Reliability of genetic bottleneck tests for detecting recent population declines
The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popula...
Saved in:
Published in | Molecular ecology Vol. 21; no. 14; pp. 3403 - 3418 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.07.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite‐based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi‐step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of ‘detecting’ bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history. |
---|---|
AbstractList | The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi-step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of 'detecting' bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history.The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi-step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of 'detecting' bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history. The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite‐based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi‐step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of ‘detecting’ bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history. The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi-step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of 'detecting' bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history. [PUBLICATION ABSTRACT] |
Author | REID, BRENDAN N. VÁSQUEZ-CARRILLO, CATALINA ROBINSON, STACIE KIRBY, REBECCA PALSBØLL, PER J. DOUCET-BËER, ELENA PEERY, M. ZACHARIAH PAULI, JONATHAN N. STOELTING, RICKA |
Author_xml | – sequence: 1 givenname: M. ZACHARIAH surname: PEERY fullname: PEERY, M. ZACHARIAH organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 2 givenname: REBECCA surname: KIRBY fullname: KIRBY, REBECCA organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 3 givenname: BRENDAN N. surname: REID fullname: REID, BRENDAN N. organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 4 givenname: RICKA surname: STOELTING fullname: STOELTING, RICKA organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 5 givenname: ELENA surname: DOUCET-BËER fullname: DOUCET-BËER, ELENA organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 6 givenname: STACIE surname: ROBINSON fullname: ROBINSON, STACIE organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 7 givenname: CATALINA surname: VÁSQUEZ-CARRILLO fullname: VÁSQUEZ-CARRILLO, CATALINA organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 8 givenname: JONATHAN N. surname: PAULI fullname: PAULI, JONATHAN N. organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA – sequence: 9 givenname: PER J. surname: PALSBØLL fullname: PALSBØLL, PER J. organization: Marine Evolution and Conservation, Centre of Evolutionary and Ecological Studies, University of Groningen, PO Box 11103, CC Groningen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22646281$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v0zAYxy00xLrBV0CRuHBJ8HucA0ioGtukFRACDXGxHPfJ5C6Ni-2I9tvjrNsOu6y-2NLz-__9vJ2go8EPgFBBcEXy-bCqCJOipA3_XVFMaIWFZKLavkCzx8ARmuFG0pJgxY7RSYwrjAmjQrxCx5RKLqkiM_T9B_TOtK53aVf4rriBAZKzRetT6vPb3hYJYopF50OxhAQ2ueGmCGBhSMXGb8beJOeHHLO9GyC-Ri8700d4c3-fol9fzn7OL8qrb-eX889XpZVciFK2xKhOYhAcloYLC0CAtNR2mLe4oW1dK2El7pqcKKmtsY1aqq6znRBMtZKdovd7303wf8ecol67aKHvzQB-jDr3QQlFCVfPo5gqzGrGxCEoxw2vWZPRd0_QlR_DkGueKFaLmkr1HMU5ZmKi3t5TY7uGpd4EtzZhpx_mlIFPe8AGH2OATluX7hqfgnF99tLTYujVVLfQ0_z1tBj6bjH0NhuoJwYPfxwg_biX_nM97A7W6cXZfHplfbnXu5hg-6g34VbLOvdJX389138I54vFNddz9h9Xudzj |
CitedBy_id | crossref_primary_10_1139_cjfas_2019_0103 crossref_primary_10_1007_s00027_022_00877_0 crossref_primary_10_1002_ece3_10725 crossref_primary_10_1007_s00227_021_03970_4 crossref_primary_10_1111_mec_13737 crossref_primary_10_1016_j_biocon_2016_01_007 crossref_primary_10_1111_mec_13613 crossref_primary_10_1371_journal_pone_0270217 crossref_primary_10_5194_aab_67_353_2024 crossref_primary_10_1002_ece3_1129 crossref_primary_10_1093_jmammal_gyy172 crossref_primary_10_7717_peerj_9167 crossref_primary_10_1111_bij_12175 crossref_primary_10_1093_jhered_est041 crossref_primary_10_1038_hdy_2017_31 crossref_primary_10_1073_pnas_1213189109 crossref_primary_10_1007_s10709_020_00108_0 crossref_primary_10_1007_s11295_021_01497_9 crossref_primary_10_1007_s10592_014_0644_6 crossref_primary_10_1007_s10340_024_01818_6 crossref_primary_10_1016_j_mambio_2016_06_007 crossref_primary_10_1515_mammalia_2018_0165 crossref_primary_10_1007_s10144_013_0425_y crossref_primary_10_1186_s12862_016_0711_3 crossref_primary_10_1371_journal_pntd_0005546 crossref_primary_10_1371_journal_pone_0129278 crossref_primary_10_1007_s10592_014_0621_0 crossref_primary_10_3390_jof10120836 crossref_primary_10_3109_19401736_2015_1041115 crossref_primary_10_1007_s10592_015_0747_8 crossref_primary_10_1111_cobi_12491 crossref_primary_10_1002_ece3_1388 crossref_primary_10_7717_peerj_14365 crossref_primary_10_1016_j_biocon_2015_07_042 crossref_primary_10_1093_hr_uhad065 crossref_primary_10_1007_s00035_024_00322_y crossref_primary_10_1186_s12863_019_0714_3 crossref_primary_10_1007_s10709_015_9880_z crossref_primary_10_1007_s10592_021_01334_5 crossref_primary_10_1186_s12862_016_0810_1 crossref_primary_10_1111_mec_13948 crossref_primary_10_1371_journal_pone_0181898 crossref_primary_10_1038_s41437_022_00515_3 crossref_primary_10_1590_1678_4685_gmb_2017_0052 crossref_primary_10_1007_s10592_018_1117_0 crossref_primary_10_1007_s10592_017_1005_z crossref_primary_10_1371_journal_pone_0236509 crossref_primary_10_1111_mec_12729 crossref_primary_10_1007_s10592_021_01421_7 crossref_primary_10_1111_brv_12477 crossref_primary_10_1111_eva_12266 crossref_primary_10_3996_022017_JFWM_010 crossref_primary_10_3996_JFWM_23_004 crossref_primary_10_1656_058_016_0308 crossref_primary_10_1656_058_016_0305 crossref_primary_10_3389_fevo_2019_00115 crossref_primary_10_1007_s10592_016_0869_7 crossref_primary_10_1371_journal_pone_0158911 crossref_primary_10_1093_biolinnean_bly200 crossref_primary_10_1038_s41598_021_89708_0 crossref_primary_10_1007_s11692_013_9263_2 crossref_primary_10_1007_s10709_018_0040_0 crossref_primary_10_1098_rsos_160736 crossref_primary_10_1186_s13071_016_1306_y crossref_primary_10_1038_hdy_2015_54 crossref_primary_10_1016_j_biocon_2013_12_005 crossref_primary_10_3354_meps11924 crossref_primary_10_1002_ece3_4449 crossref_primary_10_1007_s10641_013_0210_y crossref_primary_10_1016_j_biocon_2014_04_009 crossref_primary_10_1007_s10592_014_0665_1 crossref_primary_10_3390_f14122290 crossref_primary_10_1186_s12863_015_0242_8 crossref_primary_10_3390_app11146484 crossref_primary_10_1007_s00227_015_2642_8 crossref_primary_10_1002_ece3_6635 crossref_primary_10_1007_s10592_020_01318_x crossref_primary_10_3989_scimar_04407_17A crossref_primary_10_1007_s10592_020_01283_5 crossref_primary_10_1093_jhered_esu030 crossref_primary_10_1093_jhered_esv001 crossref_primary_10_1002_ece3_1193 crossref_primary_10_1016_j_biocon_2018_06_018 crossref_primary_10_1111_mec_12936 crossref_primary_10_1371_journal_pone_0234377 crossref_primary_10_1007_s10592_013_0542_3 crossref_primary_10_1111_jmp_12352 crossref_primary_10_1038_s41437_018_0135_5 crossref_primary_10_1007_s00035_019_00224_4 crossref_primary_10_1007_s10592_013_0455_1 crossref_primary_10_1007_s10592_021_01401_x crossref_primary_10_1016_j_fishres_2018_01_006 crossref_primary_10_1007_s11295_013_0669_x crossref_primary_10_1111_mec_13453 crossref_primary_10_3389_fmicb_2023_1226166 crossref_primary_10_1002_ajp_23662 crossref_primary_10_1371_journal_pone_0174371 crossref_primary_10_1111_jbi_13977 crossref_primary_10_1016_j_fishres_2015_11_003 crossref_primary_10_1111_jbi_13979 crossref_primary_10_1007_s10592_022_01477_z crossref_primary_10_1016_j_foreco_2017_11_026 crossref_primary_10_1016_j_fgb_2021_103528 crossref_primary_10_1038_s41598_025_86994_w crossref_primary_10_3354_esr01029 crossref_primary_10_1038_s41598_021_86406_9 crossref_primary_10_1111_mec_13440 crossref_primary_10_1111_mec_13682 crossref_primary_10_3390_ani12141838 crossref_primary_10_1007_s10592_016_0818_5 crossref_primary_10_1038_hdy_2014_45 crossref_primary_10_1007_s10592_017_0984_0 crossref_primary_10_1016_j_jembe_2014_08_020 crossref_primary_10_1002_ece3_2987 crossref_primary_10_1007_s10592_024_01667_x crossref_primary_10_3390_genes10100779 crossref_primary_10_1007_s40003_018_0396_5 crossref_primary_10_1016_j_fishres_2022_106402 crossref_primary_10_1111_mec_13430 crossref_primary_10_1186_s12862_019_1451_y crossref_primary_10_3390_d15020124 crossref_primary_10_1371_journal_pone_0121858 crossref_primary_10_1002_ece3_2994 crossref_primary_10_1007_s10592_024_01622_w crossref_primary_10_1002_ece3_1305 crossref_primary_10_1007_s11295_014_0723_3 crossref_primary_10_1371_journal_pone_0133954 crossref_primary_10_1007_s11295_020_01463_x crossref_primary_10_1086_696023 crossref_primary_10_1371_journal_pone_0104173 crossref_primary_10_1002_ajp_23453 crossref_primary_10_1002_ece3_8187 crossref_primary_10_1002_ece3_2880 crossref_primary_10_1111_acv_12166 crossref_primary_10_1007_s10592_017_0960_8 crossref_primary_10_1016_j_jnc_2013_07_004 crossref_primary_10_1111_mec_12456 crossref_primary_10_1186_s12870_024_05513_7 crossref_primary_10_1080_21564574_2017_1294115 crossref_primary_10_1139_cjz_2016_0325 crossref_primary_10_1002_ece3_4709 crossref_primary_10_1007_s10980_024_01887_z crossref_primary_10_1016_j_jglr_2019_09_010 crossref_primary_10_1134_S1063074017020122 crossref_primary_10_1371_journal_pone_0057306 crossref_primary_10_1007_s10592_019_01170_8 crossref_primary_10_1016_j_ecoenv_2017_03_004 crossref_primary_10_1080_10495398_2024_2305550 crossref_primary_10_1111_jbi_12966 crossref_primary_10_1038_s41598_017_16430_1 crossref_primary_10_1002_ajb2_1830 crossref_primary_10_1186_s12862_024_02326_y crossref_primary_10_1016_j_biocon_2017_02_001 crossref_primary_10_1038_s41467_018_06695_z crossref_primary_10_1007_s10592_022_01451_9 crossref_primary_10_1071_MF14345 crossref_primary_10_1089_zeb_2015_1154 crossref_primary_10_1371_journal_pone_0059732 crossref_primary_10_1007_s10530_022_02844_0 crossref_primary_10_3832_ifor2446_010 crossref_primary_10_1038_s41437_022_00579_1 crossref_primary_10_1002_ece3_1330 crossref_primary_10_1071_BT16128 crossref_primary_10_2112_JCOASTRES_D_17_00025_1 crossref_primary_10_1371_journal_pone_0193495 crossref_primary_10_1007_s13364_015_0221_5 crossref_primary_10_24072_pcjournal_16 crossref_primary_10_1093_botlinnean_boy049 crossref_primary_10_1016_j_gecco_2022_e02301 crossref_primary_10_1007_s00606_017_1395_x crossref_primary_10_1007_s10531_020_01934_6 crossref_primary_10_1007_s11295_018_1301_x crossref_primary_10_1139_facets_2021_0191 crossref_primary_10_1007_s10592_015_0737_x crossref_primary_10_1038_s41598_021_85201_w crossref_primary_10_1007_s10592_022_01463_5 crossref_primary_10_3389_fgene_2020_576023 crossref_primary_10_1007_s10592_015_0703_7 crossref_primary_10_1002_jwmg_21495 crossref_primary_10_5586_asbp_195652 crossref_primary_10_1007_s11295_014_0725_1 crossref_primary_10_1038_hdy_2013_21 crossref_primary_10_1016_j_fishres_2024_107069 crossref_primary_10_1111_cobi_12699 crossref_primary_10_1007_s10592_022_01473_3 crossref_primary_10_1002_ecs2_2114 crossref_primary_10_1080_14772000_2021_1877847 crossref_primary_10_1111_ddi_12398 crossref_primary_10_3390_genes11091061 crossref_primary_10_1111_eva_12078 crossref_primary_10_1111_mec_14957 crossref_primary_10_1371_journal_pone_0268882 crossref_primary_10_1371_journal_pone_0186866 crossref_primary_10_3354_meps10537 crossref_primary_10_1016_j_foreco_2019_06_003 crossref_primary_10_3390_genes15121621 crossref_primary_10_1111_mec_13865 crossref_primary_10_1371_journal_pone_0150590 crossref_primary_10_1002_ece3_1119 crossref_primary_10_1371_journal_pone_0118522 crossref_primary_10_1007_s10750_022_04869_x crossref_primary_10_1093_biolinnean_bly172 crossref_primary_10_1093_jhered_ess138 crossref_primary_10_1016_j_ympev_2013_12_011 crossref_primary_10_1007_s10530_015_1029_6 crossref_primary_10_1007_s10592_017_0999_6 crossref_primary_10_1371_journal_pone_0241452 crossref_primary_10_1007_s00338_015_1370_3 crossref_primary_10_1038_s41598_020_61560_8 crossref_primary_10_1080_09397140_2024_2378516 crossref_primary_10_1038_s41598_017_18503_7 crossref_primary_10_1111_eva_12622 crossref_primary_10_1111_mec_13176 crossref_primary_10_1002_jwmg_21555 crossref_primary_10_1098_rsos_140255 crossref_primary_10_1093_jmammal_gyv101 crossref_primary_10_1007_s10592_021_01360_3 crossref_primary_10_1038_s41467_023_40104_4 crossref_primary_10_1134_S001249662370059X crossref_primary_10_1371_journal_pone_0311412 crossref_primary_10_1093_jhered_esab025 crossref_primary_10_1098_rspb_2014_1798 crossref_primary_10_1655_HERPMONOGRAPHS_D_19_00005 crossref_primary_10_1111_mec_14019 crossref_primary_10_1111_eva_12731 crossref_primary_10_1111_mec_14378 crossref_primary_10_1111_jeb_12464 crossref_primary_10_1111_jai_13993 crossref_primary_10_1007_s10592_023_01572_9 crossref_primary_10_1093_gbe_evad042 crossref_primary_10_1016_j_bse_2013_08_017 crossref_primary_10_1016_j_rsma_2023_103239 crossref_primary_10_1007_s10592_014_0597_9 crossref_primary_10_1111_mec_13034 crossref_primary_10_3390_f11010039 crossref_primary_10_1111_mms_12899 crossref_primary_10_1038_s41598_021_96681_1 crossref_primary_10_1002_eap_2416 crossref_primary_10_1007_s11295_017_1137_9 crossref_primary_10_1038_srep30772 crossref_primary_10_1371_journal_pone_0163738 crossref_primary_10_1080_17550874_2017_1400127 crossref_primary_10_7717_peerj_6794 crossref_primary_10_1007_s00468_024_02553_2 crossref_primary_10_2192_URSU_D_18_00011_1 crossref_primary_10_1007_s10592_024_01602_0 crossref_primary_10_1007_s10592_014_0672_2 crossref_primary_10_1371_journal_pone_0151507 crossref_primary_10_1007_s10592_015_0697_1 crossref_primary_10_1002_ece3_7493 crossref_primary_10_1002_ece3_5191 crossref_primary_10_1111_mec_13266 crossref_primary_10_1111_bij_12723 crossref_primary_10_1093_jhered_esy031 crossref_primary_10_1007_s11250_024_04035_6 crossref_primary_10_1007_s00227_017_3080_6 crossref_primary_10_1007_s10592_017_0964_4 crossref_primary_10_1098_rspb_2013_1506 crossref_primary_10_1016_j_zool_2018_07_004 crossref_primary_10_1038_s41598_024_54816_0 crossref_primary_10_1186_1471_2105_14_309 crossref_primary_10_1007_s10344_025_01907_6 crossref_primary_10_1643_CG_17_682 crossref_primary_10_1111_jse_12728 crossref_primary_10_1371_journal_pone_0172319 crossref_primary_10_1111_mms_12652 crossref_primary_10_1146_annurev_animal_022114_110920 crossref_primary_10_1007_s10344_023_01716_9 crossref_primary_10_1007_s00300_015_1653_8 crossref_primary_10_1007_s11295_015_0835_4 crossref_primary_10_1016_j_fishres_2017_10_005 crossref_primary_10_1002_ece3_6175 crossref_primary_10_1016_j_ocecoaman_2016_01_007 crossref_primary_10_3354_esr01297 crossref_primary_10_1093_jmammal_gyv146 crossref_primary_10_1007_s10592_017_0974_2 crossref_primary_10_1016_j_jembe_2017_01_009 crossref_primary_10_1016_j_biocon_2015_12_019 crossref_primary_10_1093_forestry_cpz063 crossref_primary_10_1111_csp2_513 crossref_primary_10_1186_s12898_017_0156_6 crossref_primary_10_1002_ece3_6064 crossref_primary_10_1111_mec_12394 crossref_primary_10_1002_ajb2_16019 crossref_primary_10_1007_s11692_015_9309_8 crossref_primary_10_1002_zoo_21577 crossref_primary_10_1371_journal_pone_0149664 crossref_primary_10_1098_rsos_160291 crossref_primary_10_1139_cjz_2013_0188 crossref_primary_10_1111_jfb_14709 crossref_primary_10_3390_genes11111332 crossref_primary_10_1098_rsos_150370 crossref_primary_10_1093_jmammal_gyaa138 crossref_primary_10_1644_13_MAMM_A_321 crossref_primary_10_1002_1438_390X_12134 crossref_primary_10_3354_meps12448 crossref_primary_10_1186_s13595_022_01157_5 crossref_primary_10_1111_mec_13117 crossref_primary_10_1111_mec_14445 crossref_primary_10_1650_CONDOR_16_141_1 crossref_primary_10_1016_j_gecco_2023_e02593 crossref_primary_10_1371_journal_pone_0073647 crossref_primary_10_1016_j_foreco_2020_118606 crossref_primary_10_1038_s41598_024_68756_2 crossref_primary_10_1111_jav_02689 crossref_primary_10_1111_mec_12498 crossref_primary_10_1002_jwmg_21882 crossref_primary_10_1371_journal_pone_0196276 crossref_primary_10_1111_mec_12258 crossref_primary_10_1186_s13071_019_3818_8 crossref_primary_10_1371_journal_pone_0145165 crossref_primary_10_1007_s10592_020_01256_8 crossref_primary_10_1016_j_egg_2022_100132 crossref_primary_10_1016_j_biocon_2018_02_032 crossref_primary_10_1111_ibi_13250 crossref_primary_10_1002_ece3_70011 crossref_primary_10_1007_s10592_023_01596_1 crossref_primary_10_3354_meps11581 crossref_primary_10_1371_journal_pone_0127870 crossref_primary_10_1017_S0959270919000315 crossref_primary_10_3390_d11070099 crossref_primary_10_1007_s10592_014_0578_z crossref_primary_10_1111_eva_12226 crossref_primary_10_1016_j_biocon_2015_01_006 crossref_primary_10_1016_j_funbio_2016_05_010 crossref_primary_10_1007_s10592_013_0550_3 crossref_primary_10_1093_jmammal_gyx008 crossref_primary_10_1002_ajpa_23230 crossref_primary_10_3389_fcosc_2022_829332 crossref_primary_10_1007_s10764_013_9702_z crossref_primary_10_1650_CONDOR_15_42_1 crossref_primary_10_3390_ani13030406 crossref_primary_10_1007_s10592_018_1075_6 crossref_primary_10_1007_s10592_016_0844_3 crossref_primary_10_1007_s10592_018_1099_y crossref_primary_10_1371_journal_pone_0159545 crossref_primary_10_1002_ece3_386 crossref_primary_10_1007_s10530_017_1437_x crossref_primary_10_1002_ece3_70879 crossref_primary_10_1002_ece3_6306 crossref_primary_10_1007_s10592_024_01628_4 crossref_primary_10_1111_boj_12109 crossref_primary_10_1038_s41598_020_79575_6 crossref_primary_10_1007_s10592_018_1086_3 crossref_primary_10_1111_eva_12569 crossref_primary_10_1007_s10592_015_0720_6 crossref_primary_10_1093_jhered_est096 crossref_primary_10_1093_jhered_esw122 crossref_primary_10_1371_journal_pone_0069070 crossref_primary_10_13156_arac_2013_16_1_1 crossref_primary_10_1038_s41437_019_0245_8 crossref_primary_10_7717_peerj_11139 crossref_primary_10_3390_insects11050290 crossref_primary_10_1093_aobpla_plv106 crossref_primary_10_1002_aqc_2912 crossref_primary_10_1111_ibi_13107 crossref_primary_10_3354_esr00815 crossref_primary_10_1007_s10592_019_01188_y crossref_primary_10_1038_hdy_2013_122 crossref_primary_10_1111_jofo_12334 crossref_primary_10_3390_fishes8100510 crossref_primary_10_1002_jwmg_21848 crossref_primary_10_1073_pnas_1600865113 crossref_primary_10_1002_ece3_4143 crossref_primary_10_1002_ece3_6564 crossref_primary_10_1111_ecog_03321 crossref_primary_10_1186_1471_2148_14_64 crossref_primary_10_3389_fmars_2023_1050055 crossref_primary_10_1007_s10592_017_1008_9 crossref_primary_10_1371_journal_pone_0093387 crossref_primary_10_1093_jhered_esv048 crossref_primary_10_1093_jhered_esw014 crossref_primary_10_3390_jmse11030524 crossref_primary_10_1007_s10592_014_0664_2 crossref_primary_10_1111_1749_4877_12432 crossref_primary_10_1007_s10592_023_01553_y crossref_primary_10_1007_s10592_015_0763_8 crossref_primary_10_1371_journal_pone_0176197 crossref_primary_10_1007_s10336_017_1433_z crossref_primary_10_1007_s10592_016_0888_4 crossref_primary_10_1111_ibi_13400 crossref_primary_10_1111_mec_13092 crossref_primary_10_1007_s10764_015_9881_x crossref_primary_10_1080_00028487_2017_1362472 crossref_primary_10_1371_journal_pone_0159864 crossref_primary_10_1016_j_biocon_2013_09_009 crossref_primary_10_1071_ZO18054 crossref_primary_10_1093_icesjms_fsu058 crossref_primary_10_1016_j_smallrumres_2016_07_021 crossref_primary_10_3732_ajb_1400043 crossref_primary_10_1111_acv_12616 crossref_primary_10_3106_041_037_0406 crossref_primary_10_3390_fishes8060321 crossref_primary_10_1007_s10592_016_0831_8 crossref_primary_10_1007_s10530_014_0770_6 crossref_primary_10_1007_s10592_016_0909_3 crossref_primary_10_1016_j_bse_2012_11_005 crossref_primary_10_1002_aqc_3939 crossref_primary_10_1093_jme_tjz136 crossref_primary_10_1007_s10750_023_05393_2 crossref_primary_10_1002_ecs2_1810 crossref_primary_10_1186_s13071_016_1811_z crossref_primary_10_1371_journal_pone_0131067 crossref_primary_10_1111_eva_13733 crossref_primary_10_1038_s41437_020_0344_6 crossref_primary_10_1038_s41598_017_03166_1 crossref_primary_10_1111_mec_15134 crossref_primary_10_1371_journal_pone_0230735 crossref_primary_10_1371_journal_pone_0251879 crossref_primary_10_1002_ece3_5269 crossref_primary_10_1371_journal_pone_0181849 crossref_primary_10_31857_S268673892360019X crossref_primary_10_1111_mec_14042 crossref_primary_10_3390_biology14020105 crossref_primary_10_1007_s11295_014_0740_2 crossref_primary_10_1093_molbev_msu212 crossref_primary_10_1007_s10592_018_1074_7 crossref_primary_10_1111_boj_12270 crossref_primary_10_1007_s10531_020_02022_5 crossref_primary_10_1371_journal_pone_0111207 crossref_primary_10_1080_21564574_2016_1234511 crossref_primary_10_1139_cjz_2018_0275 crossref_primary_10_1111_mec_13185 crossref_primary_10_1016_j_aquabot_2020_103217 crossref_primary_10_1080_21564574_2019_1646324 crossref_primary_10_1186_s13595_023_01207_6 crossref_primary_10_3389_fmars_2017_00393 crossref_primary_10_1007_s10592_017_1029_4 crossref_primary_10_1038_s41437_020_00379_5 crossref_primary_10_1111_mec_13060 crossref_primary_10_1016_j_biocon_2019_108242 crossref_primary_10_3732_ajb_1600259 |
Cites_doi | 10.1111/j.1365-294X.2005.02683.x 10.1890/1051-0761(2006)016[1516:CDACAT]2.0.CO;2 10.1890/07-2026.1 10.1111/j.1365-294X.2008.03842.x 10.1016/S0379-0738(00)00480-1 10.1093/molbev/msr133 10.1038/nrg3012 10.1016/j.tree.2006.08.009 10.1098/rspb.2008.0473 10.1111/j.1558-5646.1975.tb00807.x 10.1111/j.1523-1739.1998.96388.x 10.1016/j.mrfmmm.2008.09.012 10.1111/j.1365-294X.2007.03454.x 10.1098/rsbl.2010.0643 10.1002/gepi.20378 10.1186/1471-2148-7-214 10.1016/j.biocon.2009.09.001 10.1007/s10592-005-9009-5 10.1093/genetics/153.4.2013 10.1111/j.1365-294X.2011.05248.x 10.1016/S0169-5347(97)01177-4 10.1046/j.1365-294x.1998.00355.x 10.1038/74238 10.1016/j.tree.2009.05.009 10.1093/genetics/144.4.2001 10.1093/molbev/msi103 10.1093/jhered/89.3.238 10.1093/jhered/90.4.502 10.1046/j.1420-9101.2000.00189.x 10.1101/gr.079509.108 10.1111/j.1469-1795.2007.00144.x 10.1111/j.1755-263X.2010.00139.x 10.1046/j.1365-2915.1999.00189.x 10.1534/genetics.110.121764 10.1093/bioinformatics/btn514 10.1007/s10592-005-9095-4 10.1093/molbev/msg005 10.1007/BF00364807 10.1111/j.1365-294X.2005.02586.x 10.5751/ES-00358-060115 10.1016/S0168-9525(00)02139-9 10.1111/j.1365-294X.2010.04690.x 10.1038/nrg2844 10.1111/j.1523-1739.2004.00134.x 10.1007/s10592-009-0013-z 10.1890/06-0869 10.2307/5542 10.1007/s10592-009-9946-5 10.1534/genetics.109.102509 10.1016/j.tree.2011.03.001 10.1046/j.1365-294x.1999.00683.x 10.1111/j.1365-294X.2008.03891.x 10.1016/S0169-5347(02)02489-8 10.1098/rspb.2001.1607 10.1186/1471-2105-11-401 10.1093/genetics/152.3.1057 10.1093/nar/30.9.1997 10.1101/gr.081398.108 10.1038/sj.hdy.6800103 10.1007/s10592-008-9624-z 10.1007/s10592-010-0049-0 10.1655/08-083.1 10.1111/j.1469-1795.1999.tb00071.x 10.1016/S1631-0691(03)00039-8 10.1093/genetics/143.3.1457 10.1093/oxfordjournals.molbev.a004177 10.1146/annurev-ecolsys-102209-144621 10.1007/978-0-387-21822-9 10.1016/j.tree.2007.08.017 10.1086/301869 10.1111/j.1365-294X.2007.03283.x 10.1642/0004-8038(2007)124[224:ARAEOP]2.0.CO;2 10.1038/sj.ejhg.5200257 10.1006/geno.1999.5824 10.1017/S0016672300034455 10.1101/gr.6.9.876 10.1073/pnas.91.8.3166 10.1038/nrg1348 10.1111/j.1365-294X.2009.04266.x 10.1046/j.1365-294x.2001.01190.x 10.1046/j.1523-1739.1996.10020661.x |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd 2012 Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd – notice: 2012 Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7ST 7U6 7S9 L.6 |
DOI | 10.1111/j.1365-294X.2012.05635.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Sustainability Science Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts Entomology Abstracts AGRICOLA MEDLINE Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 3418 |
ExternalDocumentID | 2704232081 2703619681 22646281 10_1111_j_1365_294X_2012_05635_x MEC5635 ark_67375_WNG_Z144MMW4_C |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 RC3 7X8 7ST 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c6455-6b1a8f60e54eda45cee1e1b2cf04b092b7785c60f946217cac98d8ffcf5538b63 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Jul 11 18:37:47 EDT 2025 Fri Jul 11 03:23:54 EDT 2025 Tue Aug 05 09:41:50 EDT 2025 Wed Aug 13 08:11:46 EDT 2025 Wed Aug 13 04:49:59 EDT 2025 Wed Feb 19 01:51:23 EST 2025 Tue Jul 01 01:21:57 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:55:31 EST 2025 Wed Oct 30 09:49:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6455-6b1a8f60e54eda45cee1e1b2cf04b092b7785c60f946217cac98d8ffcf5538b63 |
Notes | istex:64745E7D4B63DB291F73F71661B16FBE47B04185 ArticleID:MEC5635 ark:/67375/WNG-Z144MMW4-C SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-294X.2012.05635.x |
PMID | 22646281 |
PQID | 1023440358 |
PQPubID | 31465 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1368582148 proquest_miscellaneous_1028037335 proquest_miscellaneous_1024094739 proquest_journals_1023757268 proquest_journals_1023440358 pubmed_primary_22646281 crossref_citationtrail_10_1111_j_1365_294X_2012_05635_x crossref_primary_10_1111_j_1365_294X_2012_05635_x wiley_primary_10_1111_j_1365_294X_2012_05635_x_MEC5635 istex_primary_ark_67375_WNG_Z144MMW4_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2012 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: July 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Molecular Ecology, 16, 2450-2462. Gusev A, Palamara PF, Aponte G et al. (2012) The architecture of long-range haplotypes shared within and across populations. Molecular Biology and Evolution, 29, 473-486. Keller LF, Jeffery KJ, Arcese P et al. (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society B, 268, 1387-1394. Hoekert WEJ, Neuféglise H, Schouten AD, Menken SBJ (2002) Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity, 89, 107-113. Peery MZ, Becker BH, Beissinger SR (2006) Combining demographic and count-based approaches to identify source-sink dynamics of a threatened seabird. Ecological Applications, 16, 1516-1528. Ortego J, Aparicio JM, Cordero PJ, Calabuig G (2008) Characteristics of loci and individuals are associated with mutation rates in lesser kestrels (Falco naumanni). Mutation Research/Fundamentals and Mechanisms of Mutagenesis, 648, 82-86. Sajantila A, Lukka M, Syvänen A-C (1999) Experimentally observed germline mutations at human micro- and minisatellite loci. European Journal of Human Genetics, 7, 263-266. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12, 228-237. Taylor B, Dizon AE (1997) The need to estimate power to link genetics and demography for conservation. Conservation Biology, 10, 661-664. Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642. Caughley G (1994) Directions in conservation biology. The Journal of Animal Ecology, 63, 215-244. Reusch TBH, Wood TE (2007) Molecular ecology of global change. Molecular Ecology, 16, 3973-3992. Davey JW, Hohenlohe PA, Etter PD et al. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499-510. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10, 305-318. Jones AG, Rosenqvist G, Berglund A, Avise JC (1999) Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics, 152, 1057-1063. Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conservation Genetics, 6, 551-562. Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 17, 3428-3447. Gusev A, Lowe JK, Stoffel M et al. (2009) Whole population, genome-wide mapping of hidden relatedness. Genome Research, 19, 318-326. Di Rienzo A, Peterson AC, Garza JC, Valdes A-M, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. Proceedings of the National Academy of Sciences, 91, 3166-3170. Peery MZ, Becker BH, Beissinger SR (2007) Age ratios as estimators of productivity: testing assumptions on a threatened seabird, the marbled murrelet (Brachyramphus marmoratus). Auk, 124, 224-240. Shimoda N, Knapik EW, Ziniti J et al. (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics, 58, 219-232. Spear S, Peterson C, Matocq M, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conservation Genetics, 7, 605-611. Tajima F (1989b) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595. Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA (2009) In situ population structure and ex situ representation of the endangered Amur tiger. Molecular Ecology, 18, 3173-3184. Brinkmann B, Klintschar M, Neuhuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. American Journal of Human Genetics, 62, 1408-1415. Girod C, Vitalis R, Lebois R, Freville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the MSvar methods. Genetics, 188, 165-179. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33. Masters BS, Johnson LS, Johnson BGP, Brubaker JL, Sakaluk SK, Thompson CF (2011) Evidence for heterozygote instability in microsatellite loci in house wrens. Biology Letters, 7, 127-130. Albrechtsen A, Korneliussen TS, Moltke I, Hansen TV, Nielsen FC, Nielsen R (2009) Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genetic Epidemiology, 33, 266-274. Hoffman JI, Grant SM, Forcada J, Phillips CD (2011) Bayesian inference of a historical bottleneck in a heavily exploited marine mammal. Molecular Ecology, 20, 3989-4008. Gardner MG, Bull CM, Cooper SJB, Duffield GA (2000) Microsatellite mutations in litters of the Australian lizard Egernia stokesii. Journal of Evolutionary Biology, 13, 551-560. Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution, 19, 208-216. Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conservation Genetics, 11, 139-147. Beissinger SR, Peery MZ (2007) Reconstructing the historic demography of an endangered seabird. Ecology, 88, 296-305. Crawford AM, Cuthbertson RP (1996) Mutations in sheep microsatellites. Genome Research, 6, 876-879. Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Molecular Ecology, 19, 2609-2625. NMFS (2010) Bi-National Recovery Plan for the Kemp's Ridley Sea Turtle (Lepidochelys kempii), 2nd revision. National Marine Fisheries Service, Silver Spring, Maryland. Wegmann D, Leuenberger C, Excoffier L (2009) Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics, 182, 1207-1218. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. Flather CH, Hayward GD, Beissinger SR, Stephens PA (2011) Minimum viable populations: is there a 'magic number' for conservation practicioners? Trends in Ecology & Evolution, 26, 307-316. Kayser M, Sajantila A (2001) Mutations at Y-STR loci: implications for paternity testing and forensic analysis. Forensic Science International, 118, 116-121. Steinberg EK, Lindner KR, Gallea J, Maxwell A, Meng J, Allendorf FW (2002) Rates and patterns of microsatellite mutations in pink salmon. Molecular Biology and Evolution, 19, 1198-1202. Bulut Z, McCormick CR, Gopurenko D, Williams RN, Bos DH, DeWoody JA (2009) Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetics, 136, 501-504. Cornuet JM, Santo F, Beaumont MA et al. (2008) Inferring population history with DIYABC: a user-friendly approach to Approximate Bayesian Computations. Bioinformatics, 24, 2713-2719. Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics, 153, 2013-2029. Beck NR, Double MC, Cockburn A (2003) Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees. Molecular Biology and Evolution, 20, 54-61. Ennen JR, Kreiser BR, Qualls CP (2010) Low genetic diversity in several gopher tortoise (Gopherus polyphemus) populations in the DeSota National Forest, Mississippi. Herpetologica, 66, 31-38. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90, 502-503. Funk WC, Forsman ED, Johnson M, Mullins TD, Haig SM (2010) Evidence for recent population bottlenecks in northern spotted owls (Strix occidentalis caurina). Conservation Genetics, 11, 1013-1021. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10. Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196. Pool JE, Hellmann I, Jensen JD, Nielsen R (2010) Population genetic inference from genomic sequence variation. Genome Research, 20, 291-300. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697-709. Aguilar A, Jessup DA, Estes J, Garza JC (2008) The distribution of nuclear genetic variation and historical demography of sea otters. Animal Conservation, 11, 35-45. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192. Marshall J, Kingsbury B, Minchella D (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conservation Genetics, 10, 465-476. Tajima F (1989a) The effect of change in population size on DNA polymorphism. Genetics, 123, 597-601. Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conservation Genetics, 11, 139-147. Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics, 11, 401. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends in Genetics, 16, 551-558. Green RE (2008) Demographic mechanism of a historical bird population collapse reconstructed using museum specimens. 2010; 11 2002; 17 2002; 19 2010; 19 2002; 56 2010; 143 2004; 5 1996; 144 2011; 12 1996; 143 1994; 63 2005; 22 1998; 89 2001; 268 2010; 66 2010; 20 2000; 16 2003; 326 2009; 10 1990 1997; 10 2000; 13 2002; 89 1995; 66 1999; 58 2011; 20 2008; 24 2007; 7 2012; 29 2011; 26 1980 2010; 3 2009; 19 2008; 275 2007; 22 1999; 90 1998; 12 2003; 164 1996; 6 2009; 18 2001; 10 1998; 13 2007; 124 2009; 24 2002; 30 2010 2009; 182 2000; 24 2006; 16 1989b; 123 2008; 17 2008; 648 2006; 7 1989a; 123 2008; 11 1999; 2 2002 1998; 62 1999; 7 2010; 41 2009; 136 1995; 6 2011; 7 2007; 16 2009; 33 1988; 3 2004; 18 2004; 19 1975; 29 1999; 153 2008; 89 2010b 1999; 152 2010a 2005; 6 1998; 7 1994; 91 2001; 118 2007; 88 2003; 20 2011; 188 2005; 14 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_92_1 Bulut Z (e_1_2_9_15_1) 2009; 136 e_1_2_9_71_1 USFWS (e_1_2_9_87_1) 2010 Williams BK (e_1_2_9_90_1) 2002 Soulé ME (e_1_2_9_75_1) 1980 e_1_2_9_14_1 e_1_2_9_39_1 O’Brien SJ (e_1_2_9_60_1) 1988; 3 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_2_1 NMFS (e_1_2_9_59_1) 2010 Hudson RR (e_1_2_9_46_1) 1990 USFWS (e_1_2_9_86_1) 2010 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Storz JF (e_1_2_9_79_1) 2002; 56 e_1_2_9_91_1 e_1_2_9_70_1 Franklin IR (e_1_2_9_34_1) 1980 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – reference: Bulut Z, McCormick CR, Gopurenko D, Williams RN, Bos DH, DeWoody JA (2009) Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetics, 136, 501-504. – reference: Fitzsimmons NN (1998) Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology, 7, 575-584. – reference: Pool JE, Hellmann I, Jensen JD, Nielsen R (2010) Population genetic inference from genomic sequence variation. Genome Research, 20, 291-300. – reference: Hoekert WEJ, Neuféglise H, Schouten AD, Menken SBJ (2002) Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity, 89, 107-113. – reference: Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics, 11, 401. – reference: Keller LF, Jeffery KJ, Arcese P et al. (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society B, 268, 1387-1394. – reference: Davey JW, Hohenlohe PA, Etter PD et al. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499-510. – reference: Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conservation Genetics, 11, 139-147. – reference: Caughley G (1994) Directions in conservation biology. The Journal of Animal Ecology, 63, 215-244. – reference: Green RE (2008) Demographic mechanism of a historical bird population collapse reconstructed using museum specimens. Proceedings of the Royal Society B, 275, 2381-2387. – reference: Gusev A, Palamara PF, Aponte G et al. (2012) The architecture of long-range haplotypes shared within and across populations. Molecular Biology and Evolution, 29, 473-486. – reference: Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12, 228-237. – reference: Ramakrishnan U, Hadly EA, Mountain JL (2005) Detecting past population bottlenecks using temporal genetic data. Molecular Ecology, 14, 2915-2922. – reference: Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microstatellite DNA using a heirarchical Bayesian model. Evolution, 56, 154-166. – reference: Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA (2009) In situ population structure and ex situ representation of the endangered Amur tiger. Molecular Ecology, 18, 3173-3184. – reference: Traill LW, Brook BW, Frankham RR, Bradshaw CJA (2010) Pragmatic population viability targets in a rapidly changing world. Biological Conservation, 143, 28-34. – reference: Beck NR, Double MC, Cockburn A (2003) Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees. Molecular Biology and Evolution, 20, 54-61. – reference: Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001-2014. – reference: Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 5, 435-445. – reference: Ennen JR, Kreiser BR, Qualls CP (2010) Low genetic diversity in several gopher tortoise (Gopherus polyphemus) populations in the DeSota National Forest, Mississippi. Herpetologica, 66, 31-38. – reference: Girod C, Vitalis R, Lebois R, Freville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the MSvar methods. Genetics, 188, 165-179. – reference: Beaumont MA (2003) Estimation of population growth or decline in genetically monitored populations. Genetics, 164, 1139-1160. – reference: NMFS (2010) Bi-National Recovery Plan for the Kemp's Ridley Sea Turtle (Lepidochelys kempii), 2nd revision. National Marine Fisheries Service, Silver Spring, Maryland. – reference: Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends in Genetics, 16, 551-558. – reference: Masters BS, Johnson LS, Johnson BGP, Brubaker JL, Sakaluk SK, Thompson CF (2011) Evidence for heterozygote instability in microsatellite loci in house wrens. Biology Letters, 7, 127-130. – reference: Reusch TBH, Wood TE (2007) Molecular ecology of global change. Molecular Ecology, 16, 3973-3992. – reference: Flather CH, Hayward GD, Beissinger SR, Stephens PA (2011) Minimum viable populations: is there a 'magic number' for conservation practicioners? Trends in Ecology & Evolution, 26, 307-316. – reference: Bonebrake TC, Christensen J, Boggs CL, Ehrlich PR (2010) Population decline assessment, historical baselines, and conservation. Conservation Letters, 3, 371-378. – reference: Marshall J, Kingsbury B, Minchella D (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conservation Genetics, 10, 465-476. – reference: Shaffer HB, Fisher RN, Davidson C (1998) The role of natural history collections in documenting species declines. Trends in Ecology & Evolution, 13, 27-30. – reference: Tajima F (1996) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics, 143, 1457-1465. – reference: Frankham R (1995) Effective population-size adult-population size ratios in wildlife-a review. Genetical Research, 66, 95-107. – reference: Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33. – reference: Cornuet JM, Santo F, Beaumont MA et al. (2008) Inferring population history with DIYABC: a user-friendly approach to Approximate Bayesian Computations. Bioinformatics, 24, 2713-2719. – reference: Beaumont MA (2010) Approximate Bayesian Computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41, 379-406. – reference: Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. – reference: Peery MZ, Becker BH, Beissinger SR (2007) Age ratios as estimators of productivity: testing assumptions on a threatened seabird, the marbled murrelet (Brachyramphus marmoratus). Auk, 124, 224-240. – reference: Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697-709. – reference: Di Rienzo A, Peterson AC, Garza JC, Valdes A-M, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. Proceedings of the National Academy of Sciences, 91, 3166-3170. – reference: Gusev A, Lowe JK, Stoffel M et al. (2009) Whole population, genome-wide mapping of hidden relatedness. Genome Research, 19, 318-326. – reference: Spear S, Peterson C, Matocq M, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conservation Genetics, 7, 605-611. – reference: Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642. – reference: Peery MZ, Beissinger SR, Newman SH, Burkett E, Williams TD (2004) Applying the declining population paradigm: diagnosing causes of poor reproduction in the marbled murrelet. Conservation Biology, 18, 1088-1098. – reference: Taylor B, Dizon AE (1997) The need to estimate power to link genetics and demography for conservation. Conservation Biology, 10, 661-664. – reference: Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90, 502-503. – reference: Brinkmann B, Klintschar M, Neuhuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. American Journal of Human Genetics, 62, 1408-1415. – reference: Tingley MW, Beissinger SR (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology & Evolution, 24, 625-633. – reference: Ellegren H (1995) Mutation rates at porcine microsatellite loci. Mammalian Genome, 6, 376-377. – reference: Aguilar A, Jessup DA, Estes J, Garza JC (2008) The distribution of nuclear genetic variation and historical demography of sea otters. Animal Conservation, 11, 35-45. – reference: USFWS (2010a) Draft Revised Recovery Plan for the Northern Spotted Owl. Strix occidentalis caurina. U.S. Fish and Wildlife Service, Portland, Oregon. – reference: Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution, 19, 208-216. – reference: O'Brien SJ, Evermann JF (1988) Interactive influence of infectious disease and genetic diversity in natural poputations. Trends in Ecology & Evolution, 3, 245-259. – reference: Peery MZ, Becker BH, Beissinger SR (2006) Combining demographic and count-based approaches to identify source-sink dynamics of a threatened seabird. Ecological Applications, 16, 1516-1528. – reference: Steinberg EK, Lindner KR, Gallea J, Maxwell A, Meng J, Allendorf FW (2002) Rates and patterns of microsatellite mutations in pink salmon. Molecular Biology and Evolution, 19, 1198-1202. – reference: Tajima F (1989a) The effect of change in population size on DNA polymorphism. Genetics, 123, 597-601. – reference: Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Molecular Ecology, 19, 2609-2625. – reference: Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196. – reference: Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192. – reference: Funk WC, Forsman ED, Johnson M, Mullins TD, Haig SM (2010) Evidence for recent population bottlenecks in northern spotted owls (Strix occidentalis caurina). Conservation Genetics, 11, 1013-1021. – reference: Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 17, 3428-3447. – reference: Beissinger SR, Peery MZ (2007) Reconstructing the historic demography of an endangered seabird. Ecology, 88, 296-305. – reference: Wegmann D, Leuenberger C, Excoffier L (2009) Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics, 182, 1207-1218. – reference: Shimoda N, Knapik EW, Ziniti J et al. (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics, 58, 219-232. – reference: Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Molecular Ecology, 16, 2450-2462. – reference: Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10. – reference: Kayser M, Sajantila A (2001) Mutations at Y-STR loci: implications for paternity testing and forensic analysis. Forensic Science International, 118, 116-121. – reference: Hoffman JI, Grant SM, Forcada J, Phillips CD (2011) Bayesian inference of a historical bottleneck in a heavily exploited marine mammal. Molecular Ecology, 20, 3989-4008. – reference: Luikart G, Allendorf FW, Cournuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 89, 238-247. – reference: Williams BK, Nichols JD, Conroy MJ (2002) Analysis and Management of Animal Populations. Academic Press, San Diego, California. – reference: Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17, 230-241. – reference: Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conservation Genetics, 11, 139-147. – reference: Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10, 305-318. – reference: Frankham R, Lees K, Montgomery ME, England PE, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Animal Conservation, 2, 255-260. – reference: Ortego J, Aparicio JM, Cordero PJ, Calabuig G (2008) Characteristics of loci and individuals are associated with mutation rates in lesser kestrels (Falco naumanni). Mutation Research/Fundamentals and Mechanisms of Mutagenesis, 648, 82-86. – reference: Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics, 153, 2013-2029. – reference: Brohede J, Primmer CR, Møller A, Ellegren H (2002) Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Research, 30, 1997-2003. – reference: Gardner MG, Bull CM, Cooper SJB, Duffield GA (2000) Microsatellite mutations in litters of the Australian lizard Egernia stokesii. Journal of Evolutionary Biology, 13, 551-560. – reference: Guinand B, Scribner KT (2003) Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations. Comptes Rendus Biologies, 326, S61-S67. – reference: Jones AG, Rosenqvist G, Berglund A, Avise JC (1999) Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics, 152, 1057-1063. – reference: Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conservation Genetics, 6, 551-562. – reference: Xu X, Peng M, Fang Z, Xu X (2000) The direction of microsatellite mutations is dependent upon allele length. Nature Genetics, 24, 396-399. – reference: USFWS (2010b) Mexican Wolf Conservation Assessment.US Fish and Wildlife Service Region 2, Albuquerque, New Mexico. – reference: Peery MZ, Beissinger SR, House RF et al. (2008) Characterizing source-sink dynamics with genetic parentage assignments. Ecology, 89, 2746-2759. – reference: Tajima F (1989b) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595. – reference: Albrechtsen A, Korneliussen TS, Moltke I, Hansen TV, Nielsen FC, Nielsen R (2009) Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genetic Epidemiology, 33, 266-274. – reference: Crawford AM, Cuthbertson RP (1996) Mutations in sheep microsatellites. Genome Research, 6, 876-879. – reference: Sajantila A, Lukka M, Syvänen A-C (1999) Experimentally observed germline mutations at human micro- and minisatellite loci. European Journal of Human Genetics, 7, 263-266. – volume: 63 start-page: 215 year: 1994 end-page: 244 article-title: Directions in conservation biology publication-title: The Journal of Animal Ecology – volume: 3 start-page: 371 year: 2010 end-page: 378 article-title: Population decline assessment, historical baselines, and conservation publication-title: Conservation Letters – volume: 19 start-page: 318 year: 2009 end-page: 326 article-title: Whole population, genome‐wide mapping of hidden relatedness publication-title: Genome Research – volume: 89 start-page: 238 year: 1998 end-page: 247 article-title: Distortion of allele frequency distributions provides a test for recent population bottlenecks publication-title: Journal of Heredity – volume: 182 start-page: 1207 year: 2009 end-page: 1218 article-title: Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood publication-title: Genetics – volume: 7 start-page: 214 year: 2007 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC Evolutionary Biology – volume: 7 start-page: 605 year: 2006 end-page: 611 article-title: Molecular evidence for historical and recent population size reductions of tiger salamanders ( ) in Yellowstone National Park publication-title: Conservation Genetics – volume: 17 start-page: 4186 year: 2008 end-page: 4196 article-title: Ancient DNA applications for wildlife conservation publication-title: Molecular Ecology – volume: 6 start-page: 551 year: 2005 end-page: 562 article-title: Comparison of methods for detecting bottlenecks from microsatellite loci publication-title: Conservation Genetics – volume: 124 start-page: 224 year: 2007 end-page: 240 article-title: Age ratios as estimators of productivity: testing assumptions on a threatened seabird, the marbled murrelet ( ) publication-title: Auk – volume: 11 start-page: 139 year: 2010 end-page: 147 article-title: Founder effect and bottleneck signatures in an introduced, insular population of elk publication-title: Conservation Genetics – year: 2010a – volume: 56 start-page: 154 year: 2002 end-page: 166 article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microstatellite DNA using a heirarchical Bayesian model publication-title: Evolution – volume: 19 start-page: 208 year: 2004 end-page: 216 article-title: SNPs in ecology, evolution and conservation publication-title: Trends in Ecology & Evolution – volume: 22 start-page: 634 year: 2007 end-page: 642 article-title: Back to the future: museum specimens in population genetics publication-title: Trends in Ecology & Evolution – volume: 152 start-page: 1057 year: 1999 end-page: 1063 article-title: Clustered microsatellite mutations in the pipefish publication-title: Genetics – volume: 33 start-page: 266 year: 2009 end-page: 274 article-title: Relatedness mapping and tracts of relatedness for genome‐wide data in the presence of linkage disequilibrium publication-title: Genetic Epidemiology – volume: 22 start-page: 25 year: 2007 end-page: 33 article-title: Genetic monitoring as a promising tool for conservation and management publication-title: Trends in Ecology & Evolution – volume: 143 start-page: 28 year: 2010 end-page: 34 article-title: Pragmatic population viability targets in a rapidly changing world publication-title: Biological Conservation – volume: 144 start-page: 2001 year: 1996 end-page: 2014 article-title: Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data publication-title: Genetics – volume: 17 start-page: 3428 year: 2008 end-page: 3447 article-title: Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? publication-title: Molecular Ecology – volume: 6 start-page: 376 year: 1995 end-page: 377 article-title: Mutation rates at porcine microsatellite loci publication-title: Mammalian Genome – volume: 13 start-page: 27 year: 1998 end-page: 30 article-title: The role of natural history collections in documenting species declines publication-title: Trends in Ecology & Evolution – volume: 19 start-page: 2609 year: 2010 end-page: 2625 article-title: ABC as a flexible framework to estimate demography over space and time: some cons, many pros publication-title: Molecular Ecology – volume: 648 start-page: 82 year: 2008 end-page: 86 article-title: Characteristics of loci and individuals are associated with mutation rates in lesser kestrels ( ) publication-title: Mutation Research/Fundamentals and Mechanisms of Mutagenesis – volume: 66 start-page: 95 year: 1995 end-page: 107 article-title: Effective population‐size adult‐population size ratios in wildlife‐a review publication-title: Genetical Research – volume: 16 start-page: 3973 year: 2007 end-page: 3992 article-title: Molecular ecology of global change publication-title: Molecular Ecology – volume: 29 start-page: 473 year: 2012 end-page: 486 article-title: The architecture of long‐range haplotypes shared within and across populations publication-title: Molecular Biology and Evolution – volume: 14 start-page: 2915 year: 2005 end-page: 2922 article-title: Detecting past population bottlenecks using temporal genetic data publication-title: Molecular Ecology – volume: 19 start-page: 1198 year: 2002 end-page: 1202 article-title: Rates and patterns of microsatellite mutations in pink salmon publication-title: Molecular Biology and Evolution – volume: 12 start-page: 228 year: 1998 end-page: 237 article-title: Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data publication-title: Conservation Biology – volume: 24 start-page: 625 year: 2009 end-page: 633 article-title: Detecting range shifts from historical species occurrences: new perspectives on old data publication-title: Trends in Ecology & Evolution – volume: 62 start-page: 1408 year: 1998 end-page: 1415 article-title: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat publication-title: American Journal of Human Genetics – volume: 22 start-page: 1185 year: 2005 end-page: 1192 article-title: Bayesian coalescent inference of past population dynamics from molecular sequences publication-title: Molecular Biology and Evolution – volume: 91 start-page: 3166 year: 1994 end-page: 3170 article-title: Mutational processes of simple sequence repeat loci in human populations publication-title: Proceedings of the National Academy of Sciences – volume: 5 start-page: 435 year: 2004 end-page: 445 article-title: Microsatellites: simple sequences with complex evolution publication-title: Nature Reviews Genetics – volume: 11 start-page: 139 year: 2010 end-page: 147 article-title: Conservation genetics of population bottlenecks: the role of chance, selection, and history publication-title: Conservation Genetics – volume: 136 start-page: 501 year: 2009 end-page: 504 article-title: Microsatellite mutation rates in the eastern tiger salamander ( ) differ 10‐fold across loci publication-title: Genetics – volume: 20 start-page: 54 year: 2003 end-page: 61 article-title: Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees publication-title: Molecular Biology and Evolution – volume: 11 start-page: 1013 year: 2010 end-page: 1021 article-title: Evidence for recent population bottlenecks in northern spotted owls ( ) publication-title: Conservation Genetics – volume: 10 start-page: 305 year: 2001 end-page: 318 article-title: Detection of reduction in population size using data from microsatellite loci publication-title: Molecular Ecology – volume: 20 start-page: 3989 year: 2011 end-page: 4008 article-title: Bayesian inference of a historical bottleneck in a heavily exploited marine mammal publication-title: Molecular Ecology – volume: 123 start-page: 585 year: 1989b end-page: 595 article-title: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism publication-title: Genetics – volume: 11 start-page: 697 year: 2010 end-page: 709 article-title: Genomics and the future of conservation genetics publication-title: Nature Reviews Genetics – volume: 275 start-page: 2381 year: 2008 end-page: 2387 article-title: Demographic mechanism of a historical bird population collapse reconstructed using museum specimens publication-title: Proceedings of the Royal Society B – volume: 10 start-page: 465 year: 2009 end-page: 476 article-title: Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake publication-title: Conservation Genetics – volume: 29 start-page: 1 year: 1975 end-page: 10 article-title: The bottleneck effect and genetic variability in populations publication-title: Evolution – start-page: 151 year: 1980 end-page: 169 – volume: 11 start-page: 35 year: 2008 end-page: 45 article-title: The distribution of nuclear genetic variation and historical demography of sea otters publication-title: Animal Conservation – volume: 12 start-page: 499 year: 2011 end-page: 510 article-title: Genome‐wide genetic marker discovery and genotyping using next‐generation sequencing publication-title: Nature Reviews Genetics – volume: 118 start-page: 116 year: 2001 end-page: 121 article-title: Mutations at Y‐STR loci: implications for paternity testing and forensic analysis publication-title: Forensic Science International – volume: 17 start-page: 230 year: 2002 end-page: 241 article-title: Inbreeding effects in wild populations publication-title: Trends in Ecology & Evolution – volume: 24 start-page: 2713 year: 2008 end-page: 2719 article-title: Inferring population history with DIYABC: a user‐friendly approach to Approximate Bayesian Computations publication-title: Bioinformatics – volume: 13 start-page: 551 year: 2000 end-page: 560 article-title: Microsatellite mutations in litters of the Australian lizard publication-title: Journal of Evolutionary Biology – volume: 123 start-page: 597 year: 1989a end-page: 601 article-title: The effect of change in population size on DNA polymorphism publication-title: Genetics – volume: 18 start-page: 1088 year: 2004 end-page: 1098 article-title: Applying the declining population paradigm: diagnosing causes of poor reproduction in the marbled murrelet publication-title: Conservation Biology – volume: 10 start-page: 661 year: 1997 end-page: 664 article-title: The need to estimate power to link genetics and demography for conservation publication-title: Conservation Biology – volume: 16 start-page: 2450 year: 2007 end-page: 2462 article-title: Recent demographic bottlenecks are not accompanied by a genetic signature in banner‐tailed kangaroo rats ( ) publication-title: Molecular Ecology – volume: 88 start-page: 296 year: 2007 end-page: 305 article-title: Reconstructing the historic demography of an endangered seabird publication-title: Ecology – volume: 326 start-page: S61 year: 2003 end-page: S67 article-title: Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations publication-title: Comptes Rendus Biologies – year: 2010b – volume: 6 start-page: 876 year: 1996 end-page: 879 article-title: Mutations in sheep microsatellites publication-title: Genome Research – volume: 66 start-page: 31 year: 2010 end-page: 38 article-title: Low genetic diversity in several gopher tortoise ( ) populations in the DeSota National Forest, Mississippi publication-title: Herpetologica – volume: 26 start-page: 307 year: 2011 end-page: 316 article-title: Minimum viable populations: is there a ‘magic number’ for conservation practicioners? publication-title: Trends in Ecology & Evolution – volume: 164 start-page: 1139 year: 2003 end-page: 1160 article-title: Estimation of population growth or decline in genetically monitored populations publication-title: Genetics – volume: 16 start-page: 551 year: 2000 end-page: 558 article-title: Microsatellite mutations in the germline: implications for evolutionary inference publication-title: Trends in Genetics – volume: 188 start-page: 165 year: 2011 end-page: 179 article-title: Inferring population decline and expansion from microsatellite data: a simulation‐based evaluation of the MSvar methods publication-title: Genetics – volume: 18 start-page: 3173 year: 2009 end-page: 3184 article-title: population structure and representation of the endangered Amur tiger publication-title: Molecular Ecology – volume: 89 start-page: 2746 year: 2008 end-page: 2759 article-title: Characterizing source‐sink dynamics with genetic parentage assignments publication-title: Ecology – volume: 2 start-page: 255 year: 1999 end-page: 260 article-title: Do population size bottlenecks reduce evolutionary potential? publication-title: Animal Conservation – year: 2010 – volume: 90 start-page: 502 year: 1999 end-page: 503 article-title: BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data publication-title: Journal of Heredity – volume: 7 start-page: 263 year: 1999 end-page: 266 article-title: Experimentally observed germline mutations at human micro‐ and minisatellite loci publication-title: European Journal of Human Genetics – volume: 41 start-page: 379 year: 2010 end-page: 406 article-title: Approximate Bayesian Computation in evolution and ecology publication-title: Annual Review of Ecology, Evolution, and Systematics – start-page: 135 year: 1980 end-page: 148 – volume: 143 start-page: 1457 year: 1996 end-page: 1465 article-title: The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites publication-title: Genetics – volume: 16 start-page: 1516 year: 2006 end-page: 1528 article-title: Combining demographic and count‐based approaches to identify source‐sink dynamics of a threatened seabird publication-title: Ecological Applications – volume: 3 start-page: 245 year: 1988 end-page: 259 article-title: Interactive influence of infectious disease and genetic diversity in natural poputations publication-title: Trends in Ecology & Evolution – volume: 58 start-page: 219 year: 1999 end-page: 232 article-title: Zebrafish genetic map with 2000 microsatellite markers publication-title: Genomics – volume: 20 start-page: 291 year: 2010 end-page: 300 article-title: Population genetic inference from genomic sequence variation publication-title: Genome Research – volume: 24 start-page: 396 year: 2000 end-page: 399 article-title: The direction of microsatellite mutations is dependent upon allele length publication-title: Nature Genetics – volume: 7 start-page: 127 year: 2011 end-page: 130 article-title: Evidence for heterozygote instability in microsatellite loci in house wrens publication-title: Biology Letters – year: 2002 – volume: 153 start-page: 2013 year: 1999 end-page: 2029 article-title: Detecting population expansion and decline using microsatellites publication-title: Genetics – volume: 7 start-page: 575 year: 1998 end-page: 584 article-title: Single paternity of clutches and sperm storage in the promiscuous green turtle ( ) publication-title: Molecular Ecology – start-page: 1 year: 1990 end-page: 42 – volume: 89 start-page: 107 year: 2002 end-page: 113 article-title: Multiple paternity and female‐biased mutation at a microsatellite locus in the olive ridley sea turtle ( ) publication-title: Heredity – volume: 30 start-page: 1997 year: 2002 end-page: 2003 article-title: Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci publication-title: Nucleic Acids Research – volume: 268 start-page: 1387 year: 2001 end-page: 1394 article-title: Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers publication-title: Proceedings of the Royal Society B – volume: 11 start-page: 401 year: 2010 article-title: Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0) publication-title: BMC Bioinformatics – ident: e_1_2_9_81_1 doi: 10.1111/j.1365-294X.2005.02683.x – volume-title: Draft Revised Recovery Plan for the Northern Spotted Owl year: 2010 ident: e_1_2_9_86_1 – volume: 136 start-page: 501 year: 2009 ident: e_1_2_9_15_1 article-title: Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10‐fold across loci publication-title: Genetics – ident: e_1_2_9_64_1 doi: 10.1890/1051-0761(2006)016[1516:CDACAT]2.0.CO;2 – ident: e_1_2_9_66_1 doi: 10.1890/07-2026.1 – ident: e_1_2_9_62_1 doi: 10.1111/j.1365-294X.2008.03842.x – ident: e_1_2_9_49_1 doi: 10.1016/S0379-0738(00)00480-1 – ident: e_1_2_9_42_1 doi: 10.1093/molbev/msr133 – ident: e_1_2_9_22_1 doi: 10.1038/nrg3012 – ident: e_1_2_9_72_1 doi: 10.1016/j.tree.2006.08.009 – ident: e_1_2_9_39_1 doi: 10.1098/rspb.2008.0473 – ident: e_1_2_9_58_1 doi: 10.1111/j.1558-5646.1975.tb00807.x – ident: e_1_2_9_53_1 doi: 10.1111/j.1523-1739.1998.96388.x – ident: e_1_2_9_61_1 doi: 10.1016/j.mrfmmm.2008.09.012 – ident: e_1_2_9_70_1 doi: 10.1111/j.1365-294X.2007.03454.x – ident: e_1_2_9_56_1 doi: 10.1098/rsbl.2010.0643 – ident: e_1_2_9_3_1 doi: 10.1002/gepi.20378 – ident: e_1_2_9_24_1 doi: 10.1186/1471-2148-7-214 – volume-title: Bi‐National Recovery Plan for the Kemp’s Ridley Sea Turtle (Lepidochelys kempii) year: 2010 ident: e_1_2_9_59_1 – ident: e_1_2_9_85_1 doi: 10.1016/j.biocon.2009.09.001 – ident: e_1_2_9_91_1 doi: 10.1007/s10592-005-9009-5 – ident: e_1_2_9_5_1 doi: 10.1093/genetics/153.4.2013 – ident: e_1_2_9_45_1 doi: 10.1111/j.1365-294X.2011.05248.x – ident: e_1_2_9_73_1 doi: 10.1016/S0169-5347(97)01177-4 – ident: e_1_2_9_30_1 doi: 10.1046/j.1365-294x.1998.00355.x – ident: e_1_2_9_92_1 doi: 10.1038/74238 – ident: e_1_2_9_84_1 doi: 10.1016/j.tree.2009.05.009 – ident: e_1_2_9_18_1 doi: 10.1093/genetics/144.4.2001 – ident: e_1_2_9_25_1 doi: 10.1093/molbev/msi103 – ident: e_1_2_9_54_1 doi: 10.1093/jhered/89.3.238 – ident: e_1_2_9_67_1 doi: 10.1093/jhered/90.4.502 – ident: e_1_2_9_36_1 doi: 10.1046/j.1420-9101.2000.00189.x – ident: e_1_2_9_68_1 doi: 10.1101/gr.079509.108 – volume: 3 start-page: 245 year: 1988 ident: e_1_2_9_60_1 article-title: Interactive influence of infectious disease and genetic diversity in natural poputations publication-title: Trends in Ecology & Evolution – ident: e_1_2_9_2_1 doi: 10.1111/j.1469-1795.2007.00144.x – ident: e_1_2_9_11_1 doi: 10.1111/j.1755-263X.2010.00139.x – ident: e_1_2_9_80_1 doi: 10.1046/j.1365-2915.1999.00189.x – ident: e_1_2_9_38_1 doi: 10.1534/genetics.110.121764 – ident: e_1_2_9_19_1 doi: 10.1093/bioinformatics/btn514 – ident: e_1_2_9_76_1 doi: 10.1007/s10592-005-9095-4 – volume-title: Mexican Wolf Conservation Assessment year: 2010 ident: e_1_2_9_87_1 – ident: e_1_2_9_8_1 doi: 10.1093/molbev/msg005 – ident: e_1_2_9_26_1 doi: 10.1007/BF00364807 – ident: e_1_2_9_69_1 doi: 10.1111/j.1365-294X.2005.02586.x – ident: e_1_2_9_77_1 doi: 10.5751/ES-00358-060115 – ident: e_1_2_9_27_1 doi: 10.1016/S0168-9525(00)02139-9 – volume: 56 start-page: 154 year: 2002 ident: e_1_2_9_79_1 article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microstatellite DNA using a heirarchical Bayesian model publication-title: Evolution – ident: e_1_2_9_10_1 doi: 10.1111/j.1365-294X.2010.04690.x – ident: e_1_2_9_4_1 doi: 10.1038/nrg2844 – ident: e_1_2_9_63_1 doi: 10.1111/j.1523-1739.2004.00134.x – ident: e_1_2_9_47_1 doi: 10.1007/s10592-009-0013-z – ident: e_1_2_9_9_1 doi: 10.1890/06-0869 – ident: e_1_2_9_17_1 doi: 10.2307/5542 – start-page: 151 volume-title: Conservation Biology: An Evolutionary‐Ecological Perspective year: 1980 ident: e_1_2_9_75_1 – ident: e_1_2_9_35_1 doi: 10.1007/s10592-009-9946-5 – ident: e_1_2_9_89_1 doi: 10.1534/genetics.109.102509 – volume-title: Analysis and Management of Animal Populations year: 2002 ident: e_1_2_9_90_1 – ident: e_1_2_9_31_1 doi: 10.1016/j.tree.2011.03.001 – ident: e_1_2_9_57_1 doi: 10.1046/j.1365-294x.1999.00683.x – ident: e_1_2_9_52_1 doi: 10.1111/j.1365-294X.2008.03891.x – ident: e_1_2_9_50_1 doi: 10.1016/S0169-5347(02)02489-8 – ident: e_1_2_9_51_1 doi: 10.1098/rspb.2001.1607 – ident: e_1_2_9_20_1 doi: 10.1186/1471-2105-11-401 – start-page: 1 volume-title: Oxford Survey in Evolutionary Biology year: 1990 ident: e_1_2_9_46_1 – ident: e_1_2_9_48_1 doi: 10.1093/genetics/152.3.1057 – ident: e_1_2_9_14_1 doi: 10.1093/nar/30.9.1997 – ident: e_1_2_9_41_1 doi: 10.1101/gr.081398.108 – ident: e_1_2_9_44_1 doi: 10.1038/sj.hdy.6800103 – ident: e_1_2_9_55_1 doi: 10.1007/s10592-008-9624-z – ident: e_1_2_9_12_1 doi: 10.1007/s10592-010-0049-0 – ident: e_1_2_9_29_1 doi: 10.1655/08-083.1 – ident: e_1_2_9_33_1 doi: 10.1111/j.1469-1795.1999.tb00071.x – ident: e_1_2_9_40_1 doi: 10.1016/S1631-0691(03)00039-8 – ident: e_1_2_9_82_1 doi: 10.1093/genetics/143.3.1457 – ident: e_1_2_9_78_1 doi: 10.1093/oxfordjournals.molbev.a004177 – ident: e_1_2_9_7_1 doi: 10.1146/annurev-ecolsys-102209-144621 – ident: e_1_2_9_6_1 doi: 10.1007/978-0-387-21822-9 – ident: e_1_2_9_88_1 doi: 10.1016/j.tree.2007.08.017 – ident: e_1_2_9_13_1 doi: 10.1086/301869 – ident: e_1_2_9_16_1 doi: 10.1111/j.1365-294X.2007.03283.x – start-page: 135 volume-title: Conservation Biology: An Evolutionary‐Ecological Perspective year: 1980 ident: e_1_2_9_34_1 – ident: e_1_2_9_65_1 doi: 10.1642/0004-8038(2007)124[224:ARAEOP]2.0.CO;2 – ident: e_1_2_9_71_1 doi: 10.1038/sj.ejhg.5200257 – ident: e_1_2_9_74_1 doi: 10.1006/geno.1999.5824 – ident: e_1_2_9_32_1 doi: 10.1017/S0016672300034455 – ident: e_1_2_9_21_1 doi: 10.1101/gr.6.9.876 – ident: e_1_2_9_23_1 doi: 10.1073/pnas.91.8.3166 – ident: e_1_2_9_28_1 doi: 10.1038/nrg1348 – ident: e_1_2_9_43_1 doi: 10.1111/j.1365-294X.2009.04266.x – ident: e_1_2_9_37_1 doi: 10.1046/j.1365-294x.2001.01190.x – ident: e_1_2_9_83_1 doi: 10.1046/j.1523-1739.1996.10020661.x |
SSID | ssj0013255 |
Score | 2.564264 |
SecondaryResourceType | review_article |
Snippet | The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3403 |
SubjectTerms | Animal populations Animals bottleneck test Computer Simulation extinction Genetic diversity genetics Genetics, Population Genetics, Population - methods heterozygosity M-ratio methods microsatellite Microsatellite Repeats Models, Genetic Mutation mutation model population bottleneck Population decline Population Dynamics Population genetics probability Reliability Reliability engineering Species extinction Vertebrates Vertebrates - genetics |
Title | Reliability of genetic bottleneck tests for detecting recent population declines |
URI | https://api.istex.fr/ark:/67375/WNG-Z144MMW4-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2012.05635.x https://www.ncbi.nlm.nih.gov/pubmed/22646281 https://www.proquest.com/docview/1023440358 https://www.proquest.com/docview/1023757268 https://www.proquest.com/docview/1024094739 https://www.proquest.com/docview/1028037335 https://www.proquest.com/docview/1368582148 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejY7DLurXb6q0rGpTeHGxZXz6OkK4UUkpZadhFSIp0yUhKk0DTv37vyY5pRltK2c1YkkFP7-P3rPdByKHSzmGVk9xLW-c8KpfXdhzygofSawHuW4nZyMMzeXLJT0di1MY_YS5MUx-i--GGkpH0NQq4dfNNIU8RWjUfYYQW64Epr0QP8SQOID66YPcuFFIDVADsDDSPrjaDeh780Ialeo1Ev30Ihm6i2mSWjrfJZL2hJhpl0lsuXM_f_VPr8f_s-D1516JX-qNhtw_kVZjukDdNP8sVPA1SDezVLjnHUOemBPiKziIFNsVsSYqNy8DOBT-hgHEXcwqYmY4D3mSADaWgfsEI0uuuqxiMYe5mmH8kl8eDX_2TvG3eAKfOhcilK62OsgiCh7HlAoxxGUrHfCy4K2rmlNLCyyLWXIJb5K2v9VjH6KMAHexk9YlsTWfTsAcHBTpF4GQXOeAdVouogL-E1QBeo2QZUeuDMr6tbI4NNv6Yex4OUM4g5QxSziTKmduMlN3K66a6xzPWHCVe6BbYmwlGxylhrs5-mt_goQ6HV9z0M7K_ZhbTKoa5wUoZnBeV0I8OK6GYhOHv3TBIPF7j2GmYLdMcdMpVVT85RxeVqirxxJzUe4CBP5yRzw0vd3vC9GrJdJkRmTjy2dQxw0Efn768dOFX8hZfNxHR-2RrcbMM3wD3LdxBkui_ahVF5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajZXQvu1-8dZsGpW8OtqybH0dIl211GKWlYS_CUqSXlKQ0CTT79TtHdkwzulLG3gSSDDo6l-9Y50LIgdLWYpWT1Mm6THlQNi3riU8z7nOnBbhvOWYjVyM5POPfxmLctgPCXJimPkT3ww0lI-prFHD8Ib0t5TFEq-RjDNFiPbDlhegBoNzFBt_RvzphN54UYgtUgOwMdI8utsN6bv3Slq3aRbJf3wZEt3FtNExHT8jF5khNPMq0t1ranvv1R7XH_3Tmp-RxC2Dp54bjnpEHfvacPGxaWq5hNIhlsNcvyA-Mdm6qgK_pPFDgVEyYpNi7DEydd1MKMHe5oACb6cTjYwaYUQoaGOwgvewai8Ecpm_6xUtydjQ47Q_Ttn8DXDwXIpU2r3WQmRfcT2ouwB7nPrfMhYzbrGRWKS2czELJJXhGrnalnugQXBCghq0sXpGd2Xzm38BNgVoRuNgGDpCHlSIoYDFRa8CvQbKEqM1NGdcWN8ceGxfmhpMDlDNIOYOUM5Fy5johebfzsinwcY89h5EZug311RQD5JQw56Mv5ic4qVV1zk0_IfsbbjGtblgYLJbBeVYI_ddpJRSTMP2pmwahx5eceubnq7gG_XJVlHeu0VmhikLcsSa2H2DgEifkdcPM3Zkww1oynSdERpa8N3VMNejj6O2_bvxI9oan1bE5_jr6_o48wiVNgPQ-2Vlerfx7gIFL-yGK92_Gu0n_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZaxsxEBYloaUvvY9N01aF0rc1u1pd-1gcu-lhE0pDTF_ESiu9uNgmtiHOr--Mdr3EJQ2h9G1BI4NGc3xjzUHIe6WtxS4nqZNVmfKgbFpWtU8z7nOnBYRvOVYjj8by-JR_mYhJm_-EtTBNf4juDzfUjGivUcEXddhV8pihVfIJZmixHrjyQvQAT-5zmWmU8KPv7MqLQpyACoidgenRxW5Wz7W_tOOq9pHrF9fh0F1YG_3S8CGZbk_UpKNMe-uV7bnLP5o9_p8jPyIPWvhKPzby9pjc8bMn5G4z0HIDX4PYBHvzlJxgrnPTA3xD54GCnGK5JMXJZeDovJtSALmrJQXQTGuPTxngRCnYX_CCdNGNFYM1LN70y2fkdDj40T9O2-kNcO1ciFTavNJBZl5wX1dcgDfOfW6ZCxm3WcmsUlo4mYWSS4iLXOVKXesQXBBghK0snpO92XzmX8JFgVERSGwDB8DDShEUCJioNKDXIFlC1PaijGtbm-OEjV_mSogDnDPIOYOcM5Fz5iIhebdz0bT3uMWeD1EWug3V-RTT45QwZ-NP5ieEqKPRGTf9hBxuhcW0lmFpsFUG51kh9F-XlVBMwvK7bhlUHt9xqpmfryMNRuWqKG-k0VmhikLcQBOHDzAIiBPyopHl7kxYXy2ZzhMio0TemjtmNOjj18G_bnxL7p0cDc23z-Ovr8h9pGiyow_J3up87V8DBlzZN1G5fwOzIUi3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+of+genetic+bottleneck+tests+for+detecting+recent+population+declines&rft.jtitle=Molecular+ecology&rft.au=Peery%2C+M+Zachariah&rft.au=Kirby%2C+Rebecca&rft.au=Reid%2C+Brendan+N&rft.au=Stoelting%2C+Ricka&rft.date=2012-07-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=21&rft.issue=14&rft.spage=3403&rft_id=info:doi/10.1111%2Fj.1365-294X.2012.05635.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |