Network traffic prediction based on transformer and temporal convolutional network

This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global te...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 4; p. e0320368
Main Authors Wang, Yi, Chen, Peiyuan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.04.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance.
AbstractList This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance.
This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance.This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance.
Audience Academic
Author Wang, Yi
Chen, Peiyuan
AuthorAffiliation 1 School of Big Data and Information Industry, Chongqing City Management College, Chongqing, China
2 Oregon State University, Corvallis, Oregon, United States of America
University of Southern California, UNITED STATES OF AMERICA
AuthorAffiliation_xml – name: 1 School of Big Data and Information Industry, Chongqing City Management College, Chongqing, China
– name: University of Southern California, UNITED STATES OF AMERICA
– name: 2 Oregon State University, Corvallis, Oregon, United States of America
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0009-0008-4670-3306
  surname: Wang
  fullname: Wang, Yi
– sequence: 2
  givenname: Peiyuan
  orcidid: 0009-0008-7461-6074
  surname: Chen
  fullname: Chen, Peiyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40267169$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wBggiISG42MWnOM4VqioOK1VUKodby3Ymu14Se7GTAm-Pw6bVBvUC-SL2-PM_8e-Z0-zIeQdZ9hSjJaYlfrP1Q3CqXe5SeIkoQZSLB9kJrihZ8LQ6OpgfZ6cxbhEqqOD8UXbMEOEl5tVJdv0J-p8-fM_7oJrGmnwXoLamt97lWkWo8zRJey42PnQQcuXqvIdu54Nqc-PdjW-HkU4rt5d6nD1sVBvhyfQ9y76-f_fl4uPi8urD6uL8cmE4Y_2CVIYUyBjDEcPEIC40KwuihTCkqpnSTcE41rwGpEiDNRVQqAJRSqEyCjg9y57vdXetj3KyI0qKq6RXET4Sqz1Re7WVu2A7FX5Lr6z8G_BhLVXorWlBlskQowVRpQaWfKsEMsnmkuuUieoiab2dsg26g9qAS660M9H5jrMbufY3EhOESyZIUng1KQT_Y4DYy85GA22rHPhh_-OkKHg5JnvxD3r_9SZqrdINrGt8SmxGUXkuUjVwVogyUct7qDRq6Gx6QGhsis8OvJ4dSEwPv_q1GmKUq8_X_89efZuzLw_YDai238SpeuIcfHZo9Z3Ht1WbALYHTPAxBmjuEIzk2By3dsmxOeTUHPQP7-0AdQ
Cites_doi 10.1609/aaai.v37i4.25556
10.1109/TITS.2006.869623
10.1109/ISCID.2017.216
10.4018/IJEHMC.354587
10.1109/INFCOMW.2019.8845132
10.1186/s12874-021-01235-8
10.1080/23249935.2020.1745927
10.1145/3394486.3403118
10.1109/ACCESS.2021.3058619
10.1609/aaai.v33i01.3301922
10.1016/j.physa.2023.128988
10.1109/ACCESS.2023.3245085
10.1016/j.inffus.2023.102122
10.1007/s13198-016-0412-8
10.1109/ACCESS.2020.2978700
10.1016/j.eswa.2023.119587
10.1016/j.energy.2020.117159
10.1016/j.inffus.2024.102892
10.1016/j.knosys.2023.110676
10.1145/3387514.3405892
10.1016/j.patcog.2025.111351
10.1109/ACCESS.2019.2957192
10.21817/indjcse/2022/v13i2/221302188
10.1007/s00034-024-02627-z
10.1080/01969722.2023.2296248
10.1007/s44212-022-00015-z
10.1080/01969722.2023.2240647
10.1109/TASE.2021.3077537
10.1016/j.comnet.2021.108102
10.1371/journal.pone.0288935
10.1016/j.future.2020.06.050
10.1109/ACCESS.2019.2935504
10.1007/s40747-024-01578-x
10.1016/j.jclepro.2022.131224
10.1007/s10489-022-04122-x
ContentType Journal Article
Copyright Copyright: © 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Wang and Chen 2025 Wang and Chen
2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Wang and Chen 2025 Wang and Chen
– notice: 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0320368
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Agricultural Science Database


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Network traffic prediction
EISSN 1932-6203
ExternalDocumentID 3194129266
oai_doaj_org_article_7267cb82a7be4193980c13776be633b5
PMC12017482
A836864587
40267169
10_1371_journal_pone_0320368
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c644t-29c250ccc60412c068b4752b88c29d4abf5461b6de0a2f1b38e5a50333e9cae63
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:32 EDT 2025
Wed Aug 27 01:20:25 EDT 2025
Thu Aug 21 18:26:57 EDT 2025
Fri Jul 11 18:30:31 EDT 2025
Fri Jul 25 11:36:49 EDT 2025
Tue Jun 17 21:56:32 EDT 2025
Tue Jun 17 03:41:34 EDT 2025
Fri Jun 27 05:13:56 EDT 2025
Fri Jun 27 05:13:59 EDT 2025
Tue Jun 17 02:10:53 EDT 2025
Mon Jul 21 05:59:47 EDT 2025
Tue Jul 01 05:09:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright: © 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-29c250ccc60412c068b4752b88c29d4abf5461b6de0a2f1b38e5a50333e9cae63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0008-4670-3306
0009-0008-7461-6074
OpenAccessLink https://doaj.org/article/7267cb82a7be4193980c13776be633b5
PMID 40267169
PQID 3194129266
PQPubID 1436336
PageCount e0320368
ParticipantIDs plos_journals_3194129266
doaj_primary_oai_doaj_org_article_7267cb82a7be4193980c13776be633b5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12017482
proquest_miscellaneous_3194255675
proquest_journals_3194129266
gale_infotracmisc_A836864587
gale_infotracacademiconefile_A836864587
gale_incontextgauss_ISR_A836864587
gale_incontextgauss_IOV_A836864587
gale_healthsolutions_A836864587
pubmed_primary_40267169
crossref_primary_10_1371_journal_pone_0320368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250423
PublicationDateYYYYMMDD 2025-04-23
PublicationDate_xml – month: 4
  year: 2025
  text: 20250423
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Wang (pone.0320368.ref017) 2024; 37
S Prajam (pone.0320368.ref002) 2022; 13
B Guerrero-Rodriguez (pone.0320368.ref011) 2023; 55
WI Almayyan (pone.0320368.ref016) 2024; 15
B Lin (pone.0320368.ref038) 2024
S Guo (pone.0320368.ref030) 2019; 33
J Jiang (pone.0320368.ref046) 2023; 37
pone.0320368.ref019
J Wang (pone.0320368.ref007) 2025
Q Li (pone.0320368.ref009) 2025; 118
pone.0320368.ref012
Y Wen (pone.0320368.ref032) 2023; 218
Z Wu (pone.0320368.ref043) 2019
L Xiong (pone.0320368.ref006) 2024; 10
pone.0320368.ref010
G Zheng (pone.0320368.ref037) 2023; 275
Z Zhang (pone.0320368.ref034) 2023; 18
J Liu (pone.0320368.ref035) 2022; 53
H Ganame (pone.0320368.ref004) 2021; 9
B Yu (pone.0320368.ref041) 2018
S Wang (pone.0320368.ref028) 2022; 1
Q Wang (pone.0320368.ref023) 2016; 8
S Sun (pone.0320368.ref025) 2006; 7
Y Li (pone.0320368.ref042) 2017
DL Guidoni (pone.0320368.ref003) 2020; 8
E Zhu (pone.0320368.ref039) 2024
Z Sheikh Khozani (pone.0320368.ref015) 2022; 348
B Fernandes (pone.0320368.ref027) 2020; 31
Z Yu (pone.0320368.ref036) 2023; 11
W Zhang (pone.0320368.ref031) 2023; 625
L Bai (pone.0320368.ref045) 2020; 33
pone.0320368.ref005
pone.0320368.ref026
J Guo (pone.0320368.ref029) 2020; 17
pone.0320368.ref024
pone.0320368.ref022
pone.0320368.ref044
F Prado (pone.0320368.ref013) 2020; 197
H Zhang (pone.0320368.ref008) 2025; 162
AL Schaffer (pone.0320368.ref014) 2021; 21
J Kong (pone.0320368.ref040) 2024; 103
H Yang (pone.0320368.ref001) 2021; 193
U Naseem (pone.0320368.ref020) 2020; 113
M Jiang (pone.0320368.ref021) 2019; 7
W Zhao (pone.0320368.ref033) 2019; 7
J Bi (pone.0320368.ref018) 2022; 19
References_xml – volume: 37
  start-page: 4365
  issue: 4
  year: 2023
  ident: pone.0320368.ref046
  article-title: PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction
  publication-title: AAAI
  doi: 10.1609/aaai.v37i4.25556
– volume: 7
  start-page: 124
  issue: 1
  year: 2006
  ident: pone.0320368.ref025
  article-title: A Bayesian network approach to traffic flow forecasting
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2006.869623
– ident: pone.0320368.ref024
  doi: 10.1109/ISCID.2017.216
– volume: 15
  start-page: 1
  issue: 1
  year: 2024
  ident: pone.0320368.ref016
  article-title: Detection of kidney diseases
  publication-title: Int J E-Health Med Commun
  doi: 10.4018/IJEHMC.354587
– ident: pone.0320368.ref026
  doi: 10.1109/INFCOMW.2019.8845132
– volume: 21
  start-page: 58
  issue: 1
  year: 2021
  ident: pone.0320368.ref014
  article-title: Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-021-01235-8
– ident: pone.0320368.ref022
– volume: 17
  start-page: 190
  issue: 2
  year: 2020
  ident: pone.0320368.ref029
  article-title: GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model
  publication-title: Transportmetrica A: Transp Sci
  doi: 10.1080/23249935.2020.1745927
– ident: pone.0320368.ref044
  doi: 10.1145/3394486.3403118
– volume: 9
  start-page: 30386
  year: 2021
  ident: pone.0320368.ref004
  article-title: Evolutionary algorithms for 5G multi-tier radio access network planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058619
– volume: 33
  start-page: 17804
  year: 2020
  ident: pone.0320368.ref045
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
  publication-title: Adv Neural Inf Process Syst.
– ident: pone.0320368.ref019
– volume: 33
  start-page: 922
  issue: 01
  year: 2019
  ident: pone.0320368.ref030
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
  publication-title: AAAI
  doi: 10.1609/aaai.v33i01.3301922
– volume: 625
  start-page: 128988
  year: 2023
  ident: pone.0320368.ref031
  article-title: Traffic flow prediction under multiple adverse weather based on self-attention mechanism and deep learning models
  publication-title: Physica A Stat Mech Appl
  doi: 10.1016/j.physa.2023.128988
– volume: 37
  start-page: 31
  issue: 01
  year: 2024
  ident: pone.0320368.ref017
  article-title: New productive forces: Indicator construction and spatio-temporal evolution
  publication-title: XAUFE.
– volume: 11
  start-page: 16156
  year: 2023
  ident: pone.0320368.ref036
  article-title: A multi-head self-attention transformer-based model for traffic situation prediction in terminal areas
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3245085
– volume: 103
  start-page: 102122
  year: 2024
  ident: pone.0320368.ref040
  article-title: ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2023.102122
– volume: 8
  start-page: 1976
  issue: S3
  year: 2016
  ident: pone.0320368.ref023
  article-title: Network traffic prediction based on improved support vector machine
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-016-0412-8
– volume: 8
  start-page: 45167
  year: 2020
  ident: pone.0320368.ref003
  article-title: Vehicular traffic management based on traffic engineering for vehicular ad hoc networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978700
– volume: 218
  start-page: 119587
  year: 2023
  ident: pone.0320368.ref032
  article-title: RPConvformer: A novel Transformer-based deep neural networks for traffic flow prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119587
– volume: 197
  start-page: 117159
  year: 2020
  ident: pone.0320368.ref013
  article-title: Forecasting based on an ensemble autoregressive moving average—adaptive neuro—fuzzy inference system—neural network—genetic algorithm framework
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117159
– volume: 118
  start-page: 102892
  year: 2025
  ident: pone.0320368.ref009
  article-title: Oral multi-pathology segmentation with lead-assisting backbone attention network and synthetic data generation
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2024.102892
– volume: 275
  start-page: 110676
  year: 2023
  ident: pone.0320368.ref037
  article-title: VDGCNeT: A novel network-wide virtual dynamic graph convolution neural network and transformer-based traffic prediction model
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110676
– ident: pone.0320368.ref005
  doi: 10.1145/3387514.3405892
– volume: 162
  start-page: 111351
  year: 2025
  ident: pone.0320368.ref008
  article-title: Cross-modal knowledge transfer for 3D point clouds via graph offset prediction
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2025.111351
– volume: 7
  start-page: 179942
  year: 2019
  ident: pone.0320368.ref021
  article-title: Transformer based memory network for sentiment analysis of web comments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957192
– volume: 31
  start-page: 723
  issue: 4
  year: 2020
  ident: pone.0320368.ref027
  article-title: Long short-term memory networks for traffic flow forecasting: exploring input variables
  publication-title: time frames and multi-step approaches. Informatica.
– volume: 13
  start-page: 324
  issue: 2
  year: 2022
  ident: pone.0320368.ref002
  article-title: Applying machine learning approaches for network traffic forecasting
  publication-title: INDJCSE
  doi: 10.21817/indjcse/2022/v13i2/221302188
– ident: pone.0320368.ref012
  doi: 10.1007/s00034-024-02627-z
– ident: pone.0320368.ref010
  doi: 10.1080/01969722.2023.2296248
– volume: 1
  start-page: 16
  issue: 1
  year: 2022
  ident: pone.0320368.ref028
  article-title: Traffic flow prediction using bi-directional gated recurrent unit method
  publication-title: Urban Inform
  doi: 10.1007/s44212-022-00015-z
– year: 2025
  ident: pone.0320368.ref007
  article-title: Physically realizable adversarial creating attack against vision-based BEV space 3D object detection
  publication-title: IEEE Trans Image Process
– volume: 55
  start-page: 1332
  issue: 6
  year: 2023
  ident: pone.0320368.ref011
  article-title: Improving landslides prediction: meteorological data preprocessing based on supervised and unsupervised learning
  publication-title: Cybern Syst
  doi: 10.1080/01969722.2023.2240647
– year: 2017
  ident: pone.0320368.ref042
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: arXiv Preprint
– year: 2018
  ident: pone.0320368.ref041
  article-title: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting
  publication-title: In: Proceedings of the twenty-seventh international joint conference on artificial intelligence
– volume: 19
  start-page: 1869
  issue: 3
  year: 2022
  ident: pone.0320368.ref018
  article-title: A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM
  publication-title: IEEE Trans Automat Sci Eng
  doi: 10.1109/TASE.2021.3077537
– volume: 193
  start-page: 108102
  year: 2021
  ident: pone.0320368.ref001
  article-title: A network traffic forecasting method based on SA optimized ARIMA–BP neural network
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108102
– volume: 18
  start-page: e0288935
  issue: 9
  year: 2023
  ident: pone.0320368.ref034
  article-title: A novel hybrid framework based on temporal convolution network and transformer for network traffic prediction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0288935
– volume: 113
  start-page: 58
  year: 2020
  ident: pone.0320368.ref020
  article-title: Transformer based deep intelligent contextual embedding for twitter sentiment analysis
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.06.050
– volume: 7
  start-page: 114496
  year: 2019
  ident: pone.0320368.ref033
  article-title: Deep temporal convolutional networks for short-term traffic flow forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935504
– volume: 10
  start-page: 7943
  issue: 6
  year: 2024
  ident: pone.0320368.ref006
  article-title: Generalized spatial–temporal regression graph convolutional transformer for traffic forecasting
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-024-01578-x
– year: 2019
  ident: pone.0320368.ref043
  article-title: Graph wavenet for deep spatial-temporal graph modeling
  publication-title: arXiv Preprint
– volume: 348
  start-page: 131224
  year: 2022
  ident: pone.0320368.ref015
  article-title: Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.131224
– year: 2024
  ident: pone.0320368.ref038
  article-title: TITE: A transformer-based deep reinforcement learning approach for traffic engineering in hybrid SDN with dynamic traffic
  publication-title: Future Gener Comput Syst
– volume: 53
  start-page: 12472
  issue: 10
  year: 2022
  ident: pone.0320368.ref035
  article-title: STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-04122-x
– year: 2024
  ident: pone.0320368.ref039
  article-title: Enhancing portfolio optimization with transformer-GAN integration: A novel approach in the Black-Litterman framework
  publication-title: arXiv Preprint
SSID ssj0053866
Score 2.4794323
Snippet This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0320368
SubjectTerms Ablation
Accuracy
Algorithms
Biology and Life Sciences
Communications traffic
Computer and Information Sciences
Datasets
Deep learning
Efficiency
Engineering and Technology
Humans
Models, Theoretical
Modules
Natural language processing
Neural networks
Neural Networks, Computer
Physical Sciences
Predictions
Research and Analysis Methods
Time series
Traffic control
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggCoUulOIiJOCQNnH8yrGgVgWJIhWKerPiRwCpyq42u_-_M7ETbVAlOPS2WU-cZB72Z3n8DSFvvRSOWa-yIHOece6rrG4cz2SwWoQ8OCHwoPDXC3l-xb9ci-utUl-YExbpgaPijhWTylnNamUDB7RR6dwhS560QZal7dlLYc4bFlNxDIYoljIdlCtVcZzscrRctOEIS4aXSK26NRH1fP3jqDxb3iy6uyDn35mTW1PR2WPyKGFIehLffYc8CO0TspOitKPvE5X0h6fk8iJmeVPoBrki6HKFGzNoDIrzl6fwYz1g17CidetpYqu6oZiRnjwTrtrY1S65Ojv98ek8S1UUMgdYZ52xygHMcc5JpNZyudSWK8Gs1o5Vnte2EVwWVvqQ16wpbKmDqHFzswyVq0HJz8isBb3tEWptA7d6DRjP8dyXFax2Gomc9R6WTY2ak2xQqVlGsgzT75gpWGRE3Rg0gUkmmJOPqPdRFqmu-z_AAUxyAPMvB5iT12g1E8-NjgFrTjQ8QXKh4bXe9BJId9FiPs2vetN15vO3n_8h9P1yIvQuCTULMI6r0xkG-Cak0ZpI7k8kIWjdpHkPfWzQSmdgJATrVACX4M7B7-5uPhybsVPMkWvDYhNlkFBOgUqeRzcdNcux0FghqznREweeqH7a0v753bONFwARFdfsxX0Y6yV5yLCAMowLrNwns_VqE14Bqlvbgz6AbwGKIknf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJo5fOaGCqAoSRSoU7c2KH2mRqiRsdv8_M4kTGlQhbpv1xHHm4RnH428IeeWlcMx6lQSZ8oRzXyRl5Xgig9UipMEJgQeFv5zI4zP-eSVW8YNbF9Mqxzmxn6h94_Ab-QGoCgffBP7kXfsrwapRuLsaS2jcJLcQugxTutRqWnCBLUsZj8vlKjuI0tlvmzrsY-HwHAFWr7ijHrV_mpsX7WXTXRd4_p0_ecUhHd0ld2IkSQ8H0e-QG6G-R3airXb0TQSUfnufnJ4Mud4UukHECNqucXsGRULRi3kKPzZjBBvWtKw9jZhVlxTz0qN-wlU9dPWAnB19_P7hOIm1FBIHEc8mYYWDYMc5JxFgy6VSW64Es1o7Vnhe2kpwmVnpQ1qyKrO5DqLELc48FK4MMn9IFjXwbZdQayu41WuI9BxPfV7AmqeSiFzvYfFUqSVJRpaadoDMMP2-mYKlxsAbgyIwUQRL8h75PtEi4HX_R7M-N9F-jGJSOatZqWzgEHQWOnUIligtjC23Ykmeo9TMcHp0MltzqOEJkgsNw3rZUyDoRY1ZNefltuvMp68__oPo2-mM6HUkqhoQjivjSQZ4JwTTmlHuzSjBdN2seRd1bORKZ_4oOdw56t31zS-mZuwUM-Xq0GwHGoSVU8CSR4OaTpzlWG4sk8WS6JkCz1g_b6l_XvSY4xkEiopr9vjf43pCbjMskAx2z_I9stist-EpRG0b-6w3zd8ieEJa
  priority: 102
  providerName: ProQuest
Title Network traffic prediction based on transformer and temporal convolutional network
URI https://www.ncbi.nlm.nih.gov/pubmed/40267169
https://www.proquest.com/docview/3194129266
https://www.proquest.com/docview/3194255675
https://pubmed.ncbi.nlm.nih.gov/PMC12017482
https://doaj.org/article/7267cb82a7be4193980c13776be633b5
http://dx.doi.org/10.1371/journal.pone.0320368
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe27sIFMb5WGCUgJOCQKnEc2zkgtE0tA2kFFYp6s2LHGUhVUppWggt_O-8lTkRQkXaxkvjZSd-H_Vw__x4hLzIeG6oz4VseMJ-xLPHT3DCfWy1jG1gTx3hQ-GrGLxfswzJeHpA2Z6tjYLV3aYf5pBab1fjnj19vweDf1FkbRNg2Gq_Lwo4xIXjE5SE5grlJoKlesW5fAay73r1Er8XnQOgO0_2vl95kVWP6dyP3YL0qq31u6b_RlX9NV9M75LbzM72zRjGOyYEt7pJjZ8mV98rBTb--R-azJhLcg24QT8Jbb3DzBgXm4RyXeXCxbf1bu_HSIvMcotXKw6h1p71wVzRd3SeL6eTLxaXvMi34BvyhrU8TA66QMYYj_JYJuNRMxFRLaWiSsVTnMeOh5pkNUpqHOpI2TnEDNLKJSS2PHpBBAXw7IZ7WOTTNJPiBhgVZlMCKKOeIa5_B0ioXQ-K3LFXrBlBD1btqAhYiDW8UikA5EQzJOfK9o0U47PpBublWzrqUoFwYLWkqtGUg3EQGBqEUuYZvi3Q8JE9Raqo5W9oZtTqT8AbOYgmf9bymQEiMAmNurtNdVan3H7_egOjzvEf00hHlJQjHpO6cA_wmhNrqUZ72KMGwTa_6BHWs5UqlYLQE6STgUkHLVu_2Vz_rqrFTjKMrbLlraBB0TgBLHjZq2nGWYTKykCdDInsK3GN9v6b4_q1GJA_BjRRM0kc3ePFjcotiDmUYGmh0Sgbbzc4-Acduq0fkUCwFlPIixHL6bkSOziezT_NR_VfJqLZlLH9P_gCXwlJl
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeYAXxLitMJhBIOAhW-o4tvOA0LhMLduKNDbUtxBfMpCmpDStEH-K38g5iRMWNCFe9tbWJ6577q6Pv0PIUytiw7SVgRMhDzi3SZDlhgfCaRW70Jk4xovCh1MxPuEfZvFsjfxq78JgWWXrE2tHbUuD_5HvgKpwiE0QT17PvwfYNQpPV9sWGo1a7LufP2DLVr2avAP5PmNs7_3x23HguwoEBmL_MmCJgbBvjBEINWVCoTSXMdNKGZZYnuk85mKkhXVhxvKRjpSLMzzsi1xiMicimPcKuQqBN0SLkrNugwe-Qwh_PS-Sox2vDdvzsnDb2Kg8QkDXc-Gv7hLQxYLB_KysLkp0_67XPBcA926SGz5zpbuNqq2TNVfcIuveN1T0hQewfnmbHE2b2nIK0yBCBZ0v8DgIVYBi1LQUXizbjNktaFZY6jGyzijWwXt7gHdFM9UdcnIpXL5LBgXwbYNQrXN41CrILA0PbZTAHisXiJRvYbOWyyEJWpam8waiI63P6SRsbRrepCiC1ItgSN4g3ztaBNiuPygXp6m311QyIY1WLJPacUhyExUaBGcUGtYW6XhItlBqaXNbtXMT6a6CbxA8VrCsJzUFgmwUWMVzmq2qKp18_PwfRJ-OekTPPVFegnBM5m9OwG9C8K4e5WaPElyF6Q1voI61XKnSP0YFT7Z6d_Hw424YJ8XKvMKVq4YGYewksOReo6YdZzm2NxuJZEhUT4F7rO-PFN--1hjnI0hMJVfs_r_XtUWujY8PD9KDyXT_AbnOsDkz-BwWbZLBcrFyDyFjXOpHtZlS8uWy_cJvbRx-0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRAviHFbYbCAQMBD1sRxbOcBocGoVgYFjQ31LcSXbJOmpDStEH-NX8c5iRMWNCFe9tbWJ6577q6Pv0PIU8NjTZURvuUB8xkziZ_lmvncKhnbwOo4xovCH6d874i9n8WzNfKrvQuDZZWtT6wdtSk1_kc-AlVhEJsgnoxyVxbxeXf8ev7dxw5SeNLattNoVGTf_vwB27fq1WQXZP2M0vG7w7d7vusw4GvIA5Y-TTSkAFprjrBTOuBSMRFTJaWmiWGZymPGQ8WNDTKahyqSNs7w4C-yic4sj2DeK-SqiOIQbUzMus0e-BHO3VW9SIQjpxnb87Kw29i0PEJw13OhsO4Y0MWFwfysrC5Kev-u3TwXDMc3yQ2XxXo7jdqtkzVb3CLrzk9U3gsHZv3yNjmYNnXmHkyDaBXefIFHQ6gOHkZQ48GLZZs924WXFcZzeFlnHtbEO9uAd0Uz1R1ydClcvksGBfBtg3hK5fCokZBlahaYKIH9Vs4RNd_Axi0XQ-K3LE3nDVxHWp_ZCdjmNLxJUQSpE8GQvEG-d7QItl1_UC6OU2e7qaBcaCVpJpRlkPAmMtAI1MgVrC1S8ZBsodTS5uZq5zLSHQnfwFksYVlPagoE3ChQdY-zVVWlk09f_4Poy0GP6LkjyksQjs7cLQr4TQjk1aPc7FGC29C94Q3UsZYrVfrHwODJVu8uHn7cDeOkWKVX2HLV0CCknQCW3GvUtOMsw1ZnIU-GRPYUuMf6_khxelLjnYeQpAom6f1_r2uLXAOPkH6YTPcfkOsU-zSD-6HRJhksFyv7EJLHpXpUW6lHvl22W_gNWpCDBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+traffic+prediction+based+on+transformer+and+temporal+convolutional+network&rft.jtitle=PloS+one&rft.au=Wang%2C+Yi&rft.au=Chen%2C+Peiyuan&rft.date=2025-04-23&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=4&rft.spage=e0320368&rft_id=info:doi/10.1371%2Fjournal.pone.0320368&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon