Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arcti...
Saved in:
Published in | Global change biology Vol. 24; no. 11; pp. 5188 - 5204 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.11.2018
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 1354-1013 1365-2486 1365-2486 |
DOI | 10.1111/gcb.14421 |
Cover
Loading…
Abstract | Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
We modeled the regional carbon balance of sub‐Arctic tundra over a decade in a region with lakes, wetlands, and uplands using process‐based biogeochemical models. Interannual variability over the decade was relatively small in comparison with variability among the land cover types. Wetlands were hot spots for C cycling in this sub‐Arctic tundra ecosystem. Capturing the relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites. |
---|---|
AbstractList | Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006–2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. We modeled the regional carbon balance of sub‐Arctic tundra over a decade in a region with lakes, wetlands, and uplands using process‐based biogeochemical models. Interannual variability over the decade was relatively small in comparison with variability among the land cover types. Wetlands were hot spots for C cycling in this sub‐Arctic tundra ecosystem. Capturing the relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites. Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO ) and methane (CH ) fluxes for the dominant land cover types in a ~100-km sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO fluxes ranged from -300 g C m year [net uptake] in a willow fen to 3 g C m year [net source] in dry lichen tundra. Modeled annual CH emissions ranged from -0.2 to 22.3 g C m year at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO across most land cover types but a net source of CH to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH flux relative to high-resolution classification and smaller (10%) overestimation of regional CO uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes for the dominant land cover types in a ~100‐km 2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO 2 fluxes ranged from −300 g C m −2 year −1 [net uptake] in a willow fen to 3 g C m −2 year −1 [net source] in dry lichen tundra. Modeled annual CH 4 emissions ranged from −0.2 to 22.3 g C m −2 year −1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO 2 across most land cover types but a net source of CH 4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH 4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO 2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. Abstract Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes for the dominant land cover types in a ~100‐km 2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO 2 fluxes ranged from −300 g C m −2 year −1 [net uptake] in a willow fen to 3 g C m −2 year −1 [net source] in dry lichen tundra. Modeled annual CH 4 emissions ranged from −0.2 to 22.3 g C m −2 year −1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO 2 across most land cover types but a net source of CH 4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH 4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO 2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2 year-1 [net uptake] in a willow fen to 3 g C m-2 year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2 year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2 year-1 [net uptake] in a willow fen to 3 g C m-2 year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2 year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a similar to 100-km(2) sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from --300 g C m(-2) year(-1) [net uptake] in a willow fen to 3 g Cm-2 year(-1) [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g Cm-2 year(-1) at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO₂) and methane (CH₄) fluxes for the dominant land cover types in a ~100‐km² sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO₂ fluxes ranged from −300 g C m⁻² year⁻¹ [net uptake] in a willow fen to 3 g C m⁻² year⁻¹ [net source] in dry lichen tundra. Modeled annual CH₄ emissions ranged from −0.2 to 22.3 g C m⁻² year⁻¹ at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO₂ across most land cover types but a net source of CH₄ to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH₄ flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO₂ uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. |
Author | Kaverin, Dmitry Biasi, Christina Shurpali, Narasinha J. Treat, Claire C. Zhang, Yu Miller, Paul A. Romanovsky, Vladimir Tan, Zeli Rivkin, Felix Virtanen, Tarmo A. Martikainen, Pertti J. Zhuang, Qianlai Marushchak, Maija E. Voigt, Carolina Stendel, Martin Hugelius, Gustaf Räsänen, Aleksi |
Author_xml | – sequence: 1 givenname: Claire C. orcidid: 0000-0002-1225-8178 surname: Treat fullname: Treat, Claire C. email: claire.treat@uef.fi, claire.treat@unh.edu organization: University of Eastern Finland – sequence: 2 givenname: Maija E. surname: Marushchak fullname: Marushchak, Maija E. organization: University of Eastern Finland – sequence: 3 givenname: Carolina orcidid: 0000-0001-8589-1428 surname: Voigt fullname: Voigt, Carolina organization: University of Eastern Finland – sequence: 4 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Natural Resources Canada – sequence: 5 givenname: Zeli orcidid: 0000-0001-5958-2584 surname: Tan fullname: Tan, Zeli organization: Purdue University – sequence: 6 givenname: Qianlai surname: Zhuang fullname: Zhuang, Qianlai organization: Purdue University – sequence: 7 givenname: Tarmo A. surname: Virtanen fullname: Virtanen, Tarmo A. organization: University of Helsinki – sequence: 8 givenname: Aleksi surname: Räsänen fullname: Räsänen, Aleksi organization: Norwegian University of Science and Technology – sequence: 9 givenname: Christina orcidid: 0000-0002-7413-3354 surname: Biasi fullname: Biasi, Christina organization: University of Eastern Finland – sequence: 10 givenname: Gustaf surname: Hugelius fullname: Hugelius, Gustaf organization: Stockholm University – sequence: 11 givenname: Dmitry surname: Kaverin fullname: Kaverin, Dmitry organization: SC RAS – sequence: 12 givenname: Paul A. surname: Miller fullname: Miller, Paul A. organization: Lund University – sequence: 13 givenname: Martin surname: Stendel fullname: Stendel, Martin organization: Danish Meteorological Institute – sequence: 14 givenname: Vladimir surname: Romanovsky fullname: Romanovsky, Vladimir organization: SB RAS – sequence: 15 givenname: Felix surname: Rivkin fullname: Rivkin, Felix organization: GIS – sequence: 16 givenname: Pertti J. surname: Martikainen fullname: Martikainen, Pertti J. organization: University of Eastern Finland – sequence: 17 givenname: Narasinha J. surname: Shurpali fullname: Shurpali, Narasinha J. organization: University of Eastern Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30101501$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1469229$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162106$$DView record from Swedish Publication Index https://lup.lub.lu.se/record/044df730-3a5f-4641-a15e-fce16a4f0bc0$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/044df730-3a5f-4641-a15e-fce16a4f0bc0$$DView record from Swedish Publication Index |
BookMark | eNqNks1u1DAQgCNURH_gwAugCC4gdVvbcZzscVmgIFVCQgWOo4kz2XWVtRc7oeoT8NrM_pRDRQWRrFj2N589njnODnzwlGXPpTiT_J0vbHMmtVbyUXYkC1NOlK7NwWZe6okUsjjMjlO6FkIUSpgn2WEheLUU8ij7dTX6NmLeo2-TxTXlSxoohgV5csPtae7DkDvPS-j9iH3-E6PDxvXbTRv8EEOf8mFJeUsWWyYiLVzwPLEYm-DzBlluiS1b7Dsltvn8y5iSQ5_Poh2cfZo97rBP9Gz_P8m-fnh_Nf84ufx88Wk-u5xYo7Wc6EqKKbVtNS2sKIwuSiWp06pFY0vVNVaQMGVpus5gIStUtanLGttO1zXWzJ9kuPOmG1qPDayjW2G8hYAO1iEO2EOkRBjtEvoREgFTvbM4cE4JhNZtVxUCCiw70EZLQFkSdJakQd0JvgGfcfngGf245tHs3f-pO31Q9859m0GIC0gjSKOkMIy_3OEhDQ6SdQPZJRfKkx1AajNVasrQ6x20juHHyBWBlUuWeq4UhTGBkpUpKmOk-Dcq6mo6NeX2cV_dQ6_DGLkVNkKllGZuc8EXe2psVtT-yeeuKRk43wE2hpQidcBJbAswRHQ9SAGbtgdue9i2PUe8uRdxJ_0bu7ffuJ5uHwbhYv52F_EbZJwRig |
CitedBy_id | crossref_primary_10_1111_gcb_15659 crossref_primary_10_1029_2019JG005242 crossref_primary_10_1007_s11368_024_03885_9 crossref_primary_10_1038_s43247_024_01583_5 crossref_primary_10_1029_2023GB007969 crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_3390_atmos13091402 crossref_primary_10_5194_bg_20_4069_2023 crossref_primary_10_1016_j_geoderma_2021_115302 crossref_primary_10_1016_j_scitotenv_2024_171914 crossref_primary_10_1029_2020JG005872 crossref_primary_10_5194_bg_21_335_2024 crossref_primary_10_1109_ACCESS_2023_3300967 crossref_primary_10_1007_s40641_024_00194_8 crossref_primary_10_1016_j_agrformet_2021_108451 crossref_primary_10_1088_1748_9326_ab5e26 crossref_primary_10_3389_fenvs_2022_939238 crossref_primary_10_3389_fenvs_2024_1460155 crossref_primary_10_5194_bg_19_3151_2022 crossref_primary_10_1038_s41467_019_09149_2 crossref_primary_10_5194_bg_16_255_2019 crossref_primary_10_1109_TGRS_2021_3096999 crossref_primary_10_1038_s41467_021_22452_1 crossref_primary_10_1080_01431161_2021_1897187 crossref_primary_10_1002_lno_11682 crossref_primary_10_3390_soilsystems8040120 crossref_primary_10_1016_j_scitotenv_2024_173887 crossref_primary_10_5194_bg_20_2049_2023 crossref_primary_10_1080_15481603_2020_1829377 crossref_primary_10_1002_eap_2499 crossref_primary_10_1128_AEM_01339_21 crossref_primary_10_1029_2022JG006864 crossref_primary_10_1016_j_rse_2019_05_026 crossref_primary_10_1038_s43017_021_00230_3 crossref_primary_10_1016_j_rse_2024_114291 crossref_primary_10_5194_hess_28_2421_2024 crossref_primary_10_5194_bg_19_1225_2022 crossref_primary_10_1029_2020GB006922 crossref_primary_10_1088_1748_9326_ad6019 crossref_primary_10_1007_s40641_020_00169_5 crossref_primary_10_1016_j_scitotenv_2021_148379 crossref_primary_10_1088_1748_9326_abd3d0 crossref_primary_10_3390_w11030574 crossref_primary_10_1093_ismeco_ycaf009 crossref_primary_10_1029_2019GL085707 crossref_primary_10_1029_2022GB007524 crossref_primary_10_3390_w14172597 crossref_primary_10_1029_2021JG006774 crossref_primary_10_1080_00934690_2020_1713435 crossref_primary_10_1038_s43017_020_0063_9 crossref_primary_10_3390_rs14225861 crossref_primary_10_3390_rs16081345 crossref_primary_10_1029_2020GB006678 crossref_primary_10_5194_tc_17_5283_2023 crossref_primary_10_3390_rs10091498 |
Cites_doi | 10.1038/ngeo2305 10.1088/1748-9326/10/9/095009 10.1111/j.1654-1103.2005.tb02365.x 10.1038/nature07464 10.1073/pnas.1103910108 10.1029/98JD00993 10.1029/2008GB003412 10.5194/bg-10-5139-2013 10.1111/gcb.12247 10.5194/acp-14-8269-2014 10.1111/j.1365-2486.2011.02433.x 10.1016/j.jag.2013.05.010 10.1007/s13280-012-0306-1 10.1002/2015WR018057 10.1002/2014MS000344 10.3390/rs5041498 10.1029/91JD00610 10.1029/2003GB002054 10.1002/2016JG003671 10.1126/science.251.4991.298 10.1088/1748-9326/8/3/034023 10.1098/rsta.2007.2035 10.3390/rs9121227 10.1111/j.1365-2486.2010.02303.x 10.3390/rs8120979 10.1111/j.1365-2486.2011.02442.x 10.1111/gcb.14137 10.1002/2017MS001028 10.1007/s10021-016-0085-9 10.1111/j.1365-2486.2007.01529.x 10.1016/j.rse.2008.10.013 10.1111/gcb.13563 10.1029/2003GL018680 10.5194/bg-10-437-2013 10.5194/bg-9-3185-2012 10.1111/gcb.12071 10.1046/j.1365-2486.2000.06018.x 10.1046/j.1466-822X.2001.t01-1-00256.x 10.5194/bg-13-597-2016 10.1029/2010JG001606 10.1111/j.1365-2486.2011.02587.x 10.1890/06-0649 10.1029/2002JD003354 10.1007/s10584-007-9342-4 10.1029/2011JG001873 10.1029/1999GB001243 10.1029/1999JD900949 10.1080/15230430.2001.12003417 10.1111/j.1600-0889.2007.00301.x 10.1029/2011GB004154 10.1007/s10021-006-9013-8 10.1046/j.1365-2486.2003.00639.x 10.5194/gmd-3-565-2010 10.1029/2011GL050355 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. Copyright © 2018 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. – notice: Copyright © 2018 John Wiley & Sons Ltd |
CorporateAuthor | Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments BECC: Biodiversity and Ecosystem services in a Changing Climate Faculty of Science Lund University Centrum för miljö- och klimatvetenskap (CEC) Institutionen för naturgeografi och ekosystemvetenskap MERGE: ModElling the Regional and Global Earth system Strategiska forskningsområden (SFO) Dept of Physical Geography and Ecosystem Science Strategic research areas (SRA) eSSENCE: The e-Science Collaboration Profilområden och andra starka forskningsmiljöer Centre for Environmental and Climate Science (CEC) |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: MERGE: ModElling the Regional and Global Earth system – name: BECC: Biodiversity and Ecosystem services in a Changing Climate – name: Institutionen för naturgeografi och ekosystemvetenskap – name: Strategic research areas (SRA) – name: Faculty of Science – name: Lunds universitet – name: Dept of Physical Geography and Ecosystem Science – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Centre for Environmental and Climate Science (CEC) – name: Profile areas and other strong research environments – name: eSSENCE: The e-Science Collaboration – name: Centrum för miljö- och klimatvetenskap (CEC) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 OTOTI ADTPV AOWAS DG7 D95 |
DOI | 10.1111/gcb.14421 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV SwePub SwePub Articles SWEPUB Stockholms universitet SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE CrossRef MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 5204 |
ExternalDocumentID | oai_portal_research_lu_se_publications_044df730_3a5f_4641_a15e_fce16a4f0bc0 oai_lup_lub_lu_se_044df730_3a5f_4641_a15e_fce16a4f0bc0 oai_DiVA_org_su_162106 1469229 30101501 10_1111_gcb_14421 GCB14421 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Arctic Regions Russia Arctic region |
GeographicLocations_xml | – name: Arctic Regions – name: Russia – name: Arctic region |
GrantInformation_xml | – fundername: University of Eastern Finland funderid: 186 – fundername: Sixth Framework Programme funderid: CARBO-North #036993 – fundername: Academy of Finland – fundername: EU 6th Framework Programme funderid: 036993 – fundername: Itä‐Suomen Yliopisto – fundername: Russian Science Foundation funderid: 16-17-00102 – fundername: National Aeronautics and Space Administration funderid: Arctic Boreal Vulnerability Experiment (ABoVE); NASA-NNX09AI26G – fundername: FP7 funderid: 282700 – fundername: Biotieteiden ja Ympäristön Tutkimuksen Toimikunta funderid: CAPTURE – fundername: NordForsk funderid: COUP (Project ID 70426) – fundername: NASA grantid: Arctic Boreal Vulnerability Experiment (ABoVE) – fundername: NASA grantid: NASA-NNX09AI26G |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 AAPBV ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AGJLS OTOTI ADTPV AOWAS DG7 D95 |
ID | FETCH-LOGICAL-c6441-47109edd793c03643521ef42da6c52fbc0e06556ff6a317a286858adf488a8643 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Thu Aug 21 07:33:43 EDT 2025 Thu Jul 03 05:24:19 EDT 2025 Thu Aug 21 06:44:55 EDT 2025 Mon Sep 11 05:25:21 EDT 2023 Fri Jul 11 18:34:00 EDT 2025 Fri Jul 11 05:18:47 EDT 2025 Fri Jul 25 19:43:06 EDT 2025 Mon Jul 21 05:59:16 EDT 2025 Tue Jul 01 03:53:00 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Wed Jan 22 16:24:44 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | regional carbon balance net ecosystem CO2 exchange permafrost peatland methane Tundra Russia ecosystem modeling |
Language | English |
License | 2018 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6441-47109edd793c03643521ef42da6c52fbc0e06556ff6a317a286858adf488a8643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE FG02-08ER64599 |
ORCID | 0000-0001-8589-1428 0000-0002-1225-8178 0000-0001-5958-2584 0000-0002-7413-3354 0000000185891428 0000000159582584 0000000212258178 0000000274133354 |
OpenAccessLink | https://www.osti.gov/biblio/1469229 |
PMID | 30101501 |
PQID | 2122249966 |
PQPubID | 30327 |
PageCount | 17 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_044df730_3a5f_4641_a15e_fce16a4f0bc0 swepub_primary_oai_lup_lub_lu_se_044df730_3a5f_4641_a15e_fce16a4f0bc0 swepub_primary_oai_DiVA_org_su_162106 osti_scitechconnect_1469229 proquest_miscellaneous_2176376610 proquest_miscellaneous_2087996564 proquest_journals_2122249966 pubmed_primary_30101501 crossref_citationtrail_10_1111_gcb_14421 crossref_primary_10_1111_gcb_14421 wiley_primary_10_1111_gcb_14421_GCB14421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: United Kingdom |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2018 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | 2011; 116 2000; 6 2014; 27 2009; 113 2012; 18 1992; 97 2011; 17 2013; 8 2013; 5 2007; 77 2017; 9 2013; 19 2004; 31 2000; 14 2013; 10 2003; 9 2014; 14 2012; 26 2017; 122 2010; 3 2001; 10 2009; 23 2007; 365 2017; 20 1991; 251 2017; 23 2015; 10 2008 2016; 52 2012; 39 2007; 10 2015; 8 2015; 7 2007; 14 2016; 13 2007; 59 2018; 24 2003; 108 2011; 108 2006; 84 2004; 18 2000; 105 2008; 87 2008; 456 1998; 103 2013 2001; 33 2005; 16 2012; 117 2016; 8 2012; 41 2012; 9 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Bubier J. L. (e_1_2_6_5_1) 2006; 84 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 R Development Core Team (e_1_2_6_47_1) 2008 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Hartmann D. L. (e_1_2_6_13_1) 2013 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Myhre G. (e_1_2_6_33_1) 2013 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 20 start-page: 960 year: 2017 end-page: 974 article-title: Long‐term release of carbon dioxide from Arctic tundra ecosystems in Alaska publication-title: Ecosystems – volume: 33 start-page: 149 year: 2001 end-page: 157 article-title: Interannual variability in net ecosystem CO2 exchange at the arctic treeline publication-title: Arctic Antarctic and Alpine Research – volume: 9 start-page: 2190 issue: 5 year: 2017 end-page: 2213 article-title: Modeling CO emissions from Arctic lakes: Model development and site‐level study publication-title: Journal of Advances in Modeling Earth Systems – volume: 77 start-page: 221 year: 2007 end-page: 238 article-title: Tundra CO fluxes in response to experimental warming across latitudinal and moisture gradients publication-title: Ecological Monographs – volume: 24 start-page: 3331 year: 2018 end-page: 3343 article-title: Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems publication-title: Global Change Biology – volume: 27 start-page: 4 year: 2014 end-page: 12 article-title: The fragmented nature of tundra landscape publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 52 start-page: 1286 year: 2016 end-page: 1305 article-title: Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow publication-title: Water Resources Research – volume: 59 start-page: 788 year: 2007 end-page: 796 article-title: Release of CO and CH from small wetland lakes in western Siberia publication-title: Tellus Series B – volume: 103 start-page: 29005 year: 1998 end-page: 29013 article-title: A CH emission estimate for the Kuparuk River basin, Alaska publication-title: Journal of Geophysical Research‐Atmospheres – volume: 23 start-page: 3121 year: 2017 end-page: 3138 article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide publication-title: Global Change Biology – volume: 3 start-page: 565 year: 2010 end-page: 584 article-title: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ‐WHyMe v1.3.1 publication-title: Geoscientific Model Development – volume: 13 start-page: 597 year: 2016 end-page: 608 article-title: Methane dynamics in the subarctic tundra: Combining stable isotope analyses, plot‐ and ecosystem‐scale flux measurements publication-title: Biogeosciences – volume: 18 start-page: 1428 year: 2012 end-page: 1440 article-title: Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model publication-title: Global Change Biology – volume: 9 start-page: 930 year: 2003 end-page: 941 article-title: Spatial variation in regional CO exchange for the Kuparuk River Basin, Alaska over the summer growing season publication-title: Global Change Biology – volume: 23 start-page: GB3014 year: 2009 article-title: Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes publication-title: Global Biogeochemical Cycles – volume: 251 start-page: 298 year: 1991 end-page: 301 article-title: Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets publication-title: Science – volume: 14 start-page: 740 year: 2007 end-page: 756 article-title: Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada publication-title: Global Change Biology – volume: 87 start-page: 51 year: 2008 end-page: 73 article-title: Future changes in vegetation and ecosystem function of the Barents Region publication-title: Climatic Change – volume: 9 start-page: 3185 year: 2012 end-page: 3204 article-title: An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions publication-title: Biogeosciences – volume: 105 start-page: 4369 year: 2000 end-page: 4384 article-title: A process‐oriented model of N O and NO emissions from forest soils: 1. Model development publication-title: Journal of Geophysical Research: Atmospheres – volume: 456 start-page: 628 year: 2008 end-page: U658 article-title: Large tundra methane burst during onset of freezing publication-title: Nature – volume: 19 start-page: 2853 year: 2013 end-page: 2866 article-title: Spatial variation in landscape‐level CO and CH fluxes from arctic coastal tundra: Influence from vegetation, wetness, and the thaw lake cycle publication-title: Global Change Biology – volume: 84 start-page: 910 year: 2006 end-page: 923 article-title: Fine‐scale vegetation distribution in a cool temperate peatland publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique – volume: 14 start-page: 1109 year: 2000 end-page: 1121 article-title: Interannual variability of net ecosystem CO exchange at a subarctic fen publication-title: Global Biogeochemical Cycles – volume: 122 start-page: 1471 year: 2017 end-page: 1485 article-title: Tundra is a consistent source of CO at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements publication-title: Journal of Geophysical Research: Biogeosciences – volume: 8 start-page: 034023 year: 2013 article-title: Tundra shrubification and tree‐line advance amplify arctic climate warming: Results from an individual‐based dynamic vegetation model publication-title: Environmental Research Letters – volume: 16 start-page: 267 year: 2005 end-page: 282 article-title: The Circumpolar Arctic vegetation map publication-title: Journal of Vegetation Science – volume: 31 start-page: L04501 year: 2004 article-title: Thawing sub‐arctic permafrost: Effects on vegetation and methane emissions publication-title: Geophysical Research Letters – year: 2008 – volume: 117 start-page: G02030 year: 2012 article-title: Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain publication-title: Journal of Geophysical Research: Biogeosciences – volume: 41 start-page: 281 year: 2012 end-page: 291 article-title: Modelling tundra vegetation response to recent arctic warming publication-title: Ambio – volume: 365 start-page: 1643 year: 2007 end-page: 1656 article-title: A catchment‐scale carbon and greenhouse gas budget of a subarctic landscape publication-title: Philosophical Transactions of the Royal Society a‐Mathematical Physical and Engineering Sciences – volume: 5 start-page: 1498 issue: 4 year: 2013 end-page: 1523 article-title: Water body distributions across scales: A remote sensing based comparison of three arctic tundra wetlands publication-title: Remote Sensing – volume: 113 start-page: 380 year: 2009 end-page: 391 article-title: Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions publication-title: Remote Sensing of Environment – volume: 7 start-page: 459 year: 2015 end-page: 483 article-title: Modeling methane emissions from arctic lakes: Model development and site‐level study publication-title: Journal of Advances in Modeling Earth Systems – volume: 10 start-page: 5139 year: 2013 end-page: 5158 article-title: Revisiting factors controlling methane emissions from high‐Arctic tundra publication-title: Biogeosciences – volume: 10 start-page: 437 year: 2013 end-page: 452 article-title: Carbon dioxide balance of subarctic tundra from plot to regional scales publication-title: Biogeosciences – volume: 8 start-page: 979 year: 2016 article-title: Land cover mapping in northern high latitude permafrost regions with satellite data: Achievements and remaining challenges publication-title: Remote Sensing – volume: 19 start-page: 589 year: 2013 end-page: 603 article-title: Environmental and physical controls on northern terrestrial methane emissions across permafrost zones publication-title: Global Change Biology – volume: 97 start-page: 16645 year: 1992 end-page: 16660 article-title: Methane emissions from tundra environments in the Yukon‐Kuskokwim Delta, Alaska publication-title: Journal of Geophysical Research‐Atmospheres – volume: 10 start-page: 172 year: 2007 end-page: 185 article-title: Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget publication-title: Ecosystems – volume: 108 start-page: 4695 year: 2003 article-title: A process‐based model for quantifying the impact of climate change on permafrost thermal regimes publication-title: Journal of Geophysical Research‐Atmospheres – volume: 18 start-page: GB1023 year: 2004 article-title: Carbon balance in East European tundra publication-title: Global Biogeochemical Cycles – volume: 116 start-page: G03024 year: 2011 article-title: High‐resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain. European Russian Arctic publication-title: Journal of Geophysical Research – volume: 6 start-page: 160 year: 2000 end-page: 173 article-title: A scaling approach for quantifying the net CO flux of the Kuparuk River Basin, Alaska publication-title: Global Change Biology – volume: 8 start-page: 20 year: 2015 end-page: 23 article-title: Net regional methane sink in High Arctic soils of northeast Greenland publication-title: Nature Geoscience – volume: 10 start-page: 621 year: 2001 end-page: 637 article-title: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space publication-title: Global Ecology and Biogeography – volume: 17 start-page: 1394 year: 2011 end-page: 1407 article-title: Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra publication-title: Global Change Biology – volume: 14 start-page: 8269 year: 2014 end-page: 8823 article-title: CarbonTracker‐CH4: An assimilation system for estimating emissions of atmospheric methane publication-title: Atmospheric Chemistry and Physics – volume: 9 start-page: 1227 year: 2017 article-title: Upscaling CH fluxes using high‐resolution imagery in Arctic tundra ecosystems publication-title: Remote Sensing – volume: 108 start-page: 14769 year: 2011 end-page: 14774 article-title: Permafrost carbon‐climate feedbacks accelerate global warming publication-title: Proceedings of the National Academy of Sciences – volume: 39 start-page: L03501 year: 2012 article-title: Net carbon accumulation of a high‐latitude permafrost palsa mire similar to permafrost‐free peatlands publication-title: Geophysical Research Letters – volume: 17 start-page: 2781 year: 2011 end-page: 2802 article-title: Aircraft‐derived regional scale CO fluxes from vegetated drained thaw‐lake basins and interstitial tundra on the Arctic Coastal Plain of Alaska publication-title: Global Change Biology – volume: 26 start-page: GB2026 year: 2012 article-title: Spatial upscaling using thematic maps: An analysis of uncertainties in permafrost soil carbon estimates publication-title: Global Biogeochemical Cycles – volume: 17 start-page: 2601 year: 2011 end-page: 2614 article-title: Hot spots for nitrous oxide emissions found in different types of permafrost peatlands publication-title: Global Change Biology – volume: 10 start-page: 095009 year: 2015 article-title: Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004 publication-title: Environmental Research Letters – year: 2013 – ident: e_1_2_6_18_1 doi: 10.1038/ngeo2305 – ident: e_1_2_6_58_1 doi: 10.1088/1748-9326/10/9/095009 – ident: e_1_2_6_51_1 doi: 10.1111/j.1654-1103.2005.tb02365.x – ident: e_1_2_6_28_1 doi: 10.1038/nature07464 – ident: e_1_2_6_20_1 doi: 10.1073/pnas.1103910108 – ident: e_1_2_6_39_1 doi: 10.1029/98JD00993 – ident: e_1_2_6_52_1 doi: 10.1029/2008GB003412 – ident: e_1_2_6_29_1 doi: 10.5194/bg-10-5139-2013 – ident: e_1_2_6_43_1 doi: 10.1111/gcb.12247 – ident: e_1_2_6_4_1 doi: 10.5194/acp-14-8269-2014 – volume-title: R: A language and environment for statistical computing year: 2008 ident: e_1_2_6_47_1 – ident: e_1_2_6_59_1 doi: 10.1111/j.1365-2486.2011.02433.x – ident: e_1_2_6_48_1 doi: 10.1016/j.jag.2013.05.010 – ident: e_1_2_6_31_1 doi: 10.1007/s13280-012-0306-1 – ident: e_1_2_6_21_1 doi: 10.1002/2015WR018057 – ident: e_1_2_6_45_1 doi: 10.1002/2014MS000344 – ident: e_1_2_6_32_1 doi: 10.3390/rs5041498 – ident: e_1_2_6_2_1 doi: 10.1029/91JD00610 – ident: e_1_2_6_14_1 doi: 10.1029/2003GB002054 – ident: e_1_2_6_6_1 doi: 10.1002/2016JG003671 – ident: e_1_2_6_19_1 doi: 10.1126/science.251.4991.298 – ident: e_1_2_6_56_1 doi: 10.1088/1748-9326/8/3/034023 – ident: e_1_2_6_8_1 doi: 10.1098/rsta.2007.2035 – ident: e_1_2_6_10_1 doi: 10.3390/rs9121227 – ident: e_1_2_6_34_1 doi: 10.1111/j.1365-2486.2010.02303.x – ident: e_1_2_6_3_1 doi: 10.3390/rs8120979 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-2486.2011.02442.x – ident: e_1_2_6_46_1 doi: 10.1111/gcb.14137 – ident: e_1_2_6_44_1 doi: 10.1002/2017MS001028 – ident: e_1_2_6_11_1 doi: 10.1007/s10021-016-0085-9 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2486.2007.01529.x – ident: e_1_2_6_41_1 doi: 10.1016/j.rse.2008.10.013 – ident: e_1_2_6_49_1 doi: 10.1111/gcb.13563 – ident: e_1_2_6_7_1 doi: 10.1029/2003GL018680 – ident: e_1_2_6_26_1 doi: 10.5194/bg-10-437-2013 – ident: e_1_2_6_30_1 doi: 10.5194/bg-9-3185-2012 – ident: e_1_2_6_38_1 doi: 10.1111/gcb.12071 – ident: e_1_2_6_36_1 doi: 10.1046/j.1365-2486.2000.06018.x – ident: e_1_2_6_42_1 doi: 10.1046/j.1466-822X.2001.t01-1-00256.x – ident: e_1_2_6_25_1 doi: 10.5194/bg-13-597-2016 – ident: e_1_2_6_17_1 doi: 10.1029/2010JG001606 – ident: e_1_2_6_57_1 doi: 10.1111/j.1365-2486.2011.02587.x – ident: e_1_2_6_35_1 doi: 10.1890/06-0649 – ident: e_1_2_6_55_1 doi: 10.1029/2002JD003354 – volume-title: Climate change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. year: 2013 ident: e_1_2_6_13_1 – ident: e_1_2_6_54_1 doi: 10.1007/s10584-007-9342-4 – ident: e_1_2_6_16_1 doi: 10.1029/2011JG001873 – ident: e_1_2_6_12_1 doi: 10.1029/1999GB001243 – ident: e_1_2_6_24_1 doi: 10.1029/1999JD900949 – ident: e_1_2_6_22_1 doi: 10.1080/15230430.2001.12003417 – ident: e_1_2_6_40_1 doi: 10.1111/j.1600-0889.2007.00301.x – ident: e_1_2_6_15_1 doi: 10.1029/2011GB004154 – volume-title: Climate change 2013: The physical science basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_33_1 – volume: 84 start-page: 910 year: 2006 ident: e_1_2_6_5_1 article-title: Fine‐scale vegetation distribution in a cool temperate peatland publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique – ident: e_1_2_6_9_1 doi: 10.1007/s10021-006-9013-8 – ident: e_1_2_6_50_1 doi: 10.1046/j.1365-2486.2003.00639.x – ident: e_1_2_6_53_1 doi: 10.5194/gmd-3-565-2010 – ident: e_1_2_6_37_1 doi: 10.1029/2011GL050355 |
SSID | ssj0003206 |
Score | 2.495215 |
Snippet | Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to... Abstract Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes... |
SourceID | swepub osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5188 |
SubjectTerms | Annual variations Arctic region Arctic Regions Atmospheric models Biogeochemistry Carbon Carbon Cycle Carbon dioxide Carbon Dioxide - analysis Classification Earth and Related Environmental Sciences Ecosystem ecosystem modeling Ecosystems Emissions Fens Fluxes Geovetenskap och miljövetenskap Geovetenskap och relaterad miljövetenskap greenhouse gas emissions Heterogeneity highlands Land cover Landscape landscapes lichens Methane Methane - analysis Natural Sciences Naturgeografi Naturvetenskap net ecosystem CO exchange net ecosystem CO2 exchange Peat peatland Permafrost Physical Geography regional carbon balance Resolution Russia Soil Taiga & tundra temporal variation Temporal variations Tundra Uptake Wetlands Willow |
Title | Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14421 https://www.ncbi.nlm.nih.gov/pubmed/30101501 https://www.proquest.com/docview/2122249966 https://www.proquest.com/docview/2087996564 https://www.proquest.com/docview/2176376610 https://www.osti.gov/biblio/1469229 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162106 https://lup.lub.lu.se/record/044df730-3a5f-4641-a15e-fce16a4f0bc0 oai:portal.research.lu.se:publications/044df730-3a5f-4641-a15e-fce16a4f0bc0 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA7loOCL2tPqtlWiqPTBLZvd7N4dPtXzahHqQ2m1iBCSbNIWj91jfwj6D_hvO5PsbVs5pfiwsMd-F7JkMvlmM_OFkBcsG2lmOAuVVnnIbRaHyspJaPQ4l1lkeGqx3vnoY3Z4yj-cpWdr5M2yFsbrQ_Qf3HBmOH-NE1yq-tokP9cKdyZdETnmaiEhOr6Sjkpid64mS1IOroYlnaoQZvH0_7yxFg1KmFOreGYvInqTv7oF6OAe-brsus87-bbXNmpP__xD1fE_3-0-udsRU7rvLWmDrJliSNb9UZU_hmRzdlURB7DOJdRDEhwB7S4rB6Ov6HR-CRzY_XpAfp20RV5J6uqJMdOKXmD2TQlGa4D9v6ZF2VAUrKi8NCr9DpG7Fw6Hh10WfU2Bo9LcaJkDAg-SwOCBalmpsqAKUzO1gVYc7LMXfqDHbY3VofA6WAP2kJwezE6mh2F38kOokZ-FHDNETZ6D89C4UQoskRnLYzAfncZW6cgAdUozazMJBEjGY5TRl7kFdyTHgN8kg6IszGNCcxZLq5HXpJxrIyUwTAV-ymgFzNGYgOwubUDoThYdT-eYi2V4BIMh3GAE5HkPXXgtkFWgbTQkAQQGVXg1pivpBiOsSRxPArKztC_ROYtaAHsAIoWBZ0Ce9Y9hmuPejSxM2QImGo8AkWb8HxgGi8UICFcUkEfedvt-JqglmEbQvZfemPsnqC_-7vLTviirc1G3gmUxi6AnsxW4ebuAS8ElaiMiznMLK4RIZGoFzzgTkqVGWG1YJrmNYJwC8mVFOz60FJ2e1UXX3uLah-pbNr7rZtHfR0O8n751N1u3h26TO8CKx77gdIcMmqo1T4B5NuqpczG_AbZMgsY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIgQv_CgMwgYYBGgPZIpTJ20lXkbXUWDdw9TBhIQs27G3iSqpkgYJ_gH-be7iJNtQQRMPkVL5ajny3fk7--4zIS9Y3NfMcOYrrRKf2zj0lZVD3-hBIuPA8MhivfP0IJ4c8Q_H0fEaedPUwjh-iHbDDS2j8tdo4LghfcHKT7TCo0msIr-GN3qjWe4enpNH9cLqZk3Wizg4G9areYUwj6f966XVqJOBVa1Cmi2N6GUEWy1Be7fJ12bwLvPk23a5VNv65x-8jv_7dXfIrRqb0h2nTHfJmkm75Lq7rfJHl6yPz4viQKz2CkWXeFNA3lleidFXdDQ_Axhc_bpHfs3KNMklrUqKMdmKnmICTgZ6ayAAeE3TbEmRsyJ37Kj0OwTvjjscGutE-oICTKWJ0TIBCbxLAuMHqmWuspQqzM7UBnqpxD477gd6WBZYIAqfg2Vg98nR3ng2mvj15Q--Rojmc0wSNUkC_kPjWSkARWYsD0GDdBRapQMD6CmKrY0lYCAZDpBJXyYWPJIcgPw66aRZah4SmrBQWo3QJuJcGylBVxS4KqMVgEdjPLLVKIHQNTM6XtAxF02EBJMhqsnwyPNWdOHoQFYJbaAmCcAwSMSrMWNJLzHIGobh0CObjYKJ2l8UAgAEYCmMPT3yrG0GS8fjG5marASZYNAHiSjm_5BhsF70AXMFHnnglLcdZw_pBKMAhvfSaXPbghTju2efdkSWn4iiFCwOWQAjGa-Qm5cLeBQ8ojAi4DyxsEiInoys4DFnQrLICKsNiyW3AcyTR76s6MdFl6KmtDqt-1tc2Ku-YudblRn9fTbEu9Hb6uXR1UWfkhuT2XRf7L8_-LhBbgJIHrj6003SWealeQxAdKmeVP7mN4gbht8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIhAvXAqDsAEGAdoDmeLUyVrxNHphXDahaYMJIVm2Y28TVVIlDRL8Af4259hptqGCJh4ipcpXy5GPj78Tn_OZkGcs3dLMcBYqrbKQ2zQOlZWD0Oh-JtPI8MRivfPuXrpzyN8dJUcr5NWiFsbrQ7Qf3HBmOH-NE3yW2XOT_Fgr3JnEIvIrPI36GHmN9s-0o3qxO1iT9RIOvob1GlkhTONp_3phMeoUMKmWEc1WRfQigXUr0OQm-brou088-bZZz9Wm_vmHrON_vtwtcqNhpnTbm9JtsmLyLrnqz6r80SWr47OSOIA1PqHqkmAXeHdROhh9QYfTUyDB7tcd8uugzrNSUldQjKlW9ATTbwqwWgP0_yXNizlFxYrSa6PS7xC6e-VweNik0VcUSCrNjJYZIPAkCYweqJalKnKqMDdTG2jFwT575Qe6X1dYHgqvg0Vgd8nhZHww3Ambox9CjQQt5JgiarIMvIfGnVKgicxYHoP96CS2SkcGuFOSWptKYEAy7qOOvsws-CPZB_wq6eRFbu4TmrFYWo3EJuFcGymBYipwVEYroI7GBGRjYQNCN7roeDzHVCziIxgM4QYjIE9b6MyLgSwDraEhCWAwKMOrMV9JzzHEGsTxICDrC_sSjbeoBNAHYFIYeQbkSfsY5jlu3sjcFDVgwMIBkaT8HxgGq8UWMK4oIPe87bb97KGYYBJB9557Y26foMD46PTTtijKY1HVgqUxi6An4yW4aT2DS8ElKiMizjMLS4ToycQKnnImJEuMsNqwVHIbwTgF5MuSdnxsKRpBq5Omvdm5L9WXbHzDzaK_j4Z4M3ztbh5cHvqYXPs4mogPb_fer5HrwJD7vvh0nXTmZW0eAgudq0fO2_wGuLeFlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tundra+landscape+heterogeneity%2C+not+interannual+variability%2C+controls+the+decadal+regional+carbon+balance+in+the+Western+Russian+Arctic&rft.jtitle=Global+change+biology&rft.au=Treat%2C+Claire+C.&rft.au=Marushchak%2C+Maija+E.&rft.au=Voigt%2C+Carolina&rft.au=Zhang%2C+Yu&rft.date=2018-11-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=24&rft.issue=11&rft.spage=5188&rft.epage=5204&rft_id=info:doi/10.1111%2Fgcb.14421&rft.externalDBID=10.1111%252Fgcb.14421&rft.externalDocID=GCB14421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |