PRoNTo: Pattern Recognition for Neuroimaging Toolbox

In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univ...

Full description

Saved in:
Bibliographic Details
Published inNeuroinformatics (Totowa, N.J.) Vol. 11; no. 3; pp. 319 - 337
Main Authors Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., Phillips, C., Richiardi, J., Mourão-Miranda, J.
Format Journal Article Web Resource
LanguageEnglish
Published Boston Springer US 01.07.2013
Springer
Springer Nature B.V
Humana Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The “Pattern Recognition for Neuroimaging Toolbox” (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.
AbstractList In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The "Pattern Recognition for Neuroimaging Toolbox" (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.[PUBLICATION ABSTRACT]
In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The “Pattern Recognition for Neuroimaging Toolbox” (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.
In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The "Pattern Recognition for Neuroimaging Toolbox" (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The "Pattern Recognition for Neuroimaging Toolbox" (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.
Author Chu, C.
Rondina, J. M.
Phillips, C.
Marquand, A. F.
Mourão-Miranda, J.
Schrouff, J.
Rosa, M. J.
Ashburner, J.
Richiardi, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Schrouff
  fullname: Schrouff, J.
  organization: Cyclotron Research Centre, University of Liège
– sequence: 2
  givenname: M. J.
  surname: Rosa
  fullname: Rosa, M. J.
  email: m.rosa@ucl.ac.uk
  organization: Department of Computer Science, Centre for Computational Statistics and Machine Learning, University College London
– sequence: 3
  givenname: J. M.
  surname: Rondina
  fullname: Rondina, J. M.
  organization: Department of Computer Science, Centre for Computational Statistics and Machine Learning, University College London, Neuroimaging Laboratory, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo
– sequence: 4
  givenname: A. F.
  surname: Marquand
  fullname: Marquand, A. F.
  organization: Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London
– sequence: 5
  givenname: C.
  surname: Chu
  fullname: Chu, C.
  organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH
– sequence: 6
  givenname: J.
  surname: Ashburner
  fullname: Ashburner, J.
  organization: Wellcome Trust Centre for NeuroImaging, University College London
– sequence: 7
  givenname: C.
  surname: Phillips
  fullname: Phillips, C.
  organization: Cyclotron Research Centre, University of Liège, Department of Electrical Engineering and Computer Science, University of Liège
– sequence: 8
  givenname: J.
  surname: Richiardi
  fullname: Richiardi, J.
  organization: Functional Imaging in Neuropsychiatric Disorders Lab, Department of Neurology and Neurological Sciences, Stanford University, Laboratory for Neurology & Imaging of Cognition, Departments of Neurosciences and Clinical Neurology, University of Geneva
– sequence: 9
  givenname: J.
  surname: Mourão-Miranda
  fullname: Mourão-Miranda, J.
  organization: Department of Computer Science, Centre for Computational Statistics and Machine Learning, University College London, Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27697667$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23417655$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFTEUhYNU7EV_gC8yIIIvo9m5TnwoSPEGpZZyfA6ZTGZMmZPUZKbovzfTOdZaUHxKIN_ae6-ddYj2QgwOoaeAXwHG8nUGggnUGGitQDY1PEAHwLmqMW7U3nKnqiZSwT46zPkSYyIkxo_QPqEMpOD8ALHzi3i2iW-qczNNLoXqwtk4BD_5GKo-purMzSn6rRl8GKpNjGMbvz9GD3szZvdkdx6hL-_fbU4-1qefP3w6eXtaW8HoVLdc2NZJTFjbMmFM54xQwEXXGdpTkA6D6ljfEGGls52lPebgQFjoG84Y0CN0vNa9mtut66wLUzKjvkplnvRDR-P1ny_Bf9VDvNZUEsI4KQXoWmD0bnA6ptbra3IjvLnP46CN1a3ThIhGAyuzLqqXu7YpfptdnvTWZ-vG0QQX51wwUFRSTMX_oBQEcFjMPL-HXsY5hbK_hSJYScIX6tldy7def_1YAV7sAJOtGftkgvX5NyeFkkLIwsHK2RRzTq6_RQDrJT16TY8u6dFLevTSXN7TWD-ZJQplu378p5Ksyly6hMGlO-b-KvoJiNDV6Q
CitedBy_id crossref_primary_10_1016_j_euroneuro_2019_09_095
crossref_primary_10_1080_17470919_2023_2242094
crossref_primary_10_1016_j_neulet_2022_136566
crossref_primary_10_1111_ene_13518
crossref_primary_10_1016_j_neuroimage_2017_06_039
crossref_primary_10_1590_1516_4446_2016_2083
crossref_primary_10_1007_s11055_023_01517_2
crossref_primary_10_1093_cercor_bhu189
crossref_primary_10_1016_j_biopsych_2015_06_009
crossref_primary_10_1016_j_heliyon_2024_e28559
crossref_primary_10_1038_nn_4458
crossref_primary_10_1089_brain_2015_0367
crossref_primary_10_2147_DMSO_S492099
crossref_primary_10_1002_brb3_1707
crossref_primary_10_1007_s12021_018_9384_y
crossref_primary_10_1002_ana_25746
crossref_primary_10_1016_j_neulet_2017_10_052
crossref_primary_10_1016_j_euroneuro_2020_03_008
crossref_primary_10_1016_j_jneumeth_2016_04_022
crossref_primary_10_1016_j_jalz_2016_06_2263
crossref_primary_10_1016_j_biotno_2024_08_001
crossref_primary_10_2139_ssrn_4071596
crossref_primary_10_1016_j_neuroimage_2014_12_036
crossref_primary_10_1177_14604582241296411
crossref_primary_10_1016_j_compbiomed_2022_105937
crossref_primary_10_1016_j_dib_2017_07_049
crossref_primary_10_1016_j_intell_2021_101527
crossref_primary_10_1162_jocn_a_02143
crossref_primary_10_1016_j_ejmp_2018_04_266
crossref_primary_10_1590_1516_4446_2019_0757
crossref_primary_10_1162_jocn_a_02260
crossref_primary_10_3389_fcell_2023_1174688
crossref_primary_10_1016_j_neuroimage_2015_03_072
crossref_primary_10_1016_j_bpsc_2023_07_003
crossref_primary_10_1038_s41398_024_02805_2
crossref_primary_10_1038_s41467_019_14166_2
crossref_primary_10_1148_radiol_2015150220
crossref_primary_10_1186_s12888_018_1678_y
crossref_primary_10_3389_fninf_2014_00088
crossref_primary_10_1016_j_nicl_2023_103530
crossref_primary_10_3389_fnhum_2022_935213
crossref_primary_10_1016_j_nicl_2020_102262
crossref_primary_10_1162_jocn_a_01851
crossref_primary_10_1016_j_jocn_2021_07_016
crossref_primary_10_1007_s11682_017_9790_z
crossref_primary_10_3389_fpsyt_2022_888150
crossref_primary_10_1016_j_cortex_2021_12_015
crossref_primary_10_1016_j_neuroimage_2016_08_066
crossref_primary_10_1093_cercor_bhw141
crossref_primary_10_1002_hbm_24484
crossref_primary_10_3389_fnhum_2021_754234
crossref_primary_10_3390_jpm12050704
crossref_primary_10_1038_s41562_020_0854_5
crossref_primary_10_1097_WNR_0000000000001962
crossref_primary_10_1002_jnr_25003
crossref_primary_10_1002_hipo_22683
crossref_primary_10_1111_ejn_14322
crossref_primary_10_1016_j_bbr_2022_114245
crossref_primary_10_1016_j_neuroimage_2024_120967
crossref_primary_10_3389_fpsyt_2016_00063
crossref_primary_10_1007_s12021_022_09613_3
crossref_primary_10_1016_j_neuroimage_2022_119655
crossref_primary_10_1177_1094428118802631
crossref_primary_10_3389_fnins_2020_00545
crossref_primary_10_1093_scan_nsac049
crossref_primary_10_1093_cercor_bhad290
crossref_primary_10_1016_j_neuroimage_2018_05_065
crossref_primary_10_1016_j_nicl_2025_103754
crossref_primary_10_1016_j_nicl_2017_04_027
crossref_primary_10_1016_j_neuroimage_2021_118145
crossref_primary_10_1523_JNEUROSCI_1783_20_2020
crossref_primary_10_1016_j_pediatrneurol_2022_05_005
crossref_primary_10_1155_2022_1853002
crossref_primary_10_1002_brb3_2441
crossref_primary_10_1038_tp_2016_213
crossref_primary_10_1002_hbm_23454
crossref_primary_10_3389_fnhum_2015_00486
crossref_primary_10_3389_fnagi_2024_1433426
crossref_primary_10_1007_s12021_017_9337_x
crossref_primary_10_1038_s41598_017_05592_7
crossref_primary_10_1016_j_euroneuro_2020_09_189
crossref_primary_10_1016_j_neuroimage_2018_09_052
crossref_primary_10_1002_hbm_26284
crossref_primary_10_1017_S0033291718002866
crossref_primary_10_1016_j_neuroscience_2024_08_013
crossref_primary_10_1016_j_jneumeth_2015_11_028
crossref_primary_10_1016_j_neuroimage_2019_05_030
crossref_primary_10_1007_s00234_021_02885_7
crossref_primary_10_1111_acps_12752
crossref_primary_10_1016_j_bbr_2013_11_003
crossref_primary_10_1016_j_nicl_2018_06_023
crossref_primary_10_2147_JPR_S332224
crossref_primary_10_1080_17470919_2015_1120239
crossref_primary_10_1016_j_brat_2017_03_014
crossref_primary_10_1007_s00234_019_02321_x
crossref_primary_10_1093_cercor_bhac019
crossref_primary_10_1186_s42466_020_00092_y
crossref_primary_10_1148_radiol_2016152703
crossref_primary_10_1111_bdi_12446
crossref_primary_10_1523_JNEUROSCI_1539_18_2018
crossref_primary_10_1007_s11517_024_03080_5
crossref_primary_10_1016_j_neuroimage_2022_119396
crossref_primary_10_1016_j_parkreldis_2019_10_020
crossref_primary_10_1017_pen_2021_2
crossref_primary_10_1007_s00429_023_02668_1
crossref_primary_10_1176_appi_ajp_2020_20070979
crossref_primary_10_1007_s12021_017_9347_8
crossref_primary_10_1523_ENEURO_0107_18_2018
crossref_primary_10_1038_s41598_020_59433_1
crossref_primary_10_3389_fncom_2022_837093
crossref_primary_10_1097_WNR_0000000000001777
crossref_primary_10_1007_s11682_023_00790_6
crossref_primary_10_5582_bst_2019_01002
crossref_primary_10_1016_j_brainres_2019_03_002
crossref_primary_10_1016_j_cortex_2015_05_003
crossref_primary_10_1016_j_neuropsychologia_2024_108899
crossref_primary_10_3389_fimmu_2021_660554
crossref_primary_10_1016_j_nicl_2014_09_009
crossref_primary_10_1192_bjp_2018_255
crossref_primary_10_1016_j_pnpbp_2024_111180
crossref_primary_10_1016_j_neuroimage_2018_06_001
crossref_primary_10_1073_pnas_1608434113
crossref_primary_10_1093_cercor_bhae209
crossref_primary_10_3389_fnins_2022_1046752
crossref_primary_10_1016_j_neuropsychologia_2017_11_025
crossref_primary_10_1016_j_neurobiolaging_2019_11_005
crossref_primary_10_1111_ene_15119
crossref_primary_10_1016_j_brainresbull_2023_110794
crossref_primary_10_1016_j_nicl_2019_101664
crossref_primary_10_1016_j_pscychresns_2021_111270
crossref_primary_10_1080_17470919_2018_1472139
crossref_primary_10_1111_head_14429
crossref_primary_10_1016_j_euroneuro_2021_10_692
crossref_primary_10_1016_j_neuroscience_2020_01_049
crossref_primary_10_1097_WNR_0000000000002056
crossref_primary_10_1002_hbm_22939
crossref_primary_10_3389_fnins_2024_1429084
crossref_primary_10_1007_s12021_024_09712_3
crossref_primary_10_1038_tp_2015_22
crossref_primary_10_1007_s00234_021_02706_x
crossref_primary_10_1162_jocn_a_00819
crossref_primary_10_1093_brain_aww005
crossref_primary_10_1109_TBDATA_2017_2734883
crossref_primary_10_1016_j_jad_2020_05_005
crossref_primary_10_3389_fnins_2023_1132607
crossref_primary_10_1002_hbm_24432
crossref_primary_10_1016_j_jaac_2013_12_024
crossref_primary_10_1016_j_nicl_2019_101675
crossref_primary_10_3389_fpsyt_2022_907978
crossref_primary_10_1007_s12021_019_09447_6
crossref_primary_10_3389_fnhum_2017_00380
crossref_primary_10_1162_jocn_a_01112
crossref_primary_10_1016_j_nicl_2014_04_004
crossref_primary_10_1093_schbul_sby026
crossref_primary_10_1007_s11571_021_09765_z
crossref_primary_10_1111_desc_13114
crossref_primary_10_1016_j_heliyon_2024_e34910
crossref_primary_10_31857_S0044467723020065
crossref_primary_10_1097_QAI_0000000000001687
crossref_primary_10_1177_03331024231222637
crossref_primary_10_3389_fneur_2022_847650
crossref_primary_10_1093_brain_awaa067
crossref_primary_10_1016_j_jad_2022_12_070
crossref_primary_10_3389_fnins_2021_660365
crossref_primary_10_1371_journal_pone_0069290
crossref_primary_10_1016_j_dcn_2017_03_005
crossref_primary_10_1007_s11682_018_9905_1
crossref_primary_10_1038_s41598_017_03564_5
crossref_primary_10_1126_sciadv_1603309
crossref_primary_10_3389_fnhum_2022_917769
crossref_primary_10_3892_br_2024_1792
crossref_primary_10_1186_s12888_021_03414_9
crossref_primary_10_1186_s40345_023_00292_w
crossref_primary_10_1111_psyp_13472
crossref_primary_10_1016_j_heliyon_2024_e30008
crossref_primary_10_1073_pnas_1706100115
crossref_primary_10_1556_2006_2020_00012
crossref_primary_10_1016_j_brainres_2024_148985
crossref_primary_10_1364_BOE_426731
crossref_primary_10_1093_brain_awz258
crossref_primary_10_3389_fncom_2015_00137
crossref_primary_10_1002_hbm_24979
crossref_primary_10_1007_s10548_024_01095_7
crossref_primary_10_1016_j_ynstr_2019_100195
crossref_primary_10_1016_j_jpsychires_2024_01_024
crossref_primary_10_1002_brb3_633
crossref_primary_10_1111_psyp_13921
crossref_primary_10_1017_S0033291720003852
crossref_primary_10_1111_jon_13012
crossref_primary_10_3389_fnins_2020_00289
crossref_primary_10_1016_j_biopsych_2014_11_018
crossref_primary_10_1016_j_neuroimage_2021_118329
crossref_primary_10_1007_s00234_024_03368_1
crossref_primary_10_1007_s11682_019_00177_6
crossref_primary_10_1007_s00234_022_02983_0
crossref_primary_10_1162_jocn_a_00928
crossref_primary_10_1002_hbm_24727
crossref_primary_10_1002_hbm_23635
crossref_primary_10_1152_jn_00559_2016
crossref_primary_10_1007_s00429_022_02568_w
crossref_primary_10_3389_fneur_2022_819055
crossref_primary_10_1186_s12883_015_0514_y
crossref_primary_10_1016_j_nicl_2017_10_026
crossref_primary_10_1016_j_cortex_2014_09_002
crossref_primary_10_1186_s13063_020_04743_y
crossref_primary_10_1186_s12888_021_03040_5
crossref_primary_10_1111_ejn_16220
crossref_primary_10_3389_fnins_2023_1143239
crossref_primary_10_1016_j_neuropsychologia_2020_107410
crossref_primary_10_3390_math11051229
crossref_primary_10_1016_j_neuroimage_2023_120408
crossref_primary_10_1016_j_bpsc_2021_08_007
crossref_primary_10_3389_fnhum_2023_1202103
crossref_primary_10_1093_cercor_bhac235
crossref_primary_10_1016_j_scib_2024_05_049
crossref_primary_10_1002_hbm_24872
crossref_primary_10_1016_j_neuroscience_2018_10_036
crossref_primary_10_3389_fncom_2016_00021
crossref_primary_10_1109_TNSRE_2020_3007324
crossref_primary_10_1016_j_neuroimage_2016_02_009
crossref_primary_10_1016_j_neuroimage_2019_05_082
crossref_primary_10_1007_s12021_017_9346_9
crossref_primary_10_1111_epi_13135
crossref_primary_10_12659_MSM_894566
crossref_primary_10_3389_fpsyg_2018_01117
crossref_primary_10_1093_schbul_sbac094
crossref_primary_10_3389_fnhum_2022_910669
crossref_primary_10_3389_fnagi_2017_00326
crossref_primary_10_1016_j_cortex_2022_07_014
crossref_primary_10_1186_s12888_023_05220_x
crossref_primary_10_1002_hbm_25954
crossref_primary_10_1177_13872877241296130
crossref_primary_10_3390_s23094199
crossref_primary_10_1002_hbm_25838
crossref_primary_10_1093_cercor_bhab279
crossref_primary_10_1093_brain_awaa380
crossref_primary_10_3389_fninf_2017_00023
crossref_primary_10_1007_s11548_018_1859_7
crossref_primary_10_1016_j_cortex_2018_11_001
crossref_primary_10_1038_ncomms15495
crossref_primary_10_1007_s11682_021_00574_w
crossref_primary_10_1111_pcn_13648
crossref_primary_10_1016_j_nicl_2016_06_020
crossref_primary_10_1007_s11682_017_9697_8
crossref_primary_10_1016_j_neuroimage_2025_121081
crossref_primary_10_1016_j_neuroimage_2013_05_036
crossref_primary_10_1016_j_neuroimage_2020_117149
crossref_primary_10_1093_texcom_tgaa011
crossref_primary_10_1186_s42492_020_00062_w
crossref_primary_10_1016_j_nicl_2018_10_008
crossref_primary_10_1097_j_pain_0000000000001312
crossref_primary_10_1007_s12021_013_9204_3
crossref_primary_10_1016_j_euroneuro_2019_12_068
crossref_primary_10_1016_j_nicl_2024_103717
crossref_primary_10_1016_j_neuroimage_2021_118511
crossref_primary_10_3389_fnhum_2019_00289
crossref_primary_10_1016_j_psyneuen_2015_01_016
crossref_primary_10_1007_s00702_016_1673_8
crossref_primary_10_1016_j_jaac_2019_05_035
crossref_primary_10_1002_hbm_25589
crossref_primary_10_3390_app11073205
crossref_primary_10_3233_JAD_160327
crossref_primary_10_1016_j_neuroimage_2018_06_076
crossref_primary_10_1016_j_pscychresns_2017_03_003
crossref_primary_10_1002_hbm_25583
crossref_primary_10_1097_WNR_0000000000001813
crossref_primary_10_1016_j_cmpb_2021_106549
crossref_primary_10_1093_scan_nsab010
crossref_primary_10_1016_j_neuroimage_2015_12_050
crossref_primary_10_1016_j_nicl_2018_10_011
crossref_primary_10_1371_journal_pone_0063660
crossref_primary_10_1371_journal_pone_0254338
crossref_primary_10_1007_s12021_018_9375_z
crossref_primary_10_18632_aging_102901
crossref_primary_10_1162_jocn_a_01772
crossref_primary_10_1016_j_neuropsychologia_2022_108377
crossref_primary_10_1097_j_pain_0000000000001545
crossref_primary_10_1007_s12021_021_09519_6
crossref_primary_10_1016_j_neuroimage_2019_01_006
crossref_primary_10_1038_s41467_020_14432_8
crossref_primary_10_1002_hbm_25133
crossref_primary_10_1016_j_cortex_2019_01_018
crossref_primary_10_3389_fnhum_2022_773593
crossref_primary_10_1016_j_bpsc_2024_09_009
crossref_primary_10_1016_j_eplepsyres_2017_03_007
crossref_primary_10_3389_fonc_2021_687127
crossref_primary_10_2147_OPTH_S451872
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1016_j_nicl_2019_102112
crossref_primary_10_3389_fnins_2023_1131247
crossref_primary_10_1038_s41598_024_81238_9
crossref_primary_10_1016_j_neuropsychologia_2021_107893
crossref_primary_10_1038_s41467_022_33884_8
crossref_primary_10_1017_S0033291716000878
crossref_primary_10_3389_fnhum_2022_935642
crossref_primary_10_1016_j_bpsc_2016_05_001
crossref_primary_10_1162_jocn_a_01860
crossref_primary_10_1093_cercor_bhz290
crossref_primary_10_1371_journal_pone_0168315
crossref_primary_10_1016_j_pscychresns_2016_11_005
crossref_primary_10_1016_j_jad_2015_05_034
crossref_primary_10_1002_hbm_23747
crossref_primary_10_3389_fninf_2016_00027
crossref_primary_10_1016_j_neuropsychologia_2024_108949
crossref_primary_10_3389_fpsyt_2018_00524
crossref_primary_10_1016_j_jpsychires_2020_11_014
crossref_primary_10_1111_jcpp_13545
crossref_primary_10_1016_j_nicl_2020_102439
crossref_primary_10_1093_scan_nsab035
crossref_primary_10_2478_joeb_2024_0006
crossref_primary_10_1016_j_jad_2022_08_078
crossref_primary_10_1162_jocn_a_01195
crossref_primary_10_3389_fpsyt_2017_00099
crossref_primary_10_1038_s41380_022_01728_y
crossref_primary_10_1016_j_neurobiolaging_2021_01_009
crossref_primary_10_1002_hbe2_247
crossref_primary_10_1177_0271678X231197273
crossref_primary_10_1556_2006_2020_00065
crossref_primary_10_3389_fnins_2022_989589
crossref_primary_10_1002_ana_24367
crossref_primary_10_3389_fnhum_2014_00692
Cites_doi 10.1093/brain/awm319
10.1371/journal.pone.0001394
10.1016/j.neuroimage.2010.11.004
10.1007/s12021-008-9041-y
10.1006/nimg.2002.1300
10.1371/journal.pone.0029482
10.1016/j.neuroimage.2010.05.083
10.1016/j.neuroimage.2005.02.018
10.1038/nn1445
10.1016/j.neuroimage.2010.06.013
10.1016/j.neuroimage.2008.06.037
10.1126/science.1063736
10.1016/j.ejphar.2006.06.023
10.1093/cercor/12.2.178
10.1016/j.neuroimage.2009.10.072
10.1016/j.neuroimage.2011.11.066
10.1016/j.neuroimage.2011.06.042
10.1016/j.neuroimage.2010.01.005
10.1097/00001756-199510020-00014
10.1038/nn1444
10.1371/journal.pone.0035860
10.1016/j.neuroimage.2006.08.016
10.1162/0898929053467550
10.1006/nimg.2000.0582
10.1016/S0896-6273(02)00877-2
10.1016/j.neuroimage.2010.03.058
10.1016/S1053-8119(03)00049-1
10.1016/j.cub.2006.11.072
10.1016/j.neuroimage.2005.01.048
10.1016/j.neuroimage.2011.11.002
10.1111/j.1467-9868.2005.00503.x
10.1016/j.neuroimage.2004.05.020
10.3389/neuro.11.003.2009
10.1016/j.patcog.2011.09.011
10.1111/j.1399-5618.2012.01019.x
10.1126/science.1117645
10.1016/j.cub.2010.01.053
10.1073/pnas.0600244103
10.1016/j.neuroimage.2008.12.008
10.1016/j.neuroimage.2010.12.049
10.1038/nrn1931
10.1016/j.neuroimage.2008.11.007
10.1126/science.1164318
10.1017/CBO9780511809682
10.1016/j.neuroimage.2012.05.078
10.1007/978-3-642-15711-0_66
10.1016/j.neuroimage.2007.09.073
10.1109/PRNI.2012.19
ContentType Journal Article
Web Resource
Contributor Institute of Psychology, King's College, London
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Wellcome Trust, London
Computer Science Department, University College London
Ecole Polytechnique Fédérale de Lausanne
Contributor_xml – sequence: 1
  fullname: Computer Science Department, University College London
– sequence: 2
  fullname: Institute of Psychology, King's College, London
– sequence: 3
  fullname: Wellcome Trust, London
– sequence: 4
  fullname: GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
– sequence: 5
  fullname: Ecole Polytechnique Fédérale de Lausanne
Copyright The Author(s) 2013
2015 INIST-CNRS
Springer Science+Business Media New York 2013
Copyright_xml – notice: The Author(s) 2013
– notice: 2015 INIST-CNRS
– notice: Springer Science+Business Media New York 2013
DBID C6C
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
7QO
8FD
FR3
P64
Q33
5PM
DOI 10.1007/s12021-013-9178-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList ProQuest One Psychology



MEDLINE
MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Applied Sciences
EISSN 1559-0089
EndPage 337
ExternalDocumentID PMC3722452
oai_orbi_ulg_ac_be_2268_140242
3027588541
23417655
27697667
10_1007_s12021_013_9178_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 091593
– fundername: Wellcome Trust
  grantid: WT088641/Z/09/Z
– fundername: Wellcome Trust
  grantid: WT086565/Z/08/Z
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5VS
67N
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z83
Z88
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
IQODW
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
7QO
8FD
FR3
P64
Q33
5PM
ID FETCH-LOGICAL-c643t-b56cbe7024bb46aadea69156dda3f317e019d4f826c7ecdc3f051e16c1f854413
IEDL.DBID C6C
ISSN 1539-2791
1559-0089
IngestDate Thu Aug 21 18:04:02 EDT 2025
Fri Jul 25 15:36:45 EDT 2025
Mon Jul 21 11:59:21 EDT 2025
Fri Jul 11 09:36:31 EDT 2025
Sat Aug 23 12:47:44 EDT 2025
Mon Jul 21 05:30:10 EDT 2025
Wed Apr 02 07:25:12 EDT 2025
Tue Jul 01 04:24:51 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
Fri Feb 21 02:26:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Image analysis
Neuroimaging software
Pattern recognition
MVPA
Machine learning
Computer vision
Data analysis
Statistical analysis
Software development
Image processing
Cognition
Multivariate analysis
Modeling
Open source software
Encephalon
Statistical data
Cognitive theory
Neuroscience
Medical imagery
Pattern analysis
Artificial intelligence
Medical application
Language English
License http://creativecommons.org/licenses/by-nc/2.0
CC BY 4.0
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c643t-b56cbe7024bb46aadea69156dda3f317e019d4f826c7ecdc3f051e16c1f854413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84881091929
PASCAL2 Harvest Project
OpenAccessLink https://doi.org/10.1007/s12021-013-9178-1
PMID 23417655
PQID 1412097251
PQPubID 54206
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3722452
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_140242
proquest_miscellaneous_1419373036
proquest_miscellaneous_1413161511
proquest_journals_1412097251
pubmed_primary_23417655
pascalfrancis_primary_27697667
crossref_primary_10_1007_s12021_013_9178_1
crossref_citationtrail_10_1007_s12021_013_9178_1
springer_journals_10_1007_s12021_013_9178_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York, NY
– name: United States
– name: Totowa
PublicationTitle Neuroinformatics (Totowa, N.J.)
PublicationTitleAbbrev Neuroinform
PublicationTitleAlternate Neuroinformatics
PublicationYear 2013
Publisher Springer US
Springer
Springer Nature B.V
Humana Press
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Humana Press
References Zou (CR60) 2005; 67
Ashburner, Friston (CR1) 2000; 11
Friston (CR16) 2007
Henson, Shallice, Gorno-Tempini, Dolan (CR27) 2002; 12
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (CR32) 2008; 131
Ashburner, Friston (CR4) 2011; 55
Singh, Fletcher, Preston, Ha, King, Marron, Wiener, Joshi (CR56) 2010
Cox, Savoy (CR11) 2003; 19
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (CR12) 2011; 56
Pereira, Mitchell, Botvinick (CR45) 2009; 45
Formisiano, De Martino, Bonte, Goebel (CR14) 2008; 322
Haynes, Sakai, Rees, Gilbert, Frith, Passingham (CR26) 2007; 17
Kapur, Craik, Brown, Houle, Tulving (CR31) 1995; 6
Shinkareva, Mason, Malave, Wang, Mitchell (CR55) 2008; 3
Mourao-Miranda, Almeida, Hassel, de Oliveira, Versace, Marquand, Sato, Brammer, Phillips (CR41) 2012; 14
Schrouff, Kussé, Wehenkel, Maquet, Phillips (CR53) 2012; 7
CR5
Hanson, Matsuka, Haxby (CR21) 2004; 23
Ashburner, Friston (CR3) 2009; 45
CR48
Polyn, Natu, Cohen, Norman (CR47) 2005; 310
Lemm, Blankertz, Dickhaus, Müller (CR37) 2010; 56
Tipping (CR58) 2001; 1
Kamitani, Tong (CR30) 2005; 8
Chadwick, Hassabis, Weiskopf, Maguire (CR8) 2010; 20
Hanke, Halchenko, Sederberg, Olivetti, Fründ, Rieger, Herrmann, Haxby, Hanson, Pollmann (CR20) 2009b; 3
Haynes, Rees (CR24) 2005; 8
Phillips, Bruno, Maquet, Boly, Noirhomme, Schnakers, Vanhaudenhuyse, Bonjean, Hustinx, Moonen, Luxen, Laureys (CR46) 2011; 56
Chu, Hsu, Chou, Bandettini, Lin (CR10) 2012; 60
Mourao-Miranda, Hardoon, Hahn, Marquand, Williams, Shawe-Taylor, Brammer (CR40) 2011; 58
Ashburner, Friston (CR2) 2005; 26
Kloppel, Abdulkadir, Jack, Koutsouleris, Mourao-Miranda, Vemuri (CR33) 2011; 61
LaConte, Strother, Cherkassky, Hu (CR36) 2005; 26
CR17
Franke, Ziegler, Klöppel, Gaser (CR15) 2010; 50
CR59
Guyon, Elisseeff (CR18) 2007; 3
Spiridon, Kanwisher (CR57) 2002; 35
CR54
Borroni, Di Luca, Padovani (CR6) 2006; 545
LaConte, Anderson, Muley, Ashe, Frutiger, Rehm, Hansen, Yacoub, Hu, Rottenberg, Strother (CR35) 2003; 18
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR44) 2011; 999888
CR52
CR51
Chu, Ni, Tan, Saunders, Ashburner (CR9) 2011; 56
CR50
De Martino, Valente, Staeren, Ashburner, Goebel, Formisano (CR13) 2008; 43
Jaakkola, Haussler (CR28) 1998; 11
Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (CR19) 2009a; 7
Rasmussen, Hansen, Madsen, Churchill, Strother (CR49) 2012; 45
Mourao-Miranda, Reynaud, McGlone, Calvert, Brammer (CR39) 2006; 33
CR29
Haxby, Gobbini, Furev, Ishai, Schouten, Pietrini (CR23) 2001; 293
Burges (CR7) 1998
O’Toole, Jiang, Abdi, Haxby (CR43) 2005; 17
Mourão-Miranda, Oliveira, Ladouceur, Marquand, Brammer (CR42) 2012; 7
CR22
Marquand, Howard, Brammer, Chu, Coen, Mourao-Miranda (CR38) 2010; 49
Haynes, Rees (CR25) 2006; 7
Kriegeskorte, Goebel, Bandettini (CR34) 2006; 103
M Spiridon (9178_CR57) 2002; 35
R Cuingnet (9178_CR12) 2011; 56
J Mourão-Miranda (9178_CR42) 2012; 7
SM Polyn (9178_CR47) 2005; 310
M Hanke (9178_CR20) 2009b; 3
9178_CR48
F Martino De (9178_CR13) 2008; 43
KJ Friston (9178_CR16) 2007
MJ Chadwick (9178_CR8) 2010; 20
N Singh (9178_CR56) 2010
E Formisiano (9178_CR14) 2008; 322
C Chu (9178_CR10) 2012; 60
J Ashburner (9178_CR1) 2000; 11
B Borroni (9178_CR6) 2006; 545
T Jaakkola (9178_CR28) 1998; 11
AJ O’Toole (9178_CR43) 2005; 17
Y Kamitani (9178_CR30) 2005; 8
9178_CR5
S Klöppel (9178_CR32) 2008; 131
C Chu (9178_CR9) 2011; 56
J Mourao-Miranda (9178_CR41) 2012; 14
F Pereira (9178_CR45) 2009; 45
SV Shinkareva (9178_CR55) 2008; 3
J Haxby (9178_CR23) 2001; 293
9178_CR22
J Mourao-Miranda (9178_CR39) 2006; 33
M Hanke (9178_CR19) 2009a; 7
CL Phillips (9178_CR46) 2011; 56
ME Tipping (9178_CR58) 2001; 1
K Franke (9178_CR15) 2010; 50
J Haynes (9178_CR26) 2007; 17
9178_CR29
RNA Henson (9178_CR27) 2002; 12
CJC Burges (9178_CR7) 1998
PM Rasmussen (9178_CR49) 2012; 45
SJ Hanson (9178_CR21) 2004; 23
J Ashburner (9178_CR4) 2011; 55
DD Cox (9178_CR11) 2003; 19
I Guyon (9178_CR18) 2007; 3
S LaConte (9178_CR36) 2005; 26
A Marquand (9178_CR38) 2010; 49
J Haynes (9178_CR25) 2006; 7
J Haynes (9178_CR24) 2005; 8
9178_CR54
J Mourao-Miranda (9178_CR40) 2011; 58
9178_CR52
J Ashburner (9178_CR2) 2005; 26
9178_CR50
9178_CR51
9178_CR17
S Kapur (9178_CR31) 1995; 6
S Lemm (9178_CR37) 2010; 56
9178_CR59
N Kriegeskorte (9178_CR34) 2006; 103
F Pedregosa (9178_CR44) 2011; 999888
J Schrouff (9178_CR53) 2012; 7
J Ashburner (9178_CR3) 2009; 45
TH Zou (9178_CR60) 2005; 67
S Kloppel (9178_CR33) 2011; 61
S LaConte (9178_CR35) 2003; 18
References_xml – volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: CR58
  article-title: Sparse bayesian learning and the relevance vector machine
  publication-title: Journal of Machine Learning Research
– ident: CR22
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: CR32
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– ident: CR51
– volume: 3
  start-page: e1394
  issue: 1
  year: 2008
  ident: CR55
  article-title: Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001394
– volume: 56
  start-page: 387
  year: 2010
  end-page: 399
  ident: CR37
  article-title: Introduction to machine learning for brain imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 7
  start-page: 37
  year: 2009a
  end-page: 53
  ident: CR19
  article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– volume: 18
  start-page: 10
  issue: 1
  year: 2003
  end-page: 27
  ident: CR35
  article-title: The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1300
– volume: 7
  start-page: e29482
  issue: 2
  year: 2012
  ident: CR42
  article-title: Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029482
– ident: CR29
– ident: CR54
– volume: 56
  start-page: 797
  issue: 2
  year: 2011
  end-page: 808
  ident: CR46
  article-title: “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.083
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: CR2
  article-title: Unified segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– year: 2010
  ident: CR56
  publication-title: Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures
– volume: 8
  start-page: 686
  year: 2005
  end-page: 691
  ident: CR24
  article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1445
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  end-page: 781
  ident: CR12
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 43
  start-page: 44
  year: 2008
  end-page: 58
  ident: CR13
  article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.06.037
– volume: 293
  start-page: 2425
  issue: 5539
  year: 2001
  end-page: 2430
  ident: CR23
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 545
  start-page: 73
  issue: 1
  year: 2006
  end-page: 80
  ident: CR6
  article-title: Predicting Alzheimer dementia in mild cognitive impairment patients. Are biomarkers useful?
  publication-title: European Journal of Pharmacology
  doi: 10.1016/j.ejphar.2006.06.023
– volume: 12
  start-page: 178
  year: 2002
  end-page: 186
  ident: CR27
  article-title: Face repetition effects in implicit and explicit memory tests as measured by fMRI
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/12.2.178
– volume: 49
  start-page: 2178
  issue: 3
  year: 2010
  end-page: 2189
  ident: CR38
  article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.072
– ident: CR50
– volume: 60
  start-page: 59
  issue: 1
  year: 2012
  end-page: 70
  ident: CR10
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.066
– volume: 58
  start-page: 793
  issue: 3
  year: 2011
  end-page: 804
  ident: CR40
  article-title: Patient classification as an outlier detection problem: an application of the one-class support vector machine
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.042
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: CR15
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 3
  start-page: 1157
  year: 2007
  end-page: 1182
  ident: CR18
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– year: 1998
  ident: CR7
  publication-title: A tutorial on support vector machines for pattern recognition
– ident: CR5
– volume: 6
  start-page: 1880
  year: 1995
  end-page: 1884
  ident: CR31
  article-title: Functional role of the prefrontal cortex in memory retrieval: a PET study
  publication-title: Neuroreport
  doi: 10.1097/00001756-199510020-00014
– volume: 8
  start-page: 679
  year: 2005
  end-page: 685
  ident: CR30
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1444
– volume: 7
  start-page: e35860
  issue: 4
  year: 2012
  ident: CR53
  article-title: Decoding semi-constrained brain activity from fMRI using support vector machines and gaussian processes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035860
– volume: 33
  start-page: 1055
  issue: 4
  year: 2006
  end-page: 1065
  ident: CR39
  article-title: The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.016
– volume: 17
  start-page: 580
  issue: 4
  year: 2005
  end-page: 590
  ident: CR43
  article-title: Partially distributed representations of objects and faces in ventral temporal cortex
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/0898929053467550
– volume: 11
  start-page: 805
  issue: 6
  year: 2000
  end-page: 821
  ident: CR1
  article-title: Voxel-based morphometry—The methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– volume: 35
  start-page: 1157
  year: 2002
  end-page: 1165
  ident: CR57
  article-title: How distributed is visual category information in human occipito-temporal cortex? An fMRI study
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00877-2
– volume: 56
  start-page: 662
  year: 2011
  end-page: 673
  ident: CR9
  article-title: Kernel regression for fMRI pattern prediction
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.058
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: CR11
  article-title: Functional magnetic resonance imaging (fMRI) ‘brain reading’: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 17
  start-page: 323
  issue: 4
  year: 2007
  end-page: 328
  ident: CR26
  article-title: Reading hidden intentions in the human brain
  publication-title: Current Biology
  doi: 10.1016/j.cub.2006.11.072
– volume: 26
  start-page: 317
  year: 2005
  end-page: 329
  ident: CR36
  article-title: Support vector machines for temporal classification of block design fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.048
– volume: 11
  start-page: 487
  year: 1998
  end-page: 493
  ident: CR28
  article-title: Exploiting generative models in discriminative classifiers
  publication-title: In Advances in Neural Information Processing Systems
– volume: 61
  start-page: 457
  issue: 2
  year: 2011
  end-page: 463
  ident: CR33
  article-title: Diagnostic neuroimaging across diseases
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR60
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 999888
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR44
  article-title: Scikit-learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: CR48
– volume: 23
  start-page: 156
  issue: 1
  year: 2004
  end-page: 166
  ident: CR21
  article-title: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.05.020
– year: 2007
  ident: CR16
  publication-title: Statistical parametric mapping: the analysis of functional brain images
– volume: 3
  start-page: 3
  year: 2009b
  ident: CR20
  article-title: PyMVPA: a unifying approach to the analysis of neuroscientific data
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.003.2009
– ident: CR52
– ident: CR17
– volume: 45
  start-page: 2085
  year: 2012
  end-page: 2100
  ident: CR49
  article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.09.011
– volume: 14
  start-page: 451
  issue: 4
  year: 2012
  end-page: 460
  ident: CR41
  article-title: Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression
  publication-title: Bipolar Disorders
  doi: 10.1111/j.1399-5618.2012.01019.x
– volume: 310
  start-page: 1963
  issue: 5756
  year: 2005
  end-page: 1966
  ident: CR47
  article-title: Category-specific cortical activity precedes retrieval during memory search
  publication-title: Science
  doi: 10.1126/science.1117645
– volume: 20
  start-page: 544
  issue: 6
  year: 2010
  end-page: 547
  ident: CR8
  article-title: Decoding individual episodic memory traces in the human hippocampus
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.01.053
– volume: 103
  start-page: 3863
  year: 2006
  end-page: 3868
  ident: CR34
  article-title: Information-based functional brain mapping
  publication-title: PNAS
  doi: 10.1073/pnas.0600244103
– volume: 45
  start-page: 333
  year: 2009
  end-page: 341
  ident: CR3
  article-title: Computing average shaped tissue probability templates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.008
– ident: CR59
– volume: 55
  start-page: 954
  year: 2011
  end-page: 967
  ident: CR4
  article-title: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.049
– volume: 7
  start-page: 523
  year: 2006
  end-page: 534
  ident: CR25
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1931
– volume: 45
  start-page: 199
  year: 2009
  end-page: 209
  ident: CR45
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 322
  start-page: 970
  issue: 5903
  year: 2008
  end-page: 973
  ident: CR14
  article-title: “Who” is saying “What”? brain-based decoding of human voice and speech
  publication-title: Science
  doi: 10.1126/science.1164318
– volume: 45
  start-page: 2085
  year: 2012
  ident: 9178_CR49
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.09.011
– volume: 7
  start-page: 37
  year: 2009a
  ident: 9178_CR19
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– ident: 9178_CR51
  doi: 10.1017/CBO9780511809682
– volume: 545
  start-page: 73
  issue: 1
  year: 2006
  ident: 9178_CR6
  publication-title: European Journal of Pharmacology
  doi: 10.1016/j.ejphar.2006.06.023
– ident: 9178_CR50
  doi: 10.1016/j.neuroimage.2012.05.078
– volume: 310
  start-page: 1963
  issue: 5756
  year: 2005
  ident: 9178_CR47
  publication-title: Science
  doi: 10.1126/science.1117645
– volume: 103
  start-page: 3863
  year: 2006
  ident: 9178_CR34
  publication-title: PNAS
  doi: 10.1073/pnas.0600244103
– volume: 6
  start-page: 1880
  year: 1995
  ident: 9178_CR31
  publication-title: Neuroreport
  doi: 10.1097/00001756-199510020-00014
– volume: 56
  start-page: 387
  year: 2010
  ident: 9178_CR37
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 45
  start-page: 333
  year: 2009
  ident: 9178_CR3
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.008
– volume: 67
  start-page: 301
  year: 2005
  ident: 9178_CR60
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 9178_CR17
– volume: 7
  start-page: 523
  year: 2006
  ident: 9178_CR25
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1931
– volume: 26
  start-page: 839
  year: 2005
  ident: 9178_CR2
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 7
  start-page: e29482
  issue: 2
  year: 2012
  ident: 9178_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029482
– volume: 293
  start-page: 2425
  issue: 5539
  year: 2001
  ident: 9178_CR23
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 49
  start-page: 2178
  issue: 3
  year: 2010
  ident: 9178_CR38
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.072
– volume: 33
  start-page: 1055
  issue: 4
  year: 2006
  ident: 9178_CR39
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.016
– volume: 11
  start-page: 805
  issue: 6
  year: 2000
  ident: 9178_CR1
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– volume: 8
  start-page: 686
  year: 2005
  ident: 9178_CR24
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1445
– volume: 3
  start-page: 3
  year: 2009b
  ident: 9178_CR20
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.003.2009
– volume: 1
  start-page: 211
  year: 2001
  ident: 9178_CR58
  publication-title: Journal of Machine Learning Research
– volume: 56
  start-page: 797
  issue: 2
  year: 2011
  ident: 9178_CR46
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.083
– volume: 3
  start-page: 1157
  year: 2007
  ident: 9178_CR18
  publication-title: Journal of Machine Learning Research
– volume: 50
  start-page: 883
  year: 2010
  ident: 9178_CR15
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 131
  start-page: 681
  year: 2008
  ident: 9178_CR32
  publication-title: Brain
  doi: 10.1093/brain/awm319
– ident: 9178_CR52
– volume: 23
  start-page: 156
  issue: 1
  year: 2004
  ident: 9178_CR21
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.05.020
– volume: 8
  start-page: 679
  year: 2005
  ident: 9178_CR30
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1444
– volume: 43
  start-page: 44
  year: 2008
  ident: 9178_CR13
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.06.037
– volume: 17
  start-page: 580
  issue: 4
  year: 2005
  ident: 9178_CR43
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/0898929053467550
– volume: 11
  start-page: 487
  year: 1998
  ident: 9178_CR28
  publication-title: In Advances in Neural Information Processing Systems
– volume: 3
  start-page: e1394
  issue: 1
  year: 2008
  ident: 9178_CR55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001394
– volume: 999888
  start-page: 2825
  year: 2011
  ident: 9178_CR44
  publication-title: Journal of Machine Learning Research
– volume: 20
  start-page: 544
  issue: 6
  year: 2010
  ident: 9178_CR8
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.01.053
– volume: 26
  start-page: 317
  year: 2005
  ident: 9178_CR36
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.048
– volume-title: Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures
  year: 2010
  ident: 9178_CR56
  doi: 10.1007/978-3-642-15711-0_66
– ident: 9178_CR59
  doi: 10.1016/j.neuroimage.2007.09.073
– volume: 18
  start-page: 10
  issue: 1
  year: 2003
  ident: 9178_CR35
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1300
– ident: 9178_CR29
– volume: 14
  start-page: 451
  issue: 4
  year: 2012
  ident: 9178_CR41
  publication-title: Bipolar Disorders
  doi: 10.1111/j.1399-5618.2012.01019.x
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 9178_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 322
  start-page: 970
  issue: 5903
  year: 2008
  ident: 9178_CR14
  publication-title: Science
  doi: 10.1126/science.1164318
– ident: 9178_CR22
– ident: 9178_CR54
  doi: 10.1109/PRNI.2012.19
– ident: 9178_CR48
– volume: 7
  start-page: e35860
  issue: 4
  year: 2012
  ident: 9178_CR53
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035860
– ident: 9178_CR5
– volume: 60
  start-page: 59
  issue: 1
  year: 2012
  ident: 9178_CR10
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.066
– volume-title: Statistical parametric mapping: the analysis of functional brain images
  year: 2007
  ident: 9178_CR16
– volume: 55
  start-page: 954
  year: 2011
  ident: 9178_CR4
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.049
– volume: 17
  start-page: 323
  issue: 4
  year: 2007
  ident: 9178_CR26
  publication-title: Current Biology
  doi: 10.1016/j.cub.2006.11.072
– volume: 61
  start-page: 457
  issue: 2
  year: 2011
  ident: 9178_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume-title: A tutorial on support vector machines for pattern recognition
  year: 1998
  ident: 9178_CR7
– volume: 19
  start-page: 261
  year: 2003
  ident: 9178_CR11
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 35
  start-page: 1157
  year: 2002
  ident: 9178_CR57
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00877-2
– volume: 56
  start-page: 662
  year: 2011
  ident: 9178_CR9
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.058
– volume: 12
  start-page: 178
  year: 2002
  ident: 9178_CR27
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/12.2.178
– volume: 45
  start-page: 199
  year: 2009
  ident: 9178_CR45
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 58
  start-page: 793
  issue: 3
  year: 2011
  ident: 9178_CR40
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.042
RestrictionsOnAccess open access
SSID ssj0026700
Score 2.49651
Snippet In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially...
SourceID pubmedcentral
liege
proquest
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 319
SubjectTerms Age Factors
Algorithms
Applied sciences
Artificial intelligence
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Brain Mapping
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer science; control theory; systems
Computer Simulation
Engineering, computing & technology
Exact sciences and technology
Human health sciences
Humans
image analysis
Image Processing, Computer-Assisted
Ingénierie, informatique & technologie
Investigative techniques, diagnostic techniques (general aspects)
Learning and adaptive systems
Likelihood Functions
machine learning
Medical sciences
Multivariate Analysis
multivariate pattern analysis
Nervous system
Neuroimaging
Neurology
Neurosciences
Original
Original Article
Pattern Recognition, Automated
Pattern recognition. Digital image processing. Computational geometry
Predictive Value of Tests
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radionuclide investigations
Sciences de la santé humaine
Software
toolbox
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-29mUvY1334a0rGow9bDOLbEWK-zLKWCmDlVJSyJvQl9dAanVNUtr_vneKnSz7CHkJ-JzIpzvrd7rT_QDelU45YwcmL1QtMUCxIa8C9zn3TrjamJ4MdDj5x4k8PhffR_1Ru-E2bcsqu3dielH76GiP_DMXdMpT4XL85epXTqxRlF1tKTQewja1LiOrVqNVwNUeQUGnrnAsFe-ymunoXEHFCcRtgAELBlJr69L2hDLWVCdppqiqesFx8S8Q-nct5R8J1bROHT2Bxy3AZIcLi9iBB6F5CruHDQbXl3fsPUsln2kvfRfE6Vk8GcYDdpq6bDbsrCsnig1DNMtS647xZWIyYsMYJzbePoPzo2_Dr8d5S6OQO4Qbs9z2pbNB4WJsrZDG-GBkhWGb96asET4ERHle1BhnOBWcd2WNjhq4dLweEENZ-Ry2mtiEl8CqkjvBe7XDXxTK4KcamAohXF1Z4_wgg16nRO3aHuNEdTHRq-7IpHeNetekd80z-LC85WrRYGOT8Kc0Mzpe27G-KTQ1x07f55Of2jhtg0Y8iZKCsEcG-2sTuPyDQkmEYVJlsNfNqG59d6pXlpbB2-Vl9DpKpZgmxHmSKQkr880yiP0IImTwYmEkqwEgeFCy389ArZnPUoAebP1KM75I3b9LVVC2PIOPnaH9NvT_Ke7V5gd9DY-KRPNBZch7sDW7noc3CLZmdj951D1CuiU6
  priority: 102
  providerName: ProQuest
Title PRoNTo: Pattern Recognition for Neuroimaging Toolbox
URI https://link.springer.com/article/10.1007/s12021-013-9178-1
https://www.ncbi.nlm.nih.gov/pubmed/23417655
https://www.proquest.com/docview/1412097251
https://www.proquest.com/docview/1413161511
https://www.proquest.com/docview/1419373036
http://orbi.ulg.ac.be/handle/2268/140242
https://pubmed.ncbi.nlm.nih.gov/PMC3722452
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x9YUXBIyPsFEFCfEARNT5sBveStUxgaiqqpXKk2U7NlTqkmltEfz33LlJRseYhCIlkXz-yNkn_y53vgN4mRhhlO6rKBaOo4KibZRbVkSsMKlxSvW4pcPJX8b8bJ5-WmSLOlg0nYW5Zr9_t2YxORFQDgJULFDhOYBOxhJBWRqGfNjqVvVpE5TfHLvNWWPAvKmJvS2osyLjNLlEqjVyxe3SWdyEN_92m7xmO_Vb0ul9uFdjyXCwm_wHcMeWD-FoUKIeff4rfBV6707_2_wI0sm0Gs-q9-HEB9Qsw2njOVSVIQLX0EfpWJ77pEXhrKpWuvr5COano9nwLKozJkQGkcUm0hk32grcd7VOuVKFVTxHDa0oVOIQKVgEdEXqUKUwwprCJA5l0jJumOtTMrLkMRyWVWmfQpgnzKSs5wy2mAqFV95XOaI1l2tlin4AvYaJ0tThxCmrxUpeBUImvkvkuyS-SxbA67bKxS6Wxm3Eb_3MyOpSL-WPWFIcbP--XX2TykhtJUJHpEwJZgTQ3ZvAtoNYcERcXARw0syorMV0jXXp6LBAjBfAi7YYBYysJqq01dbTJASL2e00CPMIDQTwZLdIrgaAOEHwLAtA7C2floA-bL-kXH73gb4TEZNhPIA3zUL7Y-j_Ytyz_6I-hruxT_BBDsgncLi53NrnCLM2ugsHYiG60Bl8_Pp5hM8Po_Fk2vVih_d5PPgNmRsimw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7QFeEDA-AmMYCXgAIuoktRskhCZg6thWTVMn9c3YjgOVunisLbB_ir-RO6dpKR99m_pSKdc0vjv7fpf7AniSWmm16eg4kaVAB8W4OHe8iHlhM1tq3RKOipMPe6J7kn0ctAdr8LOphaG0yuZMDAd14S29I3_FM6rylGiO3559jWlqFEVXmxEatVrsu4vv6LKN3-y9R_k-TZLdD_133Xg2VSC2aH0nsWkLa5xE22RMJrQunBY5ejFFodMSralD0FNkJcJuK50tbFqi3jouLC87NLArxftegQ00vC1y9uRg4eDNSl7wEMlx7TlvoqihVC-hZAiapYAOEjpuS3ZwY0QRcsrL1GMUTVnP1PgX6P07d_OPAG6wi7s34PoM0LKdWgNvwpqrbsHmToXO_OkFe8ZCiml4d78J2dGx7_X9a3YUunpW7LhJX_IVQ_TMQquQ4WmYnMT63o-M_3EbTi6FwXdgvfKVuwcsT7nNeKu0eMdMavzkHZ0jZCxzo23RiaDVMFHZWU9zGq0xUotuzMR3hXxXxHfFI3g-_8lZ3dBjFfHLIBnlz81QfUsUNeMO36ejz0pbZZxC_IqUGWGdCLaXBDj_g0QKhH1CRrDVSFTNzoqxWmh2BI_nl3GXU-hGV85PA01K2JyvpkGsSZAkgru1kiweAMGKFO12BHJJfeYEtLDlK9XwS-g2nsqEovMRvGgU7bdH_x_j7q9e6CO42u0fHqiDvd7-A7iWhBEjlAK9BeuT86l7iEBvYrbD7mLw6bK38y-uqmLf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VREK8IKAchlKMBDwAVuMjuzESQoU2ailEUZRKfVt212uIlHpLkwD9a_w6ZtZHCEfeKr9E8sTHzOzON54L4EmsuZaqJ4OI5wwdFGWC1IRZEGY60bmUHWaoOPnjgB0cJ-9Puicb8LOuhaG0ynpPdBt1ZjV9I98JE6ry5GiOd_IqLWK4139z9jWgCVIUaa3HaZQqcmQuvqP7Nnt9uIeyfhpF_f3xu4OgmjAQaLTE80B1mVaGo51SKmFSZkayFD2aLJNxjpbVIADKkhwhuOZGZzrOUYdNyHSY92h4V4zXvQJtTl5RC9pv9wfDUePuVQUwuKWkyIk0rGOqrnAvotQImqyA7hK6cStWsT2leDllacoZCiovJ2z8CwL_ncn5RzjXWcn-DbhewVt_t9THm7BhiluwuVuga3964T_zXcKp-5K_CclwZAdj-8ofuh6fhT-qk5ls4SOW9l3jkMmpm6Pkj62dKvvjNhxfCovvQKuwhbkHfhqHOgk7ucYrJlzikfZkigAyT5XUWc-DTs1EoasO5zRoYyqWvZmJ7wL5LojvIvTgefOXs7K9xzril04ywp6rifgWCWrN7X4vpp-F1EIZgWgWKRNCPh5srwiwuUHEGYJAxj3YqiUqqp1jJpZ67sHj5jSueQrkyMLYhaOJCamH62kQeRJA8eBuqSTLB0Dowlm36wFfUZ-GgF5s9Uwx-eJ6j8c8oli9By9qRfvt0f_HuPvrX_QRXMWlLD4cDo4ewLXIzRuhfOgtaM3PF-Yhor652q6Wlw-fLntF_wKD_2h6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PRoNTo%3A+Pattern+Recognition+for+Neuroimaging+Toolbox&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Schrouff%2C+J.&rft.au=Rosa%2C+M.+J.&rft.au=Rondina%2C+J.+M.&rft.au=Marquand%2C+A.+F.&rft.date=2013-07-01&rft.pub=Springer+US&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=11&rft.issue=3&rft.spage=319&rft.epage=337&rft_id=info:doi/10.1007%2Fs12021-013-9178-1&rft.externalDocID=10_1007_s12021_013_9178_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon