Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters

In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding tex...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 4041 - 11
Main Authors Brynolfsson, Patrik, Nilsson, David, Torheim, Turid, Asklund, Thomas, Karlsson, Camilla Thellenberg, Trygg, Johan, Nyholm, Tufve, Garpebring, Anders
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.06.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-017-04151-4

Cover

Loading…
Abstract In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
AbstractList In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
Abstract In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
ArticleNumber 4041
Author Brynolfsson, Patrik
Nilsson, David
Karlsson, Camilla Thellenberg
Torheim, Turid
Garpebring, Anders
Nyholm, Tufve
Asklund, Thomas
Trygg, Johan
Author_xml – sequence: 1
  givenname: Patrik
  surname: Brynolfsson
  fullname: Brynolfsson, Patrik
  email: patrik.brynolfsson@umu.se
  organization: Dept. of Radiation Sciences, Umeå University
– sequence: 2
  givenname: David
  surname: Nilsson
  fullname: Nilsson, David
  organization: Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University
– sequence: 3
  givenname: Turid
  orcidid: 0000-0001-6191-2036
  surname: Torheim
  fullname: Torheim, Turid
  organization: Cancer Research UK Cambridge Institute, University of Cambridge
– sequence: 4
  givenname: Thomas
  surname: Asklund
  fullname: Asklund, Thomas
  organization: Dept. of Radiation Sciences, Umeå University
– sequence: 5
  givenname: Camilla Thellenberg
  surname: Karlsson
  fullname: Karlsson, Camilla Thellenberg
  organization: Dept. of Radiation Sciences, Umeå University
– sequence: 6
  givenname: Johan
  surname: Trygg
  fullname: Trygg, Johan
  organization: Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University
– sequence: 7
  givenname: Tufve
  surname: Nyholm
  fullname: Nyholm, Tufve
  organization: Dept. of Radiation Sciences, Umeå University
– sequence: 8
  givenname: Anders
  surname: Garpebring
  fullname: Garpebring, Anders
  organization: Dept. of Radiation Sciences, Umeå University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28642480$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-134993$$DView record from Swedish Publication Index
BookMark eNp9kk9v1DAQxSNUREvpF-CAInEph4Dt2Fn7grTaAl2pCAkBV8uxJ4uXbJzaCX8ufHYmu0u1Wwl8sTP-vZfx6D3OTrrQQZY9peQlJaV8lTgVShaEzgqCR1rwB9kZI1wUrGTs5OB8ml2ktCa4BFOcqkfZKZMVZ1ySs-z3tYmm9fZbPsDPYYyQN2CmPeVNDJvc9L2J0A25800zJh-63AZoGm_9VL2cXy1e5O8_LnO_MSsUOeihczliU8F3q9zgZx-h6GOwkNJUQkuzgQFiepI9bEyb4GK_n2ef3775tLgubj68Wy7mN4WtOB8KVjtGDaGE1cIR1zS0nrnaVozUpHYKB2GAS4n3paqE4I5QyYSxjgvHLYHyPFvufF0wa91HbC7-0sF4vS2EuNImDt62oGe8NgRmNXFEcWcaZaxsuKqrCkQplEWvYueVfkA_1kduV_7LfOs2bkZNS65UifzrHY_wBpzFueHIj2THN53_qlfhuxZcUi44GlzuDWK4HSENeuOThbY1HYQxaapoWSrOBUH0-T10HcbY4WiREkJVsiISqWeHHd218jcWCLAdYGNIKUJzh1Cip_jpXfw0xk9v46enNuU9kfWDGTAy-Crf_l9a7keK_-lWEA_a_rfqDxdW774
CitedBy_id crossref_primary_10_3390_electronics9050767
crossref_primary_10_1002_advs_202105396
crossref_primary_10_2214_AJR_18_20624
crossref_primary_10_1007_s00198_019_04924_9
crossref_primary_10_3390_rs10111690
crossref_primary_10_1088_1361_6560_ace305
crossref_primary_10_1186_s42492_019_0025_6
crossref_primary_10_3390_jfb15010024
crossref_primary_10_1088_1361_6560_aad8ec
crossref_primary_10_1007_s40846_021_00671_7
crossref_primary_10_3390_inventions9010008
crossref_primary_10_3390_axioms12020197
crossref_primary_10_1016_j_modpat_2023_100199
crossref_primary_10_46300_91015_2022_16_14
crossref_primary_10_1038_s41467_019_08893_9
crossref_primary_10_1016_j_canrad_2019_08_002
crossref_primary_10_3390_s24144472
crossref_primary_10_1097_RCT_0000000000000851
crossref_primary_10_3390_biom13020249
crossref_primary_10_1021_acsomega_2c02103
crossref_primary_10_1097_RCT_0000000000000731
crossref_primary_10_3390_diagnostics13132140
crossref_primary_10_3390_pr12122837
crossref_primary_10_1016_j_indcrop_2020_113223
crossref_primary_10_1109_JBHI_2019_2956351
crossref_primary_10_1093_braincomms_fcad195
crossref_primary_10_1002_cne_25105
crossref_primary_10_1016_j_matchar_2018_08_009
crossref_primary_10_3389_fonc_2021_708398
crossref_primary_10_1016_j_ejmp_2020_10_029
crossref_primary_10_32604_cmc_2022_024085
crossref_primary_10_1007_s00066_018_1402_3
crossref_primary_10_1007_s00261_018_1832_5
crossref_primary_10_1038_s41598_019_48738_5
crossref_primary_10_1038_s44220_023_00168_z
crossref_primary_10_1088_1361_6560_acf183
crossref_primary_10_1038_s41398_022_02242_z
crossref_primary_10_3390_agronomy13081974
crossref_primary_10_1080_22797254_2022_2161420
crossref_primary_10_3390_foods13050697
crossref_primary_10_1093_mam_ozae037
crossref_primary_10_1016_j_phro_2021_01_004
crossref_primary_10_1038_s41598_022_19009_7
crossref_primary_10_1002_mrm_28592
crossref_primary_10_1002_acm2_12482
crossref_primary_10_3390_cancers16152668
crossref_primary_10_1093_rasti_rzae022
crossref_primary_10_3390_bioengineering10010080
crossref_primary_10_1186_s40644_024_00674_y
crossref_primary_10_1016_j_rsase_2023_100938
crossref_primary_10_1002_mp_14173
crossref_primary_10_1364_BOE_10_000914
crossref_primary_10_1007_s10278_024_01303_7
crossref_primary_10_1016_j_brachy_2024_08_256
crossref_primary_10_1016_j_bspc_2021_102695
crossref_primary_10_1016_j_commatsci_2019_01_006
crossref_primary_10_2174_1573405614666181012102626
crossref_primary_10_1038_s41598_022_13937_0
crossref_primary_10_1007_s11837_022_05265_5
crossref_primary_10_1097_RLI_0000000000001026
crossref_primary_10_1038_s41598_022_23838_x
crossref_primary_10_3389_fonc_2022_852308
crossref_primary_10_1097_RCT_0000000000001344
crossref_primary_10_1088_1361_6560_acb885
crossref_primary_10_1007_s11042_023_17385_4
crossref_primary_10_1016_j_isprsjprs_2020_09_013
crossref_primary_10_1038_s41598_022_15364_7
crossref_primary_10_1007_s11227_020_03565_8
crossref_primary_10_14316_pmp_2022_33_4_158
crossref_primary_10_1002_jmri_28190
crossref_primary_10_1177_02841851231216555
crossref_primary_10_1002_jmri_28191
crossref_primary_10_1155_2022_5336373
crossref_primary_10_3390_app122111269
crossref_primary_10_3390_bioengineering12010047
crossref_primary_10_3390_rs14174132
crossref_primary_10_3390_app122010461
crossref_primary_10_1002_jmri_26883
crossref_primary_10_3389_fpls_2020_01275
crossref_primary_10_3390_tomography9020058
crossref_primary_10_1016_j_heliyon_2024_e26192
crossref_primary_10_3390_polym15173544
crossref_primary_10_3390_jcm12072605
crossref_primary_10_3389_fpls_2024_1492372
crossref_primary_10_1186_s41747_020_00199_6
crossref_primary_10_1088_1361_6560_aa884d
crossref_primary_10_1055_a_1079_3855
crossref_primary_10_1007_s00330_023_10164_7
crossref_primary_10_1097_RCT_0000000000001088
crossref_primary_10_1016_j_bspc_2022_103571
crossref_primary_10_1117_1_JMI_6_2_024502
crossref_primary_10_1109_TUFFC_2022_3161719
crossref_primary_10_3390_agronomy10111642
crossref_primary_10_1200_CCI_21_00156
crossref_primary_10_1093_braincomms_fcac116
crossref_primary_10_1038_s41598_021_94826_w
crossref_primary_10_1007_s42979_024_03109_4
crossref_primary_10_1016_j_asoc_2025_112767
crossref_primary_10_1117_1_JMI_9_4_044005
crossref_primary_10_4103_jmp_jmp_149_24
crossref_primary_10_4103_jmss_jmss_50_22
Cites_doi 10.1088/0031-9155/56/6/006
10.2214/AJR.14.12570
10.1097/RLI.0b013e3181a50a66
10.1158/1078-0432.CCR-14-0990
10.1148/radiology.161.2.3763909
10.1109/36.752194
10.1002/mrm.10308
10.1016/j.chemolab.2004.02.005
10.1186/1471-2407-14-366
10.1118/1.4894812
10.1016/j.patrec.2006.05.008
10.2214/AJR.14.13825
10.1161/01.CIR.68.4.834
10.1016/0301-5629(79)90004-8
10.5589/m02-004
10.1056/NEJMoa043330
10.1002/mrm.1910340618
10.1007/s00330-015-3701-8
10.1063/1.1695690
10.1593/neo.81328
10.1109/TMI.2012.2206398
10.2967/jnumed.110.082404
10.1186/1475-925X-9-60
10.1109/TMI.2014.2321024
10.2214/AJR.14.13279
10.1109/TSMC.1973.4309314
10.1118/1.3081408
10.1038/srep11075
10.1088/0031-9155/60/7/2685
10.1214/aoms/1177730256
10.1371/journal.pone.0108335
10.1001/jama.280.11.969
10.31887/DCNS.2004.6.2/amaterka
10.1515/fcds-2015-0011
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Jun 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Jun 2017
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOA
DOI 10.1038/s41598-017-04151-4
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: 开放获取期刊(Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_74ba0e7b0d094daf9ac8f49b66e5359c
oai_DiVA_org_umu_134993
PMC5481454
28642480
10_1038_s41598_017_04151_4
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
IPNFZ
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-c644t-2bd21a0102b5d0dff1b7dbc620b0bd9598ae488102396554d01825acd45d4c0e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:33 EDT 2025
Thu Aug 21 06:29:56 EDT 2025
Thu Aug 21 18:30:58 EDT 2025
Tue Aug 05 09:28:44 EDT 2025
Wed Aug 13 06:43:03 EDT 2025
Thu Apr 03 06:57:02 EDT 2025
Tue Jul 01 01:33:08 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Fri Feb 21 02:39:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-2bd21a0102b5d0dff1b7dbc620b0bd9598ae488102396554d01825acd45d4c0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6191-2036
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-04151-4
PMID 28642480
PQID 1955968608
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_74ba0e7b0d094daf9ac8f49b66e5359c
swepub_primary_oai_DiVA_org_umu_134993
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5481454
proquest_miscellaneous_1913394450
proquest_journals_1955968608
pubmed_primary_28642480
crossref_primary_10_1038_s41598_017_04151_4
crossref_citationtrail_10_1038_s41598_017_04151_4
springer_journals_10_1038_s41598_017_04151_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-22
PublicationDateYYYYMMDD 2017-06-22
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References O’Connor (CR5) 2015; 21
Brynolfsson (CR7) 2014; 41
Tixier (CR12) 2011; 52
Savio (CR18) 2010; 9
Schieda (CR9) 2015; 204
Gómez, Pereira, Infantosi (CR15) 2012; 31
Torheim (CR8) 2014; 33
Lerski (CR3) 1979; 5
Mayerhoefer (CR20) 2009; 44
CR35
Arivazhagan, Ganesan, Priyal (CR10) 2006; 27
Wibmer (CR24) 2015; 25
Le Bihan (CR28) 1986; 161
CR34
CR31
Haralick, Shanmugam, Dinstein (CR1) 1973; 3
Cai, Liu, Peng, Wu, Li (CR26) 2014; 14
Stejskal, Tanner (CR27) 1965; 42
Leijenaar (CR13) 2015; 5
Mayerhoefer, Szomolanyi, Jirak, Materka, Trattnig (CR19) 2009; 36
Soh, Tsatsoulis (CR17) 1999; 37
Stupp (CR30) 2005; 352
Gudbjartsson, Patz (CR33) 1995; 34
Bharati, Liu, MacGregor (CR11) 2004; 72
Reese, Heid, Weisskoff, Wedeen (CR32) 2003; 49
CR23
CR22
CR21
Padhani (CR29) 2009; 11
Materka (CR2) 2004; 6
Kim, Kim, Moon, Yoon, Kwak (CR14) 2015; 205
Kierans (CR25) 2014; 203
Alic (CR6) 2011; 56
Skorton, Collins, Woskoff, Bean, Melton (CR4) 1983; 68
Clausi (CR16) 2002; 28
L-K Soh (4151_CR17) 1999; 37
ME Mayerhoefer (4151_CR19) 2009; 36
JPB O’Connor (4151_CR5) 2015; 21
R Lerski (4151_CR3) 1979; 5
D Le Bihan (4151_CR28) 1986; 161
A Materka (4151_CR2) 2004; 6
ME Mayerhoefer (4151_CR20) 2009; 44
AS Kierans (4151_CR25) 2014; 203
A Wibmer (4151_CR24) 2015; 25
4151_CR31
4151_CR34
DJ Skorton (4151_CR4) 1983; 68
T Torheim (4151_CR8) 2014; 33
4151_CR35
H Cai (4151_CR26) 2014; 14
RT Leijenaar (4151_CR13) 2015; 5
W Gómez (4151_CR15) 2012; 31
EO Stejskal (4151_CR27) 1965; 42
TG Reese (4151_CR32) 2003; 49
P Brynolfsson (4151_CR7) 2014; 41
SJ Savio (4151_CR18) 2010; 9
H Gudbjartsson (4151_CR33) 1995; 34
L Alic (4151_CR6) 2011; 56
SY Kim (4151_CR14) 2015; 205
MH Bharati (4151_CR11) 2004; 72
S Arivazhagan (4151_CR10) 2006; 27
4151_CR23
4151_CR21
RM Haralick (4151_CR1) 1973; 3
4151_CR22
F Tixier (4151_CR12) 2011; 52
AR Padhani (4151_CR29) 2009; 11
N Schieda (4151_CR9) 2015; 204
R Stupp (4151_CR30) 2005; 352
DA Clausi (4151_CR16) 2002; 28
References_xml – ident: CR22
– volume: 56
  start-page: 1601
  year: 2011
  end-page: 16
  ident: CR6
  article-title: Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response?
  publication-title: Physics in medicine and biology
  doi: 10.1088/0031-9155/56/6/006
– volume: 203
  start-page: W637
  year: 2014
  end-page: W44
  ident: CR25
  article-title: Textural differences in apparent diffusion coefficient between low- and high-stage clear cell renal cell carcinoma
  publication-title: AJR. American journal of roentgenology
  doi: 10.2214/AJR.14.12570
– volume: 44
  start-page: 405
  year: 2009
  end-page: 411
  ident: CR20
  article-title: Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3181a50a66
– volume: 21
  start-page: 249
  year: 2015
  end-page: 257
  ident: CR5
  article-title: Imaging intratumor heterogeneity: Role in therapy response, resistance, and clinical outcome
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.CCR-14-0990
– volume: 161
  start-page: 401
  year: 1986
  end-page: 407
  ident: CR28
  article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
  doi: 10.1148/radiology.161.2.3763909
– volume: 37
  start-page: 780
  year: 1999
  end-page: 795
  ident: CR17
  article-title: Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurence Matrices
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.752194
– volume: 49
  start-page: 177
  year: 2003
  end-page: 82
  ident: CR32
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.10308
– volume: 72
  start-page: 57
  year: 2004
  end-page: 71
  ident: CR11
  article-title: Image texture analysis: Methods and comparisons
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2004.02.005
– volume: 14
  start-page: 366
  year: 2014
  ident: CR26
  article-title: Diagnostic assessment by dynamic contrast-enhanced and diffusion-weighted magnetic resonance in differentiation of breast lesions under different imaging protocols
  publication-title: BMC cancer
  doi: 10.1186/1471-2407-14-366
– ident: CR35
– volume: 41
  start-page: 101903
  year: 2014
  ident: CR7
  article-title: ADC texture - An imaging biomarker for high-grade glioma?
  publication-title: Medical Physics
  doi: 10.1118/1.4894812
– volume: 27
  start-page: 1976
  year: 2006
  end-page: 1982
  ident: CR10
  article-title: Texture classification using Gabor wavelets based rotation invariant features
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.05.008
– volume: 205
  start-page: 343
  year: 2015
  end-page: 51
  ident: CR14
  article-title: Application of Texture Analysis in the Differential Diagnosis of Benign and Malignant Thyroid Nodules: Comparison With Gray-Scale Ultrasound and Elastography
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.14.13825
– ident: CR23
– volume: 68
  start-page: 834
  year: 1983
  end-page: 840
  ident: CR4
  article-title: Range- and azimuth-dependent variability of image texture in two- dimensional echocardiograms
  publication-title: Circulation
  doi: 10.1161/01.CIR.68.4.834
– volume: 5
  start-page: 341
  year: 1979
  end-page: 343
  ident: CR3
  article-title: Computer analysis of ultrasonic signals in diffuse liver disease
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/0301-5629(79)90004-8
– ident: CR21
– volume: 28
  start-page: 45
  year: 2002
  end-page: 62
  ident: CR16
  article-title: An analysis of co-occurrence texture statistics as a function of grey level quantization
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.5589/m02-004
– volume: 352
  start-page: 987
  year: 2005
  end-page: 996
  ident: CR30
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMoa043330
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  ident: CR33
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910340618
– volume: 25
  start-page: 2840
  year: 2015
  end-page: 2850
  ident: CR24
  article-title: Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores
  publication-title: European Radiology
  doi: 10.1007/s00330-015-3701-8
– volume: 42
  start-page: 288
  year: 1965
  ident: CR27
  article-title: Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.1695690
– volume: 6
  start-page: 243
  year: 2004
  end-page: 250
  ident: CR2
  article-title: Texture analysis methodologies for magnetic resonance imaging
  publication-title: Dialogues in clinical neuroscience
– volume: 11
  start-page: 102
  year: 2009
  end-page: 125
  ident: CR29
  article-title: Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia (New York, N.Y.)
  doi: 10.1593/neo.81328
– volume: 31
  start-page: 1889
  year: 2012
  end-page: 1899
  ident: CR15
  article-title: Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2206398
– ident: CR31
– volume: 52
  start-page: 369
  year: 2011
  end-page: 78
  ident: CR12
  article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
  publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine
  doi: 10.2967/jnumed.110.082404
– volume: 9
  start-page: 60
  year: 2010
  ident: CR18
  article-title: Effect of slice thickness on brain magnetic resonance image texture analysis
  publication-title: Biomedical engineering online
  doi: 10.1186/1475-925X-9-60
– volume: 33
  start-page: 1648
  year: 2014
  end-page: 1656
  ident: CR8
  article-title: Classi fi cation of Dynamic Contrast Enhanced MR Images of Cervical Cancers Using Texture Analysis and Support Vector Machines
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2014.2321024
– ident: CR34
– volume: 204
  start-page: 1013
  year: 2015
  end-page: 1023
  ident: CR9
  article-title: Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.14.13279
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: CR1
  article-title: Textural Features for Image Classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
– volume: 36
  start-page: 1236
  year: 2009
  end-page: 1243
  ident: CR19
  article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study
  publication-title: Medical physics
  doi: 10.1118/1.3081408
– volume: 5
  start-page: 11075
  year: 2015
  ident: CR13
  article-title: The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis
  publication-title: Scientific Reports
  doi: 10.1038/srep11075
– volume: 68
  start-page: 834
  year: 1983
  ident: 4151_CR4
  publication-title: Circulation
  doi: 10.1161/01.CIR.68.4.834
– ident: 4151_CR23
  doi: 10.1088/0031-9155/60/7/2685
– volume: 56
  start-page: 1601
  year: 2011
  ident: 4151_CR6
  publication-title: Physics in medicine and biology
  doi: 10.1088/0031-9155/56/6/006
– volume: 27
  start-page: 1976
  year: 2006
  ident: 4151_CR10
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.05.008
– volume: 5
  start-page: 11075
  year: 2015
  ident: 4151_CR13
  publication-title: Scientific Reports
  doi: 10.1038/srep11075
– volume: 41
  start-page: 101903
  year: 2014
  ident: 4151_CR7
  publication-title: Medical Physics
  doi: 10.1118/1.4894812
– volume: 203
  start-page: W637
  year: 2014
  ident: 4151_CR25
  publication-title: AJR. American journal of roentgenology
  doi: 10.2214/AJR.14.12570
– ident: 4151_CR35
  doi: 10.1214/aoms/1177730256
– ident: 4151_CR22
  doi: 10.1371/journal.pone.0108335
– volume: 42
  start-page: 288
  year: 1965
  ident: 4151_CR27
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.1695690
– volume: 72
  start-page: 57
  year: 2004
  ident: 4151_CR11
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2004.02.005
– volume: 33
  start-page: 1648
  year: 2014
  ident: 4151_CR8
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2014.2321024
– volume: 9
  start-page: 60
  year: 2010
  ident: 4151_CR18
  publication-title: Biomedical engineering online
  doi: 10.1186/1475-925X-9-60
– volume: 44
  start-page: 405
  year: 2009
  ident: 4151_CR20
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3181a50a66
– volume: 5
  start-page: 341
  year: 1979
  ident: 4151_CR3
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/0301-5629(79)90004-8
– ident: 4151_CR31
  doi: 10.1001/jama.280.11.969
– volume: 37
  start-page: 780
  year: 1999
  ident: 4151_CR17
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.752194
– volume: 21
  start-page: 249
  year: 2015
  ident: 4151_CR5
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.CCR-14-0990
– volume: 6
  start-page: 243
  year: 2004
  ident: 4151_CR2
  publication-title: Dialogues in clinical neuroscience
  doi: 10.31887/DCNS.2004.6.2/amaterka
– volume: 205
  start-page: 343
  year: 2015
  ident: 4151_CR14
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.14.13825
– volume: 25
  start-page: 2840
  year: 2015
  ident: 4151_CR24
  publication-title: European Radiology
  doi: 10.1007/s00330-015-3701-8
– volume: 28
  start-page: 45
  year: 2002
  ident: 4151_CR16
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.5589/m02-004
– volume: 352
  start-page: 987
  year: 2005
  ident: 4151_CR30
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMoa043330
– volume: 204
  start-page: 1013
  year: 2015
  ident: 4151_CR9
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.14.13279
– ident: 4151_CR34
– volume: 3
  start-page: 610
  year: 1973
  ident: 4151_CR1
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
– volume: 31
  start-page: 1889
  year: 2012
  ident: 4151_CR15
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2206398
– volume: 36
  start-page: 1236
  year: 2009
  ident: 4151_CR19
  publication-title: Medical physics
  doi: 10.1118/1.3081408
– volume: 34
  start-page: 910
  year: 1995
  ident: 4151_CR33
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910340618
– volume: 161
  start-page: 401
  year: 1986
  ident: 4151_CR28
  publication-title: Radiology
  doi: 10.1148/radiology.161.2.3763909
– volume: 11
  start-page: 102
  year: 2009
  ident: 4151_CR29
  publication-title: Neoplasia (New York, N.Y.)
  doi: 10.1593/neo.81328
– ident: 4151_CR21
  doi: 10.1515/fcds-2015-0011
– volume: 49
  start-page: 177
  year: 2003
  ident: 4151_CR32
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.10308
– volume: 52
  start-page: 369
  year: 2011
  ident: 4151_CR12
  publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine
  doi: 10.2967/jnumed.110.082404
– volume: 14
  start-page: 366
  year: 2014
  ident: 4151_CR26
  publication-title: BMC cancer
  doi: 10.1186/1471-2407-14-366
SSID ssj0000529419
Score 2.5425794
Snippet In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response...
Abstract In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4041
SubjectTerms 59/57
631/114/1564
631/67/2321
Diffusion coefficient
Humanities and Social Sciences
Magnetic resonance imaging
multidisciplinary
Noise
Noise levels
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR346uEkFE0WbTSfqR47jrMgrrQVzZW8ircdDpGbanD1787VYlPc20ynrxOEmaSdcjVdWp-oqQ54ZbL4umzCpjfYYIcxkY4ZCJ4MA7F0KoWMd99rFcnMsPF8XFXqsvzAlL8MCJcEeVtIaFyjIPgYg3jTKubqSyZRkKUSiHpy_YvL1gKqF6cyVzNVTJMFEfdWCpsJoMDmWsSofAaWKJImD_37zMP5MlxxvT39BFo0U6vUVuDq4knadXuE2uhfYOuZ6aS_64S34uDH7EcN8oJnf0l4E2IaJ4dhRrSqjZYPJ5u6XYI6XHj2bUrUNElMDRl_OT41f07NN7ulzBmdPR1C6XwjIcgK1RAz8xi2STig1wCJHEV5hh090j56fvPh8vsqHbQubAJ9pmwDSeG4SYs4VnvmlyW3nrSs4ss14B8UwAbUeoB1WCE-IZhCaFccBqLx0L4j45aNdteEioEyZ3nlUNZ1KqhinuhMhD6R1zUlo3I_mO8toNUOTYEeO7jlfiotaJWxq4pSO3tJyR1-MzmwTEceXqt8jQcSWCaMcBEC09iJb-l2jNyOFOHPSg2Z3OEbKvrEtWz8izcRp0Ei9aTBvWPa6ByF9JWbAZeZCkZ9wJryHikzXMVBO5mmx1OtMuv0bcbwguc1nAu73ZSeDetq4gxYskpZN_OFl-mUdi9KteI0SlEo_-B80ekxs86liZcX5IDraXfXgCbtvWPo0a-gu8Dz8v
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvCgoyEEAiidWLHiU-o7LIqSMsBsag3y68sFTQtTXPgwm9nxkkDAdRjbEdxPDP2zHjmG0Kemsx6kVcyKYz1CSLMJXAIh4QHB9o551zFPO6zD3J2Lt7P83nvcGv6sMrdnhg3ar9y6CM_ShEqTZaSla_X3xOsGoW3q30JjcvkCkKXYUhXMS8GHwveYolU9bkyjJdHDZxXmFMGWzPmpoP5NDqPImz__3TNf0Mmh3vTvzBG47l0eoNc7xVKOu044Ca5FOpb5GpXYvLHbfJzZtCV4b5SDPFoN4FWIWJ5NhQzS6hZYwh6vaVYKaVF1xl1qxBxJbD1-fTk-AU9-_iOLpaw8zS0K5pLYRg2wNSogUeMJVl3KQfYhHjiS4yzae6Q89O3n45nSV9zIXGgGW0TIF2WGgSas7lnvqpSW3jrZMYss17B4pkAMo-AD0qCKuIZGCi5cUBwLxwL_C45qFd1uE-o4yZ1nhVVxoRQFVOZ4zwN0jvmhLBuQtLdymvXA5JjXYxvOl6M81J31NJALR2ppcWEvBzeWXdwHHtHv0GCDiMRSjs2rDYXupdMXQhrWCgs82DpelMp48pKKCtlyHmuYJqHO3bQvXw3-jc3TsiToRskE69bTB1WLY4B-18JkbMJuddxzzCTrAS7T5TQU4z4ajTVcU-9-BLRv8HETEUO__Zqx4F_TGvPUjzruHT0hZPF52lcjHbZagSqVPzB_t99SK5lUXpkkmWH5GC7acMjUMu29nGUvV8NhzXk
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERKXijdbCjISQiCIcGLHiY_LlmpBKgdEUW-WX4EVbHbVbA5c-O3MOA8RqCpxjO0kY8_YnrFnviHkmcmsF3klk8JYnyDCXAKbcEh4cKCdc85VjOM-_SiXZ-LDeX6-R7IhFiY67UdIy7hMD95hbxrYaDAYDNZUDCoHu-cauY7Q7SjVC7kYz1Xw5kqkqo-PYby85NXJHhSh-i_TL_91kxzvSv_CFY170cktctArkXTekX2b7IX6DrnRpZX8eZf8Who8vnDfKbp1QCdpFWJnG4rRJNRs0e283lHMjtLicRl1mxCxJLD0xfx48ZKefnpPV2tYbRraJcql0AwLgDRq4BH9R7ZdmAEWIYb4Gn1rmnvk7OTd58Uy6fMsJA60oV0C7MpSg-ByNvfMV1VqC2-dzJhl1isYPBNgniPIg5KgfngGRkluHDDZC8cCv0_2600dHhLquEmdZ0WVMSFUxVTmOE-D9I45IaybkXQYee16EHLMhfFDx8twXuqOWxq4pSO3tJiRV-M72w6C48rWb5GhY0uEz44Fm4uvuhcnXQhrWCgs82DdelMp48pKKCtlyHmugMyjQRx0P6cbnSJYnywlK2fk6VgNsxGvWEwdNi22AZtfCZGzGXnQSc9ISVaCrSdKqCkmcjUhdVpTr75FxG8wK1ORQ99eDxL4B1lXDMXzTkonfzhefZnHwWjXrUZwSsUP_--7j8jNLM4mmWTZEdnfXbThMahmO_skzsXfyzszig
  priority: 102
  providerName: Springer Nature
Title Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters
URI https://link.springer.com/article/10.1038/s41598-017-04151-4
https://www.ncbi.nlm.nih.gov/pubmed/28642480
https://www.proquest.com/docview/1955968608
https://www.proquest.com/docview/1913394450
https://pubmed.ncbi.nlm.nih.gov/PMC5481454
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-134993
https://doaj.org/article/74ba0e7b0d094daf9ac8f49b66e5359c
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZixNBEG72QPBFvI2uoQURRUd7pnuuB5FsdpcYyCKrkX1r-hoNbiYxyYD74m-3qmcmbDTuU0hND6nU0VV91FeEPFeRtiIukiBV2gaIMBdAEHYBdwayc8557uu4R6fJYCyG5_H5DmnbHTUCXG5d2mE_qfHi4u2vn5cfwOHf1yXj2bslBCEsFIP5FgvOYU20S_YhMqXoqKMm3a-xvqNchHlTO7P9VUQHziApFwgUeSVUeUT_bWnov7cp10eqf8GP-pB1cpvcanJN2quN4w7ZceVdcqPuPnl5j_weKNzlMD8o3v6oFo4WzsN8LikWnVA1x9vp5YpiE5UKd9WomTkPOYHUl72j_is6OvtIJ1OYlJa07qdLYRgSgDWq4CteM5nX1QhIQqjxKV7BWd4n45PjL_1B0LRjCAwkTasAtBqFCjHodGyZLYpQp1abJGKaaZuDHJWD6QCxIPIEshTLYO0SKwO2YIVhjj8ge-WsdI8INVyFxrK0iJgQecHyyHAeusQaZoTQpkPCVvLSNFjl2DLjQvozc57JWnESFCe94qTokNfrd-Y1Use1ow9RoeuRiLLtCbPFN9k4rUyFVsylmllYBFtV5Mpkhch1kriYxzmwedCag2wtV4aI6ZdkCcs65Nn6MTgtnsSo0s0qHBNyrEiOWYc8rK1nzUlrfR2SbtjVBqubT8rJdw8MDqvPUMTw3960FniFrWtE8aK20o1fOJp87XlhVNNKIoZlzh__l9cn5GbkfSgJouiA7K0WlXsKydpKd8luep52yX6vN_w8hM_D49NPZ0DtJ_2u3wDpeh_9AxCVPqQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJtAASMBAsGq3rX3dUAobVoltIlQ1aLejF8LEWQTslmhXvhJ_EZmdjcLAdRbj7GdZOwZz3jsmW8IeaoCbUWYRV6stPUQYc4DI-w87gyczjnnaZXHPRpHgxPx7jQ83SA_V7kwGFa50omVorYzg3fk2z5CpUVJxJK3828eVo3C19VVCY1aLA7c2Xdw2Yo3wz7w91kQ7O8d7w68pqqAZ8D2Lz0gLvAVQqnp0DKbZb6OrTZRwDTTNg3TRDmQaoQ0SCMwtpbBETxUBqZkhWGOw-9eIpuCgyvTIZs7e-P3R-2tDr6bCT9tsnMYT7YLsJCYxQbGALPhwWFbs4BVoYD_nW7_DdJsX2r_QjWtLOH-dXKtOcLSXi1zN8iGy2-Sy3VRy7Nb5MdA4eWJ-UIxqKRcOJq5Cj20oJjLQtUcg97zJcXaLCVe1lEzcxWSBba-6PV3X9LR0ZBOpqDrClqX6aUwDBuANKrgI0avzOskB2xCBPMpRvYUt8nJhfDjDunks9zdI9Rw5RvL4ixgQqQZSwPDue8ia5gRQpsu8VcrL00DgY6VOL7K6imeJ7LmlgRuyYpbUnTJq_Y78xoA5NzRO8jQdiSCd1cNs8Un2egCGQutmIs1s-BbW5WlyiSZSHUUuZCHKZC5tRIH2WiUQv6W_y550naDLsAHHpW7WYljfI6JziHrkru19LSUBAl4miKBnnhNrtZIXe_JJ58rvHFwan0RwtxeryTwD7LOWYrntZSu_UN_8qFXLUY5LSVCY6b8_vnTfUyuDI5Hh_JwOD54QK4G1U6KvCDYIp3lonQP4VC41I-anUjJx4ve_L8A1uJznw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRSAuiDeFBYwECARRndh5HRAqW6qWZVcIsai34FeggqalaYT2wg_j1zHjPKCAettjbbcdex4e2zPfEPJABsqIMI-8WCrjIcKcB5uw9bjV4J1zzlOXx314FI2PxetpON0hP9tcGAyrbG2iM9RmofGOvO8jVFqURCzp501YxNvh6MXym4cVpPCltS2nUYvIgT35Dse38vlkCLx-GASjV-_3x15TYcDT4AesPSA08CXCqqnQMJPnvoqN0lHAFFMmDdNEWpBwhDdII9h4DQN3PJQapmeEZpbD754hZ2Me-qhj8TTu7nfwBU34aZOnw3jSL2GvxHw22BYwLx6Obht7oSsZ8D8_999wze7N9i98U7cnji6Ri40zSwe19F0mO7a4Qs7V5S1PrpIfY4nXKPoLxXWsVpbm1uGIlhSzWqhcYvh7saZYpaXCazuqF9ZhWmDr48Fw_wk9fDehszlYvZLWBXspDMMGII1K-IhxLMs63QGbEMt8jjE-5TVyfCrcuE52i0VhbxKqufS1YXEeMCHSnKWB5ty3kdFMC6F0j_jtyme6AUPHmhxfM_coz5Os5lYG3MoctzLRI0-77yxrKJCto18iQ7uRCOPtGharT1ljFbJYKMlsrJiBU7aReSp1kotURZENeZgCmXutOGSNbSmz35rQI_e7brAK-NQjC7uocIzPMeU5ZD1yo5aejpIggTOnSKAn3pCrDVI3e4rZZ4c8DsdbX4Qwt2etBP5B1paleFRL6cY_DGcfBm4xqnmVIUhmym9tn-49ch5UPnszOTq4TS4ETpEiLwj2yO56Vdk74B2u1V2nhpR8PG29_wX4inZv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haralick+texture+features+from+apparent+diffusion+coefficient+%28ADC%29+MRI+images+depend+on+imaging+and+pre-processing+parameters&rft.jtitle=Scientific+reports&rft.au=Brynolfsson%2C+Patrik&rft.au=Nilsson%2C+David&rft.au=Torheim%2C+Turid&rft.au=Asklund%2C+Thomas&rft.date=2017-06-22&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=4041&rft_id=info:doi/10.1038%2Fs41598-017-04151-4&rft_id=info%3Apmid%2F28642480&rft.externalDocID=28642480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon