Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes

Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alle...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 1610 - 14
Main Authors Novikova, Gloriia, Kapoor, Manav, TCW, Julia, Abud, Edsel M., Efthymiou, Anastasia G., Chen, Steven X., Cheng, Haoxiang, Fullard, John F., Bendl, Jaroslav, Liu, Yiyuan, Roussos, Panos, Björkegren, Johan LM, Liu, Yunlong, Poon, Wayne W., Hao, Ke, Marcora, Edoardo, Goate, Alison M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.03.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1 , and ZYX ) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility. This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD.
AbstractList Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1 , and ZYX ) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility. This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD.
Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.
Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1 , and ZYX ) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.
This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD.
Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.
Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD.
ArticleNumber 1610
Author Kapoor, Manav
Abud, Edsel M.
Fullard, John F.
TCW, Julia
Liu, Yiyuan
Goate, Alison M.
Cheng, Haoxiang
Novikova, Gloriia
Roussos, Panos
Chen, Steven X.
Poon, Wayne W.
Bendl, Jaroslav
Hao, Ke
Liu, Yunlong
Efthymiou, Anastasia G.
Marcora, Edoardo
Björkegren, Johan LM
Author_xml – sequence: 1
  givenname: Gloriia
  orcidid: 0000-0002-3916-2627
  surname: Novikova
  fullname: Novikova, Gloriia
  organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai
– sequence: 2
  givenname: Manav
  surname: Kapoor
  fullname: Kapoor, Manav
  organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
– sequence: 3
  givenname: Julia
  orcidid: 0000-0002-3054-9374
  surname: TCW
  fullname: TCW, Julia
  organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
– sequence: 4
  givenname: Edsel M.
  surname: Abud
  fullname: Abud, Edsel M.
  organization: Department of Neurobiology & Behavior, University of California Irvine, Sue and Bill Gross Stem Cell Research Center, University of California Irvine
– sequence: 5
  givenname: Anastasia G.
  surname: Efthymiou
  fullname: Efthymiou, Anastasia G.
  organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai
– sequence: 6
  givenname: Steven X.
  orcidid: 0000-0003-3463-5824
  surname: Chen
  fullname: Chen, Steven X.
  organization: Department of Medical and Molecular Genetics, Indiana University School of Medicine, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
– sequence: 7
  givenname: Haoxiang
  orcidid: 0000-0002-1393-6006
  surname: Cheng
  fullname: Cheng, Haoxiang
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
– sequence: 8
  givenname: John F.
  surname: Fullard
  fullname: Fullard, John F.
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
– sequence: 9
  givenname: Jaroslav
  orcidid: 0000-0001-9989-2720
  surname: Bendl
  fullname: Bendl, Jaroslav
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
– sequence: 10
  givenname: Yiyuan
  surname: Liu
  fullname: Liu, Yiyuan
  organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai
– sequence: 11
  givenname: Panos
  orcidid: 0000-0002-4640-6239
  surname: Roussos
  fullname: Roussos, Panos
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
– sequence: 12
  givenname: Johan LM
  orcidid: 0000-0003-1945-7425
  surname: Björkegren
  fullname: Björkegren, Johan LM
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset
– sequence: 13
  givenname: Yunlong
  surname: Liu
  fullname: Liu, Yunlong
  organization: Department of Medical and Molecular Genetics, Indiana University School of Medicine, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
– sequence: 14
  givenname: Wayne W.
  orcidid: 0000-0003-0625-3968
  surname: Poon
  fullname: Poon, Wayne W.
  organization: Institute for Memory Impairments and Neurological Disorders, University of California Irvine
– sequence: 15
  givenname: Ke
  orcidid: 0000-0002-1815-9197
  surname: Hao
  fullname: Hao, Ke
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
– sequence: 16
  givenname: Edoardo
  orcidid: 0000-0002-3829-4927
  surname: Marcora
  fullname: Marcora, Edoardo
  email: edoardo.marcora@mssm.edu
  organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
– sequence: 17
  givenname: Alison M.
  orcidid: 0000-0002-0576-2472
  surname: Goate
  fullname: Goate, Alison M.
  email: alison.goate@mssm.edu
  organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33712570$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:146090939$$DView record from Swedish Publication Index
BookMark eNp9ks1u1DAUhS1URMvQF2CBIrFhE_Bf7MwGqar4GakSG1hbjn2TeprYxc4UhhWvwevxJDiTKe10UW9s3XvOp-ur8xwd-eABoZcEvyWY1e8SJ1zIElNSUlJTVm6foBOKOSmJpOzo3vsYnaa0xvmwJak5f4aOGZOEVhKfoJ8rP0IX9eiCL0JbnPW_LsENEP_-_pMK6xLoBEUHHkZnUqG9LYYt9MHZqRiGqegs-NG1Du4M0aWrIkK36fUY4raAHoYsmgETLb1AT1vdJzjd3wv07eOHr-efy4svn1bnZxelEZyPpbQUU8oawpjBldWNBMKb2oKwzEpJ-VIIrXMbY2sMJnUDralwq3XbiLaq2AKtZq4Neq2uoxt03KqgndoVQuyUjvlvPSiQADXmesmx4JXBWmMQyzrjDLHY6swqZ1b6Adeb5oC2L13lFygumMgTL9D7WZ87A1iTNxB1f2A77Hh3qbpwo-SyqjDDGfBmD4jh-wbSqAaXDPS99hA2SdEKEypoTUSWvn4gXYdN9Hm1kwqLWmZpVr26P9H_UW4DkQX1LDAxpBShVcaNu3TkAV2vCFZT_NQcP5Xjp3bxU9tspQ-st_RHTWy_0iz2HcS7sR9x_QNw1_Ff
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3269446
crossref_primary_10_1016_j_gde_2023_102146
crossref_primary_10_1016_j_jmb_2021_167221
crossref_primary_10_1038_s41593_022_01222_2
crossref_primary_10_3390_ijms232012081
crossref_primary_10_3233_JAD_215217
crossref_primary_10_1007_s10142_023_01270_2
crossref_primary_10_1186_s13024_022_00588_y
crossref_primary_10_1371_journal_pgen_1010681
crossref_primary_10_1007_s00221_024_06853_4
crossref_primary_10_1126_sciadv_add1101
crossref_primary_10_1038_s41380_023_02076_1
crossref_primary_10_1186_s12974_022_02486_y
crossref_primary_10_1016_j_bbih_2022_100462
crossref_primary_10_3389_fnagi_2022_1027224
crossref_primary_10_1016_j_xhgg_2022_100143
crossref_primary_10_3390_genes12071008
crossref_primary_10_1038_s41588_021_00976_y
crossref_primary_10_1016_j_neuron_2024_11_018
crossref_primary_10_1016_j_str_2021_10_009
crossref_primary_10_1523_ENEURO_0445_24_2024
crossref_primary_10_1016_j_biopsych_2024_08_027
crossref_primary_10_1186_s13040_024_00395_9
crossref_primary_10_1016_j_neuron_2024_05_023
crossref_primary_10_3390_jpm11060474
crossref_primary_10_1038_s41588_022_01149_1
crossref_primary_10_1210_endrev_bnae033
crossref_primary_10_1038_s41398_021_01373_z
crossref_primary_10_1007_s00401_025_02844_z
crossref_primary_10_3390_genes14020347
crossref_primary_10_1016_j_omtm_2022_09_007
crossref_primary_10_3389_fnagi_2022_996646
crossref_primary_10_1016_j_ebiom_2023_104511
crossref_primary_10_3390_biomedicines10092098
crossref_primary_10_1016_j_stem_2023_03_017
crossref_primary_10_1016_j_tig_2025_01_001
crossref_primary_10_1016_j_jbc_2024_108099
crossref_primary_10_18632_aging_204957
crossref_primary_10_1038_s41467_023_40611_4
crossref_primary_10_1038_s41588_025_02099_0
crossref_primary_10_1038_s41380_022_01926_8
crossref_primary_10_1038_s41598_021_99352_3
crossref_primary_10_1016_j_ajhg_2023_12_015
crossref_primary_10_1084_jem_20222105
crossref_primary_10_1016_j_cell_2022_05_017
crossref_primary_10_2147_CIA_S357558
crossref_primary_10_1093_nar_gkaf138
crossref_primary_10_1002_alz_14181
crossref_primary_10_1016_j_xgen_2023_100263
crossref_primary_10_1186_s13073_022_01134_7
crossref_primary_10_1080_07853890_2024_2407525
crossref_primary_10_1098_rstb_2022_0378
crossref_primary_10_1016_j_heliyon_2024_e39013
crossref_primary_10_1186_s12974_022_02580_1
crossref_primary_10_3390_life13010221
crossref_primary_10_1093_hmg_ddac208
crossref_primary_10_3390_ijms23084259
crossref_primary_10_3233_JAD_220680
crossref_primary_10_1016_j_conb_2022_102674
crossref_primary_10_3389_fimmu_2023_1102530
crossref_primary_10_1038_s41540_024_00376_y
crossref_primary_10_1080_21655979_2021_1982846
crossref_primary_10_1093_gerona_glac179
crossref_primary_10_1038_s41467_022_33885_7
crossref_primary_10_1038_s41593_022_01205_3
crossref_primary_10_3389_fimmu_2023_1168539
crossref_primary_10_3390_genes12081247
crossref_primary_10_1038_s41467_021_24243_0
crossref_primary_10_3389_fnagi_2022_988143
crossref_primary_10_1016_j_neuron_2022_10_015
crossref_primary_10_1021_acs_jproteome_4c00161
crossref_primary_10_3389_fnagi_2021_727928
crossref_primary_10_3390_cells12182213
crossref_primary_10_1038_s41531_022_00307_w
crossref_primary_10_1016_j_cell_2023_08_040
crossref_primary_10_1002_jmv_28826
crossref_primary_10_1021_acs_analchem_2c00676
crossref_primary_10_1038_s41594_022_00896_3
crossref_primary_10_15252_msb_202311627
crossref_primary_10_1002_alz_14444
crossref_primary_10_1007_s00018_022_04614_6
crossref_primary_10_1016_j_biopsych_2023_05_020
crossref_primary_10_1016_j_tins_2022_02_005
crossref_primary_10_3390_ijms26062443
crossref_primary_10_3389_fnins_2024_1358998
crossref_primary_10_1016_j_celrep_2023_113269
crossref_primary_10_1038_s41467_023_42825_y
crossref_primary_10_1016_j_nbd_2021_105576
crossref_primary_10_1002_alz_70031
crossref_primary_10_2174_0115672050261526231013095933
crossref_primary_10_1007_s13311_021_01152_0
crossref_primary_10_1007_s13311_023_01441_w
crossref_primary_10_1016_j_nbd_2022_105615
crossref_primary_10_1007_s12031_021_01963_y
crossref_primary_10_1126_science_abi8654
crossref_primary_10_1017_S0033291724000771
crossref_primary_10_1093_bib_bbac043
crossref_primary_10_1016_j_compbiomed_2024_108924
crossref_primary_10_1248_cpb_c23_00464
crossref_primary_10_1002_alz_13168
crossref_primary_10_1007_s10571_023_01392_y
crossref_primary_10_1038_s41467_024_46315_7
crossref_primary_10_3390_ijms23147867
crossref_primary_10_1016_j_immuni_2024_07_019
crossref_primary_10_3390_genes13010039
crossref_primary_10_3390_ijms242115946
crossref_primary_10_1016_j_celrep_2023_112956
crossref_primary_10_3389_fgene_2022_794202
crossref_primary_10_1007_s00018_021_03986_5
crossref_primary_10_1016_j_neuron_2024_04_009
crossref_primary_10_1038_s41577_024_01104_7
crossref_primary_10_1080_17460441_2024_2335210
crossref_primary_10_1038_s41598_022_23477_2
crossref_primary_10_1126_sciadv_adj4452
crossref_primary_10_1007_s00401_024_02790_2
crossref_primary_10_1016_j_bcp_2021_114754
Cites_doi 10.1016/j.cell.2016.09.037
10.1371/journal.pgen.1004798
10.1016/j.cell.2014.11.023
10.1038/sj.emboj.7601824
10.1038/ng.2802
10.1016/S0140-6736(12)62129-1
10.1371/journal.pgen.1004383
10.1016/S0304-3940(98)00995-1
10.1038/ng.3916
10.1186/s13148-016-0179-4
10.1093/bioinformatics/btv470
10.1126/science.1261669
10.1042/bj3300513
10.3389/fgene.2013.00080
10.1002/acn3.582
10.1186/gb-2008-9-9-r137
10.1038/s41588-018-0081-4
10.1093/bioinformatics/btx609
10.1038/mp.2013.1
10.1016/j.immuni.2008.11.006
10.1016/j.cell.2016.09.034
10.1093/bioinformatics/btp352
10.1002/ana.24305
10.1016/S1474-4422(19)30435-1
10.1016/j.devcel.2010.01.015
10.1016/j.cell.2014.11.018
10.1016/j.tins.2017.08.003
10.1016/0092-8674(95)90120-5
10.1101/294629
10.1038/s41588-018-0238-1
10.1038/nn.4587
10.1016/j.immuni.2017.07.017
10.1186/s13024-017-0184-x
10.1093/nar/gkr917
10.1084/jem.20121069
10.1086/519795
10.1126/science.aal3222
10.1038/ni.3818
10.1126/science.aay0793
10.1371/journal.pgen.1004722
10.1038/s41398-018-0150-6
10.1126/science.aad6970
10.1038/s41588-019-0493-9
10.1038/nmeth.1923
10.1093/nar/gks776
10.1242/jcs.00718
10.1016/j.febslet.2011.08.043
10.1074/jbc.275.12.8331
10.1038/nature14248
10.1038/s41593-019-0525-x
10.1038/s41588-018-0311-9
10.1186/s13073-017-0486-1
10.1038/cr.2016.1
10.1371/journal.pgen.1007427
10.1101/2019.12.20.874099
10.1016/j.neuron.2019.07.002
10.1038/s41588-020-00721-x
10.1038/s41597-019-0183-6
10.1126/science.1246949
10.1083/jcb.201709069
10.1074/jbc.M113.515700
10.1038/ng.2213
10.1371/journal.pgen.1003240
10.1016/j.cell.2019.05.054
10.1038/nature11247
10.1001/jama.2013.2973
10.1101/2020.01.06.896159
10.1056/NEJMoa1211103
10.1038/ng.3246
10.1038/sdata.2018.185
10.1016/j.neuron.2017.03.042
10.1038/ng.3538
10.1038/ng.3404
10.1016/j.ajhg.2017.08.012
10.1016/j.neuron.2019.12.007
10.1016/j.cell.2015.11.024
10.1016/j.cell.2017.05.018
10.1016/j.cell.2016.10.026
10.1002/cm.10083
10.1038/nmeth.2688
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1038/s41467-021-21823-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Freely Accessible)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_e7ee804a940645c0aa0e698c50c1d0da
oai_swepub_ki_se_463613
PMC7955030
33712570
10_1038_s41467_021_21823_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
  grantid: K01AG062683; F31 AG059337-01; R01AG050986
  funderid: https://doi.org/10.13039/100000049
– fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
– fundername: NIEHS NIH HHS
  grantid: R01 ES029212
– fundername: NIA NIH HHS
  grantid: RF1 AG054011
– fundername: NIA NIH HHS
  grantid: F31 AG059337
– fundername: NIA NIH HHS
  grantid: R01 AG050986
– fundername: NIA NIH HHS
  grantid: P50 AG016573
– fundername: NIA NIH HHS
  grantid: T32 AG049688
– fundername: NIA NIH HHS
  grantid: K01 AG062683
– fundername: NIA NIH HHS
  grantid: U01 AG058635
– fundername: NIA NIH HHS
  grantid: P01 AG000538
– fundername: NIA NIH HHS
  grantid: U01 AG052411
– fundername: ;
– fundername: ;
  grantid: K01AG062683; F31 AG059337-01; R01AG050986
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
4.4
ABAWZ
ADTPV
AOWAS
BAPOH
CAG
COF
D8T
EJD
LGEZI
LOTEE
NADUK
NXXTH
PUEGO
ZZAVC
ID FETCH-LOGICAL-c644t-7d20223b133c05dab7e14b8de6d3d7724966aab1300dcc018befc50faafb6f553
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:35:56 EDT 2025
Mon Aug 25 03:27:20 EDT 2025
Thu Aug 21 18:13:20 EDT 2025
Tue Aug 05 11:15:15 EDT 2025
Wed Aug 13 08:10:34 EDT 2025
Mon Jul 21 06:02:46 EDT 2025
Tue Jul 01 04:17:20 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-7d20223b133c05dab7e14b8de6d3d7724966aab1300dcc018befc50faafb6f553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3829-4927
0000-0002-3054-9374
0000-0002-4640-6239
0000-0002-0576-2472
0000-0002-3916-2627
0000-0003-3463-5824
0000-0001-9989-2720
0000-0003-0625-3968
0000-0002-1393-6006
0000-0002-1815-9197
0000-0003-1945-7425
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-21823-y
PMID 33712570
PQID 2500687012
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e7ee804a940645c0aa0e698c50c1d0da
swepub_primary_oai_swepub_ki_se_463613
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955030
proquest_miscellaneous_2501262816
proquest_journals_2500687012
pubmed_primary_33712570
crossref_citationtrail_10_1038_s41467_021_21823_y
crossref_primary_10_1038_s41467_021_21823_y
springer_journals_10_1038_s41467_021_21823_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-12
PublicationDateYYYYMMDD 2021-03-12
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp3521:CAS:528:DC%2BD1MXpslertr8%3D
PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795
RajTIntegrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibilityNat. Genet.201850158415921:CAS:528:DC%2BC1cXitVCitL3L30297968635424410.1038/s41588-018-0238-1
YangJConditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traitsNat. Genet.2012443693751:CAS:528:DC%2BC38XktVaksr0%3D22426310359315810.1038/ng.2213S1–3
ZhuZIntegration of summary data from GWAS and eQTL studies predicts complex trait gene targetsNat. Genet.2016484814871:CAS:528:DC%2BC28XkvFGrs7g%3D2701911010.1038/ng.3538
FranzenOCardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseasesScience20163538278302016Sci...353..827F1:CAS:528:DC%2BC28XhtlCju7zE27540175553413910.1126/science.aad6970
Kunkle, B. W. et al. Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing. https://doi.org/10.1101/294629.
ZhangZH3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosusClin. Epigenetics2016826839600473627910.1186/s13148-016-0179-41:CAS:528:DC%2BC2sXlvVOktb8%3D
HuangK-LA common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s diseaseNat. Neurosci.201720105210611:CAS:528:DC%2BC2sXhtVantLzK28628103575933410.1038/nn.4587
HansenDVHansonJEShengMMicroglia in Alzheimer’s diseaseJ. Cell Biol.20182174594721:CAS:528:DC%2BC1cXhs1eht7fO29196460580081710.1083/jcb.201709069
MarioniREGWAS on family history of Alzheimer’s diseaseTransl. Psychiatry2018829777097595989010.1038/s41398-018-0150-6
BennerCProspects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studiesAm. J. Hum. Genet.20171015395511:CAS:528:DC%2BC2sXhsFGnsrjE28942963563017910.1016/j.ajhg.2017.08.012
Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. (2020) https://doi.org/10.1038/s41588-020-00721-x.
ZhangYModel-based analysis of ChIP-Seq (MACS)Genome Biol.2008918798982259271510.1186/gb-2008-9-9-r1371:CAS:528:DC%2BD1cXhtl2ksrjE
ChapuisJIncreased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathologyMol. Psychiatry201318122512341:CAS:528:DC%2BC3sXhs1yiu7rI23399914380766110.1038/mp.2013.1
EfthymiouAGGoateAMLate onset Alzheimer’s disease genetics implicates microglial pathways in disease riskMol. Neurodegener.2017124328549481544675210.1186/s13024-017-0184-x1:CAS:528:DC%2BC1cXitVaitbjN
KichaevGIntegrating functional data to prioritize causal variants in statistical fine-mapping studiesPLoS Genet.201410e100472225357204421460510.1371/journal.pgen.10047221:CAS:528:DC%2BC2cXitVyiurfE
NugentAATREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challengeNeuron2020105837854.e91:CAS:528:DC%2BB3cXksFWhuw%3D%3D3190252810.1016/j.neuron.2019.12.007
Dementia statistics | Alzheimer’s Disease International. https://www.alz.co.uk/research/statistics.
Ridge, P. G. et al. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med.9 (2017).
JansenIEGenome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease riskNat. Genet.2019514044131:CAS:528:DC%2BC1MXlvFSit70%3D30617256683667510.1038/s41588-018-0311-9
ChenLGenetic drivers of epigenetic and transcriptional variation in human immuneCells Cell201616713981414.e241:CAS:528:DC%2BC28XhvFWgu73F2786325110.1016/j.cell.2016.10.026
LambertJ-CMeta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s DiseaseNat. Genet.201345145214581:CAS:528:DC%2BC3sXhs1yiu7vJ24162737389625910.1038/ng.2802
VardarajanBNCoding mutations in SORL1 and Alzheimer diseaseAnn. Neurol.2015772152271:CAS:528:DC%2BC2MXhvFegsrY%3D25382023436719910.1002/ana.24305
GiambartolomeiCBayesian test for colocalisation between pairs of genetic association studies using summary statisticsPLoS Genet.201410e100438324830394402249110.1371/journal.pgen.10043831:CAS:528:DC%2BC2cXhsVGku7rK
Young, A., Kumasaka, N., Calvert, F. & Hammond, T. R. A map of transcriptional heterogeneity and regulatory variation in human microglia. bioRxiv (2019).
SmallSASimoes-SpassovSMayeuxRPetskoGAEndosomal traffic jams represent a pathogenic hub and therapeutic target in Alzheimer’s diseaseTrends Neurosci.2017405926021:CAS:528:DC%2BC2sXhsVahtLrP28962801565462110.1016/j.tins.2017.08.003
JonssonTVariant of TREM2 associated with the risk of Alzheimer’s diseaseN. Engl. J. Med.20133681071161:CAS:528:DC%2BC3sXovVyiug%3D%3D2315090810.1056/NEJMoa1211103
Corces, M. R. et al. Single-cell epigenomic identification of inherited risk loci in Alzheimer’s and Parkinson’s disease. https://doi.org/10.1101/2020.01.06.896159.
JavierreBMLineage-specific genome architecture links enhancers and non-coding disease variants to target gene promotersCell201616713691384.e191:CAS:528:DC%2BC28XhvFWgu7rM27863249512389710.1016/j.cell.2016.09.037
FinucaneHKPartitioning heritability by functional annotation using genome-wide association summary statisticsNat. Genet.20154712281:CAS:528:DC%2BC2MXhsFKqu7rF26414678462628510.1038/ng.3404
RaghavanNSWhole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s diseaseAnn. Clin. Transl. Neurol.201858328421:CAS:528:DC%2BC1cXhtlWru7fK30009200604377510.1002/acn3.582
BradyOAZhouXHuFRegulated intramembrane proteolysis of the frontotemporal lobar degeneration risk factor, TMEM106B, by signal peptide peptidase-like 2a (SPPL2a)J. Biol. Chem.201428919670196801:CAS:528:DC%2BC2cXhtFCktLvN24872421409407710.1074/jbc.M113.515700
Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science (2014) https://doi.org/10.1126/science.1246949.
BuenrostroJDGiresiPGZabaLCChangHYGreenleafWJTransposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome positionNat. Methods201310121312181:CAS:528:DC%2BC3sXhsFOiu7jO24097267395982510.1038/nmeth.2688
RathoreNPaired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s diseasePLoS Genet.201814e100742730388101623540210.1371/journal.pgen.10074271:CAS:528:DC%2BC1MXjslygtLw%3D
FengXSp1/Sp3 and PU.1 differentially regulate β5integrin gene expression in macrophages and osteoblastsJ. Biol. Chem.2000275833183401:CAS:528:DC%2BD3cXit1entLo%3D1072266310.1074/jbc.275.12.8331
BehnkeJSignal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tailFEBS Lett.2011585295129571:CAS:528:DC%2BC3MXht1ejurzM2189627310.1016/j.febslet.2011.08.043
ReitzCVariants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset alzheimer disease in African AmericansJAMA2013309148314921:CAS:528:DC%2BC3sXmvV2rtbo%3D23571587366765310.1001/jama.2013.2973
SteinbergSLoss-of-function variants in ABCA7 confer risk of Alzheimer’s diseaseNat. Genet.2015474454471:CAS:528:DC%2BC2MXltFWkt7c%3D2580728310.1038/ng.3246
CoetzeeSGCoetzeeGAHazelettDJmotifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sitesBioinformatics201531384738491:CAS:528:DC%2BC28XhtlaqsrrM262729844653394
KimSAChoC-SKimS-RBullSBYooYJA new haplotype block detection method for dense genome sequencing data based on interval graph modeling of clusters of highly correlated SNPsBioinformatics2018343883971:CAS:528:DC%2BC1cXitlGhtbnK2902898610.1093/bioinformatics/btx609
SimsRRare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s diseaseNat. Genet.201749137313841:CAS:528:DC%2BC2sXhtFOru7vL28714976566903910.1038/ng.3916
WangMThe Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s diseaseSci. Data201851:CAS:528:DC%2BC1cXhs1ylt7fE30204156613218710.1038/sdata.2018.185
BurgosPVSorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complexDev. Cell2010184254361:CAS:528:DC%2BC3cXlsVSht7s%3D20230749284104110.1016/j.devcel.2010.01.015
Abud, E. M. et al. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron (2017) https://doi.org/10.1016/j.neuron.2017.03.042.
GosselinDEnvironment drives selection and function of enhancers controlling tissue-specific macrophage identitiesCell2014159132713401:CAS:528:DC%2BC2cXitFOqsr%2FK25480297436438510.1016/j.cell.2014.11.023
Andrews, S. J., Fulton-Howard, B. & Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. (2020) https://doi.org/10.1016/S1474-4422(19)30435-1.
Roadmap Epigenomics Consortium.Integrative analysis of 111 reference human epigenomesNature2015518317330453001010.1038/nature142481:CAS:528:DC%2BC2MXjtVSktbc%3D
WardLDKellisMHaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variantsNucleic Acids Res.201240D930D9341:CAS:528:DC%2BC3MXhs12hurzP2206485110.1093/nar/gkr917
KangKInterferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAFImmunity201747235250.e41:CAS:528:DC%2BC2sXhtleltrvK28813657556808910.1016/j.immuni.2017.07.017
KajihoHRIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathwayJ. Cell Sci.2003116415941681:CAS:528:DC%2BD3sXovFWmsb0%3D1297250510.1242/jcs.00718
ENCODE P
B Novakovic (21823_CR35) 2016; 167
Y Lavin (21823_CR20) 2014; 159
S Sati (21823_CR77) 2012; 40
H Kajiho (21823_CR56) 2003; 116
AG Efthymiou (21823_CR2) 2017; 12
BM Javierre (21823_CR19) 2016; 167
N Rathore (21823_CR31) 2018; 14
SV Schmidt (21823_CR38) 2016; 26
RE Marioni (21823_CR10) 2018; 8
IE Jansen (21823_CR11) 2019; 51
J Behnke (21823_CR61) 2011; 585
C Reitz (21823_CR25) 2013; 309
21823_CR15
H Tanahashi (21823_CR60) 1999; 261
M Trost (21823_CR54) 2009; 30
L Chen (21823_CR28) 2016; 167
Z Zhang (21823_CR78) 2016; 8
21823_CR1
KW Yoon (21823_CR65) 2015; 349
Z Ding (21823_CR48) 2014; 10
DA Jaitin (21823_CR69) 2019; 178
A Nott (21823_CR46) 2019; 366
J Yang (21823_CR41) 2012; 44
Z Tang (21823_CR47) 2015; 163
J Schneppenheim (21823_CR62) 2013; 210
Y Zhang (21823_CR76) 2008; 9
HK Finucane (21823_CR13) 2018; 50
H Li (21823_CR75) 2009; 25
R Sims (21823_CR5) 2017; 49
S Steinberg (21823_CR6) 2015; 47
C Giambartolomei (21823_CR29) 2014; 10
X Feng (21823_CR43) 2000; 275
J Shahbazi (21823_CR64) 2013; 4
21823_CR23
21823_CR67
J-C Lambert (21823_CR17) 2013; 45
Z Zhu (21823_CR14) 2016; 48
D Gosselin (21823_CR21) 2014; 159
SH Park (21823_CR36) 2017; 18
HK Finucane (21823_CR16) 2015; 47
PV Burgos (21823_CR58) 2010; 18
ENCODE Project Consortium. (21823_CR34) 2012; 489
FS Southwick (21823_CR55) 2003; 54
A Duilio (21823_CR59) 1998; 330
T Jonsson (21823_CR3) 2013; 368
OA Brady (21823_CR63) 2014; 289
K-L Huang (21823_CR12) 2017; 20
B Langmead (21823_CR74) 2012; 9
G Kichaev (21823_CR32) 2014; 10
MW Feinberg (21823_CR44) 2007; 26
H Keren-Shaul (21823_CR70) 2017; 169
AA Nugent (21823_CR71) 2020; 105
J Chapuis (21823_CR26) 2013; 18
S Purcell (21823_CR79) 2007; 81
21823_CR80
NS Raghavan (21823_CR68) 2018; 5
O Franzen (21823_CR24) 2016; 353
SA Kim (21823_CR40) 2018; 34
B Soskic (21823_CR72) 2019; 51
21823_CR9
C Benner (21823_CR33) 2017; 101
21823_CR8
SG Coetzee (21823_CR39) 2015; 31
K Kang (21823_CR37) 2017; 47
J Hasselmann (21823_CR53) 2019; 103
LD Ward (21823_CR30) 2012; 40
GE Hoffman (21823_CR50) 2019; 6
Cross-Disorder Group of the Psychiatric Genomics Consortium. (21823_CR18) 2013; 381
Roadmap Epigenomics Consortium. (21823_CR73) 2015; 518
T Raj (21823_CR27) 2018; 50
R Mancuso (21823_CR52) 2019; 22
DV Hansen (21823_CR7) 2018; 217
M Wang (21823_CR51) 2018; 5
21823_CR49
BN Vardarajan (21823_CR4) 2015; 77
21823_CR45
JD Buenrostro (21823_CR81) 2013; 10
S Garnier (21823_CR22) 2013; 9
21823_CR42
H Stenmark (21823_CR57) 1995; 83
SA Small (21823_CR66) 2017; 40
References_xml – reference: HoffmanGECommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and bipolar disorderSci. Data2019631551426676014910.1038/s41597-019-0183-61:CAS:528:DC%2BC1MXhvVemsL3I
– reference: SteinbergSLoss-of-function variants in ABCA7 confer risk of Alzheimer’s diseaseNat. Genet.2015474454471:CAS:528:DC%2BC2MXltFWkt7c%3D2580728310.1038/ng.3246
– reference: Andrews, S. J., Fulton-Howard, B. & Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. (2020) https://doi.org/10.1016/S1474-4422(19)30435-1.
– reference: RathoreNPaired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s diseasePLoS Genet.201814e100742730388101623540210.1371/journal.pgen.10074271:CAS:528:DC%2BC1MXjslygtLw%3D
– reference: KimSAChoC-SKimS-RBullSBYooYJA new haplotype block detection method for dense genome sequencing data based on interval graph modeling of clusters of highly correlated SNPsBioinformatics2018343883971:CAS:528:DC%2BC1cXitlGhtbnK2902898610.1093/bioinformatics/btx609
– reference: SmallSASimoes-SpassovSMayeuxRPetskoGAEndosomal traffic jams represent a pathogenic hub and therapeutic target in Alzheimer’s diseaseTrends Neurosci.2017405926021:CAS:528:DC%2BC2sXhsVahtLrP28962801565462110.1016/j.tins.2017.08.003
– reference: TangZCTCF-mediated human 3D genome architecture reveals chromatin topology for transcriptionCell2015163161116271:CAS:528:DC%2BC2MXitVSksb7F26686651473414010.1016/j.cell.2015.11.024
– reference: FeinbergMWThe Kruppel-like factor KLF4 is a critical regulator of monocyte differentiationEMBO J.200726413841481:CAS:528:DC%2BD2sXhtVKiu77F17762869223066810.1038/sj.emboj.7601824
– reference: ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genomeNature201248957742012Natur.489...57T10.1038/nature112471:CAS:528:DC%2BC38XhtlGnsbzN
– reference: BradyOAZhouXHuFRegulated intramembrane proteolysis of the frontotemporal lobar degeneration risk factor, TMEM106B, by signal peptide peptidase-like 2a (SPPL2a)J. Biol. Chem.201428919670196801:CAS:528:DC%2BC2cXhtFCktLvN24872421409407710.1074/jbc.M113.515700
– reference: NovakovicBβ-glucan reverses the epigenetic state of LPS-induced immunological toleranceCell201616713541368.e141:CAS:528:DC%2BC28XhvFWgu7jI27863248592732810.1016/j.cell.2016.09.034
– reference: Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science (2014) https://doi.org/10.1126/science.1246949.
– reference: PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795
– reference: SimsRRare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s diseaseNat. Genet.201749137313841:CAS:528:DC%2BC2sXhtFOru7vL28714976566903910.1038/ng.3916
– reference: MarioniREGWAS on family history of Alzheimer’s diseaseTransl. Psychiatry2018829777097595989010.1038/s41398-018-0150-6
– reference: SchneppenheimJThe intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chainJ. Exp. Med.201321041581:CAS:528:DC%2BC3sXht1Oiur4%3D23267015354970710.1084/jem.20121069
– reference: HasselmannJDevelopment of a chimeric model to study and manipulate human microglia in vivoNeuron201910310161033.e101:CAS:528:DC%2BC1MXhsVOgtbbO31375314713810110.1016/j.neuron.2019.07.002
– reference: ChapuisJIncreased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathologyMol. Psychiatry201318122512341:CAS:528:DC%2BC3sXhs1yiu7rI23399914380766110.1038/mp.2013.1
– reference: Ridge, P. G. et al. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med.9 (2017).
– reference: RaghavanNSWhole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s diseaseAnn. Clin. Transl. Neurol.201858328421:CAS:528:DC%2BC1cXhtlWru7fK30009200604377510.1002/acn3.582
– reference: LavinYTissue-resident macrophage enhancer landscapes are shaped by the local microenvironmentCell2014159131213261:CAS:528:DC%2BC2cXitFOrt7bP25480296443721310.1016/j.cell.2014.11.018
– reference: Cross-Disorder Group of the Psychiatric Genomics Consortium.Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysisLancet201338113711379371401010.1016/S0140-6736(12)62129-11:CAS:528:DC%2BC3sXjsFCnsrk%3D
– reference: StenmarkHVitaleGUllrichOZerialMRabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusionCell1995834234321:CAS:528:DyaK2MXpt1Oltrs%3D852147210.1016/0092-8674(95)90120-5
– reference: SoskicBChromatin activity at GWAS loci identifies T cell states driving complex immune diseasesNat. Genet.201951148614931:CAS:528:DC%2BC1MXhvVarsb%2FF31548716687245210.1038/s41588-019-0493-9
– reference: LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp3521:CAS:528:DC%2BD1MXpslertr8%3D
– reference: JansenIEGenome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease riskNat. Genet.2019514044131:CAS:528:DC%2BC1MXlvFSit70%3D30617256683667510.1038/s41588-018-0311-9
– reference: SchmidtSVThe transcriptional regulator network of human inflammatory macrophages is defined by open chromatinCell Res.2016261511701:CAS:528:DC%2BC28XksFOnuw%3D%3D26729620474660910.1038/cr.2016.1
– reference: DingZQuantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome associationPLoS Genet.201410e100479825411781423895510.1371/journal.pgen.10047981:CAS:528:DC%2BC2cXitFGgtbfI
– reference: WangMThe Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s diseaseSci. Data201851:CAS:528:DC%2BC1cXhs1ylt7fE30204156613218710.1038/sdata.2018.185
– reference: ChenLGenetic drivers of epigenetic and transcriptional variation in human immuneCells Cell201616713981414.e241:CAS:528:DC%2BC28XhvFWgu73F2786325110.1016/j.cell.2016.10.026
– reference: YoonKWControl of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53Science2015349126166926228159521503910.1126/science.12616691:CAS:528:DC%2BC2MXht1egur7F
– reference: JonssonTVariant of TREM2 associated with the risk of Alzheimer’s diseaseN. Engl. J. Med.20133681071161:CAS:528:DC%2BC3sXovVyiug%3D%3D2315090810.1056/NEJMoa1211103
– reference: ZhangYModel-based analysis of ChIP-Seq (MACS)Genome Biol.2008918798982259271510.1186/gb-2008-9-9-r1371:CAS:528:DC%2BD1cXhtl2ksrjE
– reference: Young, A., Kumasaka, N., Calvert, F. & Hammond, T. R. A map of transcriptional heterogeneity and regulatory variation in human microglia. bioRxiv (2019).
– reference: Kunkle, B. W. et al. Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing. https://doi.org/10.1101/294629.
– reference: FranzenOCardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseasesScience20163538278302016Sci...353..827F1:CAS:528:DC%2BC28XhtlCju7zE27540175553413910.1126/science.aad6970
– reference: BurgosPVSorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complexDev. Cell2010184254361:CAS:528:DC%2BC3cXlsVSht7s%3D20230749284104110.1016/j.devcel.2010.01.015
– reference: DuilioAFaraonioRMinopoliGZambranoNRussoTFe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer’s beta-amyloid precursor proteinBiochem. J.1998330Pt 15135191:CAS:528:DyaK1cXhs12jsLc%3D9461550121916710.1042/bj3300513
– reference: Abud, E. M. et al. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron (2017) https://doi.org/10.1016/j.neuron.2017.03.042.
– reference: RajTIntegrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibilityNat. Genet.201850158415921:CAS:528:DC%2BC1cXitVCitL3L30297968635424410.1038/s41588-018-0238-1
– reference: EfthymiouAGGoateAMLate onset Alzheimer’s disease genetics implicates microglial pathways in disease riskMol. Neurodegener.2017124328549481544675210.1186/s13024-017-0184-x1:CAS:528:DC%2BC1cXitVaitbjN
– reference: KajihoHRIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathwayJ. Cell Sci.2003116415941681:CAS:528:DC%2BD3sXovFWmsb0%3D1297250510.1242/jcs.00718
– reference: SatiSGhoshSJainVScariaVSenguptaSGenome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA lociNucleic Acids Res.20124010018100311:CAS:528:DC%2BC38Xhs1WqsbbF22923516348823110.1093/nar/gks776
– reference: ZhangZH3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosusClin. Epigenetics2016826839600473627910.1186/s13148-016-0179-41:CAS:528:DC%2BC2sXlvVOktb8%3D
– reference: KichaevGIntegrating functional data to prioritize causal variants in statistical fine-mapping studiesPLoS Genet.201410e100472225357204421460510.1371/journal.pgen.10047221:CAS:528:DC%2BC2cXitVyiurfE
– reference: HansenDVHansonJEShengMMicroglia in Alzheimer’s diseaseJ. Cell Biol.20182174594721:CAS:528:DC%2BC1cXhs1eht7fO29196460580081710.1083/jcb.201709069
– reference: MancusoRStem-cell-derived human microglia transplanted in mouse brain to study human diseaseNat. Neurosci.201922211121161:CAS:528:DC%2BC1MXitVCksLrF3165934210.1038/s41593-019-0525-x
– reference: CoetzeeSGCoetzeeGAHazelettDJmotifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sitesBioinformatics201531384738491:CAS:528:DC%2BC28XhtlaqsrrM262729844653394
– reference: ReitzCVariants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset alzheimer disease in African AmericansJAMA2013309148314921:CAS:528:DC%2BC3sXmvV2rtbo%3D23571587366765310.1001/jama.2013.2973
– reference: NugentAATREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challengeNeuron2020105837854.e91:CAS:528:DC%2BB3cXksFWhuw%3D%3D3190252810.1016/j.neuron.2019.12.007
– reference: BennerCProspects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studiesAm. J. Hum. Genet.20171015395511:CAS:528:DC%2BC2sXhsFGnsrjE28942963563017910.1016/j.ajhg.2017.08.012
– reference: Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. (2020) https://doi.org/10.1038/s41588-020-00721-x.
– reference: JaitinDALipid-associated macrophages control metabolic homeostasis in a Trem2-dependent mannerCell2019178686698.e141:CAS:528:DC%2BC1MXht1Ojsr3M31257031706868910.1016/j.cell.2019.05.054
– reference: HuangK-LA common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s diseaseNat. Neurosci.201720105210611:CAS:528:DC%2BC2sXhtVantLzK28628103575933410.1038/nn.4587
– reference: GiambartolomeiCBayesian test for colocalisation between pairs of genetic association studies using summary statisticsPLoS Genet.201410e100438324830394402249110.1371/journal.pgen.10043831:CAS:528:DC%2BC2cXhsVGku7rK
– reference: FinucaneHKPartitioning heritability by functional annotation using genome-wide association summary statisticsNat. Genet.20154712281:CAS:528:DC%2BC2MXhsFKqu7rF26414678462628510.1038/ng.3404
– reference: VardarajanBNCoding mutations in SORL1 and Alzheimer diseaseAnn. Neurol.2015772152271:CAS:528:DC%2BC2MXhvFegsrY%3D25382023436719910.1002/ana.24305
– reference: ZhuZIntegration of summary data from GWAS and eQTL studies predicts complex trait gene targetsNat. Genet.2016484814871:CAS:528:DC%2BC28XkvFGrs7g%3D2701911010.1038/ng.3538
– reference: WardLDKellisMHaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variantsNucleic Acids Res.201240D930D9341:CAS:528:DC%2BC3MXhs12hurzP2206485110.1093/nar/gkr917
– reference: YangJConditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traitsNat. Genet.2012443693751:CAS:528:DC%2BC38XktVaksr0%3D22426310359315810.1038/ng.2213S1–3
– reference: ParkSHType I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activationNat. Immunol.201718110411161:CAS:528:DC%2BC2sXhtlGku7zK28825701560545710.1038/ni.3818
– reference: Dementia statistics | Alzheimer’s Disease International. https://www.alz.co.uk/research/statistics.
– reference: BuenrostroJDGiresiPGZabaLCChangHYGreenleafWJTransposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome positionNat. Methods201310121312181:CAS:528:DC%2BC3sXhsFOiu7jO24097267395982510.1038/nmeth.2688
– reference: KangKInterferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAFImmunity201747235250.e41:CAS:528:DC%2BC2sXhtleltrvK28813657556808910.1016/j.immuni.2017.07.017
– reference: FinucaneHKHeritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell typesNat. Genet.2018506216291:CAS:528:DC%2BC1cXnsVGrtr4%3D29632380589679510.1038/s41588-018-0081-4
– reference: TanahashiHTabiraTMolecular cloning of human Fe65L2 and its interaction with the Alzheimer’s beta-amyloid precursor proteinNeurosci. Lett.19992611431461:CAS:528:DyaK1MXhtFeju7c%3D1008196910.1016/S0304-3940(98)00995-1
– reference: ShahbaziJLockRLiuTTumor protein 53-induced nuclear protein 1 enhances p53 function and represses tumorigenesisFront. Genet.201348023717325365252010.3389/fgene.2013.000801:CAS:528:DC%2BC2MXht1Ojs7vJ
– reference: Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science356, 3222 (2017).
– reference: NottABrain cell type–specific enhancer–promoter interactome maps and disease-risk associationScience2019366113411392019Sci...366.1134N1:CAS:528:DC%2BC1MXitlWisrjM31727856702821310.1126/science.aay0793
– reference: Keren-ShaulHA unique microglia type associated with restricting development of Alzheimer’s diseaseCell201716912761290.e171:CAS:528:DC%2BC2sXpslCqtbY%3D2860235110.1016/j.cell.2017.05.018
– reference: TrostMThe phagosomal proteome in interferon-gamma-activated macrophagesImmunity2009301431541:CAS:528:DC%2BD1MXhtlCnsbg%3D1914431910.1016/j.immuni.2008.11.006
– reference: LambertJ-CMeta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s DiseaseNat. Genet.201345145214581:CAS:528:DC%2BC3sXhs1yiu7vJ24162737389625910.1038/ng.2802
– reference: JavierreBMLineage-specific genome architecture links enhancers and non-coding disease variants to target gene promotersCell201616713691384.e191:CAS:528:DC%2BC28XhvFWgu7rM27863249512389710.1016/j.cell.2016.09.037
– reference: FengXSp1/Sp3 and PU.1 differentially regulate β5integrin gene expression in macrophages and osteoblastsJ. Biol. Chem.2000275833183401:CAS:528:DC%2BD3cXit1entLo%3D1072266310.1074/jbc.275.12.8331
– reference: GosselinDEnvironment drives selection and function of enhancers controlling tissue-specific macrophage identitiesCell2014159132713401:CAS:528:DC%2BC2cXitFOqsr%2FK25480297436438510.1016/j.cell.2014.11.023
– reference: GarnierSGenome-wide haplotype analysis of cis expression quantitative trait loci in monocytesPLoS Genet.20139e10032401:CAS:528:DC%2BC3sXivVOltL0%3D23382694356112910.1371/journal.pgen.1003240
– reference: BehnkeJSignal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tailFEBS Lett.2011585295129571:CAS:528:DC%2BC3MXht1ejurzM2189627310.1016/j.febslet.2011.08.043
– reference: SouthwickFSLiWZhangFZeileWLPurichDLActin-based endosome and phagosome rocketing in macrophages: activation by the secretagogue antagonists lanthanum and zincCell Motil. Cytoskeleton20035441551:CAS:528:DC%2BD3sXhtVSgtbc%3D1245159410.1002/cm.10083
– reference: Roadmap Epigenomics Consortium.Integrative analysis of 111 reference human epigenomesNature2015518317330453001010.1038/nature142481:CAS:528:DC%2BC2MXjtVSktbc%3D
– reference: Corces, M. R. et al. Single-cell epigenomic identification of inherited risk loci in Alzheimer’s and Parkinson’s disease. https://doi.org/10.1101/2020.01.06.896159.
– reference: LangmeadBSalzbergSLFast gapped-read alignment with Bowtie 2Nat. Methods201293573591:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923
– volume: 167
  start-page: 1369
  year: 2016
  ident: 21823_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.037
– volume: 10
  start-page: e1004798
  year: 2014
  ident: 21823_CR48
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004798
– volume: 159
  start-page: 1327
  year: 2014
  ident: 21823_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.023
– volume: 26
  start-page: 4138
  year: 2007
  ident: 21823_CR44
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601824
– volume: 45
  start-page: 1452
  year: 2013
  ident: 21823_CR17
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2802
– volume: 381
  start-page: 1371
  year: 2013
  ident: 21823_CR18
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)62129-1
– volume: 10
  start-page: e1004383
  year: 2014
  ident: 21823_CR29
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004383
– volume: 261
  start-page: 143
  year: 1999
  ident: 21823_CR60
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(98)00995-1
– volume: 49
  start-page: 1373
  year: 2017
  ident: 21823_CR5
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3916
– volume: 8
  year: 2016
  ident: 21823_CR78
  publication-title: Clin. Epigenetics
  doi: 10.1186/s13148-016-0179-4
– volume: 31
  start-page: 3847
  year: 2015
  ident: 21823_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv470
– volume: 349
  start-page: 1261669
  year: 2015
  ident: 21823_CR65
  publication-title: Science
  doi: 10.1126/science.1261669
– volume: 330
  start-page: 513
  issue: Pt 1
  year: 1998
  ident: 21823_CR59
  publication-title: Biochem. J.
  doi: 10.1042/bj3300513
– volume: 4
  start-page: 80
  year: 2013
  ident: 21823_CR64
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2013.00080
– volume: 5
  start-page: 832
  year: 2018
  ident: 21823_CR68
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.582
– volume: 9
  year: 2008
  ident: 21823_CR76
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 50
  start-page: 621
  year: 2018
  ident: 21823_CR13
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0081-4
– volume: 34
  start-page: 388
  year: 2018
  ident: 21823_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx609
– volume: 18
  start-page: 1225
  year: 2013
  ident: 21823_CR26
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.1
– volume: 30
  start-page: 143
  year: 2009
  ident: 21823_CR54
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.11.006
– volume: 167
  start-page: 1354
  year: 2016
  ident: 21823_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.034
– volume: 25
  start-page: 2078
  year: 2009
  ident: 21823_CR75
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 77
  start-page: 215
  year: 2015
  ident: 21823_CR4
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24305
– ident: 21823_CR8
  doi: 10.1016/S1474-4422(19)30435-1
– volume: 18
  start-page: 425
  year: 2010
  ident: 21823_CR58
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.01.015
– volume: 159
  start-page: 1312
  year: 2014
  ident: 21823_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.018
– volume: 40
  start-page: 592
  year: 2017
  ident: 21823_CR66
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.08.003
– volume: 83
  start-page: 423
  year: 1995
  ident: 21823_CR57
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90120-5
– ident: 21823_CR9
  doi: 10.1101/294629
– volume: 50
  start-page: 1584
  year: 2018
  ident: 21823_CR27
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0238-1
– volume: 20
  start-page: 1052
  year: 2017
  ident: 21823_CR12
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4587
– volume: 47
  start-page: 235
  year: 2017
  ident: 21823_CR37
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.07.017
– volume: 12
  start-page: 43
  year: 2017
  ident: 21823_CR2
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-017-0184-x
– volume: 40
  start-page: D930
  year: 2012
  ident: 21823_CR30
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr917
– volume: 210
  start-page: 41
  year: 2013
  ident: 21823_CR62
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20121069
– volume: 81
  start-page: 559
  year: 2007
  ident: 21823_CR79
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– ident: 21823_CR15
  doi: 10.1126/science.aal3222
– volume: 18
  start-page: 1104
  year: 2017
  ident: 21823_CR36
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3818
– volume: 366
  start-page: 1134
  year: 2019
  ident: 21823_CR46
  publication-title: Science
  doi: 10.1126/science.aay0793
– volume: 10
  start-page: e1004722
  year: 2014
  ident: 21823_CR32
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004722
– volume: 8
  year: 2018
  ident: 21823_CR10
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-018-0150-6
– volume: 353
  start-page: 827
  year: 2016
  ident: 21823_CR24
  publication-title: Science
  doi: 10.1126/science.aad6970
– volume: 51
  start-page: 1486
  year: 2019
  ident: 21823_CR72
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0493-9
– ident: 21823_CR1
– volume: 9
  start-page: 357
  year: 2012
  ident: 21823_CR74
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 40
  start-page: 10018
  year: 2012
  ident: 21823_CR77
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks776
– volume: 116
  start-page: 4159
  year: 2003
  ident: 21823_CR56
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00718
– volume: 585
  start-page: 2951
  year: 2011
  ident: 21823_CR61
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2011.08.043
– volume: 275
  start-page: 8331
  year: 2000
  ident: 21823_CR43
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.12.8331
– volume: 518
  start-page: 317
  year: 2015
  ident: 21823_CR73
  publication-title: Nature
  doi: 10.1038/nature14248
– volume: 22
  start-page: 2111
  year: 2019
  ident: 21823_CR52
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0525-x
– volume: 51
  start-page: 404
  year: 2019
  ident: 21823_CR11
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0311-9
– ident: 21823_CR67
  doi: 10.1186/s13073-017-0486-1
– volume: 26
  start-page: 151
  year: 2016
  ident: 21823_CR38
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.1
– volume: 14
  start-page: e1007427
  year: 2018
  ident: 21823_CR31
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007427
– ident: 21823_CR42
  doi: 10.1101/2019.12.20.874099
– volume: 103
  start-page: 1016
  year: 2019
  ident: 21823_CR53
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.07.002
– ident: 21823_CR45
  doi: 10.1038/s41588-020-00721-x
– volume: 6
  year: 2019
  ident: 21823_CR50
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0183-6
– ident: 21823_CR23
  doi: 10.1126/science.1246949
– volume: 217
  start-page: 459
  year: 2018
  ident: 21823_CR7
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201709069
– volume: 289
  start-page: 19670
  year: 2014
  ident: 21823_CR63
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.515700
– volume: 44
  start-page: 369
  year: 2012
  ident: 21823_CR41
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2213
– volume: 9
  start-page: e1003240
  year: 2013
  ident: 21823_CR22
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003240
– volume: 178
  start-page: 686
  year: 2019
  ident: 21823_CR69
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.054
– volume: 489
  start-page: 57
  year: 2012
  ident: 21823_CR34
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 309
  start-page: 1483
  year: 2013
  ident: 21823_CR25
  publication-title: JAMA
  doi: 10.1001/jama.2013.2973
– ident: 21823_CR49
  doi: 10.1101/2020.01.06.896159
– volume: 368
  start-page: 107
  year: 2013
  ident: 21823_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211103
– volume: 47
  start-page: 445
  year: 2015
  ident: 21823_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3246
– volume: 5
  year: 2018
  ident: 21823_CR51
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.185
– ident: 21823_CR80
  doi: 10.1016/j.neuron.2017.03.042
– volume: 48
  start-page: 481
  year: 2016
  ident: 21823_CR14
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3538
– volume: 47
  start-page: 1228
  year: 2015
  ident: 21823_CR16
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3404
– volume: 101
  start-page: 539
  year: 2017
  ident: 21823_CR33
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.08.012
– volume: 105
  start-page: 837
  year: 2020
  ident: 21823_CR71
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.12.007
– volume: 163
  start-page: 1611
  year: 2015
  ident: 21823_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.024
– volume: 169
  start-page: 1276
  year: 2017
  ident: 21823_CR70
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
– volume: 167
  start-page: 1398
  year: 2016
  ident: 21823_CR28
  publication-title: Cells Cell
  doi: 10.1016/j.cell.2016.10.026
– volume: 54
  start-page: 41
  year: 2003
  ident: 21823_CR55
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/cm.10083
– volume: 10
  start-page: 1213
  year: 2013
  ident: 21823_CR81
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2688
SSID ssj0000391844
Score 2.6292236
Snippet Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory...
Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory...
This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1610
SubjectTerms 631/114/2785
631/208/191
631/378/1689/1283
631/378/371
Alleles
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer's disease
Annotations
Datasets
Enhancers
Gene expression
Gene Expression Regulation
Gene mapping
Gene regulation
Genes
Genetic Predisposition to Disease - genetics
Genetics
Genome-wide association studies
Genome-Wide Association Study
Genomics
Health risks
Humanities and Social Sciences
Humans
Induced Pluripotent Stem Cells - metabolism
Loci
Macrophages
Microglia
Microglia - metabolism
Monocytes
multidisciplinary
Myeloid Cells
Neurodegenerative diseases
Nominations
Pathogenesis
Pluripotency
Regulatory sequences
Regulatory Sequences, Nucleic Acid - genetics
Risk
Science
Science (multidisciplinary)
Stem cells
Transcriptome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJSQuiPIbKMhIiAtEdWIndo4FURUkOFGpN8s_E3XFNkGbrcT2xGvwejwJYzubNoDKhdvKsbPO-LNnRjP-hpAXDatV6QvIoXQiFw3I3Dpe5YVta9VYJ40Id4c_fqqPjsWHk-rkSqmvkBOW6IGT4PZBAigmTCMCs5pjxjCoG-Uq5grPfDSNUOddcabiGcwbdF3EeEuGcbU_iHgmhIyEQFrO881ME0XC_r9ZmX8mS04R09_YRaNGOrxDbo-mJD1In7BLbkB3l9xMxSU398i39yMTBEqe9i09WF6cwuIMVj-__xjoGJihiJ9wjXGgpvP0bAPLfuFDY7isPNCFT8lEcDkg5KLTVapg3682FFL-eXpBeNtwnxwfvvv89igf6yzkDq2hdS59iZqcW3RXHau8sRIKYZWH2nOP1rdAl8gYGwJf3jlWKAstyr81prV1W1X8Adnp-g4eEepR27HSN5VweDTYVgH6V6VDM0e2QjGTkWIrc-1GEvJQC2OpYzCcK53WSeM66bhOepORV9OYr4mC49reb8JSTj0DfXZsQFDpEVT6X6DKyN4WCHrc04NGYxGBLVGjZ-T59Bh3YwixmA7689inKOtSFXVGHibcTDPhXBahZmBG5AxRs6nOn3SL08j4LRt0JDmOfL3F3uW0rhPFy4TP2T-MTV_wF-hAF1fwx_9DZk_IrTLsrpDrWO6RnfXqHJ6iwba2z-Le_AU1QEAr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4s1CQUZCXCCqEzuJc0IFsRQkOFGpN8uPCV11m5TNVmI58Tf4e_wSZhJvVgtob5FjO449L3vG3zD2vBKFzkIKCWReJaqCMnFe5knq6kJXzpdW0d3hT5-Lo2P18SQ_iQduXQyrXMvEXlCH1tMZ-QGqauy2RHn6-uJbQlmjyLsaU2hcZddS1DQU0qWn78czFkI_10rFuzJC6oNO9ZKB4hIIulwmqy191MP2_8_W_DdkcvSb_oUx2uul6S12MxqU_HCggNvsCjR32PUhxeTqLvv-IeJB4PzztuaH8x-nMDuHxe-fvzoe3TMcqYguM3bcNoGfr2DezgIV0pXljs_CEFIEmwYUkc4XQx77drHiMEShDx1Qb909djx99-XtURKzLSQebaJlUoYM9bl0uGn1Ig_WlZAqpwMUQQa0wRVujKx15P4K3otUO6h9Lmpra1fUeS7vs72mbeAh4wF1nshClSuPAsLVGnCXlXk0dspaaWEnLF3PufERipwyYsxN7xKX2gzrZHCdTL9OZjVhL8c2FwMQx87ab2gpx5oEot0XtIuvJvKkgRJAC2UrRaB9XlgroKg0_pRPgwg4zP01IZjI2Z3Z0OGEPRtfI0-So8U20F72dZAcM50WE_ZgoJtxJFKWKWUOnLByi6K2hrr9ppmd9rjfZYXbSYktX61pbzOsXVPxYqDPrS_EojN8AkOgcal8tPt3H7MbGfENxTJm-2xvubiEJ2iQLd3Tnuv-AOlvNzc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyQuiH9SCjIS4gIRTuwkznFBVGUluECl3iz_TOiKbYKSrdRw4jV4PZ6EsZNNFagqcYsc25nYM5lxZuYbQl6ULJepSyCG1IpYlFDExvIsTkyVy9LYQgufO_zxU350LJYn2ckOSbe5MCFoP0Bahs_0NjrsTSeCSPuAAo85zuP-BtnzUO3I23uLxfLzcvqz4jHPpRBjhgzj8orBMy0UwPqvsjD_DZScvKV_IYsGbXR4h9wezUi6GAi_S3agvkduDoUl-_vk4sOIAoGrTpuKLtY_TmF1Bu3vn786OjplKPKOT2HsqK4dPeth3aycb_SJyh1duSGQCC4H-Dh02g7V65u2pzDEng8T-Nm6B-T48P2Xd0fxWGMhtmgJbeLCpajFucGjqmWZ06aARBjpIHfcoeUt8DiktfFOL2ctS6SBymas0royeZVl_CHZrZsaHhPqUNOx1JWZsPhZMJUEPFulFk2cohKS6Ygk2zVXdgQg93Uw1io4wrlUwz4p3CcV9kn1EXk1jfk-wG9c2_ut38qpp4fODg1N-1WNrKSgAJBM6FJ4qD7LtGaQlxJfyiaOOSTzYMsIapTnTqGhiExdoDaPyPPpNkqid6_oGprz0CdJ81QmeUQeDXwzUcJ5kfh6gREpZhw1I3V-p16dBrTvosRDJMeRr7e8d0nWdUvxcuDP2RPGpm94BcpDxSV8___mfUJupV6OfERjekB2N-05PEWzbGOejXL4B0StNvA
  priority: 102
  providerName: Springer Nature
Title Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
URI https://link.springer.com/article/10.1038/s41467-021-21823-y
https://www.ncbi.nlm.nih.gov/pubmed/33712570
https://www.proquest.com/docview/2500687012
https://www.proquest.com/docview/2501262816
https://pubmed.ncbi.nlm.nih.gov/PMC7955030
http://kipublications.ki.se/Default.aspx?queryparsed=id:146090939
https://doaj.org/article/e7ee804a940645c0aa0e698c50c1d0da
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN8ERmUkBA8QFsdO7Dwg1FUro9ImBFTqW-TYDqvoEkg6RPjrOdtpp0I18dJWju049l3urnf3O4SeZ1EqYk1MaGLFQpYZHhaKJiEpylRkheKS2dzh07P0ZMoms2S2g1bljvoNbLeadrae1LRZvPn1o3sHDP_Wp4yLw5Y5drfBBhaPnIbdLtoHycRtRYPTXt13b2aagUFjHc1xxEgIHWifR7N9mg1Z5SD9t-mh_4ZTrn2qf-GPOpk1vo1u9comHnrquIN2THUX3fDlJ7t76OeHHisCzgbXJR4ufp-b-YVpXra4d9xgoC-b5thiWWl80ZlFPde20SYzt3iufbCRuRpgY9Vx4yvc102HjY9P9xPY2dr7aDo-_jI6Cfs6DKECbWkZch2DpKcFmLMqSrQsuCGsENqkmmrQzhmYTFIW1jGmlYqIKEypkqiUsizSMknoA7RX1ZV5hLAGaRjFOkuYgldHUQoD9lesQA3iJRORDBBZ7XiuepByWytjkTtnORW5P6UcTil3p5R3AXq1HvPdQ3Rc2_vIHuS6p4XXdg118zXvuTU33BgRMZkxC-enIikjk2YCHkoRHWlY5sGKDPIVyeagTALhc5D4AXq2vgzcal0wsjL1petD4jQWJA3QQ08165VQyomtKRggvkFPG0vdvFLNzx0iOM_A0KQw8vWK8q6Wdd1WvPDUuXGHvukb_DK5hZMj9PF_PM8TdDO2rGNDHeMDtLdsLs1T0NeWxQDt8hmHTzF-P0D7w-Hk8wS-j47PPn6C1lE6Grh_QgaOWf8AqWdDeg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJulBYwEXCBqHk7iHBAqj2WXPk6t1Jtx7Em7Ypu0m60gnPgb_Al-FL-EmbxWC2hvvUWO7TiZ8YwnM_MNY88SN5K-9cAB3whHJBA7qQlCx0uzSCapibWg3OG9_Wh0KD4dhUdr7FeXC0NhlZ1MrAW1LQz9I99CVY3TxihP35ydO1Q1iryrXQmNhi12oPqKJlv5evwe6fvc94cfDt6NnLaqgGNQ98-d2KK97wcpGmfGDa1OY_BEKi1ENrB41hRoAGidkpvHGuN6MoXMhG6mdZZGWUhVIlDkXxEBanLKTB9-7P_pENq6FKLNzXEDuVWKWhJRHARBpQdOtaT_6jIB_zvb_hui2ftp_8I0rfXg8Ca70R5g-XbDcbfYGuS32dWmpGV1h30bt_gTSG9eZHx7-v0EJqcw-_3jZ8lbdxBHrqXkyZLr3PLTCqbFxFIjpUiXfGKbECZYDKAIeD6DYyo2VswqDk3UezMBzVbeZYeXQod7bD0vcnjAuEUd6_o2CYVBgZRmEtCq8w0eruJMSFcPmNd9c2Va6HOqwDFVtQs-kKqhk0I6qZpOqhqwl_2Yswb4Y2Xvt0TKvieBdtcNxexYtTJAQQwgXaETQSCBxtXahSiR-FLGs67FZW52jKBaSVKqBd8P2NP-NsoAcuzoHIqLuo_nR770ogG73_BNv5IgiD2qVDhg8RJHLS11-U4-OalxxuMEzdcAR77qeG-xrFWf4kXDn0tPaJu-4BUoAqnzgoerX_cJuzY62NtVu-P9nQ123ac9RHGU_iZbn88u4BEeBufp43oHcvb5srf8H6aKdR0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqViAuiH8WChgJuEC0-XES54BQS7vqUlhViEq9uY49aVdsk7LZCsKJ1-BVeByehJn87GoB7a23yLEdJzMez2RmvmHsWeJG0rceOOAb4YgEYic1Qeh4aRbJJDWxFpQ7_GEU7R2Kd0fh0Rr71eXCUFhlJxNrQW0LQ__I-3hU47QxytN-1oZFHOwM3px_caiCFHlau3IaDYvsQ_UVzbfy9XAHaf3c9we7n97uOW2FAcegHjBzYou2vx-kaKgZN7Q6jcETqbQQ2cCi3inQGNA6JZePNcb1ZAqZCd1M6yyNspAqRqD434jJKlpnG9u7o4OP8z88hL0uhWgzddxA9ktRyyWKiiDg9MCplk7DumjA_zTdfwM2517bvxBO61NxcINdb9VZvtXw3022BvktdqUpcFndZt-GLRoFUp8XGd-afD-F8RlMf__4WfLWOcSRhymVsuQ6t_ysgkkxttRICdMlH9smoAkWAygenk_hhEqPFdOKQxMD30xAs5V32OGlUOIuW8-LHO4zbvHEdX2bhMKgeEozCWjj-QZVrTgT0tU95nXfXJkWCJ3qcUxU7ZAPpGropJBOqqaTqnrs5XzMeQMDsrL3NpFy3pMgvOuGYnqiWomgIAaQrtCJIMhA42rtQpRIfCnjWdfiMjc7RlCtXCnVYhf02NP5bZQI5ObRORQXdR_Pj3zpRT12r-Gb-UqCIPaobmGPxUsctbTU5Tv5-LRGHY8TNGYDHPmq473FslZ9ihcNfy49oW36jFegCLLOCx6sft0n7Cpud_V-ONp_yK75tIUoqNLfZOuz6QU8Qs1wlj5utyBnx5e96_8AGPt6rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Alzheimer%27s+disease+genetics+and+myeloid+genomics+identifies+disease+risk+regulatory+elements+and+genes&rft.jtitle=Nature+communications&rft.au=Novikova%2C+Gloriia&rft.au=Kapoor%2C+Manav&rft.au=Tcw%2C+Julia&rft.au=Abud%2C+Edsel+M&rft.date=2021-03-12&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1610&rft_id=info:doi/10.1038%2Fs41467-021-21823-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon