PRoNTo: Pattern Recognition for Neuroimaging Toolbox
In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univ...
Saved in:
Published in | Neuroinformatics (Totowa, N.J.) Vol. 11; no. 3; pp. 319 - 337 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Boston
Springer US
01.07.2013
Springer Springer Nature B.V Humana Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The “Pattern Recognition for Neuroimaging Toolbox” (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis. |
---|---|
AbstractList | In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The "Pattern Recognition for Neuroimaging Toolbox" (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.[PUBLICATION ABSTRACT] In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The “Pattern Recognition for Neuroimaging Toolbox” (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis. In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The "Pattern Recognition for Neuroimaging Toolbox" (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The "Pattern Recognition for Neuroimaging Toolbox" (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis. |
Author | Chu, C. Rondina, J. M. Phillips, C. Marquand, A. F. Mourão-Miranda, J. Schrouff, J. Rosa, M. J. Ashburner, J. Richiardi, J. |
Author_xml | – sequence: 1 givenname: J. surname: Schrouff fullname: Schrouff, J. organization: Cyclotron Research Centre, University of Liège – sequence: 2 givenname: M. J. surname: Rosa fullname: Rosa, M. J. email: m.rosa@ucl.ac.uk organization: Department of Computer Science, Centre for Computational Statistics and Machine Learning, University College London – sequence: 3 givenname: J. M. surname: Rondina fullname: Rondina, J. M. organization: Department of Computer Science, Centre for Computational Statistics and Machine Learning, University College London, Neuroimaging Laboratory, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo – sequence: 4 givenname: A. F. surname: Marquand fullname: Marquand, A. F. organization: Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London – sequence: 5 givenname: C. surname: Chu fullname: Chu, C. organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH – sequence: 6 givenname: J. surname: Ashburner fullname: Ashburner, J. organization: Wellcome Trust Centre for NeuroImaging, University College London – sequence: 7 givenname: C. surname: Phillips fullname: Phillips, C. organization: Cyclotron Research Centre, University of Liège, Department of Electrical Engineering and Computer Science, University of Liège – sequence: 8 givenname: J. surname: Richiardi fullname: Richiardi, J. organization: Functional Imaging in Neuropsychiatric Disorders Lab, Department of Neurology and Neurological Sciences, Stanford University, Laboratory for Neurology & Imaging of Cognition, Departments of Neurosciences and Clinical Neurology, University of Geneva – sequence: 9 givenname: J. surname: Mourão-Miranda fullname: Mourão-Miranda, J. organization: Department of Computer Science, Centre for Computational Statistics and Machine Learning, University College London, Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27697667$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23417655$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFTEUhYNU7EV_gC8yIIIvo9m5TnwoSPEGpZZyfA6ZTGZMmZPUZKbovzfTOdZaUHxKIN_ae6-ddYj2QgwOoaeAXwHG8nUGggnUGGitQDY1PEAHwLmqMW7U3nKnqiZSwT46zPkSYyIkxo_QPqEMpOD8ALHzi3i2iW-qczNNLoXqwtk4BD_5GKo-purMzSn6rRl8GKpNjGMbvz9GD3szZvdkdx6hL-_fbU4-1qefP3w6eXtaW8HoVLdc2NZJTFjbMmFM54xQwEXXGdpTkA6D6ljfEGGls52lPebgQFjoG84Y0CN0vNa9mtut66wLUzKjvkplnvRDR-P1ny_Bf9VDvNZUEsI4KQXoWmD0bnA6ptbra3IjvLnP46CN1a3ThIhGAyuzLqqXu7YpfptdnvTWZ-vG0QQX51wwUFRSTMX_oBQEcFjMPL-HXsY5hbK_hSJYScIX6tldy7def_1YAV7sAJOtGftkgvX5NyeFkkLIwsHK2RRzTq6_RQDrJT16TY8u6dFLevTSXN7TWD-ZJQplu378p5Ksyly6hMGlO-b-KvoJiNDV6Q |
CitedBy_id | crossref_primary_10_1016_j_euroneuro_2019_09_095 crossref_primary_10_1080_17470919_2023_2242094 crossref_primary_10_1016_j_neulet_2022_136566 crossref_primary_10_1111_ene_13518 crossref_primary_10_1016_j_neuroimage_2017_06_039 crossref_primary_10_1590_1516_4446_2016_2083 crossref_primary_10_1007_s11055_023_01517_2 crossref_primary_10_1093_cercor_bhu189 crossref_primary_10_1016_j_biopsych_2015_06_009 crossref_primary_10_1016_j_heliyon_2024_e28559 crossref_primary_10_1038_nn_4458 crossref_primary_10_1089_brain_2015_0367 crossref_primary_10_2147_DMSO_S492099 crossref_primary_10_1002_brb3_1707 crossref_primary_10_1007_s12021_018_9384_y crossref_primary_10_1002_ana_25746 crossref_primary_10_1016_j_neulet_2017_10_052 crossref_primary_10_1016_j_euroneuro_2020_03_008 crossref_primary_10_1016_j_jneumeth_2016_04_022 crossref_primary_10_1016_j_jalz_2016_06_2263 crossref_primary_10_1016_j_biotno_2024_08_001 crossref_primary_10_2139_ssrn_4071596 crossref_primary_10_1016_j_neuroimage_2014_12_036 crossref_primary_10_1177_14604582241296411 crossref_primary_10_1016_j_compbiomed_2022_105937 crossref_primary_10_1016_j_dib_2017_07_049 crossref_primary_10_1016_j_intell_2021_101527 crossref_primary_10_1162_jocn_a_02143 crossref_primary_10_1016_j_ejmp_2018_04_266 crossref_primary_10_1590_1516_4446_2019_0757 crossref_primary_10_1162_jocn_a_02260 crossref_primary_10_3389_fcell_2023_1174688 crossref_primary_10_1016_j_neuroimage_2015_03_072 crossref_primary_10_1016_j_bpsc_2023_07_003 crossref_primary_10_1038_s41398_024_02805_2 crossref_primary_10_1038_s41467_019_14166_2 crossref_primary_10_1148_radiol_2015150220 crossref_primary_10_1186_s12888_018_1678_y crossref_primary_10_3389_fninf_2014_00088 crossref_primary_10_1016_j_nicl_2023_103530 crossref_primary_10_3389_fnhum_2022_935213 crossref_primary_10_1016_j_nicl_2020_102262 crossref_primary_10_1162_jocn_a_01851 crossref_primary_10_1016_j_jocn_2021_07_016 crossref_primary_10_1007_s11682_017_9790_z crossref_primary_10_3389_fpsyt_2022_888150 crossref_primary_10_1016_j_cortex_2021_12_015 crossref_primary_10_1016_j_neuroimage_2016_08_066 crossref_primary_10_1093_cercor_bhw141 crossref_primary_10_1002_hbm_24484 crossref_primary_10_3389_fnhum_2021_754234 crossref_primary_10_3390_jpm12050704 crossref_primary_10_1038_s41562_020_0854_5 crossref_primary_10_1097_WNR_0000000000001962 crossref_primary_10_1002_jnr_25003 crossref_primary_10_1002_hipo_22683 crossref_primary_10_1111_ejn_14322 crossref_primary_10_1016_j_bbr_2022_114245 crossref_primary_10_1016_j_neuroimage_2024_120967 crossref_primary_10_3389_fpsyt_2016_00063 crossref_primary_10_1007_s12021_022_09613_3 crossref_primary_10_1016_j_neuroimage_2022_119655 crossref_primary_10_1177_1094428118802631 crossref_primary_10_3389_fnins_2020_00545 crossref_primary_10_1093_scan_nsac049 crossref_primary_10_1093_cercor_bhad290 crossref_primary_10_1016_j_neuroimage_2018_05_065 crossref_primary_10_1016_j_nicl_2025_103754 crossref_primary_10_1016_j_nicl_2017_04_027 crossref_primary_10_1016_j_neuroimage_2021_118145 crossref_primary_10_1523_JNEUROSCI_1783_20_2020 crossref_primary_10_1016_j_pediatrneurol_2022_05_005 crossref_primary_10_1155_2022_1853002 crossref_primary_10_1002_brb3_2441 crossref_primary_10_1038_tp_2016_213 crossref_primary_10_1002_hbm_23454 crossref_primary_10_3389_fnhum_2015_00486 crossref_primary_10_3389_fnagi_2024_1433426 crossref_primary_10_1007_s12021_017_9337_x crossref_primary_10_1038_s41598_017_05592_7 crossref_primary_10_1016_j_euroneuro_2020_09_189 crossref_primary_10_1016_j_neuroimage_2018_09_052 crossref_primary_10_1002_hbm_26284 crossref_primary_10_1017_S0033291718002866 crossref_primary_10_1016_j_neuroscience_2024_08_013 crossref_primary_10_1016_j_jneumeth_2015_11_028 crossref_primary_10_1016_j_neuroimage_2019_05_030 crossref_primary_10_1007_s00234_021_02885_7 crossref_primary_10_1111_acps_12752 crossref_primary_10_1016_j_bbr_2013_11_003 crossref_primary_10_1016_j_nicl_2018_06_023 crossref_primary_10_2147_JPR_S332224 crossref_primary_10_1080_17470919_2015_1120239 crossref_primary_10_1016_j_brat_2017_03_014 crossref_primary_10_1007_s00234_019_02321_x crossref_primary_10_1093_cercor_bhac019 crossref_primary_10_1186_s42466_020_00092_y crossref_primary_10_1148_radiol_2016152703 crossref_primary_10_1111_bdi_12446 crossref_primary_10_1523_JNEUROSCI_1539_18_2018 crossref_primary_10_1007_s11517_024_03080_5 crossref_primary_10_1016_j_neuroimage_2022_119396 crossref_primary_10_1016_j_parkreldis_2019_10_020 crossref_primary_10_1017_pen_2021_2 crossref_primary_10_1007_s00429_023_02668_1 crossref_primary_10_1176_appi_ajp_2020_20070979 crossref_primary_10_1007_s12021_017_9347_8 crossref_primary_10_1523_ENEURO_0107_18_2018 crossref_primary_10_1038_s41598_020_59433_1 crossref_primary_10_3389_fncom_2022_837093 crossref_primary_10_1097_WNR_0000000000001777 crossref_primary_10_1007_s11682_023_00790_6 crossref_primary_10_5582_bst_2019_01002 crossref_primary_10_1016_j_brainres_2019_03_002 crossref_primary_10_1016_j_cortex_2015_05_003 crossref_primary_10_1016_j_neuropsychologia_2024_108899 crossref_primary_10_3389_fimmu_2021_660554 crossref_primary_10_1016_j_nicl_2014_09_009 crossref_primary_10_1192_bjp_2018_255 crossref_primary_10_1016_j_pnpbp_2024_111180 crossref_primary_10_1016_j_neuroimage_2018_06_001 crossref_primary_10_1073_pnas_1608434113 crossref_primary_10_1093_cercor_bhae209 crossref_primary_10_3389_fnins_2022_1046752 crossref_primary_10_1016_j_neuropsychologia_2017_11_025 crossref_primary_10_1016_j_neurobiolaging_2019_11_005 crossref_primary_10_1111_ene_15119 crossref_primary_10_1016_j_brainresbull_2023_110794 crossref_primary_10_1016_j_nicl_2019_101664 crossref_primary_10_1016_j_pscychresns_2021_111270 crossref_primary_10_1080_17470919_2018_1472139 crossref_primary_10_1111_head_14429 crossref_primary_10_1016_j_euroneuro_2021_10_692 crossref_primary_10_1016_j_neuroscience_2020_01_049 crossref_primary_10_1097_WNR_0000000000002056 crossref_primary_10_1002_hbm_22939 crossref_primary_10_3389_fnins_2024_1429084 crossref_primary_10_1007_s12021_024_09712_3 crossref_primary_10_1038_tp_2015_22 crossref_primary_10_1007_s00234_021_02706_x crossref_primary_10_1162_jocn_a_00819 crossref_primary_10_1093_brain_aww005 crossref_primary_10_1109_TBDATA_2017_2734883 crossref_primary_10_1016_j_jad_2020_05_005 crossref_primary_10_3389_fnins_2023_1132607 crossref_primary_10_1002_hbm_24432 crossref_primary_10_1016_j_jaac_2013_12_024 crossref_primary_10_1016_j_nicl_2019_101675 crossref_primary_10_3389_fpsyt_2022_907978 crossref_primary_10_1007_s12021_019_09447_6 crossref_primary_10_3389_fnhum_2017_00380 crossref_primary_10_1162_jocn_a_01112 crossref_primary_10_1016_j_nicl_2014_04_004 crossref_primary_10_1093_schbul_sby026 crossref_primary_10_1007_s11571_021_09765_z crossref_primary_10_1111_desc_13114 crossref_primary_10_1016_j_heliyon_2024_e34910 crossref_primary_10_31857_S0044467723020065 crossref_primary_10_1097_QAI_0000000000001687 crossref_primary_10_1177_03331024231222637 crossref_primary_10_3389_fneur_2022_847650 crossref_primary_10_1093_brain_awaa067 crossref_primary_10_1016_j_jad_2022_12_070 crossref_primary_10_3389_fnins_2021_660365 crossref_primary_10_1371_journal_pone_0069290 crossref_primary_10_1016_j_dcn_2017_03_005 crossref_primary_10_1007_s11682_018_9905_1 crossref_primary_10_1038_s41598_017_03564_5 crossref_primary_10_1126_sciadv_1603309 crossref_primary_10_3389_fnhum_2022_917769 crossref_primary_10_3892_br_2024_1792 crossref_primary_10_1186_s12888_021_03414_9 crossref_primary_10_1186_s40345_023_00292_w crossref_primary_10_1111_psyp_13472 crossref_primary_10_1016_j_heliyon_2024_e30008 crossref_primary_10_1073_pnas_1706100115 crossref_primary_10_1556_2006_2020_00012 crossref_primary_10_1016_j_brainres_2024_148985 crossref_primary_10_1364_BOE_426731 crossref_primary_10_1093_brain_awz258 crossref_primary_10_3389_fncom_2015_00137 crossref_primary_10_1002_hbm_24979 crossref_primary_10_1007_s10548_024_01095_7 crossref_primary_10_1016_j_ynstr_2019_100195 crossref_primary_10_1016_j_jpsychires_2024_01_024 crossref_primary_10_1002_brb3_633 crossref_primary_10_1111_psyp_13921 crossref_primary_10_1017_S0033291720003852 crossref_primary_10_1111_jon_13012 crossref_primary_10_3389_fnins_2020_00289 crossref_primary_10_1016_j_biopsych_2014_11_018 crossref_primary_10_1016_j_neuroimage_2021_118329 crossref_primary_10_1007_s00234_024_03368_1 crossref_primary_10_1007_s11682_019_00177_6 crossref_primary_10_1007_s00234_022_02983_0 crossref_primary_10_1162_jocn_a_00928 crossref_primary_10_1002_hbm_24727 crossref_primary_10_1002_hbm_23635 crossref_primary_10_1152_jn_00559_2016 crossref_primary_10_1007_s00429_022_02568_w crossref_primary_10_3389_fneur_2022_819055 crossref_primary_10_1186_s12883_015_0514_y crossref_primary_10_1016_j_nicl_2017_10_026 crossref_primary_10_1016_j_cortex_2014_09_002 crossref_primary_10_1186_s13063_020_04743_y crossref_primary_10_1186_s12888_021_03040_5 crossref_primary_10_1111_ejn_16220 crossref_primary_10_3389_fnins_2023_1143239 crossref_primary_10_1016_j_neuropsychologia_2020_107410 crossref_primary_10_3390_math11051229 crossref_primary_10_1016_j_neuroimage_2023_120408 crossref_primary_10_1016_j_bpsc_2021_08_007 crossref_primary_10_3389_fnhum_2023_1202103 crossref_primary_10_1093_cercor_bhac235 crossref_primary_10_1016_j_scib_2024_05_049 crossref_primary_10_1002_hbm_24872 crossref_primary_10_1016_j_neuroscience_2018_10_036 crossref_primary_10_3389_fncom_2016_00021 crossref_primary_10_1109_TNSRE_2020_3007324 crossref_primary_10_1016_j_neuroimage_2016_02_009 crossref_primary_10_1016_j_neuroimage_2019_05_082 crossref_primary_10_1007_s12021_017_9346_9 crossref_primary_10_1111_epi_13135 crossref_primary_10_12659_MSM_894566 crossref_primary_10_3389_fpsyg_2018_01117 crossref_primary_10_1093_schbul_sbac094 crossref_primary_10_3389_fnhum_2022_910669 crossref_primary_10_3389_fnagi_2017_00326 crossref_primary_10_1016_j_cortex_2022_07_014 crossref_primary_10_1186_s12888_023_05220_x crossref_primary_10_1002_hbm_25954 crossref_primary_10_1177_13872877241296130 crossref_primary_10_3390_s23094199 crossref_primary_10_1002_hbm_25838 crossref_primary_10_1093_cercor_bhab279 crossref_primary_10_1093_brain_awaa380 crossref_primary_10_3389_fninf_2017_00023 crossref_primary_10_1007_s11548_018_1859_7 crossref_primary_10_1016_j_cortex_2018_11_001 crossref_primary_10_1038_ncomms15495 crossref_primary_10_1007_s11682_021_00574_w crossref_primary_10_1111_pcn_13648 crossref_primary_10_1016_j_nicl_2016_06_020 crossref_primary_10_1007_s11682_017_9697_8 crossref_primary_10_1016_j_neuroimage_2025_121081 crossref_primary_10_1016_j_neuroimage_2013_05_036 crossref_primary_10_1016_j_neuroimage_2020_117149 crossref_primary_10_1093_texcom_tgaa011 crossref_primary_10_1186_s42492_020_00062_w crossref_primary_10_1016_j_nicl_2018_10_008 crossref_primary_10_1097_j_pain_0000000000001312 crossref_primary_10_1007_s12021_013_9204_3 crossref_primary_10_1016_j_euroneuro_2019_12_068 crossref_primary_10_1016_j_nicl_2024_103717 crossref_primary_10_1016_j_neuroimage_2021_118511 crossref_primary_10_3389_fnhum_2019_00289 crossref_primary_10_1016_j_psyneuen_2015_01_016 crossref_primary_10_1007_s00702_016_1673_8 crossref_primary_10_1016_j_jaac_2019_05_035 crossref_primary_10_1002_hbm_25589 crossref_primary_10_3390_app11073205 crossref_primary_10_3233_JAD_160327 crossref_primary_10_1016_j_neuroimage_2018_06_076 crossref_primary_10_1016_j_pscychresns_2017_03_003 crossref_primary_10_1002_hbm_25583 crossref_primary_10_1097_WNR_0000000000001813 crossref_primary_10_1016_j_cmpb_2021_106549 crossref_primary_10_1093_scan_nsab010 crossref_primary_10_1016_j_neuroimage_2015_12_050 crossref_primary_10_1016_j_nicl_2018_10_011 crossref_primary_10_1371_journal_pone_0063660 crossref_primary_10_1371_journal_pone_0254338 crossref_primary_10_1007_s12021_018_9375_z crossref_primary_10_18632_aging_102901 crossref_primary_10_1162_jocn_a_01772 crossref_primary_10_1016_j_neuropsychologia_2022_108377 crossref_primary_10_1097_j_pain_0000000000001545 crossref_primary_10_1007_s12021_021_09519_6 crossref_primary_10_1016_j_neuroimage_2019_01_006 crossref_primary_10_1038_s41467_020_14432_8 crossref_primary_10_1002_hbm_25133 crossref_primary_10_1016_j_cortex_2019_01_018 crossref_primary_10_3389_fnhum_2022_773593 crossref_primary_10_1016_j_bpsc_2024_09_009 crossref_primary_10_1016_j_eplepsyres_2017_03_007 crossref_primary_10_3389_fonc_2021_687127 crossref_primary_10_2147_OPTH_S451872 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1016_j_nicl_2019_102112 crossref_primary_10_3389_fnins_2023_1131247 crossref_primary_10_1038_s41598_024_81238_9 crossref_primary_10_1016_j_neuropsychologia_2021_107893 crossref_primary_10_1038_s41467_022_33884_8 crossref_primary_10_1017_S0033291716000878 crossref_primary_10_3389_fnhum_2022_935642 crossref_primary_10_1016_j_bpsc_2016_05_001 crossref_primary_10_1162_jocn_a_01860 crossref_primary_10_1093_cercor_bhz290 crossref_primary_10_1371_journal_pone_0168315 crossref_primary_10_1016_j_pscychresns_2016_11_005 crossref_primary_10_1016_j_jad_2015_05_034 crossref_primary_10_1002_hbm_23747 crossref_primary_10_3389_fninf_2016_00027 crossref_primary_10_1016_j_neuropsychologia_2024_108949 crossref_primary_10_3389_fpsyt_2018_00524 crossref_primary_10_1016_j_jpsychires_2020_11_014 crossref_primary_10_1111_jcpp_13545 crossref_primary_10_1016_j_nicl_2020_102439 crossref_primary_10_1093_scan_nsab035 crossref_primary_10_2478_joeb_2024_0006 crossref_primary_10_1016_j_jad_2022_08_078 crossref_primary_10_1162_jocn_a_01195 crossref_primary_10_3389_fpsyt_2017_00099 crossref_primary_10_1038_s41380_022_01728_y crossref_primary_10_1016_j_neurobiolaging_2021_01_009 crossref_primary_10_1002_hbe2_247 crossref_primary_10_1177_0271678X231197273 crossref_primary_10_1556_2006_2020_00065 crossref_primary_10_3389_fnins_2022_989589 crossref_primary_10_1002_ana_24367 crossref_primary_10_3389_fnhum_2014_00692 |
Cites_doi | 10.1093/brain/awm319 10.1371/journal.pone.0001394 10.1016/j.neuroimage.2010.11.004 10.1007/s12021-008-9041-y 10.1006/nimg.2002.1300 10.1371/journal.pone.0029482 10.1016/j.neuroimage.2010.05.083 10.1016/j.neuroimage.2005.02.018 10.1038/nn1445 10.1016/j.neuroimage.2010.06.013 10.1016/j.neuroimage.2008.06.037 10.1126/science.1063736 10.1016/j.ejphar.2006.06.023 10.1093/cercor/12.2.178 10.1016/j.neuroimage.2009.10.072 10.1016/j.neuroimage.2011.11.066 10.1016/j.neuroimage.2011.06.042 10.1016/j.neuroimage.2010.01.005 10.1097/00001756-199510020-00014 10.1038/nn1444 10.1371/journal.pone.0035860 10.1016/j.neuroimage.2006.08.016 10.1162/0898929053467550 10.1006/nimg.2000.0582 10.1016/S0896-6273(02)00877-2 10.1016/j.neuroimage.2010.03.058 10.1016/S1053-8119(03)00049-1 10.1016/j.cub.2006.11.072 10.1016/j.neuroimage.2005.01.048 10.1016/j.neuroimage.2011.11.002 10.1111/j.1467-9868.2005.00503.x 10.1016/j.neuroimage.2004.05.020 10.3389/neuro.11.003.2009 10.1016/j.patcog.2011.09.011 10.1111/j.1399-5618.2012.01019.x 10.1126/science.1117645 10.1016/j.cub.2010.01.053 10.1073/pnas.0600244103 10.1016/j.neuroimage.2008.12.008 10.1016/j.neuroimage.2010.12.049 10.1038/nrn1931 10.1016/j.neuroimage.2008.11.007 10.1126/science.1164318 10.1017/CBO9780511809682 10.1016/j.neuroimage.2012.05.078 10.1007/978-3-642-15711-0_66 10.1016/j.neuroimage.2007.09.073 10.1109/PRNI.2012.19 |
ContentType | Journal Article Web Resource |
Contributor | Institute of Psychology, King's College, London GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège Wellcome Trust, London Computer Science Department, University College London Ecole Polytechnique Fédérale de Lausanne |
Contributor_xml | – sequence: 1 fullname: Computer Science Department, University College London – sequence: 2 fullname: Institute of Psychology, King's College, London – sequence: 3 fullname: Wellcome Trust, London – sequence: 4 fullname: GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège – sequence: 5 fullname: Ecole Polytechnique Fédérale de Lausanne |
Copyright | The Author(s) 2013 2015 INIST-CNRS Springer Science+Business Media New York 2013 |
Copyright_xml | – notice: The Author(s) 2013 – notice: 2015 INIST-CNRS – notice: Springer Science+Business Media New York 2013 |
DBID | C6C AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 7QO 8FD FR3 P64 Q33 5PM |
DOI | 10.1007/s12021-013-9178-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Applied Sciences |
EISSN | 1559-0089 |
EndPage | 337 |
ExternalDocumentID | PMC3722452 oai_orbi_ulg_ac_be_2268_140242 3027588541 23417655 27697667 10_1007_s12021_013_9178_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 091593 – fundername: Wellcome Trust grantid: WT088641/Z/09/Z – fundername: Wellcome Trust grantid: WT086565/Z/08/Z |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2M M4Y M7P MA- NPVJJ NQJWS NU0 O9- O9J OVD P2P PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z83 Z88 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT IQODW ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 7QO 8FD FR3 P64 Q33 5PM |
ID | FETCH-LOGICAL-c643t-b56cbe7024bb46aadea69156dda3f317e019d4f826c7ecdc3f051e16c1f854413 |
IEDL.DBID | C6C |
ISSN | 1539-2791 1559-0089 |
IngestDate | Thu Aug 21 18:04:02 EDT 2025 Fri Jul 25 15:36:45 EDT 2025 Mon Jul 21 11:59:21 EDT 2025 Fri Jul 11 09:36:31 EDT 2025 Sat Aug 23 12:47:44 EDT 2025 Mon Jul 21 05:30:10 EDT 2025 Wed Apr 02 07:25:12 EDT 2025 Tue Jul 01 04:24:51 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 Fri Feb 21 02:26:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Image analysis Neuroimaging software Pattern recognition MVPA Machine learning Computer vision Data analysis Statistical analysis Software development Image processing Cognition Multivariate analysis Modeling Open source software Encephalon Statistical data Cognitive theory Neuroscience Medical imagery Pattern analysis Artificial intelligence Medical application |
Language | English |
License | http://creativecommons.org/licenses/by-nc/2.0 CC BY 4.0 Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c643t-b56cbe7024bb46aadea69156dda3f317e019d4f826c7ecdc3f051e16c1f854413 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84881091929 PASCAL2 Harvest Project |
OpenAccessLink | https://doi.org/10.1007/s12021-013-9178-1 |
PMID | 23417655 |
PQID | 1412097251 |
PQPubID | 54206 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3722452 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_140242 proquest_miscellaneous_1419373036 proquest_miscellaneous_1413161511 proquest_journals_1412097251 pubmed_primary_23417655 pascalfrancis_primary_27697667 crossref_primary_10_1007_s12021_013_9178_1 crossref_citationtrail_10_1007_s12021_013_9178_1 springer_journals_10_1007_s12021_013_9178_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York, NY – name: United States – name: Totowa |
PublicationTitle | Neuroinformatics (Totowa, N.J.) |
PublicationTitleAbbrev | Neuroinform |
PublicationTitleAlternate | Neuroinformatics |
PublicationYear | 2013 |
Publisher | Springer US Springer Springer Nature B.V Humana Press |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: Humana Press |
References | Zou (CR60) 2005; 67 Ashburner, Friston (CR1) 2000; 11 Friston (CR16) 2007 Henson, Shallice, Gorno-Tempini, Dolan (CR27) 2002; 12 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (CR32) 2008; 131 Ashburner, Friston (CR4) 2011; 55 Singh, Fletcher, Preston, Ha, King, Marron, Wiener, Joshi (CR56) 2010 Cox, Savoy (CR11) 2003; 19 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (CR12) 2011; 56 Pereira, Mitchell, Botvinick (CR45) 2009; 45 Formisiano, De Martino, Bonte, Goebel (CR14) 2008; 322 Haynes, Sakai, Rees, Gilbert, Frith, Passingham (CR26) 2007; 17 Kapur, Craik, Brown, Houle, Tulving (CR31) 1995; 6 Shinkareva, Mason, Malave, Wang, Mitchell (CR55) 2008; 3 Mourao-Miranda, Almeida, Hassel, de Oliveira, Versace, Marquand, Sato, Brammer, Phillips (CR41) 2012; 14 Schrouff, Kussé, Wehenkel, Maquet, Phillips (CR53) 2012; 7 CR5 Hanson, Matsuka, Haxby (CR21) 2004; 23 Ashburner, Friston (CR3) 2009; 45 CR48 Polyn, Natu, Cohen, Norman (CR47) 2005; 310 Lemm, Blankertz, Dickhaus, Müller (CR37) 2010; 56 Tipping (CR58) 2001; 1 Kamitani, Tong (CR30) 2005; 8 Chadwick, Hassabis, Weiskopf, Maguire (CR8) 2010; 20 Hanke, Halchenko, Sederberg, Olivetti, Fründ, Rieger, Herrmann, Haxby, Hanson, Pollmann (CR20) 2009b; 3 Haynes, Rees (CR24) 2005; 8 Phillips, Bruno, Maquet, Boly, Noirhomme, Schnakers, Vanhaudenhuyse, Bonjean, Hustinx, Moonen, Luxen, Laureys (CR46) 2011; 56 Chu, Hsu, Chou, Bandettini, Lin (CR10) 2012; 60 Mourao-Miranda, Hardoon, Hahn, Marquand, Williams, Shawe-Taylor, Brammer (CR40) 2011; 58 Ashburner, Friston (CR2) 2005; 26 Kloppel, Abdulkadir, Jack, Koutsouleris, Mourao-Miranda, Vemuri (CR33) 2011; 61 LaConte, Strother, Cherkassky, Hu (CR36) 2005; 26 CR17 Franke, Ziegler, Klöppel, Gaser (CR15) 2010; 50 CR59 Guyon, Elisseeff (CR18) 2007; 3 Spiridon, Kanwisher (CR57) 2002; 35 CR54 Borroni, Di Luca, Padovani (CR6) 2006; 545 LaConte, Anderson, Muley, Ashe, Frutiger, Rehm, Hansen, Yacoub, Hu, Rottenberg, Strother (CR35) 2003; 18 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR44) 2011; 999888 CR52 CR51 Chu, Ni, Tan, Saunders, Ashburner (CR9) 2011; 56 CR50 De Martino, Valente, Staeren, Ashburner, Goebel, Formisano (CR13) 2008; 43 Jaakkola, Haussler (CR28) 1998; 11 Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (CR19) 2009a; 7 Rasmussen, Hansen, Madsen, Churchill, Strother (CR49) 2012; 45 Mourao-Miranda, Reynaud, McGlone, Calvert, Brammer (CR39) 2006; 33 CR29 Haxby, Gobbini, Furev, Ishai, Schouten, Pietrini (CR23) 2001; 293 Burges (CR7) 1998 O’Toole, Jiang, Abdi, Haxby (CR43) 2005; 17 Mourão-Miranda, Oliveira, Ladouceur, Marquand, Brammer (CR42) 2012; 7 CR22 Marquand, Howard, Brammer, Chu, Coen, Mourao-Miranda (CR38) 2010; 49 Haynes, Rees (CR25) 2006; 7 Kriegeskorte, Goebel, Bandettini (CR34) 2006; 103 M Spiridon (9178_CR57) 2002; 35 R Cuingnet (9178_CR12) 2011; 56 J Mourão-Miranda (9178_CR42) 2012; 7 SM Polyn (9178_CR47) 2005; 310 M Hanke (9178_CR20) 2009b; 3 9178_CR48 F Martino De (9178_CR13) 2008; 43 KJ Friston (9178_CR16) 2007 MJ Chadwick (9178_CR8) 2010; 20 N Singh (9178_CR56) 2010 E Formisiano (9178_CR14) 2008; 322 C Chu (9178_CR10) 2012; 60 J Ashburner (9178_CR1) 2000; 11 B Borroni (9178_CR6) 2006; 545 T Jaakkola (9178_CR28) 1998; 11 AJ O’Toole (9178_CR43) 2005; 17 Y Kamitani (9178_CR30) 2005; 8 9178_CR5 S Klöppel (9178_CR32) 2008; 131 C Chu (9178_CR9) 2011; 56 J Mourao-Miranda (9178_CR41) 2012; 14 F Pereira (9178_CR45) 2009; 45 SV Shinkareva (9178_CR55) 2008; 3 J Haxby (9178_CR23) 2001; 293 9178_CR22 J Mourao-Miranda (9178_CR39) 2006; 33 M Hanke (9178_CR19) 2009a; 7 CL Phillips (9178_CR46) 2011; 56 ME Tipping (9178_CR58) 2001; 1 K Franke (9178_CR15) 2010; 50 J Haynes (9178_CR26) 2007; 17 9178_CR29 RNA Henson (9178_CR27) 2002; 12 CJC Burges (9178_CR7) 1998 PM Rasmussen (9178_CR49) 2012; 45 SJ Hanson (9178_CR21) 2004; 23 J Ashburner (9178_CR4) 2011; 55 DD Cox (9178_CR11) 2003; 19 I Guyon (9178_CR18) 2007; 3 S LaConte (9178_CR36) 2005; 26 A Marquand (9178_CR38) 2010; 49 J Haynes (9178_CR25) 2006; 7 J Haynes (9178_CR24) 2005; 8 9178_CR54 J Mourao-Miranda (9178_CR40) 2011; 58 9178_CR52 J Ashburner (9178_CR2) 2005; 26 9178_CR50 9178_CR51 9178_CR17 S Kapur (9178_CR31) 1995; 6 S Lemm (9178_CR37) 2010; 56 9178_CR59 N Kriegeskorte (9178_CR34) 2006; 103 F Pedregosa (9178_CR44) 2011; 999888 J Schrouff (9178_CR53) 2012; 7 J Ashburner (9178_CR3) 2009; 45 TH Zou (9178_CR60) 2005; 67 S Kloppel (9178_CR33) 2011; 61 S LaConte (9178_CR35) 2003; 18 |
References_xml | – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: CR58 article-title: Sparse bayesian learning and the relevance vector machine publication-title: Journal of Machine Learning Research – ident: CR22 – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: CR32 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – ident: CR51 – volume: 3 start-page: e1394 issue: 1 year: 2008 ident: CR55 article-title: Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings publication-title: PLoS One doi: 10.1371/journal.pone.0001394 – volume: 56 start-page: 387 year: 2010 end-page: 399 ident: CR37 article-title: Introduction to machine learning for brain imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.004 – volume: 7 start-page: 37 year: 2009a end-page: 53 ident: CR19 article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – volume: 18 start-page: 10 issue: 1 year: 2003 end-page: 27 ident: CR35 article-title: The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics publication-title: NeuroImage doi: 10.1006/nimg.2002.1300 – volume: 7 start-page: e29482 issue: 2 year: 2012 ident: CR42 article-title: Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents publication-title: PLoS One doi: 10.1371/journal.pone.0029482 – ident: CR29 – ident: CR54 – volume: 56 start-page: 797 issue: 2 year: 2011 end-page: 808 ident: CR46 article-title: “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.083 – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: CR2 article-title: Unified segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – year: 2010 ident: CR56 publication-title: Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures – volume: 8 start-page: 686 year: 2005 end-page: 691 ident: CR24 article-title: Predicting the orientation of invisible stimuli from activity in human primary visual cortex publication-title: Nature Neuroscience doi: 10.1038/nn1445 – volume: 56 start-page: 766 issue: 2 year: 2011 end-page: 781 ident: CR12 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 43 start-page: 44 year: 2008 end-page: 58 ident: CR13 article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.06.037 – volume: 293 start-page: 2425 issue: 5539 year: 2001 end-page: 2430 ident: CR23 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – volume: 545 start-page: 73 issue: 1 year: 2006 end-page: 80 ident: CR6 article-title: Predicting Alzheimer dementia in mild cognitive impairment patients. Are biomarkers useful? publication-title: European Journal of Pharmacology doi: 10.1016/j.ejphar.2006.06.023 – volume: 12 start-page: 178 year: 2002 end-page: 186 ident: CR27 article-title: Face repetition effects in implicit and explicit memory tests as measured by fMRI publication-title: Cerebral Cortex doi: 10.1093/cercor/12.2.178 – volume: 49 start-page: 2178 issue: 3 year: 2010 end-page: 2189 ident: CR38 article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.072 – ident: CR50 – volume: 60 start-page: 59 issue: 1 year: 2012 end-page: 70 ident: CR10 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 58 start-page: 793 issue: 3 year: 2011 end-page: 804 ident: CR40 article-title: Patient classification as an outlier detection problem: an application of the one-class support vector machine publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.042 – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: CR15 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 3 start-page: 1157 year: 2007 end-page: 1182 ident: CR18 article-title: An introduction to variable and feature selection publication-title: Journal of Machine Learning Research – year: 1998 ident: CR7 publication-title: A tutorial on support vector machines for pattern recognition – ident: CR5 – volume: 6 start-page: 1880 year: 1995 end-page: 1884 ident: CR31 article-title: Functional role of the prefrontal cortex in memory retrieval: a PET study publication-title: Neuroreport doi: 10.1097/00001756-199510020-00014 – volume: 8 start-page: 679 year: 2005 end-page: 685 ident: CR30 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nature Neuroscience doi: 10.1038/nn1444 – volume: 7 start-page: e35860 issue: 4 year: 2012 ident: CR53 article-title: Decoding semi-constrained brain activity from fMRI using support vector machines and gaussian processes publication-title: PLoS One doi: 10.1371/journal.pone.0035860 – volume: 33 start-page: 1055 issue: 4 year: 2006 end-page: 1065 ident: CR39 article-title: The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.08.016 – volume: 17 start-page: 580 issue: 4 year: 2005 end-page: 590 ident: CR43 article-title: Partially distributed representations of objects and faces in ventral temporal cortex publication-title: Journal of Cognitive Neuroscience doi: 10.1162/0898929053467550 – volume: 11 start-page: 805 issue: 6 year: 2000 end-page: 821 ident: CR1 article-title: Voxel-based morphometry—The methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 35 start-page: 1157 year: 2002 end-page: 1165 ident: CR57 article-title: How distributed is visual category information in human occipito-temporal cortex? An fMRI study publication-title: Neuron doi: 10.1016/S0896-6273(02)00877-2 – volume: 56 start-page: 662 year: 2011 end-page: 673 ident: CR9 article-title: Kernel regression for fMRI pattern prediction publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.058 – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: CR11 article-title: Functional magnetic resonance imaging (fMRI) ‘brain reading’: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00049-1 – volume: 17 start-page: 323 issue: 4 year: 2007 end-page: 328 ident: CR26 article-title: Reading hidden intentions in the human brain publication-title: Current Biology doi: 10.1016/j.cub.2006.11.072 – volume: 26 start-page: 317 year: 2005 end-page: 329 ident: CR36 article-title: Support vector machines for temporal classification of block design fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.048 – volume: 11 start-page: 487 year: 1998 end-page: 493 ident: CR28 article-title: Exploiting generative models in discriminative classifiers publication-title: In Advances in Neural Information Processing Systems – volume: 61 start-page: 457 issue: 2 year: 2011 end-page: 463 ident: CR33 article-title: Diagnostic neuroimaging across diseases publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.002 – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: CR60 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 999888 start-page: 2825 year: 2011 end-page: 2830 ident: CR44 article-title: Scikit-learn: machine learning in python publication-title: Journal of Machine Learning Research – ident: CR48 – volume: 23 start-page: 156 issue: 1 year: 2004 end-page: 166 ident: CR21 article-title: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.05.020 – year: 2007 ident: CR16 publication-title: Statistical parametric mapping: the analysis of functional brain images – volume: 3 start-page: 3 year: 2009b ident: CR20 article-title: PyMVPA: a unifying approach to the analysis of neuroscientific data publication-title: Frontiers in Neuroinformatics doi: 10.3389/neuro.11.003.2009 – ident: CR52 – ident: CR17 – volume: 45 start-page: 2085 year: 2012 end-page: 2100 ident: CR49 article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.09.011 – volume: 14 start-page: 451 issue: 4 year: 2012 end-page: 460 ident: CR41 article-title: Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression publication-title: Bipolar Disorders doi: 10.1111/j.1399-5618.2012.01019.x – volume: 310 start-page: 1963 issue: 5756 year: 2005 end-page: 1966 ident: CR47 article-title: Category-specific cortical activity precedes retrieval during memory search publication-title: Science doi: 10.1126/science.1117645 – volume: 20 start-page: 544 issue: 6 year: 2010 end-page: 547 ident: CR8 article-title: Decoding individual episodic memory traces in the human hippocampus publication-title: Current Biology doi: 10.1016/j.cub.2010.01.053 – volume: 103 start-page: 3863 year: 2006 end-page: 3868 ident: CR34 article-title: Information-based functional brain mapping publication-title: PNAS doi: 10.1073/pnas.0600244103 – volume: 45 start-page: 333 year: 2009 end-page: 341 ident: CR3 article-title: Computing average shaped tissue probability templates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.008 – ident: CR59 – volume: 55 start-page: 954 year: 2011 end-page: 967 ident: CR4 article-title: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.049 – volume: 7 start-page: 523 year: 2006 end-page: 534 ident: CR25 article-title: Decoding mental states from brain activity in humans publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1931 – volume: 45 start-page: 199 year: 2009 end-page: 209 ident: CR45 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 322 start-page: 970 issue: 5903 year: 2008 end-page: 973 ident: CR14 article-title: “Who” is saying “What”? brain-based decoding of human voice and speech publication-title: Science doi: 10.1126/science.1164318 – volume: 45 start-page: 2085 year: 2012 ident: 9178_CR49 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.09.011 – volume: 7 start-page: 37 year: 2009a ident: 9178_CR19 publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – ident: 9178_CR51 doi: 10.1017/CBO9780511809682 – volume: 545 start-page: 73 issue: 1 year: 2006 ident: 9178_CR6 publication-title: European Journal of Pharmacology doi: 10.1016/j.ejphar.2006.06.023 – ident: 9178_CR50 doi: 10.1016/j.neuroimage.2012.05.078 – volume: 310 start-page: 1963 issue: 5756 year: 2005 ident: 9178_CR47 publication-title: Science doi: 10.1126/science.1117645 – volume: 103 start-page: 3863 year: 2006 ident: 9178_CR34 publication-title: PNAS doi: 10.1073/pnas.0600244103 – volume: 6 start-page: 1880 year: 1995 ident: 9178_CR31 publication-title: Neuroreport doi: 10.1097/00001756-199510020-00014 – volume: 56 start-page: 387 year: 2010 ident: 9178_CR37 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.004 – volume: 45 start-page: 333 year: 2009 ident: 9178_CR3 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.008 – volume: 67 start-page: 301 year: 2005 ident: 9178_CR60 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – ident: 9178_CR17 – volume: 7 start-page: 523 year: 2006 ident: 9178_CR25 publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1931 – volume: 26 start-page: 839 year: 2005 ident: 9178_CR2 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 7 start-page: e29482 issue: 2 year: 2012 ident: 9178_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0029482 – volume: 293 start-page: 2425 issue: 5539 year: 2001 ident: 9178_CR23 publication-title: Science doi: 10.1126/science.1063736 – volume: 49 start-page: 2178 issue: 3 year: 2010 ident: 9178_CR38 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.072 – volume: 33 start-page: 1055 issue: 4 year: 2006 ident: 9178_CR39 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.08.016 – volume: 11 start-page: 805 issue: 6 year: 2000 ident: 9178_CR1 publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 8 start-page: 686 year: 2005 ident: 9178_CR24 publication-title: Nature Neuroscience doi: 10.1038/nn1445 – volume: 3 start-page: 3 year: 2009b ident: 9178_CR20 publication-title: Frontiers in Neuroinformatics doi: 10.3389/neuro.11.003.2009 – volume: 1 start-page: 211 year: 2001 ident: 9178_CR58 publication-title: Journal of Machine Learning Research – volume: 56 start-page: 797 issue: 2 year: 2011 ident: 9178_CR46 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.083 – volume: 3 start-page: 1157 year: 2007 ident: 9178_CR18 publication-title: Journal of Machine Learning Research – volume: 50 start-page: 883 year: 2010 ident: 9178_CR15 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 131 start-page: 681 year: 2008 ident: 9178_CR32 publication-title: Brain doi: 10.1093/brain/awm319 – ident: 9178_CR52 – volume: 23 start-page: 156 issue: 1 year: 2004 ident: 9178_CR21 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.05.020 – volume: 8 start-page: 679 year: 2005 ident: 9178_CR30 publication-title: Nature Neuroscience doi: 10.1038/nn1444 – volume: 43 start-page: 44 year: 2008 ident: 9178_CR13 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.06.037 – volume: 17 start-page: 580 issue: 4 year: 2005 ident: 9178_CR43 publication-title: Journal of Cognitive Neuroscience doi: 10.1162/0898929053467550 – volume: 11 start-page: 487 year: 1998 ident: 9178_CR28 publication-title: In Advances in Neural Information Processing Systems – volume: 3 start-page: e1394 issue: 1 year: 2008 ident: 9178_CR55 publication-title: PLoS One doi: 10.1371/journal.pone.0001394 – volume: 999888 start-page: 2825 year: 2011 ident: 9178_CR44 publication-title: Journal of Machine Learning Research – volume: 20 start-page: 544 issue: 6 year: 2010 ident: 9178_CR8 publication-title: Current Biology doi: 10.1016/j.cub.2010.01.053 – volume: 26 start-page: 317 year: 2005 ident: 9178_CR36 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.048 – volume-title: Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures year: 2010 ident: 9178_CR56 doi: 10.1007/978-3-642-15711-0_66 – ident: 9178_CR59 doi: 10.1016/j.neuroimage.2007.09.073 – volume: 18 start-page: 10 issue: 1 year: 2003 ident: 9178_CR35 publication-title: NeuroImage doi: 10.1006/nimg.2002.1300 – ident: 9178_CR29 – volume: 14 start-page: 451 issue: 4 year: 2012 ident: 9178_CR41 publication-title: Bipolar Disorders doi: 10.1111/j.1399-5618.2012.01019.x – volume: 56 start-page: 766 issue: 2 year: 2011 ident: 9178_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 322 start-page: 970 issue: 5903 year: 2008 ident: 9178_CR14 publication-title: Science doi: 10.1126/science.1164318 – ident: 9178_CR22 – ident: 9178_CR54 doi: 10.1109/PRNI.2012.19 – ident: 9178_CR48 – volume: 7 start-page: e35860 issue: 4 year: 2012 ident: 9178_CR53 publication-title: PLoS One doi: 10.1371/journal.pone.0035860 – ident: 9178_CR5 – volume: 60 start-page: 59 issue: 1 year: 2012 ident: 9178_CR10 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.066 – volume-title: Statistical parametric mapping: the analysis of functional brain images year: 2007 ident: 9178_CR16 – volume: 55 start-page: 954 year: 2011 ident: 9178_CR4 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.049 – volume: 17 start-page: 323 issue: 4 year: 2007 ident: 9178_CR26 publication-title: Current Biology doi: 10.1016/j.cub.2006.11.072 – volume: 61 start-page: 457 issue: 2 year: 2011 ident: 9178_CR33 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.002 – volume-title: A tutorial on support vector machines for pattern recognition year: 1998 ident: 9178_CR7 – volume: 19 start-page: 261 year: 2003 ident: 9178_CR11 publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00049-1 – volume: 35 start-page: 1157 year: 2002 ident: 9178_CR57 publication-title: Neuron doi: 10.1016/S0896-6273(02)00877-2 – volume: 56 start-page: 662 year: 2011 ident: 9178_CR9 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.058 – volume: 12 start-page: 178 year: 2002 ident: 9178_CR27 publication-title: Cerebral Cortex doi: 10.1093/cercor/12.2.178 – volume: 45 start-page: 199 year: 2009 ident: 9178_CR45 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 58 start-page: 793 issue: 3 year: 2011 ident: 9178_CR40 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.042 |
RestrictionsOnAccess | open access |
SSID | ssj0026700 |
Score | 2.49651 |
Snippet | In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially... |
SourceID | pubmedcentral liege proquest pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 319 |
SubjectTerms | Age Factors Algorithms Applied sciences Artificial intelligence Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biomedicine Brain - physiology Brain Mapping Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer science; control theory; systems Computer Simulation Engineering, computing & technology Exact sciences and technology Human health sciences Humans image analysis Image Processing, Computer-Assisted Ingénierie, informatique & technologie Investigative techniques, diagnostic techniques (general aspects) Learning and adaptive systems Likelihood Functions machine learning Medical sciences Multivariate Analysis multivariate pattern analysis Nervous system Neuroimaging Neurology Neurosciences Original Original Article Pattern Recognition, Automated Pattern recognition. Digital image processing. Computational geometry Predictive Value of Tests Radiodiagnosis. Nmr imagery. Nmr spectrometry Radionuclide investigations Sciences de la santé humaine Software toolbox |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-29mUvY1334a0rGow9bDOLbEWK-zLKWCmDlVJSyJvQl9dAanVNUtr_vneKnSz7CHkJ-JzIpzvrd7rT_QDelU45YwcmL1QtMUCxIa8C9zn3TrjamJ4MdDj5x4k8PhffR_1Ru-E2bcsqu3dielH76GiP_DMXdMpT4XL85epXTqxRlF1tKTQewja1LiOrVqNVwNUeQUGnrnAsFe-ymunoXEHFCcRtgAELBlJr69L2hDLWVCdppqiqesFx8S8Q-nct5R8J1bROHT2Bxy3AZIcLi9iBB6F5CruHDQbXl3fsPUsln2kvfRfE6Vk8GcYDdpq6bDbsrCsnig1DNMtS647xZWIyYsMYJzbePoPzo2_Dr8d5S6OQO4Qbs9z2pbNB4WJsrZDG-GBkhWGb96asET4ERHle1BhnOBWcd2WNjhq4dLweEENZ-Ry2mtiEl8CqkjvBe7XDXxTK4KcamAohXF1Z4_wgg16nRO3aHuNEdTHRq-7IpHeNetekd80z-LC85WrRYGOT8Kc0Mzpe27G-KTQ1x07f55Of2jhtg0Y8iZKCsEcG-2sTuPyDQkmEYVJlsNfNqG59d6pXlpbB2-Vl9DpKpZgmxHmSKQkr880yiP0IImTwYmEkqwEgeFCy389ArZnPUoAebP1KM75I3b9LVVC2PIOPnaH9NvT_Ke7V5gd9DY-KRPNBZch7sDW7noc3CLZmdj951D1CuiU6 priority: 102 providerName: ProQuest |
Title | PRoNTo: Pattern Recognition for Neuroimaging Toolbox |
URI | https://link.springer.com/article/10.1007/s12021-013-9178-1 https://www.ncbi.nlm.nih.gov/pubmed/23417655 https://www.proquest.com/docview/1412097251 https://www.proquest.com/docview/1413161511 https://www.proquest.com/docview/1419373036 http://orbi.ulg.ac.be/handle/2268/140242 https://pubmed.ncbi.nlm.nih.gov/PMC3722452 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x9YUXBIyPsFEFCfEARNT5sBveStUxgaiqqpXKk2U7NlTqkmltEfz33LlJRseYhCIlkXz-yNkn_y53vgN4mRhhlO6rKBaOo4KibZRbVkSsMKlxSvW4pcPJX8b8bJ5-WmSLOlg0nYW5Zr9_t2YxORFQDgJULFDhOYBOxhJBWRqGfNjqVvVpE5TfHLvNWWPAvKmJvS2osyLjNLlEqjVyxe3SWdyEN_92m7xmO_Vb0ul9uFdjyXCwm_wHcMeWD-FoUKIeff4rfBV6707_2_wI0sm0Gs-q9-HEB9Qsw2njOVSVIQLX0EfpWJ77pEXhrKpWuvr5COano9nwLKozJkQGkcUm0hk32grcd7VOuVKFVTxHDa0oVOIQKVgEdEXqUKUwwprCJA5l0jJumOtTMrLkMRyWVWmfQpgnzKSs5wy2mAqFV95XOaI1l2tlin4AvYaJ0tThxCmrxUpeBUImvkvkuyS-SxbA67bKxS6Wxm3Eb_3MyOpSL-WPWFIcbP--XX2TykhtJUJHpEwJZgTQ3ZvAtoNYcERcXARw0syorMV0jXXp6LBAjBfAi7YYBYysJqq01dbTJASL2e00CPMIDQTwZLdIrgaAOEHwLAtA7C2floA-bL-kXH73gb4TEZNhPIA3zUL7Y-j_Ytyz_6I-hruxT_BBDsgncLi53NrnCLM2ugsHYiG60Bl8_Pp5hM8Po_Fk2vVih_d5PPgNmRsimw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7QFeEDA-AmMYCXgAIuoktRskhCZg6thWTVMn9c3YjgOVunisLbB_ir-RO6dpKR99m_pSKdc0vjv7fpf7AniSWmm16eg4kaVAB8W4OHe8iHlhM1tq3RKOipMPe6J7kn0ctAdr8LOphaG0yuZMDAd14S29I3_FM6rylGiO3559jWlqFEVXmxEatVrsu4vv6LKN3-y9R_k-TZLdD_133Xg2VSC2aH0nsWkLa5xE22RMJrQunBY5ejFFodMSralD0FNkJcJuK50tbFqi3jouLC87NLArxftegQ00vC1y9uRg4eDNSl7wEMlx7TlvoqihVC-hZAiapYAOEjpuS3ZwY0QRcsrL1GMUTVnP1PgX6P07d_OPAG6wi7s34PoM0LKdWgNvwpqrbsHmToXO_OkFe8ZCiml4d78J2dGx7_X9a3YUunpW7LhJX_IVQ_TMQquQ4WmYnMT63o-M_3EbTi6FwXdgvfKVuwcsT7nNeKu0eMdMavzkHZ0jZCxzo23RiaDVMFHZWU9zGq0xUotuzMR3hXxXxHfFI3g-_8lZ3dBjFfHLIBnlz81QfUsUNeMO36ejz0pbZZxC_IqUGWGdCLaXBDj_g0QKhH1CRrDVSFTNzoqxWmh2BI_nl3GXU-hGV85PA01K2JyvpkGsSZAkgru1kiweAMGKFO12BHJJfeYEtLDlK9XwS-g2nsqEovMRvGgU7bdH_x_j7q9e6CO42u0fHqiDvd7-A7iWhBEjlAK9BeuT86l7iEBvYrbD7mLw6bK38y-uqmLf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VREK8IKAchlKMBDwAVuMjuzESQoU2ailEUZRKfVt212uIlHpLkwD9a_w6ZtZHCEfeKr9E8sTHzOzON54L4EmsuZaqJ4OI5wwdFGWC1IRZEGY60bmUHWaoOPnjgB0cJ-9Puicb8LOuhaG0ynpPdBt1ZjV9I98JE6ry5GiOd_IqLWK4139z9jWgCVIUaa3HaZQqcmQuvqP7Nnt9uIeyfhpF_f3xu4OgmjAQaLTE80B1mVaGo51SKmFSZkayFD2aLJNxjpbVIADKkhwhuOZGZzrOUYdNyHSY92h4V4zXvQJtTl5RC9pv9wfDUePuVQUwuKWkyIk0rGOqrnAvotQImqyA7hK6cStWsT2leDllacoZCiovJ2z8CwL_ncn5RzjXWcn-DbhewVt_t9THm7BhiluwuVuga3964T_zXcKp-5K_CclwZAdj-8ofuh6fhT-qk5ls4SOW9l3jkMmpm6Pkj62dKvvjNhxfCovvQKuwhbkHfhqHOgk7ucYrJlzikfZkigAyT5XUWc-DTs1EoasO5zRoYyqWvZmJ7wL5LojvIvTgefOXs7K9xzril04ywp6rifgWCWrN7X4vpp-F1EIZgWgWKRNCPh5srwiwuUHEGYJAxj3YqiUqqp1jJpZ67sHj5jSueQrkyMLYhaOJCamH62kQeRJA8eBuqSTLB0Dowlm36wFfUZ-GgF5s9Uwx-eJ6j8c8oli9By9qRfvt0f_HuPvrX_QRXMWlLD4cDo4ewLXIzRuhfOgtaM3PF-Yhor652q6Wlw-fLntF_wKD_2h6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PRoNTo%3A+Pattern+Recognition+for+Neuroimaging+Toolbox&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Schrouff%2C+J.&rft.au=Rosa%2C+M.+J.&rft.au=Rondina%2C+J.+M.&rft.au=Marquand%2C+A.+F.&rft.date=2013-07-01&rft.pub=Springer+US&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=11&rft.issue=3&rft.spage=319&rft.epage=337&rft_id=info:doi/10.1007%2Fs12021-013-9178-1&rft.externalDocID=10_1007_s12021_013_9178_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon |