Automatic diagnosis of the 12-lead ECG using a deep neural network

The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of t...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 1760
Main Authors Ribeiro, Antônio H., Ribeiro, Manoel Horta, Paixão, Gabriela M. M., Oliveira, Derick M., Gomes, Paulo R., Canazart, Jéssica A., Ferreira, Milton P. S., Andersson, Carl R., Macfarlane, Peter W., Meira Jr, Wagner, Schön, Thomas B., Ribeiro, Antonio Luiz P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.04.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors.
AbstractList The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors.
Abstract The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice.
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors.
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice.
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors.
ArticleNumber 1760
Author Oliveira, Derick M.
Canazart, Jéssica A.
Paixão, Gabriela M. M.
Schön, Thomas B.
Gomes, Paulo R.
Ferreira, Milton P. S.
Meira Jr, Wagner
Ribeiro, Antônio H.
Ribeiro, Manoel Horta
Andersson, Carl R.
Macfarlane, Peter W.
Ribeiro, Antonio Luiz P.
Author_xml – sequence: 1
  givenname: Antônio H.
  orcidid: 0000-0003-3632-8529
  surname: Ribeiro
  fullname: Ribeiro, Antônio H.
  email: antonio-ribeiro@ufmg.br
  organization: Universidade Federal de Minas Gerais, Uppsala University
– sequence: 2
  givenname: Manoel Horta
  surname: Ribeiro
  fullname: Ribeiro, Manoel Horta
  organization: Universidade Federal de Minas Gerais
– sequence: 3
  givenname: Gabriela M. M.
  surname: Paixão
  fullname: Paixão, Gabriela M. M.
  organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais
– sequence: 4
  givenname: Derick M.
  surname: Oliveira
  fullname: Oliveira, Derick M.
  organization: Universidade Federal de Minas Gerais
– sequence: 5
  givenname: Paulo R.
  surname: Gomes
  fullname: Gomes, Paulo R.
  organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais
– sequence: 6
  givenname: Jéssica A.
  surname: Canazart
  fullname: Canazart, Jéssica A.
  organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais
– sequence: 7
  givenname: Milton P. S.
  surname: Ferreira
  fullname: Ferreira, Milton P. S.
  organization: Universidade Federal de Minas Gerais
– sequence: 8
  givenname: Carl R.
  surname: Andersson
  fullname: Andersson, Carl R.
  organization: Uppsala University
– sequence: 9
  givenname: Peter W.
  surname: Macfarlane
  fullname: Macfarlane, Peter W.
  organization: University of Glasgow
– sequence: 10
  givenname: Wagner
  surname: Meira Jr
  fullname: Meira Jr, Wagner
  organization: Universidade Federal de Minas Gerais
– sequence: 11
  givenname: Thomas B.
  orcidid: 0000-0001-5183-234X
  surname: Schön
  fullname: Schön, Thomas B.
  email: thomas.schon@it.uu.se
  organization: Uppsala University
– sequence: 12
  givenname: Antonio Luiz P.
  orcidid: 0000-0002-2740-0042
  surname: Ribeiro
  fullname: Ribeiro, Antonio Luiz P.
  email: antonio.ribeiro@ebserh.gov.br
  organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32273514$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411308$$DView record from Swedish Publication Index
BookMark eNp9kktv1DAUhS1UREvpH2CBIrFhQcDPxN4gDUMplSqxAbaWHzfTDBl7sBMq_j2eyVA6LPDGlu-5n4-vzlN0EmIAhJ4T_IZgJt9mTnjT1pjimgjOaM0foTOKOalJS9nJg_Mpush5jctiikjOn6BTRmnLBOFn6P1iGuPGjL2rfG9WIeY-V7GrxluoCK0HML66XF5VU-7DqjKVB9hWAaZkhrKNdzF9f4Yed2bIcHHYz9HXj5dflp_qm89X18vFTe0azsbaWuUtw1Zw6xohpBdSKu5aAGW57Cy3UjArhMIgJDHWs866Yh9L3yhwkp2j65nro1nrbeo3Jv3S0fR6fxHTSptUPjKAbqiSUhYQUMNboqQDVpDKM9tK67vCej2z8h1sJ3tE-9B_W-xp06Q5IcVAkb-b5UW7Ae8gjGUAR13HldDf6lX8qVvChaS8AF4dACn-mCCPetNnB8NgAsQpa8qKX0ZV0xTpy3-k6zilUCa7U7VKcUx3juiscinmnKC7N0Ow3gVEzwHRJSB6HxC9c_Hi4TfuW_7EoQjYYSylFFaQ_r79H-xv2KXGMA
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00302
crossref_primary_10_3390_diagnostics13010111
crossref_primary_10_1109_ACCESS_2023_3260061
crossref_primary_10_1038_s41746_024_01139_z
crossref_primary_10_1088_1361_6579_ac5b4a
crossref_primary_10_1038_s41598_022_21260_x
crossref_primary_10_1002_smtd_202400305
crossref_primary_10_3390_app11135880
crossref_primary_10_1038_s41746_024_01130_8
crossref_primary_10_1111_jcmm_17098
crossref_primary_10_1371_journal_pone_0253200
crossref_primary_10_35784_acs_2022_18
crossref_primary_10_3390_jpm13020373
crossref_primary_10_1093_ehjdh_ztac042
crossref_primary_10_3390_s23094221
crossref_primary_10_1001_jamaneurol_2023_1082
crossref_primary_10_1016_j_ccep_2021_04_011
crossref_primary_10_1109_TIM_2023_3335526
crossref_primary_10_3390_app13084964
crossref_primary_10_1109_ACCESS_2023_3344531
crossref_primary_10_3389_fcvm_2024_1424585
crossref_primary_10_1088_1361_6579_ac6aa3
crossref_primary_10_1109_JBHI_2022_3197076
crossref_primary_10_1016_j_ajem_2024_03_017
crossref_primary_10_1109_ACCESS_2023_3236189
crossref_primary_10_1098_rsta_2020_0258
crossref_primary_10_3390_s23115237
crossref_primary_10_1016_j_nuclcard_2024_101881
crossref_primary_10_1016_j_bspc_2022_103749
crossref_primary_10_3390_s23031697
crossref_primary_10_1007_s41666_024_00168_3
crossref_primary_10_1109_JIOT_2023_3336995
crossref_primary_10_1155_2022_8571970
crossref_primary_10_1007_s00399_022_00854_y
crossref_primary_10_1088_1361_6579_acb4dc
crossref_primary_10_3389_fphys_2022_867033
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1016_j_ymeth_2021_04_021
crossref_primary_10_3389_fcvm_2022_949454
crossref_primary_10_1080_02813432_2021_1973255
crossref_primary_10_1109_JBHI_2023_3331626
crossref_primary_10_1002_admt_202100904
crossref_primary_10_1007_s12265_024_10504_y
crossref_primary_10_1109_JBHI_2020_3022989
crossref_primary_10_3389_fneur_2023_1210491
crossref_primary_10_3390_jcdd10040175
crossref_primary_10_1002_joa3_12646
crossref_primary_10_3389_fcvm_2023_1160091
crossref_primary_10_1093_ehjdh_ztab045
crossref_primary_10_3390_s22208002
crossref_primary_10_1111_jce_15440
crossref_primary_10_1016_j_addr_2021_113921
crossref_primary_10_1016_j_pedneo_2021_12_011
crossref_primary_10_1515_bmt_2023_0580
crossref_primary_10_3389_fcvm_2024_1368094
crossref_primary_10_1155_2022_1036913
crossref_primary_10_1371_journal_pone_0284622
crossref_primary_10_1001_jamacardio_2021_2746
crossref_primary_10_1109_JSEN_2024_3392017
crossref_primary_10_1186_s40001_022_00929_z
crossref_primary_10_1088_1361_6579_abc960
crossref_primary_10_3390_app122412897
crossref_primary_10_3390_s20216318
crossref_primary_10_1038_s41525_022_00320_1
crossref_primary_10_1093_eurheartj_ehaa1065
crossref_primary_10_1007_s00399_022_00855_x
crossref_primary_10_1088_1361_6579_ac6049
crossref_primary_10_2196_36443
crossref_primary_10_1016_j_bspc_2024_106253
crossref_primary_10_3390_bioengineering9100523
crossref_primary_10_1088_1361_6579_ac7939
crossref_primary_10_1038_s41598_022_18664_0
crossref_primary_10_3390_s21030773
crossref_primary_10_1016_j_jelectrocard_2021_06_006
crossref_primary_10_1109_TIM_2023_3301047
crossref_primary_10_1109_TIM_2022_3164141
crossref_primary_10_1186_s12933_024_02141_1
crossref_primary_10_1063_5_0176850
crossref_primary_10_1038_s41598_022_24574_y
crossref_primary_10_1109_JBHI_2023_3310989
crossref_primary_10_1093_cvr_cvab169
crossref_primary_10_3389_fpubh_2022_926234
crossref_primary_10_1111_anec_12795
crossref_primary_10_1161_CIRCEP_120_009204
crossref_primary_10_4108_eetpht_10_6421
crossref_primary_10_1093_jamia_ocae002
crossref_primary_10_3390_medicina59020375
crossref_primary_10_1038_s43856_022_00220_6
crossref_primary_10_1093_ehjdh_ztae014
crossref_primary_10_1016_j_jelectrocard_2020_11_013
crossref_primary_10_1038_s41746_024_01170_0
crossref_primary_10_1002_smsc_202300008
crossref_primary_10_1016_j_clim_2022_109218
crossref_primary_10_1016_j_compbiomed_2021_104262
crossref_primary_10_1371_journal_pcbi_1009862
crossref_primary_10_2196_41241
crossref_primary_10_1038_s41591_022_02134_1
crossref_primary_10_1186_s13148_023_01576_9
crossref_primary_10_1016_j_jelectrocard_2024_01_006
crossref_primary_10_1109_TBME_2023_3239527
crossref_primary_10_3389_fcvm_2023_1229743
crossref_primary_10_1007_s10489_023_04889_7
crossref_primary_10_3390_diagnostics11091678
crossref_primary_10_1038_s41467_021_25351_7
crossref_primary_10_3389_fphys_2023_1247587
crossref_primary_10_1109_TPAMI_2023_3342828
crossref_primary_10_1177_14604582231213846
crossref_primary_10_1016_j_knosys_2023_111014
crossref_primary_10_1038_s41598_021_84374_8
crossref_primary_10_3390_make5040077
crossref_primary_10_1161_CIRCULATIONAHA_123_067750
crossref_primary_10_1109_ACCESS_2021_3119630
crossref_primary_10_1161_JAHA_123_031671
crossref_primary_10_3390_app13052932
crossref_primary_10_1007_s11886_024_02062_1
crossref_primary_10_1109_TBCAS_2023_3276782
crossref_primary_10_1016_j_wneu_2023_09_012
crossref_primary_10_1007_s11886_020_01416_9
crossref_primary_10_1002_ccd_30382
crossref_primary_10_1016_j_jjcc_2021_11_017
crossref_primary_10_1109_TNSE_2022_3184523
crossref_primary_10_3390_app10238746
crossref_primary_10_1007_s00500_021_06555_x
crossref_primary_10_1109_LSP_2021_3114119
crossref_primary_10_3389_fcvm_2024_1323918
crossref_primary_10_1088_1361_6579_aca4b9
crossref_primary_10_3390_bios13030393
crossref_primary_10_3390_s22208073
crossref_primary_10_1002_adfm_202307990
crossref_primary_10_1002_widm_1530
crossref_primary_10_1016_j_ins_2024_120881
crossref_primary_10_1155_2022_2985308
crossref_primary_10_1007_s13239_024_00716_3
crossref_primary_10_1109_ACCESS_2020_3040166
crossref_primary_10_1016_j_ijcard_2021_05_017
crossref_primary_10_1016_j_jelectrocard_2023_11_002
crossref_primary_10_1371_journal_pone_0303178
crossref_primary_10_2196_31129
crossref_primary_10_3390_app11167758
crossref_primary_10_1016_j_eswa_2022_117206
crossref_primary_10_1109_JBHI_2021_3120890
crossref_primary_10_1109_ACCESS_2024_3380892
crossref_primary_10_1016_j_patter_2024_100970
crossref_primary_10_3389_fcvm_2021_616585
crossref_primary_10_3390_s22218454
crossref_primary_10_1007_s10115_024_02073_y
crossref_primary_10_1016_j_cvdhj_2023_12_003
crossref_primary_10_1016_j_cvdhj_2021_04_002
crossref_primary_10_1016_j_neunet_2022_08_004
crossref_primary_10_1038_s41598_024_52081_9
crossref_primary_10_3389_fphys_2023_1070621
crossref_primary_10_3389_fonc_2021_788740
crossref_primary_10_1109_JIOT_2021_3138516
crossref_primary_10_1109_OJEMB_2022_3214719
crossref_primary_10_3390_computers10120158
crossref_primary_10_1016_j_isci_2022_105434
crossref_primary_10_1038_s41569_020_00503_2
crossref_primary_10_3390_app12157711
crossref_primary_10_3389_fphys_2021_811661
crossref_primary_10_1109_ICJECE_2023_3320103
crossref_primary_10_3390_app10196896
crossref_primary_10_1093_ehjdh_ztae039
crossref_primary_10_1109_TCSI_2022_3194636
crossref_primary_10_1166_jmihi_2022_3945
crossref_primary_10_12677_ACM_2023_134939
crossref_primary_10_1016_j_ejim_2024_02_037
crossref_primary_10_1038_s41598_022_24254_x
crossref_primary_10_1088_1361_6579_acf754
crossref_primary_10_1016_j_cvdhj_2020_11_004
crossref_primary_10_2196_24388
crossref_primary_10_1016_j_compscitech_2022_109606
crossref_primary_10_1088_1361_6579_ac9451
crossref_primary_10_1111_imj_15562
crossref_primary_10_3389_fcvm_2022_849223
crossref_primary_10_2196_47803
crossref_primary_10_1038_s41746_023_00765_3
crossref_primary_10_1136_bmjmed_2022_000193
crossref_primary_10_1016_j_sleep_2021_07_014
crossref_primary_10_3390_s22145414
crossref_primary_10_1016_j_cvdhj_2023_01_004
crossref_primary_10_1109_JBHI_2021_3059016
crossref_primary_10_3390_jcm11226767
crossref_primary_10_1016_j_procs_2021_08_065
crossref_primary_10_1161_CIRCHEARTFAILURE_123_010879
crossref_primary_10_1016_j_ebiom_2023_104937
crossref_primary_10_1007_s13534_021_00184_x
crossref_primary_10_36011_cpp_2024_6_e7
crossref_primary_10_1016_j_cmpb_2024_108164
crossref_primary_10_3390_jcm12082828
crossref_primary_10_1109_JSEN_2022_3217538
crossref_primary_10_1016_j_measen_2022_100558
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_1002_joa3_12707
crossref_primary_10_1109_JBHI_2023_3271858
crossref_primary_10_3390_computers13050109
crossref_primary_10_3390_hearts2040035
crossref_primary_10_1038_s44222_023_00102_z
crossref_primary_10_1109_ACCESS_2023_3328538
crossref_primary_10_3390_hearts2040034
crossref_primary_10_1016_j_jmccpl_2024_100061
crossref_primary_10_1186_s12909_022_03518_0
crossref_primary_10_2459_JCM_0000000000001431
crossref_primary_10_1038_s41586_022_04714_0
crossref_primary_10_3390_hearts2040037
crossref_primary_10_1038_s41467_024_49390_y
crossref_primary_10_1002_aelm_202300082
crossref_primary_10_1016_j_compbiomed_2024_108751
crossref_primary_10_1007_s12553_023_00807_6
crossref_primary_10_5937_mp74_44394
crossref_primary_10_1063_5_0191574
crossref_primary_10_1063_5_0191571
crossref_primary_10_1109_JSAC_2023_3310097
crossref_primary_10_1161_CIR_0000000000001201
crossref_primary_10_1016_j_bspc_2024_106422
crossref_primary_10_1016_j_jcmg_2021_04_030
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_1007_s11431_022_2080_6
crossref_primary_10_2196_18297
crossref_primary_10_3389_fnins_2024_1359446
crossref_primary_10_3346_jkms_2024_39_e56
crossref_primary_10_1016_j_bios_2022_114261
crossref_primary_10_1109_TNNLS_2022_3187741
crossref_primary_10_36660_abc_20200596
crossref_primary_10_1038_s41467_024_44930_y
crossref_primary_10_1109_JBHI_2021_3128169
crossref_primary_10_3390_app11209460
crossref_primary_10_1002_idm2_12198
crossref_primary_10_3390_jimaging7020026
crossref_primary_10_1016_j_engappai_2024_108890
crossref_primary_10_1007_s11042_024_18789_6
crossref_primary_10_1038_s41598_024_55453_3
crossref_primary_10_3389_frai_2022_1087370
crossref_primary_10_1038_s41467_022_29153_3
crossref_primary_10_1161_CIRCOUTCOMES_122_009821
crossref_primary_10_3390_diagnostics13142442
crossref_primary_10_1080_14796678_2024_2354082
crossref_primary_10_1109_JBHI_2022_3157877
crossref_primary_10_1177_11779322221149600
crossref_primary_10_1038_s41598_024_53107_y
crossref_primary_10_3390_app12157404
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_3390_photonics10090972
crossref_primary_10_3390_s20247353
crossref_primary_10_1088_1361_6579_ac6f40
crossref_primary_10_1109_JBHI_2022_3173655
crossref_primary_10_36660_abc_20230653
crossref_primary_10_1007_s11431_023_2460_2
crossref_primary_10_1016_j_cjca_2024_07_003
crossref_primary_10_1109_ACCESS_2023_3280565
crossref_primary_10_3390_biomedicines10082013
Cites_doi 10.1001/jama.2018.11100
10.1016/j.jacc.2017.07.723
10.1016/j.jacc.2008.12.014
10.1016/j.jacc.2007.01.024
10.2471/BLT.11.099408
10.1016/j.jelectrocard.2010.07.007
10.1136/heartjnl-2018-313398
10.1371/journal.pone.0210103
10.1016/j.jelectrocard.2018.11.013
10.1001/jama.2018.11029
10.3402/gha.v9.32089
10.1038/s41591-018-0107-6
10.1007/BF02295996
10.1161/CIRCEP.111.000097
10.1001/jama.2017.14585
10.1016/j.ins.2017.06.027
10.1109/JSEN.2019.2896308
10.1088/1361-6579/aaaa9d
10.1371/journal.pone.0118432
10.1109/MSP.2012.2205597
10.1016/j.jelectrocard.2007.03.008
10.1111/j.1540-8167.1994.tb01301.x
10.1016/S0140-6736(18)32203-7
10.1001/jama.2018.11103
10.1177/001316446002000104
10.1136/bmj.39227.551713.AE
10.1038/s41591-018-0268-3
10.1098/rsif.2017.0821
10.1080/17482941.2016.1234058
10.1056/NEJM199112193252503
10.1016/j.ins.2016.01.082
10.1016/S0022-0736(96)80016-1
10.1055/s-0038-1634799
10.1016/j.jelectrocard.2017.08.001
10.1109/ICACEA.2015.7164783
10.1201/9780429246593
10.1109/CIC.2005.1588134
10.22489/CinC.2017.178-245
10.1145/3219819.3219912
10.1109/ICDM.2006.96
10.1007/978-3-642-15825-4_10
10.1109/ICCV.2015.123
10.1007/978-1-84882-778-3
10.1007/978-3-319-46493-0_38
10.22489/CinC.2017.160-246
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1038/s41467-020-15432-4
DatabaseName Springer_OA刊
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 1760
ExternalDocumentID oai_doaj_org_article_6298880e5e2a47198ce31ab9d3b78bdf
oai_DiVA_org_uu_411308
10_1038_s41467_020_15432_4
32273514
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)
  grantid: 465518/2014-1
  funderid: https://doi.org/10.13039/501100003593
– fundername: ;
  grantid: 465518/2014-1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
4.4
ABAWZ
ACNBI
ADTPV
AOWAS
BAPOH
CAG
COF
D8T
DF2
EJD
LGEZI
LOTEE
NADUK
NXXTH
ZZAVC
ID FETCH-LOGICAL-c643t-bb9db30b54bc6558d58894c7ee9b48fb4b853b5590e581abd3fbc72308d69ec83
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:16:02 EDT 2024
Sat Aug 24 00:20:52 EDT 2024
Tue Sep 17 21:26:02 EDT 2024
Sat Oct 05 06:28:11 EDT 2024
Thu Oct 10 16:20:07 EDT 2024
Fri Aug 23 00:40:25 EDT 2024
Sat Sep 28 08:28:34 EDT 2024
Fri Oct 11 20:38:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c643t-bb9db30b54bc6558d58894c7ee9b48fb4b853b5590e581abd3fbc72308d69ec83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2740-0042
0000-0001-5183-234X
0000-0003-3632-8529
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145824/
PMID 32273514
PQID 2387994028
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6298880e5e2a47198ce31ab9d3b78bdf
swepub_primary_oai_DiVA_org_uu_411308
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7145824
proquest_miscellaneous_2388832966
proquest_journals_2387994028
crossref_primary_10_1038_s41467_020_15432_4
pubmed_primary_32273514
springer_journals_10_1038_s41467_020_15432_4
PublicationCentury 2000
PublicationDate 2020-04-09
PublicationDateYYYYMMDD 2020-04-09
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rautaharju, Surawicz, Gettes (CR39) 2009; 53
Smith (CR30) 2019; 52
Lyon, Mincholé, Martínez, Laguna, Rodriguez (CR21) 2018; 15
CR35
Goto (CR38) 2019; 14
CR33
Stead (CR9) 2018; 320
CR7
CR49
CR48
Bejnordi (CR12) 2017; 318
CR45
CR44
Alkmim (CR22) 2012; 90
Saito, Rehmsmeier (CR54) 2015; 10
Willems (CR2) 1987; 20
Kligfield (CR47) 2007; 49
Luo, Johnston (CR40) 2010; 43
Naylor (CR10) 2018; 320
Clifford (CR16) 2017; 44
Kamaleswaran, Mahajan, Akbilgic (CR25) 2018; 39
Hinton (CR11) 2018; 320
Rahhal (CR36) 2016; 345
Mant (CR17) 2007; 335
Nascimento, Brant, Marino, Passaglia, Ribeiro (CR41) 2019; 105
CR19
Willems (CR4) 1991; 325
Estes (CR6) 2013; 6
Sassi (CR20) 2017; 50
Roth (CR1) 2018; 392
CR53
CR52
CR51
Hinton (CR8) 2012; 29
Cohen (CR46) 1960; 20
Cubanski, Cyganski, Antman, Feldman (CR31) 1994; 5
Macfarlane (CR42) 1990; 29
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR50) 2014; 15
Hannun (CR15) 2019; 25
McNemar (CR27) 1947; 12
De Fauw (CR13) 2018; 24
Veronese (CR18) 2016; 18
CR28
CR26
CR24
CR23
Macfarlane, Devine, Clark (CR29) 2005; 32
Acharya (CR34) 2017; 415-416
Shah, Rubin (CR5) 2007; 40
Tripathy, Bhattacharyya, Pachori (CR32) 2019; 19
Schläpfer, Wellens (CR3) 2017; 70
Macfarlane, Latif (CR43) 1996; 29
Beck, Gill, De Lay (CR14) 2016; 9
Goldberger (CR37) 2000; 101
32358526 - Nat Commun. 2020 May 1;11(1):2227
WW Stead (15432_CR9) 2018; 320
15432_CR45
15432_CR48
J Mant (15432_CR17) 2007; 335
S Luo (15432_CR40) 2010; 43
15432_CR49
D Cubanski (15432_CR31) 1994; 5
JL Willems (15432_CR4) 1991; 325
S Goto (15432_CR38) 2019; 14
J Cohen (15432_CR46) 1960; 20
GA Roth (15432_CR1) 2018; 392
MA Rahhal (15432_CR36) 2016; 345
15432_CR51
15432_CR53
15432_CR52
C Naylor (15432_CR10) 2018; 320
15432_CR19
BE Bejnordi (15432_CR12) 2017; 318
R Kamaleswaran (15432_CR25) 2018; 39
G Hinton (15432_CR11) 2018; 320
AL Goldberger (15432_CR37) 2000; 101
AY Hannun (15432_CR15) 2019; 25
GD Clifford (15432_CR16) 2017; 44
N Srivastava (15432_CR50) 2014; 15
G Hinton (15432_CR8) 2012; 29
15432_CR7
EJ Beck (15432_CR14) 2016; 9
P Kligfield (15432_CR47) 2007; 49
15432_CR24
15432_CR23
15432_CR26
G Veronese (15432_CR18) 2016; 18
15432_CR28
PM Rautaharju (15432_CR39) 2009; 53
R Sassi (15432_CR20) 2017; 50
UR Acharya (15432_CR34) 2017; 415-416
MB Alkmim (15432_CR22) 2012; 90
PW Macfarlane (15432_CR43) 1996; 29
PW Macfarlane (15432_CR29) 2005; 32
RK Tripathy (15432_CR32) 2019; 19
15432_CR33
P Macfarlane (15432_CR42) 1990; 29
15432_CR35
AP Shah (15432_CR5) 2007; 40
NAM Estes (15432_CR6) 2013; 6
J Schläpfer (15432_CR3) 2017; 70
JL Willems (15432_CR2) 1987; 20
BR Nascimento (15432_CR41) 2019; 105
SW Smith (15432_CR30) 2019; 52
T Saito (15432_CR54) 2015; 10
J De Fauw (15432_CR13) 2018; 24
Q McNemar (15432_CR27) 1947; 12
A Lyon (15432_CR21) 2018; 15
15432_CR44
References_xml – volume: 320
  start-page: 1101
  year: 2018
  end-page: 1102
  ident: CR11
  article-title: Deep learning—a technology with the potential to transform health care
  publication-title: JAMA
  doi: 10.1001/jama.2018.11100
  contributor:
    fullname: Hinton
– ident: CR45
– volume: 70
  start-page: 1183
  year: 2017
  ident: CR3
  article-title: Computer-interpreted electrocardiograms: benefits and limitations
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.07.723
  contributor:
    fullname: Wellens
– volume: 53
  start-page: 982
  year: 2009
  end-page: 991
  ident: CR39
  article-title: AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the Electrocardiogram: Part IV: The ST Segment, T and U Waves, and the QT Interval A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2008.12.014
  contributor:
    fullname: Gettes
– volume: 44
  start-page: 1
  year: 2017
  end-page: 4
  ident: CR16
  article-title: AF classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017
  publication-title: Comput. Cardiol.
  contributor:
    fullname: Clifford
– volume: 49
  start-page: 1109
  year: 2007
  ident: CR47
  article-title: Recommendations for the standardization and interpretation of the electrocardiogram
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2007.01.024
  contributor:
    fullname: Kligfield
– volume: 90
  start-page: 373
  year: 2012
  end-page: 378
  ident: CR22
  article-title: Improving patient access to specialized health care: the Telehealth Network of Minas Gerais, Brazil
  publication-title: Bull. World Health Organ.
  doi: 10.2471/BLT.11.099408
  contributor:
    fullname: Alkmim
– ident: CR49
– ident: CR51
– volume: 43
  start-page: 486
  year: 2010
  end-page: 496
  ident: CR40
  article-title: A review of electrocardiogram filtering
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2010.07.007
  contributor:
    fullname: Johnston
– volume: 105
  start-page: 20
  year: 2019
  ident: CR41
  article-title: Implementing myocardial infarction systems of care in low/middle-income countries
  publication-title: Heart
  doi: 10.1136/heartjnl-2018-313398
  contributor:
    fullname: Ribeiro
– volume: 14
  start-page: e0210103
  year: 2019
  ident: CR38
  article-title: Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210103
  contributor:
    fullname: Goto
– volume: 52
  start-page: 88
  year: 2019
  end-page: 95
  ident: CR30
  article-title: A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2018.11.013
  contributor:
    fullname: Smith
– ident: CR35
– volume: 320
  start-page: 1107
  year: 2018
  end-page: 1108
  ident: CR9
  article-title: Clinical implications and challenges of artificial intelligence and deep learning
  publication-title: JAMA
  doi: 10.1001/jama.2018.11029
  contributor:
    fullname: Stead
– volume: 20
  start-page: 73
  issue: Suppl
  year: 1987
  end-page: 77
  ident: CR2
  article-title: Testing the performance of ECG computer programs: the CSE diagnostic pilot study
  publication-title: J. Electrocardiol.
  contributor:
    fullname: Willems
– volume: 9
  start-page: 32089
  year: 2016
  ident: CR14
  article-title: Protecting the confidentiality and security of personal health information in low- and middle-income countries in the era of SDGs and Big Data
  publication-title: Glob. Health Action
  doi: 10.3402/gha.v9.32089
  contributor:
    fullname: De Lay
– volume: 24
  start-page: 1342
  year: 2018
  end-page: 1350
  ident: CR13
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0107-6
  contributor:
    fullname: De Fauw
– ident: CR19
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: CR27
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
  contributor:
    fullname: McNemar
– volume: 6
  start-page: 2
  year: 2013
  end-page: 4
  ident: CR6
  article-title: Computerized interpretation of ECGs: supplement not a substitute
  publication-title: Circulation. Arrhythmia Electrophysiol.
  doi: 10.1161/CIRCEP.111.000097
  contributor:
    fullname: Estes
– volume: 318
  start-page: 2199
  year: 2017
  ident: CR12
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
  contributor:
    fullname: Bejnordi
– volume: 415-416
  start-page: 190
  year: 2017
  end-page: 198
  ident: CR34
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
  contributor:
    fullname: Acharya
– ident: CR26
– volume: 19
  start-page: 4509
  year: 2019
  end-page: 4517
  ident: CR32
  article-title: A novel approach for detection of myocardial infarction from ECG signals of multiple electrodes
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2896308
  contributor:
    fullname: Pachori
– volume: 39
  start-page: 035006
  year: 2018
  ident: CR25
  article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length
  publication-title: Physiological Meas.
  doi: 10.1088/1361-6579/aaaa9d
  contributor:
    fullname: Akbilgic
– volume: 10
  start-page: e0118432
  year: 2015
  ident: CR54
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118432
  contributor:
    fullname: Rehmsmeier
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: CR8
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
  contributor:
    fullname: Hinton
– volume: 40
  start-page: 385
  year: 2007
  end-page: 390
  ident: CR5
  article-title: Errors in the computerized electrocardiogram interpretation of cardiac rhythm
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2007.03.008
  contributor:
    fullname: Rubin
– volume: 5
  start-page: 602
  year: 1994
  end-page: 608
  ident: CR31
  article-title: A neural network system for detection of atrial fibrillation in ambulatory electrocardiograms
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.1994.tb01301.x
  contributor:
    fullname: Feldman
– volume: 392
  start-page: 1736
  year: 2018
  end-page: 1788
  ident: CR1
  article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32203-7
  contributor:
    fullname: Roth
– volume: 320
  start-page: 1099
  year: 2018
  end-page: 1100
  ident: CR10
  article-title: On the prospects for a (deep) learning health care system
  publication-title: JAMA
  doi: 10.1001/jama.2018.11103
  contributor:
    fullname: Naylor
– ident: CR53
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: CR46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychological Meas.
  doi: 10.1177/001316446002000104
  contributor:
    fullname: Cohen
– ident: CR33
– volume: 335
  start-page: 380
  year: 2007
  ident: CR17
  article-title: Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial
  publication-title: BMJ (Clin. Res. ed.)
  doi: 10.1136/bmj.39227.551713.AE
  contributor:
    fullname: Mant
– ident: CR23
– ident: CR44
– ident: CR48
– volume: 25
  start-page: 65
  year: 2019
  end-page: 69
  ident: CR15
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
  contributor:
    fullname: Hannun
– ident: CR52
– volume: 101
  start-page: E215
  year: 2000
  end-page: E220
  ident: CR37
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  contributor:
    fullname: Goldberger
– volume: 15
  start-page: 20170821
  year: 2018
  ident: CR21
  article-title: Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0821
  contributor:
    fullname: Rodriguez
– volume: 18
  start-page: 7
  year: 2016
  end-page: 10
  ident: CR18
  article-title: Emergency physician accuracy in interpreting electrocardiograms with potential ST-segment elevation myocardial infarction: is it enough?
  publication-title: Acute Card. Care
  doi: 10.1080/17482941.2016.1234058
  contributor:
    fullname: Veronese
– ident: CR7
– volume: 32
  start-page: 451
  year: 2005
  end-page: 454
  ident: CR29
  article-title: The University of Glasgow (Uni-G) ECG analysis program
  publication-title: Comput. Cardiol.
  contributor:
    fullname: Clark
– volume: 325
  start-page: 1767
  year: 1991
  end-page: 1773
  ident: CR4
  article-title: The diagnostic performance of computer programs for the interpretation of electrocardiograms
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199112193252503
  contributor:
    fullname: Willems
– ident: CR28
– volume: 345
  start-page: 340
  year: 2016
  end-page: 354
  ident: CR36
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.082
  contributor:
    fullname: Rahhal
– volume: 29
  start-page: 29
  year: 1996
  end-page: 34
  ident: CR43
  article-title: Automated serial ECG comparison based on the Minnesota code
  publication-title: J. Electrocardiol.
  doi: 10.1016/S0022-0736(96)80016-1
  contributor:
    fullname: Latif
– ident: CR24
– volume: 29
  start-page: 354
  year: 1990
  end-page: 361
  ident: CR42
  article-title: Methodology of ECG interpretation in the Glasgow program
  publication-title: Methods Inf. Med.
  doi: 10.1055/s-0038-1634799
  contributor:
    fullname: Macfarlane
– volume: 50
  start-page: 776
  year: 2017
  end-page: 780
  ident: CR20
  article-title: PDF-ECG in clinical practice: a model for long-term preservation of digital 12-lead ECG data
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2017.08.001
  contributor:
    fullname: Sassi
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR50
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Salakhutdinov
– volume: 6
  start-page: 2
  year: 2013
  ident: 15432_CR6
  publication-title: Circulation. Arrhythmia Electrophysiol.
  doi: 10.1161/CIRCEP.111.000097
  contributor:
    fullname: NAM Estes
– volume: 53
  start-page: 982
  year: 2009
  ident: 15432_CR39
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2008.12.014
  contributor:
    fullname: PM Rautaharju
– volume: 39
  start-page: 035006
  year: 2018
  ident: 15432_CR25
  publication-title: Physiological Meas.
  doi: 10.1088/1361-6579/aaaa9d
  contributor:
    fullname: R Kamaleswaran
– ident: 15432_CR49
– ident: 15432_CR28
  doi: 10.1109/ICACEA.2015.7164783
– volume: 15
  start-page: 20170821
  year: 2018
  ident: 15432_CR21
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0821
  contributor:
    fullname: A Lyon
– ident: 15432_CR26
  doi: 10.1201/9780429246593
– volume: 320
  start-page: 1099
  year: 2018
  ident: 15432_CR10
  publication-title: JAMA
  doi: 10.1001/jama.2018.11103
  contributor:
    fullname: C Naylor
– volume: 25
  start-page: 65
  year: 2019
  ident: 15432_CR15
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
  contributor:
    fullname: AY Hannun
– volume: 101
  start-page: E215
  year: 2000
  ident: 15432_CR37
  publication-title: Circulation
  contributor:
    fullname: AL Goldberger
– volume: 32
  start-page: 451
  year: 2005
  ident: 15432_CR29
  publication-title: Comput. Cardiol.
  doi: 10.1109/CIC.2005.1588134
  contributor:
    fullname: PW Macfarlane
– volume: 70
  start-page: 1183
  year: 2017
  ident: 15432_CR3
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.07.723
  contributor:
    fullname: J Schläpfer
– volume: 345
  start-page: 340
  year: 2016
  ident: 15432_CR36
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.082
  contributor:
    fullname: MA Rahhal
– ident: 15432_CR24
  doi: 10.22489/CinC.2017.178-245
– volume: 12
  start-page: 153
  year: 1947
  ident: 15432_CR27
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
  contributor:
    fullname: Q McNemar
– volume: 29
  start-page: 82
  year: 2012
  ident: 15432_CR8
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
  contributor:
    fullname: G Hinton
– volume: 320
  start-page: 1107
  year: 2018
  ident: 15432_CR9
  publication-title: JAMA
  doi: 10.1001/jama.2018.11029
  contributor:
    fullname: WW Stead
– ident: 15432_CR35
  doi: 10.1145/3219819.3219912
– volume: 335
  start-page: 380
  year: 2007
  ident: 15432_CR17
  publication-title: BMJ (Clin. Res. ed.)
  doi: 10.1136/bmj.39227.551713.AE
  contributor:
    fullname: J Mant
– ident: 15432_CR45
  doi: 10.1109/ICDM.2006.96
– volume: 90
  start-page: 373
  year: 2012
  ident: 15432_CR22
  publication-title: Bull. World Health Organ.
  doi: 10.2471/BLT.11.099408
  contributor:
    fullname: MB Alkmim
– volume: 415-416
  start-page: 190
  year: 2017
  ident: 15432_CR34
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
  contributor:
    fullname: UR Acharya
– volume: 105
  start-page: 20
  year: 2019
  ident: 15432_CR41
  publication-title: Heart
  doi: 10.1136/heartjnl-2018-313398
  contributor:
    fullname: BR Nascimento
– ident: 15432_CR52
– volume: 20
  start-page: 73
  issue: Suppl
  year: 1987
  ident: 15432_CR2
  publication-title: J. Electrocardiol.
  contributor:
    fullname: JL Willems
– volume: 52
  start-page: 88
  year: 2019
  ident: 15432_CR30
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2018.11.013
  contributor:
    fullname: SW Smith
– volume: 325
  start-page: 1767
  year: 1991
  ident: 15432_CR4
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199112193252503
  contributor:
    fullname: JL Willems
– volume: 24
  start-page: 1342
  year: 2018
  ident: 15432_CR13
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0107-6
  contributor:
    fullname: J De Fauw
– ident: 15432_CR51
  doi: 10.1007/978-3-642-15825-4_10
– volume: 9
  start-page: 32089
  year: 2016
  ident: 15432_CR14
  publication-title: Glob. Health Action
  doi: 10.3402/gha.v9.32089
  contributor:
    fullname: EJ Beck
– volume: 50
  start-page: 776
  year: 2017
  ident: 15432_CR20
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2017.08.001
  contributor:
    fullname: R Sassi
– ident: 15432_CR53
  doi: 10.1109/ICCV.2015.123
– volume: 18
  start-page: 7
  year: 2016
  ident: 15432_CR18
  publication-title: Acute Card. Care
  doi: 10.1080/17482941.2016.1234058
  contributor:
    fullname: G Veronese
– volume: 40
  start-page: 385
  year: 2007
  ident: 15432_CR5
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2007.03.008
  contributor:
    fullname: AP Shah
– ident: 15432_CR7
– volume: 15
  start-page: 1929
  year: 2014
  ident: 15432_CR50
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: N Srivastava
– volume: 19
  start-page: 4509
  year: 2019
  ident: 15432_CR32
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2896308
  contributor:
    fullname: RK Tripathy
– volume: 392
  start-page: 1736
  year: 2018
  ident: 15432_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32203-7
  contributor:
    fullname: GA Roth
– volume: 318
  start-page: 2199
  year: 2017
  ident: 15432_CR12
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
  contributor:
    fullname: BE Bejnordi
– ident: 15432_CR19
– volume: 43
  start-page: 486
  year: 2010
  ident: 15432_CR40
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2010.07.007
  contributor:
    fullname: S Luo
– volume: 14
  start-page: e0210103
  year: 2019
  ident: 15432_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210103
  contributor:
    fullname: S Goto
– ident: 15432_CR44
  doi: 10.1007/978-1-84882-778-3
– ident: 15432_CR48
  doi: 10.1007/978-3-319-46493-0_38
– volume: 44
  start-page: 1
  year: 2017
  ident: 15432_CR16
  publication-title: Comput. Cardiol.
  contributor:
    fullname: GD Clifford
– volume: 29
  start-page: 29
  year: 1996
  ident: 15432_CR43
  publication-title: J. Electrocardiol.
  doi: 10.1016/S0022-0736(96)80016-1
  contributor:
    fullname: PW Macfarlane
– volume: 10
  start-page: e0118432
  year: 2015
  ident: 15432_CR54
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118432
  contributor:
    fullname: T Saito
– volume: 5
  start-page: 602
  year: 1994
  ident: 15432_CR31
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.1994.tb01301.x
  contributor:
    fullname: D Cubanski
– volume: 20
  start-page: 37
  year: 1960
  ident: 15432_CR46
  publication-title: Educ. Psychological Meas.
  doi: 10.1177/001316446002000104
  contributor:
    fullname: J Cohen
– volume: 320
  start-page: 1101
  year: 2018
  ident: 15432_CR11
  publication-title: JAMA
  doi: 10.1001/jama.2018.11100
  contributor:
    fullname: G Hinton
– ident: 15432_CR33
  doi: 10.22489/CinC.2017.160-246
– volume: 29
  start-page: 354
  year: 1990
  ident: 15432_CR42
  publication-title: Methods Inf. Med.
  doi: 10.1055/s-0038-1634799
  contributor:
    fullname: P Macfarlane
– volume: 49
  start-page: 1109
  year: 2007
  ident: 15432_CR47
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2007.01.024
  contributor:
    fullname: P Kligfield
– ident: 15432_CR23
  doi: 10.1109/CVPR.2016.90
SSID ssj0000391844
Score 2.7379026
Snippet The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are...
Abstract The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs)...
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1760
SubjectTerms 639/705/1042
692/4019
692/700/139/1449
Abnormalities
Adolescent
Adult
Aged
Aged, 80 and over
Artificial neural networks
Atrial Fibrillation - diagnosis
Atrial Fibrillation - physiopathology
Cardiology
Cardiology - methods
Clinical medicine
Deep Learning
Echocardiography
EKG
Electrocardiography
Emergency medical services
Humanities and Social Sciences
Humans
Middle Aged
Model accuracy
multidisciplinary
Neural networks
Neural Networks, Computer
Physicians
Reproducibility of Results
Science
Science (multidisciplinary)
Sensitivity and Specificity
Technology
Training
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSkhcEF-FlIKMVE5gNYnteHzclpaqUjlR1Jtlxw6sVGWr7ubQf9-xnV2aguDCNbYT5409fk8ejwnZLytrVeU8kwE6JkADs631DJkt1FaoOqSDwudfm9MLcXYpL-9d9RVjwnJ64AzcQVNrFGllkCE2RYncBl5Zpz13Cpzvkvct9T0xlXww1yhdxHhKpuRwsBTJJ0S1hKyB10xMVqKUsP9PLPP3YMnNjumD7KJpRTp5Sp6MVJLO8i88I1uhf04e5cslb1-Qw9mwWqSErNTneLr5ki46ioyPVjW7QuPS46MvNEa-_6CW-hCuaUxvie_sc3D4S3Jxcvzt6JSNNyawFpnFijnExfHSSeHaRkrwEkCLVoWgnYDOCYers0MRgXgCouh551qFKgR8o0MLfIds94s-vCbUlrbBUpziXghpBZQSHO8aQAfR2U4V5OMaPXOdE2OYtKHNwWSsDWJtEtZGFOQwArypGZNapwdoajOa2vzL1AXZW5vHjDNtaZByKK1RBUNB3m-KcY7EjQ_bh8WQ6gB6LlR2BXmVrbnpCTo0FU8zFERN7Dzp6rSkn_9MebhVFTcdseWn9Yj41a2_QfEhj5rJFz7Pv88SGMNgRIXEAnb_B2RvyOM6DvkYaqT3yPbqZghvkUWt3Ls0Ye4AbEYW7Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IKtkLgg3qQUZCQ4gdUkduLxCe2WLRUSFUIU9WbZsdOuhJKluzn07xk72VQB1Gucx2Te4xnPEPI2zYyRmXWs8FAzAQqYqYxj6NlCboTMfTwo_PW0PDkTX86L82HDbTOUVe50YlTUrq3CHvkhmhapFEY78HH9m4WpUSG7OozQuEv2cowU0hnZWyxPv30fd1lC_3MQYjgtk3I43IioG0LUhN4Dz5mYWKTYuP9_3ua_RZNj5vSvLqPRMh0_JA8Gl5LOex54RO745jG51w-ZvH5CFvNu28bGrNT1dXWrDW1rip4fzXL2C4lMl0efaaiAv6CGOu_XNLS5xHc2fZH4U3J2vPxxdMKGyQmsQg9jy6xVzvLUFsJWZVGAKwCUqKT3ygqorbBopS0GE6kvIDPW8dpWEqMRcKXyFfBnZNa0jX9BqElNiauIXCdEYQSkBVhel4CKoja1TMj7Hfb0um-QoWNim4Puca0R1zriWouELAKCxztDc-t4ob260IOs6DJXGJcjaD5wS6ag8hyBVI5bCdbVCTnYkUcPErfRN_yRkDfjMspKSICYxrddvAdQg2GEl5DnPTVHSFCxyXCqISFyQucJqNOVZnUZ-3HLLCQf8ckPO464Aes2VLzruWbyhU-rn_OIjK7TIkMHA_Zv_9uX5H4emDkUE6kDMttedf4V-klb-3oQhj9beA-d
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VIiQuiPIZKJWR4ASBfDjx-IDQtrRUSHBiUW-WHTtlpSopuxuJ_nvGTrJV6IoT1zhORs8z9nvyeAzwKkm1FqmxceGwjjlKjHWlbUzMFjPNRebCQeGv38rTOf9yVpztwHjd0QDgaqu08_dJzZcX737_uvpIAf-hPzKO71c8hLsXQkQI8izmt-B2xkmp-1S-ge6HmTmXJGj4cHZme9fJ-hTK-G_jnjdTKDf7qH_VHA3r1Ml9uDcQTDbrPWIPdlzzAO70V05ePYTDWbduQ5lWZvssu8WKtTUjHsjSLL6gIWfHR5-Zz4c_Z5pZ5y6ZL3pJ32z6lPFHMD85_n50Gg_3KMQV8Y11bIy0Jk9MwU1VFgXaAlHySjgnDcfacENrtiFpkbgCU21sXptKkDZBW0pXYf4Ydpu2cU-B6USX1EqBbzkvNMekQJPXJdK0UetaRPBmRE9d9uUyVNjmzlH1WCvCWgWsFY_g0AO8edOXug4P2uW5GiJHlZkklU6mOe87qcTK5WSktLkRaGwdwf44PGp0H0VEREhJ2hgjeLlppsjx2yG6cW0X3kGaz0jvRfCkH82NJTTNCX_GIQIxGeeJqdOWZvEzVOcWqd-KpJ5vR4-4NutfULzuvWbyh0-LH7MARtcpnhLdwGf_A7LncDfzLu8TkOQ-7K6XnXtB3GptDkLA_AGqJx5y
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer_OA刊
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLdgCIkLGp_rNlCQ4AQRbZM2zvHtsTEhwYmh3aKkSeFJqG_aez3w3-OkfZ0KExLXpkktO47t2v4F4HVeWKsK53kVsOUSNXLbWM_Js8XSSlWG1Cj8-Ut9fiE_XVaXI0xO7IWZ5e8Fvt_IpMoxyCFjL0ou78I9ssEYy7eW9XL6nxKRzlHKsS_m9qkz25Mg-m_zK_8uj5xypH_giSYbdLYPD0fnkS0GaT-CO6F7DPeH6yR_PYGTRb9dJwhW5ocKutWGrVtGPh4rSv6TxMlOlx9ZrHX_zizzIVyxCGhJa3ZDOfhTuDg7_bo85-MdCbwhX2LLndPeidxV0jV1VaEnzmjZqBC0k9g66cgeOwob8lBhYZ0XrWsUxR3oax0aFM9gr1t34QCYzW1No6TUXsrKSswrdKKtkY6E1rYqg7c77pmrAQrDpBS2QDPw2hCvTeK1kRmcRAZPb0YY6_SApGtGrTB1qSkCJ9JC3BeFxiYIIlJ74RQ632ZwvBOPGXVrY8jJUFpT3IsZvJqGSStiqsN2Yd2nd5DOKorlMng-SHOihI4wFfsXMlAzOc9InY90qx8JeVsVMc1IM9_tdsQNWf9ixZth18y-8GH1bZGY0fdGFuRK4OH_LXsED8q4uWMZkT6Gve11H16Qh7R1L5Nq_AaFAgcH
  priority: 102
  providerName: Springer Nature
Title Automatic diagnosis of the 12-lead ECG using a deep neural network
URI https://link.springer.com/article/10.1038/s41467-020-15432-4
https://www.ncbi.nlm.nih.gov/pubmed/32273514
https://www.proquest.com/docview/2387994028
https://search.proquest.com/docview/2388832966
https://pubmed.ncbi.nlm.nih.gov/PMC7145824
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411308
https://doaj.org/article/6298880e5e2a47198ce31ab9d3b78bdf
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2ISReEN8LjMpI8ARZ8-HE58c0tJsqdZqAob5ZduyMSltare0D_z1nJykUEA-8JFJsJae739m_i89nQt5GsVI81ibMLNQhAwGhqpQJkdlCohhPrN8oPLvIz6_YdJ7ND0jW74XxSfuVXpw2N7enzeKbz61c3VbDPk9seDkreexWe9jwkBwiQH8J0f3wmwqMWli3QSZKYbhmfjhwgRIShjQJ3WE8CGTustj35iNftv9vXPPPlMnduulvNUb9vDR5RB52hJIWreCPyYFtnpD77RGT35-SUbHdLH1ZVmrarLrFmi5riryPxkl4gyam4_KMuvz3a6qosXZFXZFLfGfTpog_I1eT8ZfyPOzOTQgr5BebUGthdBrpjOkqzzIwGYBgFbdWaAa1ZhrnaI2hRGQziJU2aa0rjrEImFzYCtLn5KhZNvaYUBWpHFvR0Q1jmWIQZaDTOgccJmpV84C877UnV215DOmXtVOQrdolql16tUsWkJFT8K6nK23tHyzvrmVnYJknAqNyFM06rMQCKpuikMKkmoM2dUBOevPIzt_WEokHFwJjYQjIm10zeopb_lCNXW59H8DxC-O7gLxorbmTpEdDQPienfdE3W9BcPpq3B0YA_KhR8RPsf6linctava-8HHxtfDK2G4li5FewMv_FugVeZA4yLssI3FCjjZ3W_saCdRGD9Bt5hyvMDkbkHtFMf08xftofHH5CZ-WeTnwvybwOmMw8O71A5lDHro
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74079,74369,74636
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SZQwEhwAqt52PH4hLalZYG2pxbtzbJjp6yEkqW7OfDvGTvZVAHUa5zHZDwznvGMvyHkbZoZIzPrmPBQMw4KmKmMY-jZQm64zH08KHxyWs7P-deFWAwbbuuhrHJrE6Ohdm0V9sj3cGmRSmG0Ax9Xv1joGhWyq0MLjZvkVsDhCh0M5EKOeywB_Rw4H87KpAXsrXm0DCFmQt-hyBmfrEcRtv9_vua_JZNj3vQvjNG4Lh3dJ_cGh5LOegl4QG745iG53beY_P2I7M-6TRthWanrq-qWa9rWFP0-muXsJ04xPTz4TEP9-wU11Hm_ogHkEt_Z9CXij8n50eHZwZwNfRNYhf7FhlmrnC1SK7itSiHACQDFK-m9shxqyy2u0RZDidQLyIx1RW0ribEIuFL5CoonZKdpG_-MUJOaEkdR0R3nwnBIBdiiLgHNRG1qmZD3W-7pVQ-PoWNauwDd81ojr3XkteYJ2Q8MHu8M0NbxQnt5oQdN0WWuMCpH0nyQlUxB5QskUrnCSrCuTsjudnr0oG9rfSUdCXkzDqOmhPSHaXzbxXsA7RfGdwl52s_mSAnKjgxnGhIiJ_M8IXU60ix_RDRumYXUIz75YSsRV2Rdx4p3vdRMvvBp-X0WmdF1mmfoXsDz6__2NbkzPzs51sdfTr-9IHfzINihrEjtkp3NZedfose0sa-iWvwBsskRKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiEBfEm0ABI8EJrM3DiccntH1sy6viQFFvlh3bZSWULN3Ngb9n7GRTBVCvcR6TeY9nPEPI6zTTWmTGstKBZxwkMF1ry9CzhVxzkbt4UPjLSXV8yj-elWdD_dN6KKvc6sSoqG1bhz3yGZoWISVGOzDzQ1nE14PF-9UvFiZIhUzrME7jOrmBVrEKHA6Lo3G_JXRCB86HczNpAbM1j1oixE_oRxQ54xPbFFv4_8_v_Ld8csyh_tVvNNqoxV1yZ3Au6bznhnvkmmvuk5v9uMnfD8jevNu0sUUrtX2F3XJNW0_RB6RZzn4iuenh_hENtfDnVFPr3IqGhpf4zqYvF39ITheH3_aP2TBDgdXoa2yYMdKaIjUlN3VVlmBLAMlr4Zw0HLzhBu21wbAidSVk2tjCm1pgXAK2kq6G4hHZadrGPSFUp7rCVRR6y3mpOaQlmMJXgCrDay8S8naLPbXqW2WomOIuQPW4VohrFXGteEL2AoLHO0Ob63ihvThXg9SoKpcYoSNoLvBNJqF2BQIpbWEEGOsTsrsljxpkb60uOSUhr8ZllJqQCtGNa7t4D6Auw1gvIY97ao6QoIoT4XxDQsSEzhNQpyvN8kfszC2ykIbEJ99tOeISrKtQ8abnmskXDpbf5xEZXad4hq4GPL36b1-SWygR6vOHk0_PyO088HWoMJK7ZGdz0bnn6DxtzIsoFX8A1aYVZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+diagnosis+of+the+12-lead+ECG+using+a+deep+neural+network&rft.jtitle=Nature+communications&rft.au=Ant%C3%B4nio+H.+Ribeiro&rft.au=Manoel+Horta+Ribeiro&rft.au=Gabriela+M.+M.+Paix%C3%A3o&rft.au=Derick+M.+Oliveira&rft.date=2020-04-09&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-020-15432-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6298880e5e2a47198ce31ab9d3b78bdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon