Network traffic prediction based on transformer and temporal convolutional network
This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global te...
Saved in:
Published in | PloS one Vol. 20; no. 4; p. e0320368 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
23.04.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance. |
---|---|
AbstractList | This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance. This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance.This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches in capturing long-term and short-term dependencies in network traffic prediction tasks. The Transformer module effectively captures global temporal relationships through a multi-head self-attention mechanism. Meanwhile, the TCN module models local and long-term dependencies using dilated convolution technology. Experimental results on the PeMSD4 and PeMSD8 datasets demonstrate that our method considerably surpasses current mainstream methods at all time steps, particularly in long-term step prediction. Through ablation experiments, we verified the contribution of each module in the model to the performance, further proving the key role of the Transformer and TCN modules in improving prediction performance. |
Audience | Academic |
Author | Wang, Yi Chen, Peiyuan |
AuthorAffiliation | 1 School of Big Data and Information Industry, Chongqing City Management College, Chongqing, China 2 Oregon State University, Corvallis, Oregon, United States of America University of Southern California, UNITED STATES OF AMERICA |
AuthorAffiliation_xml | – name: 1 School of Big Data and Information Industry, Chongqing City Management College, Chongqing, China – name: University of Southern California, UNITED STATES OF AMERICA – name: 2 Oregon State University, Corvallis, Oregon, United States of America |
Author_xml | – sequence: 1 givenname: Yi orcidid: 0009-0008-4670-3306 surname: Wang fullname: Wang, Yi – sequence: 2 givenname: Peiyuan orcidid: 0009-0008-7461-6074 surname: Chen fullname: Chen, Peiyuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40267169$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tu1DAQhiNURA_wBggiISG42MWnOM4VqioOK1VUKodby3Ymu14Se7GTAm-Pw6bVBvUC-SL2-PM_8e-Z0-zIeQdZ9hSjJaYlfrP1Q3CqXe5SeIkoQZSLB9kJrihZ8LQ6OpgfZ6cxbhEqqOD8UXbMEOEl5tVJdv0J-p8-fM_7oJrGmnwXoLamt97lWkWo8zRJey42PnQQcuXqvIdu54Nqc-PdjW-HkU4rt5d6nD1sVBvhyfQ9y76-f_fl4uPi8urD6uL8cmE4Y_2CVIYUyBjDEcPEIC40KwuihTCkqpnSTcE41rwGpEiDNRVQqAJRSqEyCjg9y57vdXetj3KyI0qKq6RXET4Sqz1Re7WVu2A7FX5Lr6z8G_BhLVXorWlBlskQowVRpQaWfKsEMsnmkuuUieoiab2dsg26g9qAS660M9H5jrMbufY3EhOESyZIUng1KQT_Y4DYy85GA22rHPhh_-OkKHg5JnvxD3r_9SZqrdINrGt8SmxGUXkuUjVwVogyUct7qDRq6Gx6QGhsis8OvJ4dSEwPv_q1GmKUq8_X_89efZuzLw_YDai238SpeuIcfHZo9Z3Ht1WbALYHTPAxBmjuEIzk2By3dsmxOeTUHPQP7-0AdQ |
Cites_doi | 10.1609/aaai.v37i4.25556 10.1109/TITS.2006.869623 10.1109/ISCID.2017.216 10.4018/IJEHMC.354587 10.1109/INFCOMW.2019.8845132 10.1186/s12874-021-01235-8 10.1080/23249935.2020.1745927 10.1145/3394486.3403118 10.1109/ACCESS.2021.3058619 10.1609/aaai.v33i01.3301922 10.1016/j.physa.2023.128988 10.1109/ACCESS.2023.3245085 10.1016/j.inffus.2023.102122 10.1007/s13198-016-0412-8 10.1109/ACCESS.2020.2978700 10.1016/j.eswa.2023.119587 10.1016/j.energy.2020.117159 10.1016/j.inffus.2024.102892 10.1016/j.knosys.2023.110676 10.1145/3387514.3405892 10.1016/j.patcog.2025.111351 10.1109/ACCESS.2019.2957192 10.21817/indjcse/2022/v13i2/221302188 10.1007/s00034-024-02627-z 10.1080/01969722.2023.2296248 10.1007/s44212-022-00015-z 10.1080/01969722.2023.2240647 10.1109/TASE.2021.3077537 10.1016/j.comnet.2021.108102 10.1371/journal.pone.0288935 10.1016/j.future.2020.06.050 10.1109/ACCESS.2019.2935504 10.1007/s40747-024-01578-x 10.1016/j.jclepro.2022.131224 10.1007/s10489-022-04122-x |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Wang and Chen 2025 Wang and Chen 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Wang and Chen 2025 Wang and Chen – notice: 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0320368 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Network traffic prediction |
EISSN | 1932-6203 |
ExternalDocumentID | 3194129266 oai_doaj_org_article_7267cb82a7be4193980c13776be633b5 PMC12017482 A836864587 40267169 10_1371_journal_pone_0320368 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c644t-29c250ccc60412c068b4752b88c29d4abf5461b6de0a2f1b38e5a50333e9cae63 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 13 01:17:32 EDT 2025 Wed Aug 27 01:20:25 EDT 2025 Thu Aug 21 18:26:57 EDT 2025 Fri Jul 11 18:30:31 EDT 2025 Fri Jul 25 11:36:49 EDT 2025 Tue Jun 17 21:56:32 EDT 2025 Tue Jun 17 03:41:34 EDT 2025 Fri Jun 27 05:13:56 EDT 2025 Fri Jun 27 05:13:59 EDT 2025 Tue Jun 17 02:10:53 EDT 2025 Mon Jul 21 05:59:47 EDT 2025 Tue Jul 01 05:09:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright: © 2025 Wang and Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c644t-29c250ccc60412c068b4752b88c29d4abf5461b6de0a2f1b38e5a50333e9cae63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0009-0008-4670-3306 0009-0008-7461-6074 |
OpenAccessLink | https://doaj.org/article/7267cb82a7be4193980c13776be633b5 |
PMID | 40267169 |
PQID | 3194129266 |
PQPubID | 1436336 |
PageCount | e0320368 |
ParticipantIDs | plos_journals_3194129266 doaj_primary_oai_doaj_org_article_7267cb82a7be4193980c13776be633b5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12017482 proquest_miscellaneous_3194255675 proquest_journals_3194129266 gale_infotracmisc_A836864587 gale_infotracacademiconefile_A836864587 gale_incontextgauss_ISR_A836864587 gale_incontextgauss_IOV_A836864587 gale_healthsolutions_A836864587 pubmed_primary_40267169 crossref_primary_10_1371_journal_pone_0320368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250423 |
PublicationDateYYYYMMDD | 2025-04-23 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250423 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Wang (pone.0320368.ref017) 2024; 37 S Prajam (pone.0320368.ref002) 2022; 13 B Guerrero-Rodriguez (pone.0320368.ref011) 2023; 55 WI Almayyan (pone.0320368.ref016) 2024; 15 B Lin (pone.0320368.ref038) 2024 S Guo (pone.0320368.ref030) 2019; 33 J Jiang (pone.0320368.ref046) 2023; 37 pone.0320368.ref019 J Wang (pone.0320368.ref007) 2025 Q Li (pone.0320368.ref009) 2025; 118 pone.0320368.ref012 Y Wen (pone.0320368.ref032) 2023; 218 Z Wu (pone.0320368.ref043) 2019 L Xiong (pone.0320368.ref006) 2024; 10 pone.0320368.ref010 G Zheng (pone.0320368.ref037) 2023; 275 Z Zhang (pone.0320368.ref034) 2023; 18 J Liu (pone.0320368.ref035) 2022; 53 H Ganame (pone.0320368.ref004) 2021; 9 B Yu (pone.0320368.ref041) 2018 S Wang (pone.0320368.ref028) 2022; 1 Q Wang (pone.0320368.ref023) 2016; 8 S Sun (pone.0320368.ref025) 2006; 7 Y Li (pone.0320368.ref042) 2017 DL Guidoni (pone.0320368.ref003) 2020; 8 E Zhu (pone.0320368.ref039) 2024 Z Sheikh Khozani (pone.0320368.ref015) 2022; 348 B Fernandes (pone.0320368.ref027) 2020; 31 Z Yu (pone.0320368.ref036) 2023; 11 W Zhang (pone.0320368.ref031) 2023; 625 L Bai (pone.0320368.ref045) 2020; 33 pone.0320368.ref005 pone.0320368.ref026 J Guo (pone.0320368.ref029) 2020; 17 pone.0320368.ref024 pone.0320368.ref022 pone.0320368.ref044 F Prado (pone.0320368.ref013) 2020; 197 H Zhang (pone.0320368.ref008) 2025; 162 AL Schaffer (pone.0320368.ref014) 2021; 21 J Kong (pone.0320368.ref040) 2024; 103 H Yang (pone.0320368.ref001) 2021; 193 U Naseem (pone.0320368.ref020) 2020; 113 M Jiang (pone.0320368.ref021) 2019; 7 W Zhao (pone.0320368.ref033) 2019; 7 J Bi (pone.0320368.ref018) 2022; 19 |
References_xml | – volume: 37 start-page: 4365 issue: 4 year: 2023 ident: pone.0320368.ref046 article-title: PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction publication-title: AAAI doi: 10.1609/aaai.v37i4.25556 – volume: 7 start-page: 124 issue: 1 year: 2006 ident: pone.0320368.ref025 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans Intell Transport Syst doi: 10.1109/TITS.2006.869623 – ident: pone.0320368.ref024 doi: 10.1109/ISCID.2017.216 – volume: 15 start-page: 1 issue: 1 year: 2024 ident: pone.0320368.ref016 article-title: Detection of kidney diseases publication-title: Int J E-Health Med Commun doi: 10.4018/IJEHMC.354587 – ident: pone.0320368.ref026 doi: 10.1109/INFCOMW.2019.8845132 – volume: 21 start-page: 58 issue: 1 year: 2021 ident: pone.0320368.ref014 article-title: Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions publication-title: BMC Med Res Methodol doi: 10.1186/s12874-021-01235-8 – ident: pone.0320368.ref022 – volume: 17 start-page: 190 issue: 2 year: 2020 ident: pone.0320368.ref029 article-title: GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model publication-title: Transportmetrica A: Transp Sci doi: 10.1080/23249935.2020.1745927 – ident: pone.0320368.ref044 doi: 10.1145/3394486.3403118 – volume: 9 start-page: 30386 year: 2021 ident: pone.0320368.ref004 article-title: Evolutionary algorithms for 5G multi-tier radio access network planning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058619 – volume: 33 start-page: 17804 year: 2020 ident: pone.0320368.ref045 article-title: Adaptive graph convolutional recurrent network for traffic forecasting publication-title: Adv Neural Inf Process Syst. – ident: pone.0320368.ref019 – volume: 33 start-page: 922 issue: 01 year: 2019 ident: pone.0320368.ref030 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting publication-title: AAAI doi: 10.1609/aaai.v33i01.3301922 – volume: 625 start-page: 128988 year: 2023 ident: pone.0320368.ref031 article-title: Traffic flow prediction under multiple adverse weather based on self-attention mechanism and deep learning models publication-title: Physica A Stat Mech Appl doi: 10.1016/j.physa.2023.128988 – volume: 37 start-page: 31 issue: 01 year: 2024 ident: pone.0320368.ref017 article-title: New productive forces: Indicator construction and spatio-temporal evolution publication-title: XAUFE. – volume: 11 start-page: 16156 year: 2023 ident: pone.0320368.ref036 article-title: A multi-head self-attention transformer-based model for traffic situation prediction in terminal areas publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3245085 – volume: 103 start-page: 102122 year: 2024 ident: pone.0320368.ref040 article-title: ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer publication-title: Inf Fusion doi: 10.1016/j.inffus.2023.102122 – volume: 8 start-page: 1976 issue: S3 year: 2016 ident: pone.0320368.ref023 article-title: Network traffic prediction based on improved support vector machine publication-title: Int J Syst Assur Eng Manag doi: 10.1007/s13198-016-0412-8 – volume: 8 start-page: 45167 year: 2020 ident: pone.0320368.ref003 article-title: Vehicular traffic management based on traffic engineering for vehicular ad hoc networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978700 – volume: 218 start-page: 119587 year: 2023 ident: pone.0320368.ref032 article-title: RPConvformer: A novel Transformer-based deep neural networks for traffic flow prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119587 – volume: 197 start-page: 117159 year: 2020 ident: pone.0320368.ref013 article-title: Forecasting based on an ensemble autoregressive moving average—adaptive neuro—fuzzy inference system—neural network—genetic algorithm framework publication-title: Energy doi: 10.1016/j.energy.2020.117159 – volume: 118 start-page: 102892 year: 2025 ident: pone.0320368.ref009 article-title: Oral multi-pathology segmentation with lead-assisting backbone attention network and synthetic data generation publication-title: Inf Fusion doi: 10.1016/j.inffus.2024.102892 – volume: 275 start-page: 110676 year: 2023 ident: pone.0320368.ref037 article-title: VDGCNeT: A novel network-wide virtual dynamic graph convolution neural network and transformer-based traffic prediction model publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110676 – ident: pone.0320368.ref005 doi: 10.1145/3387514.3405892 – volume: 162 start-page: 111351 year: 2025 ident: pone.0320368.ref008 article-title: Cross-modal knowledge transfer for 3D point clouds via graph offset prediction publication-title: Pattern Recognit doi: 10.1016/j.patcog.2025.111351 – volume: 7 start-page: 179942 year: 2019 ident: pone.0320368.ref021 article-title: Transformer based memory network for sentiment analysis of web comments publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957192 – volume: 31 start-page: 723 issue: 4 year: 2020 ident: pone.0320368.ref027 article-title: Long short-term memory networks for traffic flow forecasting: exploring input variables publication-title: time frames and multi-step approaches. Informatica. – volume: 13 start-page: 324 issue: 2 year: 2022 ident: pone.0320368.ref002 article-title: Applying machine learning approaches for network traffic forecasting publication-title: INDJCSE doi: 10.21817/indjcse/2022/v13i2/221302188 – ident: pone.0320368.ref012 doi: 10.1007/s00034-024-02627-z – ident: pone.0320368.ref010 doi: 10.1080/01969722.2023.2296248 – volume: 1 start-page: 16 issue: 1 year: 2022 ident: pone.0320368.ref028 article-title: Traffic flow prediction using bi-directional gated recurrent unit method publication-title: Urban Inform doi: 10.1007/s44212-022-00015-z – year: 2025 ident: pone.0320368.ref007 article-title: Physically realizable adversarial creating attack against vision-based BEV space 3D object detection publication-title: IEEE Trans Image Process – volume: 55 start-page: 1332 issue: 6 year: 2023 ident: pone.0320368.ref011 article-title: Improving landslides prediction: meteorological data preprocessing based on supervised and unsupervised learning publication-title: Cybern Syst doi: 10.1080/01969722.2023.2240647 – year: 2017 ident: pone.0320368.ref042 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: arXiv Preprint – year: 2018 ident: pone.0320368.ref041 article-title: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting publication-title: In: Proceedings of the twenty-seventh international joint conference on artificial intelligence – volume: 19 start-page: 1869 issue: 3 year: 2022 ident: pone.0320368.ref018 article-title: A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM publication-title: IEEE Trans Automat Sci Eng doi: 10.1109/TASE.2021.3077537 – volume: 193 start-page: 108102 year: 2021 ident: pone.0320368.ref001 article-title: A network traffic forecasting method based on SA optimized ARIMA–BP neural network publication-title: Comput Netw doi: 10.1016/j.comnet.2021.108102 – volume: 18 start-page: e0288935 issue: 9 year: 2023 ident: pone.0320368.ref034 article-title: A novel hybrid framework based on temporal convolution network and transformer for network traffic prediction publication-title: PLoS One doi: 10.1371/journal.pone.0288935 – volume: 113 start-page: 58 year: 2020 ident: pone.0320368.ref020 article-title: Transformer based deep intelligent contextual embedding for twitter sentiment analysis publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.06.050 – volume: 7 start-page: 114496 year: 2019 ident: pone.0320368.ref033 article-title: Deep temporal convolutional networks for short-term traffic flow forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935504 – volume: 10 start-page: 7943 issue: 6 year: 2024 ident: pone.0320368.ref006 article-title: Generalized spatial–temporal regression graph convolutional transformer for traffic forecasting publication-title: Complex Intell Syst doi: 10.1007/s40747-024-01578-x – year: 2019 ident: pone.0320368.ref043 article-title: Graph wavenet for deep spatial-temporal graph modeling publication-title: arXiv Preprint – volume: 348 start-page: 131224 year: 2022 ident: pone.0320368.ref015 article-title: Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.131224 – year: 2024 ident: pone.0320368.ref038 article-title: TITE: A transformer-based deep reinforcement learning approach for traffic engineering in hybrid SDN with dynamic traffic publication-title: Future Gener Comput Syst – volume: 53 start-page: 12472 issue: 10 year: 2022 ident: pone.0320368.ref035 article-title: STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting publication-title: Appl Intell doi: 10.1007/s10489-022-04122-x – year: 2024 ident: pone.0320368.ref039 article-title: Enhancing portfolio optimization with transformer-GAN integration: A novel approach in the Black-Litterman framework publication-title: arXiv Preprint |
SSID | ssj0053866 |
Score | 2.4794323 |
Snippet | This paper proposes a hybrid model combining Transformer and Temporal Convolutional Network (TCN). This model addresses the shortcomings of current approaches... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0320368 |
SubjectTerms | Ablation Accuracy Algorithms Biology and Life Sciences Communications traffic Computer and Information Sciences Datasets Deep learning Efficiency Engineering and Technology Humans Models, Theoretical Modules Natural language processing Neural networks Neural Networks, Computer Physical Sciences Predictions Research and Analysis Methods Time series Traffic control Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggCoUulOIiJOCQNnH8yrGgVgWJIhWKerPiRwCpyq42u_-_M7ETbVAlOPS2WU-cZB72Z3n8DSFvvRSOWa-yIHOece6rrG4cz2SwWoQ8OCHwoPDXC3l-xb9ci-utUl-YExbpgaPijhWTylnNamUDB7RR6dwhS560QZal7dlLYc4bFlNxDIYoljIdlCtVcZzscrRctOEIS4aXSK26NRH1fP3jqDxb3iy6uyDn35mTW1PR2WPyKGFIehLffYc8CO0TspOitKPvE5X0h6fk8iJmeVPoBrki6HKFGzNoDIrzl6fwYz1g17CidetpYqu6oZiRnjwTrtrY1S65Ojv98ek8S1UUMgdYZ52xygHMcc5JpNZyudSWK8Gs1o5Vnte2EVwWVvqQ16wpbKmDqHFzswyVq0HJz8isBb3tEWptA7d6DRjP8dyXFax2Gomc9R6WTY2ak2xQqVlGsgzT75gpWGRE3Rg0gUkmmJOPqPdRFqmu-z_AAUxyAPMvB5iT12g1E8-NjgFrTjQ8QXKh4bXe9BJId9FiPs2vetN15vO3n_8h9P1yIvQuCTULMI6r0xkG-Cak0ZpI7k8kIWjdpHkPfWzQSmdgJATrVACX4M7B7-5uPhybsVPMkWvDYhNlkFBOgUqeRzcdNcux0FghqznREweeqH7a0v753bONFwARFdfsxX0Y6yV5yLCAMowLrNwns_VqE14Bqlvbgz6AbwGKIknf priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJo5fOaGCqAoSRSoU7c2KH2mRqiRsdv8_M4kTGlQhbpv1xHHm4RnH428IeeWlcMx6lQSZ8oRzXyRl5Xgig9UipMEJgQeFv5zI4zP-eSVW8YNbF9Mqxzmxn6h94_Ab-QGoCgffBP7kXfsrwapRuLsaS2jcJLcQugxTutRqWnCBLUsZj8vlKjuI0tlvmzrsY-HwHAFWr7ijHrV_mpsX7WXTXRd4_p0_ecUhHd0ld2IkSQ8H0e-QG6G-R3airXb0TQSUfnufnJ4Mud4UukHECNqucXsGRULRi3kKPzZjBBvWtKw9jZhVlxTz0qN-wlU9dPWAnB19_P7hOIm1FBIHEc8mYYWDYMc5JxFgy6VSW64Es1o7Vnhe2kpwmVnpQ1qyKrO5DqLELc48FK4MMn9IFjXwbZdQayu41WuI9BxPfV7AmqeSiFzvYfFUqSVJRpaadoDMMP2-mYKlxsAbgyIwUQRL8h75PtEi4HX_R7M-N9F-jGJSOatZqWzgEHQWOnUIligtjC23Ykmeo9TMcHp0MltzqOEJkgsNw3rZUyDoRY1ZNefltuvMp68__oPo2-mM6HUkqhoQjivjSQZ4JwTTmlHuzSjBdN2seRd1bORKZ_4oOdw56t31zS-mZuwUM-Xq0GwHGoSVU8CSR4OaTpzlWG4sk8WS6JkCz1g_b6l_XvSY4xkEiopr9vjf43pCbjMskAx2z_I9stist-EpRG0b-6w3zd8ieEJa priority: 102 providerName: ProQuest |
Title | Network traffic prediction based on transformer and temporal convolutional network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40267169 https://www.proquest.com/docview/3194129266 https://www.proquest.com/docview/3194255675 https://pubmed.ncbi.nlm.nih.gov/PMC12017482 https://doaj.org/article/7267cb82a7be4193980c13776be633b5 http://dx.doi.org/10.1371/journal.pone.0320368 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe27sIFMb5WGCUgJOCQKnEc2zkgtE0tA2kFFYp6s2LHGUhVUppWggt_O-8lTkRQkXaxkvjZSd-H_Vw__x4hLzIeG6oz4VseMJ-xLPHT3DCfWy1jG1gTx3hQ-GrGLxfswzJeHpA2Z6tjYLV3aYf5pBab1fjnj19vweDf1FkbRNg2Gq_Lwo4xIXjE5SE5grlJoKlesW5fAay73r1Er8XnQOgO0_2vl95kVWP6dyP3YL0qq31u6b_RlX9NV9M75LbzM72zRjGOyYEt7pJjZ8mV98rBTb--R-azJhLcg24QT8Jbb3DzBgXm4RyXeXCxbf1bu_HSIvMcotXKw6h1p71wVzRd3SeL6eTLxaXvMi34BvyhrU8TA66QMYYj_JYJuNRMxFRLaWiSsVTnMeOh5pkNUpqHOpI2TnEDNLKJSS2PHpBBAXw7IZ7WOTTNJPiBhgVZlMCKKOeIa5_B0ioXQ-K3LFXrBlBD1btqAhYiDW8UikA5EQzJOfK9o0U47PpBublWzrqUoFwYLWkqtGUg3EQGBqEUuYZvi3Q8JE9Raqo5W9oZtTqT8AbOYgmf9bymQEiMAmNurtNdVan3H7_egOjzvEf00hHlJQjHpO6cA_wmhNrqUZ72KMGwTa_6BHWs5UqlYLQE6STgUkHLVu_2Vz_rqrFTjKMrbLlraBB0TgBLHjZq2nGWYTKykCdDInsK3GN9v6b4_q1GJA_BjRRM0kc3ePFjcotiDmUYGmh0Sgbbzc4-Acduq0fkUCwFlPIixHL6bkSOziezT_NR_VfJqLZlLH9P_gCXwlJl |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeYAXxLitMJhBIOAhW-o4tvOA0LhMLduKNDbUtxBfMpCmpDStEH-K38g5iRMWNCFe9tbWJ6577q6Pv0PIUytiw7SVgRMhDzi3SZDlhgfCaRW70Jk4xovCh1MxPuEfZvFsjfxq78JgWWXrE2tHbUuD_5HvgKpwiE0QT17PvwfYNQpPV9sWGo1a7LufP2DLVr2avAP5PmNs7_3x23HguwoEBmL_MmCJgbBvjBEINWVCoTSXMdNKGZZYnuk85mKkhXVhxvKRjpSLMzzsi1xiMicimPcKuQqBN0SLkrNugwe-Qwh_PS-Sox2vDdvzsnDb2Kg8QkDXc-Gv7hLQxYLB_KysLkp0_67XPBcA926SGz5zpbuNqq2TNVfcIuveN1T0hQewfnmbHE2b2nIK0yBCBZ0v8DgIVYBi1LQUXizbjNktaFZY6jGyzijWwXt7gHdFM9UdcnIpXL5LBgXwbYNQrXN41CrILA0PbZTAHisXiJRvYbOWyyEJWpam8waiI63P6SRsbRrepCiC1ItgSN4g3ztaBNiuPygXp6m311QyIY1WLJPacUhyExUaBGcUGtYW6XhItlBqaXNbtXMT6a6CbxA8VrCsJzUFgmwUWMVzmq2qKp18_PwfRJ-OekTPPVFegnBM5m9OwG9C8K4e5WaPElyF6Q1voI61XKnSP0YFT7Z6d_Hw424YJ8XKvMKVq4YGYewksOReo6YdZzm2NxuJZEhUT4F7rO-PFN--1hjnI0hMJVfs_r_XtUWujY8PD9KDyXT_AbnOsDkz-BwWbZLBcrFyDyFjXOpHtZlS8uWy_cJvbRx-0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRAviHFbYbCAQMBD1sRxbOcBocGoVgYFjQ31LcSXbJOmpDStEH-NX8c5iRMWNCFe9tbWJ6577q6Pv0PIU8NjTZURvuUB8xkziZ_lmvncKhnbwOo4xovCH6d874i9n8WzNfKrvQuDZZWtT6wdtSk1_kc-AlVhEJsgnoxyVxbxeXf8ev7dxw5SeNLattNoVGTf_vwB27fq1WQXZP2M0vG7w7d7vusw4GvIA5Y-TTSkAFprjrBTOuBSMRFTJaWmiWGZymPGQ8WNDTKahyqSNs7w4C-yic4sj2DeK-SqiOIQbUzMus0e-BHO3VW9SIQjpxnb87Kw29i0PEJw13OhsO4Y0MWFwfysrC5Kev-u3TwXDMc3yQ2XxXo7jdqtkzVb3CLrzk9U3gsHZv3yNjmYNnXmHkyDaBXefIFHQ6gOHkZQ48GLZZs924WXFcZzeFlnHtbEO9uAd0Uz1R1ydClcvksGBfBtg3hK5fCokZBlahaYKIH9Vs4RNd_Axi0XQ-K3LE3nDVxHWp_ZCdjmNLxJUQSpE8GQvEG-d7QItl1_UC6OU2e7qaBcaCVpJpRlkPAmMtAI1MgVrC1S8ZBsodTS5uZq5zLSHQnfwFksYVlPagoE3ChQdY-zVVWlk09f_4Poy0GP6LkjyksQjs7cLQr4TQjk1aPc7FGC29C94Q3UsZYrVfrHwODJVu8uHn7cDeOkWKVX2HLV0CCknQCW3GvUtOMsw1ZnIU-GRPYUuMf6_khxelLjnYeQpAom6f1_r2uLXAOPkH6YTPcfkOsU-zSD-6HRJhksFyv7EJLHpXpUW6lHvl22W_gNWpCDBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+traffic+prediction+based+on+transformer+and+temporal+convolutional+network&rft.jtitle=PloS+one&rft.au=Wang%2C+Yi&rft.au=Chen%2C+Peiyuan&rft.date=2025-04-23&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=4&rft.spage=e0320368&rft_id=info:doi/10.1371%2Fjournal.pone.0320368&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |