Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic

Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arcti...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 24; no. 11; pp. 5188 - 5204
Main Authors Treat, Claire C., Marushchak, Maija E., Voigt, Carolina, Zhang, Yu, Tan, Zeli, Zhuang, Qianlai, Virtanen, Tarmo A., Räsänen, Aleksi, Biasi, Christina, Hugelius, Gustaf, Kaverin, Dmitry, Miller, Paul A., Stendel, Martin, Romanovsky, Vladimir, Rivkin, Felix, Martikainen, Pertti J., Shurpali, Narasinha J.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.11.2018
Wiley-Blackwell
Subjects
Online AccessGet full text
ISSN1354-1013
1365-2486
1365-2486
DOI10.1111/gcb.14421

Cover

Loading…
Abstract Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. We modeled the regional carbon balance of sub‐Arctic tundra over a decade in a region with lakes, wetlands, and uplands using process‐based biogeochemical models. Interannual variability over the decade was relatively small in comparison with variability among the land cover types. Wetlands were hot spots for C cycling in this sub‐Arctic tundra ecosystem. Capturing the relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites.
AbstractList Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006–2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100‐km2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems. We modeled the regional carbon balance of sub‐Arctic tundra over a decade in a region with lakes, wetlands, and uplands using process‐based biogeochemical models. Interannual variability over the decade was relatively small in comparison with variability among the land cover types. Wetlands were hot spots for C cycling in this sub‐Arctic tundra ecosystem. Capturing the relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites.
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO ) and methane (CH ) fluxes for the dominant land cover types in a ~100-km sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO fluxes ranged from -300 g C m  year [net uptake] in a willow fen to 3 g C m  year [net source] in dry lichen tundra. Modeled annual CH emissions ranged from -0.2 to 22.3 g C m  year at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO across most land cover types but a net source of CH to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH flux relative to high-resolution classification and smaller (10%) overestimation of regional CO uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes for the dominant land cover types in a ~100‐km 2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO 2 fluxes ranged from −300 g C m −2  year −1 [net uptake] in a willow fen to 3 g C m −2  year −1 [net source] in dry lichen tundra. Modeled annual CH 4 emissions ranged from −0.2 to 22.3 g C m −2  year −1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO 2 across most land cover types but a net source of CH 4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH 4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO 2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Abstract Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes for the dominant land cover types in a ~100‐km 2 sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO 2 fluxes ranged from −300 g C m −2  year −1 [net uptake] in a willow fen to 3 g C m −2  year −1 [net source] in dry lichen tundra. Modeled annual CH 4 emissions ranged from −0.2 to 22.3 g C m −2  year −1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO 2 across most land cover types but a net source of CH 4 to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH 4 flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO 2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2 year-1 [net uptake] in a willow fen to 3 g C m-2 year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2 year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2 year-1 [net uptake] in a willow fen to 3 g C m-2 year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2 year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a similar to 100-km(2) sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from --300 g C m(-2) year(-1) [net uptake] in a willow fen to 3 g Cm-2 year(-1) [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g Cm-2 year(-1) at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO₂) and methane (CH₄) fluxes for the dominant land cover types in a ~100‐km² sub‐Arctic tundra region in northeast European Russia for the period of 2006–2015 using process‐based biogeochemical models. Modeled net annual CO₂ fluxes ranged from −300 g C m⁻² year⁻¹ [net uptake] in a willow fen to 3 g C m⁻² year⁻¹ [net source] in dry lichen tundra. Modeled annual CH₄ emissions ranged from −0.2 to 22.3 g C m⁻² year⁻¹ at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high‐resolution land cover classification, the region was a net sink of atmospheric CO₂ across most land cover types but a net source of CH₄ to the atmosphere due to high emissions from permafrost‐free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH₄ flux relative to high‐resolution classification and smaller (10%) overestimation of regional CO₂ uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Author Kaverin, Dmitry
Biasi, Christina
Shurpali, Narasinha J.
Treat, Claire C.
Zhang, Yu
Miller, Paul A.
Romanovsky, Vladimir
Tan, Zeli
Rivkin, Felix
Virtanen, Tarmo A.
Martikainen, Pertti J.
Zhuang, Qianlai
Marushchak, Maija E.
Voigt, Carolina
Stendel, Martin
Hugelius, Gustaf
Räsänen, Aleksi
Author_xml – sequence: 1
  givenname: Claire C.
  orcidid: 0000-0002-1225-8178
  surname: Treat
  fullname: Treat, Claire C.
  email: claire.treat@uef.fi, claire.treat@unh.edu
  organization: University of Eastern Finland
– sequence: 2
  givenname: Maija E.
  surname: Marushchak
  fullname: Marushchak, Maija E.
  organization: University of Eastern Finland
– sequence: 3
  givenname: Carolina
  orcidid: 0000-0001-8589-1428
  surname: Voigt
  fullname: Voigt, Carolina
  organization: University of Eastern Finland
– sequence: 4
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Natural Resources Canada
– sequence: 5
  givenname: Zeli
  orcidid: 0000-0001-5958-2584
  surname: Tan
  fullname: Tan, Zeli
  organization: Purdue University
– sequence: 6
  givenname: Qianlai
  surname: Zhuang
  fullname: Zhuang, Qianlai
  organization: Purdue University
– sequence: 7
  givenname: Tarmo A.
  surname: Virtanen
  fullname: Virtanen, Tarmo A.
  organization: University of Helsinki
– sequence: 8
  givenname: Aleksi
  surname: Räsänen
  fullname: Räsänen, Aleksi
  organization: Norwegian University of Science and Technology
– sequence: 9
  givenname: Christina
  orcidid: 0000-0002-7413-3354
  surname: Biasi
  fullname: Biasi, Christina
  organization: University of Eastern Finland
– sequence: 10
  givenname: Gustaf
  surname: Hugelius
  fullname: Hugelius, Gustaf
  organization: Stockholm University
– sequence: 11
  givenname: Dmitry
  surname: Kaverin
  fullname: Kaverin, Dmitry
  organization: SC RAS
– sequence: 12
  givenname: Paul A.
  surname: Miller
  fullname: Miller, Paul A.
  organization: Lund University
– sequence: 13
  givenname: Martin
  surname: Stendel
  fullname: Stendel, Martin
  organization: Danish Meteorological Institute
– sequence: 14
  givenname: Vladimir
  surname: Romanovsky
  fullname: Romanovsky, Vladimir
  organization: SB RAS
– sequence: 15
  givenname: Felix
  surname: Rivkin
  fullname: Rivkin, Felix
  organization: GIS
– sequence: 16
  givenname: Pertti J.
  surname: Martikainen
  fullname: Martikainen, Pertti J.
  organization: University of Eastern Finland
– sequence: 17
  givenname: Narasinha J.
  surname: Shurpali
  fullname: Shurpali, Narasinha J.
  organization: University of Eastern Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30101501$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1469229$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162106$$DView record from Swedish Publication Index
https://lup.lub.lu.se/record/044df730-3a5f-4641-a15e-fce16a4f0bc0$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/044df730-3a5f-4641-a15e-fce16a4f0bc0$$DView record from Swedish Publication Index
BookMark eNqNks1u1DAQgCNURH_gwAugCC4gdVvbcZzscVmgIFVCQgWOo4kz2XWVtRc7oeoT8NrM_pRDRQWRrFj2N589njnODnzwlGXPpTiT_J0vbHMmtVbyUXYkC1NOlK7NwWZe6okUsjjMjlO6FkIUSpgn2WEheLUU8ij7dTX6NmLeo2-TxTXlSxoohgV5csPtae7DkDvPS-j9iH3-E6PDxvXbTRv8EEOf8mFJeUsWWyYiLVzwPLEYm-DzBlluiS1b7Dsltvn8y5iSQ5_Poh2cfZo97rBP9Gz_P8m-fnh_Nf84ufx88Wk-u5xYo7Wc6EqKKbVtNS2sKIwuSiWp06pFY0vVNVaQMGVpus5gIStUtanLGttO1zXWzJ9kuPOmG1qPDayjW2G8hYAO1iEO2EOkRBjtEvoREgFTvbM4cE4JhNZtVxUCCiw70EZLQFkSdJakQd0JvgGfcfngGf245tHs3f-pO31Q9859m0GIC0gjSKOkMIy_3OEhDQ6SdQPZJRfKkx1AajNVasrQ6x20juHHyBWBlUuWeq4UhTGBkpUpKmOk-Dcq6mo6NeX2cV_dQ6_DGLkVNkKllGZuc8EXe2psVtT-yeeuKRk43wE2hpQidcBJbAswRHQ9SAGbtgdue9i2PUe8uRdxJ_0bu7ffuJ5uHwbhYv52F_EbZJwRig
CitedBy_id crossref_primary_10_1111_gcb_15659
crossref_primary_10_1029_2019JG005242
crossref_primary_10_1007_s11368_024_03885_9
crossref_primary_10_1038_s43247_024_01583_5
crossref_primary_10_1029_2023GB007969
crossref_primary_10_3390_nitrogen3030031
crossref_primary_10_3390_atmos13091402
crossref_primary_10_5194_bg_20_4069_2023
crossref_primary_10_1016_j_geoderma_2021_115302
crossref_primary_10_1016_j_scitotenv_2024_171914
crossref_primary_10_1029_2020JG005872
crossref_primary_10_5194_bg_21_335_2024
crossref_primary_10_1109_ACCESS_2023_3300967
crossref_primary_10_1007_s40641_024_00194_8
crossref_primary_10_1016_j_agrformet_2021_108451
crossref_primary_10_1088_1748_9326_ab5e26
crossref_primary_10_3389_fenvs_2022_939238
crossref_primary_10_3389_fenvs_2024_1460155
crossref_primary_10_5194_bg_19_3151_2022
crossref_primary_10_1038_s41467_019_09149_2
crossref_primary_10_5194_bg_16_255_2019
crossref_primary_10_1109_TGRS_2021_3096999
crossref_primary_10_1038_s41467_021_22452_1
crossref_primary_10_1080_01431161_2021_1897187
crossref_primary_10_1002_lno_11682
crossref_primary_10_3390_soilsystems8040120
crossref_primary_10_1016_j_scitotenv_2024_173887
crossref_primary_10_5194_bg_20_2049_2023
crossref_primary_10_1080_15481603_2020_1829377
crossref_primary_10_1002_eap_2499
crossref_primary_10_1128_AEM_01339_21
crossref_primary_10_1029_2022JG006864
crossref_primary_10_1016_j_rse_2019_05_026
crossref_primary_10_1038_s43017_021_00230_3
crossref_primary_10_1016_j_rse_2024_114291
crossref_primary_10_5194_hess_28_2421_2024
crossref_primary_10_5194_bg_19_1225_2022
crossref_primary_10_1029_2020GB006922
crossref_primary_10_1088_1748_9326_ad6019
crossref_primary_10_1007_s40641_020_00169_5
crossref_primary_10_1016_j_scitotenv_2021_148379
crossref_primary_10_1088_1748_9326_abd3d0
crossref_primary_10_3390_w11030574
crossref_primary_10_1093_ismeco_ycaf009
crossref_primary_10_1029_2019GL085707
crossref_primary_10_1029_2022GB007524
crossref_primary_10_3390_w14172597
crossref_primary_10_1029_2021JG006774
crossref_primary_10_1080_00934690_2020_1713435
crossref_primary_10_1038_s43017_020_0063_9
crossref_primary_10_3390_rs14225861
crossref_primary_10_3390_rs16081345
crossref_primary_10_1029_2020GB006678
crossref_primary_10_5194_tc_17_5283_2023
crossref_primary_10_3390_rs10091498
Cites_doi 10.1038/ngeo2305
10.1088/1748-9326/10/9/095009
10.1111/j.1654-1103.2005.tb02365.x
10.1038/nature07464
10.1073/pnas.1103910108
10.1029/98JD00993
10.1029/2008GB003412
10.5194/bg-10-5139-2013
10.1111/gcb.12247
10.5194/acp-14-8269-2014
10.1111/j.1365-2486.2011.02433.x
10.1016/j.jag.2013.05.010
10.1007/s13280-012-0306-1
10.1002/2015WR018057
10.1002/2014MS000344
10.3390/rs5041498
10.1029/91JD00610
10.1029/2003GB002054
10.1002/2016JG003671
10.1126/science.251.4991.298
10.1088/1748-9326/8/3/034023
10.1098/rsta.2007.2035
10.3390/rs9121227
10.1111/j.1365-2486.2010.02303.x
10.3390/rs8120979
10.1111/j.1365-2486.2011.02442.x
10.1111/gcb.14137
10.1002/2017MS001028
10.1007/s10021-016-0085-9
10.1111/j.1365-2486.2007.01529.x
10.1016/j.rse.2008.10.013
10.1111/gcb.13563
10.1029/2003GL018680
10.5194/bg-10-437-2013
10.5194/bg-9-3185-2012
10.1111/gcb.12071
10.1046/j.1365-2486.2000.06018.x
10.1046/j.1466-822X.2001.t01-1-00256.x
10.5194/bg-13-597-2016
10.1029/2010JG001606
10.1111/j.1365-2486.2011.02587.x
10.1890/06-0649
10.1029/2002JD003354
10.1007/s10584-007-9342-4
10.1029/2011JG001873
10.1029/1999GB001243
10.1029/1999JD900949
10.1080/15230430.2001.12003417
10.1111/j.1600-0889.2007.00301.x
10.1029/2011GB004154
10.1007/s10021-006-9013-8
10.1046/j.1365-2486.2003.00639.x
10.5194/gmd-3-565-2010
10.1029/2011GL050355
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd
CorporateAuthor Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Centrum för miljö- och klimatvetenskap (CEC)
Institutionen för naturgeografi och ekosystemvetenskap
MERGE: ModElling the Regional and Global Earth system
Strategiska forskningsområden (SFO)
Dept of Physical Geography and Ecosystem Science
Strategic research areas (SRA)
eSSENCE: The e-Science Collaboration
Profilområden och andra starka forskningsmiljöer
Centre for Environmental and Climate Science (CEC)
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: MERGE: ModElling the Regional and Global Earth system
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Institutionen för naturgeografi och ekosystemvetenskap
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Dept of Physical Geography and Ecosystem Science
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Centre for Environmental and Climate Science (CEC)
– name: Profile areas and other strong research environments
– name: eSSENCE: The e-Science Collaboration
– name: Centrum för miljö- och klimatvetenskap (CEC)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
OTOTI
ADTPV
AOWAS
DG7
D95
DOI 10.1111/gcb.14421
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Stockholms universitet
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


MEDLINE
CrossRef

MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 5204
ExternalDocumentID oai_portal_research_lu_se_publications_044df730_3a5f_4641_a15e_fce16a4f0bc0
oai_lup_lub_lu_se_044df730_3a5f_4641_a15e_fce16a4f0bc0
oai_DiVA_org_su_162106
1469229
30101501
10_1111_gcb_14421
GCB14421
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Arctic Regions
Russia
Arctic region
GeographicLocations_xml – name: Arctic Regions
– name: Russia
– name: Arctic region
GrantInformation_xml – fundername: University of Eastern Finland
  funderid: 186
– fundername: Sixth Framework Programme
  funderid: CARBO-North #036993
– fundername: Academy of Finland
– fundername: EU 6th Framework Programme
  funderid: 036993
– fundername: Itä‐Suomen Yliopisto
– fundername: Russian Science Foundation
  funderid: 16-17-00102
– fundername: National Aeronautics and Space Administration
  funderid: Arctic Boreal Vulnerability Experiment (ABoVE); NASA-NNX09AI26G
– fundername: FP7
  funderid: 282700
– fundername: Biotieteiden ja Ympäristön Tutkimuksen Toimikunta
  funderid: CAPTURE
– fundername: NordForsk
  funderid: COUP (Project ID 70426)
– fundername: NASA
  grantid: Arctic Boreal Vulnerability Experiment (ABoVE)
– fundername: NASA
  grantid: NASA-NNX09AI26G
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ADTPV
AOWAS
DG7
D95
ID FETCH-LOGICAL-c6441-47109edd793c03643521ef42da6c52fbc0e06556ff6a317a286858adf488a8643
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Aug 21 07:33:43 EDT 2025
Thu Jul 03 05:24:19 EDT 2025
Thu Aug 21 06:44:55 EDT 2025
Mon Sep 11 05:25:21 EDT 2023
Fri Jul 11 18:34:00 EDT 2025
Fri Jul 11 05:18:47 EDT 2025
Fri Jul 25 19:43:06 EDT 2025
Mon Jul 21 05:59:16 EDT 2025
Tue Jul 01 03:53:00 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Wed Jan 22 16:24:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords regional carbon balance
net ecosystem CO2 exchange
permafrost
peatland
methane
Tundra
Russia
ecosystem modeling
Language English
License 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6441-47109edd793c03643521ef42da6c52fbc0e06556ff6a317a286858adf488a8643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
FG02-08ER64599
ORCID 0000-0001-8589-1428
0000-0002-1225-8178
0000-0001-5958-2584
0000-0002-7413-3354
0000000185891428
0000000159582584
0000000212258178
0000000274133354
OpenAccessLink https://www.osti.gov/biblio/1469229
PMID 30101501
PQID 2122249966
PQPubID 30327
PageCount 17
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_044df730_3a5f_4641_a15e_fce16a4f0bc0
swepub_primary_oai_lup_lub_lu_se_044df730_3a5f_4641_a15e_fce16a4f0bc0
swepub_primary_oai_DiVA_org_su_162106
osti_scitechconnect_1469229
proquest_miscellaneous_2176376610
proquest_miscellaneous_2087996564
proquest_journals_2122249966
pubmed_primary_30101501
crossref_citationtrail_10_1111_gcb_14421
crossref_primary_10_1111_gcb_14421
wiley_primary_10_1111_gcb_14421_GCB14421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: United Kingdom
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References 2011; 116
2000; 6
2014; 27
2009; 113
2012; 18
1992; 97
2011; 17
2013; 8
2013; 5
2007; 77
2017; 9
2013; 19
2004; 31
2000; 14
2013; 10
2003; 9
2014; 14
2012; 26
2017; 122
2010; 3
2001; 10
2009; 23
2007; 365
2017; 20
1991; 251
2017; 23
2015; 10
2008
2016; 52
2012; 39
2007; 10
2015; 8
2015; 7
2007; 14
2016; 13
2007; 59
2018; 24
2003; 108
2011; 108
2006; 84
2004; 18
2000; 105
2008; 87
2008; 456
1998; 103
2013
2001; 33
2005; 16
2012; 117
2016; 8
2012; 41
2012; 9
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Bubier J. L. (e_1_2_6_5_1) 2006; 84
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
R Development Core Team (e_1_2_6_47_1) 2008
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Hartmann D. L. (e_1_2_6_13_1) 2013
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
Myhre G. (e_1_2_6_33_1) 2013
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 20
  start-page: 960
  year: 2017
  end-page: 974
  article-title: Long‐term release of carbon dioxide from Arctic tundra ecosystems in Alaska
  publication-title: Ecosystems
– volume: 33
  start-page: 149
  year: 2001
  end-page: 157
  article-title: Interannual variability in net ecosystem CO2 exchange at the arctic treeline
  publication-title: Arctic Antarctic and Alpine Research
– volume: 9
  start-page: 2190
  issue: 5
  year: 2017
  end-page: 2213
  article-title: Modeling CO emissions from Arctic lakes: Model development and site‐level study
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 77
  start-page: 221
  year: 2007
  end-page: 238
  article-title: Tundra CO fluxes in response to experimental warming across latitudinal and moisture gradients
  publication-title: Ecological Monographs
– volume: 24
  start-page: 3331
  year: 2018
  end-page: 3343
  article-title: Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems
  publication-title: Global Change Biology
– volume: 27
  start-page: 4
  year: 2014
  end-page: 12
  article-title: The fragmented nature of tundra landscape
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 52
  start-page: 1286
  year: 2016
  end-page: 1305
  article-title: Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow
  publication-title: Water Resources Research
– volume: 59
  start-page: 788
  year: 2007
  end-page: 796
  article-title: Release of CO and CH from small wetland lakes in western Siberia
  publication-title: Tellus Series B
– volume: 103
  start-page: 29005
  year: 1998
  end-page: 29013
  article-title: A CH emission estimate for the Kuparuk River basin, Alaska
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 23
  start-page: 3121
  year: 2017
  end-page: 3138
  article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide
  publication-title: Global Change Biology
– volume: 3
  start-page: 565
  year: 2010
  end-page: 584
  article-title: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ‐WHyMe v1.3.1
  publication-title: Geoscientific Model Development
– volume: 13
  start-page: 597
  year: 2016
  end-page: 608
  article-title: Methane dynamics in the subarctic tundra: Combining stable isotope analyses, plot‐ and ecosystem‐scale flux measurements
  publication-title: Biogeosciences
– volume: 18
  start-page: 1428
  year: 2012
  end-page: 1440
  article-title: Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model
  publication-title: Global Change Biology
– volume: 9
  start-page: 930
  year: 2003
  end-page: 941
  article-title: Spatial variation in regional CO exchange for the Kuparuk River Basin, Alaska over the summer growing season
  publication-title: Global Change Biology
– volume: 23
  start-page: GB3014
  year: 2009
  article-title: Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes
  publication-title: Global Biogeochemical Cycles
– volume: 251
  start-page: 298
  year: 1991
  end-page: 301
  article-title: Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets
  publication-title: Science
– volume: 14
  start-page: 740
  year: 2007
  end-page: 756
  article-title: Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada
  publication-title: Global Change Biology
– volume: 87
  start-page: 51
  year: 2008
  end-page: 73
  article-title: Future changes in vegetation and ecosystem function of the Barents Region
  publication-title: Climatic Change
– volume: 9
  start-page: 3185
  year: 2012
  end-page: 3204
  article-title: An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions
  publication-title: Biogeosciences
– volume: 105
  start-page: 4369
  year: 2000
  end-page: 4384
  article-title: A process‐oriented model of N O and NO emissions from forest soils: 1. Model development
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 456
  start-page: 628
  year: 2008
  end-page: U658
  article-title: Large tundra methane burst during onset of freezing
  publication-title: Nature
– volume: 19
  start-page: 2853
  year: 2013
  end-page: 2866
  article-title: Spatial variation in landscape‐level CO and CH fluxes from arctic coastal tundra: Influence from vegetation, wetness, and the thaw lake cycle
  publication-title: Global Change Biology
– volume: 84
  start-page: 910
  year: 2006
  end-page: 923
  article-title: Fine‐scale vegetation distribution in a cool temperate peatland
  publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique
– volume: 14
  start-page: 1109
  year: 2000
  end-page: 1121
  article-title: Interannual variability of net ecosystem CO exchange at a subarctic fen
  publication-title: Global Biogeochemical Cycles
– volume: 122
  start-page: 1471
  year: 2017
  end-page: 1485
  article-title: Tundra is a consistent source of CO at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 8
  start-page: 034023
  year: 2013
  article-title: Tundra shrubification and tree‐line advance amplify arctic climate warming: Results from an individual‐based dynamic vegetation model
  publication-title: Environmental Research Letters
– volume: 16
  start-page: 267
  year: 2005
  end-page: 282
  article-title: The Circumpolar Arctic vegetation map
  publication-title: Journal of Vegetation Science
– volume: 31
  start-page: L04501
  year: 2004
  article-title: Thawing sub‐arctic permafrost: Effects on vegetation and methane emissions
  publication-title: Geophysical Research Letters
– year: 2008
– volume: 117
  start-page: G02030
  year: 2012
  article-title: Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 41
  start-page: 281
  year: 2012
  end-page: 291
  article-title: Modelling tundra vegetation response to recent arctic warming
  publication-title: Ambio
– volume: 365
  start-page: 1643
  year: 2007
  end-page: 1656
  article-title: A catchment‐scale carbon and greenhouse gas budget of a subarctic landscape
  publication-title: Philosophical Transactions of the Royal Society a‐Mathematical Physical and Engineering Sciences
– volume: 5
  start-page: 1498
  issue: 4
  year: 2013
  end-page: 1523
  article-title: Water body distributions across scales: A remote sensing based comparison of three arctic tundra wetlands
  publication-title: Remote Sensing
– volume: 113
  start-page: 380
  year: 2009
  end-page: 391
  article-title: Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 459
  year: 2015
  end-page: 483
  article-title: Modeling methane emissions from arctic lakes: Model development and site‐level study
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 10
  start-page: 5139
  year: 2013
  end-page: 5158
  article-title: Revisiting factors controlling methane emissions from high‐Arctic tundra
  publication-title: Biogeosciences
– volume: 10
  start-page: 437
  year: 2013
  end-page: 452
  article-title: Carbon dioxide balance of subarctic tundra from plot to regional scales
  publication-title: Biogeosciences
– volume: 8
  start-page: 979
  year: 2016
  article-title: Land cover mapping in northern high latitude permafrost regions with satellite data: Achievements and remaining challenges
  publication-title: Remote Sensing
– volume: 19
  start-page: 589
  year: 2013
  end-page: 603
  article-title: Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
  publication-title: Global Change Biology
– volume: 97
  start-page: 16645
  year: 1992
  end-page: 16660
  article-title: Methane emissions from tundra environments in the Yukon‐Kuskokwim Delta, Alaska
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 10
  start-page: 172
  year: 2007
  end-page: 185
  article-title: Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget
  publication-title: Ecosystems
– volume: 108
  start-page: 4695
  year: 2003
  article-title: A process‐based model for quantifying the impact of climate change on permafrost thermal regimes
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 18
  start-page: GB1023
  year: 2004
  article-title: Carbon balance in East European tundra
  publication-title: Global Biogeochemical Cycles
– volume: 116
  start-page: G03024
  year: 2011
  article-title: High‐resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain. European Russian Arctic
  publication-title: Journal of Geophysical Research
– volume: 6
  start-page: 160
  year: 2000
  end-page: 173
  article-title: A scaling approach for quantifying the net CO flux of the Kuparuk River Basin, Alaska
  publication-title: Global Change Biology
– volume: 8
  start-page: 20
  year: 2015
  end-page: 23
  article-title: Net regional methane sink in High Arctic soils of northeast Greenland
  publication-title: Nature Geoscience
– volume: 10
  start-page: 621
  year: 2001
  end-page: 637
  article-title: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space
  publication-title: Global Ecology and Biogeography
– volume: 17
  start-page: 1394
  year: 2011
  end-page: 1407
  article-title: Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra
  publication-title: Global Change Biology
– volume: 14
  start-page: 8269
  year: 2014
  end-page: 8823
  article-title: CarbonTracker‐CH4: An assimilation system for estimating emissions of atmospheric methane
  publication-title: Atmospheric Chemistry and Physics
– volume: 9
  start-page: 1227
  year: 2017
  article-title: Upscaling CH fluxes using high‐resolution imagery in Arctic tundra ecosystems
  publication-title: Remote Sensing
– volume: 108
  start-page: 14769
  year: 2011
  end-page: 14774
  article-title: Permafrost carbon‐climate feedbacks accelerate global warming
  publication-title: Proceedings of the National Academy of Sciences
– volume: 39
  start-page: L03501
  year: 2012
  article-title: Net carbon accumulation of a high‐latitude permafrost palsa mire similar to permafrost‐free peatlands
  publication-title: Geophysical Research Letters
– volume: 17
  start-page: 2781
  year: 2011
  end-page: 2802
  article-title: Aircraft‐derived regional scale CO fluxes from vegetated drained thaw‐lake basins and interstitial tundra on the Arctic Coastal Plain of Alaska
  publication-title: Global Change Biology
– volume: 26
  start-page: GB2026
  year: 2012
  article-title: Spatial upscaling using thematic maps: An analysis of uncertainties in permafrost soil carbon estimates
  publication-title: Global Biogeochemical Cycles
– volume: 17
  start-page: 2601
  year: 2011
  end-page: 2614
  article-title: Hot spots for nitrous oxide emissions found in different types of permafrost peatlands
  publication-title: Global Change Biology
– volume: 10
  start-page: 095009
  year: 2015
  article-title: Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004
  publication-title: Environmental Research Letters
– year: 2013
– ident: e_1_2_6_18_1
  doi: 10.1038/ngeo2305
– ident: e_1_2_6_58_1
  doi: 10.1088/1748-9326/10/9/095009
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1654-1103.2005.tb02365.x
– ident: e_1_2_6_28_1
  doi: 10.1038/nature07464
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.1103910108
– ident: e_1_2_6_39_1
  doi: 10.1029/98JD00993
– ident: e_1_2_6_52_1
  doi: 10.1029/2008GB003412
– ident: e_1_2_6_29_1
  doi: 10.5194/bg-10-5139-2013
– ident: e_1_2_6_43_1
  doi: 10.1111/gcb.12247
– ident: e_1_2_6_4_1
  doi: 10.5194/acp-14-8269-2014
– volume-title: R: A language and environment for statistical computing
  year: 2008
  ident: e_1_2_6_47_1
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1365-2486.2011.02433.x
– ident: e_1_2_6_48_1
  doi: 10.1016/j.jag.2013.05.010
– ident: e_1_2_6_31_1
  doi: 10.1007/s13280-012-0306-1
– ident: e_1_2_6_21_1
  doi: 10.1002/2015WR018057
– ident: e_1_2_6_45_1
  doi: 10.1002/2014MS000344
– ident: e_1_2_6_32_1
  doi: 10.3390/rs5041498
– ident: e_1_2_6_2_1
  doi: 10.1029/91JD00610
– ident: e_1_2_6_14_1
  doi: 10.1029/2003GB002054
– ident: e_1_2_6_6_1
  doi: 10.1002/2016JG003671
– ident: e_1_2_6_19_1
  doi: 10.1126/science.251.4991.298
– ident: e_1_2_6_56_1
  doi: 10.1088/1748-9326/8/3/034023
– ident: e_1_2_6_8_1
  doi: 10.1098/rsta.2007.2035
– ident: e_1_2_6_10_1
  doi: 10.3390/rs9121227
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1365-2486.2010.02303.x
– ident: e_1_2_6_3_1
  doi: 10.3390/rs8120979
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-2486.2011.02442.x
– ident: e_1_2_6_46_1
  doi: 10.1111/gcb.14137
– ident: e_1_2_6_44_1
  doi: 10.1002/2017MS001028
– ident: e_1_2_6_11_1
  doi: 10.1007/s10021-016-0085-9
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2486.2007.01529.x
– ident: e_1_2_6_41_1
  doi: 10.1016/j.rse.2008.10.013
– ident: e_1_2_6_49_1
  doi: 10.1111/gcb.13563
– ident: e_1_2_6_7_1
  doi: 10.1029/2003GL018680
– ident: e_1_2_6_26_1
  doi: 10.5194/bg-10-437-2013
– ident: e_1_2_6_30_1
  doi: 10.5194/bg-9-3185-2012
– ident: e_1_2_6_38_1
  doi: 10.1111/gcb.12071
– ident: e_1_2_6_36_1
  doi: 10.1046/j.1365-2486.2000.06018.x
– ident: e_1_2_6_42_1
  doi: 10.1046/j.1466-822X.2001.t01-1-00256.x
– ident: e_1_2_6_25_1
  doi: 10.5194/bg-13-597-2016
– ident: e_1_2_6_17_1
  doi: 10.1029/2010JG001606
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-2486.2011.02587.x
– ident: e_1_2_6_35_1
  doi: 10.1890/06-0649
– ident: e_1_2_6_55_1
  doi: 10.1029/2002JD003354
– volume-title: Climate change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  year: 2013
  ident: e_1_2_6_13_1
– ident: e_1_2_6_54_1
  doi: 10.1007/s10584-007-9342-4
– ident: e_1_2_6_16_1
  doi: 10.1029/2011JG001873
– ident: e_1_2_6_12_1
  doi: 10.1029/1999GB001243
– ident: e_1_2_6_24_1
  doi: 10.1029/1999JD900949
– ident: e_1_2_6_22_1
  doi: 10.1080/15230430.2001.12003417
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1600-0889.2007.00301.x
– ident: e_1_2_6_15_1
  doi: 10.1029/2011GB004154
– volume-title: Climate change 2013: The physical science basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_6_33_1
– volume: 84
  start-page: 910
  year: 2006
  ident: e_1_2_6_5_1
  article-title: Fine‐scale vegetation distribution in a cool temperate peatland
  publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique
– ident: e_1_2_6_9_1
  doi: 10.1007/s10021-006-9013-8
– ident: e_1_2_6_50_1
  doi: 10.1046/j.1365-2486.2003.00639.x
– ident: e_1_2_6_53_1
  doi: 10.5194/gmd-3-565-2010
– ident: e_1_2_6_37_1
  doi: 10.1029/2011GL050355
SSID ssj0003206
Score 2.495215
Snippet Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to...
Abstract Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes...
SourceID swepub
osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5188
SubjectTerms Annual variations
Arctic region
Arctic Regions
Atmospheric models
Biogeochemistry
Carbon
Carbon Cycle
Carbon dioxide
Carbon Dioxide - analysis
Classification
Earth and Related Environmental Sciences
Ecosystem
ecosystem modeling
Ecosystems
Emissions
Fens
Fluxes
Geovetenskap och miljövetenskap
Geovetenskap och relaterad miljövetenskap
greenhouse gas emissions
Heterogeneity
highlands
Land cover
Landscape
landscapes
lichens
Methane
Methane - analysis
Natural Sciences
Naturgeografi
Naturvetenskap
net ecosystem CO exchange
net ecosystem CO2 exchange
Peat
peatland
Permafrost
Physical Geography
regional carbon balance
Resolution
Russia
Soil
Taiga & tundra
temporal variation
Temporal variations
Tundra
Uptake
Wetlands
Willow
Title Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14421
https://www.ncbi.nlm.nih.gov/pubmed/30101501
https://www.proquest.com/docview/2122249966
https://www.proquest.com/docview/2087996564
https://www.proquest.com/docview/2176376610
https://www.osti.gov/biblio/1469229
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162106
https://lup.lub.lu.se/record/044df730-3a5f-4641-a15e-fce16a4f0bc0
oai:portal.research.lu.se:publications/044df730-3a5f-4641-a15e-fce16a4f0bc0
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA7loOCL2tPqtlWiqPTBLZvd7N4dPtXzahHqQ2m1iBCSbNIWj91jfwj6D_hvO5PsbVs5pfiwsMd-F7JkMvlmM_OFkBcsG2lmOAuVVnnIbRaHyspJaPQ4l1lkeGqx3vnoY3Z4yj-cpWdr5M2yFsbrQ_Qf3HBmOH-NE1yq-tokP9cKdyZdETnmaiEhOr6Sjkpid64mS1IOroYlnaoQZvH0_7yxFg1KmFOreGYvInqTv7oF6OAe-brsus87-bbXNmpP__xD1fE_3-0-udsRU7rvLWmDrJliSNb9UZU_hmRzdlURB7DOJdRDEhwB7S4rB6Ov6HR-CRzY_XpAfp20RV5J6uqJMdOKXmD2TQlGa4D9v6ZF2VAUrKi8NCr9DpG7Fw6Hh10WfU2Bo9LcaJkDAg-SwOCBalmpsqAKUzO1gVYc7LMXfqDHbY3VofA6WAP2kJwezE6mh2F38kOokZ-FHDNETZ6D89C4UQoskRnLYzAfncZW6cgAdUozazMJBEjGY5TRl7kFdyTHgN8kg6IszGNCcxZLq5HXpJxrIyUwTAV-ymgFzNGYgOwubUDoThYdT-eYi2V4BIMh3GAE5HkPXXgtkFWgbTQkAQQGVXg1pivpBiOsSRxPArKztC_ROYtaAHsAIoWBZ0Ce9Y9hmuPejSxM2QImGo8AkWb8HxgGi8UICFcUkEfedvt-JqglmEbQvZfemPsnqC_-7vLTviirc1G3gmUxi6AnsxW4ebuAS8ElaiMiznMLK4RIZGoFzzgTkqVGWG1YJrmNYJwC8mVFOz60FJ2e1UXX3uLah-pbNr7rZtHfR0O8n751N1u3h26TO8CKx77gdIcMmqo1T4B5NuqpczG_AbZMgsY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIgQv_CgMwgYYBGgPZIpTJ20lXkbXUWDdw9TBhIQs27G3iSqpkgYJ_gH-be7iJNtQQRMPkVL5ajny3fk7--4zIS9Y3NfMcOYrrRKf2zj0lZVD3-hBIuPA8MhivfP0IJ4c8Q_H0fEaedPUwjh-iHbDDS2j8tdo4LghfcHKT7TCo0msIr-GN3qjWe4enpNH9cLqZk3Wizg4G9areYUwj6f966XVqJOBVa1Cmi2N6GUEWy1Be7fJ12bwLvPk23a5VNv65x-8jv_7dXfIrRqb0h2nTHfJmkm75Lq7rfJHl6yPz4viQKz2CkWXeFNA3lleidFXdDQ_Axhc_bpHfs3KNMklrUqKMdmKnmICTgZ6ayAAeE3TbEmRsyJ37Kj0OwTvjjscGutE-oICTKWJ0TIBCbxLAuMHqmWuspQqzM7UBnqpxD477gd6WBZYIAqfg2Vg98nR3ng2mvj15Q--Rojmc0wSNUkC_kPjWSkARWYsD0GDdBRapQMD6CmKrY0lYCAZDpBJXyYWPJIcgPw66aRZah4SmrBQWo3QJuJcGylBVxS4KqMVgEdjPLLVKIHQNTM6XtAxF02EBJMhqsnwyPNWdOHoQFYJbaAmCcAwSMSrMWNJLzHIGobh0CObjYKJ2l8UAgAEYCmMPT3yrG0GS8fjG5marASZYNAHiSjm_5BhsF70AXMFHnnglLcdZw_pBKMAhvfSaXPbghTju2efdkSWn4iiFCwOWQAjGa-Qm5cLeBQ8ojAi4DyxsEiInoys4DFnQrLICKsNiyW3AcyTR76s6MdFl6KmtDqt-1tc2Ku-YudblRn9fTbEu9Hb6uXR1UWfkhuT2XRf7L8_-LhBbgJIHrj6003SWealeQxAdKmeVP7mN4gbht8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIhAvXAqDsAEGAdoDmeLUyVrxNHphXDahaYMJIVm2Y28TVVIlDRL8Af4259hptqGCJh4ipcpXy5GPj78Tn_OZkGcs3dLMcBYqrbKQ2zQOlZWD0Oh-JtPI8MRivfPuXrpzyN8dJUcr5NWiFsbrQ7Qf3HBmOH-NE3yW2XOT_Fgr3JnEIvIrPI36GHmN9s-0o3qxO1iT9RIOvob1GlkhTONp_3phMeoUMKmWEc1WRfQigXUr0OQm-brou088-bZZz9Wm_vmHrON_vtwtcqNhpnTbm9JtsmLyLrnqz6r80SWr47OSOIA1PqHqkmAXeHdROhh9QYfTUyDB7tcd8uugzrNSUldQjKlW9ATTbwqwWgP0_yXNizlFxYrSa6PS7xC6e-VweNik0VcUSCrNjJYZIPAkCYweqJalKnKqMDdTG2jFwT575Qe6X1dYHgqvg0Vgd8nhZHww3Ambox9CjQQt5JgiarIMvIfGnVKgicxYHoP96CS2SkcGuFOSWptKYEAy7qOOvsws-CPZB_wq6eRFbu4TmrFYWo3EJuFcGymBYipwVEYroI7GBGRjYQNCN7roeDzHVCziIxgM4QYjIE9b6MyLgSwDraEhCWAwKMOrMV9JzzHEGsTxICDrC_sSjbeoBNAHYFIYeQbkSfsY5jlu3sjcFDVgwMIBkaT8HxgGq8UWMK4oIPe87bb97KGYYBJB9557Y26foMD46PTTtijKY1HVgqUxi6An4yW4aT2DS8ElKiMizjMLS4ToycQKnnImJEuMsNqwVHIbwTgF5MuSdnxsKRpBq5Omvdm5L9WXbHzDzaK_j4Z4M3ztbh5cHvqYXPs4mogPb_fer5HrwJD7vvh0nXTmZW0eAgudq0fO2_wGuLeFlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tundra+landscape+heterogeneity%2C+not+interannual+variability%2C+controls+the+decadal+regional+carbon+balance+in+the+Western+Russian+Arctic&rft.jtitle=Global+change+biology&rft.au=Treat%2C+Claire+C.&rft.au=Marushchak%2C+Maija+E.&rft.au=Voigt%2C+Carolina&rft.au=Zhang%2C+Yu&rft.date=2018-11-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=24&rft.issue=11&rft.spage=5188&rft.epage=5204&rft_id=info:doi/10.1111%2Fgcb.14421&rft.externalDBID=10.1111%252Fgcb.14421&rft.externalDocID=GCB14421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon