Reliability of genetic bottleneck tests for detecting recent population declines

The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popula...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 21; no. 14; pp. 3403 - 3418
Main Authors PEERY, M. ZACHARIAH, KIRBY, REBECCA, REID, BRENDAN N., STOELTING, RICKA, DOUCET-BËER, ELENA, ROBINSON, STACIE, VÁSQUEZ-CARRILLO, CATALINA, PAULI, JONATHAN N., PALSBØLL, PER J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite‐based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi‐step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of ‘detecting’ bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history.
AbstractList The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi-step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of 'detecting' bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history.The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi-step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of 'detecting' bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history.
The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite‐based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi‐step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of ‘detecting’ bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history.
The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi-step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of 'detecting' bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history. [PUBLICATION ABSTRACT]
Author REID, BRENDAN N.
VÁSQUEZ-CARRILLO, CATALINA
ROBINSON, STACIE
KIRBY, REBECCA
PALSBØLL, PER J.
DOUCET-BËER, ELENA
PEERY, M. ZACHARIAH
PAULI, JONATHAN N.
STOELTING, RICKA
Author_xml – sequence: 1
  givenname: M. ZACHARIAH
  surname: PEERY
  fullname: PEERY, M. ZACHARIAH
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 2
  givenname: REBECCA
  surname: KIRBY
  fullname: KIRBY, REBECCA
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 3
  givenname: BRENDAN N.
  surname: REID
  fullname: REID, BRENDAN N.
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 4
  givenname: RICKA
  surname: STOELTING
  fullname: STOELTING, RICKA
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 5
  givenname: ELENA
  surname: DOUCET-BËER
  fullname: DOUCET-BËER, ELENA
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 6
  givenname: STACIE
  surname: ROBINSON
  fullname: ROBINSON, STACIE
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 7
  givenname: CATALINA
  surname: VÁSQUEZ-CARRILLO
  fullname: VÁSQUEZ-CARRILLO, CATALINA
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 8
  givenname: JONATHAN N.
  surname: PAULI
  fullname: PAULI, JONATHAN N.
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
– sequence: 9
  givenname: PER J.
  surname: PALSBØLL
  fullname: PALSBØLL, PER J.
  organization: Marine Evolution and Conservation, Centre of Evolutionary and Ecological Studies, University of Groningen, PO Box 11103, CC Groningen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22646281$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v0zAYxy00xLrBV0CRuHBJ8HucA0ioGtukFRACDXGxHPfJ5C6Ni-2I9tvjrNsOu6y-2NLz-__9vJ2go8EPgFBBcEXy-bCqCJOipA3_XVFMaIWFZKLavkCzx8ARmuFG0pJgxY7RSYwrjAmjQrxCx5RKLqkiM_T9B_TOtK53aVf4rriBAZKzRetT6vPb3hYJYopF50OxhAQ2ueGmCGBhSMXGb8beJOeHHLO9GyC-Ri8700d4c3-fol9fzn7OL8qrb-eX889XpZVciFK2xKhOYhAcloYLC0CAtNR2mLe4oW1dK2El7pqcKKmtsY1aqq6znRBMtZKdovd7303wf8ecol67aKHvzQB-jDr3QQlFCVfPo5gqzGrGxCEoxw2vWZPRd0_QlR_DkGueKFaLmkr1HMU5ZmKi3t5TY7uGpd4EtzZhpx_mlIFPe8AGH2OATluX7hqfgnF99tLTYujVVLfQ0_z1tBj6bjH0NhuoJwYPfxwg_biX_nM97A7W6cXZfHplfbnXu5hg-6g34VbLOvdJX389138I54vFNddz9h9Xudzj
CitedBy_id crossref_primary_10_1139_cjfas_2019_0103
crossref_primary_10_1007_s00027_022_00877_0
crossref_primary_10_1002_ece3_10725
crossref_primary_10_1007_s00227_021_03970_4
crossref_primary_10_1111_mec_13737
crossref_primary_10_1016_j_biocon_2016_01_007
crossref_primary_10_1111_mec_13613
crossref_primary_10_1371_journal_pone_0270217
crossref_primary_10_5194_aab_67_353_2024
crossref_primary_10_1002_ece3_1129
crossref_primary_10_1093_jmammal_gyy172
crossref_primary_10_7717_peerj_9167
crossref_primary_10_1111_bij_12175
crossref_primary_10_1093_jhered_est041
crossref_primary_10_1038_hdy_2017_31
crossref_primary_10_1073_pnas_1213189109
crossref_primary_10_1007_s10709_020_00108_0
crossref_primary_10_1007_s11295_021_01497_9
crossref_primary_10_1007_s10592_014_0644_6
crossref_primary_10_1007_s10340_024_01818_6
crossref_primary_10_1016_j_mambio_2016_06_007
crossref_primary_10_1515_mammalia_2018_0165
crossref_primary_10_1007_s10144_013_0425_y
crossref_primary_10_1186_s12862_016_0711_3
crossref_primary_10_1371_journal_pntd_0005546
crossref_primary_10_1371_journal_pone_0129278
crossref_primary_10_1007_s10592_014_0621_0
crossref_primary_10_3390_jof10120836
crossref_primary_10_3109_19401736_2015_1041115
crossref_primary_10_1007_s10592_015_0747_8
crossref_primary_10_1111_cobi_12491
crossref_primary_10_1002_ece3_1388
crossref_primary_10_7717_peerj_14365
crossref_primary_10_1016_j_biocon_2015_07_042
crossref_primary_10_1093_hr_uhad065
crossref_primary_10_1007_s00035_024_00322_y
crossref_primary_10_1186_s12863_019_0714_3
crossref_primary_10_1007_s10709_015_9880_z
crossref_primary_10_1007_s10592_021_01334_5
crossref_primary_10_1186_s12862_016_0810_1
crossref_primary_10_1111_mec_13948
crossref_primary_10_1371_journal_pone_0181898
crossref_primary_10_1038_s41437_022_00515_3
crossref_primary_10_1590_1678_4685_gmb_2017_0052
crossref_primary_10_1007_s10592_018_1117_0
crossref_primary_10_1007_s10592_017_1005_z
crossref_primary_10_1371_journal_pone_0236509
crossref_primary_10_1111_mec_12729
crossref_primary_10_1007_s10592_021_01421_7
crossref_primary_10_1111_brv_12477
crossref_primary_10_1111_eva_12266
crossref_primary_10_3996_022017_JFWM_010
crossref_primary_10_3996_JFWM_23_004
crossref_primary_10_1656_058_016_0308
crossref_primary_10_1656_058_016_0305
crossref_primary_10_3389_fevo_2019_00115
crossref_primary_10_1007_s10592_016_0869_7
crossref_primary_10_1371_journal_pone_0158911
crossref_primary_10_1093_biolinnean_bly200
crossref_primary_10_1038_s41598_021_89708_0
crossref_primary_10_1007_s11692_013_9263_2
crossref_primary_10_1007_s10709_018_0040_0
crossref_primary_10_1098_rsos_160736
crossref_primary_10_1186_s13071_016_1306_y
crossref_primary_10_1038_hdy_2015_54
crossref_primary_10_1016_j_biocon_2013_12_005
crossref_primary_10_3354_meps11924
crossref_primary_10_1002_ece3_4449
crossref_primary_10_1007_s10641_013_0210_y
crossref_primary_10_1016_j_biocon_2014_04_009
crossref_primary_10_1007_s10592_014_0665_1
crossref_primary_10_3390_f14122290
crossref_primary_10_1186_s12863_015_0242_8
crossref_primary_10_3390_app11146484
crossref_primary_10_1007_s00227_015_2642_8
crossref_primary_10_1002_ece3_6635
crossref_primary_10_1007_s10592_020_01318_x
crossref_primary_10_3989_scimar_04407_17A
crossref_primary_10_1007_s10592_020_01283_5
crossref_primary_10_1093_jhered_esu030
crossref_primary_10_1093_jhered_esv001
crossref_primary_10_1002_ece3_1193
crossref_primary_10_1016_j_biocon_2018_06_018
crossref_primary_10_1111_mec_12936
crossref_primary_10_1371_journal_pone_0234377
crossref_primary_10_1007_s10592_013_0542_3
crossref_primary_10_1111_jmp_12352
crossref_primary_10_1038_s41437_018_0135_5
crossref_primary_10_1007_s00035_019_00224_4
crossref_primary_10_1007_s10592_013_0455_1
crossref_primary_10_1007_s10592_021_01401_x
crossref_primary_10_1016_j_fishres_2018_01_006
crossref_primary_10_1007_s11295_013_0669_x
crossref_primary_10_1111_mec_13453
crossref_primary_10_3389_fmicb_2023_1226166
crossref_primary_10_1002_ajp_23662
crossref_primary_10_1371_journal_pone_0174371
crossref_primary_10_1111_jbi_13977
crossref_primary_10_1016_j_fishres_2015_11_003
crossref_primary_10_1111_jbi_13979
crossref_primary_10_1007_s10592_022_01477_z
crossref_primary_10_1016_j_foreco_2017_11_026
crossref_primary_10_1016_j_fgb_2021_103528
crossref_primary_10_1038_s41598_025_86994_w
crossref_primary_10_3354_esr01029
crossref_primary_10_1038_s41598_021_86406_9
crossref_primary_10_1111_mec_13440
crossref_primary_10_1111_mec_13682
crossref_primary_10_3390_ani12141838
crossref_primary_10_1007_s10592_016_0818_5
crossref_primary_10_1038_hdy_2014_45
crossref_primary_10_1007_s10592_017_0984_0
crossref_primary_10_1016_j_jembe_2014_08_020
crossref_primary_10_1002_ece3_2987
crossref_primary_10_1007_s10592_024_01667_x
crossref_primary_10_3390_genes10100779
crossref_primary_10_1007_s40003_018_0396_5
crossref_primary_10_1016_j_fishres_2022_106402
crossref_primary_10_1111_mec_13430
crossref_primary_10_1186_s12862_019_1451_y
crossref_primary_10_3390_d15020124
crossref_primary_10_1371_journal_pone_0121858
crossref_primary_10_1002_ece3_2994
crossref_primary_10_1007_s10592_024_01622_w
crossref_primary_10_1002_ece3_1305
crossref_primary_10_1007_s11295_014_0723_3
crossref_primary_10_1371_journal_pone_0133954
crossref_primary_10_1007_s11295_020_01463_x
crossref_primary_10_1086_696023
crossref_primary_10_1371_journal_pone_0104173
crossref_primary_10_1002_ajp_23453
crossref_primary_10_1002_ece3_8187
crossref_primary_10_1002_ece3_2880
crossref_primary_10_1111_acv_12166
crossref_primary_10_1007_s10592_017_0960_8
crossref_primary_10_1016_j_jnc_2013_07_004
crossref_primary_10_1111_mec_12456
crossref_primary_10_1186_s12870_024_05513_7
crossref_primary_10_1080_21564574_2017_1294115
crossref_primary_10_1139_cjz_2016_0325
crossref_primary_10_1002_ece3_4709
crossref_primary_10_1007_s10980_024_01887_z
crossref_primary_10_1016_j_jglr_2019_09_010
crossref_primary_10_1134_S1063074017020122
crossref_primary_10_1371_journal_pone_0057306
crossref_primary_10_1007_s10592_019_01170_8
crossref_primary_10_1016_j_ecoenv_2017_03_004
crossref_primary_10_1080_10495398_2024_2305550
crossref_primary_10_1111_jbi_12966
crossref_primary_10_1038_s41598_017_16430_1
crossref_primary_10_1002_ajb2_1830
crossref_primary_10_1186_s12862_024_02326_y
crossref_primary_10_1016_j_biocon_2017_02_001
crossref_primary_10_1038_s41467_018_06695_z
crossref_primary_10_1007_s10592_022_01451_9
crossref_primary_10_1071_MF14345
crossref_primary_10_1089_zeb_2015_1154
crossref_primary_10_1371_journal_pone_0059732
crossref_primary_10_1007_s10530_022_02844_0
crossref_primary_10_3832_ifor2446_010
crossref_primary_10_1038_s41437_022_00579_1
crossref_primary_10_1002_ece3_1330
crossref_primary_10_1071_BT16128
crossref_primary_10_2112_JCOASTRES_D_17_00025_1
crossref_primary_10_1371_journal_pone_0193495
crossref_primary_10_1007_s13364_015_0221_5
crossref_primary_10_24072_pcjournal_16
crossref_primary_10_1093_botlinnean_boy049
crossref_primary_10_1016_j_gecco_2022_e02301
crossref_primary_10_1007_s00606_017_1395_x
crossref_primary_10_1007_s10531_020_01934_6
crossref_primary_10_1007_s11295_018_1301_x
crossref_primary_10_1139_facets_2021_0191
crossref_primary_10_1007_s10592_015_0737_x
crossref_primary_10_1038_s41598_021_85201_w
crossref_primary_10_1007_s10592_022_01463_5
crossref_primary_10_3389_fgene_2020_576023
crossref_primary_10_1007_s10592_015_0703_7
crossref_primary_10_1002_jwmg_21495
crossref_primary_10_5586_asbp_195652
crossref_primary_10_1007_s11295_014_0725_1
crossref_primary_10_1038_hdy_2013_21
crossref_primary_10_1016_j_fishres_2024_107069
crossref_primary_10_1111_cobi_12699
crossref_primary_10_1007_s10592_022_01473_3
crossref_primary_10_1002_ecs2_2114
crossref_primary_10_1080_14772000_2021_1877847
crossref_primary_10_1111_ddi_12398
crossref_primary_10_3390_genes11091061
crossref_primary_10_1111_eva_12078
crossref_primary_10_1111_mec_14957
crossref_primary_10_1371_journal_pone_0268882
crossref_primary_10_1371_journal_pone_0186866
crossref_primary_10_3354_meps10537
crossref_primary_10_1016_j_foreco_2019_06_003
crossref_primary_10_3390_genes15121621
crossref_primary_10_1111_mec_13865
crossref_primary_10_1371_journal_pone_0150590
crossref_primary_10_1002_ece3_1119
crossref_primary_10_1371_journal_pone_0118522
crossref_primary_10_1007_s10750_022_04869_x
crossref_primary_10_1093_biolinnean_bly172
crossref_primary_10_1093_jhered_ess138
crossref_primary_10_1016_j_ympev_2013_12_011
crossref_primary_10_1007_s10530_015_1029_6
crossref_primary_10_1007_s10592_017_0999_6
crossref_primary_10_1371_journal_pone_0241452
crossref_primary_10_1007_s00338_015_1370_3
crossref_primary_10_1038_s41598_020_61560_8
crossref_primary_10_1080_09397140_2024_2378516
crossref_primary_10_1038_s41598_017_18503_7
crossref_primary_10_1111_eva_12622
crossref_primary_10_1111_mec_13176
crossref_primary_10_1002_jwmg_21555
crossref_primary_10_1098_rsos_140255
crossref_primary_10_1093_jmammal_gyv101
crossref_primary_10_1007_s10592_021_01360_3
crossref_primary_10_1038_s41467_023_40104_4
crossref_primary_10_1134_S001249662370059X
crossref_primary_10_1371_journal_pone_0311412
crossref_primary_10_1093_jhered_esab025
crossref_primary_10_1098_rspb_2014_1798
crossref_primary_10_1655_HERPMONOGRAPHS_D_19_00005
crossref_primary_10_1111_mec_14019
crossref_primary_10_1111_eva_12731
crossref_primary_10_1111_mec_14378
crossref_primary_10_1111_jeb_12464
crossref_primary_10_1111_jai_13993
crossref_primary_10_1007_s10592_023_01572_9
crossref_primary_10_1093_gbe_evad042
crossref_primary_10_1016_j_bse_2013_08_017
crossref_primary_10_1016_j_rsma_2023_103239
crossref_primary_10_1007_s10592_014_0597_9
crossref_primary_10_1111_mec_13034
crossref_primary_10_3390_f11010039
crossref_primary_10_1111_mms_12899
crossref_primary_10_1038_s41598_021_96681_1
crossref_primary_10_1002_eap_2416
crossref_primary_10_1007_s11295_017_1137_9
crossref_primary_10_1038_srep30772
crossref_primary_10_1371_journal_pone_0163738
crossref_primary_10_1080_17550874_2017_1400127
crossref_primary_10_7717_peerj_6794
crossref_primary_10_1007_s00468_024_02553_2
crossref_primary_10_2192_URSU_D_18_00011_1
crossref_primary_10_1007_s10592_024_01602_0
crossref_primary_10_1007_s10592_014_0672_2
crossref_primary_10_1371_journal_pone_0151507
crossref_primary_10_1007_s10592_015_0697_1
crossref_primary_10_1002_ece3_7493
crossref_primary_10_1002_ece3_5191
crossref_primary_10_1111_mec_13266
crossref_primary_10_1111_bij_12723
crossref_primary_10_1093_jhered_esy031
crossref_primary_10_1007_s11250_024_04035_6
crossref_primary_10_1007_s00227_017_3080_6
crossref_primary_10_1007_s10592_017_0964_4
crossref_primary_10_1098_rspb_2013_1506
crossref_primary_10_1016_j_zool_2018_07_004
crossref_primary_10_1038_s41598_024_54816_0
crossref_primary_10_1186_1471_2105_14_309
crossref_primary_10_1007_s10344_025_01907_6
crossref_primary_10_1643_CG_17_682
crossref_primary_10_1111_jse_12728
crossref_primary_10_1371_journal_pone_0172319
crossref_primary_10_1111_mms_12652
crossref_primary_10_1146_annurev_animal_022114_110920
crossref_primary_10_1007_s10344_023_01716_9
crossref_primary_10_1007_s00300_015_1653_8
crossref_primary_10_1007_s11295_015_0835_4
crossref_primary_10_1016_j_fishres_2017_10_005
crossref_primary_10_1002_ece3_6175
crossref_primary_10_1016_j_ocecoaman_2016_01_007
crossref_primary_10_3354_esr01297
crossref_primary_10_1093_jmammal_gyv146
crossref_primary_10_1007_s10592_017_0974_2
crossref_primary_10_1016_j_jembe_2017_01_009
crossref_primary_10_1016_j_biocon_2015_12_019
crossref_primary_10_1093_forestry_cpz063
crossref_primary_10_1111_csp2_513
crossref_primary_10_1186_s12898_017_0156_6
crossref_primary_10_1002_ece3_6064
crossref_primary_10_1111_mec_12394
crossref_primary_10_1002_ajb2_16019
crossref_primary_10_1007_s11692_015_9309_8
crossref_primary_10_1002_zoo_21577
crossref_primary_10_1371_journal_pone_0149664
crossref_primary_10_1098_rsos_160291
crossref_primary_10_1139_cjz_2013_0188
crossref_primary_10_1111_jfb_14709
crossref_primary_10_3390_genes11111332
crossref_primary_10_1098_rsos_150370
crossref_primary_10_1093_jmammal_gyaa138
crossref_primary_10_1644_13_MAMM_A_321
crossref_primary_10_1002_1438_390X_12134
crossref_primary_10_3354_meps12448
crossref_primary_10_1186_s13595_022_01157_5
crossref_primary_10_1111_mec_13117
crossref_primary_10_1111_mec_14445
crossref_primary_10_1650_CONDOR_16_141_1
crossref_primary_10_1016_j_gecco_2023_e02593
crossref_primary_10_1371_journal_pone_0073647
crossref_primary_10_1016_j_foreco_2020_118606
crossref_primary_10_1038_s41598_024_68756_2
crossref_primary_10_1111_jav_02689
crossref_primary_10_1111_mec_12498
crossref_primary_10_1002_jwmg_21882
crossref_primary_10_1371_journal_pone_0196276
crossref_primary_10_1111_mec_12258
crossref_primary_10_1186_s13071_019_3818_8
crossref_primary_10_1371_journal_pone_0145165
crossref_primary_10_1007_s10592_020_01256_8
crossref_primary_10_1016_j_egg_2022_100132
crossref_primary_10_1016_j_biocon_2018_02_032
crossref_primary_10_1111_ibi_13250
crossref_primary_10_1002_ece3_70011
crossref_primary_10_1007_s10592_023_01596_1
crossref_primary_10_3354_meps11581
crossref_primary_10_1371_journal_pone_0127870
crossref_primary_10_1017_S0959270919000315
crossref_primary_10_3390_d11070099
crossref_primary_10_1007_s10592_014_0578_z
crossref_primary_10_1111_eva_12226
crossref_primary_10_1016_j_biocon_2015_01_006
crossref_primary_10_1016_j_funbio_2016_05_010
crossref_primary_10_1007_s10592_013_0550_3
crossref_primary_10_1093_jmammal_gyx008
crossref_primary_10_1002_ajpa_23230
crossref_primary_10_3389_fcosc_2022_829332
crossref_primary_10_1007_s10764_013_9702_z
crossref_primary_10_1650_CONDOR_15_42_1
crossref_primary_10_3390_ani13030406
crossref_primary_10_1007_s10592_018_1075_6
crossref_primary_10_1007_s10592_016_0844_3
crossref_primary_10_1007_s10592_018_1099_y
crossref_primary_10_1371_journal_pone_0159545
crossref_primary_10_1002_ece3_386
crossref_primary_10_1007_s10530_017_1437_x
crossref_primary_10_1002_ece3_70879
crossref_primary_10_1002_ece3_6306
crossref_primary_10_1007_s10592_024_01628_4
crossref_primary_10_1111_boj_12109
crossref_primary_10_1038_s41598_020_79575_6
crossref_primary_10_1007_s10592_018_1086_3
crossref_primary_10_1111_eva_12569
crossref_primary_10_1007_s10592_015_0720_6
crossref_primary_10_1093_jhered_est096
crossref_primary_10_1093_jhered_esw122
crossref_primary_10_1371_journal_pone_0069070
crossref_primary_10_13156_arac_2013_16_1_1
crossref_primary_10_1038_s41437_019_0245_8
crossref_primary_10_7717_peerj_11139
crossref_primary_10_3390_insects11050290
crossref_primary_10_1093_aobpla_plv106
crossref_primary_10_1002_aqc_2912
crossref_primary_10_1111_ibi_13107
crossref_primary_10_3354_esr00815
crossref_primary_10_1007_s10592_019_01188_y
crossref_primary_10_1038_hdy_2013_122
crossref_primary_10_1111_jofo_12334
crossref_primary_10_3390_fishes8100510
crossref_primary_10_1002_jwmg_21848
crossref_primary_10_1073_pnas_1600865113
crossref_primary_10_1002_ece3_4143
crossref_primary_10_1002_ece3_6564
crossref_primary_10_1111_ecog_03321
crossref_primary_10_1186_1471_2148_14_64
crossref_primary_10_3389_fmars_2023_1050055
crossref_primary_10_1007_s10592_017_1008_9
crossref_primary_10_1371_journal_pone_0093387
crossref_primary_10_1093_jhered_esv048
crossref_primary_10_1093_jhered_esw014
crossref_primary_10_3390_jmse11030524
crossref_primary_10_1007_s10592_014_0664_2
crossref_primary_10_1111_1749_4877_12432
crossref_primary_10_1007_s10592_023_01553_y
crossref_primary_10_1007_s10592_015_0763_8
crossref_primary_10_1371_journal_pone_0176197
crossref_primary_10_1007_s10336_017_1433_z
crossref_primary_10_1007_s10592_016_0888_4
crossref_primary_10_1111_ibi_13400
crossref_primary_10_1111_mec_13092
crossref_primary_10_1007_s10764_015_9881_x
crossref_primary_10_1080_00028487_2017_1362472
crossref_primary_10_1371_journal_pone_0159864
crossref_primary_10_1016_j_biocon_2013_09_009
crossref_primary_10_1071_ZO18054
crossref_primary_10_1093_icesjms_fsu058
crossref_primary_10_1016_j_smallrumres_2016_07_021
crossref_primary_10_3732_ajb_1400043
crossref_primary_10_1111_acv_12616
crossref_primary_10_3106_041_037_0406
crossref_primary_10_3390_fishes8060321
crossref_primary_10_1007_s10592_016_0831_8
crossref_primary_10_1007_s10530_014_0770_6
crossref_primary_10_1007_s10592_016_0909_3
crossref_primary_10_1016_j_bse_2012_11_005
crossref_primary_10_1002_aqc_3939
crossref_primary_10_1093_jme_tjz136
crossref_primary_10_1007_s10750_023_05393_2
crossref_primary_10_1002_ecs2_1810
crossref_primary_10_1186_s13071_016_1811_z
crossref_primary_10_1371_journal_pone_0131067
crossref_primary_10_1111_eva_13733
crossref_primary_10_1038_s41437_020_0344_6
crossref_primary_10_1038_s41598_017_03166_1
crossref_primary_10_1111_mec_15134
crossref_primary_10_1371_journal_pone_0230735
crossref_primary_10_1371_journal_pone_0251879
crossref_primary_10_1002_ece3_5269
crossref_primary_10_1371_journal_pone_0181849
crossref_primary_10_31857_S268673892360019X
crossref_primary_10_1111_mec_14042
crossref_primary_10_3390_biology14020105
crossref_primary_10_1007_s11295_014_0740_2
crossref_primary_10_1093_molbev_msu212
crossref_primary_10_1007_s10592_018_1074_7
crossref_primary_10_1111_boj_12270
crossref_primary_10_1007_s10531_020_02022_5
crossref_primary_10_1371_journal_pone_0111207
crossref_primary_10_1080_21564574_2016_1234511
crossref_primary_10_1139_cjz_2018_0275
crossref_primary_10_1111_mec_13185
crossref_primary_10_1016_j_aquabot_2020_103217
crossref_primary_10_1080_21564574_2019_1646324
crossref_primary_10_1186_s13595_023_01207_6
crossref_primary_10_3389_fmars_2017_00393
crossref_primary_10_1007_s10592_017_1029_4
crossref_primary_10_1038_s41437_020_00379_5
crossref_primary_10_1111_mec_13060
crossref_primary_10_1016_j_biocon_2019_108242
crossref_primary_10_3732_ajb_1600259
Cites_doi 10.1111/j.1365-294X.2005.02683.x
10.1890/1051-0761(2006)016[1516:CDACAT]2.0.CO;2
10.1890/07-2026.1
10.1111/j.1365-294X.2008.03842.x
10.1016/S0379-0738(00)00480-1
10.1093/molbev/msr133
10.1038/nrg3012
10.1016/j.tree.2006.08.009
10.1098/rspb.2008.0473
10.1111/j.1558-5646.1975.tb00807.x
10.1111/j.1523-1739.1998.96388.x
10.1016/j.mrfmmm.2008.09.012
10.1111/j.1365-294X.2007.03454.x
10.1098/rsbl.2010.0643
10.1002/gepi.20378
10.1186/1471-2148-7-214
10.1016/j.biocon.2009.09.001
10.1007/s10592-005-9009-5
10.1093/genetics/153.4.2013
10.1111/j.1365-294X.2011.05248.x
10.1016/S0169-5347(97)01177-4
10.1046/j.1365-294x.1998.00355.x
10.1038/74238
10.1016/j.tree.2009.05.009
10.1093/genetics/144.4.2001
10.1093/molbev/msi103
10.1093/jhered/89.3.238
10.1093/jhered/90.4.502
10.1046/j.1420-9101.2000.00189.x
10.1101/gr.079509.108
10.1111/j.1469-1795.2007.00144.x
10.1111/j.1755-263X.2010.00139.x
10.1046/j.1365-2915.1999.00189.x
10.1534/genetics.110.121764
10.1093/bioinformatics/btn514
10.1007/s10592-005-9095-4
10.1093/molbev/msg005
10.1007/BF00364807
10.1111/j.1365-294X.2005.02586.x
10.5751/ES-00358-060115
10.1016/S0168-9525(00)02139-9
10.1111/j.1365-294X.2010.04690.x
10.1038/nrg2844
10.1111/j.1523-1739.2004.00134.x
10.1007/s10592-009-0013-z
10.1890/06-0869
10.2307/5542
10.1007/s10592-009-9946-5
10.1534/genetics.109.102509
10.1016/j.tree.2011.03.001
10.1046/j.1365-294x.1999.00683.x
10.1111/j.1365-294X.2008.03891.x
10.1016/S0169-5347(02)02489-8
10.1098/rspb.2001.1607
10.1186/1471-2105-11-401
10.1093/genetics/152.3.1057
10.1093/nar/30.9.1997
10.1101/gr.081398.108
10.1038/sj.hdy.6800103
10.1007/s10592-008-9624-z
10.1007/s10592-010-0049-0
10.1655/08-083.1
10.1111/j.1469-1795.1999.tb00071.x
10.1016/S1631-0691(03)00039-8
10.1093/genetics/143.3.1457
10.1093/oxfordjournals.molbev.a004177
10.1146/annurev-ecolsys-102209-144621
10.1007/978-0-387-21822-9
10.1016/j.tree.2007.08.017
10.1086/301869
10.1111/j.1365-294X.2007.03283.x
10.1642/0004-8038(2007)124[224:ARAEOP]2.0.CO;2
10.1038/sj.ejhg.5200257
10.1006/geno.1999.5824
10.1017/S0016672300034455
10.1101/gr.6.9.876
10.1073/pnas.91.8.3166
10.1038/nrg1348
10.1111/j.1365-294X.2009.04266.x
10.1046/j.1365-294x.2001.01190.x
10.1046/j.1523-1739.1996.10020661.x
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2012 Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2012 Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7ST
7U6
7S9
L.6
DOI 10.1111/j.1365-294X.2012.05635.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Sustainability Science Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Genetics Abstracts
Entomology Abstracts
AGRICOLA
MEDLINE
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 3418
ExternalDocumentID 2704232081
2703619681
22646281
10_1111_j_1365_294X_2012_05635_x
MEC5635
ark_67375_WNG_Z144MMW4_C
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7X8
7ST
7U6
7S9
L.6
ID FETCH-LOGICAL-c6455-6b1a8f60e54eda45cee1e1b2cf04b092b7785c60f946217cac98d8ffcf5538b63
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Jul 11 18:37:47 EDT 2025
Fri Jul 11 03:23:54 EDT 2025
Tue Aug 05 09:41:50 EDT 2025
Wed Aug 13 08:11:46 EDT 2025
Wed Aug 13 04:49:59 EDT 2025
Wed Feb 19 01:51:23 EST 2025
Tue Jul 01 01:21:57 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:55:31 EST 2025
Wed Oct 30 09:49:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6455-6b1a8f60e54eda45cee1e1b2cf04b092b7785c60f946217cac98d8ffcf5538b63
Notes istex:64745E7D4B63DB291F73F71661B16FBE47B04185
ArticleID:MEC5635
ark:/67375/WNG-Z144MMW4-C
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-294X.2012.05635.x
PMID 22646281
PQID 1023440358
PQPubID 31465
PageCount 16
ParticipantIDs proquest_miscellaneous_1368582148
proquest_miscellaneous_1028037335
proquest_miscellaneous_1024094739
proquest_journals_1023757268
proquest_journals_1023440358
pubmed_primary_22646281
crossref_citationtrail_10_1111_j_1365_294X_2012_05635_x
crossref_primary_10_1111_j_1365_294X_2012_05635_x
wiley_primary_10_1111_j_1365_294X_2012_05635_x_MEC5635
istex_primary_ark_67375_WNG_Z144MMW4_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Molecular Ecology, 16, 2450-2462.
Gusev A, Palamara PF, Aponte G et al. (2012) The architecture of long-range haplotypes shared within and across populations. Molecular Biology and Evolution, 29, 473-486.
Keller LF, Jeffery KJ, Arcese P et al. (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society B, 268, 1387-1394.
Hoekert WEJ, Neuféglise H, Schouten AD, Menken SBJ (2002) Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity, 89, 107-113.
Peery MZ, Becker BH, Beissinger SR (2006) Combining demographic and count-based approaches to identify source-sink dynamics of a threatened seabird. Ecological Applications, 16, 1516-1528.
Ortego J, Aparicio JM, Cordero PJ, Calabuig G (2008) Characteristics of loci and individuals are associated with mutation rates in lesser kestrels (Falco naumanni). Mutation Research/Fundamentals and Mechanisms of Mutagenesis, 648, 82-86.
Sajantila A, Lukka M, Syvänen A-C (1999) Experimentally observed germline mutations at human micro- and minisatellite loci. European Journal of Human Genetics, 7, 263-266.
Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12, 228-237.
Taylor B, Dizon AE (1997) The need to estimate power to link genetics and demography for conservation. Conservation Biology, 10, 661-664.
Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642.
Caughley G (1994) Directions in conservation biology. The Journal of Animal Ecology, 63, 215-244.
Reusch TBH, Wood TE (2007) Molecular ecology of global change. Molecular Ecology, 16, 3973-3992.
Davey JW, Hohenlohe PA, Etter PD et al. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499-510.
Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10, 305-318.
Jones AG, Rosenqvist G, Berglund A, Avise JC (1999) Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics, 152, 1057-1063.
Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conservation Genetics, 6, 551-562.
Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 17, 3428-3447.
Gusev A, Lowe JK, Stoffel M et al. (2009) Whole population, genome-wide mapping of hidden relatedness. Genome Research, 19, 318-326.
Di Rienzo A, Peterson AC, Garza JC, Valdes A-M, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. Proceedings of the National Academy of Sciences, 91, 3166-3170.
Peery MZ, Becker BH, Beissinger SR (2007) Age ratios as estimators of productivity: testing assumptions on a threatened seabird, the marbled murrelet (Brachyramphus marmoratus). Auk, 124, 224-240.
Shimoda N, Knapik EW, Ziniti J et al. (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics, 58, 219-232.
Spear S, Peterson C, Matocq M, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conservation Genetics, 7, 605-611.
Tajima F (1989b) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595.
Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA (2009) In situ population structure and ex situ representation of the endangered Amur tiger. Molecular Ecology, 18, 3173-3184.
Brinkmann B, Klintschar M, Neuhuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. American Journal of Human Genetics, 62, 1408-1415.
Girod C, Vitalis R, Lebois R, Freville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the MSvar methods. Genetics, 188, 165-179.
Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33.
Masters BS, Johnson LS, Johnson BGP, Brubaker JL, Sakaluk SK, Thompson CF (2011) Evidence for heterozygote instability in microsatellite loci in house wrens. Biology Letters, 7, 127-130.
Albrechtsen A, Korneliussen TS, Moltke I, Hansen TV, Nielsen FC, Nielsen R (2009) Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genetic Epidemiology, 33, 266-274.
Hoffman JI, Grant SM, Forcada J, Phillips CD (2011) Bayesian inference of a historical bottleneck in a heavily exploited marine mammal. Molecular Ecology, 20, 3989-4008.
Gardner MG, Bull CM, Cooper SJB, Duffield GA (2000) Microsatellite mutations in litters of the Australian lizard Egernia stokesii. Journal of Evolutionary Biology, 13, 551-560.
Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution, 19, 208-216.
Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conservation Genetics, 11, 139-147.
Beissinger SR, Peery MZ (2007) Reconstructing the historic demography of an endangered seabird. Ecology, 88, 296-305.
Crawford AM, Cuthbertson RP (1996) Mutations in sheep microsatellites. Genome Research, 6, 876-879.
Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Molecular Ecology, 19, 2609-2625.
NMFS (2010) Bi-National Recovery Plan for the Kemp's Ridley Sea Turtle (Lepidochelys kempii), 2nd revision. National Marine Fisheries Service, Silver Spring, Maryland.
Wegmann D, Leuenberger C, Excoffier L (2009) Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics, 182, 1207-1218.
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
Flather CH, Hayward GD, Beissinger SR, Stephens PA (2011) Minimum viable populations: is there a 'magic number' for conservation practicioners? Trends in Ecology & Evolution, 26, 307-316.
Kayser M, Sajantila A (2001) Mutations at Y-STR loci: implications for paternity testing and forensic analysis. Forensic Science International, 118, 116-121.
Steinberg EK, Lindner KR, Gallea J, Maxwell A, Meng J, Allendorf FW (2002) Rates and patterns of microsatellite mutations in pink salmon. Molecular Biology and Evolution, 19, 1198-1202.
Bulut Z, McCormick CR, Gopurenko D, Williams RN, Bos DH, DeWoody JA (2009) Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetics, 136, 501-504.
Cornuet JM, Santo F, Beaumont MA et al. (2008) Inferring population history with DIYABC: a user-friendly approach to Approximate Bayesian Computations. Bioinformatics, 24, 2713-2719.
Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics, 153, 2013-2029.
Beck NR, Double MC, Cockburn A (2003) Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees. Molecular Biology and Evolution, 20, 54-61.
Ennen JR, Kreiser BR, Qualls CP (2010) Low genetic diversity in several gopher tortoise (Gopherus polyphemus) populations in the DeSota National Forest, Mississippi. Herpetologica, 66, 31-38.
Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90, 502-503.
Funk WC, Forsman ED, Johnson M, Mullins TD, Haig SM (2010) Evidence for recent population bottlenecks in northern spotted owls (Strix occidentalis caurina). Conservation Genetics, 11, 1013-1021.
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196.
Pool JE, Hellmann I, Jensen JD, Nielsen R (2010) Population genetic inference from genomic sequence variation. Genome Research, 20, 291-300.
Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697-709.
Aguilar A, Jessup DA, Estes J, Garza JC (2008) The distribution of nuclear genetic variation and historical demography of sea otters. Animal Conservation, 11, 35-45.
Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192.
Marshall J, Kingsbury B, Minchella D (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conservation Genetics, 10, 465-476.
Tajima F (1989a) The effect of change in population size on DNA polymorphism. Genetics, 123, 597-601.
Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conservation Genetics, 11, 139-147.
Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics, 11, 401.
Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends in Genetics, 16, 551-558.
Green RE (2008) Demographic mechanism of a historical bird population collapse reconstructed using museum specimens.
2010; 11
2002; 17
2002; 19
2010; 19
2002; 56
2010; 143
2004; 5
1996; 144
2011; 12
1996; 143
1994; 63
2005; 22
1998; 89
2001; 268
2010; 66
2010; 20
2000; 16
2003; 326
2009; 10
1990
1997; 10
2000; 13
2002; 89
1995; 66
1999; 58
2011; 20
2008; 24
2007; 7
2012; 29
2011; 26
1980
2010; 3
2009; 19
2008; 275
2007; 22
1999; 90
1998; 12
2003; 164
1996; 6
2009; 18
2001; 10
1998; 13
2007; 124
2009; 24
2002; 30
2010
2009; 182
2000; 24
2006; 16
1989b; 123
2008; 17
2008; 648
2006; 7
1989a; 123
2008; 11
1999; 2
2002
1998; 62
1999; 7
2010; 41
2009; 136
1995; 6
2011; 7
2007; 16
2009; 33
1988; 3
2004; 18
2004; 19
1975; 29
1999; 153
2008; 89
2010b
1999; 152
2010a
2005; 6
1998; 7
1994; 91
2001; 118
2007; 88
2003; 20
2011; 188
2005; 14
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_92_1
Bulut Z (e_1_2_9_15_1) 2009; 136
e_1_2_9_71_1
USFWS (e_1_2_9_87_1) 2010
Williams BK (e_1_2_9_90_1) 2002
Soulé ME (e_1_2_9_75_1) 1980
e_1_2_9_14_1
e_1_2_9_39_1
O’Brien SJ (e_1_2_9_60_1) 1988; 3
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_2_1
NMFS (e_1_2_9_59_1) 2010
Hudson RR (e_1_2_9_46_1) 1990
USFWS (e_1_2_9_86_1) 2010
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Storz JF (e_1_2_9_79_1) 2002; 56
e_1_2_9_91_1
e_1_2_9_70_1
Franklin IR (e_1_2_9_34_1) 1980
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – reference: Bulut Z, McCormick CR, Gopurenko D, Williams RN, Bos DH, DeWoody JA (2009) Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetics, 136, 501-504.
– reference: Fitzsimmons NN (1998) Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology, 7, 575-584.
– reference: Pool JE, Hellmann I, Jensen JD, Nielsen R (2010) Population genetic inference from genomic sequence variation. Genome Research, 20, 291-300.
– reference: Hoekert WEJ, Neuféglise H, Schouten AD, Menken SBJ (2002) Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity, 89, 107-113.
– reference: Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics, 11, 401.
– reference: Keller LF, Jeffery KJ, Arcese P et al. (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society B, 268, 1387-1394.
– reference: Davey JW, Hohenlohe PA, Etter PD et al. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499-510.
– reference: Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conservation Genetics, 11, 139-147.
– reference: Caughley G (1994) Directions in conservation biology. The Journal of Animal Ecology, 63, 215-244.
– reference: Green RE (2008) Demographic mechanism of a historical bird population collapse reconstructed using museum specimens. Proceedings of the Royal Society B, 275, 2381-2387.
– reference: Gusev A, Palamara PF, Aponte G et al. (2012) The architecture of long-range haplotypes shared within and across populations. Molecular Biology and Evolution, 29, 473-486.
– reference: Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12, 228-237.
– reference: Ramakrishnan U, Hadly EA, Mountain JL (2005) Detecting past population bottlenecks using temporal genetic data. Molecular Ecology, 14, 2915-2922.
– reference: Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microstatellite DNA using a heirarchical Bayesian model. Evolution, 56, 154-166.
– reference: Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA (2009) In situ population structure and ex situ representation of the endangered Amur tiger. Molecular Ecology, 18, 3173-3184.
– reference: Traill LW, Brook BW, Frankham RR, Bradshaw CJA (2010) Pragmatic population viability targets in a rapidly changing world. Biological Conservation, 143, 28-34.
– reference: Beck NR, Double MC, Cockburn A (2003) Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees. Molecular Biology and Evolution, 20, 54-61.
– reference: Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001-2014.
– reference: Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 5, 435-445.
– reference: Ennen JR, Kreiser BR, Qualls CP (2010) Low genetic diversity in several gopher tortoise (Gopherus polyphemus) populations in the DeSota National Forest, Mississippi. Herpetologica, 66, 31-38.
– reference: Girod C, Vitalis R, Lebois R, Freville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the MSvar methods. Genetics, 188, 165-179.
– reference: Beaumont MA (2003) Estimation of population growth or decline in genetically monitored populations. Genetics, 164, 1139-1160.
– reference: NMFS (2010) Bi-National Recovery Plan for the Kemp's Ridley Sea Turtle (Lepidochelys kempii), 2nd revision. National Marine Fisheries Service, Silver Spring, Maryland.
– reference: Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends in Genetics, 16, 551-558.
– reference: Masters BS, Johnson LS, Johnson BGP, Brubaker JL, Sakaluk SK, Thompson CF (2011) Evidence for heterozygote instability in microsatellite loci in house wrens. Biology Letters, 7, 127-130.
– reference: Reusch TBH, Wood TE (2007) Molecular ecology of global change. Molecular Ecology, 16, 3973-3992.
– reference: Flather CH, Hayward GD, Beissinger SR, Stephens PA (2011) Minimum viable populations: is there a 'magic number' for conservation practicioners? Trends in Ecology & Evolution, 26, 307-316.
– reference: Bonebrake TC, Christensen J, Boggs CL, Ehrlich PR (2010) Population decline assessment, historical baselines, and conservation. Conservation Letters, 3, 371-378.
– reference: Marshall J, Kingsbury B, Minchella D (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conservation Genetics, 10, 465-476.
– reference: Shaffer HB, Fisher RN, Davidson C (1998) The role of natural history collections in documenting species declines. Trends in Ecology & Evolution, 13, 27-30.
– reference: Tajima F (1996) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics, 143, 1457-1465.
– reference: Frankham R (1995) Effective population-size adult-population size ratios in wildlife-a review. Genetical Research, 66, 95-107.
– reference: Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33.
– reference: Cornuet JM, Santo F, Beaumont MA et al. (2008) Inferring population history with DIYABC: a user-friendly approach to Approximate Bayesian Computations. Bioinformatics, 24, 2713-2719.
– reference: Beaumont MA (2010) Approximate Bayesian Computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41, 379-406.
– reference: Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
– reference: Peery MZ, Becker BH, Beissinger SR (2007) Age ratios as estimators of productivity: testing assumptions on a threatened seabird, the marbled murrelet (Brachyramphus marmoratus). Auk, 124, 224-240.
– reference: Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697-709.
– reference: Di Rienzo A, Peterson AC, Garza JC, Valdes A-M, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. Proceedings of the National Academy of Sciences, 91, 3166-3170.
– reference: Gusev A, Lowe JK, Stoffel M et al. (2009) Whole population, genome-wide mapping of hidden relatedness. Genome Research, 19, 318-326.
– reference: Spear S, Peterson C, Matocq M, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conservation Genetics, 7, 605-611.
– reference: Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642.
– reference: Peery MZ, Beissinger SR, Newman SH, Burkett E, Williams TD (2004) Applying the declining population paradigm: diagnosing causes of poor reproduction in the marbled murrelet. Conservation Biology, 18, 1088-1098.
– reference: Taylor B, Dizon AE (1997) The need to estimate power to link genetics and demography for conservation. Conservation Biology, 10, 661-664.
– reference: Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90, 502-503.
– reference: Brinkmann B, Klintschar M, Neuhuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. American Journal of Human Genetics, 62, 1408-1415.
– reference: Tingley MW, Beissinger SR (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology & Evolution, 24, 625-633.
– reference: Ellegren H (1995) Mutation rates at porcine microsatellite loci. Mammalian Genome, 6, 376-377.
– reference: Aguilar A, Jessup DA, Estes J, Garza JC (2008) The distribution of nuclear genetic variation and historical demography of sea otters. Animal Conservation, 11, 35-45.
– reference: USFWS (2010a) Draft Revised Recovery Plan for the Northern Spotted Owl. Strix occidentalis caurina. U.S. Fish and Wildlife Service, Portland, Oregon.
– reference: Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution, 19, 208-216.
– reference: O'Brien SJ, Evermann JF (1988) Interactive influence of infectious disease and genetic diversity in natural poputations. Trends in Ecology & Evolution, 3, 245-259.
– reference: Peery MZ, Becker BH, Beissinger SR (2006) Combining demographic and count-based approaches to identify source-sink dynamics of a threatened seabird. Ecological Applications, 16, 1516-1528.
– reference: Steinberg EK, Lindner KR, Gallea J, Maxwell A, Meng J, Allendorf FW (2002) Rates and patterns of microsatellite mutations in pink salmon. Molecular Biology and Evolution, 19, 1198-1202.
– reference: Tajima F (1989a) The effect of change in population size on DNA polymorphism. Genetics, 123, 597-601.
– reference: Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Molecular Ecology, 19, 2609-2625.
– reference: Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196.
– reference: Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192.
– reference: Funk WC, Forsman ED, Johnson M, Mullins TD, Haig SM (2010) Evidence for recent population bottlenecks in northern spotted owls (Strix occidentalis caurina). Conservation Genetics, 11, 1013-1021.
– reference: Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 17, 3428-3447.
– reference: Beissinger SR, Peery MZ (2007) Reconstructing the historic demography of an endangered seabird. Ecology, 88, 296-305.
– reference: Wegmann D, Leuenberger C, Excoffier L (2009) Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics, 182, 1207-1218.
– reference: Shimoda N, Knapik EW, Ziniti J et al. (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics, 58, 219-232.
– reference: Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Molecular Ecology, 16, 2450-2462.
– reference: Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
– reference: Kayser M, Sajantila A (2001) Mutations at Y-STR loci: implications for paternity testing and forensic analysis. Forensic Science International, 118, 116-121.
– reference: Hoffman JI, Grant SM, Forcada J, Phillips CD (2011) Bayesian inference of a historical bottleneck in a heavily exploited marine mammal. Molecular Ecology, 20, 3989-4008.
– reference: Luikart G, Allendorf FW, Cournuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 89, 238-247.
– reference: Williams BK, Nichols JD, Conroy MJ (2002) Analysis and Management of Animal Populations. Academic Press, San Diego, California.
– reference: Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17, 230-241.
– reference: Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conservation Genetics, 11, 139-147.
– reference: Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10, 305-318.
– reference: Frankham R, Lees K, Montgomery ME, England PE, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Animal Conservation, 2, 255-260.
– reference: Ortego J, Aparicio JM, Cordero PJ, Calabuig G (2008) Characteristics of loci and individuals are associated with mutation rates in lesser kestrels (Falco naumanni). Mutation Research/Fundamentals and Mechanisms of Mutagenesis, 648, 82-86.
– reference: Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics, 153, 2013-2029.
– reference: Brohede J, Primmer CR, Møller A, Ellegren H (2002) Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Research, 30, 1997-2003.
– reference: Gardner MG, Bull CM, Cooper SJB, Duffield GA (2000) Microsatellite mutations in litters of the Australian lizard Egernia stokesii. Journal of Evolutionary Biology, 13, 551-560.
– reference: Guinand B, Scribner KT (2003) Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations. Comptes Rendus Biologies, 326, S61-S67.
– reference: Jones AG, Rosenqvist G, Berglund A, Avise JC (1999) Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics, 152, 1057-1063.
– reference: Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conservation Genetics, 6, 551-562.
– reference: Xu X, Peng M, Fang Z, Xu X (2000) The direction of microsatellite mutations is dependent upon allele length. Nature Genetics, 24, 396-399.
– reference: USFWS (2010b) Mexican Wolf Conservation Assessment.US Fish and Wildlife Service Region 2, Albuquerque, New Mexico.
– reference: Peery MZ, Beissinger SR, House RF et al. (2008) Characterizing source-sink dynamics with genetic parentage assignments. Ecology, 89, 2746-2759.
– reference: Tajima F (1989b) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595.
– reference: Albrechtsen A, Korneliussen TS, Moltke I, Hansen TV, Nielsen FC, Nielsen R (2009) Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genetic Epidemiology, 33, 266-274.
– reference: Crawford AM, Cuthbertson RP (1996) Mutations in sheep microsatellites. Genome Research, 6, 876-879.
– reference: Sajantila A, Lukka M, Syvänen A-C (1999) Experimentally observed germline mutations at human micro- and minisatellite loci. European Journal of Human Genetics, 7, 263-266.
– volume: 63
  start-page: 215
  year: 1994
  end-page: 244
  article-title: Directions in conservation biology
  publication-title: The Journal of Animal Ecology
– volume: 3
  start-page: 371
  year: 2010
  end-page: 378
  article-title: Population decline assessment, historical baselines, and conservation
  publication-title: Conservation Letters
– volume: 19
  start-page: 318
  year: 2009
  end-page: 326
  article-title: Whole population, genome‐wide mapping of hidden relatedness
  publication-title: Genome Research
– volume: 89
  start-page: 238
  year: 1998
  end-page: 247
  article-title: Distortion of allele frequency distributions provides a test for recent population bottlenecks
  publication-title: Journal of Heredity
– volume: 182
  start-page: 1207
  year: 2009
  end-page: 1218
  article-title: Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood
  publication-title: Genetics
– volume: 7
  start-page: 214
  year: 2007
  article-title: BEAST: Bayesian evolutionary analysis by sampling trees
  publication-title: BMC Evolutionary Biology
– volume: 7
  start-page: 605
  year: 2006
  end-page: 611
  article-title: Molecular evidence for historical and recent population size reductions of tiger salamanders ( ) in Yellowstone National Park
  publication-title: Conservation Genetics
– volume: 17
  start-page: 4186
  year: 2008
  end-page: 4196
  article-title: Ancient DNA applications for wildlife conservation
  publication-title: Molecular Ecology
– volume: 6
  start-page: 551
  year: 2005
  end-page: 562
  article-title: Comparison of methods for detecting bottlenecks from microsatellite loci
  publication-title: Conservation Genetics
– volume: 124
  start-page: 224
  year: 2007
  end-page: 240
  article-title: Age ratios as estimators of productivity: testing assumptions on a threatened seabird, the marbled murrelet ( )
  publication-title: Auk
– volume: 11
  start-page: 139
  year: 2010
  end-page: 147
  article-title: Founder effect and bottleneck signatures in an introduced, insular population of elk
  publication-title: Conservation Genetics
– year: 2010a
– volume: 56
  start-page: 154
  year: 2002
  end-page: 166
  article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microstatellite DNA using a heirarchical Bayesian model
  publication-title: Evolution
– volume: 19
  start-page: 208
  year: 2004
  end-page: 216
  article-title: SNPs in ecology, evolution and conservation
  publication-title: Trends in Ecology & Evolution
– volume: 22
  start-page: 634
  year: 2007
  end-page: 642
  article-title: Back to the future: museum specimens in population genetics
  publication-title: Trends in Ecology & Evolution
– volume: 152
  start-page: 1057
  year: 1999
  end-page: 1063
  article-title: Clustered microsatellite mutations in the pipefish
  publication-title: Genetics
– volume: 33
  start-page: 266
  year: 2009
  end-page: 274
  article-title: Relatedness mapping and tracts of relatedness for genome‐wide data in the presence of linkage disequilibrium
  publication-title: Genetic Epidemiology
– volume: 22
  start-page: 25
  year: 2007
  end-page: 33
  article-title: Genetic monitoring as a promising tool for conservation and management
  publication-title: Trends in Ecology & Evolution
– volume: 143
  start-page: 28
  year: 2010
  end-page: 34
  article-title: Pragmatic population viability targets in a rapidly changing world
  publication-title: Biological Conservation
– volume: 144
  start-page: 2001
  year: 1996
  end-page: 2014
  article-title: Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data
  publication-title: Genetics
– volume: 17
  start-page: 3428
  year: 2008
  end-page: 3447
  article-title: Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?
  publication-title: Molecular Ecology
– volume: 6
  start-page: 376
  year: 1995
  end-page: 377
  article-title: Mutation rates at porcine microsatellite loci
  publication-title: Mammalian Genome
– volume: 13
  start-page: 27
  year: 1998
  end-page: 30
  article-title: The role of natural history collections in documenting species declines
  publication-title: Trends in Ecology & Evolution
– volume: 19
  start-page: 2609
  year: 2010
  end-page: 2625
  article-title: ABC as a flexible framework to estimate demography over space and time: some cons, many pros
  publication-title: Molecular Ecology
– volume: 648
  start-page: 82
  year: 2008
  end-page: 86
  article-title: Characteristics of loci and individuals are associated with mutation rates in lesser kestrels ( )
  publication-title: Mutation Research/Fundamentals and Mechanisms of Mutagenesis
– volume: 66
  start-page: 95
  year: 1995
  end-page: 107
  article-title: Effective population‐size adult‐population size ratios in wildlife‐a review
  publication-title: Genetical Research
– volume: 16
  start-page: 3973
  year: 2007
  end-page: 3992
  article-title: Molecular ecology of global change
  publication-title: Molecular Ecology
– volume: 29
  start-page: 473
  year: 2012
  end-page: 486
  article-title: The architecture of long‐range haplotypes shared within and across populations
  publication-title: Molecular Biology and Evolution
– volume: 14
  start-page: 2915
  year: 2005
  end-page: 2922
  article-title: Detecting past population bottlenecks using temporal genetic data
  publication-title: Molecular Ecology
– volume: 19
  start-page: 1198
  year: 2002
  end-page: 1202
  article-title: Rates and patterns of microsatellite mutations in pink salmon
  publication-title: Molecular Biology and Evolution
– volume: 12
  start-page: 228
  year: 1998
  end-page: 237
  article-title: Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data
  publication-title: Conservation Biology
– volume: 24
  start-page: 625
  year: 2009
  end-page: 633
  article-title: Detecting range shifts from historical species occurrences: new perspectives on old data
  publication-title: Trends in Ecology & Evolution
– volume: 62
  start-page: 1408
  year: 1998
  end-page: 1415
  article-title: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat
  publication-title: American Journal of Human Genetics
– volume: 22
  start-page: 1185
  year: 2005
  end-page: 1192
  article-title: Bayesian coalescent inference of past population dynamics from molecular sequences
  publication-title: Molecular Biology and Evolution
– volume: 91
  start-page: 3166
  year: 1994
  end-page: 3170
  article-title: Mutational processes of simple sequence repeat loci in human populations
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  start-page: 435
  year: 2004
  end-page: 445
  article-title: Microsatellites: simple sequences with complex evolution
  publication-title: Nature Reviews Genetics
– volume: 11
  start-page: 139
  year: 2010
  end-page: 147
  article-title: Conservation genetics of population bottlenecks: the role of chance, selection, and history
  publication-title: Conservation Genetics
– volume: 136
  start-page: 501
  year: 2009
  end-page: 504
  article-title: Microsatellite mutation rates in the eastern tiger salamander ( ) differ 10‐fold across loci
  publication-title: Genetics
– volume: 20
  start-page: 54
  year: 2003
  end-page: 61
  article-title: Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees
  publication-title: Molecular Biology and Evolution
– volume: 11
  start-page: 1013
  year: 2010
  end-page: 1021
  article-title: Evidence for recent population bottlenecks in northern spotted owls ( )
  publication-title: Conservation Genetics
– volume: 10
  start-page: 305
  year: 2001
  end-page: 318
  article-title: Detection of reduction in population size using data from microsatellite loci
  publication-title: Molecular Ecology
– volume: 20
  start-page: 3989
  year: 2011
  end-page: 4008
  article-title: Bayesian inference of a historical bottleneck in a heavily exploited marine mammal
  publication-title: Molecular Ecology
– volume: 123
  start-page: 585
  year: 1989b
  end-page: 595
  article-title: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism
  publication-title: Genetics
– volume: 11
  start-page: 697
  year: 2010
  end-page: 709
  article-title: Genomics and the future of conservation genetics
  publication-title: Nature Reviews Genetics
– volume: 275
  start-page: 2381
  year: 2008
  end-page: 2387
  article-title: Demographic mechanism of a historical bird population collapse reconstructed using museum specimens
  publication-title: Proceedings of the Royal Society B
– volume: 10
  start-page: 465
  year: 2009
  end-page: 476
  article-title: Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake
  publication-title: Conservation Genetics
– volume: 29
  start-page: 1
  year: 1975
  end-page: 10
  article-title: The bottleneck effect and genetic variability in populations
  publication-title: Evolution
– start-page: 151
  year: 1980
  end-page: 169
– volume: 11
  start-page: 35
  year: 2008
  end-page: 45
  article-title: The distribution of nuclear genetic variation and historical demography of sea otters
  publication-title: Animal Conservation
– volume: 12
  start-page: 499
  year: 2011
  end-page: 510
  article-title: Genome‐wide genetic marker discovery and genotyping using next‐generation sequencing
  publication-title: Nature Reviews Genetics
– volume: 118
  start-page: 116
  year: 2001
  end-page: 121
  article-title: Mutations at Y‐STR loci: implications for paternity testing and forensic analysis
  publication-title: Forensic Science International
– volume: 17
  start-page: 230
  year: 2002
  end-page: 241
  article-title: Inbreeding effects in wild populations
  publication-title: Trends in Ecology & Evolution
– volume: 24
  start-page: 2713
  year: 2008
  end-page: 2719
  article-title: Inferring population history with DIYABC: a user‐friendly approach to Approximate Bayesian Computations
  publication-title: Bioinformatics
– volume: 13
  start-page: 551
  year: 2000
  end-page: 560
  article-title: Microsatellite mutations in litters of the Australian lizard
  publication-title: Journal of Evolutionary Biology
– volume: 123
  start-page: 597
  year: 1989a
  end-page: 601
  article-title: The effect of change in population size on DNA polymorphism
  publication-title: Genetics
– volume: 18
  start-page: 1088
  year: 2004
  end-page: 1098
  article-title: Applying the declining population paradigm: diagnosing causes of poor reproduction in the marbled murrelet
  publication-title: Conservation Biology
– volume: 10
  start-page: 661
  year: 1997
  end-page: 664
  article-title: The need to estimate power to link genetics and demography for conservation
  publication-title: Conservation Biology
– volume: 16
  start-page: 2450
  year: 2007
  end-page: 2462
  article-title: Recent demographic bottlenecks are not accompanied by a genetic signature in banner‐tailed kangaroo rats ( )
  publication-title: Molecular Ecology
– volume: 88
  start-page: 296
  year: 2007
  end-page: 305
  article-title: Reconstructing the historic demography of an endangered seabird
  publication-title: Ecology
– volume: 326
  start-page: S61
  year: 2003
  end-page: S67
  article-title: Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations
  publication-title: Comptes Rendus Biologies
– year: 2010b
– volume: 6
  start-page: 876
  year: 1996
  end-page: 879
  article-title: Mutations in sheep microsatellites
  publication-title: Genome Research
– volume: 66
  start-page: 31
  year: 2010
  end-page: 38
  article-title: Low genetic diversity in several gopher tortoise ( ) populations in the DeSota National Forest, Mississippi
  publication-title: Herpetologica
– volume: 26
  start-page: 307
  year: 2011
  end-page: 316
  article-title: Minimum viable populations: is there a ‘magic number’ for conservation practicioners?
  publication-title: Trends in Ecology & Evolution
– volume: 164
  start-page: 1139
  year: 2003
  end-page: 1160
  article-title: Estimation of population growth or decline in genetically monitored populations
  publication-title: Genetics
– volume: 16
  start-page: 551
  year: 2000
  end-page: 558
  article-title: Microsatellite mutations in the germline: implications for evolutionary inference
  publication-title: Trends in Genetics
– volume: 188
  start-page: 165
  year: 2011
  end-page: 179
  article-title: Inferring population decline and expansion from microsatellite data: a simulation‐based evaluation of the MSvar methods
  publication-title: Genetics
– volume: 18
  start-page: 3173
  year: 2009
  end-page: 3184
  article-title: population structure and representation of the endangered Amur tiger
  publication-title: Molecular Ecology
– volume: 89
  start-page: 2746
  year: 2008
  end-page: 2759
  article-title: Characterizing source‐sink dynamics with genetic parentage assignments
  publication-title: Ecology
– volume: 2
  start-page: 255
  year: 1999
  end-page: 260
  article-title: Do population size bottlenecks reduce evolutionary potential?
  publication-title: Animal Conservation
– year: 2010
– volume: 90
  start-page: 502
  year: 1999
  end-page: 503
  article-title: BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data
  publication-title: Journal of Heredity
– volume: 7
  start-page: 263
  year: 1999
  end-page: 266
  article-title: Experimentally observed germline mutations at human micro‐ and minisatellite loci
  publication-title: European Journal of Human Genetics
– volume: 41
  start-page: 379
  year: 2010
  end-page: 406
  article-title: Approximate Bayesian Computation in evolution and ecology
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– start-page: 135
  year: 1980
  end-page: 148
– volume: 143
  start-page: 1457
  year: 1996
  end-page: 1465
  article-title: The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites
  publication-title: Genetics
– volume: 16
  start-page: 1516
  year: 2006
  end-page: 1528
  article-title: Combining demographic and count‐based approaches to identify source‐sink dynamics of a threatened seabird
  publication-title: Ecological Applications
– volume: 3
  start-page: 245
  year: 1988
  end-page: 259
  article-title: Interactive influence of infectious disease and genetic diversity in natural poputations
  publication-title: Trends in Ecology & Evolution
– volume: 58
  start-page: 219
  year: 1999
  end-page: 232
  article-title: Zebrafish genetic map with 2000 microsatellite markers
  publication-title: Genomics
– volume: 20
  start-page: 291
  year: 2010
  end-page: 300
  article-title: Population genetic inference from genomic sequence variation
  publication-title: Genome Research
– volume: 24
  start-page: 396
  year: 2000
  end-page: 399
  article-title: The direction of microsatellite mutations is dependent upon allele length
  publication-title: Nature Genetics
– volume: 7
  start-page: 127
  year: 2011
  end-page: 130
  article-title: Evidence for heterozygote instability in microsatellite loci in house wrens
  publication-title: Biology Letters
– year: 2002
– volume: 153
  start-page: 2013
  year: 1999
  end-page: 2029
  article-title: Detecting population expansion and decline using microsatellites
  publication-title: Genetics
– volume: 7
  start-page: 575
  year: 1998
  end-page: 584
  article-title: Single paternity of clutches and sperm storage in the promiscuous green turtle ( )
  publication-title: Molecular Ecology
– start-page: 1
  year: 1990
  end-page: 42
– volume: 89
  start-page: 107
  year: 2002
  end-page: 113
  article-title: Multiple paternity and female‐biased mutation at a microsatellite locus in the olive ridley sea turtle ( )
  publication-title: Heredity
– volume: 30
  start-page: 1997
  year: 2002
  end-page: 2003
  article-title: Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci
  publication-title: Nucleic Acids Research
– volume: 268
  start-page: 1387
  year: 2001
  end-page: 1394
  article-title: Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers
  publication-title: Proceedings of the Royal Society B
– volume: 11
  start-page: 401
  year: 2010
  article-title: Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0)
  publication-title: BMC Bioinformatics
– ident: e_1_2_9_81_1
  doi: 10.1111/j.1365-294X.2005.02683.x
– volume-title: Draft Revised Recovery Plan for the Northern Spotted Owl
  year: 2010
  ident: e_1_2_9_86_1
– volume: 136
  start-page: 501
  year: 2009
  ident: e_1_2_9_15_1
  article-title: Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10‐fold across loci
  publication-title: Genetics
– ident: e_1_2_9_64_1
  doi: 10.1890/1051-0761(2006)016[1516:CDACAT]2.0.CO;2
– ident: e_1_2_9_66_1
  doi: 10.1890/07-2026.1
– ident: e_1_2_9_62_1
  doi: 10.1111/j.1365-294X.2008.03842.x
– ident: e_1_2_9_49_1
  doi: 10.1016/S0379-0738(00)00480-1
– ident: e_1_2_9_42_1
  doi: 10.1093/molbev/msr133
– ident: e_1_2_9_22_1
  doi: 10.1038/nrg3012
– ident: e_1_2_9_72_1
  doi: 10.1016/j.tree.2006.08.009
– ident: e_1_2_9_39_1
  doi: 10.1098/rspb.2008.0473
– ident: e_1_2_9_58_1
  doi: 10.1111/j.1558-5646.1975.tb00807.x
– ident: e_1_2_9_53_1
  doi: 10.1111/j.1523-1739.1998.96388.x
– ident: e_1_2_9_61_1
  doi: 10.1016/j.mrfmmm.2008.09.012
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1365-294X.2007.03454.x
– ident: e_1_2_9_56_1
  doi: 10.1098/rsbl.2010.0643
– ident: e_1_2_9_3_1
  doi: 10.1002/gepi.20378
– ident: e_1_2_9_24_1
  doi: 10.1186/1471-2148-7-214
– volume-title: Bi‐National Recovery Plan for the Kemp’s Ridley Sea Turtle (Lepidochelys kempii)
  year: 2010
  ident: e_1_2_9_59_1
– ident: e_1_2_9_85_1
  doi: 10.1016/j.biocon.2009.09.001
– ident: e_1_2_9_91_1
  doi: 10.1007/s10592-005-9009-5
– ident: e_1_2_9_5_1
  doi: 10.1093/genetics/153.4.2013
– ident: e_1_2_9_45_1
  doi: 10.1111/j.1365-294X.2011.05248.x
– ident: e_1_2_9_73_1
  doi: 10.1016/S0169-5347(97)01177-4
– ident: e_1_2_9_30_1
  doi: 10.1046/j.1365-294x.1998.00355.x
– ident: e_1_2_9_92_1
  doi: 10.1038/74238
– ident: e_1_2_9_84_1
  doi: 10.1016/j.tree.2009.05.009
– ident: e_1_2_9_18_1
  doi: 10.1093/genetics/144.4.2001
– ident: e_1_2_9_25_1
  doi: 10.1093/molbev/msi103
– ident: e_1_2_9_54_1
  doi: 10.1093/jhered/89.3.238
– ident: e_1_2_9_67_1
  doi: 10.1093/jhered/90.4.502
– ident: e_1_2_9_36_1
  doi: 10.1046/j.1420-9101.2000.00189.x
– ident: e_1_2_9_68_1
  doi: 10.1101/gr.079509.108
– volume: 3
  start-page: 245
  year: 1988
  ident: e_1_2_9_60_1
  article-title: Interactive influence of infectious disease and genetic diversity in natural poputations
  publication-title: Trends in Ecology & Evolution
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1469-1795.2007.00144.x
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1755-263X.2010.00139.x
– ident: e_1_2_9_80_1
  doi: 10.1046/j.1365-2915.1999.00189.x
– ident: e_1_2_9_38_1
  doi: 10.1534/genetics.110.121764
– ident: e_1_2_9_19_1
  doi: 10.1093/bioinformatics/btn514
– ident: e_1_2_9_76_1
  doi: 10.1007/s10592-005-9095-4
– volume-title: Mexican Wolf Conservation Assessment
  year: 2010
  ident: e_1_2_9_87_1
– ident: e_1_2_9_8_1
  doi: 10.1093/molbev/msg005
– ident: e_1_2_9_26_1
  doi: 10.1007/BF00364807
– ident: e_1_2_9_69_1
  doi: 10.1111/j.1365-294X.2005.02586.x
– ident: e_1_2_9_77_1
  doi: 10.5751/ES-00358-060115
– ident: e_1_2_9_27_1
  doi: 10.1016/S0168-9525(00)02139-9
– volume: 56
  start-page: 154
  year: 2002
  ident: e_1_2_9_79_1
  article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microstatellite DNA using a heirarchical Bayesian model
  publication-title: Evolution
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1365-294X.2010.04690.x
– ident: e_1_2_9_4_1
  doi: 10.1038/nrg2844
– ident: e_1_2_9_63_1
  doi: 10.1111/j.1523-1739.2004.00134.x
– ident: e_1_2_9_47_1
  doi: 10.1007/s10592-009-0013-z
– ident: e_1_2_9_9_1
  doi: 10.1890/06-0869
– ident: e_1_2_9_17_1
  doi: 10.2307/5542
– start-page: 151
  volume-title: Conservation Biology: An Evolutionary‐Ecological Perspective
  year: 1980
  ident: e_1_2_9_75_1
– ident: e_1_2_9_35_1
  doi: 10.1007/s10592-009-9946-5
– ident: e_1_2_9_89_1
  doi: 10.1534/genetics.109.102509
– volume-title: Analysis and Management of Animal Populations
  year: 2002
  ident: e_1_2_9_90_1
– ident: e_1_2_9_31_1
  doi: 10.1016/j.tree.2011.03.001
– ident: e_1_2_9_57_1
  doi: 10.1046/j.1365-294x.1999.00683.x
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365-294X.2008.03891.x
– ident: e_1_2_9_50_1
  doi: 10.1016/S0169-5347(02)02489-8
– ident: e_1_2_9_51_1
  doi: 10.1098/rspb.2001.1607
– ident: e_1_2_9_20_1
  doi: 10.1186/1471-2105-11-401
– start-page: 1
  volume-title: Oxford Survey in Evolutionary Biology
  year: 1990
  ident: e_1_2_9_46_1
– ident: e_1_2_9_48_1
  doi: 10.1093/genetics/152.3.1057
– ident: e_1_2_9_14_1
  doi: 10.1093/nar/30.9.1997
– ident: e_1_2_9_41_1
  doi: 10.1101/gr.081398.108
– ident: e_1_2_9_44_1
  doi: 10.1038/sj.hdy.6800103
– ident: e_1_2_9_55_1
  doi: 10.1007/s10592-008-9624-z
– ident: e_1_2_9_12_1
  doi: 10.1007/s10592-010-0049-0
– ident: e_1_2_9_29_1
  doi: 10.1655/08-083.1
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1469-1795.1999.tb00071.x
– ident: e_1_2_9_40_1
  doi: 10.1016/S1631-0691(03)00039-8
– ident: e_1_2_9_82_1
  doi: 10.1093/genetics/143.3.1457
– ident: e_1_2_9_78_1
  doi: 10.1093/oxfordjournals.molbev.a004177
– ident: e_1_2_9_7_1
  doi: 10.1146/annurev-ecolsys-102209-144621
– ident: e_1_2_9_6_1
  doi: 10.1007/978-0-387-21822-9
– ident: e_1_2_9_88_1
  doi: 10.1016/j.tree.2007.08.017
– ident: e_1_2_9_13_1
  doi: 10.1086/301869
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1365-294X.2007.03283.x
– start-page: 135
  volume-title: Conservation Biology: An Evolutionary‐Ecological Perspective
  year: 1980
  ident: e_1_2_9_34_1
– ident: e_1_2_9_65_1
  doi: 10.1642/0004-8038(2007)124[224:ARAEOP]2.0.CO;2
– ident: e_1_2_9_71_1
  doi: 10.1038/sj.ejhg.5200257
– ident: e_1_2_9_74_1
  doi: 10.1006/geno.1999.5824
– ident: e_1_2_9_32_1
  doi: 10.1017/S0016672300034455
– ident: e_1_2_9_21_1
  doi: 10.1101/gr.6.9.876
– ident: e_1_2_9_23_1
  doi: 10.1073/pnas.91.8.3166
– ident: e_1_2_9_28_1
  doi: 10.1038/nrg1348
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1365-294X.2009.04266.x
– ident: e_1_2_9_37_1
  doi: 10.1046/j.1365-294x.2001.01190.x
– ident: e_1_2_9_83_1
  doi: 10.1046/j.1523-1739.1996.10020661.x
SSID ssj0013255
Score 2.564264
SecondaryResourceType review_article
Snippet The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3403
SubjectTerms Animal populations
Animals
bottleneck test
Computer Simulation
extinction
Genetic diversity
genetics
Genetics, Population
Genetics, Population - methods
heterozygosity
M-ratio
methods
microsatellite
Microsatellite Repeats
Models, Genetic
Mutation
mutation model
population bottleneck
Population decline
Population Dynamics
Population genetics
probability
Reliability
Reliability engineering
Species extinction
Vertebrates
Vertebrates - genetics
Title Reliability of genetic bottleneck tests for detecting recent population declines
URI https://api.istex.fr/ark:/67375/WNG-Z144MMW4-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2012.05635.x
https://www.ncbi.nlm.nih.gov/pubmed/22646281
https://www.proquest.com/docview/1023440358
https://www.proquest.com/docview/1023757268
https://www.proquest.com/docview/1024094739
https://www.proquest.com/docview/1028037335
https://www.proquest.com/docview/1368582148
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejY7DLurXb6q0rGpTeHGxZXz6OkK4UUkpZadhFSIp0yUhKk0DTv37vyY5pRltK2c1YkkFP7-P3rPdByKHSzmGVk9xLW-c8KpfXdhzygofSawHuW4nZyMMzeXLJT0di1MY_YS5MUx-i--GGkpH0NQq4dfNNIU8RWjUfYYQW64Epr0QP8SQOID66YPcuFFIDVADsDDSPrjaDeh780Ialeo1Ev30Ihm6i2mSWjrfJZL2hJhpl0lsuXM_f_VPr8f_s-D1516JX-qNhtw_kVZjukDdNP8sVPA1SDezVLjnHUOemBPiKziIFNsVsSYqNy8DOBT-hgHEXcwqYmY4D3mSADaWgfsEI0uuuqxiMYe5mmH8kl8eDX_2TvG3eAKfOhcilK62OsgiCh7HlAoxxGUrHfCy4K2rmlNLCyyLWXIJb5K2v9VjH6KMAHexk9YlsTWfTsAcHBTpF4GQXOeAdVouogL-E1QBeo2QZUeuDMr6tbI4NNv6Yex4OUM4g5QxSziTKmduMlN3K66a6xzPWHCVe6BbYmwlGxylhrs5-mt_goQ6HV9z0M7K_ZhbTKoa5wUoZnBeV0I8OK6GYhOHv3TBIPF7j2GmYLdMcdMpVVT85RxeVqirxxJzUe4CBP5yRzw0vd3vC9GrJdJkRmTjy2dQxw0Efn768dOFX8hZfNxHR-2RrcbMM3wD3LdxBkui_ahVF5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajZXQvu1-8dZsGpW8OtqybH0dIl211GKWlYS_CUqSXlKQ0CTT79TtHdkwzulLG3gSSDDo6l-9Y50LIgdLWYpWT1Mm6THlQNi3riU8z7nOnBbhvOWYjVyM5POPfxmLctgPCXJimPkT3ww0lI-prFHD8Ib0t5TFEq-RjDNFiPbDlhegBoNzFBt_RvzphN54UYgtUgOwMdI8utsN6bv3Slq3aRbJf3wZEt3FtNExHT8jF5khNPMq0t1ranvv1R7XH_3Tmp-RxC2Dp54bjnpEHfvacPGxaWq5hNIhlsNcvyA-Mdm6qgK_pPFDgVEyYpNi7DEydd1MKMHe5oACb6cTjYwaYUQoaGOwgvewai8Ecpm_6xUtydjQ47Q_Ttn8DXDwXIpU2r3WQmRfcT2ouwB7nPrfMhYzbrGRWKS2czELJJXhGrnalnugQXBCghq0sXpGd2Xzm38BNgVoRuNgGDpCHlSIoYDFRa8CvQbKEqM1NGdcWN8ceGxfmhpMDlDNIOYOUM5Fy5johebfzsinwcY89h5EZug311RQD5JQw56Mv5ic4qVV1zk0_IfsbbjGtblgYLJbBeVYI_ddpJRSTMP2pmwahx5eceubnq7gG_XJVlHeu0VmhikLcsSa2H2DgEifkdcPM3Zkww1oynSdERpa8N3VMNejj6O2_bvxI9oan1bE5_jr6_o48wiVNgPQ-2Vlerfx7gIFL-yGK92_Gu0n_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZaxsxEBYloaUvvY9N01aF0rc1u1pd-1gcu-lhE0pDTF_ESiu9uNgmtiHOr--Mdr3EJQ2h9G1BI4NGc3xjzUHIe6WtxS4nqZNVmfKgbFpWtU8z7nOnBYRvOVYjj8by-JR_mYhJm_-EtTBNf4juDzfUjGivUcEXddhV8pihVfIJZmixHrjyQvQAT-5zmWmU8KPv7MqLQpyACoidgenRxW5Wz7W_tOOq9pHrF9fh0F1YG_3S8CGZbk_UpKNMe-uV7bnLP5o9_p8jPyIPWvhKPzby9pjc8bMn5G4z0HIDX4PYBHvzlJxgrnPTA3xD54GCnGK5JMXJZeDovJtSALmrJQXQTGuPTxngRCnYX_CCdNGNFYM1LN70y2fkdDj40T9O2-kNcO1ciFTavNJBZl5wX1dcgDfOfW6ZCxm3WcmsUlo4mYWSS4iLXOVKXesQXBBghK0snpO92XzmX8JFgVERSGwDB8DDShEUCJioNKDXIFlC1PaijGtbm-OEjV_mSogDnDPIOYOcM5Fz5iIhebdz0bT3uMWeD1EWug3V-RTT45QwZ-NP5ieEqKPRGTf9hBxuhcW0lmFpsFUG51kh9F-XlVBMwvK7bhlUHt9xqpmfryMNRuWqKG-k0VmhikLcQBOHDzAIiBPyopHl7kxYXy2ZzhMio0TemjtmNOjj18G_bnxL7p0cDc23z-Ovr8h9pGiyow_J3up87V8DBlzZN1G5fwOzIUi3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+of+genetic+bottleneck+tests+for+detecting+recent+population+declines&rft.jtitle=Molecular+ecology&rft.au=Peery%2C+M+Zachariah&rft.au=Kirby%2C+Rebecca&rft.au=Reid%2C+Brendan+N&rft.au=Stoelting%2C+Ricka&rft.date=2012-07-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=21&rft.issue=14&rft.spage=3403&rft_id=info:doi/10.1111%2Fj.1365-294X.2012.05635.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon