theory behind, and the challenges of, conserving nature's stage in a time of rapid change

Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 29; no. 3; pp. 618 - 629
Main Authors Lawler, Joshua J, Ackerly, David D, Albano, Christine M, Anderson, Mark G, Dobrowski, Solomon Z, Gill, Jacquelyn L, Heller, Nicole E, Pressey, Robert L, Sanderson, Eric W, Weiss, Stuart B
Format Journal Article
LanguageEnglish
Published United States Blackwell Scientific Publications 01.06.2015
Blackwell Publishing Ltd
Wiley Periodicals Inc
Society for Conservation Biology - Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions.
AbstractList Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation-planning process. By doing so, it may be possible to conserve an abiotically diverse "stage" upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time-albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. Lastly, we conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions.
Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions.
Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation-planning process. By doing so, it may be possible to conserve an abiotically diverse "stage" upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions. La mayoría de los planes de conservación a la fecha se han enfocado en proteger a la biodiversidad de hoy bajo la suposición de que será la biodiversidad de mañana. Sin embargo, el cambio climático contemporáneo ya ha resultado en cambios de distribución de algunas especies y se tiene proyectado que resulte en muchos cambios más en las siguientes décadas. Conforme las especies se redistribuyen y las comunidades bioóticas se reorganizan, los planes de conservación con base en los patrones actuales de biodiversidad pueden fallar en proteger adecuadamente a las especies en el futuro. Una estrategia para dirigirse a este tema consiste en enfocarse en la conservación de una gama de condiciones abióticas durante el proceso de planeación de la conservación. Al hacer esto, puede ser posible conservar una "etapa" de diversidad abiótica sobre la cual actuará la evolución y sustentará a muchos actores (biodiversidad). Revisamos los apuntalamientos fundamentales del concepto de conservación de la etapa abiótica, comenzando con las observaciones iniciales de von Humboldt, quien mapeó la concordancia de las condiciones abióticas y la vegetación; y progresando hasta el concepto de nicho ecológico. Discutimos los obstáculos impuestos por los temas de escala espacial y temporal, el papel de los conductores bióticos de la distribución de las especies, y la variación latitudinal y topográfica en las relaciones entre el clima y los accidentes geográficos. Por ejemplo, las condiciones abióticas no son estáticas, sino que cambian con el tiempo—no obstante a tasas diferentes y frecuentemente lentas. En algunos lugares, las interacciones bióticas juegan un papel sustancial en los patrones de estructuración de la biodiversidad, lo que significa que los patrones de la biodiversidad pueden estar menos relacionados con la etapa abiótica. Más allá, los conductores abióticos pueden cambiar con la posición topográfica y la latitud, lo que significa que la etapa abiótica necesitará definirse diferentemente en lugares distintos. Concluimos que proteger una diversidad de condiciones abióticas probablemente conserve de mejor manera a la biodiversidad hacia el futuro en lugares donde los conductores abióticos de la distribución de especies son fuertes en relación con los conductores bióticos, donde la diversidad de configuraciones abióticas se mantendrán a lo largo del tiempo, y donde la conectividad permita movimiento entre áreas que proporcionan diferentes condiciones abióticas.
Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions. Los Obstáculos y la Teoría detrás de la Conservación del Estado de la Naturaleza en Tiempos de Cambios Rápidos Resumen La mayoría de los planes de conservación a la fecha se han enfocado en proteger a la biodiversidad de hoy bajo la suposición de que será la biodiversidad de mañana. Sin embargo, el cambio climático contemporáneo ya ha resultado en cambios de distribución de algunas especies y se tiene proyectado que resulte en muchos cambios más en las siguientes décadas. Conforme las especies se redistribuyen y las comunidades bióticas se reorganizan, los planes de conservación con base en los patrones actuales de biodiversidad pueden fallar en proteger adecuadamente a las especies en el futuro. Una estrategia para dirigirse a este tema consiste en enfocarse en la conservación de una gama de condiciones abióticas durante el proceso de planeación de la conservación. Al hacer esto, puede ser posible conservar una “etapa” de diversidad abiótica sobre la cual actuará la evolución y sustentará a muchos actores (biodiversidad). Revisamos los apuntalamientos fundamentales del concepto de conservación de la etapa abiótica, comenzando con las observaciones iniciales de von Humboldt, quien mapeó la concordancia de las condiciones abióticas y la vegetación; y progresando hasta el concepto de nicho ecológico. Discutimos los obstáculos impuestos por los temas de escala espacial y temporal, el papel de los conductores bióticos de la distribución de las especies, y la variación latitudinal y topográfica en las relaciones entre el clima y los accidentes geográficos. Por ejemplo, las condiciones abióticas no son estáticas, sino que cambian con el tiempo—no obstante a tasas diferentes y frecuentemente lentas. En algunos lugares, las interacciones bióticas juegan un papel sustancial en los patrones de estructuración de la biodiversidad, lo que significa que los patrones de la biodiversidad pueden estar menos relacionados con la etapa abiótica. Más allá, los conductores abióticos pueden cambiar con la posición topográfica y la latitud, lo que significa que la etapa abiótica necesitará definirse diferentemente en lugares distintos. Concluimos que proteger una diversidad de condiciones abióticas probablemente conserve de mejor manera a la biodiversidad hacia el futuro en lugares donde los conductores abióticos de la distribución de especies son fuertes en relación con los conductores bióticos, donde la diversidad de configuraciones abióticas se mantendrán a lo largo del tiempo, y donde la conectividad permita movimiento entre áreas que proporcionan diferentes condiciones abióticas.
Author Pressey, Robert L.
Anderson, Mark G.
Gill, Jacquelyn L.
Ackerly, David D.
Albano, Christine M.
Sanderson, Eric W.
Dobrowski, Solomon Z.
Lawler, Joshua J.
Weiss, Stuart B.
Heller, Nicole E.
Author_xml – sequence: 1
  fullname: Lawler, Joshua J
– sequence: 2
  fullname: Ackerly, David D
– sequence: 3
  fullname: Albano, Christine M
– sequence: 4
  fullname: Anderson, Mark G
– sequence: 5
  fullname: Dobrowski, Solomon Z
– sequence: 6
  fullname: Gill, Jacquelyn L
– sequence: 7
  fullname: Heller, Nicole E
– sequence: 8
  fullname: Pressey, Robert L
– sequence: 9
  fullname: Sanderson, Eric W
– sequence: 10
  fullname: Weiss, Stuart B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25922899$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1512112$$D View this record in Osti.gov
BookMark eNqF0ctuEzEUBuARKqJpYcMDgAVCINQUX8f2kkZQKqp2QYCyshyPJ3E6sYPtAfL2OEyDUIXAC9_0_Ue2zkG154O3VfUQwWNUxisTZu4YYQbZnWqEGCZjxIncq0ZQCDEWQuL96iClJYRQMkTvVfuYSYyFlKPqS17YEDdgZhfON0dA-waUK2AWuuusn9sEQnsETPDJxm_Oz4HXuY_2eQIp67kFzgMNslvZ4kDUa9dssyV4v7rb6i7ZBzfrYTV9-2Y6eTc-vzw9m7w-H5uaUlZmI1nN69aWU4M4lWTGNdHINKhpBRIzBjkyBjZNI21bNhRZUhvGBW5pSw6rJ0PZkLJTybhszaI811uTFWIII4QLejGgdQxfe5uyWrlkbNdpb0OfFBJQ1IQxzP9Pa0kpr2tKCn16iy5DH335bFEC4iIZLOrRjepnK9uodXQrHTdq14MC4ABMDClF26ryCZ1d8Dlq1ykE1bbNattm9avNJfLyVmRX9a8YDfi76-zmH1JNLk_OdplnQ2aZcoh_ZjCBXGFKBYGSFjcenEvZ_vjtdLxWNSecqc8Xp-pk-gld4Yv36qr4x4NvdVB6Hl1SHz9giBiESGLOOfkJWRDY0Q
CitedBy_id crossref_primary_10_1111_conl_12712
crossref_primary_10_1111_gcb_13679
crossref_primary_10_1126_science_aah4787
crossref_primary_10_3390_environments7030019
crossref_primary_10_1016_j_ecolind_2021_107581
crossref_primary_10_1186_s12864_021_08151_7
crossref_primary_10_1098_rsta_2023_0173
crossref_primary_10_1111_ddi_13136
crossref_primary_10_1098_rsta_2023_0056
crossref_primary_10_1098_rsta_2023_0057
crossref_primary_10_1002_fee_2204
crossref_primary_10_1016_j_ecolind_2021_108315
crossref_primary_10_1111_ele_14289
crossref_primary_10_1002_fee_2207
crossref_primary_10_1111_jbi_13616
crossref_primary_10_3390_f11090965
crossref_primary_10_1038_ncomms12349
crossref_primary_10_1007_s10980_018_0723_z
crossref_primary_10_1016_j_ijgeop_2019_12_005
crossref_primary_10_1144_SP530_2022_107
crossref_primary_10_1002_ecy_4257
crossref_primary_10_3389_fevo_2021_689295
crossref_primary_10_1016_j_oneear_2024_08_006
crossref_primary_10_1111_cobi_12799
crossref_primary_10_3390_tourhosp3020031
crossref_primary_10_1016_j_jeem_2018_08_014
crossref_primary_10_1177_03091333221122292
crossref_primary_10_3390_cli9050087
crossref_primary_10_1371_journal_pone_0184062
crossref_primary_10_1038_s41467_019_12603_w
crossref_primary_10_1111_csp2_13296
crossref_primary_10_1111_geb_13151
crossref_primary_10_1016_j_tree_2017_11_001
crossref_primary_10_1016_j_rse_2021_112368
crossref_primary_10_1111_fwb_12901
crossref_primary_10_1111_gcb_13663
crossref_primary_10_1111_ddi_13782
crossref_primary_10_3390_resources12050059
crossref_primary_10_1007_s10021_020_00533_4
crossref_primary_10_1098_rsta_2023_0063
crossref_primary_10_1656_045_028_s1108
crossref_primary_10_1111_geb_12731
crossref_primary_10_1016_j_tree_2016_08_001
crossref_primary_10_3389_fevo_2021_685753
crossref_primary_10_1038_s41598_018_23050_w
crossref_primary_10_21425_fob_18_145659
crossref_primary_10_1016_j_jenvman_2024_121408
crossref_primary_10_1111_jbi_13569
crossref_primary_10_1007_s10980_018_0617_0
crossref_primary_10_1038_s41598_021_94698_0
crossref_primary_10_1007_s10980_017_0508_9
crossref_primary_10_1007_s12371_022_00665_0
crossref_primary_10_1002_fee_2043
crossref_primary_10_1093_aobpla_plw049
crossref_primary_10_1111_geb_12574
crossref_primary_10_1073_pnas_1720141115
crossref_primary_10_3390_rs12223690
crossref_primary_10_1007_s12371_024_01000_5
crossref_primary_10_1080_17550874_2019_1646831
crossref_primary_10_3390_f15111935
crossref_primary_10_1111_gcb_15511
crossref_primary_10_1038_s41559_017_0230_7
crossref_primary_10_1016_j_biocon_2022_109768
crossref_primary_10_1016_j_ecoser_2017_05_013
crossref_primary_10_1016_j_gecco_2024_e03245
crossref_primary_10_1002_ecs2_4172
crossref_primary_10_1007_s10531_018_1659_y
crossref_primary_10_1111_ele_70041
crossref_primary_10_1111_ecog_07131
crossref_primary_10_1007_s10980_019_00889_6
crossref_primary_10_1017_S0376892921000060
crossref_primary_10_1086_697996
crossref_primary_10_1016_j_gecco_2021_e01667
crossref_primary_10_1111_cobi_13904
crossref_primary_10_1007_s10980_023_01702_1
crossref_primary_10_1111_brv_12344
crossref_primary_10_1111_acv_12280
crossref_primary_10_12688_f1000research_6490_1
crossref_primary_10_1371_journal_pone_0143619
crossref_primary_10_1111_ddi_13843
crossref_primary_10_1002_eap_2765
crossref_primary_10_1111_ddi_12356
crossref_primary_10_3390_cli10040058
crossref_primary_10_1111_ddi_13969
crossref_primary_10_1007_s10980_019_00798_8
crossref_primary_10_1111_ddi_12878
crossref_primary_10_1126_sciadv_aay0814
crossref_primary_10_1093_biosci_biae040
crossref_primary_10_1016_j_jnc_2022_126264
crossref_primary_10_1111_jbi_14762
crossref_primary_10_1016_j_ecolind_2018_03_068
crossref_primary_10_3389_fevo_2022_1031483
crossref_primary_10_1016_j_gloenvcha_2022_102612
crossref_primary_10_1016_j_ijgeop_2021_05_003
crossref_primary_10_1007_s10531_021_02241_4
crossref_primary_10_1038_s41598_021_03488_1
crossref_primary_10_1016_j_pgeola_2023_07_003
crossref_primary_10_1111_gcb_17121
crossref_primary_10_1002_eap_2157
crossref_primary_10_1016_j_jenvman_2022_115172
crossref_primary_10_1016_j_gecco_2020_e01445
crossref_primary_10_1111_cobi_12510
crossref_primary_10_1016_j_jenvman_2023_118324
crossref_primary_10_3390_rs11202356
crossref_primary_10_5194_bg_19_1691_2022
crossref_primary_10_1007_s10980_019_00901_z
crossref_primary_10_1111_rec_12901
crossref_primary_10_1007_s42535_024_01089_7
crossref_primary_10_1126_science_adp4671
crossref_primary_10_1007_s10980_019_00863_2
crossref_primary_10_1007_s12371_024_00914_4
crossref_primary_10_1111_cobi_12511
crossref_primary_10_1002_eap_2274
crossref_primary_10_1016_j_pocean_2020_102296
crossref_primary_10_1007_s10980_024_01890_4
crossref_primary_10_1016_j_foreco_2015_12_012
crossref_primary_10_5194_gh_76_385_2021
crossref_primary_10_1111_cobi_14421
crossref_primary_10_1111_gcb_15645
crossref_primary_10_5194_bg_21_3401_2024
crossref_primary_10_1016_j_geomorph_2019_06_022
crossref_primary_10_1111_nyas_15203
crossref_primary_10_1016_j_ecolind_2018_06_034
crossref_primary_10_1007_s12371_022_00769_7
crossref_primary_10_1111_jbi_13648
crossref_primary_10_1002_ece3_2544
crossref_primary_10_1007_s12371_022_00716_6
crossref_primary_10_1016_j_biocon_2015_12_008
crossref_primary_10_1016_j_scitotenv_2019_136350
crossref_primary_10_1038_s44221_025_00403_0
crossref_primary_10_1111_geb_13061
crossref_primary_10_1016_j_ecolind_2021_107539
crossref_primary_10_1007_s12371_018_0302_3
crossref_primary_10_1038_s41558_022_01330_8
crossref_primary_10_1111_1365_2745_14223
crossref_primary_10_1111_ecog_05520
crossref_primary_10_1017_S037689292100014X
crossref_primary_10_1088_1748_9326_aacb85
crossref_primary_10_1111_cobi_12920
crossref_primary_10_1007_s40823_019_0035_2
crossref_primary_10_1016_j_earscirev_2025_105075
crossref_primary_10_1016_j_gecco_2021_e01830
crossref_primary_10_1017_pab_2020_19
crossref_primary_10_3390_plants14020170
crossref_primary_10_1371_journal_pone_0300378
crossref_primary_10_1111_geb_12887
crossref_primary_10_1002_eap_1883
crossref_primary_10_1007_s00267_022_01707_7
crossref_primary_10_1093_biosci_biab083
crossref_primary_10_1086_683394
crossref_primary_10_1002_ehs2_1267
crossref_primary_10_1016_j_geomorph_2024_109298
crossref_primary_10_1016_j_geomorph_2017_07_014
crossref_primary_10_3390_d12020056
crossref_primary_10_1111_1365_2664_14183
crossref_primary_10_1016_j_biocon_2023_110286
crossref_primary_10_1111_cobi_13822
crossref_primary_10_1016_j_biocon_2019_01_031
crossref_primary_10_1016_j_ecocom_2017_06_002
crossref_primary_10_5334_cstp_284
crossref_primary_10_1111_geb_13691
crossref_primary_10_1111_een_12970
crossref_primary_10_1016_j_ecolmodel_2024_110807
crossref_primary_10_1007_s12371_023_00889_8
crossref_primary_10_1111_cobi_13797
crossref_primary_10_1002_fee_2058
crossref_primary_10_1111_ecog_02318
crossref_primary_10_1007_s10980_020_01017_5
crossref_primary_10_1371_journal_pone_0234139
crossref_primary_10_1007_s12518_021_00377_0
crossref_primary_10_3390_resources13090119
crossref_primary_10_1111_cobi_12508
crossref_primary_10_1038_s41558_019_0518_5
crossref_primary_10_1111_cobi_12509
crossref_primary_10_1016_S2542_5196_22_00259_5
crossref_primary_10_1111_icad_12498
crossref_primary_10_3389_ffgc_2022_867369
crossref_primary_10_3390_f8090344
crossref_primary_10_1111_1752_1688_12811
crossref_primary_10_1007_s10980_016_0399_1
crossref_primary_10_1073_pnas_2204434119
crossref_primary_10_1016_j_rse_2019_111514
crossref_primary_10_1016_j_tree_2023_02_010
crossref_primary_10_1080_23766808_2021_1987769
crossref_primary_10_1111_cobi_12503
crossref_primary_10_7717_peerj_11956
crossref_primary_10_1016_j_biocon_2019_108366
crossref_primary_10_1111_geb_13164
crossref_primary_10_1111_cobi_12504
crossref_primary_10_1007_s10980_019_00879_8
Cites_doi 10.1371/journal.pone.0028788
10.1046/j.1365-2699.1998.00233.x
10.1126/science.1242335
10.1073/pnas.101093498
10.1111/gcb.12026
10.1016/j.quascirev.2006.04.008
10.1525/bio.2011.61.1.9
10.1111/j.1469-185X.1967.tb01419.x
10.1111/j.1365-2486.2004.00828.x
10.1016/j.earscirev.2011.03.002
10.2307/3037989
10.2307/2419082
10.1111/j.1365-2486.2010.02263.x
10.1016/j.shpsc.2006.12.006
10.1146/annurev.es.16.110185.000351
10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
10.3368/er.30.4.312
10.1111/cobi.12502
10.5962/bhl.title.105661
10.1111/j.1466-8238.2011.00686.x
10.1007/978-1-4612-1626-1
10.1038/35002501
10.1007/s10980-009-9332-1
10.5822/978-1-61091-225-9
10.1111/j.1365-2656.2010.01771.x
10.1126/science.1210173
10.1046/j.1523-1739.1994.08010217.x
10.1890/07-0507.1
10.1038/35012251
10.1111/j.1472-4642.2010.00654.x
10.1111/j.1523-1739.1988.tb00202.x
10.1111/j.1469-8137.2010.03475.x
10.1126/science.1179504
10.1111/cobi.12503
10.1890/070073
10.1038/nature08649
10.1093/icb/icj003
10.1111/j.1752-4571.2010.00157.x
10.1046/j.1365-2699.2000.00215.x
10.5962/bhl.title.56234
10.5194/hess-11-1633-2007
10.2747/0020-6814.46.5.471
10.2307/2479933
10.1126/science.1228026
10.1046/j.1365-2699.2001.00563.x
10.2307/2805339
10.1111/j.1558-5646.2010.01114.x
10.1111/j.1365-294X.2007.03469.x
10.1371/journal.pone.0011554
10.1038/21877
10.1016/S0169-5347(01)02338-2
10.1111/j.1466-8238.2008.00415.x
10.1038/nature09329
10.1007/s10914-010-9144-8
10.1038/35016000
10.1007/BF01873263
10.1086/368223
10.1111/j.1466-822X.2006.00212.x
10.1111/j.1461-0248.2009.01297.x
10.1111/cobi.12269
10.1111/j.1523-1739.2009.01422.x
10.1111/j.1365-2486.2009.02122.x
10.1126/science.1157719
10.2307/1312122
10.1126/science.105.2727.367
10.1086/282070
10.1038/nature09678
10.1890/11-0213.1
10.1126/science.1188528
10.2307/1934875
10.1111/cobi.12504
10.1890/12-2011.1
10.1111/gcb.12129
10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
10.1086/282487
10.1111/j.1744-7429.2006.00161.x
10.1111/cobi.12509
10.2307/4072271
10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2
10.1126/science.1237184
10.1038/ngeo1475
10.1016/j.biocon.2008.10.006
10.1111/j.1466-8238.2012.00760.x
10.1007/BF02097067
10.1111/j.1365-2699.2010.02300.x
10.1046/j.1523-1739.2003.01599.x
10.1111/j.1600-0587.2008.05502.x
10.3732/ajb.1200469
10.1126/science.1239352
10.1146/annurev-ecolsys-102710-145015
10.1046/j.1523-1739.2002.01405.x
10.1098/rstb.2012.0238
10.1038/nclimate2007
ContentType Journal Article
Copyright 2015 Society for Conservation Biology
2015 Society for Conservation Biology.
2015, Society for Conservation Biology
Copyright_xml – notice: 2015 Society for Conservation Biology
– notice: 2015 Society for Conservation Biology.
– notice: 2015, Society for Conservation Biology
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7S9
L.6
OIOZB
OTOTI
DOI 10.1111/cobi.12505
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1523-1739
EndPage 629
ExternalDocumentID 1512112
3681700241
25922899
10_1111_cobi_12505
COBI12505
24483094
ark_67375_WNG_BTV1X2NK_X
US201500192777
Genre article
Journal Article
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AI.
AIAGR
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
1OB
AAHBH
ABXSQ
ADACV
ADUKH
AHBTC
AHXOZ
AILXY
AITYG
AQVQM
BSCLL
HGLYW
IPSME
OIG
SAMSI
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7S9
L.6
OIOZB
OTOTI
ID FETCH-LOGICAL-c6445-c6c95676fe445d17493b7a3a1cd1df818b5071cc0ddd9efcc041e36c5782f4f3
IEDL.DBID DR2
ISSN 0888-8892
IngestDate Mon Dec 23 02:12:55 EST 2024
Thu Jul 10 17:14:28 EDT 2025
Fri Jul 11 18:29:40 EDT 2025
Fri Jul 25 10:42:01 EDT 2025
Thu Apr 03 06:58:34 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Tue Jul 01 02:25:25 EDT 2025
Wed Jan 22 16:54:07 EST 2025
Thu Jul 03 22:31:15 EDT 2025
Wed Oct 30 09:55:57 EDT 2024
Wed Dec 27 18:55:21 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords teoría ecolótigico
condiciones abióticas
ecological theory
conservation planning
cambio climático
planses de conservación
abiotic factors
climate change
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2015 Society for Conservation Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6445-c6c95676fe445d17493b7a3a1cd1df818b5071cc0ddd9efcc041e36c5782f4f3
Notes http://dx.doi.org/10.1111/cobi.12505
istex:F2928C53A34838EBE8134E404796227899C30CAC
ArticleID:COBI12505
ark:/67375/WNG-BTV1X2NK-X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231
USDOE Office of Science (SC)
OpenAccessLink https://www.osti.gov/servlets/purl/1512112
PMID 25922899
PQID 1680269450
PQPubID 36794
PageCount 12
ParticipantIDs osti_scitechconnect_1512112
proquest_miscellaneous_1808635527
proquest_miscellaneous_1694476643
proquest_journals_1680269450
pubmed_primary_25922899
crossref_citationtrail_10_1111_cobi_12505
crossref_primary_10_1111_cobi_12505
wiley_primary_10_1111_cobi_12505_COBI12505
jstor_primary_10_2307_24483094
istex_primary_ark_67375_WNG_BTV1X2NK_X
fao_agris_US201500192777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conservation Biology
PublicationYear 2015
Publisher Blackwell Scientific Publications
Blackwell Publishing Ltd
Wiley Periodicals Inc
Society for Conservation Biology - Wiley
Publisher_xml – name: Blackwell Scientific Publications
– name: Blackwell Publishing Ltd
– name: Wiley Periodicals Inc
– name: Society for Conservation Biology - Wiley
References Kruckeberg AR. 2002. Geology and plant life. University of Washington Press, Seattle.
Harper JL. 1977. Population biology of plants. Academic Press, London.
Scherrer D, Körner C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16:2602-2613.
Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21:393-404.
Ashcroft MB. 2010. Identifying refugia from climate change. Journal of Biogeography 37:1407-1413.
Heller NE, Zavaleta ES. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142:14-32.
Beier P. 2012. Conceptualizing and designing corridors for climate change. Ecological Restoration 30:312-319.
Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB. 2010. The geography of climate change: implications for conservation biogeography. Diversity and Distributions 16:476-487.
Janzen D. 1967. Why mountain passes are higher in the tropics. The American Naturalist 101:223-249.
Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecology Letters 12:420-431.
Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK. 2013. The climate velocity of the contiguous United States during the 20th century. Global Change Biology 19:241-251.
Phillips SJ, Williams P, Midgley G, Archer A. 2008. Optimizing dispersal corridors for the cape proteaceae using network flow. Ecological Applications 18:1200-1211.
Stewart JR, Lister AM. 2001. Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution 16:608-613.
Holland PG, Steyn DG. 1975. Vegetational responses to latitudinal variations in slope angle and aspect. Journal of Biogeography 2:179.
Barnosky AD, et al. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471:51-57.
Heller NE, Hobbs RJ. 2014. Development of a natural practice to adapt conservation goals to global change. Conservation Biology 28:696-704.
Hutchinson GE. 1959. Homage to Santa Rosalia or Why are there so many kinds of animals? American Naturalist 93:145-159.
Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:1633-1644.
Dobrowski SZ. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17:1022-1035.
Rajakaruna N. 2004. The edaphic factor in the origin of plant species. International Geology Review 46:471-478.
Clements FE. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington, D.C.
Svenning J-C, Fløjgaard C, Baselga A. 2011. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. The Journal of Animal Ecology 80:393-402.
Fernandez-Going B, Harrison S. 2013. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94:2007-2018.
Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:1239-1242.
Qian H, Badgley C, Fox DL. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18:111-122.
Austin MP. 1985. Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16:39-61.
Sanderson EW, Segan D, Watson J. 2015. Global geodiversity: How well protected is it? Conservation Biology DOI: 10.1111/cobi.12502.
Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098-1101.
Gill JL, Blois JL, Benito B, Dobrowski SZ, Hunter Jr ML, McGuire J. 2015. Conserving the stage for 10,000 years: a paleoecological perspective on coarse-filter strategies. Conservation Biology DOI: 10.1111/cobi.12504
Gleason HA. 1926. The individualistic concept of the plant association. Journal of the Torrey Botanical Society 53:7-26.
Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10:1618-1626.
Anderson MG, Ferree CE. 2010. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLOS ONE 5 (e11554) DOI: 10.1371/journal.pone.0011554.
Gallardo-Cruz JA, Pérez-García EA, Meave JA. 2009. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology 24:473-482.
Sgrò CM, Lowe AJ, Hoffmann AA. 2011. Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4:326-337.
Brost B, Beier P. 2012. Use of land facets to design linkages for climate change. Ecological Applications 22:87-103.
Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462:1052-1055.
Mackey BG, Nix HA, Hutchinson MF, Macmahon JP, Fleming PM. 1988. Assessing representativeness of places for conservation reservation and heritage listing. Environmental Management 12:502-514.
Redford KH, et al. 2011. What does it mean to successfully conserve a (vertebrate) species? BioScience 61:39-48.
Araya YN, Silvertown J, Gowing DJ, McConway KJ, Peter Linder H, Midgley G. 2011. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist 189:253-258.
Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243-253.
Redford KH, Feinsinger P. 2001. The half-empty forest: sustainable use and the ecology of interactions. Conservation of exploited species. Cambridge University Press, London.
Anderson MG, Comer PJ, Beier P, Lawler JJ, Schloss CA, Buttrick S, Albano C, Faith D. 2015. Case studies of conservation plans that incorporated geodiversity. Conservation Biology DOI: 10.1111/cobi.12503.
Holdridge LR. 1947. Determination of world plant formations from simple climatic data. Science 105:367-368.
Whittaker RH. 1967. Gradient analysis of vegetation. Biological Reviews 42:207-264.
Whittier TR, Ringold PL, Herlihy AT, Pierson SM. 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp). Frontiers in Ecology and the Environment 6:180-184.
Silvertown J, Dodd ME, Gowing DJG, Mountford JO. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61-63.
Willdenow DC. 1805. The principles of botany, and of vegetable physiology. University of Edinburgh Press, Edinburgh.
Lurgi M, López BC, Montoya JM. 2012. Novel communities from climate change. Philosophical Transactions of the Royal Society of London B 367:2913-2922.
Myers N, Mittermeier RA, Mittermeier CA, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858.
Whittaker RJ, Willis KJ, Field R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28:453-470.
James CW. 1961. Endemism in Florida. Brittonia 13:225-244.
Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907-913.
Stephenson N. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25:855-870.
Francis AP, Currie DJ. 2003. A globally consistent richness-climate relationship for angiosperms. The American Naturalist 161:523-536.
Anacker BL, Whittall JB, Goldberg EE, Harrison SP. 2011. Origins and consequences of serpentine endemism in the California flora. Evolution 65:365-376.
Davis EB, Koo MS, Conroy C, Patton JL, Moritz C. 2008. The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology 17:120-138.
Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660-664.
Beier P, Sutcliffe P, Hjort J, Faith DP, Pressey RL, Albuquerque F. 2015. Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection-based surrogacy tests. Conservation Biology DOI: 10.1111/cobi.12509.
IPCC. 2013. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
Luce CH, Abatzoglou JT, Holden ZA. 2013. The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science 342:1360-1364.
Whittaker RH, Niering WA. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology 46:429.
Mills LS, Soulé ME, Doak DF. 1993. The keystone-species concept in ecology and conservation. BioScience 43:119-224.
Cavieres L, Badano E, Sierra-Almeida A, Molina-Montenegro M. 2007. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the High Andes of Central Chile. Arctic, Antarctic, and Alpine Research 39:229-236.
Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499-504.
Corenblit D, Baas ACW, Bornette G, Darrozes J, Delmotte S, Francis RA, Gurnell AM, Julien F, Naiman RJ, Steiger J. 2011. Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings. Earth-Science Reviews 106:207-331
2007; 39
2002; 16
2010; 16
2013; 3
2002; 52
2010; 17
2006; 38
2010; 466
2000; 9
2011; 61
2003; 17
1999; 400
2008; 6
2014; 28
2011; 471
2011; 17
2012; 367
2007; 38
1977
2013; 19
2009; 12
2010; 24
2001
1917; 34
2000; 403
2013; 94
2006; 25
2000; 405
2003; 161
1967; 101
1975; 2
2011; 65
2001; 16
1977; 35
2010; 5
2012; 22
2009; 323
2012; 21
1985; 16
1989
2009; 18
2001; 98
2009; 326
2011; 334
2009; 24
2010; 37
1967; 42
2010; 328
2011; 80
1986; 11
1926; 53
2008; 18
1993; 43
2008; 17
2006; 15
2004; 46
1998
2009
2013; 342
2013; 100
1996
1988; 12
1599
2013; 341
2001; 28
2002
2011; 4
1916
1961; 13
2007; 11
2011; 6
2012; 30
1998; 25
2004; 10
1988; 2
1994; 8
2001; 82
2009; 32
1965; 46
2011; 106
1959; 93
2006; 46
2013; 339
1947; 105
2011; 42
1965
2009; 462
2015
2005; 3
2009; 142
2013
2012; 5
1805
2011; 189
IPCC (10.1111/cobi.12505-BIB0055|cobi12505-cit-0055) 2013
Schloss (10.1111/cobi.12505-BIB0087|cobi12505-cit-0087) 2011; 6
Svenning (10.1111/cobi.12505-BIB0095|cobi12505-cit-0095) 2013; 100
Rajakaruna (10.1111/cobi.12505-BIB0080|cobi12505-cit-0080) 2004; 46
10.1111/cobi.12505-BIB0107|cobi12505-cit-0107
Grimm (10.1111/cobi.12505-BIB0041|cobi12505-cit-0041) 2006; 25
Kirkpatrick (10.1111/cobi.12505-BIB0061|cobi12505-cit-0061) 1994; 8
Anderson (10.1111/cobi.12505-BIB0003|cobi12505-cit-0003) 2015
Gill (10.1111/cobi.12505-BIB0039|cobi12505-cit-0039) 2009; 326
Hobbs (10.1111/cobi.12505-BIB0048|cobi12505-cit-0048) 2006; 15
Austin (10.1111/cobi.12505-BIB0008|cobi12505-cit-0008) 1977; 35
Mills (10.1111/cobi.12505-BIB0073|cobi12505-cit-0073) 1993; 43
Phillips (10.1111/cobi.12505-BIB0077|cobi12505-cit-0077) 2008; 18
Hampe (10.1111/cobi.12505-BIB0043|cobi12505-cit-0043) 2011; 42
Hutchinson (10.1111/cobi.12505-BIB0053|cobi12505-cit-0053) 1959; 93
Stewart (10.1111/cobi.12505-BIB0093|cobi12505-cit-0093) 2001; 16
Lurgi (10.1111/cobi.12505-BIB0067|cobi12505-cit-0067) 2012; 367
Heller (10.1111/cobi.12505-BIB0045|cobi12505-cit-0045) 2014; 28
Sanderson (10.1111/cobi.12505-BIB0084|cobi12505-cit-0084) 2002; 52
Ackerly (10.1111/cobi.12505-BIB0001|cobi12505-cit-0001) 2010; 16
McGill (10.1111/cobi.12505-BIB0071|cobi12505-cit-0071) 2010; 328
Balvanera (10.1111/cobi.12505-BIB0010|cobi12505-cit-0010) 2006; 38
Ghalambor (10.1111/cobi.12505-BIB0037|cobi12505-cit-0037) 2006; 46
Beier (10.1111/cobi.12505-BIB0012|cobi12505-cit-0012) 2012; 30
Silvertown (10.1111/cobi.12505-BIB0090|cobi12505-cit-0090) 1999; 400
Geiger (10.1111/cobi.12505-BIB0036|cobi12505-cit-0036) 2009
Willdenow (10.1111/cobi.12505-BIB0102|cobi12505-cit-0102) 1805
Corenblit (10.1111/cobi.12505-BIB0024|cobi12505-cit-0024) 2011; 106
Luce (10.1111/cobi.12505-BIB0066|cobi12505-cit-0066) 2013; 342
Qian (10.1111/cobi.12505-BIB0079|cobi12505-cit-0079) 2009; 18
Whittaker (10.1111/cobi.12505-BIB0098|cobi12505-cit-0098) 1967; 42
Francis (10.1111/cobi.12505-BIB0034|cobi12505-cit-0034) 2003; 161
Pinsky (10.1111/cobi.12505-BIB0078|cobi12505-cit-0078) 2013; 341
Loarie (10.1111/cobi.12505-BIB0065|cobi12505-cit-0065) 2009; 462
Jones (10.1111/cobi.12505-BIB0058|cobi12505-cit-0058) 1996
Kruckeberg (10.1111/cobi.12505-BIB0062|cobi12505-cit-0062) 1986; 11
Kruckeberg (10.1111/cobi.12505-BIB0063|cobi12505-cit-0063) 2002
Whittaker (10.1111/cobi.12505-BIB0100|cobi12505-cit-0100) 2001; 28
Hunter (10.1111/cobi.12505-BIB0052|cobi12505-cit-0052) 1988; 2
Whittier (10.1111/cobi.12505-BIB0101|cobi12505-cit-0101) 2008; 6
Woodburne (10.1111/cobi.12505-BIB0105|cobi12505-cit-0105) 2010; 17
Watson (10.1111/cobi.12505-BIB0097|cobi12505-cit-0097) 2013; 3
Mackey (10.1111/cobi.12505-BIB0068|cobi12505-cit-0068) 1988; 12
Holdridge (10.1111/cobi.12505-BIB0049|cobi12505-cit-0049) 1947; 105
Margules (10.1111/cobi.12505-BIB0070|cobi12505-cit-0070) 2000; 405
Gallardo-Cruz (10.1111/cobi.12505-BIB0035|cobi12505-cit-0035) 2009; 24
Hewitt (10.1111/cobi.12505-BIB0047|cobi12505-cit-0047) 2000; 405
Beier (10.1111/cobi.12505-BIB0013|cobi12505-cit-0013) 2010; 24
Soulé (10.1111/cobi.12505-BIB0091|cobi12505-cit-0091) 2003; 17
Gill (10.1111/cobi.12505-BIB0038|cobi12505-cit-0038) 2015
Ashcroft (10.1111/cobi.12505-BIB0007|cobi12505-cit-0007) 2010; 37
Gleason (10.1111/cobi.12505-BIB0040|cobi12505-cit-0040) 1926; 53
Grinnell (10.1111/cobi.12505-BIB0042|cobi12505-cit-0042) 1917; 34
Beier (10.1111/cobi.12505-BIB0014|cobi12505-cit-0014) 2015
Araújo (10.1111/cobi.12505-BIB0005|cobi12505-cit-0005) 2004; 10
Davis (10.1111/cobi.12505-BIB0026|cobi12505-cit-0026) 2008; 17
Cavieres (10.1111/cobi.12505-BIB0021|cobi12505-cit-0021) 2007; 39
Essenwanger (10.1111/cobi.12505-BIB0032|cobi12505-cit-0032) 2001
Noss (10.1111/cobi.12505-BIB0075|cobi12505-cit-0075) 2002; 16
Keppel (10.1111/cobi.12505-BIB0060|cobi12505-cit-0060) 2012; 21
Barnosky (10.1111/cobi.12505-BIB0011|cobi12505-cit-0011) 2011; 471
James (10.1111/cobi.12505-BIB0106|cobi12505-cit-0106) 1961; 13
Anacker (10.1111/cobi.12505-BIB0002|cobi12505-cit-0002) 2011; 65
Holland (10.1111/cobi.12505-BIB0051|cobi12505-cit-0051) 1975; 2
Sanderson (10.1111/cobi.12505-BIB0085|cobi12505-cit-0085) 2015
Redford (10.1111/cobi.12505-BIB0081|cobi12505-cit-0081) 2011; 61
Hutchinson (10.1111/cobi.12505-BIB0054|cobi12505-cit-0054) 1965
Cowling (10.1111/cobi.12505-BIB0025|cobi12505-cit-0025) 2001; 98
Eriksson (10.1111/cobi.12505-BIB0031|cobi12505-cit-0031) 2000; 9
Redford (10.1111/cobi.12505-BIB0082|cobi12505-cit-0082) 2001
Tittensor (10.1111/cobi.12505-BIB0096|cobi12505-cit-0096) 2010; 466
Svenning (10.1111/cobi.12505-BIB0094|cobi12505-cit-0094) 2011; 80
Dobrowski (10.1111/cobi.12505-BIB0027|cobi12505-cit-0027) 2011; 17
Eliot (10.1111/cobi.12505-BIB0029|cobi12505-cit-0029) 2007; 38
Lenoir (10.1111/cobi.12505-BIB0064|cobi12505-cit-0064) 2013; 19
Clements (10.1111/cobi.12505-BIB0023|cobi12505-cit-0023) 1916
Shakespeare (10.1111/cobi.12505-BIB0089|cobi12505-cit-0089) 1599
Williams (10.1111/cobi.12505-BIB0103|cobi12505-cit-0103) 2001; 82
Campbell (10.1111/cobi.12505-BIB0020|cobi12505-cit-0020) 1998
Anderson (10.1111/cobi.12505-BIB0004|cobi12505-cit-0004) 2010; 5
Dobrowski (10.1111/cobi.12505-BIB0028|cobi12505-cit-0028) 2013; 19
Brost (10.1111/cobi.12505-BIB0018|cobi12505-cit-0018) 2012; 22
Brubaker (10.1111/cobi.12505-BIB0019|cobi12505-cit-0019) 1989
Benton (10.1111/cobi.12505-BIB0015|cobi12505-cit-0015) 2009; 323
Sandel (10.1111/cobi.12505-BIB0083|cobi12505-cit-0083) 2011; 334
Jackson (10.1111/cobi.12505-BIB0056|cobi12505-cit-0056) 2009
Williams (10.1111/cobi.12505-BIB0104|cobi12505-cit-0104) 2012; 22
Harper (10.1111/cobi.12505-BIB0044|cobi12505-cit-0044) 1977
Araya (10.1111/cobi.12505-BIB0006|cobi12505-cit-0006) 2011; 189
Whittaker (10.1111/cobi.12505-BIB0099|cobi12505-cit-0099) 1965; 46
Janzen (10.1111/cobi.12505-BIB0057|cobi12505-cit-0057) 1967; 101
Hole (10.1111/cobi.12505-BIB0050|cobi12505-cit-0050) 2009; 12
Fernandez-Going (10.1111/cobi.12505-BIB0033|cobi12505-cit-0033) 2013; 94
Melo (10.1111/cobi.12505-BIB0072|cobi12505-cit-0072) 2009; 32
Stephenson (10.1111/cobi.12505-BIB0092|cobi12505-cit-0092) 1998; 25
Sgrò (10.1111/cobi.12505-BIB0088|cobi12505-cit-0088) 2011; 4
Ellison (10.1111/cobi.12505-BIB0030|cobi12505-cit-0030) 2005; 3
Chen (10.1111/cobi.12505-BIB0022|cobi12505-cit-0022) 2012; 5
Peel (10.1111/cobi.12505-BIB0076|cobi12505-cit-0076) 2007; 11
Blois (10.1111/cobi.12505-BIB0017|cobi12505-cit-0017) 2013; 341
Austin (10.1111/cobi.12505-BIB0009|cobi12505-cit-0009) 1985; 16
Myers (10.1111/cobi.12505-BIB0074|cobi12505-cit-0074) 2000; 403
Marcott (10.1111/cobi.12505-BIB0069|cobi12505-cit-0069) 2013; 339
Scherrer (10.1111/cobi.12505-BIB0086|cobi12505-cit-0086) 2010; 16
Heller (10.1111/cobi.12505-BIB0046|cobi12505-cit-0046) 2009; 142
References_xml – reference: Eriksson O. 2000. Functional roles of remnant plant populations in communities and ecosystems. Global Ecology and Biogeography 9:443-449.
– reference: Mackey BG, Nix HA, Hutchinson MF, Macmahon JP, Fleming PM. 1988. Assessing representativeness of places for conservation reservation and heritage listing. Environmental Management 12:502-514.
– reference: McGill BJ. 2010. Matters of scale. Science 328:575-576.
– reference: Beier P, Brost B. 2010. Use of land facets to plan for climate change: conserving the arenas, not the actors. Conservation Biology 24:701-710.
– reference: Fernandez-Going B, Harrison S. 2013. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94:2007-2018.
– reference: Lurgi M, López BC, Montoya JM. 2012. Novel communities from climate change. Philosophical Transactions of the Royal Society of London B 367:2913-2922.
– reference: Beier P, Sutcliffe P, Hjort J, Faith DP, Pressey RL, Albuquerque F. 2015. Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection-based surrogacy tests. Conservation Biology DOI: 10.1111/cobi.12509.
– reference: Heller NE, Zavaleta ES. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142:14-32.
– reference: Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462:1052-1055.
– reference: Corenblit D, Baas ACW, Bornette G, Darrozes J, Delmotte S, Francis RA, Gurnell AM, Julien F, Naiman RJ, Steiger J. 2011. Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings. Earth-Science Reviews 106:207-331.
– reference: Whittaker RH. 1967. Gradient analysis of vegetation. Biological Reviews 42:207-264.
– reference: Willdenow DC. 1805. The principles of botany, and of vegetable physiology. University of Edinburgh Press, Edinburgh.
– reference: Svenning J-C, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany 100:1266-1286.
– reference: Scherrer D, Körner C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16:2602-2613.
– reference: James CW. 1961. Endemism in Florida. Brittonia 13:225-244.
– reference: Rajakaruna N. 2004. The edaphic factor in the origin of plant species. International Geology Review 46:471-478.
– reference: Lenoir J, et al. 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biology 19:1470-1481.
– reference: Beier P. 2012. Conceptualizing and designing corridors for climate change. Ecological Restoration 30:312-319.
– reference: Svenning J-C, Fløjgaard C, Baselga A. 2011. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. The Journal of Animal Ecology 80:393-402.
– reference: Luce CH, Abatzoglou JT, Holden ZA. 2013. The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science 342:1360-1364.
– reference: Hunter ML, Jacobson GL Jr, Webb T III. 1988. Paleoecology and the coarse-filter approach to maintaining biological diversity. Conservation Biology 2:375-385.
– reference: Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21:393-404.
– reference: Campbell G, Norman JM. 1998. Introduction to environmental biophysics. Springer Science and Business, New York.
– reference: Williams J, Shuman B, Webb T. 2001. Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology 82:3346-3362.
– reference: Soulé ME, Estes JA, Berger J, Del Rio CM. 2003. Ecological effectiveness: conservation goals for interactive species. Conservation Biology 17:1238-1250.
– reference: Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G. 2002. The human footprint and the last of the wild. BioScience 52:891-904.
– reference: Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10:1618-1626.
– reference: Chen Z-Q, Benton MJ. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5:375-383.
– reference: Geiger LE, Aron RH, Todhunter P. 2009. The climate near the ground. 7th edition. Rowman & Littlefield Publishing Group, Lanham.
– reference: Schloss, CA, Lawler JJ, Larson ER, Papendick HL, Case MJ, Evans DM, DeLap JH, Langdon JGR, McRae BH, Hall SA. 2011. Systematic conservation planning in the face of climate change: bet-hedging on the Columbia Plateau. PLOS ONE 6 (e28788) DOI: 10.1371/journal.pone.0028788.
– reference: Ellison AM, et al. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3:479-486.
– reference: Qian H, Badgley C, Fox DL. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18:111-122.
– reference: Benton MJ. 2009. The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728-732.
– reference: Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:1239-1242.
– reference: Harper JL. 1977. Population biology of plants. Academic Press, London.
– reference: Cavieres L, Badano E, Sierra-Almeida A, Molina-Montenegro M. 2007. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the High Andes of Central Chile. Arctic, Antarctic, and Alpine Research 39:229-236.
– reference: Heller NE, Hobbs RJ. 2014. Development of a natural practice to adapt conservation goals to global change. Conservation Biology 28:696-704.
– reference: Phillips SJ, Williams P, Midgley G, Archer A. 2008. Optimizing dispersal corridors for the cape proteaceae using network flow. Ecological Applications 18:1200-1211.
– reference: Sgrò CM, Lowe AJ, Hoffmann AA. 2011. Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4:326-337.
– reference: Myers N, Mittermeier RA, Mittermeier CA, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858.
– reference: Whittier TR, Ringold PL, Herlihy AT, Pierson SM. 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp). Frontiers in Ecology and the Environment 6:180-184.
– reference: Stephenson N. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25:855-870.
– reference: Anderson MG, Ferree CE. 2010. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLOS ONE 5 (e11554) DOI: 10.1371/journal.pone.0011554.
– reference: Balvanera P, Aguirre E. 2006. Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest. Biotropica 38:479-491.
– reference: Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:1633-1644.
– reference: IPCC. 2013. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
– reference: Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243-253.
– reference: Grimm EC, Watts WA, Jacobson Jr GL, Hansen BCS, Almquist HR, Dieffenbacher-Krall AC. 2006. Evidence for warm wet Heinrich events in Florida. Quaternary Science Reviews 25:2197-2211.
– reference: Holland PG, Steyn DG. 1975. Vegetational responses to latitudinal variations in slope angle and aspect. Journal of Biogeography 2:179.
– reference: Marcott SA, Shakun JD, Clark PU, Mix AC. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198-1201.
– reference: Austin MP. 1985. Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16:39-61.
– reference: Dobrowski SZ. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17:1022-1035.
– reference: Kruckeberg AR. 2002. Geology and plant life. University of Washington Press, Seattle.
– reference: Anacker BL, Whittall JB, Goldberg EE, Harrison SP. 2011. Origins and consequences of serpentine endemism in the California flora. Evolution 65:365-376.
– reference: Austin MP. 1977. Use of ordination and other multivariate descriptive methods to study succession. Vegetatio 35:165-175.
– reference: Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499-504.
– reference: Essenwanger OM. 2001. Classification of climates. Page 102 in World survey of climatology 1C, general climatology. Elsevier, Amsterdam.
– reference: Silvertown J, Dodd ME, Gowing DJG, Mountford JO. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61-63.
– reference: Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK. 2013. The climate velocity of the contiguous United States during the 20th century. Global Change Biology 19:241-251.
– reference: Grinnell J. 1917. The niche-relationships of the California Thrasher. Auk 34:427-433.
– reference: Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G. 2006. Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology 46:5-17.
– reference: Hutchinson GE. 1965. The ecological theater and the evolutionary play. Yale University Press, New Haven, Connecticut.
– reference: Redford KH, et al. 2011. What does it mean to successfully conserve a (vertebrate) species? BioScience 61:39-48.
– reference: Gill JL, Blois JL, Benito B, Dobrowski SZ, Hunter Jr ML, McGuire J. 2015. Conserving the stage for 10,000 years: a paleoecological perspective on coarse-filter strategies. Conservation Biology DOI: 10.1111/cobi.12504
– reference: Brost B, Beier P. 2012. Use of land facets to design linkages for climate change. Ecological Applications 22:87-103.
– reference: Hampe A, Jump AS. 2011. Climate relicts: past, present, future. Annual Review of Ecology, Evolution, and Systematics 42:313-333.
– reference: Araya YN, Silvertown J, Gowing DJ, McConway KJ, Peter Linder H, Midgley G. 2011. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist 189:253-258.
– reference: Sanderson EW, Segan D, Watson J. 2015. Global geodiversity: How well protected is it? Conservation Biology DOI: 10.1111/cobi.12502.
– reference: Whittaker RH, Niering WA. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology 46:429.
– reference: Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907-913.
– reference: Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS. 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100-1103.
– reference: Stewart JR, Lister AM. 2001. Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution 16:608-613.
– reference: Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB. 2010. The geography of climate change: implications for conservation biogeography. Diversity and Distributions 16:476-487.
– reference: Watson JEM, Iwamura T, Butt N. 2013. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change 3:989-994.
– reference: Janzen D. 1967. Why mountain passes are higher in the tropics. The American Naturalist 101:223-249.
– reference: Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098-1101.
– reference: Anderson MG, Comer PJ, Beier P, Lawler JJ, Schloss CA, Buttrick S, Albano C, Faith D. 2015. Case studies of conservation plans that incorporated geodiversity. Conservation Biology DOI: 10.1111/cobi.12503.
– reference: Francis AP, Currie DJ. 2003. A globally consistent richness-climate relationship for angiosperms. The American Naturalist 161:523-536.
– reference: Redford KH, Feinsinger P. 2001. The half-empty forest: sustainable use and the ecology of interactions. Conservation of exploited species. Cambridge University Press, London.
– reference: Whittaker RJ, Willis KJ, Field R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28:453-470.
– reference: Barnosky AD, et al. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471:51-57.
– reference: Mills LS, Soulé ME, Doak DF. 1993. The keystone-species concept in ecology and conservation. BioScience 43:119-224.
– reference: Williams JW, Kharouba HM, Veloz S, Vellend M, McLachlan J, Liu Z, Otto-Bliesner B, He F. 2012. The ice age ecologist: testing methods for reserve prioritization during the last global warming. Global Ecology and Biogeography 22:289-301.
– reference: Gleason HA. 1926. The individualistic concept of the plant association. Journal of the Torrey Botanical Society 53:7-26.
– reference: Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660-664.
– reference: Holdridge LR. 1947. Determination of world plant formations from simple climatic data. Science 105:367-368.
– reference: Davis EB, Koo MS, Conroy C, Patton JL, Moritz C. 2008. The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology 17:120-138.
– reference: Hutchinson GE. 1959. Homage to Santa Rosalia or Why are there so many kinds of animals? American Naturalist 93:145-159.
– reference: Eliot C. 2007. Method and metaphysics in Clements's and Gleason's ecological explanations. Studies in History and Philosophy of Biological and Biomedical Sciences 38:85-109.
– reference: Clements FE. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington, D.C.
– reference: Gallardo-Cruz JA, Pérez-García EA, Meave JA. 2009. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology 24:473-482.
– reference: Melo AS, Rangel TFLVB, Diniz-Filho JAF. 2009. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32:226-236.
– reference: Ashcroft MB. 2010. Identifying refugia from climate change. Journal of Biogeography 37:1407-1413.
– reference: Noss RF, Carroll C, Vance-Borland K, Wuerthner G. 2002. A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem. Conservation Biology 16:895-908.
– reference: Cowling R, Pressey R. 2001. Rapid plant diversification: planning for an evolutionary future. Proceedings of the National Academy of Science of the United States of America 98:5452-5457.
– reference: Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecology Letters 12:420-431.
– reference: Kruckeberg A. 1986. An essay: the stimulus of unusual geologies for plant speciation. Systematic Botany 11:455-463.
– reference: Woodburne MO. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17:245-264.
– reference: Kirkpatrick JB, Brown MJ. 1994. A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania. Conservation Biology 8:217-224.
– reference: Hobbs RJ, et al. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15:1-7.
– year: 2015
  article-title: Global geodiversity: How well protected is it
  publication-title: Conservation Biology
– volume: 189
  start-page: 253
  year: 2011
  end-page: 258
  article-title: A fundamental, eco‐hydrological basis for niche segregation in plant communities
  publication-title: New Phytologist
– year: 1805
– volume: 405
  start-page: 243
  year: 2000
  end-page: 253
  article-title: Systematic conservation planning
  publication-title: Nature
– start-page: 1
  year: 2009
  end-page: 46
– volume: 12
  start-page: 420
  year: 2009
  end-page: 431
  article-title: Projected impacts of climate change on a continent‐wide protected area network
  publication-title: Ecology Letters
– volume: 39
  start-page: 229
  year: 2007
  end-page: 236
  article-title: Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non‐native herbaceous species in the High Andes of Central Chile
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 13
  start-page: 225
  year: 1961
  end-page: 244
  article-title: Endemism in Florida
  publication-title: Brittonia
– volume: 341
  start-page: 1239
  year: 2013
  end-page: 1242
  article-title: Marine taxa track local climate velocities
  publication-title: Science
– volume: 21
  start-page: 393
  year: 2012
  end-page: 404
  article-title: Refugia: identifying and understanding safe havens for biodiversity under climate change
  publication-title: Global Ecology and Biogeography
– volume: 82
  start-page: 3346
  year: 2001
  end-page: 3362
  article-title: Dissimilarity analyses of late‐Quaternary vegetation and climate in eastern North America
  publication-title: Ecology
– year: 1998
– volume: 17
  start-page: 1238
  year: 2003
  end-page: 1250
  article-title: Ecological effectiveness: conservation goals for interactive species
  publication-title: Conservation Biology
– year: 2015
  article-title: Case studies of conservation plans that incorporated geodiversity
  publication-title: Conservation Biology
– volume: 94
  start-page: 2007
  year: 2013
  end-page: 2018
  article-title: Climate interacts with soil to produce beta diversity in Californian plant communities
  publication-title: Ecology
– volume: 405
  start-page: 907
  year: 2000
  end-page: 913
  article-title: The genetic legacy of the Quaternary ice ages
  publication-title: Nature
– volume: 403
  start-page: 853
  year: 2000
  end-page: 858
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
– start-page: 130
  year: 1996
  end-page: 147
– volume: 38
  start-page: 479
  year: 2006
  end-page: 491
  article-title: Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest
  publication-title: Biotropica
– volume: 17
  start-page: 120
  year: 2008
  end-page: 138
  article-title: The California Hotspots Project: identifying regions of rapid diversification of mammals
  publication-title: Molecular ecology
– volume: 80
  start-page: 393
  year: 2011
  end-page: 402
  article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction
  publication-title: The Journal of Animal Ecology
– volume: 19
  start-page: 1470
  year: 2013
  end-page: 1481
  article-title: Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
  publication-title: Global Change Biology
– volume: 16
  start-page: 39
  year: 1985
  end-page: 61
  article-title: Continuum concept, ordination methods, and niche theory
  publication-title: Annual Review of Ecology and Systematics
– volume: 12
  start-page: 502
  year: 1988
  end-page: 514
  article-title: Assessing representativeness of places for conservation reservation and heritage listing
  publication-title: Environmental Management
– volume: 101
  start-page: 223
  year: 1967
  end-page: 249
  article-title: Why mountain passes are higher in the tropics
  publication-title: The American Naturalist
– volume: 466
  start-page: 1098
  year: 2010
  end-page: 1101
  article-title: Global patterns and predictors of marine biodiversity across taxa
  publication-title: Nature
– volume: 15
  start-page: 1
  year: 2006
  end-page: 7
  article-title: Novel ecosystems: theoretical and management aspects of the new ecological world order
  publication-title: Global Ecology and Biogeography
– volume: 16
  start-page: 476
  year: 2010
  end-page: 487
  article-title: The geography of climate change: implications for conservation biogeography
  publication-title: Diversity and Distributions
– volume: 98
  start-page: 5452
  year: 2001
  end-page: 5457
  article-title: Rapid plant diversification: planning for an evolutionary future
  publication-title: Proceedings of the National Academy of Science of the United States of America
– year: 1916
– volume: 46
  start-page: 5
  year: 2006
  end-page: 17
  article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited
  publication-title: Integrative and Comparative Biology
– volume: 3
  start-page: 479
  year: 2005
  end-page: 486
  article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems
  publication-title: Frontiers in Ecology and the Environment
– year: 1599
– volume: 106
  start-page: 207
  year: 2011
  end-page: 331
  article-title: Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings
  publication-title: Earth‐Science Reviews
– volume: 65
  start-page: 365
  year: 2011
  end-page: 376
  article-title: Origins and consequences of serpentine endemism in the California flora
  publication-title: Evolution
– volume: 16
  start-page: 2602
  year: 2010
  end-page: 2613
  article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections
  publication-title: Global Change Biology
– volume: 24
  start-page: 473
  year: 2009
  end-page: 482
  article-title: β‐Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape
  publication-title: Landscape Ecology
– volume: 2
  start-page: 375
  year: 1988
  end-page: 385
  article-title: Paleoecology and the coarse‐filter approach to maintaining biological diversity
  publication-title: Conservation Biology
– year: 2015
  article-title: Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection‐based surrogacy tests
  publication-title: Conservation Biology
– volume: 37
  start-page: 1407
  year: 2010
  end-page: 1413
  article-title: Identifying refugia from climate change
  publication-title: Journal of Biogeography
– volume: 161
  start-page: 523
  year: 2003
  end-page: 536
  article-title: A globally consistent richness–climate relationship for angiosperms
  publication-title: The American Naturalist
– volume: 334
  start-page: 660
  year: 2011
  end-page: 664
  article-title: The influence of Late Quaternary climate‐change velocity on species endemism
  publication-title: Science
– volume: 5
  start-page: 375
  year: 2012
  end-page: 383
  article-title: The timing and pattern of biotic recovery following the end‐Permian mass extinction
  publication-title: Nature Geoscience
– year: 2002
– volume: 339
  start-page: 1198
  year: 2013
  end-page: 1201
  article-title: A reconstruction of regional and global temperature for the past 11,300 years
  publication-title: Science
– volume: 32
  start-page: 226
  year: 2009
  end-page: 236
  article-title: Environmental drivers of beta‐diversity patterns in New‐World birds and mammals
  publication-title: Ecography
– volume: 11
  start-page: 1633
  year: 2007
  end-page: 1644
  article-title: Updated world map of the Köppen‐Geiger climate classification
  publication-title: Hydrology and Earth System Sciences
– volume: 18
  start-page: 1200
  year: 2008
  end-page: 1211
  article-title: Optimizing dispersal corridors for the cape proteaceae using network flow
  publication-title: Ecological Applications
– volume: 93
  start-page: 145
  year: 1959
  end-page: 159
  article-title: Homage to Santa Rosalia or Why are there so many kinds of animals
  publication-title: American Naturalist
– start-page: 41
  year: 1989
  end-page: 61
– volume: 18
  start-page: 111
  year: 2009
  end-page: 122
  article-title: The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America
  publication-title: Global Ecology and Biogeography
– volume: 43
  start-page: 119
  year: 1993
  end-page: 224
  article-title: The keystone‐species concept in ecology and conservation
  publication-title: BioScience
– year: 2013
– year: 2009
– volume: 28
  start-page: 453
  year: 2001
  end-page: 470
  article-title: Scale and species richness: towards a general, hierarchical theory of species diversity
  publication-title: Journal of Biogeography
– year: 2001
– volume: 6
  issue: e28788
  year: 2011
  article-title: Systematic conservation planning in the face of climate change: bet‐hedging on the Columbia Plateau
  publication-title: PLOS ONE
– volume: 16
  start-page: 895
  year: 2002
  end-page: 908
  article-title: A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem
  publication-title: Conservation Biology
– volume: 105
  start-page: 367
  year: 1947
  end-page: 368
  article-title: Determination of world plant formations from simple climatic data
  publication-title: Science
– volume: 35
  start-page: 165
  year: 1977
  end-page: 175
  article-title: Use of ordination and other multivariate descriptive methods to study succession
  publication-title: Vegetatio
– volume: 400
  start-page: 61
  year: 1999
  end-page: 63
  article-title: Hydrologically defined niches reveal a basis for species richness in plant communities
  publication-title: Nature
– volume: 17
  start-page: 245
  year: 2010
  end-page: 264
  article-title: The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens
  publication-title: Journal of Mammalian Evolution
– volume: 53
  start-page: 7
  year: 1926
  end-page: 26
  article-title: The individualistic concept of the plant association
  publication-title: Journal of the Torrey Botanical Society
– year: 1965
– volume: 5
  issue: e11554
  year: 2010
  article-title: Conserving the stage: climate change and the geophysical underpinnings of species diversity
  publication-title: PLOS ONE
– volume: 42
  start-page: 207
  year: 1967
  end-page: 264
  article-title: Gradient analysis of vegetation
  publication-title: Biological Reviews
– volume: 34
  start-page: 427
  year: 1917
  end-page: 433
  article-title: The niche‐relationships of the California Thrasher
  publication-title: Auk
– volume: 61
  start-page: 39
  year: 2011
  end-page: 48
  article-title: What does it mean to successfully conserve a (vertebrate) species
  publication-title: BioScience
– volume: 8
  start-page: 217
  year: 1994
  end-page: 224
  article-title: A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania
  publication-title: Conservation Biology
– volume: 326
  start-page: 1100
  year: 2009
  end-page: 1103
  article-title: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America
  publication-title: Science
– volume: 25
  start-page: 855
  year: 1998
  end-page: 870
  article-title: Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales
  publication-title: Journal of Biogeography
– year: 2015
  article-title: Conserving the stage for 10,000 years: a paleoecological perspective on coarse‐filter strategies
  publication-title: Conservation Biology
– volume: 46
  start-page: 429
  year: 1965
  article-title: Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope
  publication-title: Ecology
– volume: 342
  start-page: 1360
  year: 2013
  end-page: 1364
  article-title: The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA
  publication-title: Science
– volume: 24
  start-page: 701
  year: 2010
  end-page: 710
  article-title: Use of land facets to plan for climate change: conserving the arenas, not the actors
  publication-title: Conservation Biology
– volume: 38
  start-page: 85
  year: 2007
  end-page: 109
  article-title: Method and metaphysics in Clements's and Gleason's ecological explanations
  publication-title: Studies in History and Philosophy of Biological and Biomedical Sciences
– volume: 2
  start-page: 179
  year: 1975
  article-title: Vegetational responses to latitudinal variations in slope angle and aspect
  publication-title: Journal of Biogeography
– volume: 10
  start-page: 1618
  year: 2004
  end-page: 1626
  article-title: Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods
  publication-title: Global Change Biology
– volume: 3
  start-page: 989
  year: 2013
  end-page: 994
  article-title: Mapping vulnerability and conservation adaptation strategies under climate change
  publication-title: Nature Climate Change
– volume: 52
  start-page: 891
  year: 2002
  end-page: 904
  article-title: The human footprint and the last of the wild
  publication-title: BioScience
– volume: 25
  start-page: 2197
  year: 2006
  end-page: 2211
  article-title: Evidence for warm wet Heinrich events in Florida
  publication-title: Quaternary Science Reviews
– volume: 323
  start-page: 728
  year: 2009
  end-page: 732
  article-title: The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time
  publication-title: Science
– volume: 142
  start-page: 14
  year: 2009
  end-page: 32
  article-title: Biodiversity management in the face of climate change: A review of 22 years of recommendations
  publication-title: Biological Conservation
– volume: 341
  start-page: 499
  year: 2013
  end-page: 504
  article-title: Climate change and the past, present, and future of biotic interactions
  publication-title: Science
– year: 1977
– volume: 42
  start-page: 313
  year: 2011
  end-page: 333
  article-title: Climate relicts: past, present, future
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 462
  start-page: 1052
  year: 2009
  end-page: 1055
  article-title: The velocity of climate change
  publication-title: Nature
– volume: 9
  start-page: 443
  year: 2000
  end-page: 449
  article-title: Functional roles of remnant plant populations in communities and ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 367
  start-page: 2913
  year: 2012
  end-page: 2922
  article-title: Novel communities from climate change
  publication-title: Philosophical Transactions of the Royal Society of London B
– volume: 28
  start-page: 696
  year: 2014
  end-page: 704
  article-title: Development of a natural practice to adapt conservation goals to global change
  publication-title: Conservation Biology
– volume: 11
  start-page: 455
  year: 1986
  end-page: 463
  article-title: An essay: the stimulus of unusual geologies for plant speciation
  publication-title: Systematic Botany
– volume: 22
  start-page: 289
  year: 2012
  end-page: 301
  article-title: The ice age ecologist: testing methods for reserve prioritization during the last global warming
  publication-title: Global Ecology and Biogeography
– volume: 4
  start-page: 326
  year: 2011
  end-page: 337
  article-title: Building evolutionary resilience for conserving biodiversity under climate change
  publication-title: Evolutionary Applications
– volume: 100
  start-page: 1266
  year: 2013
  end-page: 1286
  article-title: Disequilibrium vegetation dynamics under future climate change
  publication-title: American Journal of Botany
– volume: 6
  start-page: 180
  year: 2008
  end-page: 184
  article-title: A calcium‐based invasion risk assessment for zebra and quagga mussels ( spp)
  publication-title: Frontiers in Ecology and the Environment
– volume: 19
  start-page: 241
  year: 2013
  end-page: 251
  article-title: The climate velocity of the contiguous United States during the 20th century
  publication-title: Global Change Biology
– volume: 17
  start-page: 1022
  year: 2011
  end-page: 1035
  article-title: A climatic basis for microrefugia: the influence of terrain on climate
  publication-title: Global Change Biology
– volume: 328
  start-page: 575
  year: 2010
  end-page: 576
  article-title: Matters of scale
  publication-title: Science
– volume: 471
  start-page: 51
  year: 2011
  end-page: 57
  article-title: Has the Earth's sixth mass extinction already arrived
  publication-title: Nature
– volume: 30
  start-page: 312
  year: 2012
  end-page: 319
  article-title: Conceptualizing and designing corridors for climate change
  publication-title: Ecological Restoration
– volume: 16
  start-page: 608
  year: 2001
  end-page: 613
  article-title: Cryptic northern refugia and the origins of the modern biota
  publication-title: Trends in Ecology & Evolution
– volume: 22
  start-page: 87
  year: 2012
  end-page: 103
  article-title: Use of land facets to design linkages for climate change
  publication-title: Ecological Applications
– volume: 46
  start-page: 471
  year: 2004
  end-page: 478
  article-title: The edaphic factor in the origin of plant species
  publication-title: International Geology Review
– volume: 6
  issue: e28788
  year: 2011
  ident: 10.1111/cobi.12505-BIB0087|cobi12505-cit-0087
  article-title: Systematic conservation planning in the face of climate change: bet-hedging on the Columbia Plateau
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0028788
– volume: 25
  start-page: 855
  year: 1998
  ident: 10.1111/cobi.12505-BIB0092|cobi12505-cit-0092
  article-title: Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales
  publication-title: Journal of Biogeography
  doi: 10.1046/j.1365-2699.1998.00233.x
– volume: 342
  start-page: 1360
  year: 2013
  ident: 10.1111/cobi.12505-BIB0066|cobi12505-cit-0066
  article-title: The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA
  publication-title: Science
  doi: 10.1126/science.1242335
– volume: 98
  start-page: 5452
  year: 2001
  ident: 10.1111/cobi.12505-BIB0025|cobi12505-cit-0025
  article-title: Rapid plant diversification: planning for an evolutionary future
  publication-title: Proceedings of the National Academy of Science of the United States of America
  doi: 10.1073/pnas.101093498
– volume: 19
  start-page: 241
  year: 2013
  ident: 10.1111/cobi.12505-BIB0028|cobi12505-cit-0028
  article-title: The climate velocity of the contiguous United States during the 20th century
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12026
– volume: 25
  start-page: 2197
  year: 2006
  ident: 10.1111/cobi.12505-BIB0041|cobi12505-cit-0041
  article-title: Evidence for warm wet Heinrich events in Florida
  publication-title: Quaternary Science Reviews
  doi: 10.1016/j.quascirev.2006.04.008
– volume-title: Geology and plant life
  year: 2002
  ident: 10.1111/cobi.12505-BIB0063|cobi12505-cit-0063
– volume: 61
  start-page: 39
  year: 2011
  ident: 10.1111/cobi.12505-BIB0081|cobi12505-cit-0081
  article-title: What does it mean to successfully conserve a (vertebrate) species
  publication-title: BioScience
  doi: 10.1525/bio.2011.61.1.9
– volume: 42
  start-page: 207
  year: 1967
  ident: 10.1111/cobi.12505-BIB0098|cobi12505-cit-0098
  article-title: Gradient analysis of vegetation
  publication-title: Biological Reviews
  doi: 10.1111/j.1469-185X.1967.tb01419.x
– volume: 10
  start-page: 1618
  year: 2004
  ident: 10.1111/cobi.12505-BIB0005|cobi12505-cit-0005
  article-title: Would climate change drive species out of reserves? An assessment of existing reserve-selection methods
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2004.00828.x
– volume-title: Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: 10.1111/cobi.12505-BIB0055|cobi12505-cit-0055
– volume: 106
  start-page: 207
  year: 2011
  ident: 10.1111/cobi.12505-BIB0024|cobi12505-cit-0024
  article-title: Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2011.03.002
– volume: 2
  start-page: 179
  year: 1975
  ident: 10.1111/cobi.12505-BIB0051|cobi12505-cit-0051
  article-title: Vegetational responses to latitudinal variations in slope angle and aspect
  publication-title: Journal of Biogeography
  doi: 10.2307/3037989
– volume: 11
  start-page: 455
  year: 1986
  ident: 10.1111/cobi.12505-BIB0062|cobi12505-cit-0062
  article-title: An essay: the stimulus of unusual geologies for plant speciation
  publication-title: Systematic Botany
  doi: 10.2307/2419082
– volume: 17
  start-page: 1022
  year: 2011
  ident: 10.1111/cobi.12505-BIB0027|cobi12505-cit-0027
  article-title: A climatic basis for microrefugia: the influence of terrain on climate
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2010.02263.x
– volume: 38
  start-page: 85
  year: 2007
  ident: 10.1111/cobi.12505-BIB0029|cobi12505-cit-0029
  article-title: Method and metaphysics in Clements's and Gleason's ecological explanations
  publication-title: Studies in History and Philosophy of Biological and Biomedical Sciences
  doi: 10.1016/j.shpsc.2006.12.006
– volume: 16
  start-page: 39
  year: 1985
  ident: 10.1111/cobi.12505-BIB0009|cobi12505-cit-0009
  article-title: Continuum concept, ordination methods, and niche theory
  publication-title: Annual Review of Ecology and Systematics
  doi: 10.1146/annurev.es.16.110185.000351
– start-page: 1
  volume-title: Essay on the geography of plants
  year: 2009
  ident: 10.1111/cobi.12505-BIB0056|cobi12505-cit-0056
– volume: 52
  start-page: 891
  year: 2002
  ident: 10.1111/cobi.12505-BIB0084|cobi12505-cit-0084
  article-title: The human footprint and the last of the wild
  publication-title: BioScience
  doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
– volume: 30
  start-page: 312
  year: 2012
  ident: 10.1111/cobi.12505-BIB0012|cobi12505-cit-0012
  article-title: Conceptualizing and designing corridors for climate change
  publication-title: Ecological Restoration
  doi: 10.3368/er.30.4.312
– volume: 82
  start-page: 3346
  year: 2001
  ident: 10.1111/cobi.12505-BIB0103|cobi12505-cit-0103
  article-title: Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America
  publication-title: Ecology
– year: 2015
  ident: 10.1111/cobi.12505-BIB0085|cobi12505-cit-0085
  article-title: Global geodiversity: How well protected is it
  publication-title: Conservation Biology
  doi: 10.1111/cobi.12502
– volume-title: The principles of botany, and of vegetable physiology
  year: 1805
  ident: 10.1111/cobi.12505-BIB0102|cobi12505-cit-0102
  doi: 10.5962/bhl.title.105661
– volume: 21
  start-page: 393
  year: 2012
  ident: 10.1111/cobi.12505-BIB0060|cobi12505-cit-0060
  article-title: Refugia: identifying and understanding safe havens for biodiversity under climate change
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2011.00686.x
– volume-title: Introduction to environmental biophysics
  year: 1998
  ident: 10.1111/cobi.12505-BIB0020|cobi12505-cit-0020
  doi: 10.1007/978-1-4612-1626-1
– volume: 403
  start-page: 853
  year: 2000
  ident: 10.1111/cobi.12505-BIB0074|cobi12505-cit-0074
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
  doi: 10.1038/35002501
– volume: 24
  start-page: 473
  year: 2009
  ident: 10.1111/cobi.12505-BIB0035|cobi12505-cit-0035
  article-title: β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape
  publication-title: Landscape Ecology
  doi: 10.1007/s10980-009-9332-1
– ident: 10.1111/cobi.12505-BIB0107|cobi12505-cit-0107
  doi: 10.5822/978-1-61091-225-9
– volume: 80
  start-page: 393
  year: 2011
  ident: 10.1111/cobi.12505-BIB0094|cobi12505-cit-0094
  article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction
  publication-title: The Journal of Animal Ecology
  doi: 10.1111/j.1365-2656.2010.01771.x
– volume: 334
  start-page: 660
  year: 2011
  ident: 10.1111/cobi.12505-BIB0083|cobi12505-cit-0083
  article-title: The influence of Late Quaternary climate-change velocity on species endemism
  publication-title: Science
  doi: 10.1126/science.1210173
– volume: 8
  start-page: 217
  year: 1994
  ident: 10.1111/cobi.12505-BIB0061|cobi12505-cit-0061
  article-title: A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania
  publication-title: Conservation Biology
  doi: 10.1046/j.1523-1739.1994.08010217.x
– volume: 18
  start-page: 1200
  year: 2008
  ident: 10.1111/cobi.12505-BIB0077|cobi12505-cit-0077
  article-title: Optimizing dispersal corridors for the cape proteaceae using network flow
  publication-title: Ecological Applications
  doi: 10.1890/07-0507.1
– volume: 405
  start-page: 243
  year: 2000
  ident: 10.1111/cobi.12505-BIB0070|cobi12505-cit-0070
  article-title: Systematic conservation planning
  publication-title: Nature
  doi: 10.1038/35012251
– volume: 16
  start-page: 476
  year: 2010
  ident: 10.1111/cobi.12505-BIB0001|cobi12505-cit-0001
  article-title: The geography of climate change: implications for conservation biogeography
  publication-title: Diversity and Distributions
  doi: 10.1111/j.1472-4642.2010.00654.x
– volume: 2
  start-page: 375
  year: 1988
  ident: 10.1111/cobi.12505-BIB0052|cobi12505-cit-0052
  article-title: Paleoecology and the coarse-filter approach to maintaining biological diversity
  publication-title: Conservation Biology
  doi: 10.1111/j.1523-1739.1988.tb00202.x
– volume: 189
  start-page: 253
  year: 2011
  ident: 10.1111/cobi.12505-BIB0006|cobi12505-cit-0006
  article-title: A fundamental, eco-hydrological basis for niche segregation in plant communities
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03475.x
– volume: 326
  start-page: 1100
  year: 2009
  ident: 10.1111/cobi.12505-BIB0039|cobi12505-cit-0039
  article-title: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America
  publication-title: Science
  doi: 10.1126/science.1179504
– year: 2015
  ident: 10.1111/cobi.12505-BIB0003|cobi12505-cit-0003
  article-title: Case studies of conservation plans that incorporated geodiversity
  publication-title: Conservation Biology
  doi: 10.1111/cobi.12503
– volume: 6
  start-page: 180
  year: 2008
  ident: 10.1111/cobi.12505-BIB0101|cobi12505-cit-0101
  article-title: A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp)
  publication-title: Frontiers in Ecology and the Environment
  doi: 10.1890/070073
– volume: 462
  start-page: 1052
  year: 2009
  ident: 10.1111/cobi.12505-BIB0065|cobi12505-cit-0065
  article-title: The velocity of climate change
  publication-title: Nature
  doi: 10.1038/nature08649
– volume: 46
  start-page: 5
  year: 2006
  ident: 10.1111/cobi.12505-BIB0037|cobi12505-cit-0037
  article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited
  publication-title: Integrative and Comparative Biology
  doi: 10.1093/icb/icj003
– volume: 4
  start-page: 326
  year: 2011
  ident: 10.1111/cobi.12505-BIB0088|cobi12505-cit-0088
  article-title: Building evolutionary resilience for conserving biodiversity under climate change
  publication-title: Evolutionary Applications
  doi: 10.1111/j.1752-4571.2010.00157.x
– volume-title: The Arden Shakespeare
  year: 1599
  ident: 10.1111/cobi.12505-BIB0089|cobi12505-cit-0089
– volume: 9
  start-page: 443
  year: 2000
  ident: 10.1111/cobi.12505-BIB0031|cobi12505-cit-0031
  article-title: Functional roles of remnant plant populations in communities and ecosystems
  publication-title: Global Ecology and Biogeography
  doi: 10.1046/j.1365-2699.2000.00215.x
– volume-title: Plant succession: an analysis of the development of vegetation
  year: 1916
  ident: 10.1111/cobi.12505-BIB0023|cobi12505-cit-0023
  doi: 10.5962/bhl.title.56234
– volume: 11
  start-page: 1633
  year: 2007
  ident: 10.1111/cobi.12505-BIB0076|cobi12505-cit-0076
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-11-1633-2007
– volume: 46
  start-page: 471
  year: 2004
  ident: 10.1111/cobi.12505-BIB0080|cobi12505-cit-0080
  article-title: The edaphic factor in the origin of plant species
  publication-title: International Geology Review
  doi: 10.2747/0020-6814.46.5.471
– volume-title: The climate near the ground
  year: 2009
  ident: 10.1111/cobi.12505-BIB0036|cobi12505-cit-0036
– volume: 53
  start-page: 7
  year: 1926
  ident: 10.1111/cobi.12505-BIB0040|cobi12505-cit-0040
  article-title: The individualistic concept of the plant association
  publication-title: Journal of the Torrey Botanical Society
  doi: 10.2307/2479933
– volume: 339
  start-page: 1198
  year: 2013
  ident: 10.1111/cobi.12505-BIB0069|cobi12505-cit-0069
  article-title: A reconstruction of regional and global temperature for the past 11,300 years
  publication-title: Science
  doi: 10.1126/science.1228026
– volume: 28
  start-page: 453
  year: 2001
  ident: 10.1111/cobi.12505-BIB0100|cobi12505-cit-0100
  article-title: Scale and species richness: towards a general, hierarchical theory of species diversity
  publication-title: Journal of Biogeography
  doi: 10.1046/j.1365-2699.2001.00563.x
– volume: 13
  start-page: 225
  year: 1961
  ident: 10.1111/cobi.12505-BIB0106|cobi12505-cit-0106
  article-title: Endemism in Florida
  publication-title: Brittonia
  doi: 10.2307/2805339
– volume: 65
  start-page: 365
  year: 2011
  ident: 10.1111/cobi.12505-BIB0002|cobi12505-cit-0002
  article-title: Origins and consequences of serpentine endemism in the California flora
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2010.01114.x
– volume: 17
  start-page: 120
  year: 2008
  ident: 10.1111/cobi.12505-BIB0026|cobi12505-cit-0026
  article-title: The California Hotspots Project: identifying regions of rapid diversification of mammals
  publication-title: Molecular ecology
  doi: 10.1111/j.1365-294X.2007.03469.x
– volume: 5
  issue: e11554
  year: 2010
  ident: 10.1111/cobi.12505-BIB0004|cobi12505-cit-0004
  article-title: Conserving the stage: climate change and the geophysical underpinnings of species diversity
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0011554
– volume: 400
  start-page: 61
  year: 1999
  ident: 10.1111/cobi.12505-BIB0090|cobi12505-cit-0090
  article-title: Hydrologically defined niches reveal a basis for species richness in plant communities
  publication-title: Nature
  doi: 10.1038/21877
– volume: 16
  start-page: 608
  year: 2001
  ident: 10.1111/cobi.12505-BIB0093|cobi12505-cit-0093
  article-title: Cryptic northern refugia and the origins of the modern biota
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/S0169-5347(01)02338-2
– volume: 18
  start-page: 111
  year: 2009
  ident: 10.1111/cobi.12505-BIB0079|cobi12505-cit-0079
  article-title: The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2008.00415.x
– volume: 466
  start-page: 1098
  year: 2010
  ident: 10.1111/cobi.12505-BIB0096|cobi12505-cit-0096
  article-title: Global patterns and predictors of marine biodiversity across taxa
  publication-title: Nature
  doi: 10.1038/nature09329
– volume: 17
  start-page: 245
  year: 2010
  ident: 10.1111/cobi.12505-BIB0105|cobi12505-cit-0105
  article-title: The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens
  publication-title: Journal of Mammalian Evolution
  doi: 10.1007/s10914-010-9144-8
– volume: 405
  start-page: 907
  year: 2000
  ident: 10.1111/cobi.12505-BIB0047|cobi12505-cit-0047
  article-title: The genetic legacy of the Quaternary ice ages
  publication-title: Nature
  doi: 10.1038/35016000
– volume: 12
  start-page: 502
  year: 1988
  ident: 10.1111/cobi.12505-BIB0068|cobi12505-cit-0068
  article-title: Assessing representativeness of places for conservation reservation and heritage listing
  publication-title: Environmental Management
  doi: 10.1007/BF01873263
– volume: 161
  start-page: 523
  year: 2003
  ident: 10.1111/cobi.12505-BIB0034|cobi12505-cit-0034
  article-title: A globally consistent richness-climate relationship for angiosperms
  publication-title: The American Naturalist
  doi: 10.1086/368223
– volume: 15
  start-page: 1
  year: 2006
  ident: 10.1111/cobi.12505-BIB0048|cobi12505-cit-0048
  article-title: Novel ecosystems: theoretical and management aspects of the new ecological world order
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-822X.2006.00212.x
– volume-title: Population biology of plants
  year: 1977
  ident: 10.1111/cobi.12505-BIB0044|cobi12505-cit-0044
– volume: 12
  start-page: 420
  year: 2009
  ident: 10.1111/cobi.12505-BIB0050|cobi12505-cit-0050
  article-title: Projected impacts of climate change on a continent-wide protected area network
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2009.01297.x
– volume: 28
  start-page: 696
  year: 2014
  ident: 10.1111/cobi.12505-BIB0045|cobi12505-cit-0045
  article-title: Development of a natural practice to adapt conservation goals to global change
  publication-title: Conservation Biology
  doi: 10.1111/cobi.12269
– volume: 24
  start-page: 701
  year: 2010
  ident: 10.1111/cobi.12505-BIB0013|cobi12505-cit-0013
  article-title: Use of land facets to plan for climate change: conserving the arenas, not the actors
  publication-title: Conservation Biology
  doi: 10.1111/j.1523-1739.2009.01422.x
– volume: 16
  start-page: 2602
  year: 2010
  ident: 10.1111/cobi.12505-BIB0086|cobi12505-cit-0086
  article-title: Infra-red thermometry of alpine landscapes challenges climatic warming projections
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.02122.x
– volume: 323
  start-page: 728
  year: 2009
  ident: 10.1111/cobi.12505-BIB0015|cobi12505-cit-0015
  article-title: The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time
  publication-title: Science
  doi: 10.1126/science.1157719
– volume: 43
  start-page: 119
  year: 1993
  ident: 10.1111/cobi.12505-BIB0073|cobi12505-cit-0073
  article-title: The keystone-species concept in ecology and conservation
  publication-title: BioScience
  doi: 10.2307/1312122
– volume: 105
  start-page: 367
  year: 1947
  ident: 10.1111/cobi.12505-BIB0049|cobi12505-cit-0049
  article-title: Determination of world plant formations from simple climatic data
  publication-title: Science
  doi: 10.1126/science.105.2727.367
– volume: 93
  start-page: 145
  year: 1959
  ident: 10.1111/cobi.12505-BIB0053|cobi12505-cit-0053
  article-title: Homage to Santa Rosalia or Why are there so many kinds of animals
  publication-title: American Naturalist
  doi: 10.1086/282070
– volume: 471
  start-page: 51
  year: 2011
  ident: 10.1111/cobi.12505-BIB0011|cobi12505-cit-0011
  article-title: Has the Earth's sixth mass extinction already arrived
  publication-title: Nature
  doi: 10.1038/nature09678
– volume: 22
  start-page: 87
  year: 2012
  ident: 10.1111/cobi.12505-BIB0018|cobi12505-cit-0018
  article-title: Use of land facets to design linkages for climate change
  publication-title: Ecological Applications
  doi: 10.1890/11-0213.1
– volume: 328
  start-page: 575
  year: 2010
  ident: 10.1111/cobi.12505-BIB0071|cobi12505-cit-0071
  article-title: Matters of scale
  publication-title: Science
  doi: 10.1126/science.1188528
– volume: 46
  start-page: 429
  year: 1965
  ident: 10.1111/cobi.12505-BIB0099|cobi12505-cit-0099
  article-title: Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope
  publication-title: Ecology
  doi: 10.2307/1934875
– year: 2015
  ident: 10.1111/cobi.12505-BIB0038|cobi12505-cit-0038
  article-title: Conserving the stage for 10,000 years: a paleoecological perspective on coarse-filter strategies
  publication-title: Conservation Biology
  doi: 10.1111/cobi.12504
– volume: 94
  start-page: 2007
  year: 2013
  ident: 10.1111/cobi.12505-BIB0033|cobi12505-cit-0033
  article-title: Climate interacts with soil to produce beta diversity in Californian plant communities
  publication-title: Ecology
  doi: 10.1890/12-2011.1
– volume: 19
  start-page: 1470
  year: 2013
  ident: 10.1111/cobi.12505-BIB0064|cobi12505-cit-0064
  article-title: Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12129
– volume: 3
  start-page: 479
  year: 2005
  ident: 10.1111/cobi.12505-BIB0030|cobi12505-cit-0030
  article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems
  publication-title: Frontiers in Ecology and the Environment
  doi: 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
– volume: 101
  start-page: 223
  year: 1967
  ident: 10.1111/cobi.12505-BIB0057|cobi12505-cit-0057
  article-title: Why mountain passes are higher in the tropics
  publication-title: The American Naturalist
  doi: 10.1086/282487
– volume: 38
  start-page: 479
  year: 2006
  ident: 10.1111/cobi.12505-BIB0010|cobi12505-cit-0010
  article-title: Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2006.00161.x
– start-page: 41
  volume-title: Ecosystem Management for Parks and Wilderness
  year: 1989
  ident: 10.1111/cobi.12505-BIB0019|cobi12505-cit-0019
– year: 2015
  ident: 10.1111/cobi.12505-BIB0014|cobi12505-cit-0014
  article-title: Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection-based surrogacy tests
  publication-title: Conservation Biology
  doi: 10.1111/cobi.12509
– volume: 34
  start-page: 427
  year: 1917
  ident: 10.1111/cobi.12505-BIB0042|cobi12505-cit-0042
  article-title: The niche-relationships of the California Thrasher
  publication-title: Auk
  doi: 10.2307/4072271
– volume: 39
  start-page: 229
  year: 2007
  ident: 10.1111/cobi.12505-BIB0021|cobi12505-cit-0021
  article-title: Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the High Andes of Central Chile
  publication-title: Arctic, Antarctic, and Alpine Research
  doi: 10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2
– volume: 341
  start-page: 499
  year: 2013
  ident: 10.1111/cobi.12505-BIB0017|cobi12505-cit-0017
  article-title: Climate change and the past, present, and future of biotic interactions
  publication-title: Science
  doi: 10.1126/science.1237184
– volume: 5
  start-page: 375
  year: 2012
  ident: 10.1111/cobi.12505-BIB0022|cobi12505-cit-0022
  article-title: The timing and pattern of biotic recovery following the end-Permian mass extinction
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo1475
– volume-title: The half-empty forest: sustainable use and the ecology of interactions. Conservation of exploited species
  year: 2001
  ident: 10.1111/cobi.12505-BIB0082|cobi12505-cit-0082
– volume: 142
  start-page: 14
  year: 2009
  ident: 10.1111/cobi.12505-BIB0046|cobi12505-cit-0046
  article-title: Biodiversity management in the face of climate change: A review of 22 years of recommendations
  publication-title: Biological Conservation
  doi: 10.1016/j.biocon.2008.10.006
– volume-title: The ecological theater and the evolutionary play
  year: 1965
  ident: 10.1111/cobi.12505-BIB0054|cobi12505-cit-0054
– volume: 22
  start-page: 289
  year: 2012
  ident: 10.1111/cobi.12505-BIB0104|cobi12505-cit-0104
  article-title: The ice age ecologist: testing methods for reserve prioritization during the last global warming
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2012.00760.x
– volume: 35
  start-page: 165
  year: 1977
  ident: 10.1111/cobi.12505-BIB0008|cobi12505-cit-0008
  article-title: Use of ordination and other multivariate descriptive methods to study succession
  publication-title: Vegetatio
  doi: 10.1007/BF02097067
– volume: 37
  start-page: 1407
  year: 2010
  ident: 10.1111/cobi.12505-BIB0007|cobi12505-cit-0007
  article-title: Identifying refugia from climate change
  publication-title: Journal of Biogeography
  doi: 10.1111/j.1365-2699.2010.02300.x
– volume-title: Classification of climates. Page 102 in World survey of climatology 1C, general climatology
  year: 2001
  ident: 10.1111/cobi.12505-BIB0032|cobi12505-cit-0032
– volume: 17
  start-page: 1238
  year: 2003
  ident: 10.1111/cobi.12505-BIB0091|cobi12505-cit-0091
  article-title: Ecological effectiveness: conservation goals for interactive species
  publication-title: Conservation Biology
  doi: 10.1046/j.1523-1739.2003.01599.x
– volume: 32
  start-page: 226
  year: 2009
  ident: 10.1111/cobi.12505-BIB0072|cobi12505-cit-0072
  article-title: Environmental drivers of beta-diversity patterns in New-World birds and mammals
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2008.05502.x
– volume: 100
  start-page: 1266
  year: 2013
  ident: 10.1111/cobi.12505-BIB0095|cobi12505-cit-0095
  article-title: Disequilibrium vegetation dynamics under future climate change
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1200469
– volume: 341
  start-page: 1239
  year: 2013
  ident: 10.1111/cobi.12505-BIB0078|cobi12505-cit-0078
  article-title: Marine taxa track local climate velocities
  publication-title: Science
  doi: 10.1126/science.1239352
– volume: 42
  start-page: 313
  year: 2011
  ident: 10.1111/cobi.12505-BIB0043|cobi12505-cit-0043
  article-title: Climate relicts: past, present, future
  publication-title: Annual Review of Ecology, Evolution, and Systematics
  doi: 10.1146/annurev-ecolsys-102710-145015
– volume: 16
  start-page: 895
  year: 2002
  ident: 10.1111/cobi.12505-BIB0075|cobi12505-cit-0075
  article-title: A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem
  publication-title: Conservation Biology
  doi: 10.1046/j.1523-1739.2002.01405.x
– start-page: 130
  volume-title: Ecosystem management
  year: 1996
  ident: 10.1111/cobi.12505-BIB0058|cobi12505-cit-0058
– volume: 367
  start-page: 2913
  year: 2012
  ident: 10.1111/cobi.12505-BIB0067|cobi12505-cit-0067
  article-title: Novel communities from climate change
  publication-title: Philosophical Transactions of the Royal Society of London B
  doi: 10.1098/rstb.2012.0238
– volume: 3
  start-page: 989
  year: 2013
  ident: 10.1111/cobi.12505-BIB0097|cobi12505-cit-0097
  article-title: Mapping vulnerability and conservation adaptation strategies under climate change
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2007
SSID ssj0009514
Score 2.5587003
Snippet Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern...
SourceID osti
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 618
SubjectTerms abiotic factors
biocenosis
Biodiversity
cambio climático
climate
Climate change
condiciones abióticas
Conservation biology
Conservation of Natural Resources - methods
conservation planning
ecological theory
Ecology - trends
ENVIRONMENTAL SCIENCES
Geological Phenomena
landforms
latitude
Nature
Nature conservation
planning
planses de conservación
Protected species
Special Section: Conserving Nature's Stage
teoría ecolótigico
Theory
vegetation
Title theory behind, and the challenges of, conserving nature's stage in a time of rapid change
URI https://api.istex.fr/ark:/67375/WNG-BTV1X2NK-X/fulltext.pdf
https://www.jstor.org/stable/24483094
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12505
https://www.ncbi.nlm.nih.gov/pubmed/25922899
https://www.proquest.com/docview/1680269450
https://www.proquest.com/docview/1694476643
https://www.proquest.com/docview/1808635527
https://www.osti.gov/servlets/purl/1512112
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iQPDFWzPmoEVRlMwy90yDLyYkRsUVdKP7Epo-puMSmQl7gJtfb1XP4UZCQF-W3t2a2Zner6u_6qn6GuA5T3BSiwz3ucytn5Sx9AuZh36c5JLCiUw7MZ1Pw-zoOPkwTsdr8KarhWn0IfoFNxoZzl_TAJdqtjLIda0mg5BmcHTAlKxFjOhLtKK42wh7Y4jnFwWPWm1SSuP5c-il2eiGlTVyVOreX116InrqGsfaVfzzMp1189HhHTjp7qRJQzkbLOZqoC_-Enn831u9C7dbosreNsi6B2tldR9uNltXLrF14OSulw_gBJHGXD3kkqnyB8b4u0xWhj5iutuqZcZqu8s0pW5PaQmDNYKiL2cM2elpySYVk4z2uUc7NpXnE8OakuSHMDo8GO0f-e2mDb5GapXiq8aQK89sie8Mxjs8VrmMZahNaCzSA0UMVOvAGMNLi40kLONMk6y-TWz8CNaruio3qJo8kDY0Yaw4YkZxyYsMT5LaQBXKqNiDV91_J3QraE77avwUXWBD_SZcv3nwrLc9b2Q8rrTaQAgIeYr-VRx_jWg1iChwnucevHC46I-W0zPKictT8X34TuyNvoXjaPhRjD3YccBZ_RlKthfIo4oY0e_BJiFKIMMhmV5N-Ux6Loh5Iff1YKsDmmi9yUyEWRFQxXEaePC0_xr9AD3ckVVZL8iGJ0meIcG8xqbAADYmzT0PHjcg7i8Tw-CIgm8PXjsoXtNNYv_z3nvXevIvxptwi3q0ybPbgvX5dFFuI6Obqx03cn8DdCE--Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC0lQQgu7JAhITRiEyhjeRbPcuBANhycGCk44Atq9TbBCsxEXgTmm_gV_omqnhnjoCgShxy4WG27PB53V3W9Kle9BniShujUfJ26qYgzNzSBcBMRe24QxoLCiUhZMp39btQ-DN_2W_0F-Fn3wpT8ELOEG1mG3a_JwCkhPWflqpCDhkcuvKqp7JjpN4zYRq92t3B5n_r-znZvs-1Whwq4Cl1_Cx8VhgRxlBl8phGPp4GMRSA8pT2dofuShJCUamqtU5PhIPRMECmifc_CLMDLLsIlOkGcmPq3Dvw5it-SSRxjSjdJUr8iQ6W6oT-3esr9LWaiQFBM6_m9rodE11CgcZ8FeE_jZ-sAd67Dr3rqyrqX48ZkLBvqx1-skv_L3N6AaxUSZ69L07kJCya_BZfLszmnONq2fN7T2_AJTYnZhs8pk-bzINfrTOSaXmKqPotmxIpsnSmqTR9SjoaVjKnPRwzh95Fhg5wJNh58NSjHhuJkoFnZc30HehfxI-_CUl7kZpna5Zsi87QXyBSNQqYiTSK8SCtrykRqGTjwotYVrirGdjo45AuvIzdaJm6XyYHHM9mTkqfkTKllVDkujtCB8MP3PqW7COPHcezAM6uHs0-L4TEV_cUt_rH7hm_0Pnh9v9vhfQfWrKLOfw11E3AEikmA5u3ACmkwRwhHPMSKCrbUmBO0RHDvwGqt2LzaLkfci5ImtVS3mg48mr2NGx39eyVyU0xIJg3DOEIEfY5MghF6QKSCDtwrjWZ2mxjn-5RdcOClVf1zpolvvtvYtaP7_yL8EK60e_t7fG-321mBqzS7ZVHhKiyNhxPzAOHrWK7ZXYMBv2BL-g2zfJzb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61RSAuvKGmpSziJVAd-RXbe-BAm4aGQECQQi5otd5dl6hgR3kIwl_ir_CjmPEjpKiqxKEHLtEmmTjO7szON5uZbwAe8ACdmqe5zWWU2oHxpR3LyLX9IJIUToSqINN53Qv3D4KXg-ZgBX7WtTAlP8TiwI0so9ivycBHOl0ycpUnw4ZLHrxKqeya-TcM2CbPOi1c3Yee197r7-7bVU8BW6Hnb-KjwoggClODzzTCce4nkfSlq7SrU_ReCQEkpRytNTcpDgLX-KEi1vc0SH287CqcC0KHU5-I1jtvieG3JBLHkNKOY-5VXKiUNvTnVo95v9VU5oiJaTm_1-mQ6BlytO2T8O5x-Fz4v_Zl-FXPXJn2ctSYTZOG-vEXqeR_MrVX4FKFw9nz0nCuworJrsH5sjPnHEd7BZv3_Dp8QkNiRbnnnCXm8zDT20xmml5iqu5EM2F5us0UZaaP6YSGlXypjycMwfehYcOMSTYdfjUox8ZyNNSsrLi-Af2z-JE3YS3LM7NOxfKOTF3t-glHk0i45HGIF2mmThInOvEteFKrilAVXzu1Dfki6riNlkkUy2TB_YXsqGQpOVFqHTVOyEN0H-LgvUeHXYTwoyiy4FGhhotPy_ERpfxFTfGx90Ls9D-4A6_XFQMLtgo9Xf4aqiUQCBNjH43bgg1SYIEAjliIFaVrqakgYInQ3oLNWq9FtVlOhBvGDhVUNx0L7i3exm2O_ruSmclnJMODIAoRP58iE2N87hOloAW3SptZ3CZG-R6dLVjwtND8U6ZJ7L7Z6RSj2_8ifBcuvG21xatOr7sBF2lyy4zCTVibjmfmDmLXabJV7BkMxBkb0m8ls5uK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+theory+behind%2C+and+the+challenges+of%2C+conserving+nature%27s+stage+in+a+time+of+rapid+change&rft.jtitle=Conservation+biology&rft.au=Lawler%2C+Joshua+J&rft.au=Ackerly%2C+David+D&rft.au=Albano%2C+Christine+M&rft.au=Anderson%2C+Mark+G&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=29&rft.issue=3&rft.spage=618&rft_id=info:doi/10.1111%2Fcobi.12505&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3681700241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon