Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alle...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 1610 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.03.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including
AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1
, and
ZYX
) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.
This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD. |
---|---|
AbstractList | Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including
AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1
, and
ZYX
) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.
This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD. Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility. Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1 , and ZYX ) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility. This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD. Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility. Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD. |
ArticleNumber | 1610 |
Author | Kapoor, Manav Abud, Edsel M. Fullard, John F. TCW, Julia Liu, Yiyuan Goate, Alison M. Cheng, Haoxiang Novikova, Gloriia Roussos, Panos Chen, Steven X. Poon, Wayne W. Bendl, Jaroslav Hao, Ke Liu, Yunlong Efthymiou, Anastasia G. Marcora, Edoardo Björkegren, Johan LM |
Author_xml | – sequence: 1 givenname: Gloriia orcidid: 0000-0002-3916-2627 surname: Novikova fullname: Novikova, Gloriia organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Manav surname: Kapoor fullname: Kapoor, Manav organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 3 givenname: Julia orcidid: 0000-0002-3054-9374 surname: TCW fullname: TCW, Julia organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 4 givenname: Edsel M. surname: Abud fullname: Abud, Edsel M. organization: Department of Neurobiology & Behavior, University of California Irvine, Sue and Bill Gross Stem Cell Research Center, University of California Irvine – sequence: 5 givenname: Anastasia G. surname: Efthymiou fullname: Efthymiou, Anastasia G. organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai – sequence: 6 givenname: Steven X. orcidid: 0000-0003-3463-5824 surname: Chen fullname: Chen, Steven X. organization: Department of Medical and Molecular Genetics, Indiana University School of Medicine, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine – sequence: 7 givenname: Haoxiang orcidid: 0000-0002-1393-6006 surname: Cheng fullname: Cheng, Haoxiang organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 8 givenname: John F. surname: Fullard fullname: Fullard, John F. organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai – sequence: 9 givenname: Jaroslav orcidid: 0000-0001-9989-2720 surname: Bendl fullname: Bendl, Jaroslav organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai – sequence: 10 givenname: Yiyuan surname: Liu fullname: Liu, Yiyuan organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai – sequence: 11 givenname: Panos orcidid: 0000-0002-4640-6239 surname: Roussos fullname: Roussos, Panos organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai – sequence: 12 givenname: Johan LM orcidid: 0000-0003-1945-7425 surname: Björkegren fullname: Björkegren, Johan LM organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset – sequence: 13 givenname: Yunlong surname: Liu fullname: Liu, Yunlong organization: Department of Medical and Molecular Genetics, Indiana University School of Medicine, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine – sequence: 14 givenname: Wayne W. orcidid: 0000-0003-0625-3968 surname: Poon fullname: Poon, Wayne W. organization: Institute for Memory Impairments and Neurological Disorders, University of California Irvine – sequence: 15 givenname: Ke orcidid: 0000-0002-1815-9197 surname: Hao fullname: Hao, Ke organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 16 givenname: Edoardo orcidid: 0000-0002-3829-4927 surname: Marcora fullname: Marcora, Edoardo email: edoardo.marcora@mssm.edu organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 17 givenname: Alison M. orcidid: 0000-0002-0576-2472 surname: Goate fullname: Goate, Alison M. email: alison.goate@mssm.edu organization: Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33712570$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:146090939$$DView record from Swedish Publication Index |
BookMark | eNp9ks1u1DAUhS1URMvQF2CBIrFhE_Bf7MwGqar4GakSG1hbjn2TeprYxc4UhhWvwevxJDiTKe10UW9s3XvOp-ur8xwd-eABoZcEvyWY1e8SJ1zIElNSUlJTVm6foBOKOSmJpOzo3vsYnaa0xvmwJak5f4aOGZOEVhKfoJ8rP0IX9eiCL0JbnPW_LsENEP_-_pMK6xLoBEUHHkZnUqG9LYYt9MHZqRiGqegs-NG1Du4M0aWrIkK36fUY4raAHoYsmgETLb1AT1vdJzjd3wv07eOHr-efy4svn1bnZxelEZyPpbQUU8oawpjBldWNBMKb2oKwzEpJ-VIIrXMbY2sMJnUDralwq3XbiLaq2AKtZq4Neq2uoxt03KqgndoVQuyUjvlvPSiQADXmesmx4JXBWmMQyzrjDLHY6swqZ1b6Adeb5oC2L13lFygumMgTL9D7WZ87A1iTNxB1f2A77Hh3qbpwo-SyqjDDGfBmD4jh-wbSqAaXDPS99hA2SdEKEypoTUSWvn4gXYdN9Hm1kwqLWmZpVr26P9H_UW4DkQX1LDAxpBShVcaNu3TkAV2vCFZT_NQcP5Xjp3bxU9tspQ-st_RHTWy_0iz2HcS7sR9x_QNw1_Ff |
CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3269446 crossref_primary_10_1016_j_gde_2023_102146 crossref_primary_10_1016_j_jmb_2021_167221 crossref_primary_10_1038_s41593_022_01222_2 crossref_primary_10_3390_ijms232012081 crossref_primary_10_3233_JAD_215217 crossref_primary_10_1007_s10142_023_01270_2 crossref_primary_10_1186_s13024_022_00588_y crossref_primary_10_1371_journal_pgen_1010681 crossref_primary_10_1007_s00221_024_06853_4 crossref_primary_10_1126_sciadv_add1101 crossref_primary_10_1038_s41380_023_02076_1 crossref_primary_10_1186_s12974_022_02486_y crossref_primary_10_1016_j_bbih_2022_100462 crossref_primary_10_3389_fnagi_2022_1027224 crossref_primary_10_1016_j_xhgg_2022_100143 crossref_primary_10_3390_genes12071008 crossref_primary_10_1038_s41588_021_00976_y crossref_primary_10_1016_j_neuron_2024_11_018 crossref_primary_10_1016_j_str_2021_10_009 crossref_primary_10_1523_ENEURO_0445_24_2024 crossref_primary_10_1016_j_biopsych_2024_08_027 crossref_primary_10_1186_s13040_024_00395_9 crossref_primary_10_1016_j_neuron_2024_05_023 crossref_primary_10_3390_jpm11060474 crossref_primary_10_1038_s41588_022_01149_1 crossref_primary_10_1210_endrev_bnae033 crossref_primary_10_1038_s41398_021_01373_z crossref_primary_10_1007_s00401_025_02844_z crossref_primary_10_3390_genes14020347 crossref_primary_10_1016_j_omtm_2022_09_007 crossref_primary_10_3389_fnagi_2022_996646 crossref_primary_10_1016_j_ebiom_2023_104511 crossref_primary_10_3390_biomedicines10092098 crossref_primary_10_1016_j_stem_2023_03_017 crossref_primary_10_1016_j_tig_2025_01_001 crossref_primary_10_1016_j_jbc_2024_108099 crossref_primary_10_18632_aging_204957 crossref_primary_10_1038_s41467_023_40611_4 crossref_primary_10_1038_s41588_025_02099_0 crossref_primary_10_1038_s41380_022_01926_8 crossref_primary_10_1038_s41598_021_99352_3 crossref_primary_10_1016_j_ajhg_2023_12_015 crossref_primary_10_1084_jem_20222105 crossref_primary_10_1016_j_cell_2022_05_017 crossref_primary_10_2147_CIA_S357558 crossref_primary_10_1093_nar_gkaf138 crossref_primary_10_1002_alz_14181 crossref_primary_10_1016_j_xgen_2023_100263 crossref_primary_10_1186_s13073_022_01134_7 crossref_primary_10_1080_07853890_2024_2407525 crossref_primary_10_1098_rstb_2022_0378 crossref_primary_10_1016_j_heliyon_2024_e39013 crossref_primary_10_1186_s12974_022_02580_1 crossref_primary_10_3390_life13010221 crossref_primary_10_1093_hmg_ddac208 crossref_primary_10_3390_ijms23084259 crossref_primary_10_3233_JAD_220680 crossref_primary_10_1016_j_conb_2022_102674 crossref_primary_10_3389_fimmu_2023_1102530 crossref_primary_10_1038_s41540_024_00376_y crossref_primary_10_1080_21655979_2021_1982846 crossref_primary_10_1093_gerona_glac179 crossref_primary_10_1038_s41467_022_33885_7 crossref_primary_10_1038_s41593_022_01205_3 crossref_primary_10_3389_fimmu_2023_1168539 crossref_primary_10_3390_genes12081247 crossref_primary_10_1038_s41467_021_24243_0 crossref_primary_10_3389_fnagi_2022_988143 crossref_primary_10_1016_j_neuron_2022_10_015 crossref_primary_10_1021_acs_jproteome_4c00161 crossref_primary_10_3389_fnagi_2021_727928 crossref_primary_10_3390_cells12182213 crossref_primary_10_1038_s41531_022_00307_w crossref_primary_10_1016_j_cell_2023_08_040 crossref_primary_10_1002_jmv_28826 crossref_primary_10_1021_acs_analchem_2c00676 crossref_primary_10_1038_s41594_022_00896_3 crossref_primary_10_15252_msb_202311627 crossref_primary_10_1002_alz_14444 crossref_primary_10_1007_s00018_022_04614_6 crossref_primary_10_1016_j_biopsych_2023_05_020 crossref_primary_10_1016_j_tins_2022_02_005 crossref_primary_10_3390_ijms26062443 crossref_primary_10_3389_fnins_2024_1358998 crossref_primary_10_1016_j_celrep_2023_113269 crossref_primary_10_1038_s41467_023_42825_y crossref_primary_10_1016_j_nbd_2021_105576 crossref_primary_10_1002_alz_70031 crossref_primary_10_2174_0115672050261526231013095933 crossref_primary_10_1007_s13311_021_01152_0 crossref_primary_10_1007_s13311_023_01441_w crossref_primary_10_1016_j_nbd_2022_105615 crossref_primary_10_1007_s12031_021_01963_y crossref_primary_10_1126_science_abi8654 crossref_primary_10_1017_S0033291724000771 crossref_primary_10_1093_bib_bbac043 crossref_primary_10_1016_j_compbiomed_2024_108924 crossref_primary_10_1248_cpb_c23_00464 crossref_primary_10_1002_alz_13168 crossref_primary_10_1007_s10571_023_01392_y crossref_primary_10_1038_s41467_024_46315_7 crossref_primary_10_3390_ijms23147867 crossref_primary_10_1016_j_immuni_2024_07_019 crossref_primary_10_3390_genes13010039 crossref_primary_10_3390_ijms242115946 crossref_primary_10_1016_j_celrep_2023_112956 crossref_primary_10_3389_fgene_2022_794202 crossref_primary_10_1007_s00018_021_03986_5 crossref_primary_10_1016_j_neuron_2024_04_009 crossref_primary_10_1038_s41577_024_01104_7 crossref_primary_10_1080_17460441_2024_2335210 crossref_primary_10_1038_s41598_022_23477_2 crossref_primary_10_1126_sciadv_adj4452 crossref_primary_10_1007_s00401_024_02790_2 crossref_primary_10_1016_j_bcp_2021_114754 |
Cites_doi | 10.1016/j.cell.2016.09.037 10.1371/journal.pgen.1004798 10.1016/j.cell.2014.11.023 10.1038/sj.emboj.7601824 10.1038/ng.2802 10.1016/S0140-6736(12)62129-1 10.1371/journal.pgen.1004383 10.1016/S0304-3940(98)00995-1 10.1038/ng.3916 10.1186/s13148-016-0179-4 10.1093/bioinformatics/btv470 10.1126/science.1261669 10.1042/bj3300513 10.3389/fgene.2013.00080 10.1002/acn3.582 10.1186/gb-2008-9-9-r137 10.1038/s41588-018-0081-4 10.1093/bioinformatics/btx609 10.1038/mp.2013.1 10.1016/j.immuni.2008.11.006 10.1016/j.cell.2016.09.034 10.1093/bioinformatics/btp352 10.1002/ana.24305 10.1016/S1474-4422(19)30435-1 10.1016/j.devcel.2010.01.015 10.1016/j.cell.2014.11.018 10.1016/j.tins.2017.08.003 10.1016/0092-8674(95)90120-5 10.1101/294629 10.1038/s41588-018-0238-1 10.1038/nn.4587 10.1016/j.immuni.2017.07.017 10.1186/s13024-017-0184-x 10.1093/nar/gkr917 10.1084/jem.20121069 10.1086/519795 10.1126/science.aal3222 10.1038/ni.3818 10.1126/science.aay0793 10.1371/journal.pgen.1004722 10.1038/s41398-018-0150-6 10.1126/science.aad6970 10.1038/s41588-019-0493-9 10.1038/nmeth.1923 10.1093/nar/gks776 10.1242/jcs.00718 10.1016/j.febslet.2011.08.043 10.1074/jbc.275.12.8331 10.1038/nature14248 10.1038/s41593-019-0525-x 10.1038/s41588-018-0311-9 10.1186/s13073-017-0486-1 10.1038/cr.2016.1 10.1371/journal.pgen.1007427 10.1101/2019.12.20.874099 10.1016/j.neuron.2019.07.002 10.1038/s41588-020-00721-x 10.1038/s41597-019-0183-6 10.1126/science.1246949 10.1083/jcb.201709069 10.1074/jbc.M113.515700 10.1038/ng.2213 10.1371/journal.pgen.1003240 10.1016/j.cell.2019.05.054 10.1038/nature11247 10.1001/jama.2013.2973 10.1101/2020.01.06.896159 10.1056/NEJMoa1211103 10.1038/ng.3246 10.1038/sdata.2018.185 10.1016/j.neuron.2017.03.042 10.1038/ng.3538 10.1038/ng.3404 10.1016/j.ajhg.2017.08.012 10.1016/j.neuron.2019.12.007 10.1016/j.cell.2015.11.024 10.1016/j.cell.2017.05.018 10.1016/j.cell.2016.10.026 10.1002/cm.10083 10.1038/nmeth.2688 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1038/s41467-021-21823-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Freely Accessible) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_e7ee804a940645c0aa0e698c50c1d0da oai_swepub_ki_se_463613 PMC7955030 33712570 10_1038_s41467_021_21823_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) grantid: K01AG062683; F31 AG059337-01; R01AG050986 funderid: https://doi.org/10.13039/100000049 – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) – fundername: NIEHS NIH HHS grantid: R01 ES029212 – fundername: NIA NIH HHS grantid: RF1 AG054011 – fundername: NIA NIH HHS grantid: F31 AG059337 – fundername: NIA NIH HHS grantid: R01 AG050986 – fundername: NIA NIH HHS grantid: P50 AG016573 – fundername: NIA NIH HHS grantid: T32 AG049688 – fundername: NIA NIH HHS grantid: K01 AG062683 – fundername: NIA NIH HHS grantid: U01 AG058635 – fundername: NIA NIH HHS grantid: P01 AG000538 – fundername: NIA NIH HHS grantid: U01 AG052411 – fundername: ; – fundername: ; grantid: K01AG062683; F31 AG059337-01; R01AG050986 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM 4.4 ABAWZ ADTPV AOWAS BAPOH CAG COF D8T EJD LGEZI LOTEE NADUK NXXTH PUEGO ZZAVC |
ID | FETCH-LOGICAL-c644t-7d20223b133c05dab7e14b8de6d3d7724966aab1300dcc018befc50faafb6f553 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:35:56 EDT 2025 Mon Aug 25 03:27:20 EDT 2025 Thu Aug 21 18:13:20 EDT 2025 Tue Aug 05 11:15:15 EDT 2025 Wed Aug 13 08:10:34 EDT 2025 Mon Jul 21 06:02:46 EDT 2025 Tue Jul 01 04:17:20 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c644t-7d20223b133c05dab7e14b8de6d3d7724966aab1300dcc018befc50faafb6f553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3829-4927 0000-0002-3054-9374 0000-0002-4640-6239 0000-0002-0576-2472 0000-0002-3916-2627 0000-0003-3463-5824 0000-0001-9989-2720 0000-0003-0625-3968 0000-0002-1393-6006 0000-0002-1815-9197 0000-0003-1945-7425 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-21823-y |
PMID | 33712570 |
PQID | 2500687012 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e7ee804a940645c0aa0e698c50c1d0da swepub_primary_oai_swepub_ki_se_463613 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955030 proquest_miscellaneous_2501262816 proquest_journals_2500687012 pubmed_primary_33712570 crossref_citationtrail_10_1038_s41467_021_21823_y crossref_primary_10_1038_s41467_021_21823_y springer_journals_10_1038_s41467_021_21823_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-12 |
PublicationDateYYYYMMDD | 2021-03-12 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp3521:CAS:528:DC%2BD1MXpslertr8%3D PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795 RajTIntegrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibilityNat. Genet.201850158415921:CAS:528:DC%2BC1cXitVCitL3L30297968635424410.1038/s41588-018-0238-1 YangJConditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traitsNat. Genet.2012443693751:CAS:528:DC%2BC38XktVaksr0%3D22426310359315810.1038/ng.2213S1–3 ZhuZIntegration of summary data from GWAS and eQTL studies predicts complex trait gene targetsNat. Genet.2016484814871:CAS:528:DC%2BC28XkvFGrs7g%3D2701911010.1038/ng.3538 FranzenOCardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseasesScience20163538278302016Sci...353..827F1:CAS:528:DC%2BC28XhtlCju7zE27540175553413910.1126/science.aad6970 Kunkle, B. W. et al. Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing. https://doi.org/10.1101/294629. ZhangZH3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosusClin. Epigenetics2016826839600473627910.1186/s13148-016-0179-41:CAS:528:DC%2BC2sXlvVOktb8%3D HuangK-LA common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s diseaseNat. Neurosci.201720105210611:CAS:528:DC%2BC2sXhtVantLzK28628103575933410.1038/nn.4587 HansenDVHansonJEShengMMicroglia in Alzheimer’s diseaseJ. Cell Biol.20182174594721:CAS:528:DC%2BC1cXhs1eht7fO29196460580081710.1083/jcb.201709069 MarioniREGWAS on family history of Alzheimer’s diseaseTransl. Psychiatry2018829777097595989010.1038/s41398-018-0150-6 BennerCProspects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studiesAm. J. Hum. Genet.20171015395511:CAS:528:DC%2BC2sXhsFGnsrjE28942963563017910.1016/j.ajhg.2017.08.012 Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. (2020) https://doi.org/10.1038/s41588-020-00721-x. ZhangYModel-based analysis of ChIP-Seq (MACS)Genome Biol.2008918798982259271510.1186/gb-2008-9-9-r1371:CAS:528:DC%2BD1cXhtl2ksrjE ChapuisJIncreased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathologyMol. Psychiatry201318122512341:CAS:528:DC%2BC3sXhs1yiu7rI23399914380766110.1038/mp.2013.1 EfthymiouAGGoateAMLate onset Alzheimer’s disease genetics implicates microglial pathways in disease riskMol. Neurodegener.2017124328549481544675210.1186/s13024-017-0184-x1:CAS:528:DC%2BC1cXitVaitbjN KichaevGIntegrating functional data to prioritize causal variants in statistical fine-mapping studiesPLoS Genet.201410e100472225357204421460510.1371/journal.pgen.10047221:CAS:528:DC%2BC2cXitVyiurfE NugentAATREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challengeNeuron2020105837854.e91:CAS:528:DC%2BB3cXksFWhuw%3D%3D3190252810.1016/j.neuron.2019.12.007 Dementia statistics | Alzheimer’s Disease International. https://www.alz.co.uk/research/statistics. Ridge, P. G. et al. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med.9 (2017). JansenIEGenome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease riskNat. Genet.2019514044131:CAS:528:DC%2BC1MXlvFSit70%3D30617256683667510.1038/s41588-018-0311-9 ChenLGenetic drivers of epigenetic and transcriptional variation in human immuneCells Cell201616713981414.e241:CAS:528:DC%2BC28XhvFWgu73F2786325110.1016/j.cell.2016.10.026 LambertJ-CMeta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s DiseaseNat. Genet.201345145214581:CAS:528:DC%2BC3sXhs1yiu7vJ24162737389625910.1038/ng.2802 VardarajanBNCoding mutations in SORL1 and Alzheimer diseaseAnn. Neurol.2015772152271:CAS:528:DC%2BC2MXhvFegsrY%3D25382023436719910.1002/ana.24305 GiambartolomeiCBayesian test for colocalisation between pairs of genetic association studies using summary statisticsPLoS Genet.201410e100438324830394402249110.1371/journal.pgen.10043831:CAS:528:DC%2BC2cXhsVGku7rK Young, A., Kumasaka, N., Calvert, F. & Hammond, T. R. A map of transcriptional heterogeneity and regulatory variation in human microglia. bioRxiv (2019). SmallSASimoes-SpassovSMayeuxRPetskoGAEndosomal traffic jams represent a pathogenic hub and therapeutic target in Alzheimer’s diseaseTrends Neurosci.2017405926021:CAS:528:DC%2BC2sXhsVahtLrP28962801565462110.1016/j.tins.2017.08.003 JonssonTVariant of TREM2 associated with the risk of Alzheimer’s diseaseN. Engl. J. Med.20133681071161:CAS:528:DC%2BC3sXovVyiug%3D%3D2315090810.1056/NEJMoa1211103 Corces, M. R. et al. Single-cell epigenomic identification of inherited risk loci in Alzheimer’s and Parkinson’s disease. https://doi.org/10.1101/2020.01.06.896159. JavierreBMLineage-specific genome architecture links enhancers and non-coding disease variants to target gene promotersCell201616713691384.e191:CAS:528:DC%2BC28XhvFWgu7rM27863249512389710.1016/j.cell.2016.09.037 FinucaneHKPartitioning heritability by functional annotation using genome-wide association summary statisticsNat. Genet.20154712281:CAS:528:DC%2BC2MXhsFKqu7rF26414678462628510.1038/ng.3404 RaghavanNSWhole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s diseaseAnn. Clin. Transl. Neurol.201858328421:CAS:528:DC%2BC1cXhtlWru7fK30009200604377510.1002/acn3.582 BradyOAZhouXHuFRegulated intramembrane proteolysis of the frontotemporal lobar degeneration risk factor, TMEM106B, by signal peptide peptidase-like 2a (SPPL2a)J. Biol. Chem.201428919670196801:CAS:528:DC%2BC2cXhtFCktLvN24872421409407710.1074/jbc.M113.515700 Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science (2014) https://doi.org/10.1126/science.1246949. BuenrostroJDGiresiPGZabaLCChangHYGreenleafWJTransposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome positionNat. Methods201310121312181:CAS:528:DC%2BC3sXhsFOiu7jO24097267395982510.1038/nmeth.2688 RathoreNPaired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s diseasePLoS Genet.201814e100742730388101623540210.1371/journal.pgen.10074271:CAS:528:DC%2BC1MXjslygtLw%3D FengXSp1/Sp3 and PU.1 differentially regulate β5integrin gene expression in macrophages and osteoblastsJ. Biol. Chem.2000275833183401:CAS:528:DC%2BD3cXit1entLo%3D1072266310.1074/jbc.275.12.8331 BehnkeJSignal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tailFEBS Lett.2011585295129571:CAS:528:DC%2BC3MXht1ejurzM2189627310.1016/j.febslet.2011.08.043 ReitzCVariants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset alzheimer disease in African AmericansJAMA2013309148314921:CAS:528:DC%2BC3sXmvV2rtbo%3D23571587366765310.1001/jama.2013.2973 SteinbergSLoss-of-function variants in ABCA7 confer risk of Alzheimer’s diseaseNat. Genet.2015474454471:CAS:528:DC%2BC2MXltFWkt7c%3D2580728310.1038/ng.3246 CoetzeeSGCoetzeeGAHazelettDJmotifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sitesBioinformatics201531384738491:CAS:528:DC%2BC28XhtlaqsrrM262729844653394 KimSAChoC-SKimS-RBullSBYooYJA new haplotype block detection method for dense genome sequencing data based on interval graph modeling of clusters of highly correlated SNPsBioinformatics2018343883971:CAS:528:DC%2BC1cXitlGhtbnK2902898610.1093/bioinformatics/btx609 SimsRRare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s diseaseNat. Genet.201749137313841:CAS:528:DC%2BC2sXhtFOru7vL28714976566903910.1038/ng.3916 WangMThe Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s diseaseSci. Data201851:CAS:528:DC%2BC1cXhs1ylt7fE30204156613218710.1038/sdata.2018.185 BurgosPVSorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complexDev. Cell2010184254361:CAS:528:DC%2BC3cXlsVSht7s%3D20230749284104110.1016/j.devcel.2010.01.015 Abud, E. M. et al. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron (2017) https://doi.org/10.1016/j.neuron.2017.03.042. GosselinDEnvironment drives selection and function of enhancers controlling tissue-specific macrophage identitiesCell2014159132713401:CAS:528:DC%2BC2cXitFOqsr%2FK25480297436438510.1016/j.cell.2014.11.023 Andrews, S. J., Fulton-Howard, B. & Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. (2020) https://doi.org/10.1016/S1474-4422(19)30435-1. Roadmap Epigenomics Consortium.Integrative analysis of 111 reference human epigenomesNature2015518317330453001010.1038/nature142481:CAS:528:DC%2BC2MXjtVSktbc%3D WardLDKellisMHaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variantsNucleic Acids Res.201240D930D9341:CAS:528:DC%2BC3MXhs12hurzP2206485110.1093/nar/gkr917 KangKInterferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAFImmunity201747235250.e41:CAS:528:DC%2BC2sXhtleltrvK28813657556808910.1016/j.immuni.2017.07.017 KajihoHRIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathwayJ. Cell Sci.2003116415941681:CAS:528:DC%2BD3sXovFWmsb0%3D1297250510.1242/jcs.00718 ENCODE P B Novakovic (21823_CR35) 2016; 167 Y Lavin (21823_CR20) 2014; 159 S Sati (21823_CR77) 2012; 40 H Kajiho (21823_CR56) 2003; 116 AG Efthymiou (21823_CR2) 2017; 12 BM Javierre (21823_CR19) 2016; 167 N Rathore (21823_CR31) 2018; 14 SV Schmidt (21823_CR38) 2016; 26 RE Marioni (21823_CR10) 2018; 8 IE Jansen (21823_CR11) 2019; 51 J Behnke (21823_CR61) 2011; 585 C Reitz (21823_CR25) 2013; 309 21823_CR15 H Tanahashi (21823_CR60) 1999; 261 M Trost (21823_CR54) 2009; 30 L Chen (21823_CR28) 2016; 167 Z Zhang (21823_CR78) 2016; 8 21823_CR1 KW Yoon (21823_CR65) 2015; 349 Z Ding (21823_CR48) 2014; 10 DA Jaitin (21823_CR69) 2019; 178 A Nott (21823_CR46) 2019; 366 J Yang (21823_CR41) 2012; 44 Z Tang (21823_CR47) 2015; 163 J Schneppenheim (21823_CR62) 2013; 210 Y Zhang (21823_CR76) 2008; 9 HK Finucane (21823_CR13) 2018; 50 H Li (21823_CR75) 2009; 25 R Sims (21823_CR5) 2017; 49 S Steinberg (21823_CR6) 2015; 47 C Giambartolomei (21823_CR29) 2014; 10 X Feng (21823_CR43) 2000; 275 J Shahbazi (21823_CR64) 2013; 4 21823_CR23 21823_CR67 J-C Lambert (21823_CR17) 2013; 45 Z Zhu (21823_CR14) 2016; 48 D Gosselin (21823_CR21) 2014; 159 SH Park (21823_CR36) 2017; 18 HK Finucane (21823_CR16) 2015; 47 PV Burgos (21823_CR58) 2010; 18 ENCODE Project Consortium. (21823_CR34) 2012; 489 FS Southwick (21823_CR55) 2003; 54 A Duilio (21823_CR59) 1998; 330 T Jonsson (21823_CR3) 2013; 368 OA Brady (21823_CR63) 2014; 289 K-L Huang (21823_CR12) 2017; 20 B Langmead (21823_CR74) 2012; 9 G Kichaev (21823_CR32) 2014; 10 MW Feinberg (21823_CR44) 2007; 26 H Keren-Shaul (21823_CR70) 2017; 169 AA Nugent (21823_CR71) 2020; 105 J Chapuis (21823_CR26) 2013; 18 S Purcell (21823_CR79) 2007; 81 21823_CR80 NS Raghavan (21823_CR68) 2018; 5 O Franzen (21823_CR24) 2016; 353 SA Kim (21823_CR40) 2018; 34 B Soskic (21823_CR72) 2019; 51 21823_CR9 C Benner (21823_CR33) 2017; 101 21823_CR8 SG Coetzee (21823_CR39) 2015; 31 K Kang (21823_CR37) 2017; 47 J Hasselmann (21823_CR53) 2019; 103 LD Ward (21823_CR30) 2012; 40 GE Hoffman (21823_CR50) 2019; 6 Cross-Disorder Group of the Psychiatric Genomics Consortium. (21823_CR18) 2013; 381 Roadmap Epigenomics Consortium. (21823_CR73) 2015; 518 T Raj (21823_CR27) 2018; 50 R Mancuso (21823_CR52) 2019; 22 DV Hansen (21823_CR7) 2018; 217 M Wang (21823_CR51) 2018; 5 21823_CR49 BN Vardarajan (21823_CR4) 2015; 77 21823_CR45 JD Buenrostro (21823_CR81) 2013; 10 S Garnier (21823_CR22) 2013; 9 21823_CR42 H Stenmark (21823_CR57) 1995; 83 SA Small (21823_CR66) 2017; 40 |
References_xml | – reference: HoffmanGECommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and bipolar disorderSci. Data2019631551426676014910.1038/s41597-019-0183-61:CAS:528:DC%2BC1MXhvVemsL3I – reference: SteinbergSLoss-of-function variants in ABCA7 confer risk of Alzheimer’s diseaseNat. Genet.2015474454471:CAS:528:DC%2BC2MXltFWkt7c%3D2580728310.1038/ng.3246 – reference: Andrews, S. J., Fulton-Howard, B. & Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. (2020) https://doi.org/10.1016/S1474-4422(19)30435-1. – reference: RathoreNPaired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s diseasePLoS Genet.201814e100742730388101623540210.1371/journal.pgen.10074271:CAS:528:DC%2BC1MXjslygtLw%3D – reference: KimSAChoC-SKimS-RBullSBYooYJA new haplotype block detection method for dense genome sequencing data based on interval graph modeling of clusters of highly correlated SNPsBioinformatics2018343883971:CAS:528:DC%2BC1cXitlGhtbnK2902898610.1093/bioinformatics/btx609 – reference: SmallSASimoes-SpassovSMayeuxRPetskoGAEndosomal traffic jams represent a pathogenic hub and therapeutic target in Alzheimer’s diseaseTrends Neurosci.2017405926021:CAS:528:DC%2BC2sXhsVahtLrP28962801565462110.1016/j.tins.2017.08.003 – reference: TangZCTCF-mediated human 3D genome architecture reveals chromatin topology for transcriptionCell2015163161116271:CAS:528:DC%2BC2MXitVSksb7F26686651473414010.1016/j.cell.2015.11.024 – reference: FeinbergMWThe Kruppel-like factor KLF4 is a critical regulator of monocyte differentiationEMBO J.200726413841481:CAS:528:DC%2BD2sXhtVKiu77F17762869223066810.1038/sj.emboj.7601824 – reference: ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genomeNature201248957742012Natur.489...57T10.1038/nature112471:CAS:528:DC%2BC38XhtlGnsbzN – reference: BradyOAZhouXHuFRegulated intramembrane proteolysis of the frontotemporal lobar degeneration risk factor, TMEM106B, by signal peptide peptidase-like 2a (SPPL2a)J. Biol. Chem.201428919670196801:CAS:528:DC%2BC2cXhtFCktLvN24872421409407710.1074/jbc.M113.515700 – reference: NovakovicBβ-glucan reverses the epigenetic state of LPS-induced immunological toleranceCell201616713541368.e141:CAS:528:DC%2BC28XhvFWgu7jI27863248592732810.1016/j.cell.2016.09.034 – reference: Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science (2014) https://doi.org/10.1126/science.1246949. – reference: PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet.2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795 – reference: SimsRRare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s diseaseNat. Genet.201749137313841:CAS:528:DC%2BC2sXhtFOru7vL28714976566903910.1038/ng.3916 – reference: MarioniREGWAS on family history of Alzheimer’s diseaseTransl. Psychiatry2018829777097595989010.1038/s41398-018-0150-6 – reference: SchneppenheimJThe intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chainJ. Exp. Med.201321041581:CAS:528:DC%2BC3sXht1Oiur4%3D23267015354970710.1084/jem.20121069 – reference: HasselmannJDevelopment of a chimeric model to study and manipulate human microglia in vivoNeuron201910310161033.e101:CAS:528:DC%2BC1MXhsVOgtbbO31375314713810110.1016/j.neuron.2019.07.002 – reference: ChapuisJIncreased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathologyMol. Psychiatry201318122512341:CAS:528:DC%2BC3sXhs1yiu7rI23399914380766110.1038/mp.2013.1 – reference: Ridge, P. G. et al. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med.9 (2017). – reference: RaghavanNSWhole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s diseaseAnn. Clin. Transl. Neurol.201858328421:CAS:528:DC%2BC1cXhtlWru7fK30009200604377510.1002/acn3.582 – reference: LavinYTissue-resident macrophage enhancer landscapes are shaped by the local microenvironmentCell2014159131213261:CAS:528:DC%2BC2cXitFOrt7bP25480296443721310.1016/j.cell.2014.11.018 – reference: Cross-Disorder Group of the Psychiatric Genomics Consortium.Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysisLancet201338113711379371401010.1016/S0140-6736(12)62129-11:CAS:528:DC%2BC3sXjsFCnsrk%3D – reference: StenmarkHVitaleGUllrichOZerialMRabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusionCell1995834234321:CAS:528:DyaK2MXpt1Oltrs%3D852147210.1016/0092-8674(95)90120-5 – reference: SoskicBChromatin activity at GWAS loci identifies T cell states driving complex immune diseasesNat. Genet.201951148614931:CAS:528:DC%2BC1MXhvVarsb%2FF31548716687245210.1038/s41588-019-0493-9 – reference: LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp3521:CAS:528:DC%2BD1MXpslertr8%3D – reference: JansenIEGenome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease riskNat. Genet.2019514044131:CAS:528:DC%2BC1MXlvFSit70%3D30617256683667510.1038/s41588-018-0311-9 – reference: SchmidtSVThe transcriptional regulator network of human inflammatory macrophages is defined by open chromatinCell Res.2016261511701:CAS:528:DC%2BC28XksFOnuw%3D%3D26729620474660910.1038/cr.2016.1 – reference: DingZQuantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome associationPLoS Genet.201410e100479825411781423895510.1371/journal.pgen.10047981:CAS:528:DC%2BC2cXitFGgtbfI – reference: WangMThe Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s diseaseSci. Data201851:CAS:528:DC%2BC1cXhs1ylt7fE30204156613218710.1038/sdata.2018.185 – reference: ChenLGenetic drivers of epigenetic and transcriptional variation in human immuneCells Cell201616713981414.e241:CAS:528:DC%2BC28XhvFWgu73F2786325110.1016/j.cell.2016.10.026 – reference: YoonKWControl of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53Science2015349126166926228159521503910.1126/science.12616691:CAS:528:DC%2BC2MXht1egur7F – reference: JonssonTVariant of TREM2 associated with the risk of Alzheimer’s diseaseN. Engl. J. Med.20133681071161:CAS:528:DC%2BC3sXovVyiug%3D%3D2315090810.1056/NEJMoa1211103 – reference: ZhangYModel-based analysis of ChIP-Seq (MACS)Genome Biol.2008918798982259271510.1186/gb-2008-9-9-r1371:CAS:528:DC%2BD1cXhtl2ksrjE – reference: Young, A., Kumasaka, N., Calvert, F. & Hammond, T. R. A map of transcriptional heterogeneity and regulatory variation in human microglia. bioRxiv (2019). – reference: Kunkle, B. W. et al. Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing. https://doi.org/10.1101/294629. – reference: FranzenOCardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseasesScience20163538278302016Sci...353..827F1:CAS:528:DC%2BC28XhtlCju7zE27540175553413910.1126/science.aad6970 – reference: BurgosPVSorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complexDev. Cell2010184254361:CAS:528:DC%2BC3cXlsVSht7s%3D20230749284104110.1016/j.devcel.2010.01.015 – reference: DuilioAFaraonioRMinopoliGZambranoNRussoTFe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer’s beta-amyloid precursor proteinBiochem. J.1998330Pt 15135191:CAS:528:DyaK1cXhs12jsLc%3D9461550121916710.1042/bj3300513 – reference: Abud, E. M. et al. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron (2017) https://doi.org/10.1016/j.neuron.2017.03.042. – reference: RajTIntegrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibilityNat. Genet.201850158415921:CAS:528:DC%2BC1cXitVCitL3L30297968635424410.1038/s41588-018-0238-1 – reference: EfthymiouAGGoateAMLate onset Alzheimer’s disease genetics implicates microglial pathways in disease riskMol. Neurodegener.2017124328549481544675210.1186/s13024-017-0184-x1:CAS:528:DC%2BC1cXitVaitbjN – reference: KajihoHRIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathwayJ. Cell Sci.2003116415941681:CAS:528:DC%2BD3sXovFWmsb0%3D1297250510.1242/jcs.00718 – reference: SatiSGhoshSJainVScariaVSenguptaSGenome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA lociNucleic Acids Res.20124010018100311:CAS:528:DC%2BC38Xhs1WqsbbF22923516348823110.1093/nar/gks776 – reference: ZhangZH3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosusClin. Epigenetics2016826839600473627910.1186/s13148-016-0179-41:CAS:528:DC%2BC2sXlvVOktb8%3D – reference: KichaevGIntegrating functional data to prioritize causal variants in statistical fine-mapping studiesPLoS Genet.201410e100472225357204421460510.1371/journal.pgen.10047221:CAS:528:DC%2BC2cXitVyiurfE – reference: HansenDVHansonJEShengMMicroglia in Alzheimer’s diseaseJ. Cell Biol.20182174594721:CAS:528:DC%2BC1cXhs1eht7fO29196460580081710.1083/jcb.201709069 – reference: MancusoRStem-cell-derived human microglia transplanted in mouse brain to study human diseaseNat. Neurosci.201922211121161:CAS:528:DC%2BC1MXitVCksLrF3165934210.1038/s41593-019-0525-x – reference: CoetzeeSGCoetzeeGAHazelettDJmotifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sitesBioinformatics201531384738491:CAS:528:DC%2BC28XhtlaqsrrM262729844653394 – reference: ReitzCVariants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset alzheimer disease in African AmericansJAMA2013309148314921:CAS:528:DC%2BC3sXmvV2rtbo%3D23571587366765310.1001/jama.2013.2973 – reference: NugentAATREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challengeNeuron2020105837854.e91:CAS:528:DC%2BB3cXksFWhuw%3D%3D3190252810.1016/j.neuron.2019.12.007 – reference: BennerCProspects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studiesAm. J. Hum. Genet.20171015395511:CAS:528:DC%2BC2sXhsFGnsrjE28942963563017910.1016/j.ajhg.2017.08.012 – reference: Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. (2020) https://doi.org/10.1038/s41588-020-00721-x. – reference: JaitinDALipid-associated macrophages control metabolic homeostasis in a Trem2-dependent mannerCell2019178686698.e141:CAS:528:DC%2BC1MXht1Ojsr3M31257031706868910.1016/j.cell.2019.05.054 – reference: HuangK-LA common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s diseaseNat. Neurosci.201720105210611:CAS:528:DC%2BC2sXhtVantLzK28628103575933410.1038/nn.4587 – reference: GiambartolomeiCBayesian test for colocalisation between pairs of genetic association studies using summary statisticsPLoS Genet.201410e100438324830394402249110.1371/journal.pgen.10043831:CAS:528:DC%2BC2cXhsVGku7rK – reference: FinucaneHKPartitioning heritability by functional annotation using genome-wide association summary statisticsNat. Genet.20154712281:CAS:528:DC%2BC2MXhsFKqu7rF26414678462628510.1038/ng.3404 – reference: VardarajanBNCoding mutations in SORL1 and Alzheimer diseaseAnn. Neurol.2015772152271:CAS:528:DC%2BC2MXhvFegsrY%3D25382023436719910.1002/ana.24305 – reference: ZhuZIntegration of summary data from GWAS and eQTL studies predicts complex trait gene targetsNat. Genet.2016484814871:CAS:528:DC%2BC28XkvFGrs7g%3D2701911010.1038/ng.3538 – reference: WardLDKellisMHaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variantsNucleic Acids Res.201240D930D9341:CAS:528:DC%2BC3MXhs12hurzP2206485110.1093/nar/gkr917 – reference: YangJConditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traitsNat. Genet.2012443693751:CAS:528:DC%2BC38XktVaksr0%3D22426310359315810.1038/ng.2213S1–3 – reference: ParkSHType I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activationNat. Immunol.201718110411161:CAS:528:DC%2BC2sXhtlGku7zK28825701560545710.1038/ni.3818 – reference: Dementia statistics | Alzheimer’s Disease International. https://www.alz.co.uk/research/statistics. – reference: BuenrostroJDGiresiPGZabaLCChangHYGreenleafWJTransposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome positionNat. Methods201310121312181:CAS:528:DC%2BC3sXhsFOiu7jO24097267395982510.1038/nmeth.2688 – reference: KangKInterferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAFImmunity201747235250.e41:CAS:528:DC%2BC2sXhtleltrvK28813657556808910.1016/j.immuni.2017.07.017 – reference: FinucaneHKHeritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell typesNat. Genet.2018506216291:CAS:528:DC%2BC1cXnsVGrtr4%3D29632380589679510.1038/s41588-018-0081-4 – reference: TanahashiHTabiraTMolecular cloning of human Fe65L2 and its interaction with the Alzheimer’s beta-amyloid precursor proteinNeurosci. Lett.19992611431461:CAS:528:DyaK1MXhtFeju7c%3D1008196910.1016/S0304-3940(98)00995-1 – reference: ShahbaziJLockRLiuTTumor protein 53-induced nuclear protein 1 enhances p53 function and represses tumorigenesisFront. Genet.201348023717325365252010.3389/fgene.2013.000801:CAS:528:DC%2BC2MXht1Ojs7vJ – reference: Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science356, 3222 (2017). – reference: NottABrain cell type–specific enhancer–promoter interactome maps and disease-risk associationScience2019366113411392019Sci...366.1134N1:CAS:528:DC%2BC1MXitlWisrjM31727856702821310.1126/science.aay0793 – reference: Keren-ShaulHA unique microglia type associated with restricting development of Alzheimer’s diseaseCell201716912761290.e171:CAS:528:DC%2BC2sXpslCqtbY%3D2860235110.1016/j.cell.2017.05.018 – reference: TrostMThe phagosomal proteome in interferon-gamma-activated macrophagesImmunity2009301431541:CAS:528:DC%2BD1MXhtlCnsbg%3D1914431910.1016/j.immuni.2008.11.006 – reference: LambertJ-CMeta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s DiseaseNat. Genet.201345145214581:CAS:528:DC%2BC3sXhs1yiu7vJ24162737389625910.1038/ng.2802 – reference: JavierreBMLineage-specific genome architecture links enhancers and non-coding disease variants to target gene promotersCell201616713691384.e191:CAS:528:DC%2BC28XhvFWgu7rM27863249512389710.1016/j.cell.2016.09.037 – reference: FengXSp1/Sp3 and PU.1 differentially regulate β5integrin gene expression in macrophages and osteoblastsJ. Biol. Chem.2000275833183401:CAS:528:DC%2BD3cXit1entLo%3D1072266310.1074/jbc.275.12.8331 – reference: GosselinDEnvironment drives selection and function of enhancers controlling tissue-specific macrophage identitiesCell2014159132713401:CAS:528:DC%2BC2cXitFOqsr%2FK25480297436438510.1016/j.cell.2014.11.023 – reference: GarnierSGenome-wide haplotype analysis of cis expression quantitative trait loci in monocytesPLoS Genet.20139e10032401:CAS:528:DC%2BC3sXivVOltL0%3D23382694356112910.1371/journal.pgen.1003240 – reference: BehnkeJSignal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tailFEBS Lett.2011585295129571:CAS:528:DC%2BC3MXht1ejurzM2189627310.1016/j.febslet.2011.08.043 – reference: SouthwickFSLiWZhangFZeileWLPurichDLActin-based endosome and phagosome rocketing in macrophages: activation by the secretagogue antagonists lanthanum and zincCell Motil. Cytoskeleton20035441551:CAS:528:DC%2BD3sXhtVSgtbc%3D1245159410.1002/cm.10083 – reference: Roadmap Epigenomics Consortium.Integrative analysis of 111 reference human epigenomesNature2015518317330453001010.1038/nature142481:CAS:528:DC%2BC2MXjtVSktbc%3D – reference: Corces, M. R. et al. Single-cell epigenomic identification of inherited risk loci in Alzheimer’s and Parkinson’s disease. https://doi.org/10.1101/2020.01.06.896159. – reference: LangmeadBSalzbergSLFast gapped-read alignment with Bowtie 2Nat. Methods201293573591:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923 – volume: 167 start-page: 1369 year: 2016 ident: 21823_CR19 publication-title: Cell doi: 10.1016/j.cell.2016.09.037 – volume: 10 start-page: e1004798 year: 2014 ident: 21823_CR48 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004798 – volume: 159 start-page: 1327 year: 2014 ident: 21823_CR21 publication-title: Cell doi: 10.1016/j.cell.2014.11.023 – volume: 26 start-page: 4138 year: 2007 ident: 21823_CR44 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601824 – volume: 45 start-page: 1452 year: 2013 ident: 21823_CR17 publication-title: Nat. Genet. doi: 10.1038/ng.2802 – volume: 381 start-page: 1371 year: 2013 ident: 21823_CR18 publication-title: Lancet doi: 10.1016/S0140-6736(12)62129-1 – volume: 10 start-page: e1004383 year: 2014 ident: 21823_CR29 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004383 – volume: 261 start-page: 143 year: 1999 ident: 21823_CR60 publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(98)00995-1 – volume: 49 start-page: 1373 year: 2017 ident: 21823_CR5 publication-title: Nat. Genet. doi: 10.1038/ng.3916 – volume: 8 year: 2016 ident: 21823_CR78 publication-title: Clin. Epigenetics doi: 10.1186/s13148-016-0179-4 – volume: 31 start-page: 3847 year: 2015 ident: 21823_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv470 – volume: 349 start-page: 1261669 year: 2015 ident: 21823_CR65 publication-title: Science doi: 10.1126/science.1261669 – volume: 330 start-page: 513 issue: Pt 1 year: 1998 ident: 21823_CR59 publication-title: Biochem. J. doi: 10.1042/bj3300513 – volume: 4 start-page: 80 year: 2013 ident: 21823_CR64 publication-title: Front. Genet. doi: 10.3389/fgene.2013.00080 – volume: 5 start-page: 832 year: 2018 ident: 21823_CR68 publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.582 – volume: 9 year: 2008 ident: 21823_CR76 publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 50 start-page: 621 year: 2018 ident: 21823_CR13 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0081-4 – volume: 34 start-page: 388 year: 2018 ident: 21823_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx609 – volume: 18 start-page: 1225 year: 2013 ident: 21823_CR26 publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.1 – volume: 30 start-page: 143 year: 2009 ident: 21823_CR54 publication-title: Immunity doi: 10.1016/j.immuni.2008.11.006 – volume: 167 start-page: 1354 year: 2016 ident: 21823_CR35 publication-title: Cell doi: 10.1016/j.cell.2016.09.034 – volume: 25 start-page: 2078 year: 2009 ident: 21823_CR75 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 77 start-page: 215 year: 2015 ident: 21823_CR4 publication-title: Ann. Neurol. doi: 10.1002/ana.24305 – ident: 21823_CR8 doi: 10.1016/S1474-4422(19)30435-1 – volume: 18 start-page: 425 year: 2010 ident: 21823_CR58 publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.01.015 – volume: 159 start-page: 1312 year: 2014 ident: 21823_CR20 publication-title: Cell doi: 10.1016/j.cell.2014.11.018 – volume: 40 start-page: 592 year: 2017 ident: 21823_CR66 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.08.003 – volume: 83 start-page: 423 year: 1995 ident: 21823_CR57 publication-title: Cell doi: 10.1016/0092-8674(95)90120-5 – ident: 21823_CR9 doi: 10.1101/294629 – volume: 50 start-page: 1584 year: 2018 ident: 21823_CR27 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0238-1 – volume: 20 start-page: 1052 year: 2017 ident: 21823_CR12 publication-title: Nat. Neurosci. doi: 10.1038/nn.4587 – volume: 47 start-page: 235 year: 2017 ident: 21823_CR37 publication-title: Immunity doi: 10.1016/j.immuni.2017.07.017 – volume: 12 start-page: 43 year: 2017 ident: 21823_CR2 publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0184-x – volume: 40 start-page: D930 year: 2012 ident: 21823_CR30 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr917 – volume: 210 start-page: 41 year: 2013 ident: 21823_CR62 publication-title: J. Exp. Med. doi: 10.1084/jem.20121069 – volume: 81 start-page: 559 year: 2007 ident: 21823_CR79 publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – ident: 21823_CR15 doi: 10.1126/science.aal3222 – volume: 18 start-page: 1104 year: 2017 ident: 21823_CR36 publication-title: Nat. Immunol. doi: 10.1038/ni.3818 – volume: 366 start-page: 1134 year: 2019 ident: 21823_CR46 publication-title: Science doi: 10.1126/science.aay0793 – volume: 10 start-page: e1004722 year: 2014 ident: 21823_CR32 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004722 – volume: 8 year: 2018 ident: 21823_CR10 publication-title: Transl. Psychiatry doi: 10.1038/s41398-018-0150-6 – volume: 353 start-page: 827 year: 2016 ident: 21823_CR24 publication-title: Science doi: 10.1126/science.aad6970 – volume: 51 start-page: 1486 year: 2019 ident: 21823_CR72 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0493-9 – ident: 21823_CR1 – volume: 9 start-page: 357 year: 2012 ident: 21823_CR74 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 40 start-page: 10018 year: 2012 ident: 21823_CR77 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks776 – volume: 116 start-page: 4159 year: 2003 ident: 21823_CR56 publication-title: J. Cell Sci. doi: 10.1242/jcs.00718 – volume: 585 start-page: 2951 year: 2011 ident: 21823_CR61 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2011.08.043 – volume: 275 start-page: 8331 year: 2000 ident: 21823_CR43 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.12.8331 – volume: 518 start-page: 317 year: 2015 ident: 21823_CR73 publication-title: Nature doi: 10.1038/nature14248 – volume: 22 start-page: 2111 year: 2019 ident: 21823_CR52 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0525-x – volume: 51 start-page: 404 year: 2019 ident: 21823_CR11 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0311-9 – ident: 21823_CR67 doi: 10.1186/s13073-017-0486-1 – volume: 26 start-page: 151 year: 2016 ident: 21823_CR38 publication-title: Cell Res. doi: 10.1038/cr.2016.1 – volume: 14 start-page: e1007427 year: 2018 ident: 21823_CR31 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007427 – ident: 21823_CR42 doi: 10.1101/2019.12.20.874099 – volume: 103 start-page: 1016 year: 2019 ident: 21823_CR53 publication-title: Neuron doi: 10.1016/j.neuron.2019.07.002 – ident: 21823_CR45 doi: 10.1038/s41588-020-00721-x – volume: 6 year: 2019 ident: 21823_CR50 publication-title: Sci. Data doi: 10.1038/s41597-019-0183-6 – ident: 21823_CR23 doi: 10.1126/science.1246949 – volume: 217 start-page: 459 year: 2018 ident: 21823_CR7 publication-title: J. Cell Biol. doi: 10.1083/jcb.201709069 – volume: 289 start-page: 19670 year: 2014 ident: 21823_CR63 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.515700 – volume: 44 start-page: 369 year: 2012 ident: 21823_CR41 publication-title: Nat. Genet. doi: 10.1038/ng.2213 – volume: 9 start-page: e1003240 year: 2013 ident: 21823_CR22 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003240 – volume: 178 start-page: 686 year: 2019 ident: 21823_CR69 publication-title: Cell doi: 10.1016/j.cell.2019.05.054 – volume: 489 start-page: 57 year: 2012 ident: 21823_CR34 publication-title: Nature doi: 10.1038/nature11247 – volume: 309 start-page: 1483 year: 2013 ident: 21823_CR25 publication-title: JAMA doi: 10.1001/jama.2013.2973 – ident: 21823_CR49 doi: 10.1101/2020.01.06.896159 – volume: 368 start-page: 107 year: 2013 ident: 21823_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211103 – volume: 47 start-page: 445 year: 2015 ident: 21823_CR6 publication-title: Nat. Genet. doi: 10.1038/ng.3246 – volume: 5 year: 2018 ident: 21823_CR51 publication-title: Sci. Data doi: 10.1038/sdata.2018.185 – ident: 21823_CR80 doi: 10.1016/j.neuron.2017.03.042 – volume: 48 start-page: 481 year: 2016 ident: 21823_CR14 publication-title: Nat. Genet. doi: 10.1038/ng.3538 – volume: 47 start-page: 1228 year: 2015 ident: 21823_CR16 publication-title: Nat. Genet. doi: 10.1038/ng.3404 – volume: 101 start-page: 539 year: 2017 ident: 21823_CR33 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.08.012 – volume: 105 start-page: 837 year: 2020 ident: 21823_CR71 publication-title: Neuron doi: 10.1016/j.neuron.2019.12.007 – volume: 163 start-page: 1611 year: 2015 ident: 21823_CR47 publication-title: Cell doi: 10.1016/j.cell.2015.11.024 – volume: 169 start-page: 1276 year: 2017 ident: 21823_CR70 publication-title: Cell doi: 10.1016/j.cell.2017.05.018 – volume: 167 start-page: 1398 year: 2016 ident: 21823_CR28 publication-title: Cells Cell doi: 10.1016/j.cell.2016.10.026 – volume: 54 start-page: 41 year: 2003 ident: 21823_CR55 publication-title: Cell Motil. Cytoskeleton doi: 10.1002/cm.10083 – volume: 10 start-page: 1213 year: 2013 ident: 21823_CR81 publication-title: Nat. Methods doi: 10.1038/nmeth.2688 |
SSID | ssj0000391844 |
Score | 2.6292236 |
Snippet | Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory... Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer's disease (AD), but the causal variants, regulatory... This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1610 |
SubjectTerms | 631/114/2785 631/208/191 631/378/1689/1283 631/378/371 Alleles Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer's disease Annotations Datasets Enhancers Gene expression Gene Expression Regulation Gene mapping Gene regulation Genes Genetic Predisposition to Disease - genetics Genetics Genome-wide association studies Genome-Wide Association Study Genomics Health risks Humanities and Social Sciences Humans Induced Pluripotent Stem Cells - metabolism Loci Macrophages Microglia Microglia - metabolism Monocytes multidisciplinary Myeloid Cells Neurodegenerative diseases Nominations Pathogenesis Pluripotency Regulatory sequences Regulatory Sequences, Nucleic Acid - genetics Risk Science Science (multidisciplinary) Stem cells Transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJSQuiPIbKMhIiAtEdWIndo4FURUkOFGpN8s_E3XFNkGbrcT2xGvwejwJYzubNoDKhdvKsbPO-LNnRjP-hpAXDatV6QvIoXQiFw3I3Dpe5YVta9VYJ40Id4c_fqqPjsWHk-rkSqmvkBOW6IGT4PZBAigmTCMCs5pjxjCoG-Uq5grPfDSNUOddcabiGcwbdF3EeEuGcbU_iHgmhIyEQFrO881ME0XC_r9ZmX8mS04R09_YRaNGOrxDbo-mJD1In7BLbkB3l9xMxSU398i39yMTBEqe9i09WF6cwuIMVj-__xjoGJihiJ9wjXGgpvP0bAPLfuFDY7isPNCFT8lEcDkg5KLTVapg3682FFL-eXpBeNtwnxwfvvv89igf6yzkDq2hdS59iZqcW3RXHau8sRIKYZWH2nOP1rdAl8gYGwJf3jlWKAstyr81prV1W1X8Adnp-g4eEepR27HSN5VweDTYVgH6V6VDM0e2QjGTkWIrc-1GEvJQC2OpYzCcK53WSeM66bhOepORV9OYr4mC49reb8JSTj0DfXZsQFDpEVT6X6DKyN4WCHrc04NGYxGBLVGjZ-T59Bh3YwixmA7689inKOtSFXVGHibcTDPhXBahZmBG5AxRs6nOn3SL08j4LRt0JDmOfL3F3uW0rhPFy4TP2T-MTV_wF-hAF1fwx_9DZk_IrTLsrpDrWO6RnfXqHJ6iwba2z-Le_AU1QEAr priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4s1CQUZCXCCqEzuJc0IFsRQkOFGpN8uPCV11m5TNVmI58Tf4e_wSZhJvVgtob5FjO449L3vG3zD2vBKFzkIKCWReJaqCMnFe5knq6kJXzpdW0d3hT5-Lo2P18SQ_iQduXQyrXMvEXlCH1tMZ-QGqauy2RHn6-uJbQlmjyLsaU2hcZddS1DQU0qWn78czFkI_10rFuzJC6oNO9ZKB4hIIulwmqy191MP2_8_W_DdkcvSb_oUx2uul6S12MxqU_HCggNvsCjR32PUhxeTqLvv-IeJB4PzztuaH8x-nMDuHxe-fvzoe3TMcqYguM3bcNoGfr2DezgIV0pXljs_CEFIEmwYUkc4XQx77drHiMEShDx1Qb909djx99-XtURKzLSQebaJlUoYM9bl0uGn1Ig_WlZAqpwMUQQa0wRVujKx15P4K3otUO6h9Lmpra1fUeS7vs72mbeAh4wF1nshClSuPAsLVGnCXlXk0dspaaWEnLF3PufERipwyYsxN7xKX2gzrZHCdTL9OZjVhL8c2FwMQx87ab2gpx5oEot0XtIuvJvKkgRJAC2UrRaB9XlgroKg0_pRPgwg4zP01IZjI2Z3Z0OGEPRtfI0-So8U20F72dZAcM50WE_ZgoJtxJFKWKWUOnLByi6K2hrr9ppmd9rjfZYXbSYktX61pbzOsXVPxYqDPrS_EojN8AkOgcal8tPt3H7MbGfENxTJm-2xvubiEJ2iQLd3Tnuv-AOlvNzc priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyQuiH9SCjIS4gIRTuwkznFBVGUluECl3iz_TOiKbYKSrdRw4jV4PZ6EsZNNFagqcYsc25nYM5lxZuYbQl6ULJepSyCG1IpYlFDExvIsTkyVy9LYQgufO_zxU350LJYn2ckOSbe5MCFoP0Bahs_0NjrsTSeCSPuAAo85zuP-BtnzUO3I23uLxfLzcvqz4jHPpRBjhgzj8orBMy0UwPqvsjD_DZScvKV_IYsGbXR4h9wezUi6GAi_S3agvkduDoUl-_vk4sOIAoGrTpuKLtY_TmF1Bu3vn786OjplKPKOT2HsqK4dPeth3aycb_SJyh1duSGQCC4H-Dh02g7V65u2pzDEng8T-Nm6B-T48P2Xd0fxWGMhtmgJbeLCpajFucGjqmWZ06aARBjpIHfcoeUt8DiktfFOL2ctS6SBymas0royeZVl_CHZrZsaHhPqUNOx1JWZsPhZMJUEPFulFk2cohKS6Ygk2zVXdgQg93Uw1io4wrlUwz4p3CcV9kn1EXk1jfk-wG9c2_ut38qpp4fODg1N-1WNrKSgAJBM6FJ4qD7LtGaQlxJfyiaOOSTzYMsIapTnTqGhiExdoDaPyPPpNkqid6_oGprz0CdJ81QmeUQeDXwzUcJ5kfh6gREpZhw1I3V-p16dBrTvosRDJMeRr7e8d0nWdUvxcuDP2RPGpm94BcpDxSV8___mfUJupV6OfERjekB2N-05PEWzbGOejXL4B0StNvA priority: 102 providerName: Springer Nature |
Title | Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes |
URI | https://link.springer.com/article/10.1038/s41467-021-21823-y https://www.ncbi.nlm.nih.gov/pubmed/33712570 https://www.proquest.com/docview/2500687012 https://www.proquest.com/docview/2501262816 https://pubmed.ncbi.nlm.nih.gov/PMC7955030 http://kipublications.ki.se/Default.aspx?queryparsed=id:146090939 https://doaj.org/article/e7ee804a940645c0aa0e698c50c1d0da |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN8ERmUkBA8QFsdO7Dwg1FUro9ImBFTqW-TYDqvoEkg6RPjrOdtpp0I18dJWju049l3urnf3O4SeZ1EqYk1MaGLFQpYZHhaKJiEpylRkheKS2dzh07P0ZMoms2S2g1bljvoNbLeadrae1LRZvPn1o3sHDP_Wp4yLw5Y5drfBBhaPnIbdLtoHycRtRYPTXt13b2aagUFjHc1xxEgIHWifR7N9mg1Z5SD9t-mh_4ZTrn2qf-GPOpk1vo1u9comHnrquIN2THUX3fDlJ7t76OeHHisCzgbXJR4ufp-b-YVpXra4d9xgoC-b5thiWWl80ZlFPde20SYzt3iufbCRuRpgY9Vx4yvc102HjY9P9xPY2dr7aDo-_jI6Cfs6DKECbWkZch2DpKcFmLMqSrQsuCGsENqkmmrQzhmYTFIW1jGmlYqIKEypkqiUsizSMknoA7RX1ZV5hLAGaRjFOkuYgldHUQoD9lesQA3iJRORDBBZ7XiuepByWytjkTtnORW5P6UcTil3p5R3AXq1HvPdQ3Rc2_vIHuS6p4XXdg118zXvuTU33BgRMZkxC-enIikjk2YCHkoRHWlY5sGKDPIVyeagTALhc5D4AXq2vgzcal0wsjL1petD4jQWJA3QQ08165VQyomtKRggvkFPG0vdvFLNzx0iOM_A0KQw8vWK8q6Wdd1WvPDUuXGHvukb_DK5hZMj9PF_PM8TdDO2rGNDHeMDtLdsLs1T0NeWxQDt8hmHTzF-P0D7w-Hk8wS-j47PPn6C1lE6Grh_QgaOWf8AqWdDeg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJulBYwEXCBqHk7iHBAqj2WXPk6t1Jtx7Em7Ypu0m60gnPgb_Al-FL-EmbxWC2hvvUWO7TiZ8YwnM_MNY88SN5K-9cAB3whHJBA7qQlCx0uzSCapibWg3OG9_Wh0KD4dhUdr7FeXC0NhlZ1MrAW1LQz9I99CVY3TxihP35ydO1Q1iryrXQmNhi12oPqKJlv5evwe6fvc94cfDt6NnLaqgGNQ98-d2KK97wcpGmfGDa1OY_BEKi1ENrB41hRoAGidkpvHGuN6MoXMhG6mdZZGWUhVIlDkXxEBanLKTB9-7P_pENq6FKLNzXEDuVWKWhJRHARBpQdOtaT_6jIB_zvb_hui2ftp_8I0rfXg8Ca70R5g-XbDcbfYGuS32dWmpGV1h30bt_gTSG9eZHx7-v0EJqcw-_3jZ8lbdxBHrqXkyZLr3PLTCqbFxFIjpUiXfGKbECZYDKAIeD6DYyo2VswqDk3UezMBzVbeZYeXQod7bD0vcnjAuEUd6_o2CYVBgZRmEtCq8w0eruJMSFcPmNd9c2Va6HOqwDFVtQs-kKqhk0I6qZpOqhqwl_2Yswb4Y2Xvt0TKvieBdtcNxexYtTJAQQwgXaETQSCBxtXahSiR-FLGs67FZW52jKBaSVKqBd8P2NP-NsoAcuzoHIqLuo_nR770ogG73_BNv5IgiD2qVDhg8RJHLS11-U4-OalxxuMEzdcAR77qeG-xrFWf4kXDn0tPaJu-4BUoAqnzgoerX_cJuzY62NtVu-P9nQ123ac9RHGU_iZbn88u4BEeBufp43oHcvb5srf8H6aKdR0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqViAuiH8WChgJuEC0-XES54BQS7vqUlhViEq9uY49aVdsk7LZCsKJ1-BVeByehJn87GoB7a23yLEdJzMez2RmvmHsWeJG0rceOOAb4YgEYic1Qeh4aRbJJDWxFpQ7_GEU7R2Kd0fh0Rr71eXCUFhlJxNrQW0LQ__I-3hU47QxytN-1oZFHOwM3px_caiCFHlau3IaDYvsQ_UVzbfy9XAHaf3c9we7n97uOW2FAcegHjBzYou2vx-kaKgZN7Q6jcETqbQQ2cCi3inQGNA6JZePNcb1ZAqZCd1M6yyNspAqRqD434jJKlpnG9u7o4OP8z88hL0uhWgzddxA9ktRyyWKiiDg9MCplk7DumjA_zTdfwM2517bvxBO61NxcINdb9VZvtXw3022BvktdqUpcFndZt-GLRoFUp8XGd-afD-F8RlMf__4WfLWOcSRhymVsuQ6t_ysgkkxttRICdMlH9smoAkWAygenk_hhEqPFdOKQxMD30xAs5V32OGlUOIuW8-LHO4zbvHEdX2bhMKgeEozCWjj-QZVrTgT0tU95nXfXJkWCJ3qcUxU7ZAPpGropJBOqqaTqnrs5XzMeQMDsrL3NpFy3pMgvOuGYnqiWomgIAaQrtCJIMhA42rtQpRIfCnjWdfiMjc7RlCtXCnVYhf02NP5bZQI5ObRORQXdR_Pj3zpRT12r-Gb-UqCIPaobmGPxUsctbTU5Tv5-LRGHY8TNGYDHPmq473FslZ9ihcNfy49oW36jFegCLLOCx6sft0n7Cpud_V-ONp_yK75tIUoqNLfZOuz6QU8Qs1wlj5utyBnx5e96_8AGPt6rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Alzheimer%27s+disease+genetics+and+myeloid+genomics+identifies+disease+risk+regulatory+elements+and+genes&rft.jtitle=Nature+communications&rft.au=Novikova%2C+Gloriia&rft.au=Kapoor%2C+Manav&rft.au=Tcw%2C+Julia&rft.au=Abud%2C+Edsel+M&rft.date=2021-03-12&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1610&rft_id=info:doi/10.1038%2Fs41467-021-21823-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |