Automatic diagnosis of the 12-lead ECG using a deep neural network
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of t...
Saved in:
Published in | Nature communications Vol. 11; no. 1; p. 1760 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.04.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice.
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors. |
---|---|
AbstractList | The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice.
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors. Abstract The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice. The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency resident medical doctors. |
ArticleNumber | 1760 |
Author | Oliveira, Derick M. Canazart, Jéssica A. Paixão, Gabriela M. M. Schön, Thomas B. Gomes, Paulo R. Ferreira, Milton P. S. Meira Jr, Wagner Ribeiro, Antônio H. Ribeiro, Manoel Horta Andersson, Carl R. Macfarlane, Peter W. Ribeiro, Antonio Luiz P. |
Author_xml | – sequence: 1 givenname: Antônio H. orcidid: 0000-0003-3632-8529 surname: Ribeiro fullname: Ribeiro, Antônio H. email: antonio-ribeiro@ufmg.br organization: Universidade Federal de Minas Gerais, Uppsala University – sequence: 2 givenname: Manoel Horta surname: Ribeiro fullname: Ribeiro, Manoel Horta organization: Universidade Federal de Minas Gerais – sequence: 3 givenname: Gabriela M. M. surname: Paixão fullname: Paixão, Gabriela M. M. organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais – sequence: 4 givenname: Derick M. surname: Oliveira fullname: Oliveira, Derick M. organization: Universidade Federal de Minas Gerais – sequence: 5 givenname: Paulo R. surname: Gomes fullname: Gomes, Paulo R. organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais – sequence: 6 givenname: Jéssica A. surname: Canazart fullname: Canazart, Jéssica A. organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais – sequence: 7 givenname: Milton P. S. surname: Ferreira fullname: Ferreira, Milton P. S. organization: Universidade Federal de Minas Gerais – sequence: 8 givenname: Carl R. surname: Andersson fullname: Andersson, Carl R. organization: Uppsala University – sequence: 9 givenname: Peter W. surname: Macfarlane fullname: Macfarlane, Peter W. organization: University of Glasgow – sequence: 10 givenname: Wagner surname: Meira Jr fullname: Meira Jr, Wagner organization: Universidade Federal de Minas Gerais – sequence: 11 givenname: Thomas B. orcidid: 0000-0001-5183-234X surname: Schön fullname: Schön, Thomas B. email: thomas.schon@it.uu.se organization: Uppsala University – sequence: 12 givenname: Antonio Luiz P. orcidid: 0000-0002-2740-0042 surname: Ribeiro fullname: Ribeiro, Antonio Luiz P. email: antonio.ribeiro@ebserh.gov.br organization: Universidade Federal de Minas Gerais, Telehealth Center from Hospital das Clínicas da Universidade Federal de Minas Gerais |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32273514$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411308$$DView record from Swedish Publication Index |
BookMark | eNp9kktv1DAUhS1UREvpH2CBIrFhQcDPxN4gDUMplSqxAbaWHzfTDBl7sBMq_j2eyVA6LPDGlu-5n4-vzlN0EmIAhJ4T_IZgJt9mTnjT1pjimgjOaM0foTOKOalJS9nJg_Mpush5jctiikjOn6BTRmnLBOFn6P1iGuPGjL2rfG9WIeY-V7GrxluoCK0HML66XF5VU-7DqjKVB9hWAaZkhrKNdzF9f4Yed2bIcHHYz9HXj5dflp_qm89X18vFTe0azsbaWuUtw1Zw6xohpBdSKu5aAGW57Cy3UjArhMIgJDHWs866Yh9L3yhwkp2j65nro1nrbeo3Jv3S0fR6fxHTSptUPjKAbqiSUhYQUMNboqQDVpDKM9tK67vCej2z8h1sJ3tE-9B_W-xp06Q5IcVAkb-b5UW7Ae8gjGUAR13HldDf6lX8qVvChaS8AF4dACn-mCCPetNnB8NgAsQpa8qKX0ZV0xTpy3-k6zilUCa7U7VKcUx3juiscinmnKC7N0Ow3gVEzwHRJSB6HxC9c_Hi4TfuW_7EoQjYYSylFFaQ_r79H-xv2KXGMA |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00302 crossref_primary_10_3390_diagnostics13010111 crossref_primary_10_1109_ACCESS_2023_3260061 crossref_primary_10_1038_s41746_024_01139_z crossref_primary_10_1088_1361_6579_ac5b4a crossref_primary_10_1038_s41598_022_21260_x crossref_primary_10_1002_smtd_202400305 crossref_primary_10_3390_app11135880 crossref_primary_10_1038_s41746_024_01130_8 crossref_primary_10_1111_jcmm_17098 crossref_primary_10_1371_journal_pone_0253200 crossref_primary_10_35784_acs_2022_18 crossref_primary_10_3390_jpm13020373 crossref_primary_10_1093_ehjdh_ztac042 crossref_primary_10_3390_s23094221 crossref_primary_10_1001_jamaneurol_2023_1082 crossref_primary_10_1016_j_ccep_2021_04_011 crossref_primary_10_1109_TIM_2023_3335526 crossref_primary_10_3390_app13084964 crossref_primary_10_1109_ACCESS_2023_3344531 crossref_primary_10_3389_fcvm_2024_1424585 crossref_primary_10_1088_1361_6579_ac6aa3 crossref_primary_10_1109_JBHI_2022_3197076 crossref_primary_10_1016_j_ajem_2024_03_017 crossref_primary_10_1109_ACCESS_2023_3236189 crossref_primary_10_1098_rsta_2020_0258 crossref_primary_10_3390_s23115237 crossref_primary_10_1016_j_nuclcard_2024_101881 crossref_primary_10_1016_j_bspc_2022_103749 crossref_primary_10_3390_s23031697 crossref_primary_10_1007_s41666_024_00168_3 crossref_primary_10_1109_JIOT_2023_3336995 crossref_primary_10_1155_2022_8571970 crossref_primary_10_1007_s00399_022_00854_y crossref_primary_10_1088_1361_6579_acb4dc crossref_primary_10_3389_fphys_2022_867033 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_1016_j_ymeth_2021_04_021 crossref_primary_10_3389_fcvm_2022_949454 crossref_primary_10_1080_02813432_2021_1973255 crossref_primary_10_1109_JBHI_2023_3331626 crossref_primary_10_1002_admt_202100904 crossref_primary_10_1007_s12265_024_10504_y crossref_primary_10_1109_JBHI_2020_3022989 crossref_primary_10_3389_fneur_2023_1210491 crossref_primary_10_3390_jcdd10040175 crossref_primary_10_1002_joa3_12646 crossref_primary_10_3389_fcvm_2023_1160091 crossref_primary_10_1093_ehjdh_ztab045 crossref_primary_10_3390_s22208002 crossref_primary_10_1111_jce_15440 crossref_primary_10_1016_j_addr_2021_113921 crossref_primary_10_1016_j_pedneo_2021_12_011 crossref_primary_10_1515_bmt_2023_0580 crossref_primary_10_3389_fcvm_2024_1368094 crossref_primary_10_1155_2022_1036913 crossref_primary_10_1371_journal_pone_0284622 crossref_primary_10_1001_jamacardio_2021_2746 crossref_primary_10_1109_JSEN_2024_3392017 crossref_primary_10_1186_s40001_022_00929_z crossref_primary_10_1088_1361_6579_abc960 crossref_primary_10_3390_app122412897 crossref_primary_10_3390_s20216318 crossref_primary_10_1038_s41525_022_00320_1 crossref_primary_10_1093_eurheartj_ehaa1065 crossref_primary_10_1007_s00399_022_00855_x crossref_primary_10_1088_1361_6579_ac6049 crossref_primary_10_2196_36443 crossref_primary_10_1016_j_bspc_2024_106253 crossref_primary_10_3390_bioengineering9100523 crossref_primary_10_1088_1361_6579_ac7939 crossref_primary_10_1038_s41598_022_18664_0 crossref_primary_10_3390_s21030773 crossref_primary_10_1016_j_jelectrocard_2021_06_006 crossref_primary_10_1109_TIM_2023_3301047 crossref_primary_10_1109_TIM_2022_3164141 crossref_primary_10_1186_s12933_024_02141_1 crossref_primary_10_1063_5_0176850 crossref_primary_10_1038_s41598_022_24574_y crossref_primary_10_1109_JBHI_2023_3310989 crossref_primary_10_1093_cvr_cvab169 crossref_primary_10_3389_fpubh_2022_926234 crossref_primary_10_1111_anec_12795 crossref_primary_10_1161_CIRCEP_120_009204 crossref_primary_10_4108_eetpht_10_6421 crossref_primary_10_1093_jamia_ocae002 crossref_primary_10_3390_medicina59020375 crossref_primary_10_1038_s43856_022_00220_6 crossref_primary_10_1093_ehjdh_ztae014 crossref_primary_10_1016_j_jelectrocard_2020_11_013 crossref_primary_10_1038_s41746_024_01170_0 crossref_primary_10_1002_smsc_202300008 crossref_primary_10_1016_j_clim_2022_109218 crossref_primary_10_1016_j_compbiomed_2021_104262 crossref_primary_10_1371_journal_pcbi_1009862 crossref_primary_10_2196_41241 crossref_primary_10_1038_s41591_022_02134_1 crossref_primary_10_1186_s13148_023_01576_9 crossref_primary_10_1016_j_jelectrocard_2024_01_006 crossref_primary_10_1109_TBME_2023_3239527 crossref_primary_10_3389_fcvm_2023_1229743 crossref_primary_10_1007_s10489_023_04889_7 crossref_primary_10_3390_diagnostics11091678 crossref_primary_10_1038_s41467_021_25351_7 crossref_primary_10_3389_fphys_2023_1247587 crossref_primary_10_1109_TPAMI_2023_3342828 crossref_primary_10_1177_14604582231213846 crossref_primary_10_1016_j_knosys_2023_111014 crossref_primary_10_1038_s41598_021_84374_8 crossref_primary_10_3390_make5040077 crossref_primary_10_1161_CIRCULATIONAHA_123_067750 crossref_primary_10_1109_ACCESS_2021_3119630 crossref_primary_10_1161_JAHA_123_031671 crossref_primary_10_3390_app13052932 crossref_primary_10_1007_s11886_024_02062_1 crossref_primary_10_1109_TBCAS_2023_3276782 crossref_primary_10_1016_j_wneu_2023_09_012 crossref_primary_10_1007_s11886_020_01416_9 crossref_primary_10_1002_ccd_30382 crossref_primary_10_1016_j_jjcc_2021_11_017 crossref_primary_10_1109_TNSE_2022_3184523 crossref_primary_10_3390_app10238746 crossref_primary_10_1007_s00500_021_06555_x crossref_primary_10_1109_LSP_2021_3114119 crossref_primary_10_3389_fcvm_2024_1323918 crossref_primary_10_1088_1361_6579_aca4b9 crossref_primary_10_3390_bios13030393 crossref_primary_10_3390_s22208073 crossref_primary_10_1002_adfm_202307990 crossref_primary_10_1002_widm_1530 crossref_primary_10_1016_j_ins_2024_120881 crossref_primary_10_1155_2022_2985308 crossref_primary_10_1007_s13239_024_00716_3 crossref_primary_10_1109_ACCESS_2020_3040166 crossref_primary_10_1016_j_ijcard_2021_05_017 crossref_primary_10_1016_j_jelectrocard_2023_11_002 crossref_primary_10_1371_journal_pone_0303178 crossref_primary_10_2196_31129 crossref_primary_10_3390_app11167758 crossref_primary_10_1016_j_eswa_2022_117206 crossref_primary_10_1109_JBHI_2021_3120890 crossref_primary_10_1109_ACCESS_2024_3380892 crossref_primary_10_1016_j_patter_2024_100970 crossref_primary_10_3389_fcvm_2021_616585 crossref_primary_10_3390_s22218454 crossref_primary_10_1007_s10115_024_02073_y crossref_primary_10_1016_j_cvdhj_2023_12_003 crossref_primary_10_1016_j_cvdhj_2021_04_002 crossref_primary_10_1016_j_neunet_2022_08_004 crossref_primary_10_1038_s41598_024_52081_9 crossref_primary_10_3389_fphys_2023_1070621 crossref_primary_10_3389_fonc_2021_788740 crossref_primary_10_1109_JIOT_2021_3138516 crossref_primary_10_1109_OJEMB_2022_3214719 crossref_primary_10_3390_computers10120158 crossref_primary_10_1016_j_isci_2022_105434 crossref_primary_10_1038_s41569_020_00503_2 crossref_primary_10_3390_app12157711 crossref_primary_10_3389_fphys_2021_811661 crossref_primary_10_1109_ICJECE_2023_3320103 crossref_primary_10_3390_app10196896 crossref_primary_10_1093_ehjdh_ztae039 crossref_primary_10_1109_TCSI_2022_3194636 crossref_primary_10_1166_jmihi_2022_3945 crossref_primary_10_12677_ACM_2023_134939 crossref_primary_10_1016_j_ejim_2024_02_037 crossref_primary_10_1038_s41598_022_24254_x crossref_primary_10_1088_1361_6579_acf754 crossref_primary_10_1016_j_cvdhj_2020_11_004 crossref_primary_10_2196_24388 crossref_primary_10_1016_j_compscitech_2022_109606 crossref_primary_10_1088_1361_6579_ac9451 crossref_primary_10_1111_imj_15562 crossref_primary_10_3389_fcvm_2022_849223 crossref_primary_10_2196_47803 crossref_primary_10_1038_s41746_023_00765_3 crossref_primary_10_1136_bmjmed_2022_000193 crossref_primary_10_1016_j_sleep_2021_07_014 crossref_primary_10_3390_s22145414 crossref_primary_10_1016_j_cvdhj_2023_01_004 crossref_primary_10_1109_JBHI_2021_3059016 crossref_primary_10_3390_jcm11226767 crossref_primary_10_1016_j_procs_2021_08_065 crossref_primary_10_1161_CIRCHEARTFAILURE_123_010879 crossref_primary_10_1016_j_ebiom_2023_104937 crossref_primary_10_1007_s13534_021_00184_x crossref_primary_10_36011_cpp_2024_6_e7 crossref_primary_10_1016_j_cmpb_2024_108164 crossref_primary_10_3390_jcm12082828 crossref_primary_10_1109_JSEN_2022_3217538 crossref_primary_10_1016_j_measen_2022_100558 crossref_primary_10_1016_j_jacc_2024_03_400 crossref_primary_10_1002_joa3_12707 crossref_primary_10_1109_JBHI_2023_3271858 crossref_primary_10_3390_computers13050109 crossref_primary_10_3390_hearts2040035 crossref_primary_10_1038_s44222_023_00102_z crossref_primary_10_1109_ACCESS_2023_3328538 crossref_primary_10_3390_hearts2040034 crossref_primary_10_1016_j_jmccpl_2024_100061 crossref_primary_10_1186_s12909_022_03518_0 crossref_primary_10_2459_JCM_0000000000001431 crossref_primary_10_1038_s41586_022_04714_0 crossref_primary_10_3390_hearts2040037 crossref_primary_10_1038_s41467_024_49390_y crossref_primary_10_1002_aelm_202300082 crossref_primary_10_1016_j_compbiomed_2024_108751 crossref_primary_10_1007_s12553_023_00807_6 crossref_primary_10_5937_mp74_44394 crossref_primary_10_1063_5_0191574 crossref_primary_10_1063_5_0191571 crossref_primary_10_1109_JSAC_2023_3310097 crossref_primary_10_1161_CIR_0000000000001201 crossref_primary_10_1016_j_bspc_2024_106422 crossref_primary_10_1016_j_jcmg_2021_04_030 crossref_primary_10_1038_s41440_023_01469_7 crossref_primary_10_1007_s11431_022_2080_6 crossref_primary_10_2196_18297 crossref_primary_10_3389_fnins_2024_1359446 crossref_primary_10_3346_jkms_2024_39_e56 crossref_primary_10_1016_j_bios_2022_114261 crossref_primary_10_1109_TNNLS_2022_3187741 crossref_primary_10_36660_abc_20200596 crossref_primary_10_1038_s41467_024_44930_y crossref_primary_10_1109_JBHI_2021_3128169 crossref_primary_10_3390_app11209460 crossref_primary_10_1002_idm2_12198 crossref_primary_10_3390_jimaging7020026 crossref_primary_10_1016_j_engappai_2024_108890 crossref_primary_10_1007_s11042_024_18789_6 crossref_primary_10_1038_s41598_024_55453_3 crossref_primary_10_3389_frai_2022_1087370 crossref_primary_10_1038_s41467_022_29153_3 crossref_primary_10_1161_CIRCOUTCOMES_122_009821 crossref_primary_10_3390_diagnostics13142442 crossref_primary_10_1080_14796678_2024_2354082 crossref_primary_10_1109_JBHI_2022_3157877 crossref_primary_10_1177_11779322221149600 crossref_primary_10_1038_s41598_024_53107_y crossref_primary_10_3390_app12157404 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_3390_photonics10090972 crossref_primary_10_3390_s20247353 crossref_primary_10_1088_1361_6579_ac6f40 crossref_primary_10_1109_JBHI_2022_3173655 crossref_primary_10_36660_abc_20230653 crossref_primary_10_1007_s11431_023_2460_2 crossref_primary_10_1016_j_cjca_2024_07_003 crossref_primary_10_1109_ACCESS_2023_3280565 crossref_primary_10_3390_biomedicines10082013 |
Cites_doi | 10.1001/jama.2018.11100 10.1016/j.jacc.2017.07.723 10.1016/j.jacc.2008.12.014 10.1016/j.jacc.2007.01.024 10.2471/BLT.11.099408 10.1016/j.jelectrocard.2010.07.007 10.1136/heartjnl-2018-313398 10.1371/journal.pone.0210103 10.1016/j.jelectrocard.2018.11.013 10.1001/jama.2018.11029 10.3402/gha.v9.32089 10.1038/s41591-018-0107-6 10.1007/BF02295996 10.1161/CIRCEP.111.000097 10.1001/jama.2017.14585 10.1016/j.ins.2017.06.027 10.1109/JSEN.2019.2896308 10.1088/1361-6579/aaaa9d 10.1371/journal.pone.0118432 10.1109/MSP.2012.2205597 10.1016/j.jelectrocard.2007.03.008 10.1111/j.1540-8167.1994.tb01301.x 10.1016/S0140-6736(18)32203-7 10.1001/jama.2018.11103 10.1177/001316446002000104 10.1136/bmj.39227.551713.AE 10.1038/s41591-018-0268-3 10.1098/rsif.2017.0821 10.1080/17482941.2016.1234058 10.1056/NEJM199112193252503 10.1016/j.ins.2016.01.082 10.1016/S0022-0736(96)80016-1 10.1055/s-0038-1634799 10.1016/j.jelectrocard.2017.08.001 10.1109/ICACEA.2015.7164783 10.1201/9780429246593 10.1109/CIC.2005.1588134 10.22489/CinC.2017.178-245 10.1145/3219819.3219912 10.1109/ICDM.2006.96 10.1007/978-3-642-15825-4_10 10.1109/ICCV.2015.123 10.1007/978-1-84882-778-3 10.1007/978-3-319-46493-0_38 10.22489/CinC.2017.160-246 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
DOI | 10.1038/s41467-020-15432-4 |
DatabaseName | Springer_OA刊 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 1760 |
ExternalDocumentID | oai_doaj_org_article_6298880e5e2a47198ce31ab9d3b78bdf oai_DiVA_org_uu_411308 10_1038_s41467_020_15432_4 32273514 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development) grantid: 465518/2014-1 funderid: https://doi.org/10.13039/501100003593 – fundername: ; grantid: 465518/2014-1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI PRINS RC3 SOI 7X8 5PM 4.4 ABAWZ ACNBI ADTPV AOWAS BAPOH CAG COF D8T DF2 EJD LGEZI LOTEE NADUK NXXTH ZZAVC |
ID | FETCH-LOGICAL-c643t-bb9db30b54bc6558d58894c7ee9b48fb4b853b5590e581abd3fbc72308d69ec83 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:16:02 EDT 2024 Sat Aug 24 00:20:52 EDT 2024 Tue Sep 17 21:26:02 EDT 2024 Sat Oct 05 06:28:11 EDT 2024 Thu Oct 10 16:20:07 EDT 2024 Fri Aug 23 00:40:25 EDT 2024 Sat Sep 28 08:28:34 EDT 2024 Fri Oct 11 20:38:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c643t-bb9db30b54bc6558d58894c7ee9b48fb4b853b5590e581abd3fbc72308d69ec83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2740-0042 0000-0001-5183-234X 0000-0003-3632-8529 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145824/ |
PMID | 32273514 |
PQID | 2387994028 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6298880e5e2a47198ce31ab9d3b78bdf swepub_primary_oai_DiVA_org_uu_411308 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7145824 proquest_miscellaneous_2388832966 proquest_journals_2387994028 crossref_primary_10_1038_s41467_020_15432_4 pubmed_primary_32273514 springer_journals_10_1038_s41467_020_15432_4 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-09 |
PublicationDateYYYYMMDD | 2020-04-09 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rautaharju, Surawicz, Gettes (CR39) 2009; 53 Smith (CR30) 2019; 52 Lyon, Mincholé, Martínez, Laguna, Rodriguez (CR21) 2018; 15 CR35 Goto (CR38) 2019; 14 CR33 Stead (CR9) 2018; 320 CR7 CR49 CR48 Bejnordi (CR12) 2017; 318 CR45 CR44 Alkmim (CR22) 2012; 90 Saito, Rehmsmeier (CR54) 2015; 10 Willems (CR2) 1987; 20 Kligfield (CR47) 2007; 49 Luo, Johnston (CR40) 2010; 43 Naylor (CR10) 2018; 320 Clifford (CR16) 2017; 44 Kamaleswaran, Mahajan, Akbilgic (CR25) 2018; 39 Hinton (CR11) 2018; 320 Rahhal (CR36) 2016; 345 Mant (CR17) 2007; 335 Nascimento, Brant, Marino, Passaglia, Ribeiro (CR41) 2019; 105 CR19 Willems (CR4) 1991; 325 Estes (CR6) 2013; 6 Sassi (CR20) 2017; 50 Roth (CR1) 2018; 392 CR53 CR52 CR51 Hinton (CR8) 2012; 29 Cohen (CR46) 1960; 20 Cubanski, Cyganski, Antman, Feldman (CR31) 1994; 5 Macfarlane (CR42) 1990; 29 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR50) 2014; 15 Hannun (CR15) 2019; 25 McNemar (CR27) 1947; 12 De Fauw (CR13) 2018; 24 Veronese (CR18) 2016; 18 CR28 CR26 CR24 CR23 Macfarlane, Devine, Clark (CR29) 2005; 32 Acharya (CR34) 2017; 415-416 Shah, Rubin (CR5) 2007; 40 Tripathy, Bhattacharyya, Pachori (CR32) 2019; 19 Schläpfer, Wellens (CR3) 2017; 70 Macfarlane, Latif (CR43) 1996; 29 Beck, Gill, De Lay (CR14) 2016; 9 Goldberger (CR37) 2000; 101 32358526 - Nat Commun. 2020 May 1;11(1):2227 WW Stead (15432_CR9) 2018; 320 15432_CR45 15432_CR48 J Mant (15432_CR17) 2007; 335 S Luo (15432_CR40) 2010; 43 15432_CR49 D Cubanski (15432_CR31) 1994; 5 JL Willems (15432_CR4) 1991; 325 S Goto (15432_CR38) 2019; 14 J Cohen (15432_CR46) 1960; 20 GA Roth (15432_CR1) 2018; 392 MA Rahhal (15432_CR36) 2016; 345 15432_CR51 15432_CR53 15432_CR52 C Naylor (15432_CR10) 2018; 320 15432_CR19 BE Bejnordi (15432_CR12) 2017; 318 R Kamaleswaran (15432_CR25) 2018; 39 G Hinton (15432_CR11) 2018; 320 AL Goldberger (15432_CR37) 2000; 101 AY Hannun (15432_CR15) 2019; 25 GD Clifford (15432_CR16) 2017; 44 N Srivastava (15432_CR50) 2014; 15 G Hinton (15432_CR8) 2012; 29 15432_CR7 EJ Beck (15432_CR14) 2016; 9 P Kligfield (15432_CR47) 2007; 49 15432_CR24 15432_CR23 15432_CR26 G Veronese (15432_CR18) 2016; 18 15432_CR28 PM Rautaharju (15432_CR39) 2009; 53 R Sassi (15432_CR20) 2017; 50 UR Acharya (15432_CR34) 2017; 415-416 MB Alkmim (15432_CR22) 2012; 90 PW Macfarlane (15432_CR43) 1996; 29 PW Macfarlane (15432_CR29) 2005; 32 RK Tripathy (15432_CR32) 2019; 19 15432_CR33 P Macfarlane (15432_CR42) 1990; 29 15432_CR35 AP Shah (15432_CR5) 2007; 40 NAM Estes (15432_CR6) 2013; 6 J Schläpfer (15432_CR3) 2017; 70 JL Willems (15432_CR2) 1987; 20 BR Nascimento (15432_CR41) 2019; 105 SW Smith (15432_CR30) 2019; 52 T Saito (15432_CR54) 2015; 10 J De Fauw (15432_CR13) 2018; 24 Q McNemar (15432_CR27) 1947; 12 A Lyon (15432_CR21) 2018; 15 15432_CR44 |
References_xml | – volume: 320 start-page: 1101 year: 2018 end-page: 1102 ident: CR11 article-title: Deep learning—a technology with the potential to transform health care publication-title: JAMA doi: 10.1001/jama.2018.11100 contributor: fullname: Hinton – ident: CR45 – volume: 70 start-page: 1183 year: 2017 ident: CR3 article-title: Computer-interpreted electrocardiograms: benefits and limitations publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.07.723 contributor: fullname: Wellens – volume: 53 start-page: 982 year: 2009 end-page: 991 ident: CR39 article-title: AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the Electrocardiogram: Part IV: The ST Segment, T and U Waves, and the QT Interval A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2008.12.014 contributor: fullname: Gettes – volume: 44 start-page: 1 year: 2017 end-page: 4 ident: CR16 article-title: AF classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017 publication-title: Comput. Cardiol. contributor: fullname: Clifford – volume: 49 start-page: 1109 year: 2007 ident: CR47 article-title: Recommendations for the standardization and interpretation of the electrocardiogram publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.01.024 contributor: fullname: Kligfield – volume: 90 start-page: 373 year: 2012 end-page: 378 ident: CR22 article-title: Improving patient access to specialized health care: the Telehealth Network of Minas Gerais, Brazil publication-title: Bull. World Health Organ. doi: 10.2471/BLT.11.099408 contributor: fullname: Alkmim – ident: CR49 – ident: CR51 – volume: 43 start-page: 486 year: 2010 end-page: 496 ident: CR40 article-title: A review of electrocardiogram filtering publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2010.07.007 contributor: fullname: Johnston – volume: 105 start-page: 20 year: 2019 ident: CR41 article-title: Implementing myocardial infarction systems of care in low/middle-income countries publication-title: Heart doi: 10.1136/heartjnl-2018-313398 contributor: fullname: Ribeiro – volume: 14 start-page: e0210103 year: 2019 ident: CR38 article-title: Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients publication-title: PLoS ONE doi: 10.1371/journal.pone.0210103 contributor: fullname: Goto – volume: 52 start-page: 88 year: 2019 end-page: 95 ident: CR30 article-title: A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2018.11.013 contributor: fullname: Smith – ident: CR35 – volume: 320 start-page: 1107 year: 2018 end-page: 1108 ident: CR9 article-title: Clinical implications and challenges of artificial intelligence and deep learning publication-title: JAMA doi: 10.1001/jama.2018.11029 contributor: fullname: Stead – volume: 20 start-page: 73 issue: Suppl year: 1987 end-page: 77 ident: CR2 article-title: Testing the performance of ECG computer programs: the CSE diagnostic pilot study publication-title: J. Electrocardiol. contributor: fullname: Willems – volume: 9 start-page: 32089 year: 2016 ident: CR14 article-title: Protecting the confidentiality and security of personal health information in low- and middle-income countries in the era of SDGs and Big Data publication-title: Glob. Health Action doi: 10.3402/gha.v9.32089 contributor: fullname: De Lay – volume: 24 start-page: 1342 year: 2018 end-page: 1350 ident: CR13 article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease publication-title: Nat. Med. doi: 10.1038/s41591-018-0107-6 contributor: fullname: De Fauw – ident: CR19 – volume: 12 start-page: 153 year: 1947 end-page: 157 ident: CR27 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 contributor: fullname: McNemar – volume: 6 start-page: 2 year: 2013 end-page: 4 ident: CR6 article-title: Computerized interpretation of ECGs: supplement not a substitute publication-title: Circulation. Arrhythmia Electrophysiol. doi: 10.1161/CIRCEP.111.000097 contributor: fullname: Estes – volume: 318 start-page: 2199 year: 2017 ident: CR12 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 contributor: fullname: Bejnordi – volume: 415-416 start-page: 190 year: 2017 end-page: 198 ident: CR34 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 contributor: fullname: Acharya – ident: CR26 – volume: 19 start-page: 4509 year: 2019 end-page: 4517 ident: CR32 article-title: A novel approach for detection of myocardial infarction from ECG signals of multiple electrodes publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2896308 contributor: fullname: Pachori – volume: 39 start-page: 035006 year: 2018 ident: CR25 article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length publication-title: Physiological Meas. doi: 10.1088/1361-6579/aaaa9d contributor: fullname: Akbilgic – volume: 10 start-page: e0118432 year: 2015 ident: CR54 article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS ONE doi: 10.1371/journal.pone.0118432 contributor: fullname: Rehmsmeier – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: CR8 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 contributor: fullname: Hinton – volume: 40 start-page: 385 year: 2007 end-page: 390 ident: CR5 article-title: Errors in the computerized electrocardiogram interpretation of cardiac rhythm publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2007.03.008 contributor: fullname: Rubin – volume: 5 start-page: 602 year: 1994 end-page: 608 ident: CR31 article-title: A neural network system for detection of atrial fibrillation in ambulatory electrocardiograms publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.1994.tb01301.x contributor: fullname: Feldman – volume: 392 start-page: 1736 year: 2018 end-page: 1788 ident: CR1 article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet doi: 10.1016/S0140-6736(18)32203-7 contributor: fullname: Roth – volume: 320 start-page: 1099 year: 2018 end-page: 1100 ident: CR10 article-title: On the prospects for a (deep) learning health care system publication-title: JAMA doi: 10.1001/jama.2018.11103 contributor: fullname: Naylor – ident: CR53 – volume: 20 start-page: 37 year: 1960 end-page: 46 ident: CR46 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychological Meas. doi: 10.1177/001316446002000104 contributor: fullname: Cohen – ident: CR33 – volume: 335 start-page: 380 year: 2007 ident: CR17 article-title: Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial publication-title: BMJ (Clin. Res. ed.) doi: 10.1136/bmj.39227.551713.AE contributor: fullname: Mant – ident: CR23 – ident: CR44 – ident: CR48 – volume: 25 start-page: 65 year: 2019 end-page: 69 ident: CR15 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 contributor: fullname: Hannun – ident: CR52 – volume: 101 start-page: E215 year: 2000 end-page: E220 ident: CR37 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation contributor: fullname: Goldberger – volume: 15 start-page: 20170821 year: 2018 ident: CR21 article-title: Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0821 contributor: fullname: Rodriguez – volume: 18 start-page: 7 year: 2016 end-page: 10 ident: CR18 article-title: Emergency physician accuracy in interpreting electrocardiograms with potential ST-segment elevation myocardial infarction: is it enough? publication-title: Acute Card. Care doi: 10.1080/17482941.2016.1234058 contributor: fullname: Veronese – ident: CR7 – volume: 32 start-page: 451 year: 2005 end-page: 454 ident: CR29 article-title: The University of Glasgow (Uni-G) ECG analysis program publication-title: Comput. Cardiol. contributor: fullname: Clark – volume: 325 start-page: 1767 year: 1991 end-page: 1773 ident: CR4 article-title: The diagnostic performance of computer programs for the interpretation of electrocardiograms publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199112193252503 contributor: fullname: Willems – ident: CR28 – volume: 345 start-page: 340 year: 2016 end-page: 354 ident: CR36 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.082 contributor: fullname: Rahhal – volume: 29 start-page: 29 year: 1996 end-page: 34 ident: CR43 article-title: Automated serial ECG comparison based on the Minnesota code publication-title: J. Electrocardiol. doi: 10.1016/S0022-0736(96)80016-1 contributor: fullname: Latif – ident: CR24 – volume: 29 start-page: 354 year: 1990 end-page: 361 ident: CR42 article-title: Methodology of ECG interpretation in the Glasgow program publication-title: Methods Inf. Med. doi: 10.1055/s-0038-1634799 contributor: fullname: Macfarlane – volume: 50 start-page: 776 year: 2017 end-page: 780 ident: CR20 article-title: PDF-ECG in clinical practice: a model for long-term preservation of digital 12-lead ECG data publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2017.08.001 contributor: fullname: Sassi – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR50 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. contributor: fullname: Salakhutdinov – volume: 6 start-page: 2 year: 2013 ident: 15432_CR6 publication-title: Circulation. Arrhythmia Electrophysiol. doi: 10.1161/CIRCEP.111.000097 contributor: fullname: NAM Estes – volume: 53 start-page: 982 year: 2009 ident: 15432_CR39 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2008.12.014 contributor: fullname: PM Rautaharju – volume: 39 start-page: 035006 year: 2018 ident: 15432_CR25 publication-title: Physiological Meas. doi: 10.1088/1361-6579/aaaa9d contributor: fullname: R Kamaleswaran – ident: 15432_CR49 – ident: 15432_CR28 doi: 10.1109/ICACEA.2015.7164783 – volume: 15 start-page: 20170821 year: 2018 ident: 15432_CR21 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0821 contributor: fullname: A Lyon – ident: 15432_CR26 doi: 10.1201/9780429246593 – volume: 320 start-page: 1099 year: 2018 ident: 15432_CR10 publication-title: JAMA doi: 10.1001/jama.2018.11103 contributor: fullname: C Naylor – volume: 25 start-page: 65 year: 2019 ident: 15432_CR15 publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 contributor: fullname: AY Hannun – volume: 101 start-page: E215 year: 2000 ident: 15432_CR37 publication-title: Circulation contributor: fullname: AL Goldberger – volume: 32 start-page: 451 year: 2005 ident: 15432_CR29 publication-title: Comput. Cardiol. doi: 10.1109/CIC.2005.1588134 contributor: fullname: PW Macfarlane – volume: 70 start-page: 1183 year: 2017 ident: 15432_CR3 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.07.723 contributor: fullname: J Schläpfer – volume: 345 start-page: 340 year: 2016 ident: 15432_CR36 publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.082 contributor: fullname: MA Rahhal – ident: 15432_CR24 doi: 10.22489/CinC.2017.178-245 – volume: 12 start-page: 153 year: 1947 ident: 15432_CR27 publication-title: Psychometrika doi: 10.1007/BF02295996 contributor: fullname: Q McNemar – volume: 29 start-page: 82 year: 2012 ident: 15432_CR8 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 contributor: fullname: G Hinton – volume: 320 start-page: 1107 year: 2018 ident: 15432_CR9 publication-title: JAMA doi: 10.1001/jama.2018.11029 contributor: fullname: WW Stead – ident: 15432_CR35 doi: 10.1145/3219819.3219912 – volume: 335 start-page: 380 year: 2007 ident: 15432_CR17 publication-title: BMJ (Clin. Res. ed.) doi: 10.1136/bmj.39227.551713.AE contributor: fullname: J Mant – ident: 15432_CR45 doi: 10.1109/ICDM.2006.96 – volume: 90 start-page: 373 year: 2012 ident: 15432_CR22 publication-title: Bull. World Health Organ. doi: 10.2471/BLT.11.099408 contributor: fullname: MB Alkmim – volume: 415-416 start-page: 190 year: 2017 ident: 15432_CR34 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 contributor: fullname: UR Acharya – volume: 105 start-page: 20 year: 2019 ident: 15432_CR41 publication-title: Heart doi: 10.1136/heartjnl-2018-313398 contributor: fullname: BR Nascimento – ident: 15432_CR52 – volume: 20 start-page: 73 issue: Suppl year: 1987 ident: 15432_CR2 publication-title: J. Electrocardiol. contributor: fullname: JL Willems – volume: 52 start-page: 88 year: 2019 ident: 15432_CR30 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2018.11.013 contributor: fullname: SW Smith – volume: 325 start-page: 1767 year: 1991 ident: 15432_CR4 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199112193252503 contributor: fullname: JL Willems – volume: 24 start-page: 1342 year: 2018 ident: 15432_CR13 publication-title: Nat. Med. doi: 10.1038/s41591-018-0107-6 contributor: fullname: J De Fauw – ident: 15432_CR51 doi: 10.1007/978-3-642-15825-4_10 – volume: 9 start-page: 32089 year: 2016 ident: 15432_CR14 publication-title: Glob. Health Action doi: 10.3402/gha.v9.32089 contributor: fullname: EJ Beck – volume: 50 start-page: 776 year: 2017 ident: 15432_CR20 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2017.08.001 contributor: fullname: R Sassi – ident: 15432_CR53 doi: 10.1109/ICCV.2015.123 – volume: 18 start-page: 7 year: 2016 ident: 15432_CR18 publication-title: Acute Card. Care doi: 10.1080/17482941.2016.1234058 contributor: fullname: G Veronese – volume: 40 start-page: 385 year: 2007 ident: 15432_CR5 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2007.03.008 contributor: fullname: AP Shah – ident: 15432_CR7 – volume: 15 start-page: 1929 year: 2014 ident: 15432_CR50 publication-title: J. Mach. Learn. Res. contributor: fullname: N Srivastava – volume: 19 start-page: 4509 year: 2019 ident: 15432_CR32 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2896308 contributor: fullname: RK Tripathy – volume: 392 start-page: 1736 year: 2018 ident: 15432_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(18)32203-7 contributor: fullname: GA Roth – volume: 318 start-page: 2199 year: 2017 ident: 15432_CR12 publication-title: JAMA doi: 10.1001/jama.2017.14585 contributor: fullname: BE Bejnordi – ident: 15432_CR19 – volume: 43 start-page: 486 year: 2010 ident: 15432_CR40 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2010.07.007 contributor: fullname: S Luo – volume: 14 start-page: e0210103 year: 2019 ident: 15432_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0210103 contributor: fullname: S Goto – ident: 15432_CR44 doi: 10.1007/978-1-84882-778-3 – ident: 15432_CR48 doi: 10.1007/978-3-319-46493-0_38 – volume: 44 start-page: 1 year: 2017 ident: 15432_CR16 publication-title: Comput. Cardiol. contributor: fullname: GD Clifford – volume: 29 start-page: 29 year: 1996 ident: 15432_CR43 publication-title: J. Electrocardiol. doi: 10.1016/S0022-0736(96)80016-1 contributor: fullname: PW Macfarlane – volume: 10 start-page: e0118432 year: 2015 ident: 15432_CR54 publication-title: PLoS ONE doi: 10.1371/journal.pone.0118432 contributor: fullname: T Saito – volume: 5 start-page: 602 year: 1994 ident: 15432_CR31 publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.1994.tb01301.x contributor: fullname: D Cubanski – volume: 20 start-page: 37 year: 1960 ident: 15432_CR46 publication-title: Educ. Psychological Meas. doi: 10.1177/001316446002000104 contributor: fullname: J Cohen – volume: 320 start-page: 1101 year: 2018 ident: 15432_CR11 publication-title: JAMA doi: 10.1001/jama.2018.11100 contributor: fullname: G Hinton – ident: 15432_CR33 doi: 10.22489/CinC.2017.160-246 – volume: 29 start-page: 354 year: 1990 ident: 15432_CR42 publication-title: Methods Inf. Med. doi: 10.1055/s-0038-1634799 contributor: fullname: P Macfarlane – volume: 49 start-page: 1109 year: 2007 ident: 15432_CR47 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.01.024 contributor: fullname: P Kligfield – ident: 15432_CR23 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0000391844 |
Score | 2.7379026 |
Snippet | The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are... Abstract The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs)... The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present... |
SourceID | doaj swepub pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1760 |
SubjectTerms | 639/705/1042 692/4019 692/700/139/1449 Abnormalities Adolescent Adult Aged Aged, 80 and over Artificial neural networks Atrial Fibrillation - diagnosis Atrial Fibrillation - physiopathology Cardiology Cardiology - methods Clinical medicine Deep Learning Echocardiography EKG Electrocardiography Emergency medical services Humanities and Social Sciences Humans Middle Aged Model accuracy multidisciplinary Neural networks Neural Networks, Computer Physicians Reproducibility of Results Science Science (multidisciplinary) Sensitivity and Specificity Technology Training Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSkhcEF-FlIKMVE5gNYnteHzclpaqUjlR1Jtlxw6sVGWr7ubQf9-xnV2aguDCNbYT5409fk8ejwnZLytrVeU8kwE6JkADs631DJkt1FaoOqSDwudfm9MLcXYpL-9d9RVjwnJ64AzcQVNrFGllkCE2RYncBl5Zpz13Cpzvkvct9T0xlXww1yhdxHhKpuRwsBTJJ0S1hKyB10xMVqKUsP9PLPP3YMnNjumD7KJpRTp5Sp6MVJLO8i88I1uhf04e5cslb1-Qw9mwWqSErNTneLr5ki46ioyPVjW7QuPS46MvNEa-_6CW-hCuaUxvie_sc3D4S3Jxcvzt6JSNNyawFpnFijnExfHSSeHaRkrwEkCLVoWgnYDOCYers0MRgXgCouh551qFKgR8o0MLfIds94s-vCbUlrbBUpziXghpBZQSHO8aQAfR2U4V5OMaPXOdE2OYtKHNwWSsDWJtEtZGFOQwArypGZNapwdoajOa2vzL1AXZW5vHjDNtaZByKK1RBUNB3m-KcY7EjQ_bh8WQ6gB6LlR2BXmVrbnpCTo0FU8zFERN7Dzp6rSkn_9MebhVFTcdseWn9Yj41a2_QfEhj5rJFz7Pv88SGMNgRIXEAnb_B2RvyOM6DvkYaqT3yPbqZghvkUWt3Ls0Ye4AbEYW7Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IKtkLgg3qQUZCQ4gdUkduLxCe2WLRUSFUIU9WbZsdOuhJKluzn07xk72VQB1Gucx2Te4xnPEPI2zYyRmXWs8FAzAQqYqYxj6NlCboTMfTwo_PW0PDkTX86L82HDbTOUVe50YlTUrq3CHvkhmhapFEY78HH9m4WpUSG7OozQuEv2cowU0hnZWyxPv30fd1lC_3MQYjgtk3I43IioG0LUhN4Dz5mYWKTYuP9_3ua_RZNj5vSvLqPRMh0_JA8Gl5LOex54RO745jG51w-ZvH5CFvNu28bGrNT1dXWrDW1rip4fzXL2C4lMl0efaaiAv6CGOu_XNLS5xHc2fZH4U3J2vPxxdMKGyQmsQg9jy6xVzvLUFsJWZVGAKwCUqKT3ygqorbBopS0GE6kvIDPW8dpWEqMRcKXyFfBnZNa0jX9BqElNiauIXCdEYQSkBVhel4CKoja1TMj7Hfb0um-QoWNim4Puca0R1zriWouELAKCxztDc-t4ob260IOs6DJXGJcjaD5wS6ag8hyBVI5bCdbVCTnYkUcPErfRN_yRkDfjMspKSICYxrddvAdQg2GEl5DnPTVHSFCxyXCqISFyQucJqNOVZnUZ-3HLLCQf8ckPO464Aes2VLzruWbyhU-rn_OIjK7TIkMHA_Zv_9uX5H4emDkUE6kDMttedf4V-klb-3oQhj9beA-d priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VIiQuiPIZKJWR4ASBfDjx-IDQtrRUSHBiUW-WHTtlpSopuxuJ_nvGTrJV6IoT1zhORs8z9nvyeAzwKkm1FqmxceGwjjlKjHWlbUzMFjPNRebCQeGv38rTOf9yVpztwHjd0QDgaqu08_dJzZcX737_uvpIAf-hPzKO71c8hLsXQkQI8izmt-B2xkmp-1S-ge6HmTmXJGj4cHZme9fJ-hTK-G_jnjdTKDf7qH_VHA3r1Ml9uDcQTDbrPWIPdlzzAO70V05ePYTDWbduQ5lWZvssu8WKtTUjHsjSLL6gIWfHR5-Zz4c_Z5pZ5y6ZL3pJ32z6lPFHMD85_n50Gg_3KMQV8Y11bIy0Jk9MwU1VFgXaAlHySjgnDcfacENrtiFpkbgCU21sXptKkDZBW0pXYf4Ydpu2cU-B6USX1EqBbzkvNMekQJPXJdK0UetaRPBmRE9d9uUyVNjmzlH1WCvCWgWsFY_g0AO8edOXug4P2uW5GiJHlZkklU6mOe87qcTK5WSktLkRaGwdwf44PGp0H0VEREhJ2hgjeLlppsjx2yG6cW0X3kGaz0jvRfCkH82NJTTNCX_GIQIxGeeJqdOWZvEzVOcWqd-KpJ5vR4-4NutfULzuvWbyh0-LH7MARtcpnhLdwGf_A7LncDfzLu8TkOQ-7K6XnXtB3GptDkLA_AGqJx5y priority: 102 providerName: Scholars Portal – databaseName: Springer_OA刊 dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLdgCIkLGp_rNlCQ4AQRbZM2zvHtsTEhwYmh3aKkSeFJqG_aez3w3-OkfZ0KExLXpkktO47t2v4F4HVeWKsK53kVsOUSNXLbWM_Js8XSSlWG1Cj8-Ut9fiE_XVaXI0xO7IWZ5e8Fvt_IpMoxyCFjL0ou78I9ssEYy7eW9XL6nxKRzlHKsS_m9qkz25Mg-m_zK_8uj5xypH_giSYbdLYPD0fnkS0GaT-CO6F7DPeH6yR_PYGTRb9dJwhW5ocKutWGrVtGPh4rSv6TxMlOlx9ZrHX_zizzIVyxCGhJa3ZDOfhTuDg7_bo85-MdCbwhX2LLndPeidxV0jV1VaEnzmjZqBC0k9g66cgeOwob8lBhYZ0XrWsUxR3oax0aFM9gr1t34QCYzW1No6TUXsrKSswrdKKtkY6E1rYqg7c77pmrAQrDpBS2QDPw2hCvTeK1kRmcRAZPb0YY6_SApGtGrTB1qSkCJ9JC3BeFxiYIIlJ74RQ632ZwvBOPGXVrY8jJUFpT3IsZvJqGSStiqsN2Yd2nd5DOKorlMng-SHOihI4wFfsXMlAzOc9InY90qx8JeVsVMc1IM9_tdsQNWf9ixZth18y-8GH1bZGY0fdGFuRK4OH_LXsED8q4uWMZkT6Gve11H16Qh7R1L5Nq_AaFAgcH priority: 102 providerName: Springer Nature |
Title | Automatic diagnosis of the 12-lead ECG using a deep neural network |
URI | https://link.springer.com/article/10.1038/s41467-020-15432-4 https://www.ncbi.nlm.nih.gov/pubmed/32273514 https://www.proquest.com/docview/2387994028 https://search.proquest.com/docview/2388832966 https://pubmed.ncbi.nlm.nih.gov/PMC7145824 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411308 https://doaj.org/article/6298880e5e2a47198ce31ab9d3b78bdf |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2ISReEN8LjMpI8ARZ8-HE58c0tJsqdZqAob5ZduyMSltare0D_z1nJykUEA-8JFJsJae739m_i89nQt5GsVI81ibMLNQhAwGhqpQJkdlCohhPrN8oPLvIz6_YdJ7ND0jW74XxSfuVXpw2N7enzeKbz61c3VbDPk9seDkreexWe9jwkBwiQH8J0f3wmwqMWli3QSZKYbhmfjhwgRIShjQJ3WE8CGTustj35iNftv9vXPPPlMnduulvNUb9vDR5RB52hJIWreCPyYFtnpD77RGT35-SUbHdLH1ZVmrarLrFmi5riryPxkl4gyam4_KMuvz3a6qosXZFXZFLfGfTpog_I1eT8ZfyPOzOTQgr5BebUGthdBrpjOkqzzIwGYBgFbdWaAa1ZhrnaI2hRGQziJU2aa0rjrEImFzYCtLn5KhZNvaYUBWpHFvR0Q1jmWIQZaDTOgccJmpV84C877UnV215DOmXtVOQrdolql16tUsWkJFT8K6nK23tHyzvrmVnYJknAqNyFM06rMQCKpuikMKkmoM2dUBOevPIzt_WEokHFwJjYQjIm10zeopb_lCNXW59H8DxC-O7gLxorbmTpEdDQPienfdE3W9BcPpq3B0YA_KhR8RPsf6linctava-8HHxtfDK2G4li5FewMv_FugVeZA4yLssI3FCjjZ3W_saCdRGD9Bt5hyvMDkbkHtFMf08xftofHH5CZ-WeTnwvybwOmMw8O71A5lDHro |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74079,74369,74636 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SZQwEhwAqt52PH4hLalZYG2pxbtzbJjp6yEkqW7OfDvGTvZVAHUa5zHZDwznvGMvyHkbZoZIzPrmPBQMw4KmKmMY-jZQm64zH08KHxyWs7P-deFWAwbbuuhrHJrE6Ohdm0V9sj3cGmRSmG0Ax9Xv1joGhWyq0MLjZvkVsDhCh0M5EKOeywB_Rw4H87KpAXsrXm0DCFmQt-hyBmfrEcRtv9_vua_JZNj3vQvjNG4Lh3dJ_cGh5LOegl4QG745iG53beY_P2I7M-6TRthWanrq-qWa9rWFP0-muXsJ04xPTz4TEP9-wU11Hm_ogHkEt_Z9CXij8n50eHZwZwNfRNYhf7FhlmrnC1SK7itSiHACQDFK-m9shxqyy2u0RZDidQLyIx1RW0ribEIuFL5CoonZKdpG_-MUJOaEkdR0R3nwnBIBdiiLgHNRG1qmZD3W-7pVQ-PoWNauwDd81ojr3XkteYJ2Q8MHu8M0NbxQnt5oQdN0WWuMCpH0nyQlUxB5QskUrnCSrCuTsjudnr0oG9rfSUdCXkzDqOmhPSHaXzbxXsA7RfGdwl52s_mSAnKjgxnGhIiJ_M8IXU60ix_RDRumYXUIz75YSsRV2Rdx4p3vdRMvvBp-X0WmdF1mmfoXsDz6__2NbkzPzs51sdfTr-9IHfzINihrEjtkp3NZedfose0sa-iWvwBsskRKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiEBfEm0ABI8EJrM3DiccntH1sy6viQFFvlh3bZSWULN3Ngb9n7GRTBVCvcR6TeY9nPEPI6zTTWmTGstKBZxwkMF1ry9CzhVxzkbt4UPjLSXV8yj-elWdD_dN6KKvc6sSoqG1bhz3yGZoWISVGOzDzQ1nE14PF-9UvFiZIhUzrME7jOrmBVrEKHA6Lo3G_JXRCB86HczNpAbM1j1oixE_oRxQ54xPbFFv4_8_v_Ld8csyh_tVvNNqoxV1yZ3Au6bznhnvkmmvuk5v9uMnfD8jevNu0sUUrtX2F3XJNW0_RB6RZzn4iuenh_hENtfDnVFPr3IqGhpf4zqYvF39ITheH3_aP2TBDgdXoa2yYMdKaIjUlN3VVlmBLAMlr4Zw0HLzhBu21wbAidSVk2tjCm1pgXAK2kq6G4hHZadrGPSFUp7rCVRR6y3mpOaQlmMJXgCrDay8S8naLPbXqW2WomOIuQPW4VohrFXGteEL2AoLHO0Ob63ihvThXg9SoKpcYoSNoLvBNJqF2BQIpbWEEGOsTsrsljxpkb60uOSUhr8ZllJqQCtGNa7t4D6Auw1gvIY97ao6QoIoT4XxDQsSEzhNQpyvN8kfszC2ykIbEJ99tOeISrKtQ8abnmskXDpbf5xEZXad4hq4GPL36b1-SWygR6vOHk0_PyO088HWoMJK7ZGdz0bnn6DxtzIsoFX8A1aYVZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+diagnosis+of+the+12-lead+ECG+using+a+deep+neural+network&rft.jtitle=Nature+communications&rft.au=Ant%C3%B4nio+H.+Ribeiro&rft.au=Manoel+Horta+Ribeiro&rft.au=Gabriela+M.+M.+Paix%C3%A3o&rft.au=Derick+M.+Oliveira&rft.date=2020-04-09&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-020-15432-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6298880e5e2a47198ce31ab9d3b78bdf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |