Meta-analysis on how manure application changes soil organic carbon storage

Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the rela...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 5516 - 13
Main Authors Gross, Arthur, Glaser, Bruno
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.03.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha −1 . Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha −1 ) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha −1 ) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha −1 and in 16–20 cm by 13.6 Mg ha −1 ), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha −1 ), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha −1 ). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha −1 ) and alkaline soils (+ 5.1 Mg ha −1 ). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha −1 ) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.
AbstractList Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha −1 . Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha −1 ) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha −1 ) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha −1 and in 16–20 cm by 13.6 Mg ha −1 ), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha −1 ), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha −1 ). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha −1 ) and alkaline soils (+ 5.1 Mg ha −1 ). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha −1 ) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.
Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha−1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha−1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha−1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha−1 and in 16–20 cm by 13.6 Mg ha−1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha−1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha−1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha−1) and alkaline soils (+ 5.1 Mg ha−1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha−1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.
Abstract Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha−1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha−1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha−1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha−1 and in 16–20 cm by 13.6 Mg ha−1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha−1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha−1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha−1) and alkaline soils (+ 5.1 Mg ha−1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha−1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.
Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha . Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha ) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha ) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0-15 cm by 9.5 Mg ha and in 16-20 cm by 13.6 Mg ha ), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha ), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha ). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha ) and alkaline soils (+ 5.1 Mg ha ). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha ) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.
Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha-1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha-1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha-1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0-15 cm by 9.5 Mg ha-1 and in 16-20 cm by 13.6 Mg ha-1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha-1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha-1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha-1) and alkaline soils (+ 5.1 Mg ha-1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha-1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha-1. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha-1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha-1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0-15 cm by 9.5 Mg ha-1 and in 16-20 cm by 13.6 Mg ha-1), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha-1), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha-1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha-1) and alkaline soils (+ 5.1 Mg ha-1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha-1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.
ArticleNumber 5516
Author Gross, Arthur
Glaser, Bruno
Author_xml – sequence: 1
  givenname: Arthur
  surname: Gross
  fullname: Gross, Arthur
  organization: Institute of Agricultural and Nutritional Sciences, Soil Biogeochemistry, Martin Luther University Halle-Wittenberg
– sequence: 2
  givenname: Bruno
  surname: Glaser
  fullname: Glaser, Bruno
  email: bruno.glaser@landw.uni-halle.de
  organization: Institute of Agricultural and Nutritional Sciences, Soil Biogeochemistry, Martin Luther University Halle-Wittenberg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33750809$$D View this record in MEDLINE/PubMed
BookMark eNp9UstOHDEQtCJQIBt-IIdopFy4TOLHeG1fIkUoDxQQF3K2ejyeXa9m7Y09Q8Tf09mBBDjggx_dVaWSu96Qg5iiJ-Qdox8ZFfpTaZg0uqac1ZorYWr1ihxz2siaC84PHt2PyEkpG4pLctMw85ocCaEk1dQck5-XfoQaIgy3JZQqxWqd_lRbiFP2Fex2Q3AwBiy7NcSVL1VJYahSXkEMrnKQW-yVMWVY-bfksIeh-JP7c0F-fft6ffajvrj6fn725aJ2y0aMda8MYwCSS99R30l8y05T1ehea6OY7E2_VAo0LCnX3js024tWma6lRrBWLMj5rNsl2NhdDlvItzZBsPsCmrOQx-AGb13LG6VVKzTTqN-3zEttJHNOy06AQ63Ps9Zuare-cz6OGYYnok87MaztKt1YZRqhOUWB03uBnH5Pvox2G4rzwwDRp6lYLmkjJBe4L8iHZ9BNmjJ-PaIaYzjnSyUQ9f6xo39WHmaGAD0DXE6lZN9bF8b9kNBgGCyj9m9C7JwQiwmx-4RYhVT-jPqg_iJJzKSCYMxA_m_7BdYdcIHNAg
CitedBy_id crossref_primary_10_1016_j_agee_2025_109513
crossref_primary_10_1016_j_scitotenv_2024_171047
crossref_primary_10_3389_fenvs_2023_1152439
crossref_primary_10_1111_gcb_15731
crossref_primary_10_1016_j_agee_2023_108701
crossref_primary_10_1111_ejss_13330
crossref_primary_10_1007_s42729_023_01151_4
crossref_primary_10_3390_agronomy13122986
crossref_primary_10_52804_ijaas2024_528
crossref_primary_10_1038_s41467_024_47829_w
crossref_primary_10_1016_j_scitotenv_2022_159169
crossref_primary_10_1016_j_chemosphere_2022_134974
crossref_primary_10_3390_agrochemicals1010002
crossref_primary_10_1007_s42729_023_01215_5
crossref_primary_10_1021_acsestengg_3c00027
crossref_primary_10_1111_sum_12928
crossref_primary_10_1016_j_scitotenv_2023_169630
crossref_primary_10_15507_2658_4123_033_202302_237_255
crossref_primary_10_1016_j_geoderma_2022_116080
crossref_primary_10_1038_s41598_023_49198_8
crossref_primary_10_1016_j_agsy_2025_104263
crossref_primary_10_5194_bg_19_2145_2022
crossref_primary_10_1016_j_agee_2022_108258
crossref_primary_10_1111_sum_70012
crossref_primary_10_1016_j_jafr_2024_101180
crossref_primary_10_1016_j_scitotenv_2024_176340
crossref_primary_10_1038_s41598_022_22937_z
crossref_primary_10_1016_j_soilbio_2025_109755
crossref_primary_10_3390_agronomy13020447
crossref_primary_10_3390_su16010158
crossref_primary_10_1007_s13412_024_00917_1
crossref_primary_10_3389_fsufs_2024_1332483
crossref_primary_10_3390_agriculture14020274
crossref_primary_10_1016_j_agsy_2023_103722
crossref_primary_10_1016_j_agee_2021_107619
crossref_primary_10_3390_land12081628
crossref_primary_10_1039_D4SU00524D
crossref_primary_10_1016_j_agee_2023_108723
crossref_primary_10_1038_s41598_024_75771_w
crossref_primary_10_3390_agronomy13092349
crossref_primary_10_1016_j_agsy_2024_104092
crossref_primary_10_1016_j_eja_2023_126914
crossref_primary_10_1002_ldr_4885
crossref_primary_10_3390_land13101608
crossref_primary_10_1016_j_geoderma_2023_116338
crossref_primary_10_1016_j_scitotenv_2023_162670
crossref_primary_10_1186_s13570_023_00288_2
crossref_primary_10_1016_j_agee_2024_108913
crossref_primary_10_1016_j_geodrs_2023_e00674
crossref_primary_10_1016_j_agwat_2021_107178
crossref_primary_10_3390_land13101722
crossref_primary_10_1016_j_cscee_2024_100638
crossref_primary_10_1134_S1064229322602517
crossref_primary_10_1016_j_jes_2025_02_028
crossref_primary_10_1016_j_scitotenv_2023_169457
crossref_primary_10_1080_14735903_2024_2361578
crossref_primary_10_1016_j_eja_2024_127115
crossref_primary_10_1016_j_jenvman_2022_114430
crossref_primary_10_3390_su15064832
crossref_primary_10_1016_j_agee_2024_109287
crossref_primary_10_1016_j_still_2025_106454
crossref_primary_10_1111_ejss_70074
crossref_primary_10_1016_j_jenvman_2021_114403
crossref_primary_10_1016_j_scitotenv_2023_165931
crossref_primary_10_1007_s13593_023_00912_w
crossref_primary_10_1111_ejss_13136
crossref_primary_10_4236_ojss_2022_1210021
crossref_primary_10_1111_ejss_13379
crossref_primary_10_1016_j_scitotenv_2021_151337
crossref_primary_10_3390_agronomy13092293
crossref_primary_10_1007_s42729_021_00659_x
crossref_primary_10_1111_ejss_13493
crossref_primary_10_3390_plants11111473
crossref_primary_10_3390_plants13020242
crossref_primary_10_1016_j_agee_2024_109314
crossref_primary_10_1016_j_geoderma_2022_116152
crossref_primary_10_3390_su141912369
crossref_primary_10_1080_17565529_2024_2342682
crossref_primary_10_1016_j_jafr_2024_101433
crossref_primary_10_3390_agronomy15030628
crossref_primary_10_1016_j_apsoil_2023_104876
crossref_primary_10_3390_agronomy14123050
crossref_primary_10_1016_j_jclepro_2024_142784
crossref_primary_10_1016_j_agee_2023_108583
crossref_primary_10_1016_j_still_2022_105358
crossref_primary_10_3390_su151511495
crossref_primary_10_3389_fmicb_2023_1155088
crossref_primary_10_1016_j_agsy_2021_103251
crossref_primary_10_1016_j_soilbio_2023_109265
crossref_primary_10_1080_00103624_2023_2276258
crossref_primary_10_7745_KJSSF_2023_56_3_246
crossref_primary_10_1016_j_agee_2023_108619
crossref_primary_10_1088_1755_1315_1280_1_012054
crossref_primary_10_1186_s40538_022_00344_w
crossref_primary_10_1016_j_ecolind_2024_112465
crossref_primary_10_1016_j_jenvman_2024_122259
crossref_primary_10_1007_s13593_022_00775_7
crossref_primary_10_1155_2024_3163750
crossref_primary_10_3389_fsufs_2024_1397305
crossref_primary_10_1021_acs_est_3c08319
crossref_primary_10_2139_ssrn_4155111
crossref_primary_10_1007_s13593_022_00837_w
crossref_primary_10_1016_j_jclepro_2024_142255
crossref_primary_10_3390_agronomy14040749
crossref_primary_10_1080_17583004_2023_2217785
crossref_primary_10_31857_S0032180X22601426
crossref_primary_10_1016_j_fcr_2024_109572
crossref_primary_10_1016_j_agsy_2024_103949
crossref_primary_10_1016_j_catena_2024_107844
crossref_primary_10_1016_j_scitotenv_2022_156822
crossref_primary_10_5194_gmd_17_1349_2024
crossref_primary_10_1111_ejss_13515
crossref_primary_10_1111_ejss_13233
crossref_primary_10_3390_agriculture13050969
crossref_primary_10_1111_gcb_15954
crossref_primary_10_1002_jsfa_13913
crossref_primary_10_1016_j_jes_2025_03_016
crossref_primary_10_3389_fsoil_2022_838497
crossref_primary_10_31857_S0002188124040033
crossref_primary_10_3390_agronomy13123010
crossref_primary_10_1002_sae2_12100
crossref_primary_10_1016_j_agee_2024_109092
crossref_primary_10_3390_agronomy12051101
crossref_primary_10_1186_s40538_024_00694_7
crossref_primary_10_3390_agronomy14040675
crossref_primary_10_1111_ejss_13468
crossref_primary_10_1016_j_scitotenv_2024_173758
crossref_primary_10_3390_agronomy11122474
crossref_primary_10_3389_fsoil_2023_1209530
crossref_primary_10_3390_agronomy12061305
crossref_primary_10_3390_su16041530
crossref_primary_10_2139_ssrn_4159532
crossref_primary_10_3389_fenvs_2023_1173509
crossref_primary_10_15531_KSCCR_2021_12_6_701
crossref_primary_10_3390_agronomy13010267
crossref_primary_10_1016_j_still_2023_105641
crossref_primary_10_1186_s42397_024_00168_z
crossref_primary_10_1016_j_seh_2025_100147
crossref_primary_10_1007_s42729_024_01762_5
crossref_primary_10_1016_j_geodrs_2025_e00943
crossref_primary_10_5194_soil_8_621_2022
crossref_primary_10_1016_j_geoderma_2023_116647
crossref_primary_10_1186_s13717_024_00565_x
crossref_primary_10_1016_j_landusepol_2023_106932
Cites_doi 10.1016/j.geoderma.2017.01.002
10.1016/j.still.2012.06.011
10.1080/01904167.2016.1245323
10.1111/j.1461-0248.2010.01482.x
10.1007/s10584-006-9173-8
10.1016/j.still.2006.08.013
10.1016/S0038-0717(01)00022-0
10.1016/j.ijggc.2011.11.008
10.1079/SUM2005287
10.13080/z-a.2015.102.031
10.1016/j.still.2007.09.010
10.1016/j.agee.2016.05.035
10.1016/j.still.2004.02.002
10.1201/b21225-6
10.2136/sssaj2007.0342
10.1038/nature16069
10.1016/j.ijggc.2011.01.001
10.1016/j.agee.2014.10.024
10.1007/s11027-020-09916-3
10.5194/essd-9-667-2017
10.1016/S0378-1127(00)00282-6
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1016/j.still.2009.12.008
10.1111/gcb.12438
10.1073/pnas.1209429109
10.1016/j.scitotenv.2017.08.020
10.1111/gcb.12384
10.2136/sssaj1991.03615995005500020030x
10.1038/srep16210
10.1126/science.1097396
10.1016/j.agee.2006.05.014
10.1016/j.agee.2015.01.005
10.1016/0038-0717(95)00082-P
10.1016/j.apsoil.2014.05.009
10.1038/srep27199
10.1016/j.gca.2010.11.029
10.1016/j.catena.2020.104617
10.1016/S0167-1987(99)00072-0
10.1046/j.1354-1013.2002.00486.x
10.1016/B978-0-12-415955-6.00001-3
10.1007/s10533-007-9140-0
10.1111/j.1475-2743.2011.00366.x
10.1111/gcb.12517
10.2136/sssaj1998.03615995006200030029x
10.1007/s10705-018-9918-6
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-82739-7
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_cb24787b381848ffb1e58951cc85d3ac
PMC7943820
33750809
10_1038_s41598_021_82739_7
Genre Journal Article
GrantInformation_xml – fundername: Projekt DEAL
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c643t-f7911aa525ed0ed5f795d80748f889715f9f677a8a6028eec375f3b79db0931b3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:23:04 EDT 2025
Thu Aug 21 14:10:07 EDT 2025
Mon Jul 21 11:52:49 EDT 2025
Wed Aug 13 05:10:11 EDT 2025
Thu Jan 02 22:56:20 EST 2025
Tue Jul 01 01:07:39 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Fri Feb 21 02:39:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c643t-f7911aa525ed0ed5f795d80748f889715f9f677a8a6028eec375f3b79db0931b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-82739-7
PMID 33750809
PQID 2499222673
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_cb24787b381848ffb1e58951cc85d3ac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7943820
proquest_miscellaneous_2504352304
proquest_journals_2499222673
pubmed_primary_33750809
crossref_citationtrail_10_1038_s41598_021_82739_7
crossref_primary_10_1038_s41598_021_82739_7
springer_journals_10_1038_s41598_021_82739_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-09
PublicationDateYYYYMMDD 2021-03-09
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JohnsonDWCurtisPSEffects of forest management on soil C and N storage. Meta analysisForest Ecol. Manag.200114022723810.1016/S0378-1127(00)00282-6
Schimel, D. et al. Radiative forcing of climate change. Climate Change 1995: The Science of Climate Change, 65–131 (1996).
GlaserBBirkJJState of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio)Geochim. Cosmochim. Acta20128239512012GeCoA..82...39G1:CAS:528:DC%2BC38XjtFKmtL4%3D10.1016/j.gca.2010.11.029
PiccoliIDisentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North-Eastern ItalyAgric. Ecosyst. Environ.2016230687810.1016/j.agee.2016.05.035
MandoALong-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditionsSoil Use Manag.200521253110.1079/SUM2005287
MazzoldiAHillTCollsJJAssessing the risk for CO2 transportation within CCS projects, CFD modellingInt. J. Greenh. Gas Control201158168251:CAS:528:DC%2BC3MXhtVWqtb%2FL10.1016/j.ijggc.2011.01.001
WestTOSixJConsidering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacityClim. Change20078025412007ClCh...80...25W1:CAS:528:DC%2BD2sXmt1Ojug%3D%3D10.1007/s10584-006-9173-8
ZhangBGlobal manure nitrogen production and application in cropland during 1860–2014. A 5 arcmin gridded global dataset for Earth system modelingEarth Syst. Sci. Data201796676782017ESSD....9..667Z10.5194/essd-9-667-2017
BogužasVLong-term effect of tillage systems, straw and green manure combinations on soil organic matterZemdirbyste Agric.201510224325010.13080/z-a.2015.102.031
CaiASoil fertility and crop yield after manure addition to acidic soils in South ChinaNutr. Cycl. Agroecosyst.2018111617210.1007/s10705-018-9918-6
StewartCEPaustianKConantRTPlanteAFSixJSoil carbon saturation. Concept, evidence and evaluationBiogeochemistry20078619311:CAS:528:DC%2BD2sXhtVagtbbE10.1007/s10533-007-9140-0
RasmussenKJImpact of ploughless soil tillage on yield and soil quality. A Scandinavian reviewSoil Tillage Res.19995331410.1016/S0167-1987(99)00072-0
AngersDAEriksen-HamelNSFull-inversion tillage and organic carbon distribution in soil profiles. A meta-analysisSoil Sci. Soc. Am. J.20087213702008SSASJ..72.1370A1:CAS:528:DC%2BD1cXhtV2it77O10.2136/sssaj2007.0342
MotavalliPPPalmCAPartonWJElliottETFreySDSoil pH and organic C dynamics in tropical forest soils. Evidence from laboratory and simulation studiesSoil Biol. Biochem.199527158915991:CAS:528:DyaK2MXhtVSntrbF10.1016/0038-0717(95)00082-P
LaMJonesCABulk density of soils in relation to soil physical and chemical propertiesSoil Sci. Soc. Am. J.19915547648110.2136/sssaj1991.03615995005500020030x
R Core TeamR: A Language and Environment for Statistical Computing2018ViennaR Foundation for Statistical Computing
ObourAStahlmanPThompsonCLong-term residual effects of feedlot manure application on crop yield and soil surface chemistryJ. Plant Nutr.2017404274381:CAS:528:DC%2BC2sXpsFOhsg%3D%3D10.1080/01904167.2016.1245323
WillekensKVandecasteeleBBuchanDde NeveSSoil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping systemAppl. Soil Ecol.201482617110.1016/j.apsoil.2014.05.009
DungaitJABerheAAGregoryASHopkinsDWLalRStewartBASoil and Climate. Series: Advances in Soil Science2018Boca RatonCRC Press17118210.1201/b21225-6
GuoLBGiffordRMSoil carbon stocks and land use change. A meta analysisGlob. Change Biol.200283453602002GCBio...8..345G10.1046/j.1354-1013.2002.00486.x
DuYCuiBWangZSunJNiuWEffects of manure fertilizer on crop yield and soil properties in China. A meta-analysisCATENA20201931046171:CAS:528:DC%2BB3cXot1Gmur8%3D10.1016/j.catena.2020.104617
BakerJMOchsnerTEVentereaRTGriffisTJTillage and soil carbon sequestration—what do we really know?Agric. Ecosyst. Environ.2007118151:CAS:528:DC%2BD28Xht1CnsL3F10.1016/j.agee.2006.05.014
ParadeloRVirtoIChenuCNet effect of liming on soil organic carbon stocks. A reviewAgric. Ecosyst. Environ.2015202981071:CAS:528:DC%2BC2MXhtVClu74%3D10.1016/j.agee.2015.01.005
BernouxMCerriCArrouaysDJolivetCVolkoffBBulk densities of Brazilian Amazon soils related to other soil propertiesSoil Sci. Soc. Am. J.1998627437491998SSASJ..62..743B1:CAS:528:DyaK1cXks1eqtr8%3D10.2136/sssaj1998.03615995006200030029x
LiebigMTanakaDWienholdBTillage and cropping effects on soil quality indicators in the northern Great PlainsSoil Tillage Res.20047813114110.1016/j.still.2004.02.002
LiZLiuMWuXHanFZhangTEffects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical ChinaSoil Tillage Res.201010626827410.1016/j.still.2009.12.008
MenM-XPengZ-PHaoXYuZ-RInvestigation on Pedotransfer function for estimating soil bulk density in Hebei provinceChin. J. Soil Sci.2008120
LiuLGreaverTLA global perspective on belowground carbon dynamics under nitrogen enrichmentEcol. Lett.20101381982810.1111/j.1461-0248.2010.01482.x
WiesmeierMCarbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturationGlob. Change Biol.2014206536652014GCBio..20..653W10.1111/gcb.12384
AnderssonSNilssonSIInfluence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humusSoil Biol. Biochem.200133118111911:CAS:528:DC%2BD3MXlsV2jsrs%3D10.1016/S0038-0717(01)00022-0
HedgesLVGurevitchJCurtisPSThe meta-analysis of response ratios in experimental ecologyEcology1999801150115610.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
YaduvanshiNSharmaDRTillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigationSoil Tillage Res.200898111610.1016/j.still.2007.09.010
LiuCLuMCuiJLiBFangCEffects of straw carbon input on carbon dynamics in agricultural soils. A meta-analysisGlob. Change Biol.201420136613812014GCBio..20.1366L10.1111/gcb.12517
PoeplauCDonACarbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysisAgr. Ecosyst. Environ.201520033411:CAS:528:DC%2BC2cXhvVOkt7rO10.1016/j.agee.2014.10.024
GattingerAEnhanced top soil carbon stocks under organic farmingProc. Natl. Acad. Sci.201210918226182312012PNAS..10918226G1:CAS:528:DC%2BC38Xhsl2ktbjK10.1073/pnas.1209429109
BolinderMAThe effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems. A synthesis of reviewsMitig. Adapt. Strateg. Glob. Change20201682510.1007/s11027-020-09916-3
HanPZhangWWangGSunWHuangYChanges in soil organic carbon in croplands subjected to fertilizer management. A global meta-analysisSci. Rep.20166271992016NatSR...627199H1:CAS:528:DC%2BC28XptFCgsrc%3D10.1038/srep27199272510214890177
QinWHuCOenemaOSoil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat. A meta-analysisSci. Rep.20155162102015NatSR...516210Q1:CAS:528:DC%2BC2MXhvVOqsL%2FM10.1038/srep16210
LehmannJKleberMThe contentious nature of soil organic matterNature2015528602015Natur.528...60L1:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature16069
MinasnyBSoil carbon 4 per milleGeoderma201729259862017Geode.292...59M10.1016/j.geoderma.2017.01.002
MannaMSwarupAWanjariRMishraBShahiDLong-term fertilization, manure and liming effects on soil organic matter and crop yieldsSoil Tillage Res.20079439740910.1016/j.still.2006.08.013
MaillardÉAngersDAAnimal manure application and soil organic carbon stocks. A meta-analysisGlob. Change Biol.2014206666792014GCBio..20..666M10.1111/gcb.12438
WallquistLSeigoSLVisschersVHMSiegristMPublic acceptance of CCS system elements. A conjoint measurementInt. J. Greenh. Gas Control2012677831:CAS:528:DC%2BC38XitFGgs7g%3D10.1016/j.ijggc.2011.11.008
YuHDingWLuoJGengRCaiZLong-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soilSoil Tillage Res.201212417017710.1016/j.still.2012.06.011
Baldock, J. & Skjemstad, J. O. Soil organic carbon/soil organic matter. (Keine Angabe) (1999).
HollandJELiming impacts on soils, crops and biodiversity in the UK. A reviewSci. Total Environ.2018610–6113163322018ScTEn.610..316H1:CAS:528:DC%2BC2sXhtlarsbnE10.1016/j.scitotenv.2017.08.02028806549
LalRSoil carbon sequestration impacts on global climate change and food securityScience (New York, N. Y.)2004304162316272004Sci...304.1623L1:CAS:528:DC%2BD2cXks1Cgsrk%3D10.1126/science.1097396
IPCC ed. Climate Change 2007. Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007).
FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems. Guidelines for Assessment. Livestock Environmental Assessment and Performance (LEAP) Partnershi (Rome, Italy, 2018).
AngersDAArrouaysDSabyNPWalterCEstimating and mapping the carbon saturation deficit of French agricultural topsoilsSoil Use Manag.20112744845210.1111/j.1475-2743.2011.00366.x
PaulEASoil microbiology, Ecology and Biochemistry2015San DiegoElsevier10.1016/B978-0-12-415955-6.00001-3
TO West (82739_CR39) 2007; 80
M-X Men (82739_CR16) 2008; 1
KJ Rasmussen (82739_CR31) 1999; 53
DA Angers (82739_CR41) 2011; 27
W Qin (82739_CR24) 2015; 5
P Han (82739_CR13) 2016; 6
JM Baker (82739_CR36) 2007; 118
LB Guo (82739_CR22) 2002; 8
I Piccoli (82739_CR38) 2016; 230
EA Paul (82739_CR44) 2015
A Obour (82739_CR28) 2017; 40
MA Bolinder (82739_CR11) 2020; 168
JA Dungait (82739_CR43) 2018
82739_CR15
A Mazzoldi (82739_CR3) 2011; 5
V Bogužas (82739_CR35) 2015; 102
DW Johnson (82739_CR23) 2001; 140
M Wiesmeier (82739_CR42) 2014; 20
B Zhang (82739_CR12) 2017; 9
N Yaduvanshi (82739_CR33) 2008; 98
M Manna (82739_CR49) 2007; 94
M Bernoux (82739_CR17) 1998; 62
B Glaser (82739_CR6) 2012; 82
É Maillard (82739_CR14) 2014; 20
S Andersson (82739_CR45) 2001; 33
JE Holland (82739_CR47) 2018; 610–611
L Liu (82739_CR20) 2010; 13
A Gattinger (82739_CR19) 2012; 109
H Yu (82739_CR51) 2012; 124
82739_CR1
A Cai (82739_CR26) 2018; 111
82739_CR2
K Willekens (82739_CR32) 2014; 82
C Liu (82739_CR40) 2014; 20
82739_CR8
B Minasny (82739_CR7) 2017; 292
PP Motavalli (82739_CR48) 1995; 27
J Lehmann (82739_CR5) 2015; 528
CE Stewart (82739_CR29) 2007; 86
A Mando (82739_CR34) 2005; 21
R Core Team (82739_CR25) 2018
DA Angers (82739_CR37) 2008; 72
C Poeplau (82739_CR10) 2015; 200
M La (82739_CR18) 1991; 55
Z Li (82739_CR50) 2010; 106
LV Hedges (82739_CR21) 1999; 80
M Liebig (82739_CR30) 2004; 78
R Lal (82739_CR9) 2004; 304
R Paradelo (82739_CR46) 2015; 202
Y Du (82739_CR27) 2020; 193
L Wallquist (82739_CR4) 2012; 6
References_xml – reference: PaulEASoil microbiology, Ecology and Biochemistry2015San DiegoElsevier10.1016/B978-0-12-415955-6.00001-3
– reference: ZhangBGlobal manure nitrogen production and application in cropland during 1860–2014. A 5 arcmin gridded global dataset for Earth system modelingEarth Syst. Sci. Data201796676782017ESSD....9..667Z10.5194/essd-9-667-2017
– reference: MazzoldiAHillTCollsJJAssessing the risk for CO2 transportation within CCS projects, CFD modellingInt. J. Greenh. Gas Control201158168251:CAS:528:DC%2BC3MXhtVWqtb%2FL10.1016/j.ijggc.2011.01.001
– reference: IPCC ed. Climate Change 2007. Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007).
– reference: ObourAStahlmanPThompsonCLong-term residual effects of feedlot manure application on crop yield and soil surface chemistryJ. Plant Nutr.2017404274381:CAS:528:DC%2BC2sXpsFOhsg%3D%3D10.1080/01904167.2016.1245323
– reference: QinWHuCOenemaOSoil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat. A meta-analysisSci. Rep.20155162102015NatSR...516210Q1:CAS:528:DC%2BC2MXhvVOqsL%2FM10.1038/srep16210
– reference: AngersDAEriksen-HamelNSFull-inversion tillage and organic carbon distribution in soil profiles. A meta-analysisSoil Sci. Soc. Am. J.20087213702008SSASJ..72.1370A1:CAS:528:DC%2BD1cXhtV2it77O10.2136/sssaj2007.0342
– reference: FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems. Guidelines for Assessment. Livestock Environmental Assessment and Performance (LEAP) Partnershi (Rome, Italy, 2018).
– reference: R Core TeamR: A Language and Environment for Statistical Computing2018ViennaR Foundation for Statistical Computing
– reference: BolinderMAThe effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems. A synthesis of reviewsMitig. Adapt. Strateg. Glob. Change20201682510.1007/s11027-020-09916-3
– reference: WillekensKVandecasteeleBBuchanDde NeveSSoil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping systemAppl. Soil Ecol.201482617110.1016/j.apsoil.2014.05.009
– reference: BernouxMCerriCArrouaysDJolivetCVolkoffBBulk densities of Brazilian Amazon soils related to other soil propertiesSoil Sci. Soc. Am. J.1998627437491998SSASJ..62..743B1:CAS:528:DyaK1cXks1eqtr8%3D10.2136/sssaj1998.03615995006200030029x
– reference: PoeplauCDonACarbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysisAgr. Ecosyst. Environ.201520033411:CAS:528:DC%2BC2cXhvVOkt7rO10.1016/j.agee.2014.10.024
– reference: JohnsonDWCurtisPSEffects of forest management on soil C and N storage. Meta analysisForest Ecol. Manag.200114022723810.1016/S0378-1127(00)00282-6
– reference: LaMJonesCABulk density of soils in relation to soil physical and chemical propertiesSoil Sci. Soc. Am. J.19915547648110.2136/sssaj1991.03615995005500020030x
– reference: LiebigMTanakaDWienholdBTillage and cropping effects on soil quality indicators in the northern Great PlainsSoil Tillage Res.20047813114110.1016/j.still.2004.02.002
– reference: MinasnyBSoil carbon 4 per milleGeoderma201729259862017Geode.292...59M10.1016/j.geoderma.2017.01.002
– reference: GuoLBGiffordRMSoil carbon stocks and land use change. A meta analysisGlob. Change Biol.200283453602002GCBio...8..345G10.1046/j.1354-1013.2002.00486.x
– reference: MenM-XPengZ-PHaoXYuZ-RInvestigation on Pedotransfer function for estimating soil bulk density in Hebei provinceChin. J. Soil Sci.2008120
– reference: LiuCLuMCuiJLiBFangCEffects of straw carbon input on carbon dynamics in agricultural soils. A meta-analysisGlob. Change Biol.201420136613812014GCBio..20.1366L10.1111/gcb.12517
– reference: HollandJELiming impacts on soils, crops and biodiversity in the UK. A reviewSci. Total Environ.2018610–6113163322018ScTEn.610..316H1:CAS:528:DC%2BC2sXhtlarsbnE10.1016/j.scitotenv.2017.08.02028806549
– reference: Baldock, J. & Skjemstad, J. O. Soil organic carbon/soil organic matter. (Keine Angabe) (1999).
– reference: DungaitJABerheAAGregoryASHopkinsDWLalRStewartBASoil and Climate. Series: Advances in Soil Science2018Boca RatonCRC Press17118210.1201/b21225-6
– reference: RasmussenKJImpact of ploughless soil tillage on yield and soil quality. A Scandinavian reviewSoil Tillage Res.19995331410.1016/S0167-1987(99)00072-0
– reference: PiccoliIDisentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North-Eastern ItalyAgric. Ecosyst. Environ.2016230687810.1016/j.agee.2016.05.035
– reference: CaiASoil fertility and crop yield after manure addition to acidic soils in South ChinaNutr. Cycl. Agroecosyst.2018111617210.1007/s10705-018-9918-6
– reference: AnderssonSNilssonSIInfluence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humusSoil Biol. Biochem.200133118111911:CAS:528:DC%2BD3MXlsV2jsrs%3D10.1016/S0038-0717(01)00022-0
– reference: GlaserBBirkJJState of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio)Geochim. Cosmochim. Acta20128239512012GeCoA..82...39G1:CAS:528:DC%2BC38XjtFKmtL4%3D10.1016/j.gca.2010.11.029
– reference: WestTOSixJConsidering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacityClim. Change20078025412007ClCh...80...25W1:CAS:528:DC%2BD2sXmt1Ojug%3D%3D10.1007/s10584-006-9173-8
– reference: DuYCuiBWangZSunJNiuWEffects of manure fertilizer on crop yield and soil properties in China. A meta-analysisCATENA20201931046171:CAS:528:DC%2BB3cXot1Gmur8%3D10.1016/j.catena.2020.104617
– reference: HanPZhangWWangGSunWHuangYChanges in soil organic carbon in croplands subjected to fertilizer management. A global meta-analysisSci. Rep.20166271992016NatSR...627199H1:CAS:528:DC%2BC28XptFCgsrc%3D10.1038/srep27199272510214890177
– reference: StewartCEPaustianKConantRTPlanteAFSixJSoil carbon saturation. Concept, evidence and evaluationBiogeochemistry20078619311:CAS:528:DC%2BD2sXhtVagtbbE10.1007/s10533-007-9140-0
– reference: YuHDingWLuoJGengRCaiZLong-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soilSoil Tillage Res.201212417017710.1016/j.still.2012.06.011
– reference: WallquistLSeigoSLVisschersVHMSiegristMPublic acceptance of CCS system elements. A conjoint measurementInt. J. Greenh. Gas Control2012677831:CAS:528:DC%2BC38XitFGgs7g%3D10.1016/j.ijggc.2011.11.008
– reference: LehmannJKleberMThe contentious nature of soil organic matterNature2015528602015Natur.528...60L1:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature16069
– reference: MotavalliPPPalmCAPartonWJElliottETFreySDSoil pH and organic C dynamics in tropical forest soils. Evidence from laboratory and simulation studiesSoil Biol. Biochem.199527158915991:CAS:528:DyaK2MXhtVSntrbF10.1016/0038-0717(95)00082-P
– reference: MandoALong-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditionsSoil Use Manag.200521253110.1079/SUM2005287
– reference: LalRSoil carbon sequestration impacts on global climate change and food securityScience (New York, N. Y.)2004304162316272004Sci...304.1623L1:CAS:528:DC%2BD2cXks1Cgsrk%3D10.1126/science.1097396
– reference: HedgesLVGurevitchJCurtisPSThe meta-analysis of response ratios in experimental ecologyEcology1999801150115610.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– reference: YaduvanshiNSharmaDRTillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigationSoil Tillage Res.200898111610.1016/j.still.2007.09.010
– reference: MaillardÉAngersDAAnimal manure application and soil organic carbon stocks. A meta-analysisGlob. Change Biol.2014206666792014GCBio..20..666M10.1111/gcb.12438
– reference: AngersDAArrouaysDSabyNPWalterCEstimating and mapping the carbon saturation deficit of French agricultural topsoilsSoil Use Manag.20112744845210.1111/j.1475-2743.2011.00366.x
– reference: BakerJMOchsnerTEVentereaRTGriffisTJTillage and soil carbon sequestration—what do we really know?Agric. Ecosyst. Environ.2007118151:CAS:528:DC%2BD28Xht1CnsL3F10.1016/j.agee.2006.05.014
– reference: BogužasVLong-term effect of tillage systems, straw and green manure combinations on soil organic matterZemdirbyste Agric.201510224325010.13080/z-a.2015.102.031
– reference: Schimel, D. et al. Radiative forcing of climate change. Climate Change 1995: The Science of Climate Change, 65–131 (1996).
– reference: WiesmeierMCarbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturationGlob. Change Biol.2014206536652014GCBio..20..653W10.1111/gcb.12384
– reference: GattingerAEnhanced top soil carbon stocks under organic farmingProc. Natl. Acad. Sci.201210918226182312012PNAS..10918226G1:CAS:528:DC%2BC38Xhsl2ktbjK10.1073/pnas.1209429109
– reference: LiZLiuMWuXHanFZhangTEffects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical ChinaSoil Tillage Res.201010626827410.1016/j.still.2009.12.008
– reference: LiuLGreaverTLA global perspective on belowground carbon dynamics under nitrogen enrichmentEcol. Lett.20101381982810.1111/j.1461-0248.2010.01482.x
– reference: ParadeloRVirtoIChenuCNet effect of liming on soil organic carbon stocks. A reviewAgric. Ecosyst. Environ.2015202981071:CAS:528:DC%2BC2MXhtVClu74%3D10.1016/j.agee.2015.01.005
– reference: MannaMSwarupAWanjariRMishraBShahiDLong-term fertilization, manure and liming effects on soil organic matter and crop yieldsSoil Tillage Res.20079439740910.1016/j.still.2006.08.013
– volume: 292
  start-page: 59
  year: 2017
  ident: 82739_CR7
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.002
– volume: 124
  start-page: 170
  year: 2012
  ident: 82739_CR51
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.06.011
– volume: 40
  start-page: 427
  year: 2017
  ident: 82739_CR28
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2016.1245323
– volume: 13
  start-page: 819
  year: 2010
  ident: 82739_CR20
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2010.01482.x
– volume: 80
  start-page: 25
  year: 2007
  ident: 82739_CR39
  publication-title: Clim. Change
  doi: 10.1007/s10584-006-9173-8
– volume: 94
  start-page: 397
  year: 2007
  ident: 82739_CR49
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2006.08.013
– volume: 33
  start-page: 1181
  year: 2001
  ident: 82739_CR45
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00022-0
– volume: 6
  start-page: 77
  year: 2012
  ident: 82739_CR4
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2011.11.008
– volume: 21
  start-page: 25
  year: 2005
  ident: 82739_CR34
  publication-title: Soil Use Manag.
  doi: 10.1079/SUM2005287
– volume: 102
  start-page: 243
  year: 2015
  ident: 82739_CR35
  publication-title: Zemdirbyste Agric.
  doi: 10.13080/z-a.2015.102.031
– volume: 98
  start-page: 11
  year: 2008
  ident: 82739_CR33
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2007.09.010
– volume: 1
  start-page: 20
  year: 2008
  ident: 82739_CR16
  publication-title: Chin. J. Soil Sci.
– volume: 230
  start-page: 68
  year: 2016
  ident: 82739_CR38
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.05.035
– volume: 78
  start-page: 131
  year: 2004
  ident: 82739_CR30
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.02.002
– start-page: 171
  volume-title: Soil and Climate. Series: Advances in Soil Science
  year: 2018
  ident: 82739_CR43
  doi: 10.1201/b21225-6
– volume: 72
  start-page: 1370
  year: 2008
  ident: 82739_CR37
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0342
– volume: 528
  start-page: 60
  year: 2015
  ident: 82739_CR5
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 5
  start-page: 816
  year: 2011
  ident: 82739_CR3
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2011.01.001
– volume: 200
  start-page: 33
  year: 2015
  ident: 82739_CR10
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.10.024
– volume: 168
  start-page: 25
  year: 2020
  ident: 82739_CR11
  publication-title: Mitig. Adapt. Strateg. Glob. Change
  doi: 10.1007/s11027-020-09916-3
– ident: 82739_CR8
– volume: 9
  start-page: 667
  year: 2017
  ident: 82739_CR12
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-9-667-2017
– volume: 140
  start-page: 227
  year: 2001
  ident: 82739_CR23
  publication-title: Forest Ecol. Manag.
  doi: 10.1016/S0378-1127(00)00282-6
– volume: 80
  start-page: 1150
  year: 1999
  ident: 82739_CR21
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– volume: 106
  start-page: 268
  year: 2010
  ident: 82739_CR50
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2009.12.008
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2018
  ident: 82739_CR25
– volume: 20
  start-page: 666
  year: 2014
  ident: 82739_CR14
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12438
– volume: 109
  start-page: 18226
  year: 2012
  ident: 82739_CR19
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1209429109
– volume: 610–611
  start-page: 316
  year: 2018
  ident: 82739_CR47
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.020
– volume: 20
  start-page: 653
  year: 2014
  ident: 82739_CR42
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12384
– volume: 55
  start-page: 476
  year: 1991
  ident: 82739_CR18
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500020030x
– volume: 5
  start-page: 16210
  year: 2015
  ident: 82739_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/srep16210
– volume: 304
  start-page: 1623
  year: 2004
  ident: 82739_CR9
  publication-title: Science (New York, N. Y.)
  doi: 10.1126/science.1097396
– volume: 118
  start-page: 1
  year: 2007
  ident: 82739_CR36
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.05.014
– volume: 202
  start-page: 98
  year: 2015
  ident: 82739_CR46
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.01.005
– volume: 27
  start-page: 1589
  year: 1995
  ident: 82739_CR48
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)00082-P
– volume: 82
  start-page: 61
  year: 2014
  ident: 82739_CR32
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.05.009
– ident: 82739_CR1
– volume: 6
  start-page: 27199
  year: 2016
  ident: 82739_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/srep27199
– volume: 82
  start-page: 39
  year: 2012
  ident: 82739_CR6
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.11.029
– ident: 82739_CR15
– volume: 193
  start-page: 104617
  year: 2020
  ident: 82739_CR27
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104617
– volume: 53
  start-page: 3
  year: 1999
  ident: 82739_CR31
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(99)00072-0
– volume: 8
  start-page: 345
  year: 2002
  ident: 82739_CR22
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1354-1013.2002.00486.x
– volume-title: Soil microbiology, Ecology and Biochemistry
  year: 2015
  ident: 82739_CR44
  doi: 10.1016/B978-0-12-415955-6.00001-3
– volume: 86
  start-page: 19
  year: 2007
  ident: 82739_CR29
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9140-0
– ident: 82739_CR2
– volume: 27
  start-page: 448
  year: 2011
  ident: 82739_CR41
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2011.00366.x
– volume: 20
  start-page: 1366
  year: 2014
  ident: 82739_CR40
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12517
– volume: 62
  start-page: 743
  year: 1998
  ident: 82739_CR17
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1998.03615995006200030029x
– volume: 111
  start-page: 61
  year: 2018
  ident: 82739_CR26
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-018-9918-6
SSID ssj0000529419
Score 2.6432257
Snippet Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to...
Abstract Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5516
SubjectTerms 704/47
704/47/4113
Acidic soils
Agricultural land
Alkaline soils
Carbon
Carbon sequestration
Climate change
Climate change mitigation
Climatic conditions
Fertilization
Humanities and Social Sciences
Manures
Meta-analysis
Mineral fertilizers
multidisciplinary
Nutrients
Organic carbon
Pig manure
Sandy soils
Science
Science (multidisciplinary)
Soil properties
Tillage
Topsoil
Tropical environments
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivm1dJYI3DTuddDrJUcVlUdaTC3sLebILa_eyM4v4763q9IwzPi8eu5OG4ksl9aVT-QrgpYgyJWEUV9H3vEuxcJIV40oFYXF_UGKkH_rHn_qjk-7DqTrdKvVFOWFVHrgCdxCDIP2YQJGlM6WENiuDtCBGo5L0kVZfjHlbm6mq6i1s19r5lsxCmoMlRiq6TSZabjBkW653ItEk2P87lvlrsuRPJ6ZTIDq8A7dnBsneVMvvwo083IObtabkt_vw8TivPPez1ggbB3Y2fmVfPF0IZlvH1axe-V2y5Xh-wWpxp8iivwrYRimTuNA8gJPD95_fHfG5YgKPyCxWvGhcu7xXQuW0yEnhs0okd2OKMVa3qtjSa-2N75FX5BylVkUGbVNYWNkG-RD2hnHIj4EhM_RB507KuOhk7LxQPhnTZikDkrS2gXaNnouznDhVtbhw07G2NK4i7hBxNyHudAOvNt9cVjGNv_Z-S4Oy6UlC2NMLhMTN7uH-5R4N7K-H1M2zc-lwy2mRF_VaNvBi04zzig5L_JDHa-xD0m7TL_MGHlUP2FgiETZk2rYBveMbO6butgznZ5N2N-nxIelq4PXai36Y9WconvwPKJ7CLUHuTwl0dh_2VlfX-RkyqlV4Pk2e764yGp4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXRHmmLchI3MDqJo5j-4QAtapA5USlvVl-Ra3UJqXZCvHvmUm8Kcujx8SO5IzHns8z428A3lRBxFhpyWVwDa9jaDnRinEpfWXwfNCGQA7946_N0Un9eSmX2eE25LTK9Z44btSxD-Qj38djgkFb1ijx_vI7p6pRFF3NJTTuwj2iLqOULrVUs4-Folh1afJdmYXQ-wPaK7pTVpVco-E2XG3Yo5G2_19Y8--UyT_ipqM5OnwEDzOOZB-mid-GO6l7DPenypI_n8CX47Ry3GXGEdZ37LT_wS4cXQtmvwWt2XTxd2BDf3bOphJPgQV35bGNEidxu3kKJ4cH3z4d8Vw3gQfEFyveKtzBnJOVTHGRosRnGYn0RrdaG1XK1rSNUk67BtFFSkEo2QqvTPQLI0ovnsFW13fpBTDEh86rVAsRFrUItauki1qXSQiPUK0soFxLz4ZMKk61Lc7tGNwW2k4StyhxO0rcqgLezt9cTpQat_b-SJMy9yQ67PEFisTm1WWDr4hkyBP8wL9sfZmkRuwYgpZRuFDA3npKbV6jg73RqAJez824uihk4rrUX2MfIngbHecFPJ80YB6JQLEh3jYFqA3d2BjqZkt3djoyeBMrH0KvAt6ttehmWP8Xxc7tf7ELDypSbEqQM3uwtbq6Ti8RMa38q3FZ_ALXnBHz
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfAirZ_bVongTYNvk80mOerDUpR6stBbSLJZWqi7pe8V8b_vTPZDn1ahx90kMDuZZH6bmfkF4I2IsmmEUVxFX_OqiS0nWjGuVBAW_w_aGOlA__hrfXRSfT5Vp1sgplqYnLSfKS3zNj1lh71foaOhYjBRcoMe13J9D-4TdTtZ9bJezucqFLmqSjvWxyykuWXohg_KVP234cu_0yT_iJVmF3S4A49G7Mg-DNLuwlbqHsOD4TbJn0_gy3Fae-5HlhHWd-ys_8G-eyoFZr8FqtlQ7Ltiq_78gg3XOkUW_VXANkqWxC3mKZwcfvq2POLjXQk8IqZY81bjruW9Eio1i9QofFYNEd2Y1hirS9XattbaG18jokgpSq1aGbRtwsLKMshnsN31XXoBDDGhDzpVUsZFJWPlhfKNMWWSMiA8KwsoJ-25OBKJ030WFy4HtKVxg8YdatxljTtdwNt5zOVAo_Hf3h9pUuaeRIGdX6BK3GgSLgZBxEKBIAd-ZRvKpAzixRiNaqSPBRxMU-rGdbly-LNpERHVWhbwem7GFUVhEt-l_hr7EKlbPiwv4PlgAbMkEtWGGNsWoDdsY0PUzZbu_CyzdhMTH8KtAt5NVvRLrH-rYu9u3ffhoSBDpyQ5ewDb66vr9BJR0zq8ysvkBj0TD88
  priority: 102
  providerName: Springer Nature
Title Meta-analysis on how manure application changes soil organic carbon storage
URI https://link.springer.com/article/10.1038/s41598-021-82739-7
https://www.ncbi.nlm.nih.gov/pubmed/33750809
https://www.proquest.com/docview/2499222673
https://www.proquest.com/docview/2504352304
https://pubmed.ncbi.nlm.nih.gov/PMC7943820
https://doaj.org/article/cb24787b381848ffb1e58951cc85d3ac
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG8CS2UkbmBo7Dh2Dgh1q12tirpCQKXeLNtxtCuVBNquYP89YycpFAoSp6qxWzlfZjKfH_MNwHPmeFkyJahwJqdZ6SoaZMWoEJYVOD-onAsL-tPz_GyWTeZivgd9uaMOwNXOqV2oJzVbLl59_3r9Fh3-TZsyrl6vMAiFRDGWUoXRuKByHw4xMsngqNOO7rda36zIYq2PIMJOkUywLo9m999sxaoo6b-Lh_55nPK3PdUYqk5vw62OY5JRaxR3YM_Xd-FGW3Xy-h68m_q1oaZTIyFNTS6ab-SzCSnD5JcNbdImBa_IqrlckLb8kyPOLC22hUOV-Cq6D7PTk0_jM9rVVKAOuceaVhLfbsYIJnw59KXA76IMgjiqUqqQqaiKKpfSKJMj8_DecSkqbmVR2mHBU8sfwEHd1P4REOSOxkqfce6GGXeZYcKUSqWec4s0Lk0g7dHTrhMcD3UvFjpufHOlW8Q1Iq4j4lom8GLzmy-t3MY_ex-Hh7LpGaSy4wWERHeep51lQYDIBmqCd1nZ1AuFvNI5JUpuXAJH_SPVvflpnJQWyJxyyRN4tmlGzwvbKab2zRX2CeJvcVE9gYetBWxGwhE25OJFAnLLNraGut1SX15Ede-g2Ie0LIGXvRX9HNbfoXj8X8A9gZss2Hk4S1ccwcF6eeWfIrla2wHsy7kcwOFoNPk4wc_jk_P3H_DqOB8P4oLFIPrUD6zFIK4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ7C6iePYOSBEodWW7a4QaqXeXNtx1EolKd2tqv4pfiMzeWxZHr31mLU3csZjzzcezzcArxMviiLRkktvM54WvuREK8aldEmO_kHpPR3oT6bZaC_9si_3V-BnnwtD1yr7PbHZqIva0xn5OroJOdqyTIkPJz84VY2i6GpfQqNVi3G4OEeXbfZ--zPO75sk2drc_TTiXVUB7tH6znmpcH1bKxMZimEoJD7LgihhdKl1rmJZ5mWmlNU2Q9sbghdKlsKpvHDo_cdO4HtvwGoq0JUZwOrG5vTrt8WpDsXN0jjvsnOGQq_P0EJSFlsSc41QIedqyQI2hQL-hW7_vqT5R6S2MYBbd-FOh1zZx1bV7sFKqO7DzbaW5cUDGE_C3HLbcZywumKH9Tn7bikRmf0WJmdtqvGMzeqjY9YWlfLM21OHbXRVEze4h7B3LTJ9BIOqrsITYIhIrVMhFcIPU-FTm0hbaB0HIRyCwziCuJee8R2NOVXTODZNOF1o00rcoMRNI3GjIni7-M9JS-JxZe8NmpRFTyLgbn5AkZhuPRvvEqI1cgR48CtLFwepEa16r2UhrI9grZ9S0-0KM3OpwxG8WjTjeqYgja1CfYZ9iFKuOaqP4HGrAYuRCBQbIvw8ArWkG0tDXW6pjg4bznDiAUSwF8G7Xosuh_V_UTy9-itewq3R7mTH7GxPx8_gdkJKTtfz8jUYzE_PwnPEa3P3olskDA6ue13-AtdeT5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCazdxHHsHBACyqplacWBSnsztuOolUpSmq2q_jV-HTN5leXRW49ZeyNnPOP57Bl_A_Ai8aIoEi259DbjaeFLTrRiXEqX5Lg_KL2nA_2d3WxrL_20kIs1-DnchaG0ymFNbBfqovZ0Rj7BbUKOvixTYlL2aRFfNmdvj35wqiBFkdahnEanIvNwdorbt-bN9ibO9cskmX38-mGL9xUGuEdPvOSlQlu3ViYyFNNQSHyWBdHD6FLrXMWyzMtMKatthn44BC-ULIVTeeGmuYidwPdegatKyJhsTC3UeL5DEbQ0zvt7OlOhJw36SrrPlsRcI2jIuVrxhW3JgH_h3L_TNf-I2baucHYLbvYYlr3rlO42rIXqDlzrqlqe3YX5Tlhabnu2E1ZXbL8-Zd8tXUlmvwXMWXfpuGFNfXDIuvJSnnl77LCNkjZxqbsHe5ci0fuwXtVVeAgMsal1KqRC-GkqfGoTaQut4yCEQ5gYRxAP0jO-JzSnuhqHpg2sC206iRuUuGklblQEr8b_HHV0Hhf2fk-TMvYkKu72BxSJ6S3beJcQwZEj6INfWbo4SI241XstC2F9BBvDlJp-fWjMuTZH8HxsRsumcI2tQn2CfYhcrj20j-BBpwHjSASKDbF-HoFa0Y2Voa62VAf7LXs4MQIi7Ivg9aBF58P6vygeXfwVz-A6WqP5vL07fww3EtJxytPLN2B9eXwSniBwW7qnrYUw-HbZJvkL4S1SZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+on+how+manure+application+changes+soil+organic+carbon+storage&rft.jtitle=Scientific+reports&rft.au=Gross%2C+Arthur&rft.au=Glaser%2C+Bruno&rft.date=2021-03-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-82739-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_82739_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon