2018 article-title: KLF10 as a tumor suppressor gene and its TGF‐beta signaling publication-title: Cancers (Basel) – volume: 128 start-page: 483 year: 2018 end-page: 499 article-title: Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease publication-title: J Clin Invest – volume: 60 start-page: 1779 year: 2011 end-page: 1788 article-title: Dedifferentiation of immortalized human podocytes in response to transforming growth factor‐beta: a model for diabetic podocytopathy publication-title: Diabetes – volume: 45 start-page: 419 year: 2013 end-page: 428 article-title: Kruppel‐like factor 10 upregulates the expression of cyclooxygenase 1 and further modulates angiogenesis in endothelial cell and platelet aggregation in gene‐deficient mice publication-title: Int J Biochem Cell Biol – volume: 103 start-page: 5682 year: 2006 end-page: 5687 article-title: Comparative promoter analysis allows identification of specialized cell junction‐associated proteins publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 1410 year: 2002 end-page: 1417 article-title: Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes?: U.K. prospective diabetes study 61 publication-title: Diabetes Care – volume: 21 start-page: 628 year: 2017 end-page: 640 article-title: UTX/KDM6A loss enhances the malignant phenotype of multiple myeloma and sensitizes cells to EZH2 inhibition publication-title: Cell Rep – volume: 6 start-page: e1001142 year: 2010 article-title: Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype publication-title: PLoS Genet – volume: 108 start-page: 1706 year: 2010 end-page: 1710 article-title: Molecular structure of tail tendon fibers in TIEG1 knockout mice using synchrotron diffraction technology publication-title: J Appl Physiol (1985) – volume: 21 start-page: 124 year: 2010b end-page: 135 article-title: Dickkopf‐1 promotes hyperglycemia‐induced accumulation of mesangial matrix and renal dysfunction publication-title: J Am Soc Nephrol – volume: 297 start-page: F729 year: 2009 end-page: F739 article-title: Histone deacetylase‐2 is a key regulator of diabetes‐ and transforming growth factor‐beta1‐induced renal injury publication-title: Am J Physiol Renal Physiol – volume: 11 start-page: 1667 year: 2000 end-page: 1673 article-title: Type 2 diabetic patients with nephropathy show structural‐functional relationships that are similar to type 1 disease publication-title: J Am Soc Nephrol – volume: 23 start-page: 4907 year: 1995 end-page: 4912 article-title: Identification of a novel TGF‐beta‐regulated gene encoding a putative zinc finger protein in human osteoblasts publication-title: Nucleic Acids Res – volume: 88 start-page: 668 year: 2015 end-page: 670 article-title: Epigenetic control of podocyte differentiation: a new target of the renin‐angiotensin system in kidney disease publication-title: Kidney Int – volume: 59 start-page: 1915 year: 2010a end-page: 1925 article-title: Modulation of notch‐1 signaling alleviates vascular endothelial growth factor‐mediated diabetic nephropathy publication-title: Diabetes – volume: 110 start-page: 648 year: 2013 end-page: 653 article-title: Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 33676 year: 2016 article-title: Silencing of histone deacetylase 9 expression in podocytes attenuates kidney injury in diabetic nephropathy publication-title: Sci Rep – volume: 488 start-page: 404 year: 2012 end-page: 408 article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response publication-title: Nature – volume: 63 start-page: A7 year: 2014 article-title: US renal data system 2013 annual data report publication-title: Am J Kidney Dis – volume: 5 start-page: 166 year: 2014 article-title: The role of SIRT1 in diabetic kidney disease publication-title: Front Endocrinol (Lausanne) – volume: 106 start-page: e60 year: 2007 end-page: e66 article-title: Role of transcription factors in podocytes publication-title: Nephron Exp Nephrol – volume: 27 start-page: 1737 year: 2012 end-page: 1745 article-title: Transcription of nephrin‐Neph3 gene pair is synergistically activated by WT1 and NF‐kappaB and silenced by DNA methylation publication-title: Nephrol Dial Transplant – volume: 186 start-page: 2021 year: 2016 end-page: 2031 article-title: Reduced kruppel‐like factor 2 aggravates glomerular endothelial cell injury and kidney disease in mice with unilateral nephrectomy publication-title: Am J Pathol – volume: 25 start-page: 1698 year: 2014 end-page: 1709 article-title: MicroRNA‐29a promotion of nephrin acetylation ameliorates hyperglycemia‐induced podocyte dysfunction publication-title: J Am Soc Nephrol – volume: 101 start-page: 1419 year: 2006b end-page: 24 article-title: Age‐dependent changes in the mechanical properties of tail tendons in TGF‐beta inducible early gene‐1 knockout mice publication-title: J Appl Physiol (1985) – volume: 144 start-page: 737 year: 2017 end-page: 754 article-title: Kruppel‐like factors in mammalian stem cells and development publication-title: Development – volume: 290 start-page: 2159 year: 2003 end-page: 2167 article-title: Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study publication-title: JAMA – volume: 242 start-page: 790 year: 2013 end-page: 799 article-title: The transcription factor Sry‐related HMG box‐4 (SOX4) is required for normal renal development publication-title: Dev Dyn – ident: e_1_2_10_44_1 doi: 10.1002/hep.510300620 – ident: e_1_2_10_10_1 doi: 10.2337/diacare.25.8.1410 – ident: e_1_2_10_27_1 doi: 10.1681/ASN.2008101059 – ident: e_1_2_10_40_1 doi: 10.1006/excr.1997.3739 – ident: e_1_2_10_43_1 doi: 10.1159/000101794 – ident: e_1_2_10_29_1 doi: 10.1038/srep33676 – ident: e_1_2_10_49_1 doi: 10.1002/biof.67 – ident: e_1_2_10_12_1 doi: 10.1016/j.celrep.2017.09.078 – ident: e_1_2_10_3_1 doi: 10.1097/01.ASN.0000043081.65110.C4 – ident: e_1_2_10_39_1 doi: 10.3390/cancers10060161 – ident: e_1_2_10_38_1 doi: 10.1152/physrev.00058.2009 – ident: e_1_2_10_4_1 doi: 10.1016/j.bone.2006.05.021 – ident: e_1_2_10_11_1 doi: 10.1053/j.ajkd.2013.11.001 – ident: e_1_2_10_15_1 doi: 10.1152/japplphysiol.00356.2010 – ident: e_1_2_10_34_1 doi: 10.1172/JCI77084 – ident: e_1_2_10_42_1 doi: 10.1152/ajprenal.00086.2009 – ident: e_1_2_10_45_1 doi: 10.1093/ndt/gfr576 – ident: e_1_2_10_5_1 doi: 10.1152/japplphysiol.00800.2005 – ident: e_1_2_10_28_1 doi: 10.1681/ASN.2013050527 – ident: e_1_2_10_25_1 doi: 10.1371/journal.pgen.1001142 – ident: e_1_2_10_37_1 doi: 10.3389/fendo.2014.00148 – ident: e_1_2_10_52_1 doi: 10.1101/gad.1882610 – ident: e_1_2_10_50_1 doi: 10.1016/S0002-9440(10)64239-3 – ident: e_1_2_10_2_1 doi: 10.1073/pnas.0703577104 – ident: e_1_2_10_36_1 doi: 10.1038/labinvest.3700518 – ident: e_1_2_10_53_1 doi: 10.1038/ki.2014.111 – ident: e_1_2_10_30_1 doi: 10.1038/s41467-017-00498-4 – ident: e_1_2_10_32_1 doi: 10.1172/JCI95946 – ident: e_1_2_10_46_1 doi: 10.1093/ndt/gfs482 – ident: e_1_2_10_14_1 doi: 10.1159/000066790 – ident: e_1_2_10_24_1 doi: 10.1038/nature11262 – ident: e_1_2_10_41_1 doi: 10.1056/NEJMoa052187 – ident: e_1_2_10_20_1 doi: 10.2337/db10-1110 – ident: e_1_2_10_31_1 doi: 10.1016/j.jdiacomp.2015.07.015 – ident: e_1_2_10_48_1 doi: 10.1093/nar/23.23.4907 – ident: e_1_2_10_59_1 doi: 10.1007/s00125-017-4412-2 – ident: e_1_2_10_61_1 doi: 10.1016/j.ajpath.2016.03.018 – ident: e_1_2_10_35_1 doi: 10.1681/ASN.2015060672 – ident: e_1_2_10_22_1 doi: 10.1016/j.febslet.2007.07.008 – ident: e_1_2_10_7_1 doi: 10.1242/dev.145441 – ident: e_1_2_10_8_1 doi: 10.1073/pnas.1218667110 – ident: e_1_2_10_19_1 doi: 10.1038/ki.2015.178 – ident: e_1_2_10_55_1 doi: 10.1038/sj.ki.5002222 – ident: e_1_2_10_54_1 doi: 10.1681/ASN.V1191667 – ident: e_1_2_10_23_1 doi: 10.1038/sj.onc.1205681 – ident: e_1_2_10_16_1 doi: 10.1097/01.ASN.0000143474.91362.C4 – ident: e_1_2_10_26_1 doi: 10.2337/db09-0663 – ident: e_1_2_10_13_1 doi: 10.1038/ki.2015.224 – ident: e_1_2_10_17_1 doi: 10.1142/S0218957709002304 – ident: e_1_2_10_9_1 doi: 10.1073/pnas.0511257103 – ident: e_1_2_10_47_1 doi: 10.1177/1947601911417976 – ident: e_1_2_10_33_1 doi: 10.1074/jbc.M112.345983 – ident: e_1_2_10_57_1 doi: 10.3389/fendo.2014.00166 – ident: e_1_2_10_51_1 doi: 10.4161/epi.28298 – ident: e_1_2_10_58_1 doi: 10.1016/j.biocel.2012.11.007 – ident: e_1_2_10_60_1 doi: 10.1038/ki.2014.286 – ident: e_1_2_10_56_1 doi: 10.1001/jama.290.16.2159 – ident: e_1_2_10_6_1 doi: 10.1159/000245062 – ident: e_1_2_10_18_1 doi: 10.1172/JCI69557 – ident: e_1_2_10_21_1 doi: 10.1002/dvdy.23971 |
SSID | ssj0065618 |
Score | 2.4717457 |
Snippet | Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is... Diabetic nephropathy is the leading cause of end-stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is... Abstract Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animals Base Sequence Cell Line, Transformed Deoxyribonucleic acid Diabetes Diabetes mellitus Diabetic Nephropathies - metabolism Diabetic Nephropathies - pathology Diabetic Nephropathies - physiopathology Diabetic Nephropathies - urine Diabetic nephropathy DNA DNA methylation DNMT1 protein Down-Regulation Early Growth Response Transcription Factors - genetics Early Growth Response Transcription Factors - metabolism EMBO21 EMBO45 Enzymes Epigenesis, Genetic Epigenetics Epithelial cells Exosomes Exosomes - metabolism Experiments Feedback Feedback, Physiological Gene expression Histone Demethylases - genetics Histone Demethylases - metabolism Hospitals Humans KDM6A Kidney - metabolism Kidney - pathology Kidney - physiopathology Kidneys KLF10 Kruppel-Like Transcription Factors - genetics Kruppel-Like Transcription Factors - metabolism Laboratory animals Lysine Male Medical research Membrane Proteins - metabolism Methyltransferase Mice, Inbred C57BL Mice, Knockout Nephropathy Phenotype podocyte dysfunction Podocytes - metabolism Podocytes - pathology Promoter Regions, Genetic - genetics Protein Binding Proteins Proteinuria Renal function Research Article Signal transduction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJRAXBOUrUJCROMAhNOv487hAq4oSTlT0FtnOuKxg06q7PeyN_8A_5Jcwk2RDV1D1wnHX3pUzM_Z7z3ZmGHspZAwuiZA7VchcJqB1sPF5aoQ3hL8aaB-y-qQPjuSHY3V8qdQX3Qnr0wP3htu1ygRf-DLFZCQGjDXOSXBaea9tMpFWX8S8tZjq12AkKd3OHmKjyXEp0ENSHyWU2IX5nF5Bp8RVloqwX8KjLm3_v7jm31cmx3PTTVbbwdL-XXZn4JN82j_HPXYD2m12s68wudpmt6rh7Pw--zLlh-8rPf314-fhR9TR_By6rKnYesITgljw8RufA70KPFvMuT-h0kRERXm_QTuL_AxFbFwtgTerBSEiefUBO9rf-_zuIB_KKuRRS2Vzj16bgNXaycKCL0RTCggFIJ6FSVIqigAWjAWFdBDlkRcpBZGgcTi7wZnyIdtqT1t4zDiKy0ZLFOeOyqgnFZSOEuGunEySLFKRsTdr49ZxyDlOpS--16Q9yBs1eaMevZGxV-MPzvp0G1d3fUveGrtRnuzuC4yeeoie-rroydjO2tf1MHkXNTJSlO1EbDL2YmzGaUdnKb6F0wvqQxsLyJXKjD3qQ2McSYmS2UqBT282gmZjqJst7exrl9ob-bJSxmTs9Tq8_gzrSjuUXfxdZ696r6qq8dOT_2G9p-w2_qHr73_usK3l-QU8Q462DM-76fgbkhEz3g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BEagXBOVlKMhIHOBg6qz3eUIBWlUUc6IiN2t3vZtGECdN0kNu_Af-Ib-EGXvjEkHhmOxaWu88vm9m1zOEvKDMWR2ozTTPWcaCRz9YmyzU1EjEX-ExD1l-Esen7MOIj2LCbRmvVW58Yuuo65nDHPkB0ASIpRBt3szPM-wahaersYXGdXIDS5fhlS456gMuoCptfg8QUmbgEEQs7cMppwd-OsUP0bF8lcJW7L-hUlu8_2-M88-Lk_3p6Ta3bcHp6A65HVllOuzU4C655ps9crPrM7neI7fKeIJ-j3wZpifvSzH8-f3HyUeIptOFb2unwug4DQBl1riv6dTjB8GT5TQ1Y2xQhIQ07dK0E5fOIZR165VP6_UScRFle5-cHh1-fnecxeYKmROMq8yA7AZeCaFZrrzJaV1Qb3MPqGYHgXNHrVdeKs-BFEKQZGgIlgZfa7Bxr2XxgOw0s8Y_IimEmLVgEKJrbKYeuOXCMQC9YjAILA95Ql5vNrdysfI4NsD4VmEEgtKoUBpVL42EvOwfmHdFN66e-hal1U_DatntH7PFuIrGVykurclNEVyQDJyOklozrwU3RqggXUL2N7Kuogkvq0uFS8jzfhiMD09UTONnFzgH0wvAmIqEPOxUo19JAYGzYhTeXm4pzdZSt0eayVlb4BtYM-dSJuTVRr0ul3XlPhSt_v1vv6rDsiz7X4___eJPyC5M1d39zn2ys1pc-KfAwVb2WWtovwDH7Str priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagCMQFQfkLFGQkDnAIZB3_xMdlaVVRwomK3iLbGbcr2LTqbg974x14Q56EmSQbiGiFuCWxkzieGc_32fEMYy-FDN5G4VOrMpnKCDQO1i6NtXCG_K8GmocsP-n9Q_nhSB31QZJoL8yf6_dKKPEWFgvaME5hppAcXGc31CTXpL4zPdsMuYhJ2ok8dIUmRcvXfQyfSx4wcj9tlP7LoOXff0gOy6RjENt6ob277E4PH_m0k_c9dg2abXazSyi53ma3yn6p_D77MuUH70s9_fn9x8FHpM38HNogqVh6zCP6LO_CV74A2vk7Xy64O6ZMRIQ8eTcfOw_8DDlrWK-A1-slOUAS4gN2uLf7ebaf9lkU0qClKlKHQppAobWVWQEuE3UuwGeA7stPolJBeCjAFKAQ_SEbciJGLyLUFo0ZrMkfsq3mtIHHjCOXrLVELm4pa3pUXukg0bvlk0mUWcwS9mbTuVXoQ4xTpotvFVENkkZF0qgGaSTs1XDDWRdd4-qq70haQzUKi91eQG2peiurCmW8y1weQzQSR5fCWCvBauWcLqIJCdvZyLrqbXVZIQBFlk44JmEvhmK0Mlo6cQ2cXlAdmkdAaJQn7FGnGkNLcmTIhRT49WakNKOmjkua-UkbyRvhsVLGJOz1Rr1-N-vKfshb_ftXf1W7ZVkOZ0_-4w1P2W08tt1fnTtsa3V-Ac8Qea3889bqfgHiViQW priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgEYgLguUVWJCROMAhkDp-xMcCu1qxBHFgBbfIdsalgrartnvojf_AP-SXMJMXimCFxK2tncj1zHi-GdvfMPZUyOBtFD61KpOpjEDrYO3SWAtnyP9qoDxk-V4fn8q3n1V_mpDuwrT8EEPCjSyjWa_JwJ3f9BV7iDUUFgu6Sk4EVBg2XGZX6IIt0ecL-aFfjBGtNCk-dJImxTVBd-w-9IqX4xeMHFPD3_830Pnn2clhA3UMbxv_dHST3eiAJZ-2mnCLXYLlPrvalprc7bNrZbeJfpt9mvKTN6We_vz-4-QdBtR8DQ19KrbOeERv5l34yhdAd4LnmwV3M6pRRJiUt5naeeBnGM2G3RZ4vduQayTx3mGnR4cfXx-nXX2FNGipitSh-CZQaG1lVoDLRJ0L8BmgY_OTqFQQHgowBSjEhRgnORGjFxFqi2YO1uR32d5ytYT7jGOUWWuJUbqleupReaWDRL-XTyZRZjFL2It-cqvQkY9TDYxvFQUhJI2KpFEN0kjYs-GBs5Z34-Kur0haQzcizG5-WK1nVWd_VaGMd5nLY4hG4rpTGGslWK2c00U0IWEHvayrzoo3FUJTjN8J4STsydCM9kebKm4Jq3PqQxkGBE15wu61qjGMJMfYuZAC_70ZKc1oqOOW5fxLw_GNwFkpYxL2vFev38O6cB7yRv_-NV_VYVmWw7cH__XUQ3YdP9v25OcB29uuz-ERorOtf9zY3y-Try-o priority: 102 providerName: Wiley-Blackwell |
Title | A KDM6A–KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction |
URI | https://link.springer.com/article/10.15252/emmm.201809828 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201809828 https://www.ncbi.nlm.nih.gov/pubmed/30948420 https://www.proquest.com/docview/2268371521 https://www.proquest.com/docview/2204692933 https://pubmed.ncbi.nlm.nih.gov/PMC6505577 https://doaj.org/article/857ba0a3fcf7453187994e965aa68f7c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB7RViAuCAoUlxIZiQMcXJz1_tgHhNKQqqK4qhARuVlrezdENE6bpBK58Q68IU_CjO24skgFlyjObqLN_Ox836w9A_CK8SyNLEu9SPjc49bQPphrz-ZMK4q_0lAeMj6TJ0P-cSRGN-2AagEuNlI76ic1nF8c_rhavUeHf1d372FvzXRKD5VTKSokEFuwg2FJkZfGvDlSQNxSJvswXCoPdwdZ1_nZ8AOtEFVW8t8EP_--i7I5Sm0D3TJSHT-EBzXEdHuVTTyCO6bYhbtV08nVLtyL6-P0x_C1555-iGXv989fp5-QWrtzUxZSxdGxazGupTr77k4NPR08WUxdPaZuRYRO3SpnO8ncS-S12Wpp3Hy1oCBJin4Cw-PBl_6JV3da8DLJRehpVGTXhFJG3A-N9lkeMJP6BkNc2rVCZCw1oVGhEYgQkTFpZm3KrMkjdHgTqeApbBezwjwDF_lmLjny9Yg6q1uRCplxjIBBt2u5b30HDtfCTbK6DDl1w7hIiI6QNhLSRtJow4HXzRcuqwoct089Im0106h0dvnBbD5Oak9MQqFS7evAZlZx3IFCFUXcRFJoLUOrMgcO1rpO1uaYIEhFJk9Yx4GXzTB6Ih2v6MLMrmkO5RoQPgUO7FWm0awkQBYdcob_XrWMprXU9kgx-VZW-0YILYRSDrxZm9fNsm6VQ1Da37_klQziOG6u9v9f0M_hPr6Pqhs_D2B7Ob82LxCcLdMObDF-jq9qpDqwczQ4O_-MV33Z75Tpjk7plH8AVAA3Vg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCMrLUMBIIMHB1Fnv-nFAKKWpUhJHCLVqb2bX3g0RxAlJKpQb_4H_wY_ilzDjV4mgcOox3nW03pmd-b7Z3RmAp4ynKjJMOZFwucONJjuYScdkTAbkf31Ncch46PeO-NsTcbIBP-q7MHSssraJhaHOpinFyHcQJiCXIm_zevbFoapRtLtal9Ao1aKvV1-Rsi1eHeyhfJ8xtt89fNNzqqoCTupzEToSB93Woe9H3A21dFnmMa1cjeZctY0QKVM61EGoBaIhZAeSGaOY0VmEyq2jwMP_vQSb3EMq04LN3e7w3fva9iM4KiKK6JMDB02QXyUTEkywHT2Z0NV3SpgVUvH33_xgUS7gbxj3z6OazX7tOpou3OH-Dbhe4Vi7UyreTdjQ-RZcLitbrrbgSlzt2d-C447d34v9zs9v3_sD5O_2XBfZWrF1ZBt0nkqmn-yJpivI48XEliMqiUQQ2C4Dw-PUniF5TldLbWerBXli0qbbcHQhE38HWvk01_fARlKb-VwrFlH5diOU8FOObtZrtw13jWvBy3pyk7TKdU4lNz4nxHlIGglJI2mkYcHz5oVZmebj_K67JK2mG-XnLh5M56OkWu5JKAIlXemZ1AQczVwYRBHXkS-k9EMTpBZs17JOKqOxSM5U3IInTTMud9rDkbmenlIfCmggRvMsuFuqRjMSD6l6yBl-fbCmNGtDXW_Jxx-LlOKI04UIAgte1Op1Nqxz58Er9O9_85V04zhuft3_94c_hqu9w3iQDA6G_QdwDV-LytOl29Bazk_1Q0SAS_WoWnY2fLjolf4L8kJpzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKERUXBOUVKBAkkOAQNuv4kRwQWtiuWrapOFCxt9R27O2q7IPdrdDe-A_8G34Ov4SZvMoKCqceEzuR7Xl9M7ZnCHlGmdGJozpIeMgC5izqwVwFLqdKov0VFuOQ6aHYO2LvB3ywQX7Ud2HwWGWtEwtFnU8NxshbABPAl0Jr03LVsYgP3d6b2ZcAK0jhTmtdTqNkkb5dfQX3bfF6vwu0fk5pb_fju72gqjAQGMF4HCiYQNvGQiQsjK0KaR5Rq0MLql23HeeGahtbGVsOyAg8BUWd09TZPAFGt4mM4L9XyFUZ8TbKmBw0zh7ApCK2CNZZBqCMRJVWiFNOW3Y8xkvwmDorxjLwv1nEonDA39Dun4c2m53bdVxdGMbeTXKjQrR-p2TBW2TDTrbJtbLG5WqbbKXV7v1t8qnj97up6Pz89r1_AJ68P7dF3lZoHfoOzKhW5tQfW7yMPFqMfTXE4kgIhv0yRDwy_gzcaLNaWj9fLdAmI1_dIUeXsux3yeZkOrH3iQ_ubS6Y1TTBQu6Oay4MA4MbtduOhS70yKt6cTNTZT3H4hufM_R-kBoZUiNrqOGRF80HszLhx8Vd3yK1mm6Yqbt4MZ0Ps0rws5hLrUIVOeMkA4UXyyRhNhFcKRE7aTyyU9M6q9THIjtndo88bZpB8HE3R03s9Az7YGgD0FrkkXslazQjicBpjxmF2cs1plkb6nrLZHRSJBcHxM65lB55WbPX-bAuXIeo4L__rVe2m6Zp8_Tg3xN_QrZAvrOD_cP-Q3IdvkrKY6Y7ZHM5P7OPAAou9eNC5nxyfNlC_gvqwGye |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+KDM6A%E2%80%93KLF10+reinforcing+feedback+mechanism+aggravates+diabetic+podocyte+dysfunction&rft.jtitle=EMBO+molecular+medicine&rft.au=Lin%2C+Chun%E2%80%90Liang&rft.au=Hsu%2C+Yung%E2%80%90Chien&rft.au=Huang%2C+Yu%E2%80%90Ting&rft.au=Shih%2C+Ya%E2%80%90Hsueh&rft.date=2019-05-01&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=11&rft.issue=5&rft_id=info:doi/10.15252%2Femmm.201809828&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_emmm_201809828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon |