Meta-analysis on how manure application changes soil organic carbon storage
Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the rela...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 5516 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.03.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha
−1
. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha
−1
) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha
−1
) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha
−1
and in 16–20 cm by 13.6 Mg ha
−1
), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha
−1
), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha
−1
). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha
−1
) and alkaline soils (+ 5.1 Mg ha
−1
). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha
−1
) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration. |
---|---|
AbstractList | Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha
−1
. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha
−1
) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha
−1
) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha
−1
and in 16–20 cm by 13.6 Mg ha
−1
), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha
−1
), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha
−1
). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha
−1
) and alkaline soils (+ 5.1 Mg ha
−1
). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha
−1
) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration. Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha−1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha−1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha−1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha−1 and in 16–20 cm by 13.6 Mg ha−1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha−1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha−1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha−1) and alkaline soils (+ 5.1 Mg ha−1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha−1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration. Abstract Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha−1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha−1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha−1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha−1 and in 16–20 cm by 13.6 Mg ha−1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha−1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha−1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha−1) and alkaline soils (+ 5.1 Mg ha−1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha−1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration. Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha . Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha ) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha ) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0-15 cm by 9.5 Mg ha and in 16-20 cm by 13.6 Mg ha ), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha ), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha ). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha ) and alkaline soils (+ 5.1 Mg ha ). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha ) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration. Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha-1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha-1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha-1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0-15 cm by 9.5 Mg ha-1 and in 16-20 cm by 13.6 Mg ha-1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha-1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha-1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha-1) and alkaline soils (+ 5.1 Mg ha-1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha-1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha-1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha-1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha-1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0-15 cm by 9.5 Mg ha-1 and in 16-20 cm by 13.6 Mg ha-1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha-1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha-1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha-1) and alkaline soils (+ 5.1 Mg ha-1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha-1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration. |
ArticleNumber | 5516 |
Author | Gross, Arthur Glaser, Bruno |
Author_xml | – sequence: 1 givenname: Arthur surname: Gross fullname: Gross, Arthur organization: Institute of Agricultural and Nutritional Sciences, Soil Biogeochemistry, Martin Luther University Halle-Wittenberg – sequence: 2 givenname: Bruno surname: Glaser fullname: Glaser, Bruno email: bruno.glaser@landw.uni-halle.de organization: Institute of Agricultural and Nutritional Sciences, Soil Biogeochemistry, Martin Luther University Halle-Wittenberg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33750809$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstOHDEQtCJQIBt-IIdopFy4TOLHeG1fIkUoDxQQF3K2ejyeXa9m7Y09Q8Tf09mBBDjggx_dVaWSu96Qg5iiJ-Qdox8ZFfpTaZg0uqac1ZorYWr1ihxz2siaC84PHt2PyEkpG4pLctMw85ocCaEk1dQck5-XfoQaIgy3JZQqxWqd_lRbiFP2Fex2Q3AwBiy7NcSVL1VJYahSXkEMrnKQW-yVMWVY-bfksIeh-JP7c0F-fft6ffajvrj6fn725aJ2y0aMda8MYwCSS99R30l8y05T1ehea6OY7E2_VAo0LCnX3js024tWma6lRrBWLMj5rNsl2NhdDlvItzZBsPsCmrOQx-AGb13LG6VVKzTTqN-3zEttJHNOy06AQ63Ps9Zuare-cz6OGYYnok87MaztKt1YZRqhOUWB03uBnH5Pvox2G4rzwwDRp6lYLmkjJBe4L8iHZ9BNmjJ-PaIaYzjnSyUQ9f6xo39WHmaGAD0DXE6lZN9bF8b9kNBgGCyj9m9C7JwQiwmx-4RYhVT-jPqg_iJJzKSCYMxA_m_7BdYdcIHNAg |
CitedBy_id | crossref_primary_10_1016_j_agee_2025_109513 crossref_primary_10_1016_j_scitotenv_2024_171047 crossref_primary_10_3389_fenvs_2023_1152439 crossref_primary_10_1111_gcb_15731 crossref_primary_10_1016_j_agee_2023_108701 crossref_primary_10_1111_ejss_13330 crossref_primary_10_1007_s42729_023_01151_4 crossref_primary_10_3390_agronomy13122986 crossref_primary_10_52804_ijaas2024_528 crossref_primary_10_1038_s41467_024_47829_w crossref_primary_10_1016_j_scitotenv_2022_159169 crossref_primary_10_1016_j_chemosphere_2022_134974 crossref_primary_10_3390_agrochemicals1010002 crossref_primary_10_1007_s42729_023_01215_5 crossref_primary_10_1021_acsestengg_3c00027 crossref_primary_10_1111_sum_12928 crossref_primary_10_1016_j_scitotenv_2023_169630 crossref_primary_10_15507_2658_4123_033_202302_237_255 crossref_primary_10_1016_j_geoderma_2022_116080 crossref_primary_10_1038_s41598_023_49198_8 crossref_primary_10_1016_j_agsy_2025_104263 crossref_primary_10_5194_bg_19_2145_2022 crossref_primary_10_1016_j_agee_2022_108258 crossref_primary_10_1111_sum_70012 crossref_primary_10_1016_j_jafr_2024_101180 crossref_primary_10_1016_j_scitotenv_2024_176340 crossref_primary_10_1038_s41598_022_22937_z crossref_primary_10_1016_j_soilbio_2025_109755 crossref_primary_10_3390_agronomy13020447 crossref_primary_10_3390_su16010158 crossref_primary_10_1007_s13412_024_00917_1 crossref_primary_10_3389_fsufs_2024_1332483 crossref_primary_10_3390_agriculture14020274 crossref_primary_10_1016_j_agsy_2023_103722 crossref_primary_10_1016_j_agee_2021_107619 crossref_primary_10_3390_land12081628 crossref_primary_10_1039_D4SU00524D crossref_primary_10_1016_j_agee_2023_108723 crossref_primary_10_1038_s41598_024_75771_w crossref_primary_10_3390_agronomy13092349 crossref_primary_10_1016_j_agsy_2024_104092 crossref_primary_10_1016_j_eja_2023_126914 crossref_primary_10_1002_ldr_4885 crossref_primary_10_3390_land13101608 crossref_primary_10_1016_j_geoderma_2023_116338 crossref_primary_10_1016_j_scitotenv_2023_162670 crossref_primary_10_1186_s13570_023_00288_2 crossref_primary_10_1016_j_agee_2024_108913 crossref_primary_10_1016_j_geodrs_2023_e00674 crossref_primary_10_1016_j_agwat_2021_107178 crossref_primary_10_3390_land13101722 crossref_primary_10_1016_j_cscee_2024_100638 crossref_primary_10_1134_S1064229322602517 crossref_primary_10_1016_j_jes_2025_02_028 crossref_primary_10_1016_j_scitotenv_2023_169457 crossref_primary_10_1080_14735903_2024_2361578 crossref_primary_10_1016_j_eja_2024_127115 crossref_primary_10_1016_j_jenvman_2022_114430 crossref_primary_10_3390_su15064832 crossref_primary_10_1016_j_agee_2024_109287 crossref_primary_10_1016_j_still_2025_106454 crossref_primary_10_1111_ejss_70074 crossref_primary_10_1016_j_jenvman_2021_114403 crossref_primary_10_1016_j_scitotenv_2023_165931 crossref_primary_10_1007_s13593_023_00912_w crossref_primary_10_1111_ejss_13136 crossref_primary_10_4236_ojss_2022_1210021 crossref_primary_10_1111_ejss_13379 crossref_primary_10_1016_j_scitotenv_2021_151337 crossref_primary_10_3390_agronomy13092293 crossref_primary_10_1007_s42729_021_00659_x crossref_primary_10_1111_ejss_13493 crossref_primary_10_3390_plants11111473 crossref_primary_10_3390_plants13020242 crossref_primary_10_1016_j_agee_2024_109314 crossref_primary_10_1016_j_geoderma_2022_116152 crossref_primary_10_3390_su141912369 crossref_primary_10_1080_17565529_2024_2342682 crossref_primary_10_1016_j_jafr_2024_101433 crossref_primary_10_3390_agronomy15030628 crossref_primary_10_1016_j_apsoil_2023_104876 crossref_primary_10_3390_agronomy14123050 crossref_primary_10_1016_j_jclepro_2024_142784 crossref_primary_10_1016_j_agee_2023_108583 crossref_primary_10_1016_j_still_2022_105358 crossref_primary_10_3390_su151511495 crossref_primary_10_3389_fmicb_2023_1155088 crossref_primary_10_1016_j_agsy_2021_103251 crossref_primary_10_1016_j_soilbio_2023_109265 crossref_primary_10_1080_00103624_2023_2276258 crossref_primary_10_7745_KJSSF_2023_56_3_246 crossref_primary_10_1016_j_agee_2023_108619 crossref_primary_10_1088_1755_1315_1280_1_012054 crossref_primary_10_1186_s40538_022_00344_w crossref_primary_10_1016_j_ecolind_2024_112465 crossref_primary_10_1016_j_jenvman_2024_122259 crossref_primary_10_1007_s13593_022_00775_7 crossref_primary_10_1155_2024_3163750 crossref_primary_10_3389_fsufs_2024_1397305 crossref_primary_10_1021_acs_est_3c08319 crossref_primary_10_2139_ssrn_4155111 crossref_primary_10_1007_s13593_022_00837_w crossref_primary_10_1016_j_jclepro_2024_142255 crossref_primary_10_3390_agronomy14040749 crossref_primary_10_1080_17583004_2023_2217785 crossref_primary_10_31857_S0032180X22601426 crossref_primary_10_1016_j_fcr_2024_109572 crossref_primary_10_1016_j_agsy_2024_103949 crossref_primary_10_1016_j_catena_2024_107844 crossref_primary_10_1016_j_scitotenv_2022_156822 crossref_primary_10_5194_gmd_17_1349_2024 crossref_primary_10_1111_ejss_13515 crossref_primary_10_1111_ejss_13233 crossref_primary_10_3390_agriculture13050969 crossref_primary_10_1111_gcb_15954 crossref_primary_10_1002_jsfa_13913 crossref_primary_10_1016_j_jes_2025_03_016 crossref_primary_10_3389_fsoil_2022_838497 crossref_primary_10_31857_S0002188124040033 crossref_primary_10_3390_agronomy13123010 crossref_primary_10_1002_sae2_12100 crossref_primary_10_1016_j_agee_2024_109092 crossref_primary_10_3390_agronomy12051101 crossref_primary_10_1186_s40538_024_00694_7 crossref_primary_10_3390_agronomy14040675 crossref_primary_10_1111_ejss_13468 crossref_primary_10_1016_j_scitotenv_2024_173758 crossref_primary_10_3390_agronomy11122474 crossref_primary_10_3389_fsoil_2023_1209530 crossref_primary_10_3390_agronomy12061305 crossref_primary_10_3390_su16041530 crossref_primary_10_2139_ssrn_4159532 crossref_primary_10_3389_fenvs_2023_1173509 crossref_primary_10_15531_KSCCR_2021_12_6_701 crossref_primary_10_3390_agronomy13010267 crossref_primary_10_1016_j_still_2023_105641 crossref_primary_10_1186_s42397_024_00168_z crossref_primary_10_1016_j_seh_2025_100147 crossref_primary_10_1007_s42729_024_01762_5 crossref_primary_10_1016_j_geodrs_2025_e00943 crossref_primary_10_5194_soil_8_621_2022 crossref_primary_10_1016_j_geoderma_2023_116647 crossref_primary_10_1186_s13717_024_00565_x crossref_primary_10_1016_j_landusepol_2023_106932 |
Cites_doi | 10.1016/j.geoderma.2017.01.002 10.1016/j.still.2012.06.011 10.1080/01904167.2016.1245323 10.1111/j.1461-0248.2010.01482.x 10.1007/s10584-006-9173-8 10.1016/j.still.2006.08.013 10.1016/S0038-0717(01)00022-0 10.1016/j.ijggc.2011.11.008 10.1079/SUM2005287 10.13080/z-a.2015.102.031 10.1016/j.still.2007.09.010 10.1016/j.agee.2016.05.035 10.1016/j.still.2004.02.002 10.1201/b21225-6 10.2136/sssaj2007.0342 10.1038/nature16069 10.1016/j.ijggc.2011.01.001 10.1016/j.agee.2014.10.024 10.1007/s11027-020-09916-3 10.5194/essd-9-667-2017 10.1016/S0378-1127(00)00282-6 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1016/j.still.2009.12.008 10.1111/gcb.12438 10.1073/pnas.1209429109 10.1016/j.scitotenv.2017.08.020 10.1111/gcb.12384 10.2136/sssaj1991.03615995005500020030x 10.1038/srep16210 10.1126/science.1097396 10.1016/j.agee.2006.05.014 10.1016/j.agee.2015.01.005 10.1016/0038-0717(95)00082-P 10.1016/j.apsoil.2014.05.009 10.1038/srep27199 10.1016/j.gca.2010.11.029 10.1016/j.catena.2020.104617 10.1016/S0167-1987(99)00072-0 10.1046/j.1354-1013.2002.00486.x 10.1016/B978-0-12-415955-6.00001-3 10.1007/s10533-007-9140-0 10.1111/j.1475-2743.2011.00366.x 10.1111/gcb.12517 10.2136/sssaj1998.03615995006200030029x 10.1007/s10705-018-9918-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-82739-7 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_cb24787b381848ffb1e58951cc85d3ac PMC7943820 33750809 10_1038_s41598_021_82739_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Projekt DEAL – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c643t-f7911aa525ed0ed5f795d80748f889715f9f677a8a6028eec375f3b79db0931b3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:23:04 EDT 2025 Thu Aug 21 14:10:07 EDT 2025 Mon Jul 21 11:52:49 EDT 2025 Wed Aug 13 05:10:11 EDT 2025 Thu Jan 02 22:56:20 EST 2025 Tue Jul 01 01:07:39 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Fri Feb 21 02:39:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c643t-f7911aa525ed0ed5f795d80748f889715f9f677a8a6028eec375f3b79db0931b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-82739-7 |
PMID | 33750809 |
PQID | 2499222673 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cb24787b381848ffb1e58951cc85d3ac pubmedcentral_primary_oai_pubmedcentral_nih_gov_7943820 proquest_miscellaneous_2504352304 proquest_journals_2499222673 pubmed_primary_33750809 crossref_citationtrail_10_1038_s41598_021_82739_7 crossref_primary_10_1038_s41598_021_82739_7 springer_journals_10_1038_s41598_021_82739_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-09 |
PublicationDateYYYYMMDD | 2021-03-09 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JohnsonDWCurtisPSEffects of forest management on soil C and N storage. Meta analysisForest Ecol. Manag.200114022723810.1016/S0378-1127(00)00282-6 Schimel, D. et al. Radiative forcing of climate change. Climate Change 1995: The Science of Climate Change, 65–131 (1996). GlaserBBirkJJState of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio)Geochim. Cosmochim. Acta20128239512012GeCoA..82...39G1:CAS:528:DC%2BC38XjtFKmtL4%3D10.1016/j.gca.2010.11.029 PiccoliIDisentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North-Eastern ItalyAgric. Ecosyst. Environ.2016230687810.1016/j.agee.2016.05.035 MandoALong-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditionsSoil Use Manag.200521253110.1079/SUM2005287 MazzoldiAHillTCollsJJAssessing the risk for CO2 transportation within CCS projects, CFD modellingInt. J. Greenh. Gas Control201158168251:CAS:528:DC%2BC3MXhtVWqtb%2FL10.1016/j.ijggc.2011.01.001 WestTOSixJConsidering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacityClim. Change20078025412007ClCh...80...25W1:CAS:528:DC%2BD2sXmt1Ojug%3D%3D10.1007/s10584-006-9173-8 ZhangBGlobal manure nitrogen production and application in cropland during 1860–2014. A 5 arcmin gridded global dataset for Earth system modelingEarth Syst. Sci. Data201796676782017ESSD....9..667Z10.5194/essd-9-667-2017 BogužasVLong-term effect of tillage systems, straw and green manure combinations on soil organic matterZemdirbyste Agric.201510224325010.13080/z-a.2015.102.031 CaiASoil fertility and crop yield after manure addition to acidic soils in South ChinaNutr. Cycl. Agroecosyst.2018111617210.1007/s10705-018-9918-6 StewartCEPaustianKConantRTPlanteAFSixJSoil carbon saturation. Concept, evidence and evaluationBiogeochemistry20078619311:CAS:528:DC%2BD2sXhtVagtbbE10.1007/s10533-007-9140-0 RasmussenKJImpact of ploughless soil tillage on yield and soil quality. A Scandinavian reviewSoil Tillage Res.19995331410.1016/S0167-1987(99)00072-0 AngersDAEriksen-HamelNSFull-inversion tillage and organic carbon distribution in soil profiles. A meta-analysisSoil Sci. Soc. Am. J.20087213702008SSASJ..72.1370A1:CAS:528:DC%2BD1cXhtV2it77O10.2136/sssaj2007.0342 MotavalliPPPalmCAPartonWJElliottETFreySDSoil pH and organic C dynamics in tropical forest soils. Evidence from laboratory and simulation studiesSoil Biol. Biochem.199527158915991:CAS:528:DyaK2MXhtVSntrbF10.1016/0038-0717(95)00082-P LaMJonesCABulk density of soils in relation to soil physical and chemical propertiesSoil Sci. Soc. Am. J.19915547648110.2136/sssaj1991.03615995005500020030x R Core TeamR: A Language and Environment for Statistical Computing2018ViennaR Foundation for Statistical Computing ObourAStahlmanPThompsonCLong-term residual effects of feedlot manure application on crop yield and soil surface chemistryJ. Plant Nutr.2017404274381:CAS:528:DC%2BC2sXpsFOhsg%3D%3D10.1080/01904167.2016.1245323 WillekensKVandecasteeleBBuchanDde NeveSSoil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping systemAppl. Soil Ecol.201482617110.1016/j.apsoil.2014.05.009 DungaitJABerheAAGregoryASHopkinsDWLalRStewartBASoil and Climate. Series: Advances in Soil Science2018Boca RatonCRC Press17118210.1201/b21225-6 GuoLBGiffordRMSoil carbon stocks and land use change. A meta analysisGlob. Change Biol.200283453602002GCBio...8..345G10.1046/j.1354-1013.2002.00486.x DuYCuiBWangZSunJNiuWEffects of manure fertilizer on crop yield and soil properties in China. A meta-analysisCATENA20201931046171:CAS:528:DC%2BB3cXot1Gmur8%3D10.1016/j.catena.2020.104617 BakerJMOchsnerTEVentereaRTGriffisTJTillage and soil carbon sequestration—what do we really know?Agric. Ecosyst. Environ.2007118151:CAS:528:DC%2BD28Xht1CnsL3F10.1016/j.agee.2006.05.014 ParadeloRVirtoIChenuCNet effect of liming on soil organic carbon stocks. A reviewAgric. Ecosyst. Environ.2015202981071:CAS:528:DC%2BC2MXhtVClu74%3D10.1016/j.agee.2015.01.005 BernouxMCerriCArrouaysDJolivetCVolkoffBBulk densities of Brazilian Amazon soils related to other soil propertiesSoil Sci. Soc. Am. J.1998627437491998SSASJ..62..743B1:CAS:528:DyaK1cXks1eqtr8%3D10.2136/sssaj1998.03615995006200030029x LiebigMTanakaDWienholdBTillage and cropping effects on soil quality indicators in the northern Great PlainsSoil Tillage Res.20047813114110.1016/j.still.2004.02.002 LiZLiuMWuXHanFZhangTEffects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical ChinaSoil Tillage Res.201010626827410.1016/j.still.2009.12.008 MenM-XPengZ-PHaoXYuZ-RInvestigation on Pedotransfer function for estimating soil bulk density in Hebei provinceChin. J. Soil Sci.2008120 LiuLGreaverTLA global perspective on belowground carbon dynamics under nitrogen enrichmentEcol. Lett.20101381982810.1111/j.1461-0248.2010.01482.x WiesmeierMCarbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturationGlob. Change Biol.2014206536652014GCBio..20..653W10.1111/gcb.12384 AnderssonSNilssonSIInfluence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humusSoil Biol. Biochem.200133118111911:CAS:528:DC%2BD3MXlsV2jsrs%3D10.1016/S0038-0717(01)00022-0 HedgesLVGurevitchJCurtisPSThe meta-analysis of response ratios in experimental ecologyEcology1999801150115610.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 YaduvanshiNSharmaDRTillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigationSoil Tillage Res.200898111610.1016/j.still.2007.09.010 LiuCLuMCuiJLiBFangCEffects of straw carbon input on carbon dynamics in agricultural soils. A meta-analysisGlob. Change Biol.201420136613812014GCBio..20.1366L10.1111/gcb.12517 PoeplauCDonACarbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysisAgr. Ecosyst. Environ.201520033411:CAS:528:DC%2BC2cXhvVOkt7rO10.1016/j.agee.2014.10.024 GattingerAEnhanced top soil carbon stocks under organic farmingProc. Natl. Acad. Sci.201210918226182312012PNAS..10918226G1:CAS:528:DC%2BC38Xhsl2ktbjK10.1073/pnas.1209429109 BolinderMAThe effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems. A synthesis of reviewsMitig. Adapt. Strateg. Glob. Change20201682510.1007/s11027-020-09916-3 HanPZhangWWangGSunWHuangYChanges in soil organic carbon in croplands subjected to fertilizer management. A global meta-analysisSci. Rep.20166271992016NatSR...627199H1:CAS:528:DC%2BC28XptFCgsrc%3D10.1038/srep27199272510214890177 QinWHuCOenemaOSoil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat. A meta-analysisSci. Rep.20155162102015NatSR...516210Q1:CAS:528:DC%2BC2MXhvVOqsL%2FM10.1038/srep16210 LehmannJKleberMThe contentious nature of soil organic matterNature2015528602015Natur.528...60L1:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature16069 MinasnyBSoil carbon 4 per milleGeoderma201729259862017Geode.292...59M10.1016/j.geoderma.2017.01.002 MannaMSwarupAWanjariRMishraBShahiDLong-term fertilization, manure and liming effects on soil organic matter and crop yieldsSoil Tillage Res.20079439740910.1016/j.still.2006.08.013 MaillardÉAngersDAAnimal manure application and soil organic carbon stocks. A meta-analysisGlob. Change Biol.2014206666792014GCBio..20..666M10.1111/gcb.12438 WallquistLSeigoSLVisschersVHMSiegristMPublic acceptance of CCS system elements. A conjoint measurementInt. J. Greenh. Gas Control2012677831:CAS:528:DC%2BC38XitFGgs7g%3D10.1016/j.ijggc.2011.11.008 YuHDingWLuoJGengRCaiZLong-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soilSoil Tillage Res.201212417017710.1016/j.still.2012.06.011 Baldock, J. & Skjemstad, J. O. Soil organic carbon/soil organic matter. (Keine Angabe) (1999). HollandJELiming impacts on soils, crops and biodiversity in the UK. A reviewSci. Total Environ.2018610–6113163322018ScTEn.610..316H1:CAS:528:DC%2BC2sXhtlarsbnE10.1016/j.scitotenv.2017.08.02028806549 LalRSoil carbon sequestration impacts on global climate change and food securityScience (New York, N. Y.)2004304162316272004Sci...304.1623L1:CAS:528:DC%2BD2cXks1Cgsrk%3D10.1126/science.1097396 IPCC ed. Climate Change 2007. Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007). FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems. Guidelines for Assessment. Livestock Environmental Assessment and Performance (LEAP) Partnershi (Rome, Italy, 2018). AngersDAArrouaysDSabyNPWalterCEstimating and mapping the carbon saturation deficit of French agricultural topsoilsSoil Use Manag.20112744845210.1111/j.1475-2743.2011.00366.x PaulEASoil microbiology, Ecology and Biochemistry2015San DiegoElsevier10.1016/B978-0-12-415955-6.00001-3 TO West (82739_CR39) 2007; 80 M-X Men (82739_CR16) 2008; 1 KJ Rasmussen (82739_CR31) 1999; 53 DA Angers (82739_CR41) 2011; 27 W Qin (82739_CR24) 2015; 5 P Han (82739_CR13) 2016; 6 JM Baker (82739_CR36) 2007; 118 LB Guo (82739_CR22) 2002; 8 I Piccoli (82739_CR38) 2016; 230 EA Paul (82739_CR44) 2015 A Obour (82739_CR28) 2017; 40 MA Bolinder (82739_CR11) 2020; 168 JA Dungait (82739_CR43) 2018 82739_CR15 A Mazzoldi (82739_CR3) 2011; 5 V Bogužas (82739_CR35) 2015; 102 DW Johnson (82739_CR23) 2001; 140 M Wiesmeier (82739_CR42) 2014; 20 B Zhang (82739_CR12) 2017; 9 N Yaduvanshi (82739_CR33) 2008; 98 M Manna (82739_CR49) 2007; 94 M Bernoux (82739_CR17) 1998; 62 B Glaser (82739_CR6) 2012; 82 É Maillard (82739_CR14) 2014; 20 S Andersson (82739_CR45) 2001; 33 JE Holland (82739_CR47) 2018; 610–611 L Liu (82739_CR20) 2010; 13 A Gattinger (82739_CR19) 2012; 109 H Yu (82739_CR51) 2012; 124 82739_CR1 A Cai (82739_CR26) 2018; 111 82739_CR2 K Willekens (82739_CR32) 2014; 82 C Liu (82739_CR40) 2014; 20 82739_CR8 B Minasny (82739_CR7) 2017; 292 PP Motavalli (82739_CR48) 1995; 27 J Lehmann (82739_CR5) 2015; 528 CE Stewart (82739_CR29) 2007; 86 A Mando (82739_CR34) 2005; 21 R Core Team (82739_CR25) 2018 DA Angers (82739_CR37) 2008; 72 C Poeplau (82739_CR10) 2015; 200 M La (82739_CR18) 1991; 55 Z Li (82739_CR50) 2010; 106 LV Hedges (82739_CR21) 1999; 80 M Liebig (82739_CR30) 2004; 78 R Lal (82739_CR9) 2004; 304 R Paradelo (82739_CR46) 2015; 202 Y Du (82739_CR27) 2020; 193 L Wallquist (82739_CR4) 2012; 6 |
References_xml | – reference: PaulEASoil microbiology, Ecology and Biochemistry2015San DiegoElsevier10.1016/B978-0-12-415955-6.00001-3 – reference: ZhangBGlobal manure nitrogen production and application in cropland during 1860–2014. A 5 arcmin gridded global dataset for Earth system modelingEarth Syst. Sci. Data201796676782017ESSD....9..667Z10.5194/essd-9-667-2017 – reference: MazzoldiAHillTCollsJJAssessing the risk for CO2 transportation within CCS projects, CFD modellingInt. J. Greenh. Gas Control201158168251:CAS:528:DC%2BC3MXhtVWqtb%2FL10.1016/j.ijggc.2011.01.001 – reference: IPCC ed. Climate Change 2007. Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007). – reference: ObourAStahlmanPThompsonCLong-term residual effects of feedlot manure application on crop yield and soil surface chemistryJ. Plant Nutr.2017404274381:CAS:528:DC%2BC2sXpsFOhsg%3D%3D10.1080/01904167.2016.1245323 – reference: QinWHuCOenemaOSoil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat. A meta-analysisSci. Rep.20155162102015NatSR...516210Q1:CAS:528:DC%2BC2MXhvVOqsL%2FM10.1038/srep16210 – reference: AngersDAEriksen-HamelNSFull-inversion tillage and organic carbon distribution in soil profiles. A meta-analysisSoil Sci. Soc. Am. J.20087213702008SSASJ..72.1370A1:CAS:528:DC%2BD1cXhtV2it77O10.2136/sssaj2007.0342 – reference: FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems. Guidelines for Assessment. Livestock Environmental Assessment and Performance (LEAP) Partnershi (Rome, Italy, 2018). – reference: R Core TeamR: A Language and Environment for Statistical Computing2018ViennaR Foundation for Statistical Computing – reference: BolinderMAThe effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems. A synthesis of reviewsMitig. Adapt. Strateg. Glob. Change20201682510.1007/s11027-020-09916-3 – reference: WillekensKVandecasteeleBBuchanDde NeveSSoil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping systemAppl. Soil Ecol.201482617110.1016/j.apsoil.2014.05.009 – reference: BernouxMCerriCArrouaysDJolivetCVolkoffBBulk densities of Brazilian Amazon soils related to other soil propertiesSoil Sci. Soc. Am. J.1998627437491998SSASJ..62..743B1:CAS:528:DyaK1cXks1eqtr8%3D10.2136/sssaj1998.03615995006200030029x – reference: PoeplauCDonACarbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysisAgr. Ecosyst. Environ.201520033411:CAS:528:DC%2BC2cXhvVOkt7rO10.1016/j.agee.2014.10.024 – reference: JohnsonDWCurtisPSEffects of forest management on soil C and N storage. Meta analysisForest Ecol. Manag.200114022723810.1016/S0378-1127(00)00282-6 – reference: LaMJonesCABulk density of soils in relation to soil physical and chemical propertiesSoil Sci. Soc. Am. J.19915547648110.2136/sssaj1991.03615995005500020030x – reference: LiebigMTanakaDWienholdBTillage and cropping effects on soil quality indicators in the northern Great PlainsSoil Tillage Res.20047813114110.1016/j.still.2004.02.002 – reference: MinasnyBSoil carbon 4 per milleGeoderma201729259862017Geode.292...59M10.1016/j.geoderma.2017.01.002 – reference: GuoLBGiffordRMSoil carbon stocks and land use change. A meta analysisGlob. Change Biol.200283453602002GCBio...8..345G10.1046/j.1354-1013.2002.00486.x – reference: MenM-XPengZ-PHaoXYuZ-RInvestigation on Pedotransfer function for estimating soil bulk density in Hebei provinceChin. J. Soil Sci.2008120 – reference: LiuCLuMCuiJLiBFangCEffects of straw carbon input on carbon dynamics in agricultural soils. A meta-analysisGlob. Change Biol.201420136613812014GCBio..20.1366L10.1111/gcb.12517 – reference: HollandJELiming impacts on soils, crops and biodiversity in the UK. A reviewSci. Total Environ.2018610–6113163322018ScTEn.610..316H1:CAS:528:DC%2BC2sXhtlarsbnE10.1016/j.scitotenv.2017.08.02028806549 – reference: Baldock, J. & Skjemstad, J. O. Soil organic carbon/soil organic matter. (Keine Angabe) (1999). – reference: DungaitJABerheAAGregoryASHopkinsDWLalRStewartBASoil and Climate. Series: Advances in Soil Science2018Boca RatonCRC Press17118210.1201/b21225-6 – reference: RasmussenKJImpact of ploughless soil tillage on yield and soil quality. A Scandinavian reviewSoil Tillage Res.19995331410.1016/S0167-1987(99)00072-0 – reference: PiccoliIDisentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North-Eastern ItalyAgric. Ecosyst. Environ.2016230687810.1016/j.agee.2016.05.035 – reference: CaiASoil fertility and crop yield after manure addition to acidic soils in South ChinaNutr. Cycl. Agroecosyst.2018111617210.1007/s10705-018-9918-6 – reference: AnderssonSNilssonSIInfluence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humusSoil Biol. Biochem.200133118111911:CAS:528:DC%2BD3MXlsV2jsrs%3D10.1016/S0038-0717(01)00022-0 – reference: GlaserBBirkJJState of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio)Geochim. Cosmochim. Acta20128239512012GeCoA..82...39G1:CAS:528:DC%2BC38XjtFKmtL4%3D10.1016/j.gca.2010.11.029 – reference: WestTOSixJConsidering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacityClim. Change20078025412007ClCh...80...25W1:CAS:528:DC%2BD2sXmt1Ojug%3D%3D10.1007/s10584-006-9173-8 – reference: DuYCuiBWangZSunJNiuWEffects of manure fertilizer on crop yield and soil properties in China. A meta-analysisCATENA20201931046171:CAS:528:DC%2BB3cXot1Gmur8%3D10.1016/j.catena.2020.104617 – reference: HanPZhangWWangGSunWHuangYChanges in soil organic carbon in croplands subjected to fertilizer management. A global meta-analysisSci. Rep.20166271992016NatSR...627199H1:CAS:528:DC%2BC28XptFCgsrc%3D10.1038/srep27199272510214890177 – reference: StewartCEPaustianKConantRTPlanteAFSixJSoil carbon saturation. Concept, evidence and evaluationBiogeochemistry20078619311:CAS:528:DC%2BD2sXhtVagtbbE10.1007/s10533-007-9140-0 – reference: YuHDingWLuoJGengRCaiZLong-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soilSoil Tillage Res.201212417017710.1016/j.still.2012.06.011 – reference: WallquistLSeigoSLVisschersVHMSiegristMPublic acceptance of CCS system elements. A conjoint measurementInt. J. Greenh. Gas Control2012677831:CAS:528:DC%2BC38XitFGgs7g%3D10.1016/j.ijggc.2011.11.008 – reference: LehmannJKleberMThe contentious nature of soil organic matterNature2015528602015Natur.528...60L1:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature16069 – reference: MotavalliPPPalmCAPartonWJElliottETFreySDSoil pH and organic C dynamics in tropical forest soils. Evidence from laboratory and simulation studiesSoil Biol. Biochem.199527158915991:CAS:528:DyaK2MXhtVSntrbF10.1016/0038-0717(95)00082-P – reference: MandoALong-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditionsSoil Use Manag.200521253110.1079/SUM2005287 – reference: LalRSoil carbon sequestration impacts on global climate change and food securityScience (New York, N. Y.)2004304162316272004Sci...304.1623L1:CAS:528:DC%2BD2cXks1Cgsrk%3D10.1126/science.1097396 – reference: HedgesLVGurevitchJCurtisPSThe meta-analysis of response ratios in experimental ecologyEcology1999801150115610.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – reference: YaduvanshiNSharmaDRTillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigationSoil Tillage Res.200898111610.1016/j.still.2007.09.010 – reference: MaillardÉAngersDAAnimal manure application and soil organic carbon stocks. A meta-analysisGlob. Change Biol.2014206666792014GCBio..20..666M10.1111/gcb.12438 – reference: AngersDAArrouaysDSabyNPWalterCEstimating and mapping the carbon saturation deficit of French agricultural topsoilsSoil Use Manag.20112744845210.1111/j.1475-2743.2011.00366.x – reference: BakerJMOchsnerTEVentereaRTGriffisTJTillage and soil carbon sequestration—what do we really know?Agric. Ecosyst. Environ.2007118151:CAS:528:DC%2BD28Xht1CnsL3F10.1016/j.agee.2006.05.014 – reference: BogužasVLong-term effect of tillage systems, straw and green manure combinations on soil organic matterZemdirbyste Agric.201510224325010.13080/z-a.2015.102.031 – reference: Schimel, D. et al. Radiative forcing of climate change. Climate Change 1995: The Science of Climate Change, 65–131 (1996). – reference: WiesmeierMCarbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturationGlob. Change Biol.2014206536652014GCBio..20..653W10.1111/gcb.12384 – reference: GattingerAEnhanced top soil carbon stocks under organic farmingProc. Natl. Acad. Sci.201210918226182312012PNAS..10918226G1:CAS:528:DC%2BC38Xhsl2ktbjK10.1073/pnas.1209429109 – reference: LiZLiuMWuXHanFZhangTEffects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical ChinaSoil Tillage Res.201010626827410.1016/j.still.2009.12.008 – reference: LiuLGreaverTLA global perspective on belowground carbon dynamics under nitrogen enrichmentEcol. Lett.20101381982810.1111/j.1461-0248.2010.01482.x – reference: ParadeloRVirtoIChenuCNet effect of liming on soil organic carbon stocks. A reviewAgric. Ecosyst. Environ.2015202981071:CAS:528:DC%2BC2MXhtVClu74%3D10.1016/j.agee.2015.01.005 – reference: MannaMSwarupAWanjariRMishraBShahiDLong-term fertilization, manure and liming effects on soil organic matter and crop yieldsSoil Tillage Res.20079439740910.1016/j.still.2006.08.013 – volume: 292 start-page: 59 year: 2017 ident: 82739_CR7 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.002 – volume: 124 start-page: 170 year: 2012 ident: 82739_CR51 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.06.011 – volume: 40 start-page: 427 year: 2017 ident: 82739_CR28 publication-title: J. Plant Nutr. doi: 10.1080/01904167.2016.1245323 – volume: 13 start-page: 819 year: 2010 ident: 82739_CR20 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2010.01482.x – volume: 80 start-page: 25 year: 2007 ident: 82739_CR39 publication-title: Clim. Change doi: 10.1007/s10584-006-9173-8 – volume: 94 start-page: 397 year: 2007 ident: 82739_CR49 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2006.08.013 – volume: 33 start-page: 1181 year: 2001 ident: 82739_CR45 publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00022-0 – volume: 6 start-page: 77 year: 2012 ident: 82739_CR4 publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2011.11.008 – volume: 21 start-page: 25 year: 2005 ident: 82739_CR34 publication-title: Soil Use Manag. doi: 10.1079/SUM2005287 – volume: 102 start-page: 243 year: 2015 ident: 82739_CR35 publication-title: Zemdirbyste Agric. doi: 10.13080/z-a.2015.102.031 – volume: 98 start-page: 11 year: 2008 ident: 82739_CR33 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2007.09.010 – volume: 1 start-page: 20 year: 2008 ident: 82739_CR16 publication-title: Chin. J. Soil Sci. – volume: 230 start-page: 68 year: 2016 ident: 82739_CR38 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.05.035 – volume: 78 start-page: 131 year: 2004 ident: 82739_CR30 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.02.002 – start-page: 171 volume-title: Soil and Climate. Series: Advances in Soil Science year: 2018 ident: 82739_CR43 doi: 10.1201/b21225-6 – volume: 72 start-page: 1370 year: 2008 ident: 82739_CR37 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0342 – volume: 528 start-page: 60 year: 2015 ident: 82739_CR5 publication-title: Nature doi: 10.1038/nature16069 – volume: 5 start-page: 816 year: 2011 ident: 82739_CR3 publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2011.01.001 – volume: 200 start-page: 33 year: 2015 ident: 82739_CR10 publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2014.10.024 – volume: 168 start-page: 25 year: 2020 ident: 82739_CR11 publication-title: Mitig. Adapt. Strateg. Glob. Change doi: 10.1007/s11027-020-09916-3 – ident: 82739_CR8 – volume: 9 start-page: 667 year: 2017 ident: 82739_CR12 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-9-667-2017 – volume: 140 start-page: 227 year: 2001 ident: 82739_CR23 publication-title: Forest Ecol. Manag. doi: 10.1016/S0378-1127(00)00282-6 – volume: 80 start-page: 1150 year: 1999 ident: 82739_CR21 publication-title: Ecology doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – volume: 106 start-page: 268 year: 2010 ident: 82739_CR50 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2009.12.008 – volume-title: R: A Language and Environment for Statistical Computing year: 2018 ident: 82739_CR25 – volume: 20 start-page: 666 year: 2014 ident: 82739_CR14 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12438 – volume: 109 start-page: 18226 year: 2012 ident: 82739_CR19 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1209429109 – volume: 610–611 start-page: 316 year: 2018 ident: 82739_CR47 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.020 – volume: 20 start-page: 653 year: 2014 ident: 82739_CR42 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12384 – volume: 55 start-page: 476 year: 1991 ident: 82739_CR18 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1991.03615995005500020030x – volume: 5 start-page: 16210 year: 2015 ident: 82739_CR24 publication-title: Sci. Rep. doi: 10.1038/srep16210 – volume: 304 start-page: 1623 year: 2004 ident: 82739_CR9 publication-title: Science (New York, N. Y.) doi: 10.1126/science.1097396 – volume: 118 start-page: 1 year: 2007 ident: 82739_CR36 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.05.014 – volume: 202 start-page: 98 year: 2015 ident: 82739_CR46 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.01.005 – volume: 27 start-page: 1589 year: 1995 ident: 82739_CR48 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00082-P – volume: 82 start-page: 61 year: 2014 ident: 82739_CR32 publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.05.009 – ident: 82739_CR1 – volume: 6 start-page: 27199 year: 2016 ident: 82739_CR13 publication-title: Sci. Rep. doi: 10.1038/srep27199 – volume: 82 start-page: 39 year: 2012 ident: 82739_CR6 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.11.029 – ident: 82739_CR15 – volume: 193 start-page: 104617 year: 2020 ident: 82739_CR27 publication-title: CATENA doi: 10.1016/j.catena.2020.104617 – volume: 53 start-page: 3 year: 1999 ident: 82739_CR31 publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(99)00072-0 – volume: 8 start-page: 345 year: 2002 ident: 82739_CR22 publication-title: Glob. Change Biol. doi: 10.1046/j.1354-1013.2002.00486.x – volume-title: Soil microbiology, Ecology and Biochemistry year: 2015 ident: 82739_CR44 doi: 10.1016/B978-0-12-415955-6.00001-3 – volume: 86 start-page: 19 year: 2007 ident: 82739_CR29 publication-title: Biogeochemistry doi: 10.1007/s10533-007-9140-0 – ident: 82739_CR2 – volume: 27 start-page: 448 year: 2011 ident: 82739_CR41 publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2011.00366.x – volume: 20 start-page: 1366 year: 2014 ident: 82739_CR40 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12517 – volume: 62 start-page: 743 year: 1998 ident: 82739_CR17 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1998.03615995006200030029x – volume: 111 start-page: 61 year: 2018 ident: 82739_CR26 publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-018-9918-6 |
SSID | ssj0000529419 |
Score | 2.6432257 |
Snippet | Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to... Abstract Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC)... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5516 |
SubjectTerms | 704/47 704/47/4113 Acidic soils Agricultural land Alkaline soils Carbon Carbon sequestration Climate change Climate change mitigation Climatic conditions Fertilization Humanities and Social Sciences Manures Meta-analysis Mineral fertilizers multidisciplinary Nutrients Organic carbon Pig manure Sandy soils Science Science (multidisciplinary) Soil properties Tillage Topsoil Tropical environments |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivm1dJYI3DTuddDrJUcVlUdaTC3sLebILa_eyM4v4763q9IwzPi8eu5OG4ksl9aVT-QrgpYgyJWEUV9H3vEuxcJIV40oFYXF_UGKkH_rHn_qjk-7DqTrdKvVFOWFVHrgCdxCDIP2YQJGlM6WENiuDtCBGo5L0kVZfjHlbm6mq6i1s19r5lsxCmoMlRiq6TSZabjBkW653ItEk2P87lvlrsuRPJ6ZTIDq8A7dnBsneVMvvwo083IObtabkt_vw8TivPPez1ggbB3Y2fmVfPF0IZlvH1axe-V2y5Xh-wWpxp8iivwrYRimTuNA8gJPD95_fHfG5YgKPyCxWvGhcu7xXQuW0yEnhs0okd2OKMVa3qtjSa-2N75FX5BylVkUGbVNYWNkG-RD2hnHIj4EhM_RB507KuOhk7LxQPhnTZikDkrS2gXaNnouznDhVtbhw07G2NK4i7hBxNyHudAOvNt9cVjGNv_Z-S4Oy6UlC2NMLhMTN7uH-5R4N7K-H1M2zc-lwy2mRF_VaNvBi04zzig5L_JDHa-xD0m7TL_MGHlUP2FgiETZk2rYBveMbO6butgznZ5N2N-nxIelq4PXai36Y9WconvwPKJ7CLUHuTwl0dh_2VlfX-RkyqlV4Pk2e764yGp4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXRHmmLchI3MDqJo5j-4QAtapA5USlvVl-Ra3UJqXZCvHvmUm8Kcujx8SO5IzHns8z428A3lRBxFhpyWVwDa9jaDnRinEpfWXwfNCGQA7946_N0Un9eSmX2eE25LTK9Z44btSxD-Qj38djgkFb1ijx_vI7p6pRFF3NJTTuwj2iLqOULrVUs4-Folh1afJdmYXQ-wPaK7pTVpVco-E2XG3Yo5G2_19Y8--UyT_ipqM5OnwEDzOOZB-mid-GO6l7DPenypI_n8CX47Ry3GXGEdZ37LT_wS4cXQtmvwWt2XTxd2BDf3bOphJPgQV35bGNEidxu3kKJ4cH3z4d8Vw3gQfEFyveKtzBnJOVTHGRosRnGYn0RrdaG1XK1rSNUk67BtFFSkEo2QqvTPQLI0ovnsFW13fpBTDEh86rVAsRFrUItauki1qXSQiPUK0soFxLz4ZMKk61Lc7tGNwW2k4StyhxO0rcqgLezt9cTpQat_b-SJMy9yQ67PEFisTm1WWDr4hkyBP8wL9sfZmkRuwYgpZRuFDA3npKbV6jg73RqAJez824uihk4rrUX2MfIngbHecFPJ80YB6JQLEh3jYFqA3d2BjqZkt3djoyeBMrH0KvAt6ttehmWP8Xxc7tf7ELDypSbEqQM3uwtbq6Ti8RMa38q3FZ_ALXnBHz priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfAirZ_bVongTYNvk80mOerDUpR6stBbSLJZWqi7pe8V8b_vTPZDn1ahx90kMDuZZH6bmfkF4I2IsmmEUVxFX_OqiS0nWjGuVBAW_w_aGOlA__hrfXRSfT5Vp1sgplqYnLSfKS3zNj1lh71foaOhYjBRcoMe13J9D-4TdTtZ9bJezucqFLmqSjvWxyykuWXohg_KVP234cu_0yT_iJVmF3S4A49G7Mg-DNLuwlbqHsOD4TbJn0_gy3Fae-5HlhHWd-ys_8G-eyoFZr8FqtlQ7Ltiq_78gg3XOkUW_VXANkqWxC3mKZwcfvq2POLjXQk8IqZY81bjruW9Eio1i9QofFYNEd2Y1hirS9XattbaG18jokgpSq1aGbRtwsLKMshnsN31XXoBDDGhDzpVUsZFJWPlhfKNMWWSMiA8KwsoJ-25OBKJ030WFy4HtKVxg8YdatxljTtdwNt5zOVAo_Hf3h9pUuaeRIGdX6BK3GgSLgZBxEKBIAd-ZRvKpAzixRiNaqSPBRxMU-rGdbly-LNpERHVWhbwem7GFUVhEt-l_hr7EKlbPiwv4PlgAbMkEtWGGNsWoDdsY0PUzZbu_CyzdhMTH8KtAt5NVvRLrH-rYu9u3ffhoSBDpyQ5ewDb66vr9BJR0zq8ysvkBj0TD88 priority: 102 providerName: Springer Nature |
Title | Meta-analysis on how manure application changes soil organic carbon storage |
URI | https://link.springer.com/article/10.1038/s41598-021-82739-7 https://www.ncbi.nlm.nih.gov/pubmed/33750809 https://www.proquest.com/docview/2499222673 https://www.proquest.com/docview/2504352304 https://pubmed.ncbi.nlm.nih.gov/PMC7943820 https://doaj.org/article/cb24787b381848ffb1e58951cc85d3ac |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG8CS2UkbmBo7Dh2Dgh1q12tirpCQKXeLNtxtCuVBNquYP89YycpFAoSp6qxWzlfZjKfH_MNwHPmeFkyJahwJqdZ6SoaZMWoEJYVOD-onAsL-tPz_GyWTeZivgd9uaMOwNXOqV2oJzVbLl59_3r9Fh3-TZsyrl6vMAiFRDGWUoXRuKByHw4xMsngqNOO7rda36zIYq2PIMJOkUywLo9m999sxaoo6b-Lh_55nPK3PdUYqk5vw62OY5JRaxR3YM_Xd-FGW3Xy-h68m_q1oaZTIyFNTS6ab-SzCSnD5JcNbdImBa_IqrlckLb8kyPOLC22hUOV-Cq6D7PTk0_jM9rVVKAOuceaVhLfbsYIJnw59KXA76IMgjiqUqqQqaiKKpfSKJMj8_DecSkqbmVR2mHBU8sfwEHd1P4REOSOxkqfce6GGXeZYcKUSqWec4s0Lk0g7dHTrhMcD3UvFjpufHOlW8Q1Iq4j4lom8GLzmy-t3MY_ex-Hh7LpGaSy4wWERHeep51lQYDIBmqCd1nZ1AuFvNI5JUpuXAJH_SPVvflpnJQWyJxyyRN4tmlGzwvbKab2zRX2CeJvcVE9gYetBWxGwhE25OJFAnLLNraGut1SX15Ede-g2Ie0LIGXvRX9HNbfoXj8X8A9gZss2Hk4S1ccwcF6eeWfIrla2wHsy7kcwOFoNPk4wc_jk_P3H_DqOB8P4oLFIPrUD6zFIK4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ7C6iePYOSBEodWW7a4QaqXeXNtx1EolKd2tqv4pfiMzeWxZHr31mLU3csZjzzcezzcArxMviiLRkktvM54WvuREK8aldEmO_kHpPR3oT6bZaC_9si_3V-BnnwtD1yr7PbHZqIva0xn5OroJOdqyTIkPJz84VY2i6GpfQqNVi3G4OEeXbfZ--zPO75sk2drc_TTiXVUB7tH6znmpcH1bKxMZimEoJD7LgihhdKl1rmJZ5mWmlNU2Q9sbghdKlsKpvHDo_cdO4HtvwGoq0JUZwOrG5vTrt8WpDsXN0jjvsnOGQq_P0EJSFlsSc41QIedqyQI2hQL-hW7_vqT5R6S2MYBbd-FOh1zZx1bV7sFKqO7DzbaW5cUDGE_C3HLbcZywumKH9Tn7bikRmf0WJmdtqvGMzeqjY9YWlfLM21OHbXRVEze4h7B3LTJ9BIOqrsITYIhIrVMhFcIPU-FTm0hbaB0HIRyCwziCuJee8R2NOVXTODZNOF1o00rcoMRNI3GjIni7-M9JS-JxZe8NmpRFTyLgbn5AkZhuPRvvEqI1cgR48CtLFwepEa16r2UhrI9grZ9S0-0KM3OpwxG8WjTjeqYgja1CfYZ9iFKuOaqP4HGrAYuRCBQbIvw8ArWkG0tDXW6pjg4bznDiAUSwF8G7Xosuh_V_UTy9-itewq3R7mTH7GxPx8_gdkJKTtfz8jUYzE_PwnPEa3P3olskDA6ue13-AtdeT5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCazdxHHsHBACyqplacWBSnsztuOolUpSmq2q_jV-HTN5leXRW49ZeyNnPOP57Bl_A_Ai8aIoEi259DbjaeFLTrRiXEqX5Lg_KL2nA_2d3WxrL_20kIs1-DnchaG0ymFNbBfqovZ0Rj7BbUKOvixTYlL2aRFfNmdvj35wqiBFkdahnEanIvNwdorbt-bN9ibO9cskmX38-mGL9xUGuEdPvOSlQlu3ViYyFNNQSHyWBdHD6FLrXMWyzMtMKatthn44BC-ULIVTeeGmuYidwPdegatKyJhsTC3UeL5DEbQ0zvt7OlOhJw36SrrPlsRcI2jIuVrxhW3JgH_h3L_TNf-I2baucHYLbvYYlr3rlO42rIXqDlzrqlqe3YX5Tlhabnu2E1ZXbL8-Zd8tXUlmvwXMWXfpuGFNfXDIuvJSnnl77LCNkjZxqbsHe5ci0fuwXtVVeAgMsal1KqRC-GkqfGoTaQut4yCEQ5gYRxAP0jO-JzSnuhqHpg2sC206iRuUuGklblQEr8b_HHV0Hhf2fk-TMvYkKu72BxSJ6S3beJcQwZEj6INfWbo4SI241XstC2F9BBvDlJp-fWjMuTZH8HxsRsumcI2tQn2CfYhcrj20j-BBpwHjSASKDbF-HoFa0Y2Voa62VAf7LXs4MQIi7Ivg9aBF58P6vygeXfwVz-A6WqP5vL07fww3EtJxytPLN2B9eXwSniBwW7qnrYUw-HbZJvkL4S1SZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+on+how+manure+application+changes+soil+organic+carbon+storage&rft.jtitle=Scientific+reports&rft.au=Gross%2C+Arthur&rft.au=Glaser%2C+Bruno&rft.date=2021-03-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-82739-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_82739_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |