Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms
Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 101; no. 7; pp. 1910 - 1915 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
17.02.2004
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and ≈ 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. |
---|---|
AbstractList | Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the
Arabidopsis
and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in
Arabidopsis
. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and ≈15–20 type II genes in the most recent common ancestor of
Arabidopsis
and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and ≈ 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and about equal to 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. [PUBLICATION ABSTRACT] Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and approximately 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes.Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and approximately 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and [approx]15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis . We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and ≈15–20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and approximately 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes. |
Author | An, G Ma, H Kim, J Lee, S Nei, M Nam, J |
AuthorAffiliation | Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802; and § National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea |
AuthorAffiliation_xml | – name: Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802; and § National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea |
Author_xml | – sequence: 1 fullname: Nam, J – sequence: 2 fullname: Kim, J – sequence: 3 fullname: Lee, S – sequence: 4 fullname: An, G – sequence: 5 fullname: Ma, H – sequence: 6 fullname: Nei, M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14764899$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxSNURLeFMxcEEQc4pR3HjmMfOFTlq1IRh7Zny8lOdr3K2ovtrLb_PQ67dEtB9BIf5vde5s3MUXZgncUse0nghEBNT1dWhxOgIBgFAvAkmxCQpOBMwkE2ASjrQrCSHWZHISwAQFYCnmWHhNWcCSknmb--XWF-kX87-3hVNG6Tz9BiyOd6jTluVugN2haneadDRJ83xsd5oe20mKKO8xzXrh-icTaPc50-v8z-cjM213ZmXEh-y_A8e9rpPuCL3Xuc3Xz-dH3-tbj8_uXi_OyyaDmjscCKoaR1p5FBxwRrZK1lJ5pGy4o3sqFSE0kqTTmtUoEi6xqgXVcLxnlFBT3OPmx9V0OzxGmLNnrdq5U3S-1vldNG_VmxZq5mbq1oVUPJk_7dTu_djwFDVEsTWux7bdENQQkgNeGMPQoyLipeSngUJLLkFVQj-PYBuHCDt2laqgRCmZRCJuj1_Xx3wX4vNwGnW6D1LgSP3R4BNZ6PGs9H7c8nKaoHitZEPe43Dcj0_9G937UyFvZ_IapOoZKqG_o-4ibea_rfZAJebYFFiM7fEZTWhPIx05ttudNO6Zk3Qd1cjTNJfdREpG38BCHa8zs |
CitedBy_id | crossref_primary_10_1186_gb_2010_11_10_r101 crossref_primary_10_1104_pp_104_043182 crossref_primary_10_1093_molbev_msab355 crossref_primary_10_1007_s11033_012_2438_6 crossref_primary_10_1016_j_bbrc_2006_07_121 crossref_primary_10_1111_tpj_16401 crossref_primary_10_1016_j_cub_2010_01_051 crossref_primary_10_1186_1471_2229_9_81 crossref_primary_10_1016_j_jgg_2012_02_008 crossref_primary_10_1016_j_postharvbio_2021_111485 crossref_primary_10_1371_journal_pone_0017334 crossref_primary_10_1016_j_ijbiomac_2023_123648 crossref_primary_10_1007_s13205_020_02605_7 crossref_primary_10_1038_srep11037 crossref_primary_10_1007_s00299_023_03009_6 crossref_primary_10_1002_bies_20728 crossref_primary_10_1016_j_plaphy_2024_108637 crossref_primary_10_1093_molbev_msr200 crossref_primary_10_3389_fpls_2021_646622 crossref_primary_10_3389_fgene_2021_818880 crossref_primary_10_3390_biology2031150 crossref_primary_10_1007_s00425_005_0123_x crossref_primary_10_1371_journal_pcbi_1000449 crossref_primary_10_1080_14620316_2020_1859412 crossref_primary_10_1007_s00425_005_0020_3 crossref_primary_10_1093_molbev_msp279 crossref_primary_10_1111_nph_20065 crossref_primary_10_1016_j_marenvres_2011_09_013 crossref_primary_10_1105_tpc_113_110049 crossref_primary_10_1111_j_1469_8137_2012_04143_x crossref_primary_10_1186_s12864_015_1349_z crossref_primary_10_1038_s41598_024_68965_9 crossref_primary_10_1139_g2012_009 crossref_primary_10_3390_genes12121956 crossref_primary_10_1007_s00438_007_0297_y crossref_primary_10_1007_s11240_010_9848_8 crossref_primary_10_1038_s41598_020_77870_w crossref_primary_10_1093_gbe_evs015 crossref_primary_10_1007_s00239_004_0302_6 crossref_primary_10_1016_j_gene_2006_05_022 crossref_primary_10_1371_journal_pone_0200762 crossref_primary_10_3389_fpls_2023_1299902 crossref_primary_10_1104_pp_110_160770 crossref_primary_10_1111_j_1365_313X_2008_03485_x crossref_primary_10_1007_s10725_019_00539_6 crossref_primary_10_1093_molbev_msn094 crossref_primary_10_5010_JPB_2019_46_4_255 crossref_primary_10_1186_gb_2010_11_4_r38 crossref_primary_10_3390_ijms24098253 crossref_primary_10_1007_s00425_008_0885_z crossref_primary_10_1371_journal_pone_0214335 crossref_primary_10_1111_j_1365_313X_2012_05015_x crossref_primary_10_3389_fpls_2017_01156 crossref_primary_10_1007_s00239_010_9378_3 crossref_primary_10_1007_s13580_022_00478_8 crossref_primary_10_1139_gen_2016_0101 crossref_primary_10_1038_s41598_020_79877_9 crossref_primary_10_1104_pp_106_080580 crossref_primary_10_1111_j_1365_313X_2009_04101_x crossref_primary_10_1007_s00299_023_03006_9 crossref_primary_10_3390_ijms22179362 crossref_primary_10_1016_j_postharvbio_2024_113287 crossref_primary_10_1111_j_1365_294X_2010_04893_x crossref_primary_10_1186_gb_2007_8_11_r249 crossref_primary_10_1007_s10722_025_02347_6 crossref_primary_10_1186_s12870_018_1394_2 crossref_primary_10_1016_j_ympev_2007_02_016 crossref_primary_10_1105_tpc_108_058958 crossref_primary_10_1007_s11103_005_4546_3 crossref_primary_10_3390_ijms26052271 crossref_primary_10_1016_j_gene_2005_08_009 crossref_primary_10_1038_s41598_020_77375_6 crossref_primary_10_1016_j_gene_2014_11_018 crossref_primary_10_1007_s00438_015_1095_6 crossref_primary_10_1007_s11033_013_2564_9 crossref_primary_10_1186_s12864_018_5113_z crossref_primary_10_1371_journal_pone_0102825 crossref_primary_10_1104_pp_107_114256 crossref_primary_10_3389_fpls_2020_00132 crossref_primary_10_1038_ng_3435 crossref_primary_10_1534_genetics_106_069336 crossref_primary_10_3390_ijms25158233 crossref_primary_10_1007_s00438_014_0863_z crossref_primary_10_1016_j_plantsci_2022_111263 crossref_primary_10_1111_j_1365_313X_2008_03406_x crossref_primary_10_1016_j_bbagrm_2016_08_005 crossref_primary_10_1016_j_scienta_2017_09_042 crossref_primary_10_1371_journal_pone_0300159 crossref_primary_10_1007_s12042_019_09247_x crossref_primary_10_1111_ppl_13508 crossref_primary_10_3389_fbioe_2015_00033 crossref_primary_10_48130_tp_0024_0004 crossref_primary_10_1105_tpc_021576 crossref_primary_10_1007_s11295_012_0490_y crossref_primary_10_1186_s12864_016_2398_7 crossref_primary_10_3389_fpls_2022_948587 crossref_primary_10_3390_plants14030379 crossref_primary_10_1093_g3journal_jkac147 crossref_primary_10_1104_pp_109_135806 crossref_primary_10_1371_journal_pone_0002944 crossref_primary_10_1111_pbi_12383 crossref_primary_10_1007_s00438_006_0147_3 crossref_primary_10_1016_j_plantsci_2021_110938 crossref_primary_10_1371_journal_pone_0058748 crossref_primary_10_3724_SP_J_1259_2011_00506 crossref_primary_10_1186_1471_2229_5_5 crossref_primary_10_3390_ijms24010826 crossref_primary_10_1371_journal_pone_0062288 crossref_primary_10_1016_j_scienta_2024_113100 crossref_primary_10_1073_pnas_0406844101 crossref_primary_10_3389_fpls_2018_00510 crossref_primary_10_1371_journal_pone_0084781 crossref_primary_10_1007_s11295_008_0143_3 crossref_primary_10_1007_s10535_012_0297_6 crossref_primary_10_1186_s12864_023_09509_9 crossref_primary_10_1186_s12870_015_0436_2 crossref_primary_10_7717_peerj_3776 crossref_primary_10_1534_genetics_104_037770 crossref_primary_10_1080_10425170600699877 crossref_primary_10_1104_pp_110_153593 crossref_primary_10_1007_s00344_016_9590_5 crossref_primary_10_1086_427479 crossref_primary_10_1186_s12870_020_02712_w crossref_primary_10_1111_j_1525_142X_2006_00100_x crossref_primary_10_1093_aob_mcr112 crossref_primary_10_1186_s40659_019_0233_8 crossref_primary_10_1007_s11103_005_2161_y crossref_primary_10_1104_pp_106_089805 crossref_primary_10_1007_s00709_024_01928_z crossref_primary_10_1038_s41598_018_23985_0 crossref_primary_10_1007_s11105_013_0597_9 crossref_primary_10_3389_fpls_2017_00656 crossref_primary_10_1104_pp_112_200980 crossref_primary_10_1111_j_1365_313X_2007_03097_x crossref_primary_10_1093_aob_mcu066 crossref_primary_10_1016_j_gene_2015_05_018 crossref_primary_10_3417_2010131 crossref_primary_10_1111_tpj_14523 crossref_primary_10_1111_tpj_14765 crossref_primary_10_1016_j_ygeno_2021_04_023 crossref_primary_10_1086_648986 crossref_primary_10_1146_annurev_genet_39_073003_112240 crossref_primary_10_1007_s10528_023_10376_y crossref_primary_10_1016_j_xplc_2022_100410 crossref_primary_10_1016_S2095_3119_15_61167_4 crossref_primary_10_1093_molbev_msv020 crossref_primary_10_1186_1471_2164_8_242 crossref_primary_10_1016_j_gde_2005_06_001 crossref_primary_10_3923_biotech_2017_100_107 crossref_primary_10_3390_f9060304 crossref_primary_10_1139_b06_031 crossref_primary_10_1073_pnas_2001332117 crossref_primary_10_3390_genes13101777 crossref_primary_10_1007_s00239_006_0174_z crossref_primary_10_1093_molbev_msh213 crossref_primary_10_1007_s13258_014_0187_8 crossref_primary_10_1016_j_cj_2021_03_020 crossref_primary_10_2139_ssrn_4010648 crossref_primary_10_1093_gbe_evs034 crossref_primary_10_1111_tpj_13722 crossref_primary_10_3724_SP_J_1006_2010_00905 crossref_primary_10_1093_bfgp_elw022 crossref_primary_10_1534_genetics_105_050500 crossref_primary_10_1093_molbev_msad194 crossref_primary_10_1186_s12870_014_0266_7 crossref_primary_10_1073_pnas_0812043106 crossref_primary_10_1016_j_gene_2019_143974 crossref_primary_10_1111_tpj_12073 crossref_primary_10_1093_molbev_msl095 |
Cites_doi | 10.1038/35008089 10.1016/S0092-8674(02)00933-9 10.1073/pnas.0631708100 10.1093/oxfordjournals.molbev.a026408 10.1101/gad.5.3.484 10.1126/science.279.5349.407 10.1093/nar/gkg642 10.1038/221040a0 10.1023/A:1006051911291 10.1016/0092-8674(94)90291-7 10.1007/s00239-002-2426-x 10.1105/tpc.011544 10.1126/science.1068037 10.1007/s00239-003-0039-7 10.1016/S0378-1119(00)00243-2 10.1093/pcp/pcg156 10.1016/S1369-5266(00)00139-4 10.1093/molbev/msg152 10.1007/s00438-002-0781-3 10.1105/tpc.11.5.949 10.1073/pnas.94.15.7799 10.1016/S0092-8674(00)80618-2 10.1073/pnas.97.10.5328 10.1080/10635150390218213 10.1046/j.1365-313x.2000.00891.x 10.1093/oxfordjournals.molbev.a004137 10.1073/pnas.212646199 10.1093/molbev/msg216 10.1038/35012103 10.1016/S1055-7903(03)00207-0 10.1111/j.1432-1033.1995.tb20430.x 10.1093/nar/25.17.3389 10.1093/bioinformatics/17.12.1244 10.1007/s00438-001-0615-8 10.1016/S0092-8674(02)00932-7 |
ContentType | Journal Article |
Copyright | Copyright 1993/2004 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 17, 2004 Copyright © 2004, The National Academy of Sciences 2004 |
Copyright_xml | – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 17, 2004 – notice: Copyright © 2004, The National Academy of Sciences 2004 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0308430100 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 1915 |
ExternalDocumentID | PMC357026 684872401 14764899 10_1073_pnas_0308430100 101_7_1910 3371369 US201301071844 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM20293 – fundername: NIGMS NIH HHS grantid: R01 GM020293 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c643t-e54e937fae40f484b97a9f8bba956b9b39a1915a3635a9f3e4fb03ff784665383 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:18:03 EDT 2025 Mon Aug 18 11:25:42 EDT 2025 Fri Jul 11 00:51:45 EDT 2025 Fri Jul 11 10:10:58 EDT 2025 Mon Jun 30 08:42:39 EDT 2025 Wed Feb 19 01:44:11 EST 2025 Tue Jul 01 03:59:40 EDT 2025 Thu Apr 24 22:54:27 EDT 2025 Wed Nov 11 00:29:41 EST 2020 Thu May 30 08:51:26 EDT 2019 Thu May 29 08:40:57 EDT 2025 Thu Apr 03 09:44:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c643t-e54e937fae40f484b97a9f8bba956b9b39a1915a3635a9f3e4fb03ff784665383 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 To whom correspondence should be addressed. E-mail: jyn101@psu.edu. Contributed by Masatoshi Nei, December 22, 2003 Abbreviations: M-domain, MADS-domain; MRCA, most recent common ancestor. Present address: Michigan State University–Department of Energy Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824. |
OpenAccessLink | http://doi.org/10.1073/pnas.0308430100 |
PMID | 14764899 |
PQID | 201349989 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_101_7_1910_fulltext jstor_primary_3371369 proquest_miscellaneous_80171644 proquest_miscellaneous_19265050 pubmed_primary_14764899 crossref_citationtrail_10_1073_pnas_0308430100 pubmedcentral_primary_oai_pubmedcentral_nih_gov_357026 fao_agris_US201301071844 proquest_journals_201349989 crossref_primary_10_1073_pnas_0308430100 proquest_miscellaneous_46856290 pnas_primary_101_7_1910 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-02-17 |
PublicationDateYYYYMMDD | 2004-02-17 |
PublicationDate_xml | – month: 02 year: 2004 text: 2004-02-17 day: 17 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2004 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_29_2 (e_1_3_2_27_2) 2002; 15 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 (e_1_3_2_11_2) 2002; 47 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 (e_1_3_2_37_2) 2003; 12 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 (e_1_3_2_28_2) 1987; 4 10821278 - Nature. 2000 May 11;405(6783):200-3 12815071 - Genes Dev. 2003 Jun 15;17(12):1540-53 5782607 - Nature. 1969 Jan 4;221(5175):40-2 12949148 - Mol Biol Evol. 2003 Dec;20(12):1963-77 7744019 - Eur J Biochem. 1995 Apr 1;229(1):1-13 10783890 - Nature. 2000 Apr 13;404(6779):766-70 10805792 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5328-33 11751241 - Bioinformatics. 2001 Dec;17(12):1244-5 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 7913881 - Cell. 1994 Jul 29;78(2):203-9 11862488 - Mol Genet Genomics. 2002 Feb;266(6):942-50 12837945 - Plant Cell. 2003 Jul;15(7):1538-51 12297045 - Cell. 2002 Sep 20;110(6):713-23 14615187 - Mol Phylogenet Evol. 2003 Dec;29(3):464-89 10925200 - Gene. 2000 Jul 25;253(1):31-43 12297046 - Cell. 2002 Sep 20;110(6):725-35 10908645 - Mol Biol Evol. 2000 Aug;17(8):1251-8 12698294 - J Mol Evol. 2003 May;56(5):573-86 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 9430595 - Science. 1998 Jan 16;279(5349):407-9 11163172 - Curr Opin Plant Biol. 2001 Feb;4(1):75-85 9869408 - Plant Mol Biol. 1998 Dec;38(6):1021-9 12888499 - Nucleic Acids Res. 2003 Aug 1;31(15):4401-9 12136088 - Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 10330478 - Plant Cell. 1999 May;11(5):949-56 11935017 - Science. 2002 Apr 5;296(5565):79-92 14701936 - Plant Cell Physiol. 2003 Dec;44(12):1403-11 11115127 - Plant J. 2000 Nov;24(4):457-66 12777513 - Mol Biol Evol. 2003 Sep;20(9):1435-47 1672119 - Genes Dev. 1991 Mar;5(3):484-95 15008427 - J Mol Evol. 2003;57 Suppl 1:S290-6 10778850 - Cell. 2000 Mar 31;101(1):5-8 12746493 - Proc Natl Acad Sci U S A. 2003 May 27;100(11):6558-63 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 12032236 - Mol Biol Evol. 2002 Jun;19(6):801-14 12451182 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16138-43 12857639 - Syst Biol. 2003 Aug;52(4):477-87 12589434 - Mol Genet Genomics. 2003 Feb;268(5):598-606 |
References_xml | – ident: e_1_3_2_17_2 doi: 10.1038/35008089 – ident: e_1_3_2_36_2 doi: 10.1016/S0092-8674(02)00933-9 – ident: e_1_3_2_1_2 – ident: e_1_3_2_39_2 doi: 10.1073/pnas.0631708100 – ident: e_1_3_2_42_2 doi: 10.1093/oxfordjournals.molbev.a026408 – ident: e_1_3_2_7_2 doi: 10.1101/gad.5.3.484 – ident: e_1_3_2_14_2 doi: 10.1126/science.279.5349.407 – ident: e_1_3_2_41_2 doi: 10.1093/nar/gkg642 – ident: e_1_3_2_21_2 doi: 10.1038/221040a0 – volume: 12 start-page: 1540 year: 2003 ident: e_1_3_2_37_2 publication-title: Genes Dev. – ident: e_1_3_2_19_2 doi: 10.1023/A:1006051911291 – ident: e_1_3_2_12_2 doi: 10.1016/0092-8674(94)90291-7 – ident: e_1_3_2_23_2 doi: 10.1007/s00239-002-2426-x – ident: e_1_3_2_4_2 doi: 10.1105/tpc.011544 – ident: e_1_3_2_26_2 – ident: e_1_3_2_25_2 doi: 10.1126/science.1068037 – ident: e_1_3_2_33_2 doi: 10.1007/s00239-003-0039-7 – ident: e_1_3_2_10_2 doi: 10.1016/S0378-1119(00)00243-2 – ident: e_1_3_2_6_2 doi: 10.1093/pcp/pcg156 – ident: e_1_3_2_13_2 doi: 10.1016/S1369-5266(00)00139-4 – ident: e_1_3_2_20_2 doi: 10.1093/molbev/msg152 – ident: e_1_3_2_40_2 doi: 10.1007/s00438-002-0781-3 – ident: e_1_3_2_15_2 doi: 10.1105/tpc.11.5.949 – ident: e_1_3_2_22_2 doi: 10.1073/pnas.94.15.7799 – ident: e_1_3_2_30_2 – volume: 47 start-page: 287 year: 2002 ident: e_1_3_2_11_2 publication-title: Maydica – ident: e_1_3_2_18_2 doi: 10.1016/S0092-8674(00)80618-2 – ident: e_1_3_2_3_2 doi: 10.1073/pnas.97.10.5328 – ident: e_1_3_2_32_2 doi: 10.1080/10635150390218213 – ident: e_1_3_2_16_2 doi: 10.1046/j.1365-313x.2000.00891.x – volume: 4 start-page: 406 year: 1987 ident: e_1_3_2_28_2 publication-title: Mol. Biol. Evol. – ident: e_1_3_2_8_2 doi: 10.1093/oxfordjournals.molbev.a004137 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.212646199 – ident: e_1_3_2_5_2 doi: 10.1093/molbev/msg216 – ident: e_1_3_2_38_2 doi: 10.1038/35012103 – ident: e_1_3_2_9_2 doi: 10.1016/S1055-7903(03)00207-0 – ident: e_1_3_2_2_2 doi: 10.1111/j.1432-1033.1995.tb20430.x – ident: e_1_3_2_24_2 doi: 10.1093/nar/25.17.3389 – ident: e_1_3_2_29_2 doi: 10.1093/bioinformatics/17.12.1244 – ident: e_1_3_2_34_2 doi: 10.1007/s00438-001-0615-8 – ident: e_1_3_2_35_2 doi: 10.1016/S0092-8674(02)00932-7 – volume: 15 start-page: 3059 year: 2002 ident: e_1_3_2_27_2 publication-title: Nucleic Acids Res. – reference: 12297046 - Cell. 2002 Sep 20;110(6):725-35 – reference: 1672119 - Genes Dev. 1991 Mar;5(3):484-95 – reference: 10778850 - Cell. 2000 Mar 31;101(1):5-8 – reference: 10821278 - Nature. 2000 May 11;405(6783):200-3 – reference: 12589434 - Mol Genet Genomics. 2003 Feb;268(5):598-606 – reference: 12032236 - Mol Biol Evol. 2002 Jun;19(6):801-14 – reference: 12698294 - J Mol Evol. 2003 May;56(5):573-86 – reference: 10925200 - Gene. 2000 Jul 25;253(1):31-43 – reference: 12888499 - Nucleic Acids Res. 2003 Aug 1;31(15):4401-9 – reference: 12857639 - Syst Biol. 2003 Aug;52(4):477-87 – reference: 10783890 - Nature. 2000 Apr 13;404(6779):766-70 – reference: 12815071 - Genes Dev. 2003 Jun 15;17(12):1540-53 – reference: 11115127 - Plant J. 2000 Nov;24(4):457-66 – reference: 12746493 - Proc Natl Acad Sci U S A. 2003 May 27;100(11):6558-63 – reference: 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 – reference: 12297045 - Cell. 2002 Sep 20;110(6):713-23 – reference: 11163172 - Curr Opin Plant Biol. 2001 Feb;4(1):75-85 – reference: 12136088 - Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 – reference: 12451182 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16138-43 – reference: 7913881 - Cell. 1994 Jul 29;78(2):203-9 – reference: 12837945 - Plant Cell. 2003 Jul;15(7):1538-51 – reference: 12777513 - Mol Biol Evol. 2003 Sep;20(9):1435-47 – reference: 14701936 - Plant Cell Physiol. 2003 Dec;44(12):1403-11 – reference: 15008427 - J Mol Evol. 2003;57 Suppl 1:S290-6 – reference: 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 – reference: 10330478 - Plant Cell. 1999 May;11(5):949-56 – reference: 11862488 - Mol Genet Genomics. 2002 Feb;266(6):942-50 – reference: 7744019 - Eur J Biochem. 1995 Apr 1;229(1):1-13 – reference: 10908645 - Mol Biol Evol. 2000 Aug;17(8):1251-8 – reference: 12949148 - Mol Biol Evol. 2003 Dec;20(12):1963-77 – reference: 11751241 - Bioinformatics. 2001 Dec;17(12):1244-5 – reference: 11935017 - Science. 2002 Apr 5;296(5565):79-92 – reference: 10805792 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5328-33 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 9430595 - Science. 1998 Jan 16;279(5349):407-9 – reference: 9869408 - Plant Mol Biol. 1998 Dec;38(6):1021-9 – reference: 5782607 - Nature. 1969 Jan 4;221(5175):40-2 – reference: 14615187 - Mol Phylogenet Evol. 2003 Dec;29(3):464-89 |
SSID | ssj0009580 |
Score | 2.2212377 |
Snippet | Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1910 |
SubjectTerms | Angiosperms Arabidopsis - genetics Arabidopsis thaliana Biological Sciences Birth rate Datasets Evolution Evolution, Molecular Flowers & plants Genes Genes, Plant - genetics Genome, Plant Genomes Genomics MADS box MADS Domain Proteins - genetics Magnoliopsida - genetics Mortality Oryza - genetics Oryza sativa Phylogenetics Phylogeny Plant Proteins - genetics Plants Protein Structure, Tertiary Pseudogenes Pseudogenes - genetics Rice |
Title | Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms |
URI | https://www.jstor.org/stable/3371369 http://www.pnas.org/content/101/7/1910.abstract https://www.ncbi.nlm.nih.gov/pubmed/14764899 https://www.proquest.com/docview/201349989 https://www.proquest.com/docview/19265050 https://www.proquest.com/docview/46856290 https://www.proquest.com/docview/80171644 https://pubmed.ncbi.nlm.nih.gov/PMC357026 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9owELfW7mUv07p1Les-_LCHTigsxE7iPKKtXZlaVqkg8WbZYLdIVZiAVtP--t05TgIU9vUSkeS4mNyP-7DvzoS8B5dDx2MuAgu-AJbkmEADjoNxxhUYDCHiDAuFL3rJ2YB_HcbDegXfVZcsdGv0c2Ndyf9IFa6BXLFK9h8kWzGFC_AZ5AtHkDAc_07GOH_abV50Pl8FevoDt0M2uD3KvfGd-41b3rcKuyE09WS2uAlUPg7G6Pc1zb0fXBOnz4vJ2O4DbhPMVr6euI7ivrO592UvK9s3LzMNeuXUYqcuVPHaY94Mmpe9etvjnq_PrpMAVs99hlBF33Hq8UtrZZqCY2ZzUZVZlQ2AOeRFwXSlev1ERoGxdEmRQhgZLhllOI03KnzQULhLca7mLey8w0FfhWFt28r1_N43eTo4P5f9k2F_hzyOIKaInBZf7tAsinolP86yD1TKPq6xX3Fhdqyalrms2CAXSDcFK-s5t0tOTP8ZeeqjD9opoLRHHpn8OdkrJUSPfRPyDy_IDLFFu7REA3VooIgtuoQtWmCLrmGLVtiiiC26cMwecJvkdAlb-2RwetL_dBb4_TmCEfixi8DE3IB3a5XhoeWC6yxVmRVaKwi6daZZplBuioFTCzeY4VaHzNoUfN4EDC17SXbzaW4OCdXCoDfJ2sYIPgYOZhSNmGXJSKXWxqZBWuUrlyPfvB73ULmVLokiZRJfvKxl1CDH1Re-F31btpMeggylugarKgdXEa7lA11bcN4g-06wFQvG0jZLsgY5cExqzm2ZSsRsg9Atd6T12VwNclTCQ3plMpf4VJ5lAli_q-6CpsflO5Wb6d0cmEQQTsXhdgqeCAhnst9QCNceC3_YQQHHeqA8TbjI4PnJClArAuxDv3onn9y4fvQsTsMoefXHYR2RJ7VmeE12F7M78wZc-oV-6_6KvwCUEvNH |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+I+MADS-box+genes+have+experienced+faster+birth-and-death+evolution+than+type+II+MADS-box+genes+in+angiosperms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nam%2C+J&rft.au=Kim%2C+J&rft.au=Lee%2C+S&rft.au=An%2C+G.&rft.date=2004-02-17&rft.issn=0027-8424&rft.volume=101&rft.issue=7&rft.spage=1910&rft.epage=1915&rft_id=info:doi/10.1073%2Fpnas.0308430100&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F7.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F7.cover.gif |