theory behind, and the challenges of, conserving nature's stage in a time of rapid change
Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the...
Saved in:
Published in | Conservation biology Vol. 29; no. 3; pp. 618 - 629 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Scientific Publications
01.06.2015
Blackwell Publishing Ltd Wiley Periodicals Inc Society for Conservation Biology - Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions. |
---|---|
AbstractList | Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation-planning process. By doing so, it may be possible to conserve an abiotically diverse "stage" upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time-albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. Lastly, we conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions. Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions. Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation-planning process. By doing so, it may be possible to conserve an abiotically diverse "stage" upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions. La mayoría de los planes de conservación a la fecha se han enfocado en proteger a la biodiversidad de hoy bajo la suposición de que será la biodiversidad de mañana. Sin embargo, el cambio climático contemporáneo ya ha resultado en cambios de distribución de algunas especies y se tiene proyectado que resulte en muchos cambios más en las siguientes décadas. Conforme las especies se redistribuyen y las comunidades bioóticas se reorganizan, los planes de conservación con base en los patrones actuales de biodiversidad pueden fallar en proteger adecuadamente a las especies en el futuro. Una estrategia para dirigirse a este tema consiste en enfocarse en la conservación de una gama de condiciones abióticas durante el proceso de planeación de la conservación. Al hacer esto, puede ser posible conservar una "etapa" de diversidad abiótica sobre la cual actuará la evolución y sustentará a muchos actores (biodiversidad). Revisamos los apuntalamientos fundamentales del concepto de conservación de la etapa abiótica, comenzando con las observaciones iniciales de von Humboldt, quien mapeó la concordancia de las condiciones abióticas y la vegetación; y progresando hasta el concepto de nicho ecológico. Discutimos los obstáculos impuestos por los temas de escala espacial y temporal, el papel de los conductores bióticos de la distribución de las especies, y la variación latitudinal y topográfica en las relaciones entre el clima y los accidentes geográficos. Por ejemplo, las condiciones abióticas no son estáticas, sino que cambian con el tiempo—no obstante a tasas diferentes y frecuentemente lentas. En algunos lugares, las interacciones bióticas juegan un papel sustancial en los patrones de estructuración de la biodiversidad, lo que significa que los patrones de la biodiversidad pueden estar menos relacionados con la etapa abiótica. Más allá, los conductores abióticos pueden cambiar con la posición topográfica y la latitud, lo que significa que la etapa abiótica necesitará definirse diferentemente en lugares distintos. Concluimos que proteger una diversidad de condiciones abióticas probablemente conserve de mejor manera a la biodiversidad hacia el futuro en lugares donde los conductores abióticos de la distribución de especies son fuertes en relación con los conductores bióticos, donde la diversidad de configuraciones abióticas se mantendrán a lo largo del tiempo, y donde la conectividad permita movimiento entre áreas que proporcionan diferentes condiciones abióticas. Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions. Los Obstáculos y la Teoría detrás de la Conservación del Estado de la Naturaleza en Tiempos de Cambios Rápidos Resumen La mayoría de los planes de conservación a la fecha se han enfocado en proteger a la biodiversidad de hoy bajo la suposición de que será la biodiversidad de mañana. Sin embargo, el cambio climático contemporáneo ya ha resultado en cambios de distribución de algunas especies y se tiene proyectado que resulte en muchos cambios más en las siguientes décadas. Conforme las especies se redistribuyen y las comunidades bióticas se reorganizan, los planes de conservación con base en los patrones actuales de biodiversidad pueden fallar en proteger adecuadamente a las especies en el futuro. Una estrategia para dirigirse a este tema consiste en enfocarse en la conservación de una gama de condiciones abióticas durante el proceso de planeación de la conservación. Al hacer esto, puede ser posible conservar una “etapa” de diversidad abiótica sobre la cual actuará la evolución y sustentará a muchos actores (biodiversidad). Revisamos los apuntalamientos fundamentales del concepto de conservación de la etapa abiótica, comenzando con las observaciones iniciales de von Humboldt, quien mapeó la concordancia de las condiciones abióticas y la vegetación; y progresando hasta el concepto de nicho ecológico. Discutimos los obstáculos impuestos por los temas de escala espacial y temporal, el papel de los conductores bióticos de la distribución de las especies, y la variación latitudinal y topográfica en las relaciones entre el clima y los accidentes geográficos. Por ejemplo, las condiciones abióticas no son estáticas, sino que cambian con el tiempo—no obstante a tasas diferentes y frecuentemente lentas. En algunos lugares, las interacciones bióticas juegan un papel sustancial en los patrones de estructuración de la biodiversidad, lo que significa que los patrones de la biodiversidad pueden estar menos relacionados con la etapa abiótica. Más allá, los conductores abióticos pueden cambiar con la posición topográfica y la latitud, lo que significa que la etapa abiótica necesitará definirse diferentemente en lugares distintos. Concluimos que proteger una diversidad de condiciones abióticas probablemente conserve de mejor manera a la biodiversidad hacia el futuro en lugares donde los conductores abióticos de la distribución de especies son fuertes en relación con los conductores bióticos, donde la diversidad de configuraciones abióticas se mantendrán a lo largo del tiempo, y donde la conectividad permita movimiento entre áreas que proporcionan diferentes condiciones abióticas. |
Author | Pressey, Robert L. Anderson, Mark G. Gill, Jacquelyn L. Ackerly, David D. Albano, Christine M. Sanderson, Eric W. Dobrowski, Solomon Z. Lawler, Joshua J. Weiss, Stuart B. Heller, Nicole E. |
Author_xml | – sequence: 1 fullname: Lawler, Joshua J – sequence: 2 fullname: Ackerly, David D – sequence: 3 fullname: Albano, Christine M – sequence: 4 fullname: Anderson, Mark G – sequence: 5 fullname: Dobrowski, Solomon Z – sequence: 6 fullname: Gill, Jacquelyn L – sequence: 7 fullname: Heller, Nicole E – sequence: 8 fullname: Pressey, Robert L – sequence: 9 fullname: Sanderson, Eric W – sequence: 10 fullname: Weiss, Stuart B |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25922899$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1512112$$D View this record in Osti.gov |
BookMark | eNqF0ctuEzEUBuARKqJpYcMDgAVCINQUX8f2kkZQKqp2QYCyshyPJ3E6sYPtAfL2OEyDUIXAC9_0_Ue2zkG154O3VfUQwWNUxisTZu4YYQbZnWqEGCZjxIncq0ZQCDEWQuL96iClJYRQMkTvVfuYSYyFlKPqS17YEDdgZhfON0dA-waUK2AWuuusn9sEQnsETPDJxm_Oz4HXuY_2eQIp67kFzgMNslvZ4kDUa9dssyV4v7rb6i7ZBzfrYTV9-2Y6eTc-vzw9m7w-H5uaUlZmI1nN69aWU4M4lWTGNdHINKhpBRIzBjkyBjZNI21bNhRZUhvGBW5pSw6rJ0PZkLJTybhszaI811uTFWIII4QLejGgdQxfe5uyWrlkbNdpb0OfFBJQ1IQxzP9Pa0kpr2tKCn16iy5DH335bFEC4iIZLOrRjepnK9uodXQrHTdq14MC4ABMDClF26ryCZ1d8Dlq1ykE1bbNattm9avNJfLyVmRX9a8YDfi76-zmH1JNLk_OdplnQ2aZcoh_ZjCBXGFKBYGSFjcenEvZ_vjtdLxWNSecqc8Xp-pk-gld4Yv36qr4x4NvdVB6Hl1SHz9giBiESGLOOfkJWRDY0Q |
CitedBy_id | crossref_primary_10_1111_conl_12712 crossref_primary_10_1111_gcb_13679 crossref_primary_10_1126_science_aah4787 crossref_primary_10_3390_environments7030019 crossref_primary_10_1016_j_ecolind_2021_107581 crossref_primary_10_1186_s12864_021_08151_7 crossref_primary_10_1098_rsta_2023_0173 crossref_primary_10_1111_ddi_13136 crossref_primary_10_1098_rsta_2023_0056 crossref_primary_10_1098_rsta_2023_0057 crossref_primary_10_1002_fee_2204 crossref_primary_10_1016_j_ecolind_2021_108315 crossref_primary_10_1111_ele_14289 crossref_primary_10_1002_fee_2207 crossref_primary_10_1111_jbi_13616 crossref_primary_10_3390_f11090965 crossref_primary_10_1038_ncomms12349 crossref_primary_10_1007_s10980_018_0723_z crossref_primary_10_1016_j_ijgeop_2019_12_005 crossref_primary_10_1144_SP530_2022_107 crossref_primary_10_1002_ecy_4257 crossref_primary_10_3389_fevo_2021_689295 crossref_primary_10_1016_j_oneear_2024_08_006 crossref_primary_10_1111_cobi_12799 crossref_primary_10_3390_tourhosp3020031 crossref_primary_10_1016_j_jeem_2018_08_014 crossref_primary_10_1177_03091333221122292 crossref_primary_10_3390_cli9050087 crossref_primary_10_1371_journal_pone_0184062 crossref_primary_10_1038_s41467_019_12603_w crossref_primary_10_1111_csp2_13296 crossref_primary_10_1111_geb_13151 crossref_primary_10_1016_j_tree_2017_11_001 crossref_primary_10_1016_j_rse_2021_112368 crossref_primary_10_1111_fwb_12901 crossref_primary_10_1111_gcb_13663 crossref_primary_10_1111_ddi_13782 crossref_primary_10_3390_resources12050059 crossref_primary_10_1007_s10021_020_00533_4 crossref_primary_10_1098_rsta_2023_0063 crossref_primary_10_1656_045_028_s1108 crossref_primary_10_1111_geb_12731 crossref_primary_10_1016_j_tree_2016_08_001 crossref_primary_10_3389_fevo_2021_685753 crossref_primary_10_1038_s41598_018_23050_w crossref_primary_10_21425_fob_18_145659 crossref_primary_10_1016_j_jenvman_2024_121408 crossref_primary_10_1111_jbi_13569 crossref_primary_10_1007_s10980_018_0617_0 crossref_primary_10_1038_s41598_021_94698_0 crossref_primary_10_1007_s10980_017_0508_9 crossref_primary_10_1007_s12371_022_00665_0 crossref_primary_10_1002_fee_2043 crossref_primary_10_1093_aobpla_plw049 crossref_primary_10_1111_geb_12574 crossref_primary_10_1073_pnas_1720141115 crossref_primary_10_3390_rs12223690 crossref_primary_10_1007_s12371_024_01000_5 crossref_primary_10_1080_17550874_2019_1646831 crossref_primary_10_3390_f15111935 crossref_primary_10_1111_gcb_15511 crossref_primary_10_1038_s41559_017_0230_7 crossref_primary_10_1016_j_biocon_2022_109768 crossref_primary_10_1016_j_ecoser_2017_05_013 crossref_primary_10_1016_j_gecco_2024_e03245 crossref_primary_10_1002_ecs2_4172 crossref_primary_10_1007_s10531_018_1659_y crossref_primary_10_1111_ele_70041 crossref_primary_10_1111_ecog_07131 crossref_primary_10_1007_s10980_019_00889_6 crossref_primary_10_1017_S0376892921000060 crossref_primary_10_1086_697996 crossref_primary_10_1016_j_gecco_2021_e01667 crossref_primary_10_1111_cobi_13904 crossref_primary_10_1007_s10980_023_01702_1 crossref_primary_10_1111_brv_12344 crossref_primary_10_1111_acv_12280 crossref_primary_10_12688_f1000research_6490_1 crossref_primary_10_1371_journal_pone_0143619 crossref_primary_10_1111_ddi_13843 crossref_primary_10_1002_eap_2765 crossref_primary_10_1111_ddi_12356 crossref_primary_10_3390_cli10040058 crossref_primary_10_1111_ddi_13969 crossref_primary_10_1007_s10980_019_00798_8 crossref_primary_10_1111_ddi_12878 crossref_primary_10_1126_sciadv_aay0814 crossref_primary_10_1093_biosci_biae040 crossref_primary_10_1016_j_jnc_2022_126264 crossref_primary_10_1111_jbi_14762 crossref_primary_10_1016_j_ecolind_2018_03_068 crossref_primary_10_3389_fevo_2022_1031483 crossref_primary_10_1016_j_gloenvcha_2022_102612 crossref_primary_10_1016_j_ijgeop_2021_05_003 crossref_primary_10_1007_s10531_021_02241_4 crossref_primary_10_1038_s41598_021_03488_1 crossref_primary_10_1016_j_pgeola_2023_07_003 crossref_primary_10_1111_gcb_17121 crossref_primary_10_1002_eap_2157 crossref_primary_10_1016_j_jenvman_2022_115172 crossref_primary_10_1016_j_gecco_2020_e01445 crossref_primary_10_1111_cobi_12510 crossref_primary_10_1016_j_jenvman_2023_118324 crossref_primary_10_3390_rs11202356 crossref_primary_10_5194_bg_19_1691_2022 crossref_primary_10_1007_s10980_019_00901_z crossref_primary_10_1111_rec_12901 crossref_primary_10_1007_s42535_024_01089_7 crossref_primary_10_1126_science_adp4671 crossref_primary_10_1007_s10980_019_00863_2 crossref_primary_10_1007_s12371_024_00914_4 crossref_primary_10_1111_cobi_12511 crossref_primary_10_1002_eap_2274 crossref_primary_10_1016_j_pocean_2020_102296 crossref_primary_10_1007_s10980_024_01890_4 crossref_primary_10_1016_j_foreco_2015_12_012 crossref_primary_10_5194_gh_76_385_2021 crossref_primary_10_1111_cobi_14421 crossref_primary_10_1111_gcb_15645 crossref_primary_10_5194_bg_21_3401_2024 crossref_primary_10_1016_j_geomorph_2019_06_022 crossref_primary_10_1111_nyas_15203 crossref_primary_10_1016_j_ecolind_2018_06_034 crossref_primary_10_1007_s12371_022_00769_7 crossref_primary_10_1111_jbi_13648 crossref_primary_10_1002_ece3_2544 crossref_primary_10_1007_s12371_022_00716_6 crossref_primary_10_1016_j_biocon_2015_12_008 crossref_primary_10_1016_j_scitotenv_2019_136350 crossref_primary_10_1038_s44221_025_00403_0 crossref_primary_10_1111_geb_13061 crossref_primary_10_1016_j_ecolind_2021_107539 crossref_primary_10_1007_s12371_018_0302_3 crossref_primary_10_1038_s41558_022_01330_8 crossref_primary_10_1111_1365_2745_14223 crossref_primary_10_1111_ecog_05520 crossref_primary_10_1017_S037689292100014X crossref_primary_10_1088_1748_9326_aacb85 crossref_primary_10_1111_cobi_12920 crossref_primary_10_1007_s40823_019_0035_2 crossref_primary_10_1016_j_earscirev_2025_105075 crossref_primary_10_1016_j_gecco_2021_e01830 crossref_primary_10_1017_pab_2020_19 crossref_primary_10_3390_plants14020170 crossref_primary_10_1371_journal_pone_0300378 crossref_primary_10_1111_geb_12887 crossref_primary_10_1002_eap_1883 crossref_primary_10_1007_s00267_022_01707_7 crossref_primary_10_1093_biosci_biab083 crossref_primary_10_1086_683394 crossref_primary_10_1002_ehs2_1267 crossref_primary_10_1016_j_geomorph_2024_109298 crossref_primary_10_1016_j_geomorph_2017_07_014 crossref_primary_10_3390_d12020056 crossref_primary_10_1111_1365_2664_14183 crossref_primary_10_1016_j_biocon_2023_110286 crossref_primary_10_1111_cobi_13822 crossref_primary_10_1016_j_biocon_2019_01_031 crossref_primary_10_1016_j_ecocom_2017_06_002 crossref_primary_10_5334_cstp_284 crossref_primary_10_1111_geb_13691 crossref_primary_10_1111_een_12970 crossref_primary_10_1016_j_ecolmodel_2024_110807 crossref_primary_10_1007_s12371_023_00889_8 crossref_primary_10_1111_cobi_13797 crossref_primary_10_1002_fee_2058 crossref_primary_10_1111_ecog_02318 crossref_primary_10_1007_s10980_020_01017_5 crossref_primary_10_1371_journal_pone_0234139 crossref_primary_10_1007_s12518_021_00377_0 crossref_primary_10_3390_resources13090119 crossref_primary_10_1111_cobi_12508 crossref_primary_10_1038_s41558_019_0518_5 crossref_primary_10_1111_cobi_12509 crossref_primary_10_1016_S2542_5196_22_00259_5 crossref_primary_10_1111_icad_12498 crossref_primary_10_3389_ffgc_2022_867369 crossref_primary_10_3390_f8090344 crossref_primary_10_1111_1752_1688_12811 crossref_primary_10_1007_s10980_016_0399_1 crossref_primary_10_1073_pnas_2204434119 crossref_primary_10_1016_j_rse_2019_111514 crossref_primary_10_1016_j_tree_2023_02_010 crossref_primary_10_1080_23766808_2021_1987769 crossref_primary_10_1111_cobi_12503 crossref_primary_10_7717_peerj_11956 crossref_primary_10_1016_j_biocon_2019_108366 crossref_primary_10_1111_geb_13164 crossref_primary_10_1111_cobi_12504 crossref_primary_10_1007_s10980_019_00879_8 |
Cites_doi | 10.1371/journal.pone.0028788 10.1046/j.1365-2699.1998.00233.x 10.1126/science.1242335 10.1073/pnas.101093498 10.1111/gcb.12026 10.1016/j.quascirev.2006.04.008 10.1525/bio.2011.61.1.9 10.1111/j.1469-185X.1967.tb01419.x 10.1111/j.1365-2486.2004.00828.x 10.1016/j.earscirev.2011.03.002 10.2307/3037989 10.2307/2419082 10.1111/j.1365-2486.2010.02263.x 10.1016/j.shpsc.2006.12.006 10.1146/annurev.es.16.110185.000351 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 10.3368/er.30.4.312 10.1111/cobi.12502 10.5962/bhl.title.105661 10.1111/j.1466-8238.2011.00686.x 10.1007/978-1-4612-1626-1 10.1038/35002501 10.1007/s10980-009-9332-1 10.5822/978-1-61091-225-9 10.1111/j.1365-2656.2010.01771.x 10.1126/science.1210173 10.1046/j.1523-1739.1994.08010217.x 10.1890/07-0507.1 10.1038/35012251 10.1111/j.1472-4642.2010.00654.x 10.1111/j.1523-1739.1988.tb00202.x 10.1111/j.1469-8137.2010.03475.x 10.1126/science.1179504 10.1111/cobi.12503 10.1890/070073 10.1038/nature08649 10.1093/icb/icj003 10.1111/j.1752-4571.2010.00157.x 10.1046/j.1365-2699.2000.00215.x 10.5962/bhl.title.56234 10.5194/hess-11-1633-2007 10.2747/0020-6814.46.5.471 10.2307/2479933 10.1126/science.1228026 10.1046/j.1365-2699.2001.00563.x 10.2307/2805339 10.1111/j.1558-5646.2010.01114.x 10.1111/j.1365-294X.2007.03469.x 10.1371/journal.pone.0011554 10.1038/21877 10.1016/S0169-5347(01)02338-2 10.1111/j.1466-8238.2008.00415.x 10.1038/nature09329 10.1007/s10914-010-9144-8 10.1038/35016000 10.1007/BF01873263 10.1086/368223 10.1111/j.1466-822X.2006.00212.x 10.1111/j.1461-0248.2009.01297.x 10.1111/cobi.12269 10.1111/j.1523-1739.2009.01422.x 10.1111/j.1365-2486.2009.02122.x 10.1126/science.1157719 10.2307/1312122 10.1126/science.105.2727.367 10.1086/282070 10.1038/nature09678 10.1890/11-0213.1 10.1126/science.1188528 10.2307/1934875 10.1111/cobi.12504 10.1890/12-2011.1 10.1111/gcb.12129 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2 10.1086/282487 10.1111/j.1744-7429.2006.00161.x 10.1111/cobi.12509 10.2307/4072271 10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2 10.1126/science.1237184 10.1038/ngeo1475 10.1016/j.biocon.2008.10.006 10.1111/j.1466-8238.2012.00760.x 10.1007/BF02097067 10.1111/j.1365-2699.2010.02300.x 10.1046/j.1523-1739.2003.01599.x 10.1111/j.1600-0587.2008.05502.x 10.3732/ajb.1200469 10.1126/science.1239352 10.1146/annurev-ecolsys-102710-145015 10.1046/j.1523-1739.2002.01405.x 10.1098/rstb.2012.0238 10.1038/nclimate2007 |
ContentType | Journal Article |
Copyright | 2015 Society for Conservation Biology 2015 Society for Conservation Biology. 2015, Society for Conservation Biology |
Copyright_xml | – notice: 2015 Society for Conservation Biology – notice: 2015 Society for Conservation Biology. – notice: 2015, Society for Conservation Biology |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7S9 L.6 OIOZB OTOTI |
DOI | 10.1111/cobi.12505 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1523-1739 |
EndPage | 629 |
ExternalDocumentID | 1512112 3681700241 25922899 10_1111_cobi_12505 COBI12505 24483094 ark_67375_WNG_BTV1X2NK_X US201500192777 |
Genre | article Journal Article |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AASGY AAUTI AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEFU ABEML ABHUG ABJNI ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACPVT ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFDN AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIAGR AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT 1OB AAHBH ABXSQ ADACV ADUKH AHBTC AHXOZ AILXY AITYG AQVQM BSCLL HGLYW IPSME OIG SAMSI AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX ADXHL AGHNM CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7S9 L.6 OIOZB OTOTI |
ID | FETCH-LOGICAL-c6445-c6c95676fe445d17493b7a3a1cd1df818b5071cc0ddd9efcc041e36c5782f4f3 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 |
IngestDate | Mon Dec 23 02:12:55 EST 2024 Thu Jul 10 17:14:28 EDT 2025 Fri Jul 11 18:29:40 EDT 2025 Fri Jul 25 10:42:01 EDT 2025 Thu Apr 03 06:58:34 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 01 02:25:25 EDT 2025 Wed Jan 22 16:54:07 EST 2025 Thu Jul 03 22:31:15 EDT 2025 Wed Oct 30 09:55:57 EDT 2024 Wed Dec 27 18:55:21 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | teoría ecolótigico condiciones abióticas ecological theory conservation planning cambio climático planses de conservación abiotic factors climate change |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2015 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6445-c6c95676fe445d17493b7a3a1cd1df818b5071cc0ddd9efcc041e36c5782f4f3 |
Notes | http://dx.doi.org/10.1111/cobi.12505 istex:F2928C53A34838EBE8134E404796227899C30CAC ArticleID:COBI12505 ark:/67375/WNG-BTV1X2NK-X ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1512112 |
PMID | 25922899 |
PQID | 1680269450 |
PQPubID | 36794 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1512112 proquest_miscellaneous_1808635527 proquest_miscellaneous_1694476643 proquest_journals_1680269450 pubmed_primary_25922899 crossref_citationtrail_10_1111_cobi_12505 crossref_primary_10_1111_cobi_12505 wiley_primary_10_1111_cobi_12505_COBI12505 jstor_primary_10_2307_24483094 istex_primary_ark_67375_WNG_BTV1X2NK_X fao_agris_US201500192777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2015 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conservation Biology |
PublicationYear | 2015 |
Publisher | Blackwell Scientific Publications Blackwell Publishing Ltd Wiley Periodicals Inc Society for Conservation Biology - Wiley |
Publisher_xml | – name: Blackwell Scientific Publications – name: Blackwell Publishing Ltd – name: Wiley Periodicals Inc – name: Society for Conservation Biology - Wiley |
References | Kruckeberg AR. 2002. Geology and plant life. University of Washington Press, Seattle. Harper JL. 1977. Population biology of plants. Academic Press, London. Scherrer D, Körner C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16:2602-2613. Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21:393-404. Ashcroft MB. 2010. Identifying refugia from climate change. Journal of Biogeography 37:1407-1413. Heller NE, Zavaleta ES. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142:14-32. Beier P. 2012. Conceptualizing and designing corridors for climate change. Ecological Restoration 30:312-319. Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB. 2010. The geography of climate change: implications for conservation biogeography. Diversity and Distributions 16:476-487. Janzen D. 1967. Why mountain passes are higher in the tropics. The American Naturalist 101:223-249. Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecology Letters 12:420-431. Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK. 2013. The climate velocity of the contiguous United States during the 20th century. Global Change Biology 19:241-251. Phillips SJ, Williams P, Midgley G, Archer A. 2008. Optimizing dispersal corridors for the cape proteaceae using network flow. Ecological Applications 18:1200-1211. Stewart JR, Lister AM. 2001. Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution 16:608-613. Holland PG, Steyn DG. 1975. Vegetational responses to latitudinal variations in slope angle and aspect. Journal of Biogeography 2:179. Barnosky AD, et al. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471:51-57. Heller NE, Hobbs RJ. 2014. Development of a natural practice to adapt conservation goals to global change. Conservation Biology 28:696-704. Hutchinson GE. 1959. Homage to Santa Rosalia or Why are there so many kinds of animals? American Naturalist 93:145-159. Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:1633-1644. Dobrowski SZ. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17:1022-1035. Rajakaruna N. 2004. The edaphic factor in the origin of plant species. International Geology Review 46:471-478. Clements FE. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington, D.C. Svenning J-C, Fløjgaard C, Baselga A. 2011. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. The Journal of Animal Ecology 80:393-402. Fernandez-Going B, Harrison S. 2013. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94:2007-2018. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:1239-1242. Qian H, Badgley C, Fox DL. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18:111-122. Austin MP. 1985. Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16:39-61. Sanderson EW, Segan D, Watson J. 2015. Global geodiversity: How well protected is it? Conservation Biology DOI: 10.1111/cobi.12502. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098-1101. Gill JL, Blois JL, Benito B, Dobrowski SZ, Hunter Jr ML, McGuire J. 2015. Conserving the stage for 10,000 years: a paleoecological perspective on coarse-filter strategies. Conservation Biology DOI: 10.1111/cobi.12504 Gleason HA. 1926. The individualistic concept of the plant association. Journal of the Torrey Botanical Society 53:7-26. Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10:1618-1626. Anderson MG, Ferree CE. 2010. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLOS ONE 5 (e11554) DOI: 10.1371/journal.pone.0011554. Gallardo-Cruz JA, Pérez-García EA, Meave JA. 2009. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology 24:473-482. Sgrò CM, Lowe AJ, Hoffmann AA. 2011. Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4:326-337. Brost B, Beier P. 2012. Use of land facets to design linkages for climate change. Ecological Applications 22:87-103. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462:1052-1055. Mackey BG, Nix HA, Hutchinson MF, Macmahon JP, Fleming PM. 1988. Assessing representativeness of places for conservation reservation and heritage listing. Environmental Management 12:502-514. Redford KH, et al. 2011. What does it mean to successfully conserve a (vertebrate) species? BioScience 61:39-48. Araya YN, Silvertown J, Gowing DJ, McConway KJ, Peter Linder H, Midgley G. 2011. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist 189:253-258. Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243-253. Redford KH, Feinsinger P. 2001. The half-empty forest: sustainable use and the ecology of interactions. Conservation of exploited species. Cambridge University Press, London. Anderson MG, Comer PJ, Beier P, Lawler JJ, Schloss CA, Buttrick S, Albano C, Faith D. 2015. Case studies of conservation plans that incorporated geodiversity. Conservation Biology DOI: 10.1111/cobi.12503. Holdridge LR. 1947. Determination of world plant formations from simple climatic data. Science 105:367-368. Whittaker RH. 1967. Gradient analysis of vegetation. Biological Reviews 42:207-264. Whittier TR, Ringold PL, Herlihy AT, Pierson SM. 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp). Frontiers in Ecology and the Environment 6:180-184. Silvertown J, Dodd ME, Gowing DJG, Mountford JO. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61-63. Willdenow DC. 1805. The principles of botany, and of vegetable physiology. University of Edinburgh Press, Edinburgh. Lurgi M, López BC, Montoya JM. 2012. Novel communities from climate change. Philosophical Transactions of the Royal Society of London B 367:2913-2922. Myers N, Mittermeier RA, Mittermeier CA, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858. Whittaker RJ, Willis KJ, Field R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28:453-470. James CW. 1961. Endemism in Florida. Brittonia 13:225-244. Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907-913. Stephenson N. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25:855-870. Francis AP, Currie DJ. 2003. A globally consistent richness-climate relationship for angiosperms. The American Naturalist 161:523-536. Anacker BL, Whittall JB, Goldberg EE, Harrison SP. 2011. Origins and consequences of serpentine endemism in the California flora. Evolution 65:365-376. Davis EB, Koo MS, Conroy C, Patton JL, Moritz C. 2008. The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology 17:120-138. Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660-664. Beier P, Sutcliffe P, Hjort J, Faith DP, Pressey RL, Albuquerque F. 2015. Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection-based surrogacy tests. Conservation Biology DOI: 10.1111/cobi.12509. IPCC. 2013. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. Luce CH, Abatzoglou JT, Holden ZA. 2013. The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science 342:1360-1364. Whittaker RH, Niering WA. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology 46:429. Mills LS, Soulé ME, Doak DF. 1993. The keystone-species concept in ecology and conservation. BioScience 43:119-224. Cavieres L, Badano E, Sierra-Almeida A, Molina-Montenegro M. 2007. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the High Andes of Central Chile. Arctic, Antarctic, and Alpine Research 39:229-236. Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499-504. Corenblit D, Baas ACW, Bornette G, Darrozes J, Delmotte S, Francis RA, Gurnell AM, Julien F, Naiman RJ, Steiger J. 2011. Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings. Earth-Science Reviews 106:207-331 2007; 39 2002; 16 2010; 16 2013; 3 2002; 52 2010; 17 2006; 38 2010; 466 2000; 9 2011; 61 2003; 17 1999; 400 2008; 6 2014; 28 2011; 471 2011; 17 2012; 367 2007; 38 1977 2013; 19 2009; 12 2010; 24 2001 1917; 34 2000; 403 2013; 94 2006; 25 2000; 405 2003; 161 1967; 101 1975; 2 2011; 65 2001; 16 1977; 35 2010; 5 2012; 22 2009; 323 2012; 21 1985; 16 1989 2009; 18 2001; 98 2009; 326 2011; 334 2009; 24 2010; 37 1967; 42 2010; 328 2011; 80 1986; 11 1926; 53 2008; 18 1993; 43 2008; 17 2006; 15 2004; 46 1998 2009 2013; 342 2013; 100 1996 1988; 12 1599 2013; 341 2001; 28 2002 2011; 4 1916 1961; 13 2007; 11 2011; 6 2012; 30 1998; 25 2004; 10 1988; 2 1994; 8 2001; 82 2009; 32 1965; 46 2011; 106 1959; 93 2006; 46 2013; 339 1947; 105 2011; 42 1965 2009; 462 2015 2005; 3 2009; 142 2013 2012; 5 1805 2011; 189 IPCC (10.1111/cobi.12505-BIB0055|cobi12505-cit-0055) 2013 Schloss (10.1111/cobi.12505-BIB0087|cobi12505-cit-0087) 2011; 6 Svenning (10.1111/cobi.12505-BIB0095|cobi12505-cit-0095) 2013; 100 Rajakaruna (10.1111/cobi.12505-BIB0080|cobi12505-cit-0080) 2004; 46 10.1111/cobi.12505-BIB0107|cobi12505-cit-0107 Grimm (10.1111/cobi.12505-BIB0041|cobi12505-cit-0041) 2006; 25 Kirkpatrick (10.1111/cobi.12505-BIB0061|cobi12505-cit-0061) 1994; 8 Anderson (10.1111/cobi.12505-BIB0003|cobi12505-cit-0003) 2015 Gill (10.1111/cobi.12505-BIB0039|cobi12505-cit-0039) 2009; 326 Hobbs (10.1111/cobi.12505-BIB0048|cobi12505-cit-0048) 2006; 15 Austin (10.1111/cobi.12505-BIB0008|cobi12505-cit-0008) 1977; 35 Mills (10.1111/cobi.12505-BIB0073|cobi12505-cit-0073) 1993; 43 Phillips (10.1111/cobi.12505-BIB0077|cobi12505-cit-0077) 2008; 18 Hampe (10.1111/cobi.12505-BIB0043|cobi12505-cit-0043) 2011; 42 Hutchinson (10.1111/cobi.12505-BIB0053|cobi12505-cit-0053) 1959; 93 Stewart (10.1111/cobi.12505-BIB0093|cobi12505-cit-0093) 2001; 16 Lurgi (10.1111/cobi.12505-BIB0067|cobi12505-cit-0067) 2012; 367 Heller (10.1111/cobi.12505-BIB0045|cobi12505-cit-0045) 2014; 28 Sanderson (10.1111/cobi.12505-BIB0084|cobi12505-cit-0084) 2002; 52 Ackerly (10.1111/cobi.12505-BIB0001|cobi12505-cit-0001) 2010; 16 McGill (10.1111/cobi.12505-BIB0071|cobi12505-cit-0071) 2010; 328 Balvanera (10.1111/cobi.12505-BIB0010|cobi12505-cit-0010) 2006; 38 Ghalambor (10.1111/cobi.12505-BIB0037|cobi12505-cit-0037) 2006; 46 Beier (10.1111/cobi.12505-BIB0012|cobi12505-cit-0012) 2012; 30 Silvertown (10.1111/cobi.12505-BIB0090|cobi12505-cit-0090) 1999; 400 Geiger (10.1111/cobi.12505-BIB0036|cobi12505-cit-0036) 2009 Willdenow (10.1111/cobi.12505-BIB0102|cobi12505-cit-0102) 1805 Corenblit (10.1111/cobi.12505-BIB0024|cobi12505-cit-0024) 2011; 106 Luce (10.1111/cobi.12505-BIB0066|cobi12505-cit-0066) 2013; 342 Qian (10.1111/cobi.12505-BIB0079|cobi12505-cit-0079) 2009; 18 Whittaker (10.1111/cobi.12505-BIB0098|cobi12505-cit-0098) 1967; 42 Francis (10.1111/cobi.12505-BIB0034|cobi12505-cit-0034) 2003; 161 Pinsky (10.1111/cobi.12505-BIB0078|cobi12505-cit-0078) 2013; 341 Loarie (10.1111/cobi.12505-BIB0065|cobi12505-cit-0065) 2009; 462 Jones (10.1111/cobi.12505-BIB0058|cobi12505-cit-0058) 1996 Kruckeberg (10.1111/cobi.12505-BIB0062|cobi12505-cit-0062) 1986; 11 Kruckeberg (10.1111/cobi.12505-BIB0063|cobi12505-cit-0063) 2002 Whittaker (10.1111/cobi.12505-BIB0100|cobi12505-cit-0100) 2001; 28 Hunter (10.1111/cobi.12505-BIB0052|cobi12505-cit-0052) 1988; 2 Whittier (10.1111/cobi.12505-BIB0101|cobi12505-cit-0101) 2008; 6 Woodburne (10.1111/cobi.12505-BIB0105|cobi12505-cit-0105) 2010; 17 Watson (10.1111/cobi.12505-BIB0097|cobi12505-cit-0097) 2013; 3 Mackey (10.1111/cobi.12505-BIB0068|cobi12505-cit-0068) 1988; 12 Holdridge (10.1111/cobi.12505-BIB0049|cobi12505-cit-0049) 1947; 105 Margules (10.1111/cobi.12505-BIB0070|cobi12505-cit-0070) 2000; 405 Gallardo-Cruz (10.1111/cobi.12505-BIB0035|cobi12505-cit-0035) 2009; 24 Hewitt (10.1111/cobi.12505-BIB0047|cobi12505-cit-0047) 2000; 405 Beier (10.1111/cobi.12505-BIB0013|cobi12505-cit-0013) 2010; 24 Soulé (10.1111/cobi.12505-BIB0091|cobi12505-cit-0091) 2003; 17 Gill (10.1111/cobi.12505-BIB0038|cobi12505-cit-0038) 2015 Ashcroft (10.1111/cobi.12505-BIB0007|cobi12505-cit-0007) 2010; 37 Gleason (10.1111/cobi.12505-BIB0040|cobi12505-cit-0040) 1926; 53 Grinnell (10.1111/cobi.12505-BIB0042|cobi12505-cit-0042) 1917; 34 Beier (10.1111/cobi.12505-BIB0014|cobi12505-cit-0014) 2015 Araújo (10.1111/cobi.12505-BIB0005|cobi12505-cit-0005) 2004; 10 Davis (10.1111/cobi.12505-BIB0026|cobi12505-cit-0026) 2008; 17 Cavieres (10.1111/cobi.12505-BIB0021|cobi12505-cit-0021) 2007; 39 Essenwanger (10.1111/cobi.12505-BIB0032|cobi12505-cit-0032) 2001 Noss (10.1111/cobi.12505-BIB0075|cobi12505-cit-0075) 2002; 16 Keppel (10.1111/cobi.12505-BIB0060|cobi12505-cit-0060) 2012; 21 Barnosky (10.1111/cobi.12505-BIB0011|cobi12505-cit-0011) 2011; 471 James (10.1111/cobi.12505-BIB0106|cobi12505-cit-0106) 1961; 13 Anacker (10.1111/cobi.12505-BIB0002|cobi12505-cit-0002) 2011; 65 Holland (10.1111/cobi.12505-BIB0051|cobi12505-cit-0051) 1975; 2 Sanderson (10.1111/cobi.12505-BIB0085|cobi12505-cit-0085) 2015 Redford (10.1111/cobi.12505-BIB0081|cobi12505-cit-0081) 2011; 61 Hutchinson (10.1111/cobi.12505-BIB0054|cobi12505-cit-0054) 1965 Cowling (10.1111/cobi.12505-BIB0025|cobi12505-cit-0025) 2001; 98 Eriksson (10.1111/cobi.12505-BIB0031|cobi12505-cit-0031) 2000; 9 Redford (10.1111/cobi.12505-BIB0082|cobi12505-cit-0082) 2001 Tittensor (10.1111/cobi.12505-BIB0096|cobi12505-cit-0096) 2010; 466 Svenning (10.1111/cobi.12505-BIB0094|cobi12505-cit-0094) 2011; 80 Dobrowski (10.1111/cobi.12505-BIB0027|cobi12505-cit-0027) 2011; 17 Eliot (10.1111/cobi.12505-BIB0029|cobi12505-cit-0029) 2007; 38 Lenoir (10.1111/cobi.12505-BIB0064|cobi12505-cit-0064) 2013; 19 Clements (10.1111/cobi.12505-BIB0023|cobi12505-cit-0023) 1916 Shakespeare (10.1111/cobi.12505-BIB0089|cobi12505-cit-0089) 1599 Williams (10.1111/cobi.12505-BIB0103|cobi12505-cit-0103) 2001; 82 Campbell (10.1111/cobi.12505-BIB0020|cobi12505-cit-0020) 1998 Anderson (10.1111/cobi.12505-BIB0004|cobi12505-cit-0004) 2010; 5 Dobrowski (10.1111/cobi.12505-BIB0028|cobi12505-cit-0028) 2013; 19 Brost (10.1111/cobi.12505-BIB0018|cobi12505-cit-0018) 2012; 22 Brubaker (10.1111/cobi.12505-BIB0019|cobi12505-cit-0019) 1989 Benton (10.1111/cobi.12505-BIB0015|cobi12505-cit-0015) 2009; 323 Sandel (10.1111/cobi.12505-BIB0083|cobi12505-cit-0083) 2011; 334 Jackson (10.1111/cobi.12505-BIB0056|cobi12505-cit-0056) 2009 Williams (10.1111/cobi.12505-BIB0104|cobi12505-cit-0104) 2012; 22 Harper (10.1111/cobi.12505-BIB0044|cobi12505-cit-0044) 1977 Araya (10.1111/cobi.12505-BIB0006|cobi12505-cit-0006) 2011; 189 Whittaker (10.1111/cobi.12505-BIB0099|cobi12505-cit-0099) 1965; 46 Janzen (10.1111/cobi.12505-BIB0057|cobi12505-cit-0057) 1967; 101 Hole (10.1111/cobi.12505-BIB0050|cobi12505-cit-0050) 2009; 12 Fernandez-Going (10.1111/cobi.12505-BIB0033|cobi12505-cit-0033) 2013; 94 Melo (10.1111/cobi.12505-BIB0072|cobi12505-cit-0072) 2009; 32 Stephenson (10.1111/cobi.12505-BIB0092|cobi12505-cit-0092) 1998; 25 Sgrò (10.1111/cobi.12505-BIB0088|cobi12505-cit-0088) 2011; 4 Ellison (10.1111/cobi.12505-BIB0030|cobi12505-cit-0030) 2005; 3 Chen (10.1111/cobi.12505-BIB0022|cobi12505-cit-0022) 2012; 5 Peel (10.1111/cobi.12505-BIB0076|cobi12505-cit-0076) 2007; 11 Blois (10.1111/cobi.12505-BIB0017|cobi12505-cit-0017) 2013; 341 Austin (10.1111/cobi.12505-BIB0009|cobi12505-cit-0009) 1985; 16 Myers (10.1111/cobi.12505-BIB0074|cobi12505-cit-0074) 2000; 403 Marcott (10.1111/cobi.12505-BIB0069|cobi12505-cit-0069) 2013; 339 Scherrer (10.1111/cobi.12505-BIB0086|cobi12505-cit-0086) 2010; 16 Heller (10.1111/cobi.12505-BIB0046|cobi12505-cit-0046) 2009; 142 |
References_xml | – reference: Eriksson O. 2000. Functional roles of remnant plant populations in communities and ecosystems. Global Ecology and Biogeography 9:443-449. – reference: Mackey BG, Nix HA, Hutchinson MF, Macmahon JP, Fleming PM. 1988. Assessing representativeness of places for conservation reservation and heritage listing. Environmental Management 12:502-514. – reference: McGill BJ. 2010. Matters of scale. Science 328:575-576. – reference: Beier P, Brost B. 2010. Use of land facets to plan for climate change: conserving the arenas, not the actors. Conservation Biology 24:701-710. – reference: Fernandez-Going B, Harrison S. 2013. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94:2007-2018. – reference: Lurgi M, López BC, Montoya JM. 2012. Novel communities from climate change. Philosophical Transactions of the Royal Society of London B 367:2913-2922. – reference: Beier P, Sutcliffe P, Hjort J, Faith DP, Pressey RL, Albuquerque F. 2015. Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection-based surrogacy tests. Conservation Biology DOI: 10.1111/cobi.12509. – reference: Heller NE, Zavaleta ES. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142:14-32. – reference: Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462:1052-1055. – reference: Corenblit D, Baas ACW, Bornette G, Darrozes J, Delmotte S, Francis RA, Gurnell AM, Julien F, Naiman RJ, Steiger J. 2011. Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings. Earth-Science Reviews 106:207-331. – reference: Whittaker RH. 1967. Gradient analysis of vegetation. Biological Reviews 42:207-264. – reference: Willdenow DC. 1805. The principles of botany, and of vegetable physiology. University of Edinburgh Press, Edinburgh. – reference: Svenning J-C, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany 100:1266-1286. – reference: Scherrer D, Körner C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16:2602-2613. – reference: James CW. 1961. Endemism in Florida. Brittonia 13:225-244. – reference: Rajakaruna N. 2004. The edaphic factor in the origin of plant species. International Geology Review 46:471-478. – reference: Lenoir J, et al. 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biology 19:1470-1481. – reference: Beier P. 2012. Conceptualizing and designing corridors for climate change. Ecological Restoration 30:312-319. – reference: Svenning J-C, Fløjgaard C, Baselga A. 2011. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. The Journal of Animal Ecology 80:393-402. – reference: Luce CH, Abatzoglou JT, Holden ZA. 2013. The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science 342:1360-1364. – reference: Hunter ML, Jacobson GL Jr, Webb T III. 1988. Paleoecology and the coarse-filter approach to maintaining biological diversity. Conservation Biology 2:375-385. – reference: Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21:393-404. – reference: Campbell G, Norman JM. 1998. Introduction to environmental biophysics. Springer Science and Business, New York. – reference: Williams J, Shuman B, Webb T. 2001. Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology 82:3346-3362. – reference: Soulé ME, Estes JA, Berger J, Del Rio CM. 2003. Ecological effectiveness: conservation goals for interactive species. Conservation Biology 17:1238-1250. – reference: Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G. 2002. The human footprint and the last of the wild. BioScience 52:891-904. – reference: Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10:1618-1626. – reference: Chen Z-Q, Benton MJ. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5:375-383. – reference: Geiger LE, Aron RH, Todhunter P. 2009. The climate near the ground. 7th edition. Rowman & Littlefield Publishing Group, Lanham. – reference: Schloss, CA, Lawler JJ, Larson ER, Papendick HL, Case MJ, Evans DM, DeLap JH, Langdon JGR, McRae BH, Hall SA. 2011. Systematic conservation planning in the face of climate change: bet-hedging on the Columbia Plateau. PLOS ONE 6 (e28788) DOI: 10.1371/journal.pone.0028788. – reference: Ellison AM, et al. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3:479-486. – reference: Qian H, Badgley C, Fox DL. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18:111-122. – reference: Benton MJ. 2009. The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728-732. – reference: Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:1239-1242. – reference: Harper JL. 1977. Population biology of plants. Academic Press, London. – reference: Cavieres L, Badano E, Sierra-Almeida A, Molina-Montenegro M. 2007. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the High Andes of Central Chile. Arctic, Antarctic, and Alpine Research 39:229-236. – reference: Heller NE, Hobbs RJ. 2014. Development of a natural practice to adapt conservation goals to global change. Conservation Biology 28:696-704. – reference: Phillips SJ, Williams P, Midgley G, Archer A. 2008. Optimizing dispersal corridors for the cape proteaceae using network flow. Ecological Applications 18:1200-1211. – reference: Sgrò CM, Lowe AJ, Hoffmann AA. 2011. Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4:326-337. – reference: Myers N, Mittermeier RA, Mittermeier CA, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858. – reference: Whittier TR, Ringold PL, Herlihy AT, Pierson SM. 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp). Frontiers in Ecology and the Environment 6:180-184. – reference: Stephenson N. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25:855-870. – reference: Anderson MG, Ferree CE. 2010. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLOS ONE 5 (e11554) DOI: 10.1371/journal.pone.0011554. – reference: Balvanera P, Aguirre E. 2006. Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest. Biotropica 38:479-491. – reference: Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:1633-1644. – reference: IPCC. 2013. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. – reference: Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243-253. – reference: Grimm EC, Watts WA, Jacobson Jr GL, Hansen BCS, Almquist HR, Dieffenbacher-Krall AC. 2006. Evidence for warm wet Heinrich events in Florida. Quaternary Science Reviews 25:2197-2211. – reference: Holland PG, Steyn DG. 1975. Vegetational responses to latitudinal variations in slope angle and aspect. Journal of Biogeography 2:179. – reference: Marcott SA, Shakun JD, Clark PU, Mix AC. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198-1201. – reference: Austin MP. 1985. Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16:39-61. – reference: Dobrowski SZ. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17:1022-1035. – reference: Kruckeberg AR. 2002. Geology and plant life. University of Washington Press, Seattle. – reference: Anacker BL, Whittall JB, Goldberg EE, Harrison SP. 2011. Origins and consequences of serpentine endemism in the California flora. Evolution 65:365-376. – reference: Austin MP. 1977. Use of ordination and other multivariate descriptive methods to study succession. Vegetatio 35:165-175. – reference: Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499-504. – reference: Essenwanger OM. 2001. Classification of climates. Page 102 in World survey of climatology 1C, general climatology. Elsevier, Amsterdam. – reference: Silvertown J, Dodd ME, Gowing DJG, Mountford JO. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61-63. – reference: Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK. 2013. The climate velocity of the contiguous United States during the 20th century. Global Change Biology 19:241-251. – reference: Grinnell J. 1917. The niche-relationships of the California Thrasher. Auk 34:427-433. – reference: Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G. 2006. Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology 46:5-17. – reference: Hutchinson GE. 1965. The ecological theater and the evolutionary play. Yale University Press, New Haven, Connecticut. – reference: Redford KH, et al. 2011. What does it mean to successfully conserve a (vertebrate) species? BioScience 61:39-48. – reference: Gill JL, Blois JL, Benito B, Dobrowski SZ, Hunter Jr ML, McGuire J. 2015. Conserving the stage for 10,000 years: a paleoecological perspective on coarse-filter strategies. Conservation Biology DOI: 10.1111/cobi.12504 – reference: Brost B, Beier P. 2012. Use of land facets to design linkages for climate change. Ecological Applications 22:87-103. – reference: Hampe A, Jump AS. 2011. Climate relicts: past, present, future. Annual Review of Ecology, Evolution, and Systematics 42:313-333. – reference: Araya YN, Silvertown J, Gowing DJ, McConway KJ, Peter Linder H, Midgley G. 2011. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist 189:253-258. – reference: Sanderson EW, Segan D, Watson J. 2015. Global geodiversity: How well protected is it? Conservation Biology DOI: 10.1111/cobi.12502. – reference: Whittaker RH, Niering WA. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology 46:429. – reference: Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907-913. – reference: Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS. 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100-1103. – reference: Stewart JR, Lister AM. 2001. Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution 16:608-613. – reference: Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB. 2010. The geography of climate change: implications for conservation biogeography. Diversity and Distributions 16:476-487. – reference: Watson JEM, Iwamura T, Butt N. 2013. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change 3:989-994. – reference: Janzen D. 1967. Why mountain passes are higher in the tropics. The American Naturalist 101:223-249. – reference: Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098-1101. – reference: Anderson MG, Comer PJ, Beier P, Lawler JJ, Schloss CA, Buttrick S, Albano C, Faith D. 2015. Case studies of conservation plans that incorporated geodiversity. Conservation Biology DOI: 10.1111/cobi.12503. – reference: Francis AP, Currie DJ. 2003. A globally consistent richness-climate relationship for angiosperms. The American Naturalist 161:523-536. – reference: Redford KH, Feinsinger P. 2001. The half-empty forest: sustainable use and the ecology of interactions. Conservation of exploited species. Cambridge University Press, London. – reference: Whittaker RJ, Willis KJ, Field R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28:453-470. – reference: Barnosky AD, et al. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471:51-57. – reference: Mills LS, Soulé ME, Doak DF. 1993. The keystone-species concept in ecology and conservation. BioScience 43:119-224. – reference: Williams JW, Kharouba HM, Veloz S, Vellend M, McLachlan J, Liu Z, Otto-Bliesner B, He F. 2012. The ice age ecologist: testing methods for reserve prioritization during the last global warming. Global Ecology and Biogeography 22:289-301. – reference: Gleason HA. 1926. The individualistic concept of the plant association. Journal of the Torrey Botanical Society 53:7-26. – reference: Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660-664. – reference: Holdridge LR. 1947. Determination of world plant formations from simple climatic data. Science 105:367-368. – reference: Davis EB, Koo MS, Conroy C, Patton JL, Moritz C. 2008. The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology 17:120-138. – reference: Hutchinson GE. 1959. Homage to Santa Rosalia or Why are there so many kinds of animals? American Naturalist 93:145-159. – reference: Eliot C. 2007. Method and metaphysics in Clements's and Gleason's ecological explanations. Studies in History and Philosophy of Biological and Biomedical Sciences 38:85-109. – reference: Clements FE. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington, D.C. – reference: Gallardo-Cruz JA, Pérez-García EA, Meave JA. 2009. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology 24:473-482. – reference: Melo AS, Rangel TFLVB, Diniz-Filho JAF. 2009. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32:226-236. – reference: Ashcroft MB. 2010. Identifying refugia from climate change. Journal of Biogeography 37:1407-1413. – reference: Noss RF, Carroll C, Vance-Borland K, Wuerthner G. 2002. A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem. Conservation Biology 16:895-908. – reference: Cowling R, Pressey R. 2001. Rapid plant diversification: planning for an evolutionary future. Proceedings of the National Academy of Science of the United States of America 98:5452-5457. – reference: Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecology Letters 12:420-431. – reference: Kruckeberg A. 1986. An essay: the stimulus of unusual geologies for plant speciation. Systematic Botany 11:455-463. – reference: Woodburne MO. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17:245-264. – reference: Kirkpatrick JB, Brown MJ. 1994. A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania. Conservation Biology 8:217-224. – reference: Hobbs RJ, et al. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15:1-7. – year: 2015 article-title: Global geodiversity: How well protected is it publication-title: Conservation Biology – volume: 189 start-page: 253 year: 2011 end-page: 258 article-title: A fundamental, eco‐hydrological basis for niche segregation in plant communities publication-title: New Phytologist – year: 1805 – volume: 405 start-page: 243 year: 2000 end-page: 253 article-title: Systematic conservation planning publication-title: Nature – start-page: 1 year: 2009 end-page: 46 – volume: 12 start-page: 420 year: 2009 end-page: 431 article-title: Projected impacts of climate change on a continent‐wide protected area network publication-title: Ecology Letters – volume: 39 start-page: 229 year: 2007 end-page: 236 article-title: Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non‐native herbaceous species in the High Andes of Central Chile publication-title: Arctic, Antarctic, and Alpine Research – volume: 13 start-page: 225 year: 1961 end-page: 244 article-title: Endemism in Florida publication-title: Brittonia – volume: 341 start-page: 1239 year: 2013 end-page: 1242 article-title: Marine taxa track local climate velocities publication-title: Science – volume: 21 start-page: 393 year: 2012 end-page: 404 article-title: Refugia: identifying and understanding safe havens for biodiversity under climate change publication-title: Global Ecology and Biogeography – volume: 82 start-page: 3346 year: 2001 end-page: 3362 article-title: Dissimilarity analyses of late‐Quaternary vegetation and climate in eastern North America publication-title: Ecology – year: 1998 – volume: 17 start-page: 1238 year: 2003 end-page: 1250 article-title: Ecological effectiveness: conservation goals for interactive species publication-title: Conservation Biology – year: 2015 article-title: Case studies of conservation plans that incorporated geodiversity publication-title: Conservation Biology – volume: 94 start-page: 2007 year: 2013 end-page: 2018 article-title: Climate interacts with soil to produce beta diversity in Californian plant communities publication-title: Ecology – volume: 405 start-page: 907 year: 2000 end-page: 913 article-title: The genetic legacy of the Quaternary ice ages publication-title: Nature – volume: 403 start-page: 853 year: 2000 end-page: 858 article-title: Biodiversity hotspots for conservation priorities publication-title: Nature – start-page: 130 year: 1996 end-page: 147 – volume: 38 start-page: 479 year: 2006 end-page: 491 article-title: Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest publication-title: Biotropica – volume: 17 start-page: 120 year: 2008 end-page: 138 article-title: The California Hotspots Project: identifying regions of rapid diversification of mammals publication-title: Molecular ecology – volume: 80 start-page: 393 year: 2011 end-page: 402 article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction publication-title: The Journal of Animal Ecology – volume: 19 start-page: 1470 year: 2013 end-page: 1481 article-title: Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe publication-title: Global Change Biology – volume: 16 start-page: 39 year: 1985 end-page: 61 article-title: Continuum concept, ordination methods, and niche theory publication-title: Annual Review of Ecology and Systematics – volume: 12 start-page: 502 year: 1988 end-page: 514 article-title: Assessing representativeness of places for conservation reservation and heritage listing publication-title: Environmental Management – volume: 101 start-page: 223 year: 1967 end-page: 249 article-title: Why mountain passes are higher in the tropics publication-title: The American Naturalist – volume: 466 start-page: 1098 year: 2010 end-page: 1101 article-title: Global patterns and predictors of marine biodiversity across taxa publication-title: Nature – volume: 15 start-page: 1 year: 2006 end-page: 7 article-title: Novel ecosystems: theoretical and management aspects of the new ecological world order publication-title: Global Ecology and Biogeography – volume: 16 start-page: 476 year: 2010 end-page: 487 article-title: The geography of climate change: implications for conservation biogeography publication-title: Diversity and Distributions – volume: 98 start-page: 5452 year: 2001 end-page: 5457 article-title: Rapid plant diversification: planning for an evolutionary future publication-title: Proceedings of the National Academy of Science of the United States of America – year: 1916 – volume: 46 start-page: 5 year: 2006 end-page: 17 article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited publication-title: Integrative and Comparative Biology – volume: 3 start-page: 479 year: 2005 end-page: 486 article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems publication-title: Frontiers in Ecology and the Environment – year: 1599 – volume: 106 start-page: 207 year: 2011 end-page: 331 article-title: Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings publication-title: Earth‐Science Reviews – volume: 65 start-page: 365 year: 2011 end-page: 376 article-title: Origins and consequences of serpentine endemism in the California flora publication-title: Evolution – volume: 16 start-page: 2602 year: 2010 end-page: 2613 article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections publication-title: Global Change Biology – volume: 24 start-page: 473 year: 2009 end-page: 482 article-title: β‐Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape publication-title: Landscape Ecology – volume: 2 start-page: 375 year: 1988 end-page: 385 article-title: Paleoecology and the coarse‐filter approach to maintaining biological diversity publication-title: Conservation Biology – year: 2015 article-title: Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection‐based surrogacy tests publication-title: Conservation Biology – volume: 37 start-page: 1407 year: 2010 end-page: 1413 article-title: Identifying refugia from climate change publication-title: Journal of Biogeography – volume: 161 start-page: 523 year: 2003 end-page: 536 article-title: A globally consistent richness–climate relationship for angiosperms publication-title: The American Naturalist – volume: 334 start-page: 660 year: 2011 end-page: 664 article-title: The influence of Late Quaternary climate‐change velocity on species endemism publication-title: Science – volume: 5 start-page: 375 year: 2012 end-page: 383 article-title: The timing and pattern of biotic recovery following the end‐Permian mass extinction publication-title: Nature Geoscience – year: 2002 – volume: 339 start-page: 1198 year: 2013 end-page: 1201 article-title: A reconstruction of regional and global temperature for the past 11,300 years publication-title: Science – volume: 32 start-page: 226 year: 2009 end-page: 236 article-title: Environmental drivers of beta‐diversity patterns in New‐World birds and mammals publication-title: Ecography – volume: 11 start-page: 1633 year: 2007 end-page: 1644 article-title: Updated world map of the Köppen‐Geiger climate classification publication-title: Hydrology and Earth System Sciences – volume: 18 start-page: 1200 year: 2008 end-page: 1211 article-title: Optimizing dispersal corridors for the cape proteaceae using network flow publication-title: Ecological Applications – volume: 93 start-page: 145 year: 1959 end-page: 159 article-title: Homage to Santa Rosalia or Why are there so many kinds of animals publication-title: American Naturalist – start-page: 41 year: 1989 end-page: 61 – volume: 18 start-page: 111 year: 2009 end-page: 122 article-title: The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America publication-title: Global Ecology and Biogeography – volume: 43 start-page: 119 year: 1993 end-page: 224 article-title: The keystone‐species concept in ecology and conservation publication-title: BioScience – year: 2013 – year: 2009 – volume: 28 start-page: 453 year: 2001 end-page: 470 article-title: Scale and species richness: towards a general, hierarchical theory of species diversity publication-title: Journal of Biogeography – year: 2001 – volume: 6 issue: e28788 year: 2011 article-title: Systematic conservation planning in the face of climate change: bet‐hedging on the Columbia Plateau publication-title: PLOS ONE – volume: 16 start-page: 895 year: 2002 end-page: 908 article-title: A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem publication-title: Conservation Biology – volume: 105 start-page: 367 year: 1947 end-page: 368 article-title: Determination of world plant formations from simple climatic data publication-title: Science – volume: 35 start-page: 165 year: 1977 end-page: 175 article-title: Use of ordination and other multivariate descriptive methods to study succession publication-title: Vegetatio – volume: 400 start-page: 61 year: 1999 end-page: 63 article-title: Hydrologically defined niches reveal a basis for species richness in plant communities publication-title: Nature – volume: 17 start-page: 245 year: 2010 end-page: 264 article-title: The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens publication-title: Journal of Mammalian Evolution – volume: 53 start-page: 7 year: 1926 end-page: 26 article-title: The individualistic concept of the plant association publication-title: Journal of the Torrey Botanical Society – year: 1965 – volume: 5 issue: e11554 year: 2010 article-title: Conserving the stage: climate change and the geophysical underpinnings of species diversity publication-title: PLOS ONE – volume: 42 start-page: 207 year: 1967 end-page: 264 article-title: Gradient analysis of vegetation publication-title: Biological Reviews – volume: 34 start-page: 427 year: 1917 end-page: 433 article-title: The niche‐relationships of the California Thrasher publication-title: Auk – volume: 61 start-page: 39 year: 2011 end-page: 48 article-title: What does it mean to successfully conserve a (vertebrate) species publication-title: BioScience – volume: 8 start-page: 217 year: 1994 end-page: 224 article-title: A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania publication-title: Conservation Biology – volume: 326 start-page: 1100 year: 2009 end-page: 1103 article-title: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America publication-title: Science – volume: 25 start-page: 855 year: 1998 end-page: 870 article-title: Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales publication-title: Journal of Biogeography – year: 2015 article-title: Conserving the stage for 10,000 years: a paleoecological perspective on coarse‐filter strategies publication-title: Conservation Biology – volume: 46 start-page: 429 year: 1965 article-title: Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope publication-title: Ecology – volume: 342 start-page: 1360 year: 2013 end-page: 1364 article-title: The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA publication-title: Science – volume: 24 start-page: 701 year: 2010 end-page: 710 article-title: Use of land facets to plan for climate change: conserving the arenas, not the actors publication-title: Conservation Biology – volume: 38 start-page: 85 year: 2007 end-page: 109 article-title: Method and metaphysics in Clements's and Gleason's ecological explanations publication-title: Studies in History and Philosophy of Biological and Biomedical Sciences – volume: 2 start-page: 179 year: 1975 article-title: Vegetational responses to latitudinal variations in slope angle and aspect publication-title: Journal of Biogeography – volume: 10 start-page: 1618 year: 2004 end-page: 1626 article-title: Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods publication-title: Global Change Biology – volume: 3 start-page: 989 year: 2013 end-page: 994 article-title: Mapping vulnerability and conservation adaptation strategies under climate change publication-title: Nature Climate Change – volume: 52 start-page: 891 year: 2002 end-page: 904 article-title: The human footprint and the last of the wild publication-title: BioScience – volume: 25 start-page: 2197 year: 2006 end-page: 2211 article-title: Evidence for warm wet Heinrich events in Florida publication-title: Quaternary Science Reviews – volume: 323 start-page: 728 year: 2009 end-page: 732 article-title: The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time publication-title: Science – volume: 142 start-page: 14 year: 2009 end-page: 32 article-title: Biodiversity management in the face of climate change: A review of 22 years of recommendations publication-title: Biological Conservation – volume: 341 start-page: 499 year: 2013 end-page: 504 article-title: Climate change and the past, present, and future of biotic interactions publication-title: Science – year: 1977 – volume: 42 start-page: 313 year: 2011 end-page: 333 article-title: Climate relicts: past, present, future publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 462 start-page: 1052 year: 2009 end-page: 1055 article-title: The velocity of climate change publication-title: Nature – volume: 9 start-page: 443 year: 2000 end-page: 449 article-title: Functional roles of remnant plant populations in communities and ecosystems publication-title: Global Ecology and Biogeography – volume: 367 start-page: 2913 year: 2012 end-page: 2922 article-title: Novel communities from climate change publication-title: Philosophical Transactions of the Royal Society of London B – volume: 28 start-page: 696 year: 2014 end-page: 704 article-title: Development of a natural practice to adapt conservation goals to global change publication-title: Conservation Biology – volume: 11 start-page: 455 year: 1986 end-page: 463 article-title: An essay: the stimulus of unusual geologies for plant speciation publication-title: Systematic Botany – volume: 22 start-page: 289 year: 2012 end-page: 301 article-title: The ice age ecologist: testing methods for reserve prioritization during the last global warming publication-title: Global Ecology and Biogeography – volume: 4 start-page: 326 year: 2011 end-page: 337 article-title: Building evolutionary resilience for conserving biodiversity under climate change publication-title: Evolutionary Applications – volume: 100 start-page: 1266 year: 2013 end-page: 1286 article-title: Disequilibrium vegetation dynamics under future climate change publication-title: American Journal of Botany – volume: 6 start-page: 180 year: 2008 end-page: 184 article-title: A calcium‐based invasion risk assessment for zebra and quagga mussels ( spp) publication-title: Frontiers in Ecology and the Environment – volume: 19 start-page: 241 year: 2013 end-page: 251 article-title: The climate velocity of the contiguous United States during the 20th century publication-title: Global Change Biology – volume: 17 start-page: 1022 year: 2011 end-page: 1035 article-title: A climatic basis for microrefugia: the influence of terrain on climate publication-title: Global Change Biology – volume: 328 start-page: 575 year: 2010 end-page: 576 article-title: Matters of scale publication-title: Science – volume: 471 start-page: 51 year: 2011 end-page: 57 article-title: Has the Earth's sixth mass extinction already arrived publication-title: Nature – volume: 30 start-page: 312 year: 2012 end-page: 319 article-title: Conceptualizing and designing corridors for climate change publication-title: Ecological Restoration – volume: 16 start-page: 608 year: 2001 end-page: 613 article-title: Cryptic northern refugia and the origins of the modern biota publication-title: Trends in Ecology & Evolution – volume: 22 start-page: 87 year: 2012 end-page: 103 article-title: Use of land facets to design linkages for climate change publication-title: Ecological Applications – volume: 46 start-page: 471 year: 2004 end-page: 478 article-title: The edaphic factor in the origin of plant species publication-title: International Geology Review – volume: 6 issue: e28788 year: 2011 ident: 10.1111/cobi.12505-BIB0087|cobi12505-cit-0087 article-title: Systematic conservation planning in the face of climate change: bet-hedging on the Columbia Plateau publication-title: PLOS ONE doi: 10.1371/journal.pone.0028788 – volume: 25 start-page: 855 year: 1998 ident: 10.1111/cobi.12505-BIB0092|cobi12505-cit-0092 article-title: Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales publication-title: Journal of Biogeography doi: 10.1046/j.1365-2699.1998.00233.x – volume: 342 start-page: 1360 year: 2013 ident: 10.1111/cobi.12505-BIB0066|cobi12505-cit-0066 article-title: The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA publication-title: Science doi: 10.1126/science.1242335 – volume: 98 start-page: 5452 year: 2001 ident: 10.1111/cobi.12505-BIB0025|cobi12505-cit-0025 article-title: Rapid plant diversification: planning for an evolutionary future publication-title: Proceedings of the National Academy of Science of the United States of America doi: 10.1073/pnas.101093498 – volume: 19 start-page: 241 year: 2013 ident: 10.1111/cobi.12505-BIB0028|cobi12505-cit-0028 article-title: The climate velocity of the contiguous United States during the 20th century publication-title: Global Change Biology doi: 10.1111/gcb.12026 – volume: 25 start-page: 2197 year: 2006 ident: 10.1111/cobi.12505-BIB0041|cobi12505-cit-0041 article-title: Evidence for warm wet Heinrich events in Florida publication-title: Quaternary Science Reviews doi: 10.1016/j.quascirev.2006.04.008 – volume-title: Geology and plant life year: 2002 ident: 10.1111/cobi.12505-BIB0063|cobi12505-cit-0063 – volume: 61 start-page: 39 year: 2011 ident: 10.1111/cobi.12505-BIB0081|cobi12505-cit-0081 article-title: What does it mean to successfully conserve a (vertebrate) species publication-title: BioScience doi: 10.1525/bio.2011.61.1.9 – volume: 42 start-page: 207 year: 1967 ident: 10.1111/cobi.12505-BIB0098|cobi12505-cit-0098 article-title: Gradient analysis of vegetation publication-title: Biological Reviews doi: 10.1111/j.1469-185X.1967.tb01419.x – volume: 10 start-page: 1618 year: 2004 ident: 10.1111/cobi.12505-BIB0005|cobi12505-cit-0005 article-title: Would climate change drive species out of reserves? An assessment of existing reserve-selection methods publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2004.00828.x – volume-title: Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change year: 2013 ident: 10.1111/cobi.12505-BIB0055|cobi12505-cit-0055 – volume: 106 start-page: 207 year: 2011 ident: 10.1111/cobi.12505-BIB0024|cobi12505-cit-0024 article-title: Feedbacks between geomorphology and biota controlling earth surface processes and landforms: a review of foundation concepts and current understandings publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2011.03.002 – volume: 2 start-page: 179 year: 1975 ident: 10.1111/cobi.12505-BIB0051|cobi12505-cit-0051 article-title: Vegetational responses to latitudinal variations in slope angle and aspect publication-title: Journal of Biogeography doi: 10.2307/3037989 – volume: 11 start-page: 455 year: 1986 ident: 10.1111/cobi.12505-BIB0062|cobi12505-cit-0062 article-title: An essay: the stimulus of unusual geologies for plant speciation publication-title: Systematic Botany doi: 10.2307/2419082 – volume: 17 start-page: 1022 year: 2011 ident: 10.1111/cobi.12505-BIB0027|cobi12505-cit-0027 article-title: A climatic basis for microrefugia: the influence of terrain on climate publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2010.02263.x – volume: 38 start-page: 85 year: 2007 ident: 10.1111/cobi.12505-BIB0029|cobi12505-cit-0029 article-title: Method and metaphysics in Clements's and Gleason's ecological explanations publication-title: Studies in History and Philosophy of Biological and Biomedical Sciences doi: 10.1016/j.shpsc.2006.12.006 – volume: 16 start-page: 39 year: 1985 ident: 10.1111/cobi.12505-BIB0009|cobi12505-cit-0009 article-title: Continuum concept, ordination methods, and niche theory publication-title: Annual Review of Ecology and Systematics doi: 10.1146/annurev.es.16.110185.000351 – start-page: 1 volume-title: Essay on the geography of plants year: 2009 ident: 10.1111/cobi.12505-BIB0056|cobi12505-cit-0056 – volume: 52 start-page: 891 year: 2002 ident: 10.1111/cobi.12505-BIB0084|cobi12505-cit-0084 article-title: The human footprint and the last of the wild publication-title: BioScience doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 – volume: 30 start-page: 312 year: 2012 ident: 10.1111/cobi.12505-BIB0012|cobi12505-cit-0012 article-title: Conceptualizing and designing corridors for climate change publication-title: Ecological Restoration doi: 10.3368/er.30.4.312 – volume: 82 start-page: 3346 year: 2001 ident: 10.1111/cobi.12505-BIB0103|cobi12505-cit-0103 article-title: Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America publication-title: Ecology – year: 2015 ident: 10.1111/cobi.12505-BIB0085|cobi12505-cit-0085 article-title: Global geodiversity: How well protected is it publication-title: Conservation Biology doi: 10.1111/cobi.12502 – volume-title: The principles of botany, and of vegetable physiology year: 1805 ident: 10.1111/cobi.12505-BIB0102|cobi12505-cit-0102 doi: 10.5962/bhl.title.105661 – volume: 21 start-page: 393 year: 2012 ident: 10.1111/cobi.12505-BIB0060|cobi12505-cit-0060 article-title: Refugia: identifying and understanding safe havens for biodiversity under climate change publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2011.00686.x – volume-title: Introduction to environmental biophysics year: 1998 ident: 10.1111/cobi.12505-BIB0020|cobi12505-cit-0020 doi: 10.1007/978-1-4612-1626-1 – volume: 403 start-page: 853 year: 2000 ident: 10.1111/cobi.12505-BIB0074|cobi12505-cit-0074 article-title: Biodiversity hotspots for conservation priorities publication-title: Nature doi: 10.1038/35002501 – volume: 24 start-page: 473 year: 2009 ident: 10.1111/cobi.12505-BIB0035|cobi12505-cit-0035 article-title: β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape publication-title: Landscape Ecology doi: 10.1007/s10980-009-9332-1 – ident: 10.1111/cobi.12505-BIB0107|cobi12505-cit-0107 doi: 10.5822/978-1-61091-225-9 – volume: 80 start-page: 393 year: 2011 ident: 10.1111/cobi.12505-BIB0094|cobi12505-cit-0094 article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction publication-title: The Journal of Animal Ecology doi: 10.1111/j.1365-2656.2010.01771.x – volume: 334 start-page: 660 year: 2011 ident: 10.1111/cobi.12505-BIB0083|cobi12505-cit-0083 article-title: The influence of Late Quaternary climate-change velocity on species endemism publication-title: Science doi: 10.1126/science.1210173 – volume: 8 start-page: 217 year: 1994 ident: 10.1111/cobi.12505-BIB0061|cobi12505-cit-0061 article-title: A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania publication-title: Conservation Biology doi: 10.1046/j.1523-1739.1994.08010217.x – volume: 18 start-page: 1200 year: 2008 ident: 10.1111/cobi.12505-BIB0077|cobi12505-cit-0077 article-title: Optimizing dispersal corridors for the cape proteaceae using network flow publication-title: Ecological Applications doi: 10.1890/07-0507.1 – volume: 405 start-page: 243 year: 2000 ident: 10.1111/cobi.12505-BIB0070|cobi12505-cit-0070 article-title: Systematic conservation planning publication-title: Nature doi: 10.1038/35012251 – volume: 16 start-page: 476 year: 2010 ident: 10.1111/cobi.12505-BIB0001|cobi12505-cit-0001 article-title: The geography of climate change: implications for conservation biogeography publication-title: Diversity and Distributions doi: 10.1111/j.1472-4642.2010.00654.x – volume: 2 start-page: 375 year: 1988 ident: 10.1111/cobi.12505-BIB0052|cobi12505-cit-0052 article-title: Paleoecology and the coarse-filter approach to maintaining biological diversity publication-title: Conservation Biology doi: 10.1111/j.1523-1739.1988.tb00202.x – volume: 189 start-page: 253 year: 2011 ident: 10.1111/cobi.12505-BIB0006|cobi12505-cit-0006 article-title: A fundamental, eco-hydrological basis for niche segregation in plant communities publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03475.x – volume: 326 start-page: 1100 year: 2009 ident: 10.1111/cobi.12505-BIB0039|cobi12505-cit-0039 article-title: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America publication-title: Science doi: 10.1126/science.1179504 – year: 2015 ident: 10.1111/cobi.12505-BIB0003|cobi12505-cit-0003 article-title: Case studies of conservation plans that incorporated geodiversity publication-title: Conservation Biology doi: 10.1111/cobi.12503 – volume: 6 start-page: 180 year: 2008 ident: 10.1111/cobi.12505-BIB0101|cobi12505-cit-0101 article-title: A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp) publication-title: Frontiers in Ecology and the Environment doi: 10.1890/070073 – volume: 462 start-page: 1052 year: 2009 ident: 10.1111/cobi.12505-BIB0065|cobi12505-cit-0065 article-title: The velocity of climate change publication-title: Nature doi: 10.1038/nature08649 – volume: 46 start-page: 5 year: 2006 ident: 10.1111/cobi.12505-BIB0037|cobi12505-cit-0037 article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited publication-title: Integrative and Comparative Biology doi: 10.1093/icb/icj003 – volume: 4 start-page: 326 year: 2011 ident: 10.1111/cobi.12505-BIB0088|cobi12505-cit-0088 article-title: Building evolutionary resilience for conserving biodiversity under climate change publication-title: Evolutionary Applications doi: 10.1111/j.1752-4571.2010.00157.x – volume-title: The Arden Shakespeare year: 1599 ident: 10.1111/cobi.12505-BIB0089|cobi12505-cit-0089 – volume: 9 start-page: 443 year: 2000 ident: 10.1111/cobi.12505-BIB0031|cobi12505-cit-0031 article-title: Functional roles of remnant plant populations in communities and ecosystems publication-title: Global Ecology and Biogeography doi: 10.1046/j.1365-2699.2000.00215.x – volume-title: Plant succession: an analysis of the development of vegetation year: 1916 ident: 10.1111/cobi.12505-BIB0023|cobi12505-cit-0023 doi: 10.5962/bhl.title.56234 – volume: 11 start-page: 1633 year: 2007 ident: 10.1111/cobi.12505-BIB0076|cobi12505-cit-0076 article-title: Updated world map of the Köppen-Geiger climate classification publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-11-1633-2007 – volume: 46 start-page: 471 year: 2004 ident: 10.1111/cobi.12505-BIB0080|cobi12505-cit-0080 article-title: The edaphic factor in the origin of plant species publication-title: International Geology Review doi: 10.2747/0020-6814.46.5.471 – volume-title: The climate near the ground year: 2009 ident: 10.1111/cobi.12505-BIB0036|cobi12505-cit-0036 – volume: 53 start-page: 7 year: 1926 ident: 10.1111/cobi.12505-BIB0040|cobi12505-cit-0040 article-title: The individualistic concept of the plant association publication-title: Journal of the Torrey Botanical Society doi: 10.2307/2479933 – volume: 339 start-page: 1198 year: 2013 ident: 10.1111/cobi.12505-BIB0069|cobi12505-cit-0069 article-title: A reconstruction of regional and global temperature for the past 11,300 years publication-title: Science doi: 10.1126/science.1228026 – volume: 28 start-page: 453 year: 2001 ident: 10.1111/cobi.12505-BIB0100|cobi12505-cit-0100 article-title: Scale and species richness: towards a general, hierarchical theory of species diversity publication-title: Journal of Biogeography doi: 10.1046/j.1365-2699.2001.00563.x – volume: 13 start-page: 225 year: 1961 ident: 10.1111/cobi.12505-BIB0106|cobi12505-cit-0106 article-title: Endemism in Florida publication-title: Brittonia doi: 10.2307/2805339 – volume: 65 start-page: 365 year: 2011 ident: 10.1111/cobi.12505-BIB0002|cobi12505-cit-0002 article-title: Origins and consequences of serpentine endemism in the California flora publication-title: Evolution doi: 10.1111/j.1558-5646.2010.01114.x – volume: 17 start-page: 120 year: 2008 ident: 10.1111/cobi.12505-BIB0026|cobi12505-cit-0026 article-title: The California Hotspots Project: identifying regions of rapid diversification of mammals publication-title: Molecular ecology doi: 10.1111/j.1365-294X.2007.03469.x – volume: 5 issue: e11554 year: 2010 ident: 10.1111/cobi.12505-BIB0004|cobi12505-cit-0004 article-title: Conserving the stage: climate change and the geophysical underpinnings of species diversity publication-title: PLOS ONE doi: 10.1371/journal.pone.0011554 – volume: 400 start-page: 61 year: 1999 ident: 10.1111/cobi.12505-BIB0090|cobi12505-cit-0090 article-title: Hydrologically defined niches reveal a basis for species richness in plant communities publication-title: Nature doi: 10.1038/21877 – volume: 16 start-page: 608 year: 2001 ident: 10.1111/cobi.12505-BIB0093|cobi12505-cit-0093 article-title: Cryptic northern refugia and the origins of the modern biota publication-title: Trends in Ecology & Evolution doi: 10.1016/S0169-5347(01)02338-2 – volume: 18 start-page: 111 year: 2009 ident: 10.1111/cobi.12505-BIB0079|cobi12505-cit-0079 article-title: The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2008.00415.x – volume: 466 start-page: 1098 year: 2010 ident: 10.1111/cobi.12505-BIB0096|cobi12505-cit-0096 article-title: Global patterns and predictors of marine biodiversity across taxa publication-title: Nature doi: 10.1038/nature09329 – volume: 17 start-page: 245 year: 2010 ident: 10.1111/cobi.12505-BIB0105|cobi12505-cit-0105 article-title: The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens publication-title: Journal of Mammalian Evolution doi: 10.1007/s10914-010-9144-8 – volume: 405 start-page: 907 year: 2000 ident: 10.1111/cobi.12505-BIB0047|cobi12505-cit-0047 article-title: The genetic legacy of the Quaternary ice ages publication-title: Nature doi: 10.1038/35016000 – volume: 12 start-page: 502 year: 1988 ident: 10.1111/cobi.12505-BIB0068|cobi12505-cit-0068 article-title: Assessing representativeness of places for conservation reservation and heritage listing publication-title: Environmental Management doi: 10.1007/BF01873263 – volume: 161 start-page: 523 year: 2003 ident: 10.1111/cobi.12505-BIB0034|cobi12505-cit-0034 article-title: A globally consistent richness-climate relationship for angiosperms publication-title: The American Naturalist doi: 10.1086/368223 – volume: 15 start-page: 1 year: 2006 ident: 10.1111/cobi.12505-BIB0048|cobi12505-cit-0048 article-title: Novel ecosystems: theoretical and management aspects of the new ecological world order publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-822X.2006.00212.x – volume-title: Population biology of plants year: 1977 ident: 10.1111/cobi.12505-BIB0044|cobi12505-cit-0044 – volume: 12 start-page: 420 year: 2009 ident: 10.1111/cobi.12505-BIB0050|cobi12505-cit-0050 article-title: Projected impacts of climate change on a continent-wide protected area network publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2009.01297.x – volume: 28 start-page: 696 year: 2014 ident: 10.1111/cobi.12505-BIB0045|cobi12505-cit-0045 article-title: Development of a natural practice to adapt conservation goals to global change publication-title: Conservation Biology doi: 10.1111/cobi.12269 – volume: 24 start-page: 701 year: 2010 ident: 10.1111/cobi.12505-BIB0013|cobi12505-cit-0013 article-title: Use of land facets to plan for climate change: conserving the arenas, not the actors publication-title: Conservation Biology doi: 10.1111/j.1523-1739.2009.01422.x – volume: 16 start-page: 2602 year: 2010 ident: 10.1111/cobi.12505-BIB0086|cobi12505-cit-0086 article-title: Infra-red thermometry of alpine landscapes challenges climatic warming projections publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2009.02122.x – volume: 323 start-page: 728 year: 2009 ident: 10.1111/cobi.12505-BIB0015|cobi12505-cit-0015 article-title: The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time publication-title: Science doi: 10.1126/science.1157719 – volume: 43 start-page: 119 year: 1993 ident: 10.1111/cobi.12505-BIB0073|cobi12505-cit-0073 article-title: The keystone-species concept in ecology and conservation publication-title: BioScience doi: 10.2307/1312122 – volume: 105 start-page: 367 year: 1947 ident: 10.1111/cobi.12505-BIB0049|cobi12505-cit-0049 article-title: Determination of world plant formations from simple climatic data publication-title: Science doi: 10.1126/science.105.2727.367 – volume: 93 start-page: 145 year: 1959 ident: 10.1111/cobi.12505-BIB0053|cobi12505-cit-0053 article-title: Homage to Santa Rosalia or Why are there so many kinds of animals publication-title: American Naturalist doi: 10.1086/282070 – volume: 471 start-page: 51 year: 2011 ident: 10.1111/cobi.12505-BIB0011|cobi12505-cit-0011 article-title: Has the Earth's sixth mass extinction already arrived publication-title: Nature doi: 10.1038/nature09678 – volume: 22 start-page: 87 year: 2012 ident: 10.1111/cobi.12505-BIB0018|cobi12505-cit-0018 article-title: Use of land facets to design linkages for climate change publication-title: Ecological Applications doi: 10.1890/11-0213.1 – volume: 328 start-page: 575 year: 2010 ident: 10.1111/cobi.12505-BIB0071|cobi12505-cit-0071 article-title: Matters of scale publication-title: Science doi: 10.1126/science.1188528 – volume: 46 start-page: 429 year: 1965 ident: 10.1111/cobi.12505-BIB0099|cobi12505-cit-0099 article-title: Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope publication-title: Ecology doi: 10.2307/1934875 – year: 2015 ident: 10.1111/cobi.12505-BIB0038|cobi12505-cit-0038 article-title: Conserving the stage for 10,000 years: a paleoecological perspective on coarse-filter strategies publication-title: Conservation Biology doi: 10.1111/cobi.12504 – volume: 94 start-page: 2007 year: 2013 ident: 10.1111/cobi.12505-BIB0033|cobi12505-cit-0033 article-title: Climate interacts with soil to produce beta diversity in Californian plant communities publication-title: Ecology doi: 10.1890/12-2011.1 – volume: 19 start-page: 1470 year: 2013 ident: 10.1111/cobi.12505-BIB0064|cobi12505-cit-0064 article-title: Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe publication-title: Global Change Biology doi: 10.1111/gcb.12129 – volume: 3 start-page: 479 year: 2005 ident: 10.1111/cobi.12505-BIB0030|cobi12505-cit-0030 article-title: Loss of foundation species: consequences for the structure and dynamics of forested ecosystems publication-title: Frontiers in Ecology and the Environment doi: 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2 – volume: 101 start-page: 223 year: 1967 ident: 10.1111/cobi.12505-BIB0057|cobi12505-cit-0057 article-title: Why mountain passes are higher in the tropics publication-title: The American Naturalist doi: 10.1086/282487 – volume: 38 start-page: 479 year: 2006 ident: 10.1111/cobi.12505-BIB0010|cobi12505-cit-0010 article-title: Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest publication-title: Biotropica doi: 10.1111/j.1744-7429.2006.00161.x – start-page: 41 volume-title: Ecosystem Management for Parks and Wilderness year: 1989 ident: 10.1111/cobi.12505-BIB0019|cobi12505-cit-0019 – year: 2015 ident: 10.1111/cobi.12505-BIB0014|cobi12505-cit-0014 article-title: Improving the use and evaluation of abiotic surrogates in conservation planning: a review of selection-based surrogacy tests publication-title: Conservation Biology doi: 10.1111/cobi.12509 – volume: 34 start-page: 427 year: 1917 ident: 10.1111/cobi.12505-BIB0042|cobi12505-cit-0042 article-title: The niche-relationships of the California Thrasher publication-title: Auk doi: 10.2307/4072271 – volume: 39 start-page: 229 year: 2007 ident: 10.1111/cobi.12505-BIB0021|cobi12505-cit-0021 article-title: Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the High Andes of Central Chile publication-title: Arctic, Antarctic, and Alpine Research doi: 10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2 – volume: 341 start-page: 499 year: 2013 ident: 10.1111/cobi.12505-BIB0017|cobi12505-cit-0017 article-title: Climate change and the past, present, and future of biotic interactions publication-title: Science doi: 10.1126/science.1237184 – volume: 5 start-page: 375 year: 2012 ident: 10.1111/cobi.12505-BIB0022|cobi12505-cit-0022 article-title: The timing and pattern of biotic recovery following the end-Permian mass extinction publication-title: Nature Geoscience doi: 10.1038/ngeo1475 – volume-title: The half-empty forest: sustainable use and the ecology of interactions. Conservation of exploited species year: 2001 ident: 10.1111/cobi.12505-BIB0082|cobi12505-cit-0082 – volume: 142 start-page: 14 year: 2009 ident: 10.1111/cobi.12505-BIB0046|cobi12505-cit-0046 article-title: Biodiversity management in the face of climate change: A review of 22 years of recommendations publication-title: Biological Conservation doi: 10.1016/j.biocon.2008.10.006 – volume-title: The ecological theater and the evolutionary play year: 1965 ident: 10.1111/cobi.12505-BIB0054|cobi12505-cit-0054 – volume: 22 start-page: 289 year: 2012 ident: 10.1111/cobi.12505-BIB0104|cobi12505-cit-0104 article-title: The ice age ecologist: testing methods for reserve prioritization during the last global warming publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2012.00760.x – volume: 35 start-page: 165 year: 1977 ident: 10.1111/cobi.12505-BIB0008|cobi12505-cit-0008 article-title: Use of ordination and other multivariate descriptive methods to study succession publication-title: Vegetatio doi: 10.1007/BF02097067 – volume: 37 start-page: 1407 year: 2010 ident: 10.1111/cobi.12505-BIB0007|cobi12505-cit-0007 article-title: Identifying refugia from climate change publication-title: Journal of Biogeography doi: 10.1111/j.1365-2699.2010.02300.x – volume-title: Classification of climates. Page 102 in World survey of climatology 1C, general climatology year: 2001 ident: 10.1111/cobi.12505-BIB0032|cobi12505-cit-0032 – volume: 17 start-page: 1238 year: 2003 ident: 10.1111/cobi.12505-BIB0091|cobi12505-cit-0091 article-title: Ecological effectiveness: conservation goals for interactive species publication-title: Conservation Biology doi: 10.1046/j.1523-1739.2003.01599.x – volume: 32 start-page: 226 year: 2009 ident: 10.1111/cobi.12505-BIB0072|cobi12505-cit-0072 article-title: Environmental drivers of beta-diversity patterns in New-World birds and mammals publication-title: Ecography doi: 10.1111/j.1600-0587.2008.05502.x – volume: 100 start-page: 1266 year: 2013 ident: 10.1111/cobi.12505-BIB0095|cobi12505-cit-0095 article-title: Disequilibrium vegetation dynamics under future climate change publication-title: American Journal of Botany doi: 10.3732/ajb.1200469 – volume: 341 start-page: 1239 year: 2013 ident: 10.1111/cobi.12505-BIB0078|cobi12505-cit-0078 article-title: Marine taxa track local climate velocities publication-title: Science doi: 10.1126/science.1239352 – volume: 42 start-page: 313 year: 2011 ident: 10.1111/cobi.12505-BIB0043|cobi12505-cit-0043 article-title: Climate relicts: past, present, future publication-title: Annual Review of Ecology, Evolution, and Systematics doi: 10.1146/annurev-ecolsys-102710-145015 – volume: 16 start-page: 895 year: 2002 ident: 10.1111/cobi.12505-BIB0075|cobi12505-cit-0075 article-title: A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem publication-title: Conservation Biology doi: 10.1046/j.1523-1739.2002.01405.x – start-page: 130 volume-title: Ecosystem management year: 1996 ident: 10.1111/cobi.12505-BIB0058|cobi12505-cit-0058 – volume: 367 start-page: 2913 year: 2012 ident: 10.1111/cobi.12505-BIB0067|cobi12505-cit-0067 article-title: Novel communities from climate change publication-title: Philosophical Transactions of the Royal Society of London B doi: 10.1098/rstb.2012.0238 – volume: 3 start-page: 989 year: 2013 ident: 10.1111/cobi.12505-BIB0097|cobi12505-cit-0097 article-title: Mapping vulnerability and conservation adaptation strategies under climate change publication-title: Nature Climate Change doi: 10.1038/nclimate2007 |
SSID | ssj0009514 |
Score | 2.5587003 |
Snippet | Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern... |
SourceID | osti proquest pubmed crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 618 |
SubjectTerms | abiotic factors biocenosis Biodiversity cambio climático climate Climate change condiciones abióticas Conservation biology Conservation of Natural Resources - methods conservation planning ecological theory Ecology - trends ENVIRONMENTAL SCIENCES Geological Phenomena landforms latitude Nature Nature conservation planning planses de conservación Protected species Special Section: Conserving Nature's Stage teoría ecolótigico Theory vegetation |
Title | theory behind, and the challenges of, conserving nature's stage in a time of rapid change |
URI | https://api.istex.fr/ark:/67375/WNG-BTV1X2NK-X/fulltext.pdf https://www.jstor.org/stable/24483094 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12505 https://www.ncbi.nlm.nih.gov/pubmed/25922899 https://www.proquest.com/docview/1680269450 https://www.proquest.com/docview/1694476643 https://www.proquest.com/docview/1808635527 https://www.osti.gov/servlets/purl/1512112 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iQPDFWzPmoEVRlMwy90yDLyYkRsUVdKP7Epo-puMSmQl7gJtfb1XP4UZCQF-W3t2a2Zner6u_6qn6GuA5T3BSiwz3ucytn5Sx9AuZh36c5JLCiUw7MZ1Pw-zoOPkwTsdr8KarhWn0IfoFNxoZzl_TAJdqtjLIda0mg5BmcHTAlKxFjOhLtKK42wh7Y4jnFwWPWm1SSuP5c-il2eiGlTVyVOreX116InrqGsfaVfzzMp1189HhHTjp7qRJQzkbLOZqoC_-Enn831u9C7dbosreNsi6B2tldR9uNltXLrF14OSulw_gBJHGXD3kkqnyB8b4u0xWhj5iutuqZcZqu8s0pW5PaQmDNYKiL2cM2elpySYVk4z2uUc7NpXnE8OakuSHMDo8GO0f-e2mDb5GapXiq8aQK89sie8Mxjs8VrmMZahNaCzSA0UMVOvAGMNLi40kLONMk6y-TWz8CNaruio3qJo8kDY0Yaw4YkZxyYsMT5LaQBXKqNiDV91_J3QraE77avwUXWBD_SZcv3nwrLc9b2Q8rrTaQAgIeYr-VRx_jWg1iChwnucevHC46I-W0zPKictT8X34TuyNvoXjaPhRjD3YccBZ_RlKthfIo4oY0e_BJiFKIMMhmV5N-Ux6Loh5Iff1YKsDmmi9yUyEWRFQxXEaePC0_xr9AD3ckVVZL8iGJ0meIcG8xqbAADYmzT0PHjcg7i8Tw-CIgm8PXjsoXtNNYv_z3nvXevIvxptwi3q0ybPbgvX5dFFuI6Obqx03cn8DdCE--Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC0lQQgu7JAhITRiEyhjeRbPcuBANhycGCk44Atq9TbBCsxEXgTmm_gV_omqnhnjoCgShxy4WG27PB53V3W9Kle9BniShujUfJ26qYgzNzSBcBMRe24QxoLCiUhZMp39btQ-DN_2W_0F-Fn3wpT8ELOEG1mG3a_JwCkhPWflqpCDhkcuvKqp7JjpN4zYRq92t3B5n_r-znZvs-1Whwq4Cl1_Cx8VhgRxlBl8phGPp4GMRSA8pT2dofuShJCUamqtU5PhIPRMECmifc_CLMDLLsIlOkGcmPq3Dvw5it-SSRxjSjdJUr8iQ6W6oT-3esr9LWaiQFBM6_m9rodE11CgcZ8FeE_jZ-sAd67Dr3rqyrqX48ZkLBvqx1-skv_L3N6AaxUSZ69L07kJCya_BZfLszmnONq2fN7T2_AJTYnZhs8pk-bzINfrTOSaXmKqPotmxIpsnSmqTR9SjoaVjKnPRwzh95Fhg5wJNh58NSjHhuJkoFnZc30HehfxI-_CUl7kZpna5Zsi87QXyBSNQqYiTSK8SCtrykRqGTjwotYVrirGdjo45AuvIzdaJm6XyYHHM9mTkqfkTKllVDkujtCB8MP3PqW7COPHcezAM6uHs0-L4TEV_cUt_rH7hm_0Pnh9v9vhfQfWrKLOfw11E3AEikmA5u3ACmkwRwhHPMSKCrbUmBO0RHDvwGqt2LzaLkfci5ImtVS3mg48mr2NGx39eyVyU0xIJg3DOEIEfY5MghF6QKSCDtwrjWZ2mxjn-5RdcOClVf1zpolvvtvYtaP7_yL8EK60e_t7fG-321mBqzS7ZVHhKiyNhxPzAOHrWK7ZXYMBv2BL-g2zfJzb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61RSAuvKGmpSziJVAd-RXbe-BAm4aGQECQQi5otd5dl6hgR3kIwl_ir_CjmPEjpKiqxKEHLtEmmTjO7szON5uZbwAe8ACdmqe5zWWU2oHxpR3LyLX9IJIUToSqINN53Qv3D4KXg-ZgBX7WtTAlP8TiwI0so9ivycBHOl0ycpUnw4ZLHrxKqeya-TcM2CbPOi1c3Yee197r7-7bVU8BW6Hnb-KjwoggClODzzTCce4nkfSlq7SrU_ReCQEkpRytNTcpDgLX-KEi1vc0SH287CqcC0KHU5-I1jtvieG3JBLHkNKOY-5VXKiUNvTnVo95v9VU5oiJaTm_1-mQ6BlytO2T8O5x-Fz4v_Zl-FXPXJn2ctSYTZOG-vEXqeR_MrVX4FKFw9nz0nCuworJrsH5sjPnHEd7BZv3_Dp8QkNiRbnnnCXm8zDT20xmml5iqu5EM2F5us0UZaaP6YSGlXypjycMwfehYcOMSTYdfjUox8ZyNNSsrLi-Af2z-JE3YS3LM7NOxfKOTF3t-glHk0i45HGIF2mmThInOvEteFKrilAVXzu1Dfki6riNlkkUy2TB_YXsqGQpOVFqHTVOyEN0H-LgvUeHXYTwoyiy4FGhhotPy_ERpfxFTfGx90Ls9D-4A6_XFQMLtgo9Xf4aqiUQCBNjH43bgg1SYIEAjliIFaVrqakgYInQ3oLNWq9FtVlOhBvGDhVUNx0L7i3exm2O_ruSmclnJMODIAoRP58iE2N87hOloAW3SptZ3CZG-R6dLVjwtND8U6ZJ7L7Z6RSj2_8ifBcuvG21xatOr7sBF2lyy4zCTVibjmfmDmLXabJV7BkMxBkb0m8ls5uK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+theory+behind%2C+and+the+challenges+of%2C+conserving+nature%27s+stage+in+a+time+of+rapid+change&rft.jtitle=Conservation+biology&rft.au=Lawler%2C+Joshua+J&rft.au=Ackerly%2C+David+D&rft.au=Albano%2C+Christine+M&rft.au=Anderson%2C+Mark+G&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=29&rft.issue=3&rft.spage=618&rft_id=info:doi/10.1111%2Fcobi.12505&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3681700241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |