Methods for the directed evolution of proteins

Key Points Directed evolution is a cyclic process that alternates between gene diversification and screening for or selection of functional gene variants. Library size limitations can be overcome by focusing library diversity on residues implicated by molecular structures, computational models or ph...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Genetics Vol. 16; no. 7; pp. 379 - 394
Main Authors Packer, Michael S., Liu, David R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key Points Directed evolution is a cyclic process that alternates between gene diversification and screening for or selection of functional gene variants. Library size limitations can be overcome by focusing library diversity on residues implicated by molecular structures, computational models or phylogenetic data. In cases in which there is limited information, random mutagenesis can be used to interrogate the uncertain determinants of protein function. Recombination methodologies access new combinations of functional variation and can shuffle disparate genetic elements to yield new chimeric proteins. Low-throughput screens can directly measure individual phenotypes and thus accurately isolate desired subpopulations. Screen throughput can be increased using indirect visible reporters that are strongly coupled to the desired phenotypes. Selections isolate functional variants through selective replication schemes or physical segregation. Selections operate simultaneously on entire populations and thus offer unparalleled throughput. Directed evolution uses laboratory-based evolution to enhance the properties of biomolecules, primarily to generate proteins with optimized or novel activities. This Review discusses the diverse range of technologies for the directed evolution of proteins, particularly methods for generating diversity in the gene library and approaches for screening and selecting for variants with desired properties. The relative strengths and limitations of these approaches are highlighted to guide readers to appropriate strategies. Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
AbstractList Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
Key Points Directed evolution is a cyclic process that alternates between gene diversification and screening for or selection of functional gene variants. Library size limitations can be overcome by focusing library diversity on residues implicated by molecular structures, computational models or phylogenetic data. In cases in which there is limited information, random mutagenesis can be used to interrogate the uncertain determinants of protein function. Recombination methodologies access new combinations of functional variation and can shuffle disparate genetic elements to yield new chimeric proteins. Low-throughput screens can directly measure individual phenotypes and thus accurately isolate desired subpopulations. Screen throughput can be increased using indirect visible reporters that are strongly coupled to the desired phenotypes. Selections isolate functional variants through selective replication schemes or physical segregation. Selections operate simultaneously on entire populations and thus offer unparalleled throughput. Directed evolution uses laboratory-based evolution to enhance the properties of biomolecules, primarily to generate proteins with optimized or novel activities. This Review discusses the diverse range of technologies for the directed evolution of proteins, particularly methods for generating diversity in the gene library and approaches for screening and selecting for variants with desired properties. The relative strengths and limitations of these approaches are highlighted to guide readers to appropriate strategies. Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
Audience Academic
Author Packer, Michael S.
Liu, David R.
Author_xml – sequence: 1
  givenname: Michael S.
  surname: Packer
  fullname: Packer, Michael S.
  organization: Department of Chemistry and Chemical Biology, Harvard University
– sequence: 2
  givenname: David R.
  surname: Liu
  fullname: Liu, David R.
  email: drliu@fas.harvard.edu
  organization: Department of Chemistry and Chemical Biology, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26055155$$D View this record in MEDLINE/PubMed
BookMark eNqF0ltrFDEUB_AgFXtR_AYyINT6MGvumTyWorZQEbw8h2zmZDdldlKTjOi3N0un2l0FyUNC-OU_k3NyjA7GOAJCzwleEMy6N2NaMU3VI3REuCItxpIf_F4LeYiOc77BmEii2BN0SCUWgghxhBYfoKxjnxsfU1PW0PQhgSvQN_A9DlMJcWyib25TLBDG_BQ99nbI8GyeT9DXd2-_XFy21x_fX12cX7dOclZaxr0QVHDeU0e18r4n2HrPl8pr2VmmsPDMeiJsrzSjAmiHlQfqOeil6B07QWd3ufXD3ybIxWxCdjAMdoQ4ZUOUYh2TmuL_U6kxJUrzrtKXe_QmTmmsF6mBUtJOM8b_qJUdwITRx5Ks24aac05rOXGnaVWLf6g6etgEV7vjQ93fOfB650A1BX6UlZ1yNlefP-3a0wd2DXYo6zy3I-_CF_ONpuUGenObwsamn-a-wRW0d8ClmHMCb1wodptTfzcMhmCzfUBmfkDVv9rz95F_y7nuuYpxBelBMffoL6lbzE8
CitedBy_id crossref_primary_10_1021_acs_chemrev_7b00741
crossref_primary_10_1186_s13036_023_00366_4
crossref_primary_10_3390_catal11070851
crossref_primary_10_1021_acs_chemrev_8b00399
crossref_primary_10_1021_acs_jafc_4c07745
crossref_primary_10_1007_s12257_019_0083_9
crossref_primary_10_1021_acschembio_0c00684
crossref_primary_10_1038_s41592_019_0598_1
crossref_primary_10_1126_sciadv_aav8185
crossref_primary_10_1371_journal_pcbi_1006956
crossref_primary_10_1002_aic_16814
crossref_primary_10_2174_1389203724666230822100104
crossref_primary_10_1016_j_copbio_2022_102684
crossref_primary_10_1021_acssynbio_2c00668
crossref_primary_10_1007_s10529_017_2297_2
crossref_primary_10_1021_acs_bioconjchem_6b00111
crossref_primary_10_1089_genbio_2023_29086_hth
crossref_primary_10_1016_j_sbi_2020_01_005
crossref_primary_10_1007_s00521_022_07532_7
crossref_primary_10_1021_acssynbio_0c00135
crossref_primary_10_1073_pnas_2012266117
crossref_primary_10_1002_ange_201901491
crossref_primary_10_1007_s00253_018_9240_x
crossref_primary_10_1093_jimb_kuad013
crossref_primary_10_1111_1751_7915_14298
crossref_primary_10_1016_j_cels_2023_10_009
crossref_primary_10_1021_acssynbio_0c00130
crossref_primary_10_1016_j_bpj_2022_01_007
crossref_primary_10_1016_j_nbt_2024_05_005
crossref_primary_10_3390_fishes7060370
crossref_primary_10_1021_acssynbio_6b00297
crossref_primary_10_1186_s13068_015_0383_z
crossref_primary_10_3390_genes12060912
crossref_primary_10_1002_aic_16924
crossref_primary_10_1021_acssynbio_4c00606
crossref_primary_10_1007_s10529_017_2318_1
crossref_primary_10_1002_cbic_202100702
crossref_primary_10_1016_j_nbt_2019_01_008
crossref_primary_10_1038_s41467_023_43967_9
crossref_primary_10_1039_C7SC02686B
crossref_primary_10_1007_s13213_019_01496_1
crossref_primary_10_1002_ijch_201900110
crossref_primary_10_3390_synbio1010005
crossref_primary_10_3390_catal11020218
crossref_primary_10_1016_j_biotno_2020_01_001
crossref_primary_10_1016_j_bbrc_2018_10_147
crossref_primary_10_7554_eLife_84831_3
crossref_primary_10_1126_science_aax1837
crossref_primary_10_1093_protein_gzab023
crossref_primary_10_1016_j_ymeth_2018_04_014
crossref_primary_10_1021_acs_nanolett_3c01229
crossref_primary_10_1126_sciadv_1600692
crossref_primary_10_1021_acs_biochem_1c00757
crossref_primary_10_1007_s12033_019_00187_1
crossref_primary_10_1007_s10295_015_1704_8
crossref_primary_10_1007_s00253_022_11859_5
crossref_primary_10_1002_anie_202302304
crossref_primary_10_1007_s00253_019_10179_5
crossref_primary_10_1073_pnas_1722633115
crossref_primary_10_1002_anie_202304843
crossref_primary_10_1016_j_stemcr_2018_07_002
crossref_primary_10_1093_bulcsj_uoae090
crossref_primary_10_1021_acs_iecr_1c04943
crossref_primary_10_1002_bit_27002
crossref_primary_10_1002_pro_3494
crossref_primary_10_1039_C8OB03109F
crossref_primary_10_3390_molecules24162879
crossref_primary_10_1126_sciimmunol_ade6364
crossref_primary_10_1038_s41596_020_00410_3
crossref_primary_10_1016_j_enzmictec_2016_05_009
crossref_primary_10_1002_bit_28339
crossref_primary_10_1016_j_cjsc_2024_100349
crossref_primary_10_1002_ange_202302304
crossref_primary_10_1093_nar_gkv1497
crossref_primary_10_1007_s00294_018_0850_8
crossref_primary_10_1021_acs_biochem_2c00357
crossref_primary_10_1002_biot_202000311
crossref_primary_10_1002_ange_202304843
crossref_primary_10_1038_nbt_3762
crossref_primary_10_1002_cctc_201701374
crossref_primary_10_1016_j_procbio_2019_03_002
crossref_primary_10_1002_anie_202203613
crossref_primary_10_1016_j_enzmictec_2021_109914
crossref_primary_10_1021_acsaenm_3c00263
crossref_primary_10_1093_molbev_msae267
crossref_primary_10_1039_D1CS00722J
crossref_primary_10_1021_acs_biochem_7b00886
crossref_primary_10_1007_s00792_022_01261_4
crossref_primary_10_1016_j_cobme_2023_100458
crossref_primary_10_1002_bit_26327
crossref_primary_10_1016_j_bmc_2016_05_069
crossref_primary_10_1038_s41598_021_88708_4
crossref_primary_10_1016_j_abb_2022_109123
crossref_primary_10_1016_j_sbi_2021_02_005
crossref_primary_10_1016_j_enzmictec_2023_110349
crossref_primary_10_7554_eLife_85126
crossref_primary_10_1016_j_molcel_2017_09_029
crossref_primary_10_1038_s41589_023_01387_2
crossref_primary_10_1007_s11427_019_9538_3
crossref_primary_10_1021_jacs_2c06019
crossref_primary_10_1016_j_rser_2023_113164
crossref_primary_10_1002_bit_26455
crossref_primary_10_1016_j_chembiol_2018_06_002
crossref_primary_10_1038_s41594_018_0175_9
crossref_primary_10_1021_acscombsci_7b00153
crossref_primary_10_1016_j_bmc_2017_07_064
crossref_primary_10_1093_protein_gzae009
crossref_primary_10_3390_ijms241914513
crossref_primary_10_1021_acs_biomac_6b00183
crossref_primary_10_1093_protein_gzae005
crossref_primary_10_1038_s41589_024_01823_x
crossref_primary_10_1093_protein_gzae003
crossref_primary_10_1016_j_procbio_2025_01_013
crossref_primary_10_1007_s11240_022_02295_4
crossref_primary_10_1016_j_synbio_2022_01_001
crossref_primary_10_1016_j_bpj_2023_09_021
crossref_primary_10_1021_acs_jpca_3c01896
crossref_primary_10_1038_s41570_018_0015_9
crossref_primary_10_1038_s41598_017_12440_1
crossref_primary_10_4014_jmb_2304_04031
crossref_primary_10_1007_s00253_024_13233_z
crossref_primary_10_1021_acssynbio_0c00589
crossref_primary_10_1080_21655979_2019_1595990
crossref_primary_10_3923_ajbmb_2019_17_28
crossref_primary_10_1039_D0CB00136H
crossref_primary_10_1134_S1068162017050028
crossref_primary_10_1021_acs_bioconjchem_8b00710
crossref_primary_10_1016_j_bbagen_2017_06_014
crossref_primary_10_1016_j_bej_2020_107555
crossref_primary_10_1021_acssynbio_4c00316
crossref_primary_10_1039_D0CC05450J
crossref_primary_10_1016_j_ijbiomac_2020_12_097
crossref_primary_10_1186_s13068_020_01753_5
crossref_primary_10_1016_j_ab_2017_05_015
crossref_primary_10_1021_acs_analchem_2c03808
crossref_primary_10_1080_21655979_2022_2085541
crossref_primary_10_3390_plants10040621
crossref_primary_10_1021_acs_jctc_3c00036
crossref_primary_10_1371_journal_pone_0215993
crossref_primary_10_1021_acssynbio_4c00783
crossref_primary_10_1038_s41929_019_0340_5
crossref_primary_10_1016_j_ymthe_2020_11_009
crossref_primary_10_3390_catal10091072
crossref_primary_10_1038_s41551_024_01267_7
crossref_primary_10_1002_anie_202310910
crossref_primary_10_1016_j_chembiol_2021_07_013
crossref_primary_10_1021_acscentsci_7b00394
crossref_primary_10_1016_j_pecs_2024_101184
crossref_primary_10_1021_jacsau_4c00070
crossref_primary_10_1002_ange_201901782
crossref_primary_10_1016_j_jpha_2025_101260
crossref_primary_10_1016_j_sbi_2022_102370
crossref_primary_10_1016_j_envres_2023_115481
crossref_primary_10_1021_acscatal_0c01618
crossref_primary_10_1074_jbc_M116_725978
crossref_primary_10_1093_femspd_ftz003
crossref_primary_10_1021_acschembio_6b00794
crossref_primary_10_1007_s00449_021_02667_8
crossref_primary_10_1021_acscatal_0c01502
crossref_primary_10_1021_acs_organomet_1c00668
crossref_primary_10_1111_tpj_13652
crossref_primary_10_3390_microorganisms9122593
crossref_primary_10_1107_S2052252516018017
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1002_anie_202216721
crossref_primary_10_1039_C5NP00128E
crossref_primary_10_1038_srep22284
crossref_primary_10_1051_e3sconf_202123302030
crossref_primary_10_1021_acs_bioconjchem_6b00647
crossref_primary_10_1038_s41467_018_05205_5
crossref_primary_10_1016_j_mcat_2023_113755
crossref_primary_10_1038_s41592_021_01100_y
crossref_primary_10_1016_j_cbpa_2020_02_002
crossref_primary_10_1007_s12539_019_00342_x
crossref_primary_10_1021_acscombsci_8b00182
crossref_primary_10_1002_admt_202401209
crossref_primary_10_1146_annurev_biophys_101220_072829
crossref_primary_10_1002_cbic_201600546
crossref_primary_10_1038_s41598_017_15400_x
crossref_primary_10_1371_journal_pone_0154765
crossref_primary_10_1016_j_enzmictec_2016_07_011
crossref_primary_10_1016_j_heliyon_2024_e32673
crossref_primary_10_1038_s41589_018_0004_9
crossref_primary_10_1080_10242422_2022_2030317
crossref_primary_10_1021_acs_jmedchem_3c01584
crossref_primary_10_3390_jof8040358
crossref_primary_10_1016_j_enzmictec_2022_110153
crossref_primary_10_1146_annurev_micro_022620_081059
crossref_primary_10_3390_catal14020105
crossref_primary_10_1002_bab_2117
crossref_primary_10_1038_ncomms15352
crossref_primary_10_3390_ijms241411428
crossref_primary_10_1039_D1CS00065A
crossref_primary_10_1016_j_sbi_2017_12_010
crossref_primary_10_1021_acssynbio_1c00030
crossref_primary_10_1002_btpr_3394
crossref_primary_10_1002_cbic_202300309
crossref_primary_10_1093_nar_gky067
crossref_primary_10_1016_j_checat_2022_09_026
crossref_primary_10_1021_acs_jafc_5c01311
crossref_primary_10_1038_s41467_024_46332_6
crossref_primary_10_3390_ijms24108581
crossref_primary_10_1016_j_cell_2018_10_021
crossref_primary_10_1016_j_chembiol_2020_02_004
crossref_primary_10_1021_acsbiomaterials_3c00088
crossref_primary_10_4049_jimmunol_2300492
crossref_primary_10_1038_s42003_019_0677_y
crossref_primary_10_1002_cbic_201800750
crossref_primary_10_1016_j_copbio_2019_02_002
crossref_primary_10_1093_nar_gkad503
crossref_primary_10_1002_anie_201609229
crossref_primary_10_1038_s41589_021_00876_6
crossref_primary_10_1038_s44160_024_00575_9
crossref_primary_10_1093_protein_gzw032
crossref_primary_10_1039_D0NJ03208E
crossref_primary_10_1016_j_cell_2020_11_040
crossref_primary_10_1002_bit_28977
crossref_primary_10_1016_j_cofs_2019_01_002
crossref_primary_10_1186_s40643_019_0288_y
crossref_primary_10_1021_acssynbio_2c00136
crossref_primary_10_1111_jnc_15168
crossref_primary_10_1016_j_chembiol_2021_12_001
crossref_primary_10_1016_j_jmb_2016_02_018
crossref_primary_10_1016_j_sbi_2022_102334
crossref_primary_10_1016_j_copbio_2016_12_003
crossref_primary_10_3390_life11030225
crossref_primary_10_1016_j_tibtech_2020_01_001
crossref_primary_10_1021_jacs_3c06030
crossref_primary_10_30878_ces_v26n3a9
crossref_primary_10_3390_ijms241713331
crossref_primary_10_3390_bioengineering5010011
crossref_primary_10_1016_j_chembiol_2018_08_008
crossref_primary_10_1038_s41467_024_46574_4
crossref_primary_10_1039_C9NP00071B
crossref_primary_10_1038_s41598_018_34022_5
crossref_primary_10_3389_fenrg_2023_1212719
crossref_primary_10_1016_j_tplants_2019_08_004
crossref_primary_10_1007_s11047_016_9595_9
crossref_primary_10_1088_2516_1075_acad51
crossref_primary_10_1038_ncomms15371
crossref_primary_10_1002_chem_202303889
crossref_primary_10_1016_j_talanta_2019_120709
crossref_primary_10_1007_s11426_017_9155_2
crossref_primary_10_1039_C9CC05470G
crossref_primary_10_1038_s44222_023_00030_y
crossref_primary_10_1002_biot_201600696
crossref_primary_10_1038_nprot_2017_084
crossref_primary_10_1002_wcms_1502
crossref_primary_10_1002_adhm_202304649
crossref_primary_10_1016_j_biopha_2019_108725
crossref_primary_10_1002_syst_202400075
crossref_primary_10_1039_C9NR04497C
crossref_primary_10_1146_annurev_micro_090816_093247
crossref_primary_10_1007_s11274_022_03403_4
crossref_primary_10_1021_acs_jafc_0c05785
crossref_primary_10_1021_jacs_6b12165
crossref_primary_10_1039_D0AN01667E
crossref_primary_10_3390_molecules26040968
crossref_primary_10_1093_synbio_ysy012
crossref_primary_10_1002_btpr_2482
crossref_primary_10_3389_fgene_2020_605620
crossref_primary_10_3390_bioengineering5020030
crossref_primary_10_1016_j_cbpa_2018_07_014
crossref_primary_10_1016_j_ijbiomac_2022_06_154
crossref_primary_10_1038_s41422_024_00989_2
crossref_primary_10_1016_j_sbi_2017_12_003
crossref_primary_10_1002_anie_202317482
crossref_primary_10_1016_j_cjche_2020_12_016
crossref_primary_10_1021_acssynbio_3c00385
crossref_primary_10_1093_protein_gzx012
crossref_primary_10_1093_protein_gzx013
crossref_primary_10_1093_protein_gzx018
crossref_primary_10_3390_molecules25132989
crossref_primary_10_1002_cctc_201901347
crossref_primary_10_1021_acs_chemrev_6b00077
crossref_primary_10_1002_anie_201901491
crossref_primary_10_1038_s41551_017_0144_3
crossref_primary_10_1074_mcp_R120_001941
crossref_primary_10_1364_BOE_449914
crossref_primary_10_1111_1751_7915_14183
crossref_primary_10_1016_j_sbi_2016_11_003
crossref_primary_10_3762_bjoc_14_28
crossref_primary_10_1093_protein_gzaa013
crossref_primary_10_1002_ange_201813499
crossref_primary_10_1080_13102818_2024_2385423
crossref_primary_10_34133_bdr_0031
crossref_primary_10_1016_j_molimm_2023_02_006
crossref_primary_10_1021_acssynbio_1c00074
crossref_primary_10_1016_j_tifs_2024_104552
crossref_primary_10_1016_j_checat_2022_07_011
crossref_primary_10_3390_molecules30050988
crossref_primary_10_1002_adma_202307499
crossref_primary_10_1016_j_biotechadv_2024_108463
crossref_primary_10_1021_acs_biomac_3c01418
crossref_primary_10_1039_D4GC06253A
crossref_primary_10_1002_cbic_202100578
crossref_primary_10_3390_v13020190
crossref_primary_10_1038_nrg_2016_11
crossref_primary_10_1038_s41587_019_0393_7
crossref_primary_10_1002_ange_202213942
crossref_primary_10_1007_s10822_017_0090_x
crossref_primary_10_3389_fbioe_2020_00927
crossref_primary_10_3390_separations9110354
crossref_primary_10_1021_acsomega_0c03508
crossref_primary_10_1186_s13068_019_1643_0
crossref_primary_10_1007_s10930_017_9716_z
crossref_primary_10_1016_j_biotechadv_2025_108522
crossref_primary_10_3390_ijms222010908
crossref_primary_10_1016_j_tibtech_2021_04_009
crossref_primary_10_1371_journal_pone_0210100
crossref_primary_10_1007_s00253_022_11936_9
crossref_primary_10_1002_ange_202409746
crossref_primary_10_1002_jmr_2546
crossref_primary_10_1007_s12551_017_0376_1
crossref_primary_10_1038_s41467_022_32818_8
crossref_primary_10_1021_acssynbio_3c00043
crossref_primary_10_1016_j_biotechadv_2023_108174
crossref_primary_10_3390_ph14060554
crossref_primary_10_1016_j_biotechadv_2023_108173
crossref_primary_10_1039_D4CB00256C
crossref_primary_10_1007_s00253_017_8103_1
crossref_primary_10_1093_synbio_ysz019
crossref_primary_10_1038_srep26257
crossref_primary_10_1021_acssynbio_9b00103
crossref_primary_10_1038_nchembio_2299
crossref_primary_10_3390_microorganisms9122518
crossref_primary_10_1039_C8CC02463D
crossref_primary_10_3390_cells13070585
crossref_primary_10_1016_j_cell_2018_11_015
crossref_primary_10_1016_j_mib_2020_05_010
crossref_primary_10_1002_pro_2876
crossref_primary_10_1007_s12257_018_0064_4
crossref_primary_10_1021_acs_bioconjchem_2c00030
crossref_primary_10_3390_ijms21051589
crossref_primary_10_1016_j_cels_2023_06_009
crossref_primary_10_1016_j_biortech_2017_05_031
crossref_primary_10_1186_s13068_019_1419_6
crossref_primary_10_3390_molecules200916643
crossref_primary_10_1016_j_biochi_2020_10_009
crossref_primary_10_1002_cbic_201800707
crossref_primary_10_3390_molecules28217249
crossref_primary_10_1080_1040841X_2017_1337713
crossref_primary_10_1093_nar_gkad003
crossref_primary_10_1073_pnas_2400439121
crossref_primary_10_1016_j_copbio_2017_05_012
crossref_primary_10_1021_acssynbio_4c00283
crossref_primary_10_1016_j_tips_2016_10_005
crossref_primary_10_1039_D0CC01660H
crossref_primary_10_1007_s00299_016_1993_z
crossref_primary_10_1080_19420862_2023_2168470
crossref_primary_10_1126_science_adh1720
crossref_primary_10_1016_j_tifs_2021_04_055
crossref_primary_10_1016_j_copbio_2020_12_005
crossref_primary_10_1016_j_biotechadv_2023_108238
crossref_primary_10_1016_j_bios_2021_113359
crossref_primary_10_1007_s00253_022_11799_0
crossref_primary_10_1098_rsta_2019_0274
crossref_primary_10_1007_s00253_016_7672_8
crossref_primary_10_1002_ijch_202300181
crossref_primary_10_1186_s13068_017_0720_5
crossref_primary_10_1021_acschembio_9b00669
crossref_primary_10_3389_fbioe_2024_1482270
crossref_primary_10_1039_C5IB00275C
crossref_primary_10_1002_anie_202309305
crossref_primary_10_1007_s00425_025_04645_w
crossref_primary_10_1021_acs_chemrev_1c00260
crossref_primary_10_1038_s41467_019_13500_y
crossref_primary_10_1039_C8CS00665B
crossref_primary_10_3390_jof7050359
crossref_primary_10_1002_ange_201907460
crossref_primary_10_1007_s12033_018_0122_3
crossref_primary_10_1016_j_bioorg_2018_09_012
crossref_primary_10_1016_j_rsci_2023_06_002
crossref_primary_10_1016_j_compbiolchem_2016_09_007
crossref_primary_10_1016_j_cbpa_2018_07_022
crossref_primary_10_1016_j_chempr_2020_01_012
crossref_primary_10_1042_ETLS20200257
crossref_primary_10_1126_science_adk1281
crossref_primary_10_1139_er_2023_0107
crossref_primary_10_1002_ange_202317482
crossref_primary_10_1039_D3SM00693J
crossref_primary_10_1002_cbic_202000681
crossref_primary_10_1007_s00253_021_11288_w
crossref_primary_10_1002_jctb_5746
crossref_primary_10_1038_s41597_023_02553_w
crossref_primary_10_1021_acs_analchem_7b04757
crossref_primary_10_1038_s42003_024_06340_0
crossref_primary_10_1002_fbe2_12019
crossref_primary_10_1016_j_cbpa_2023_102375
crossref_primary_10_1038_s41467_025_55987_8
crossref_primary_10_1038_s41578_020_00265_w
crossref_primary_10_1371_journal_pone_0311438
crossref_primary_10_1002_anie_201713377
crossref_primary_10_2174_0115748936303223240404043202
crossref_primary_10_1039_C8CS00981C
crossref_primary_10_3389_fclim_2022_879133
crossref_primary_10_1042_ETLS20190035
crossref_primary_10_1016_j_ymben_2017_03_010
crossref_primary_10_1002_ange_202216721
crossref_primary_10_1002_ange_201609229
crossref_primary_10_1002_ange_201713377
crossref_primary_10_1002_pro_2836
crossref_primary_10_1038_s41570_020_0191_2
crossref_primary_10_3390_molecules25102418
crossref_primary_10_1038_s41467_021_26279_8
crossref_primary_10_1002_ggn2_202100038
crossref_primary_10_1080_10408398_2019_1627284
crossref_primary_10_1038_nprot_2017_119
crossref_primary_10_1038_s41467_024_48295_0
crossref_primary_10_1002_ange_201909987
crossref_primary_10_7554_eLife_84831
crossref_primary_10_1088_0031_8949_92_1_013002
crossref_primary_10_1128_JVI_01932_17
crossref_primary_10_1021_acscatal_7b00408
crossref_primary_10_3389_fenvs_2018_00084
crossref_primary_10_1002_cbic_202400483
crossref_primary_10_1002_chem_202100110
crossref_primary_10_1080_02648725_2021_2017638
crossref_primary_10_1007_s10295_019_02237_8
crossref_primary_10_1002_pmic_201700471
crossref_primary_10_1038_s41556_018_0202_4
crossref_primary_10_1007_s00253_018_09610_0
crossref_primary_10_1039_D2OB00443G
crossref_primary_10_1038_s43586_022_00119_5
crossref_primary_10_1016_j_tibtech_2019_08_001
crossref_primary_10_1038_s41467_025_57206_w
crossref_primary_10_1073_pnas_1616816114
crossref_primary_10_1093_bioinformatics_btae002
crossref_primary_10_1016_j_bcp_2017_01_015
crossref_primary_10_1021_acssynbio_9b00419
crossref_primary_10_1038_s41467_020_20650_x
crossref_primary_10_1038_s41467_021_27266_9
crossref_primary_10_1021_acs_jpcb_0c09898
crossref_primary_10_1002_bies_202100052
crossref_primary_10_1002_chem_201701388
crossref_primary_10_1007_s10295_019_02191_5
crossref_primary_10_1021_acssynbio_1c00481
crossref_primary_10_1002_ange_201711016
crossref_primary_10_1039_D4NP00053F
crossref_primary_10_1021_acssynbio_3c00301
crossref_primary_10_1038_s41467_024_55399_0
crossref_primary_10_1080_19420862_2022_2076775
crossref_primary_10_1016_j_ymben_2018_03_009
crossref_primary_10_1038_s41467_020_19539_6
crossref_primary_10_1016_j_jclepro_2017_10_014
crossref_primary_10_1021_acscatal_0c01654
crossref_primary_10_1073_pnas_1712999114
crossref_primary_10_1038_srep38291
crossref_primary_10_1073_pnas_2109633118
crossref_primary_10_3390_molecules28248097
crossref_primary_10_1126_sciadv_aaw8451
crossref_primary_10_1039_C9NP00021F
crossref_primary_10_3390_catal6120194
crossref_primary_10_1002_chem_201902880
crossref_primary_10_1117_1_JBO_29_S2_S22711
crossref_primary_10_1021_acs_jctc_3c00602
crossref_primary_10_1007_s11816_019_00562_z
crossref_primary_10_1039_D4FD00139G
crossref_primary_10_1016_j_tips_2022_06_011
crossref_primary_10_1016_j_coisb_2019_04_004
crossref_primary_10_1557_mrc_2019_28
crossref_primary_10_1038_s43586_023_00212_3
crossref_primary_10_1016_j_biotechadv_2023_108102
crossref_primary_10_1038_s41467_023_40980_w
crossref_primary_10_1093_nar_gkad266
crossref_primary_10_1021_acs_jafc_8b05662
crossref_primary_10_1002_adbi_202200293
crossref_primary_10_1186_s13068_020_01792_y
crossref_primary_10_1002_ange_202310910
crossref_primary_10_1042_BST20160076
crossref_primary_10_1016_j_biotechadv_2019_04_001
crossref_primary_10_1021_acs_biochem_9b00057
crossref_primary_10_1021_acs_biochem_9b00055
crossref_primary_10_1002_ange_202203613
crossref_primary_10_1007_s10441_018_9338_7
crossref_primary_10_1016_j_biochi_2024_03_006
crossref_primary_10_1186_s12896_016_0235_3
crossref_primary_10_1002_anie_201901782
crossref_primary_10_1021_acs_chemrev_9b00450
crossref_primary_10_3389_fncel_2022_811493
crossref_primary_10_1080_07388551_2023_2291339
crossref_primary_10_1002_chem_202101232
crossref_primary_10_1016_j_biotechadv_2023_108213
crossref_primary_10_1039_D0SC06823C
crossref_primary_10_1021_acs_orglett_4c04383
crossref_primary_10_5483_BMBRep_2023_0086
crossref_primary_10_1016_j_fbio_2023_102607
crossref_primary_10_1039_D2CY00082B
crossref_primary_10_1016_j_fbio_2024_104426
crossref_primary_10_1038_s41589_022_00967_y
crossref_primary_10_1007_s10930_016_9686_6
crossref_primary_10_1063_1_4997367
crossref_primary_10_1371_journal_pcbi_1008736
crossref_primary_10_1021_jacs_8b10937
crossref_primary_10_1016_j_isci_2023_107807
crossref_primary_10_1128_mbio_01590_24
crossref_primary_10_1038_s41592_019_0473_0
crossref_primary_10_1007_s13752_018_0294_x
crossref_primary_10_3390_md17120701
crossref_primary_10_1002_anie_201711016
crossref_primary_10_1038_nrmicro_2017_31
crossref_primary_10_1002_ange_202309305
crossref_primary_10_3390_md14030062
crossref_primary_10_1021_acs_chemrev_8b00207
crossref_primary_10_1021_jacs_3c03422
crossref_primary_10_1021_acscentsci_3c01275
crossref_primary_10_1021_acs_jpcb_2c00142
crossref_primary_10_1007_s43393_021_00045_9
crossref_primary_10_1002_anie_201907460
crossref_primary_10_1038_s41467_024_50698_y
crossref_primary_10_1186_s13041_022_00973_0
crossref_primary_10_2174_1389203724666230110163234
crossref_primary_10_1038_s41586_024_08138_w
crossref_primary_10_1146_annurev_pharmtox_010818_021118
crossref_primary_10_1371_journal_pone_0239882
crossref_primary_10_1016_j_chembiol_2024_05_018
crossref_primary_10_1016_j_tibs_2022_01_001
crossref_primary_10_1016_j_tim_2020_08_001
crossref_primary_10_1038_s41467_020_20230_z
crossref_primary_10_1038_s41587_024_02467_x
crossref_primary_10_1016_j_ymben_2019_08_004
crossref_primary_10_1016_j_nbt_2022_11_005
crossref_primary_10_1002_cssc_201900351
crossref_primary_10_1080_07388551_2021_1898326
crossref_primary_10_1038_s41551_021_00699_9
crossref_primary_10_3389_fpls_2024_1449579
crossref_primary_10_3390_antib7040042
crossref_primary_10_3390_ijms19102989
crossref_primary_10_1021_acs_biochem_8b00927
crossref_primary_10_1098_rstb_2015_0529
crossref_primary_10_3390_ijms20071602
crossref_primary_10_1002_biot_201800094
crossref_primary_10_1016_j_jmb_2022_167481
crossref_primary_10_1016_j_biortech_2020_124617
crossref_primary_10_1093_lifemeta_loac019
crossref_primary_10_1038_s41598_017_16909_x
crossref_primary_10_1016_j_tplants_2019_10_002
crossref_primary_10_3390_app9030562
crossref_primary_10_1007_s12268_017_0780_x
crossref_primary_10_1186_s13059_019_1680_9
crossref_primary_10_1002_elps_201900222
crossref_primary_10_1002_pol_20230651
crossref_primary_10_1016_j_biombioe_2024_107052
crossref_primary_10_1002_anie_201909987
crossref_primary_10_3389_fmolb_2024_1504876
crossref_primary_10_3390_catal12121570
crossref_primary_10_1128_AEM_02816_19
crossref_primary_10_1371_journal_pone_0263792
crossref_primary_10_1093_bioinformatics_btw710
crossref_primary_10_1111_1751_7915_12490
crossref_primary_10_1016_j_ijbiomac_2024_132853
crossref_primary_10_1016_j_enzmictec_2020_109626
crossref_primary_10_1016_j_copbio_2024_103216
crossref_primary_10_1074_jbc_M117_811489
crossref_primary_10_1016_j_cbpa_2020_11_006
crossref_primary_10_1021_jacs_3c12393
crossref_primary_10_1021_acsomega_7b00508
crossref_primary_10_1371_journal_pone_0171741
crossref_primary_10_1111_tpj_70100
crossref_primary_10_1021_acssynbio_5b00240
crossref_primary_10_1021_acssynbio_9b00274
crossref_primary_10_1039_C9MD00252A
crossref_primary_10_1111_pbi_13348
crossref_primary_10_1038_s41467_017_00828_6
crossref_primary_10_1021_acs_accounts_1c00440
crossref_primary_10_1109_TCBB_2022_3175908
crossref_primary_10_1002_biot_202200642
crossref_primary_10_1038_s41580_024_00718_y
crossref_primary_10_1002_adsc_202300989
crossref_primary_10_1002_anie_201813499
crossref_primary_10_1038_s41467_019_10846_1
crossref_primary_10_1111_1751_7915_13316
crossref_primary_10_3389_fmicb_2020_570280
crossref_primary_10_4014_jmb_2209_09018
crossref_primary_10_1021_acs_jafc_4c08879
crossref_primary_10_1007_s00285_019_01399_4
crossref_primary_10_3389_fchem_2021_666867
crossref_primary_10_3390_nano14030247
crossref_primary_10_1016_j_polymdegradstab_2025_111341
crossref_primary_10_1016_j_aca_2019_08_025
crossref_primary_10_3390_bios12020064
crossref_primary_10_1021_acsnano_0c08716
crossref_primary_10_1007_s00253_022_12024_8
crossref_primary_10_1016_j_ijbiomac_2024_133924
crossref_primary_10_1016_j_chembiol_2023_10_001
crossref_primary_10_1039_C7CC06550G
crossref_primary_10_1021_acs_biochem_2c00188
crossref_primary_10_1073_pnas_1801646115
crossref_primary_10_1371_journal_pone_0269270
crossref_primary_10_1002_chem_201800504
crossref_primary_10_1021_acssynbio_2c00511
crossref_primary_10_1007_s00253_018_8995_4
crossref_primary_10_1039_C6CC06055B
crossref_primary_10_1016_j_mtbio_2021_100115
crossref_primary_10_1002_anie_202213942
crossref_primary_10_1016_j_bmc_2022_116880
crossref_primary_10_1016_j_ijbiomac_2024_132946
crossref_primary_10_1093_molbev_msad237
crossref_primary_10_1109_TCC_2022_3188926
crossref_primary_10_3390_v16050686
crossref_primary_10_1002_bit_26066
crossref_primary_10_1007_s12010_016_2240_3
crossref_primary_10_1016_j_checat_2022_10_034
crossref_primary_10_1038_s41570_017_0068
crossref_primary_10_1111_1751_7915_13774
crossref_primary_10_1002_bit_28009
crossref_primary_10_1002_adma_202312299
crossref_primary_10_1146_annurev_biochem_062917_012034
crossref_primary_10_1007_s10822_024_00558_0
crossref_primary_10_1002_cjoc_202100770
crossref_primary_10_1002_anie_202409746
crossref_primary_10_1039_D2CS00419D
crossref_primary_10_1039_D2SC05824C
crossref_primary_10_1186_s40580_017_0103_4
crossref_primary_10_1093_jxb_erae445
crossref_primary_10_1103_PhysRevResearch_6_013286
crossref_primary_10_1038_srep26128
crossref_primary_10_1002_cbic_202300192
crossref_primary_10_1016_j_procbio_2019_02_008
crossref_primary_10_3390_ijms21010215
crossref_primary_10_1002_pro_4940
crossref_primary_10_1016_j_bbagen_2022_130201
crossref_primary_10_1016_j_csbj_2022_05_008
crossref_primary_10_2174_0109298665284293240409045359
crossref_primary_10_1093_nar_gkaf051
crossref_primary_10_3389_fmicb_2019_03032
crossref_primary_10_1073_pnas_2403585121
crossref_primary_10_3390_foods13233846
crossref_primary_10_1007_s12257_018_0394_2
crossref_primary_10_1146_annurev_biochem_062917_012042
crossref_primary_10_1016_j_coisb_2019_02_002
crossref_primary_10_1098_rsfs_2018_0069
crossref_primary_10_1016_j_cels_2025_101236
crossref_primary_10_1016_j_jbiosc_2019_12_009
crossref_primary_10_1021_acscentsci_1c00273
crossref_primary_10_1111_febs_16300
crossref_primary_10_3390_ijms22063041
Cites_doi 10.1093/protein/gzs025
10.1073/pnas.071052198
10.1073/pnas.1409861111
10.1038/88084
10.1093/nar/16.13.6127
10.1021/ja205630g
10.1371/journal.pone.0006441
10.1073/pnas.91.15.6808
10.1038/34663
10.1038/nature06032
10.1038/nchembio.510
10.1073/pnas.1411179111
10.1016/j.chembiol.2007.09.008
10.1021/ja025870q
10.1534/genetics.104.034488
10.1126/science.1152692
10.1093/protein/9.1.77
10.1073/pnas.91.26.12501
10.1038/nchembio.1453
10.1126/science.1107891
10.1007/BF02761755
10.1038/nature09929
10.1126/science.2990046
10.1002/cbic.200390011
10.1016/0378-1119(89)90359-4
10.1002/bit.20066
10.1038/340245a0
10.1073/pnas.94.10.4937
10.1038/nbt1321
10.1073/pnas.1311970111
10.1073/pnas.0908463107
10.1128/AEM.01419-12
10.1016/j.copbio.2004.05.004
10.1038/nbt0697-553
10.1038/nbt0398-258
10.1038/nmeth.1262
10.1073/pnas.1321030111
10.1038/nbt0798-652
10.1101/gr.2.1.28
10.1038/352624a0
10.1126/science.1188934
10.1126/science.1199081
10.1038/nbt742
10.1021/sb3000904
10.1128/AEM.02046-08
10.1126/science.150.3698.910
10.1073/pnas.1413987111
10.1016/j.cbpa.2014.09.040
10.1073/pnas.1215994110
10.1073/pnas.061028198
10.1038/nmeth.1782
10.1073/pnas.0910781107
10.1016/S0022-2836(59)80038-3
10.1016/j.ab.2004.11.032
10.1126/science.1696028
10.1073/pnas.80.23.7085
10.1016/S0167-4838(00)00238-7
10.1093/protein/gzh084
10.1038/nature06879
10.1158/1535-7163.MCT-13-0358
10.1073/pnas.1333928100
10.1016/j.jmb.2011.01.041
10.1517/17425255.2.4.629
10.1002/anie.201403582
10.1093/protein/gzm014
10.1073/pnas.1014214108
10.1007/978-1-60761-723-5_13
10.1016/0378-1119(85)90140-4
10.1016/j.copbio.2004.06.008
10.1038/nature13404
10.1016/j.jmb.2012.11.015
10.1146/annurev.biochem.77.062906.171838
10.1073/pnas.82.12.4193
10.1038/nchembio.1276
10.1038/88129
10.1038/nrg3351
10.1073/pnas.0503543102
10.1126/science.3388019
10.1038/nbt754
10.1016/j.ab.2003.10.005
10.1021/ja302354v
10.1002/anie.200705236
10.1016/j.bcp.2012.07.002
10.1016/j.chembiol.2011.02.014
10.1021/ja046238v
10.1093/protein/gzt061
10.1038/ng.1034
10.1126/science.1190239
10.1126/science.1259680
10.1038/415644a
10.1002/0471722731
10.1021/cb4004892
10.1016/S0092-8674(02)01198-4
10.1093/nar/gni116
10.1073/pnas.262420099
10.1126/science.1231434
10.1016/j.molcel.2011.03.010
10.1038/84981
10.1093/nar/gnh028
10.1038/nchem.1996
10.1038/ncomms6352
10.1038/nbt0396-315
10.1016/S0022-2836(03)00590-4
10.1006/jmbi.1996.0049
10.1073/pnas.022039799
10.1073/pnas.94.19.10092
10.1146/annurev.ge.10.120176.001031
10.1371/journal.pgen.1003187
10.1093/nar/18.13.3739
10.1073/pnas.0901586106
10.1016/0378-1119(95)00511-4
10.1128/MMBR.69.1.51-78.2005
10.1038/370389a0
10.1063/1.4886771
10.1038/348552a0
10.1002/adhm.201300110
10.1126/science.1261172
10.1038/nature08187
10.1038/86744
10.1073/pnas.1101046108
10.1038/nmeth.1318
10.1021/ja909180c
10.1038/nmeth993
10.1016/0076-6879(91)94015-5
10.1073/pnas.0402202101
10.1038/nchembio.1439
10.1038/70754
10.1021/ja8055744
10.1038/nbt.2714
10.1021/bi035810c
10.1126/science.1131969
10.1093/genetics/147.4.1497
10.1007/978-1-4939-1053-3
10.1021/cb500462t
10.1021/sb500299c
ContentType Journal Article
Copyright Springer Nature Limited 2015
COPYRIGHT 2015 Nature Publishing Group
Copyright Nature Publishing Group Jul 2015
Copyright_xml – notice: Springer Nature Limited 2015
– notice: COPYRIGHT 2015 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/nrg3927
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Genetics Abstracts
ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 394
ExternalDocumentID 3957265041
A420050892
26055155
10_1038_nrg3927
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM095501
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PMFND
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c643t-34f552544d2c297ffd10aff4b7f968a3705f3af15ad79325e2807fe2f4e9b5dc3
IEDL.DBID 7X7
ISSN 1471-0056
1471-0064
IngestDate Tue Aug 05 10:00:05 EDT 2025
Mon Jul 21 11:33:30 EDT 2025
Fri Jul 25 09:07:41 EDT 2025
Tue Jun 17 20:48:39 EDT 2025
Tue Jun 10 20:53:16 EDT 2025
Fri Jun 27 03:34:16 EDT 2025
Thu May 22 21:20:08 EDT 2025
Thu Apr 03 07:08:00 EDT 2025
Tue Jul 01 01:19:55 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Fri Feb 21 02:36:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c643t-34f552544d2c297ffd10aff4b7f968a3705f3af15ad79325e2807fe2f4e9b5dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 26055155
PQID 1766289334
PQPubID 44267
PageCount 16
ParticipantIDs proquest_miscellaneous_1773836920
proquest_miscellaneous_1690217948
proquest_journals_1766289334
gale_infotracmisc_A420050892
gale_infotracacademiconefile_A420050892
gale_incontextgauss_ISR_A420050892
gale_healthsolutions_A420050892
pubmed_primary_26055155
crossref_citationtrail_10_1038_nrg3927
crossref_primary_10_1038_nrg3927
springer_journals_10_1038_nrg3927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References McIsaac (CR9) 2014; 111
Gaj, Mercer, Gersbach, Gordley, Barbas (CR105) 2011; 108
Horton, Hunt, Ho, Pullen, Pease (CR53) 1989; 77
Wang, Herman, Tipton, Gross, Weissman (CR73) 2002; 111
Heim, Prasher, Tsien (CR56) 1994; 91
Scott, Smith (CR94) 1990; 249
Umeno, Tobias, Arnold (CR3) 2005; 69
Dorr, Ham, An, Chaikof, Liu (CR84) 2014; 111
Wells, Vasser, Powers (CR26) 1985; 34
d'Abbadie (CR112) 2007; 25
You, Arnold (CR55) 1996; 9
Qu (CR78) 2014; 3
Ellefson (CR113) 2014; 32
Baker (CR64) 2002; 99
Carlson, Badran, Guggiana-Nilo, Liu (CR123) 2014; 10
Lutz, Patrick (CR135) 2004; 15
Seelig, Szostak (CR100) 2007; 448
Tawfik, Griffiths (CR86) 1998; 16
Wong, Tee, Hauer, Schwaneberg (CR25) 2004; 32
Dickinson, Packer, Badran, Liu (CR124) 2014; 5
Ghadessy, Ong, Holliger (CR110) 2001; 98
Bittker, Le, Liu, Liu (CR49) 2004; 101
Sengupta, Lin, Goldberg, Mahal, Cornish (CR68) 2004; 43
Kolkman, Stemmer (CR52) 2001; 19
Alper, Moxley, Nevoigt, Fink, Stephanopoulos (CR7) 2006; 314
Muller (CR39) 2005; 33
Rothlisberger (CR133) 2008; 453
Stemmer (CR37) 1994; 370
Badran, Liu (CR115) 2015; 24
Muller (CR118) 2013; 9
Ravikumar, Arrieta, Liu (CR18) 2014; 10
Toprak (CR117) 2012; 44
Crameri, Whitehorn, Tate, Stemmer (CR44) 1996; 14
Khersonsky (CR132) 2011; 407
Ling, Policarpo, Rabideau, Liao, Pentelute (CR80) 2012; 134
Chen (CR32) 2010; 107
Crameri, Raillard, Bermudez, Stemmer (CR45) 1998; 391
Sieber, Martinez, Arnold (CR47) 2001; 19
Esvelt, Carlson, Liu (CR122) 2011; 472
Reidhaarolson, Sauer (CR30) 1988; 241
Lipovsek (CR137) 2007; 14
Bessette, Rice, Daugherty (CR91) 2004; 17
Hiraga, Arnold (CR51) 2003; 330
Orencia, Yoon, Ness, Stemmer, Stevens (CR101) 2001; 8
Zhao, Giver, Shao, Affholter, Arnold (CR40) 1998; 16
Bridges, Woodgate (CR14) 1985; 82
Takeuchi, Choi, Stoddard (CR109) 2014; 111
Wijma (CR35) 2014; 27
Gupta, Tawfik (CR22) 2008; 5
Ramsay (CR111) 2010; 132
Freese (CR13) 1959; 1
Liu, Magliery, Pasternak, Schultz (CR103) 1997; 94
Das, Baker (CR34) 2008; 77
Gupta (CR60) 2011; 7
Santoro, Wang, Herberich, King, Schultz (CR104) 2002; 20
Ness (CR42) 2002; 20
Stemmer, Crameri, Ha, Brennan, Heyneker (CR41) 1995; 164
King (CR128) 2014; 510
Cadwell, Joyce (CR23) 1992; 2
Zha, Eipper, Reetz (CR43) 2003; 4
Fields, Song (CR63) 1989; 340
Piotukh (CR138) 2011; 133
Jiang (CR125) 2008; 319
Karanicolas (CR130) 2011; 42
Worsdorfer, Woycechowsky, Hilvert (CR108) 2011; 331
Kralj, Douglass, Hochbaum, Maclaurin, Cohen (CR57) 2012; 9
Swe (CR67) 2012; 84
Agresti (CR88) 2010; 107
Rajpal (CR75) 2005; 102
Scheuermann, Tam, Burgers, Lu, Echols (CR17) 1983; 80
Bernath (CR87) 2004; 325
Dower, Miller, Ragsdale (CR96) 1988; 16
Policarpo (CR82) 2014; 53
Fischlechner (CR90) 2014; 6
Mccafferty, Griffiths, Winter, Chiswell (CR92) 1990; 348
Herman, Tawfik (CR36) 2007; 20
Zhang (CR6) 2002; 415
Cherny (CR33) 2013; 8
Siegel (CR126) 2010; 329
Lehmann, Pasamontes, Lassen, Wyss (CR31) 2000; 1543
Amstutz (CR99) 2002; 124
Leung, Chen, Goeddel (CR19) 1989; 1
Lee, Jellison, Alper (CR107) 2012; 78
Gibson (CR27) 2009; 6
CR114
Myers, Lerman, Maniatis (CR12) 1985; 229
Santoro, Schultz (CR72) 2002; 99
Wilson, Keefe, Szostak (CR98) 2001; 98
Cali (CR58) 2006; 2
Camps, Naukkarinen, Johnson, Loeb (CR119) 2003; 100
Vanhercke, Ampe, Tirry, Denolf (CR24) 2005; 339
Young, Tong, Bui, Spofford, Alper (CR106) 2014; 111
Peck, Chen, Liu (CR74) 2011; 18
Chen, Dorr, Liu (CR77) 2011; 108
Song, Tezcan (CR129) 2014; 346
Voigt, Martinez, Wang, Mayo, Arnold (CR50) 2002; 9
Coelho, Brustad, Kannan, Arnold (CR8) 2013; 339
Gillam (CR54) 2014
Wang, Cho, Shusta (CR76) 2007; 4
Lenski, Travisano (CR116) 1994; 91
Joh (CR127) 2014; 346
CR83
Romanini, Peralta-Yahya, Mondol, Cornish (CR46) 2012; 1
Wang (CR5) 2009; 460
Nour-Eldin, Geu-Flores, Halkier (CR29) 2010; 643
Cox (CR15) 1976; 10
Goddard, Reymond (CR62) 2004; 15
Quan, Tian (CR28) 2009; 4
Lin, Tao, Cornish (CR65) 2004; 126
Becker, Guarente (CR95) 1991; 194
Atsumi, Liao (CR4) 2008; 74
Ostafe, Prodanovic, Lloyd Ung, Weitz, Fischer (CR59) 2014; 8
Scott, Plückthun (CR89) 2013; 425
Ostermeier, Shim, Benkovic (CR48) 1999; 17
Peralta-Yahya, Carter, Lin, Tao, Comish (CR66) 2008; 130
Wichman, Wichman, Bull (CR121) 2005; 170
Wright (CR1) 2005; 308
Eckert, Kunkel (CR21) 1990; 18
Shapiro (CR70) 2003
Savile (CR134) 2010; 329
Shi (CR79) 2014; 111
Greener, Callahan, Jerpseth (CR16) 1997; 7
Becker (CR136) 2008; 47
Patel, Hecht (CR131) 2012; 25
Jespers, Roberts, Mahler, Winter, Hoogenboom (CR10) 1994; 12
Zaccolo, Williams, Brown, Gherardi (CR20) 1996; 255
Boder, Wittrup (CR71) 1997; 15
Lai, Huang, Wang, Li, Wu (CR11) 2004; 86
Giger (CR61) 2013; 9
McCluskey, Collier (CR81) 2013; 12
Fulwyler (CR69) 1965; 150
Driscoll, Macdonald, O'Brien (CR2) 2009; 106
Hanes, Pluckthun (CR97) 1997; 94
Coco (CR38) 2001; 19
Palmer, Kishony (CR102) 2013; 14
Bull (CR120) 1997; 147
Yi (CR85) 2013; 110
Clackson, Hoogenboom, Griffiths, Winter (CR93) 1991; 352
K Baker (BFnrg3927_CR64) 2002; 99
JF Reidhaarolson (BFnrg3927_CR30) 1988; 241
B Seelig (BFnrg3927_CR100) 2007; 448
F Chen (BFnrg3927_CR32) 2010; 107
PM Swe (BFnrg3927_CR67) 2012; 84
E Toprak (BFnrg3927_CR117) 2012; 44
WJ Song (BFnrg3927_CR129) 2014; 346
HJ Wijma (BFnrg3927_CR35) 2014; 27
HA Wichman (BFnrg3927_CR121) 2005; 170
RD Gupta (BFnrg3927_CR60) 2011; 7
RM Myers (BFnrg3927_CR12) 1985; 229
RC Cadwell (BFnrg3927_CR23) 1992; 2
BFnrg3927_CR83
DS Tawfik (BFnrg3927_CR86) 1998; 16
JJ Bull (BFnrg3927_CR120) 1997; 147
WP Stemmer (BFnrg3927_CR41) 1995; 164
DJ Scott (BFnrg3927_CR89) 2013; 425
L You (BFnrg3927_CR55) 1996; 9
JM Kralj (BFnrg3927_CR57) 2012; 9
JJ Ling (BFnrg3927_CR80) 2012; 134
CK Savile (BFnrg3927_CR134) 2010; 329
JK Scott (BFnrg3927_CR94) 1990; 249
R Scheuermann (BFnrg3927_CR17) 1983; 80
M Ostermeier (BFnrg3927_CR48) 1999; 17
H Zhao (BFnrg3927_CR40) 1998; 16
WP Stemmer (BFnrg3927_CR37) 1994; 370
EM Young (BFnrg3927_CR106) 2014; 111
D Rothlisberger (BFnrg3927_CR133) 2008; 453
I Cherny (BFnrg3927_CR33) 2013; 8
BC Dickinson (BFnrg3927_CR124) 2014; 5
N Ramsay (BFnrg3927_CR111) 2010; 132
V Sieber (BFnrg3927_CR47) 2001; 19
S Lutz (BFnrg3927_CR135) 2004; 15
A Ravikumar (BFnrg3927_CR18) 2014; 10
HH Nour-Eldin (BFnrg3927_CR29) 2010; 643
BFnrg3927_CR114
JA Wells (BFnrg3927_CR26) 1985; 34
J Hanes (BFnrg3927_CR97) 1997; 94
P Amstutz (BFnrg3927_CR99) 2002; 124
SC Patel (BFnrg3927_CR131) 2012; 25
O Khersonsky (BFnrg3927_CR132) 2011; 407
RL Policarpo (BFnrg3927_CR82) 2014; 53
SM Lee (BFnrg3927_CR107) 2012; 78
I Chen (BFnrg3927_CR77) 2011; 108
K Bernath (BFnrg3927_CR87) 2004; 325
CA Voigt (BFnrg3927_CR50) 2002; 9
NH Joh (BFnrg3927_CR127) 2014; 346
K Piotukh (BFnrg3927_CR138) 2011; 133
DW Leung (BFnrg3927_CR19) 1989; 1
A Herman (BFnrg3927_CR36) 2007; 20
Z Qu (BFnrg3927_CR78) 2014; 3
BM Dorr (BFnrg3927_CR84) 2014; 111
DX Zha (BFnrg3927_CR43) 2003; 4
KM Muller (BFnrg3927_CR39) 2005; 33
B Worsdorfer (BFnrg3927_CR108) 2011; 331
T Vanhercke (BFnrg3927_CR24) 2005; 339
JH Shi (BFnrg3927_CR79) 2014; 111
AC Palmer (BFnrg3927_CR102) 2013; 14
K Hiraga (BFnrg3927_CR51) 2003; 330
EMJ Gillam (BFnrg3927_CR54) 2014
BA Bridges (BFnrg3927_CR14) 1985; 82
JP Goddard (BFnrg3927_CR62) 2004; 15
S Fields (BFnrg3927_CR63) 1989; 340
JW Ellefson (BFnrg3927_CR113) 2014; 32
SI Wright (BFnrg3927_CR1) 2005; 308
ET Boder (BFnrg3927_CR71) 1997; 15
R Das (BFnrg3927_CR34) 2008; 77
AJ McCluskey (BFnrg3927_CR81) 2013; 12
PH Bessette (BFnrg3927_CR91) 2004; 17
JD Wang (BFnrg3927_CR73) 2002; 111
T Gaj (BFnrg3927_CR105) 2011; 108
M Camps (BFnrg3927_CR119) 2003; 100
JE Ness (BFnrg3927_CR42) 2002; 20
HH Wang (BFnrg3927_CR5) 2009; 460
RM Horton (BFnrg3927_CR53) 1989; 77
D Umeno (BFnrg3927_CR3) 2005; 69
JA Kolkman (BFnrg3927_CR52) 2001; 19
M Fischlechner (BFnrg3927_CR90) 2014; 6
A Rajpal (BFnrg3927_CR75) 2005; 102
HN Lin (BFnrg3927_CR65) 2004; 126
SW Santoro (BFnrg3927_CR104) 2002; 20
SW Santoro (BFnrg3927_CR72) 2002; 99
FJ Ghadessy (BFnrg3927_CR110) 2001; 98
MC Orencia (BFnrg3927_CR101) 2001; 8
HM Shapiro (BFnrg3927_CR70) 2003
RS McIsaac (BFnrg3927_CR9) 2014; 111
E Freese (BFnrg3927_CR13) 1959; 1
L Giger (BFnrg3927_CR61) 2013; 9
M Zaccolo (BFnrg3927_CR20) 1996; 255
H Alper (BFnrg3927_CR7) 2006; 314
R Ostafe (BFnrg3927_CR59) 2014; 8
JA Bittker (BFnrg3927_CR49) 2004; 101
L Jiang (BFnrg3927_CR125) 2008; 319
A Crameri (BFnrg3927_CR44) 1996; 14
KM Esvelt (BFnrg3927_CR122) 2011; 472
RD Gupta (BFnrg3927_CR22) 2008; 5
JJ Agresti (BFnrg3927_CR88) 2010; 107
JJ Cali (BFnrg3927_CR58) 2006; 2
XX Wang (BFnrg3927_CR76) 2007; 4
PS Coelho (BFnrg3927_CR8) 2013; 339
L Yi (BFnrg3927_CR85) 2013; 110
A Crameri (BFnrg3927_CR45) 1998; 391
D Lipovsek (BFnrg3927_CR137) 2007; 14
SH Peck (BFnrg3927_CR74) 2011; 18
MM Muller (BFnrg3927_CR118) 2013; 9
DM Becker (BFnrg3927_CR95) 1991; 194
NP King (BFnrg3927_CR128) 2014; 510
AH Badran (BFnrg3927_CR115) 2015; 24
CA Driscoll (BFnrg3927_CR2) 2009; 106
DS Wilson (BFnrg3927_CR98) 2001; 98
YX Zhang (BFnrg3927_CR6) 2002; 415
A Greener (BFnrg3927_CR16) 1997; 7
RE Lenski (BFnrg3927_CR116) 1994; 91
J Karanicolas (BFnrg3927_CR130) 2011; 42
KA Eckert (BFnrg3927_CR21) 1990; 18
S Atsumi (BFnrg3927_CR4) 2008; 74
WJ Dower (BFnrg3927_CR96) 1988; 16
DW Romanini (BFnrg3927_CR46) 2012; 1
J Mccafferty (BFnrg3927_CR92) 1990; 348
YP Lai (BFnrg3927_CR11) 2004; 86
M d'Abbadie (BFnrg3927_CR112) 2007; 25
TS Wong (BFnrg3927_CR25) 2004; 32
LS Jespers (BFnrg3927_CR10) 1994; 12
MJ Fulwyler (BFnrg3927_CR69) 1965; 150
JC Carlson (BFnrg3927_CR123) 2014; 10
EC Cox (BFnrg3927_CR15) 1976; 10
M Lehmann (BFnrg3927_CR31) 2000; 1543
JB Siegel (BFnrg3927_CR126) 2010; 329
R Heim (BFnrg3927_CR56) 1994; 91
WM Coco (BFnrg3927_CR38) 2001; 19
DR Liu (BFnrg3927_CR103) 1997; 94
DG Gibson (BFnrg3927_CR27) 2009; 6
D Sengupta (BFnrg3927_CR68) 2004; 43
JY Quan (BFnrg3927_CR28) 2009; 4
T Clackson (BFnrg3927_CR93) 1991; 352
R Takeuchi (BFnrg3927_CR109) 2014; 111
S Becker (BFnrg3927_CR136) 2008; 47
P Peralta-Yahya (BFnrg3927_CR66) 2008; 130
21458342 - Mol Cell. 2011 Apr 22;42(2):250-60
11832946 - Nature. 2002 Feb 7;415(6872):644-6
23589865 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7229-34
2990046 - Science. 1985 Jul 19;229(4710):242-7
797306 - Annu Rev Genet. 1976;10:135-56
8047147 - Nature. 1994 Aug 4;370(6488):389-91
22120467 - Nat Methods. 2011 Nov 27;9(1):90-5
12512074 - Chembiochem. 2003 Jan 3;4(1):34-9
25379082 - Biomicrofluidics. 2014 Jul 02;8(4):041102
15531628 - Protein Eng Des Sel. 2004 Oct;17(10):731-9
15939870 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8466-71
20558668 - Science. 2010 Jul 16;329(5989):305-9
11150616 - Biochim Biophys Acta. 2000 Dec 29;1543(2):408-415
9630892 - Nat Biotechnol. 1996 Mar;14(3):315-9
18931667 - Nat Methods. 2008 Nov;5(11):939-42
20552452 - Methods Mol Biol. 2010;643:185-200
24870237 - Nature. 2014 Jun 5;510(7503):103-8
17632524 - Nat Biotechnol. 2007 Aug;25(8):939-43
15755953 - Microbiol Mol Biol Rev. 2005 Mar;69(1):51-78
3891521 - Gene. 1985;34(2-3):315-23
9181578 - Nat Biotechnol. 1997 Jun;15(6):553-7
3388019 - Science. 1988 Jul 1;241(4861):53-7
17158319 - Science. 2006 Dec 8;314(5805):1565-8
18952866 - Appl Environ Microbiol. 2008 Dec;74(24):7802-8
11274392 - Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3750-5
21609843 - Chem Biol. 2011 May 27;18(5):619-30
24591643 - Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4061-6
8568899 - J Mol Biol. 1996 Feb 2;255(4):589-603
11274352 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4552-7
20142500 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9
11904359 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4185-90
22686546 - J Am Chem Soc. 2012 Jul 4;134(26):10749-52
22796568 - Biochem Pharmacol. 2012 Sep 15;84(6):775-83
11283594 - Nat Biotechnol. 2001 Apr;19(4):354-9
25187567 - Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13343-8
15137072 - Biotechnol Bioeng. 2004 Jun 20;86(6):622-7
17483523 - Protein Eng Des Sel. 2007 May;20(5):219-26
2374708 - Nucleic Acids Res. 1990 Jul 11;18(13):3739-44
23300488 - PLoS Genet. 2013;9(1):e1003187
25525248 - Science. 2014 Dec 19;346(6216):1520-4
23945077 - Mol Cancer Ther. 2013 Oct;12(10):2273-81
15766704 - Anal Biochem. 2005 Apr 1;339(1):9-14
24982154 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10131-6
9053906 - Protein Eng. 1996 Jan;9(1):77-83
17206151 - Nat Methods. 2007 Feb;4(2):143-5
17961829 - Chem Biol. 2007 Oct;14(10):1176-85
12167034 - J Am Chem Soc. 2002 Aug 14;124(32):9396-403
12244330 - Nat Biotechnol. 2002 Oct;20(10):1044-8
2744488 - Gene. 1989 Apr 15;77(1):61-8
21978125 - J Am Chem Soc. 2011 Nov 9;133(44):17536-9
18354394 - Nature. 2008 May 8;453(7192):190-5
18410248 - Annu Rev Biochem. 2008;77:363-82
24185096 - Nat Biotechnol. 2014 Jan;32(1):97-101
12823968 - J Mol Biol. 2003 Jul 4;330(2):287-96
9144168 - Proc Natl Acad Sci U S A. 1997 May 13;94(10):4937-42
5891056 - Science. 1965 Nov 12;150(3698):910-1
22179135 - Nat Genet. 2011 Dec 18;44(1):101-5
20080675 - Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1948-53
24344268 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):131-6
12426575 - Nat Biotechnol. 2002 Dec;20(12):1251-5
15358001 - Curr Opin Biotechnol. 2004 Aug;15(4):314-22
22685138 - Appl Environ Microbiol. 2012 Aug;78(16):5708-16
7521646 - Biotechnology (N Y). 1994 Sep;12(9):899-903
8041701 - Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808-14
9409816 - Genetics. 1997 Dec;147(4):1497-507
25355134 - Nat Commun. 2014 Oct 30;5:5352
24041203 - ACS Chem Biol. 2013 Nov 15;8(11):2394-403
23748672 - Nat Chem Biol. 2013 Aug;9(8):494-8
14872057 - Nucleic Acids Res. 2004 Feb 10;32(3):e26
25461718 - Curr Opin Chem Biol. 2015 Feb;24:1-10
21697512 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11399-404
20235594 - J Am Chem Soc. 2010 Apr 14;132(14):5096-104
19053460 - J Am Chem Soc. 2008 Dec 24;130(51):17446-52
22665824 - Protein Eng Des Sel. 2012 Sep;25(9):445-52
23412545 - ACS Synth Biol. 2012 Dec 21;1(12):602-9
14715296 - Anal Biochem. 2004 Feb 1;325(1):151-7
7809066 - Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12501-4
15548001 - J Am Chem Soc. 2004 Nov 24;126(46):15051-9
16061932 - Nucleic Acids Res. 2005 Aug 01;33(13):e117
11329016 - Nat Biotechnol. 2001 May;19(5):456-60
25360987 - ACS Chem Biol. 2015 Feb 20;10(2):460-5
2005786 - Methods Enzymol. 1991;194:182-7
24989829 - Angew Chem Int Ed Engl. 2014 Aug 25;53(35):9203-8
18323453 - Science. 2008 Mar 7;319(5868):1387-91
11329010 - Nat Biotechnol. 2001 May;19(5):423-8
25143214 - Nat Chem. 2014 Sep;6(9):791-6
11224569 - Nat Struct Biol. 2001 Mar;8(3):238-42
23164568 - J Mol Biol. 2013 Feb 8;425(3):662-77
9219234 - Mol Biotechnol. 1997 Apr;7(2):189-95
21277311 - J Mol Biol. 2011 Apr 1;407(3):391-412
15035627 - Biochemistry. 2004 Mar 30;43(12):3570-81
23419278 - Nat Rev Genet. 2013 Apr;14(4):243-8
10585719 - Nat Biotechnol. 1999 Dec;17(12):1205-9
19528637 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9971-8
3041370 - Nucleic Acids Res. 1988 Jul 11;16(13):6127-45
7590320 - Gene. 1995 Oct 16;164(1):49-53
25279711 - ACS Synth Biol. 2015 Oct 16;4(10):1070-6
12042875 - Nat Struct Biol. 2002 Jul;9(7):553-8
1907718 - Nature. 1991 Aug 15;352(6336):624-8
3889923 - Proc Natl Acad Sci U S A. 1985 Jun;82(12):4193-7
15118093 - Proc Natl Acad Sci U S A. 2004 May 4;101(18):7011-6
1696028 - Science. 1990 Jul 27;249(4967):386-90
15296927 - Curr Opin Biotechnol. 2004 Aug;15(4):291-7
21217689 - Nat Chem Biol. 2011 Feb;7(2):120-5
24487693 - Nat Chem Biol. 2014 Mar;10(3):175-7
20647463 - Science. 2010 Jul 16;329(5989):309-13
6359162 - Proc Natl Acad Sci U S A. 1983 Dec;80(23):7085-9
15687276 - Genetics. 2005 May;170(1):19-31
9661199 - Nat Biotechnol. 1998 Jul;16(7):652-6
18512207 - Angew Chem Int Ed Engl. 2008;47(27):5085-8
25157169 - Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13034-9
21292977 - Science. 2011 Feb 4;331(6017):589-92
19633652 - Nature. 2009 Aug 13;460(7257):894-8
24402331 - Protein Eng Des Sel. 2014 Feb;27(2):49-58
2247164 - Nature. 1990 Dec 6;348(6301):552-4
12909725 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9727-32
19363495 - Nat Methods. 2009 May;6(5):343-5
19649325 - PLoS One. 2009 Jul 30;4(7):e6441
23258409 - Science. 2013 Jan 18;339(6117):307-10
21478873 - Nature. 2011 Apr 28;472(7344):499-503
2547163 - Nature. 1989 Jul 20;340(6230):245-6
16859410 - Expert Opin Drug Metab Toxicol. 2006 Aug;2(4):629-45
15919994 - Science. 2005 May 27;308(5726):1310-4
25525249 - Science. 2014 Dec 19;346(6216):1525-8
24487694 - Nat Chem Biol. 2014 Mar;10(3):216-22
12482929 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16537-42
9528005 - Nat Biotechnol. 1998 Mar;16(3):258-61
9294168 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092-7
9440693 - Nature. 1998 Jan 15;391(6664):288-91
17700701 - Nature. 2007 Aug 16;448(7155):828-31
23788402 - Adv Healthc Mater. 2014 Jan;3(1):30-5
12507429 - Cell. 2002 Dec 27;111(7):1027-39
21187418 - Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):498-503
References_xml – volume: 25
  start-page: 445
  year: 2012
  end-page: 452
  ident: CR131
  article-title: Directed evolution of the peroxidase activity of a -designed protein
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzs025
– volume: 98
  start-page: 4552
  year: 2001
  end-page: 4557
  ident: CR110
  article-title: Directed evolution of polymerase function by compartmentalized self-replication
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.071052198
– volume: 111
  start-page: 10131
  year: 2014
  end-page: 10136
  ident: CR79
  article-title: Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1409861111
– volume: 19
  start-page: 423
  year: 2001
  end-page: 428
  ident: CR52
  article-title: Directed evolution of proteins by exon shuffling
  publication-title: Nat. Biotechnol.
  doi: 10.1038/88084
– volume: 16
  start-page: 6127
  year: 1988
  end-page: 6145
  ident: CR96
  article-title: High efficiency transformation of by high voltage electroporation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/16.13.6127
– volume: 133
  start-page: 17536
  year: 2011
  end-page: 17539
  ident: CR138
  article-title: Directed evolution of sortase A mutants with altered substrate selectivity profiles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205630g
– volume: 4
  start-page: e6441
  year: 2009
  ident: CR28
  article-title: Circular polymerase extension cloning of complex gene libraries and pathways
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006441
– volume: 91
  start-page: 6808
  year: 1994
  end-page: 6814
  ident: CR116
  article-title: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.15.6808
– volume: 391
  start-page: 288
  year: 1998
  end-page: 291
  ident: CR45
  article-title: DNA shuffling of a family of genes from diverse species accelerates directed evolution
  publication-title: Nature
  doi: 10.1038/34663
– volume: 1
  start-page: 11
  year: 1989
  end-page: 15
  ident: CR19
  article-title: A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction
  publication-title: Technique
– volume: 448
  start-page: 828
  year: 2007
  end-page: 831
  ident: CR100
  article-title: Selection and evolution of enzymes from a partially randomized non-catalytic scaffold
  publication-title: Nature
  doi: 10.1038/nature06032
– volume: 7
  start-page: 120
  year: 2011
  end-page: 125
  ident: CR60
  article-title: Directed evolution of hydrolases for prevention of G-type nerve agent intoxication
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.510
– volume: 111
  start-page: 13343
  year: 2014
  end-page: 13348
  ident: CR84
  article-title: Reprogramming the specificity of sortase enzymes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1411179111
– volume: 14
  start-page: 1176
  year: 2007
  end-page: 1185
  ident: CR137
  article-title: Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2007.09.008
– volume: 124
  start-page: 9396
  year: 2002
  end-page: 9403
  ident: CR99
  article-title: selection for catalytic activity with ribosome display
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025870q
– volume: 170
  start-page: 19
  year: 2005
  end-page: 31
  ident: CR121
  article-title: Adaptive molecular evolution for 13,000 phage generations: a possible arms race
  publication-title: Genetics
  doi: 10.1534/genetics.104.034488
– volume: 319
  start-page: 1387
  year: 2008
  end-page: 1391
  ident: CR125
  article-title: computational design of retro-aldol enzymes
  publication-title: Science
  doi: 10.1126/science.1152692
– volume: 9
  start-page: 77
  year: 1996
  end-page: 83
  ident: CR55
  article-title: Directed evolution of subtilisin E in to enhance total activity in aqueous dimethylformamide
  publication-title: Protein Eng.
  doi: 10.1093/protein/9.1.77
– volume: 91
  start-page: 12501
  year: 1994
  end-page: 12504
  ident: CR56
  article-title: Wavelength mutations and posttranslational autoxidation of green fluorescent protein
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.26.12501
– volume: 10
  start-page: 216
  year: 2014
  end-page: 222
  ident: CR123
  article-title: Negative selection and stringency modulation in phage-assisted continuous evolution
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1453
– volume: 9
  start-page: 553
  year: 2002
  end-page: 558
  ident: CR50
  article-title: Protein building blocks preserved by recombination
  publication-title: Nat. Struct. Biol.
– volume: 308
  start-page: 1310
  year: 2005
  end-page: 1314
  ident: CR1
  article-title: The effects of artificial selection on the maize genome
  publication-title: Science
  doi: 10.1126/science.1107891
– volume: 7
  start-page: 189
  year: 1997
  end-page: 195
  ident: CR16
  article-title: An efficient random mutagenesis technique using an mutator strain
  publication-title: Mol. Biotechnol.
  doi: 10.1007/BF02761755
– volume: 472
  start-page: 499
  year: 2011
  end-page: 503
  ident: CR122
  article-title: A system for the continuous directed evolution of biomolecules
  publication-title: Nature
  doi: 10.1038/nature09929
– volume: 229
  start-page: 242
  year: 1985
  end-page: 247
  ident: CR12
  article-title: A general method for saturation mutagenesis of cloned DNA fragments
  publication-title: Science
  doi: 10.1126/science.2990046
– volume: 4
  start-page: 34
  year: 2003
  end-page: 39
  ident: CR43
  article-title: Assembly of designed oligonucleotides as an efficient method for gene recombination: a new tool in directed evolution
  publication-title: Chembiochem
  doi: 10.1002/cbic.200390011
– volume: 77
  start-page: 61
  year: 1989
  end-page: 68
  ident: CR53
  article-title: Engineering hybrid genes without the use of restriction enzymes: gene-splicing by overlap extension
  publication-title: Gene
  doi: 10.1016/0378-1119(89)90359-4
– volume: 86
  start-page: 622
  year: 2004
  end-page: 627
  ident: CR11
  article-title: A new approach to random mutagenesis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20066
– volume: 340
  start-page: 245
  year: 1989
  end-page: 246
  ident: CR63
  article-title: A novel genetic system to detect protein–protein interactions
  publication-title: Nature
  doi: 10.1038/340245a0
– volume: 94
  start-page: 4937
  year: 1997
  end-page: 4942
  ident: CR97
  article-title: selection and evolution of functional proteins by using ribosome display
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.10.4937
– volume: 25
  start-page: 939
  year: 2007
  end-page: 943
  ident: CR112
  article-title: Molecular breeding of polymerases for amplification of ancient DNA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1321
– volume: 111
  start-page: 131
  year: 2014
  end-page: 136
  ident: CR106
  article-title: Rewiring yeast sugar transporter preference through modifying a conserved protein motif
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1311970111
– volume: 107
  start-page: 1948
  year: 2010
  end-page: 1953
  ident: CR32
  article-title: Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0908463107
– volume: 78
  start-page: 5708
  year: 2012
  end-page: 5716
  ident: CR107
  article-title: Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01419-12
– volume: 15
  start-page: 291
  year: 2004
  end-page: 297
  ident: CR135
  article-title: Novel methods for directed evolution of enzymes: quality, not quantity
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.05.004
– volume: 15
  start-page: 553
  year: 1997
  end-page: 557
  ident: CR71
  article-title: Yeast surface display for screening combinatorial polypeptide libraries
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0697-553
– volume: 16
  start-page: 258
  year: 1998
  end-page: 261
  ident: CR40
  article-title: Molecular evolution by staggered extension process (StEP) recombination
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0398-258
– volume: 147
  start-page: 1497
  year: 1997
  end-page: 1507
  ident: CR120
  article-title: Exceptional convergent evolution in a virus
  publication-title: Genetics
– volume: 5
  start-page: 939
  year: 2008
  end-page: 942
  ident: CR22
  article-title: Directed enzyme evolution via small and effective neutral drift libraries
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1262
– volume: 111
  start-page: 4061
  year: 2014
  end-page: 4066
  ident: CR109
  article-title: Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of compartmentalization
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1321030111
– volume: 16
  start-page: 652
  year: 1998
  end-page: 656
  ident: CR86
  article-title: Man-made cell-like compartments for molecular evolution
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0798-652
– volume: 12
  start-page: 899
  year: 1994
  end-page: 903
  ident: CR10
  article-title: Guiding the selection of human-antibodies from phage display repertoires to a single epitope of an antigen
  publication-title: Biotechnology
– volume: 2
  start-page: 28
  year: 1992
  end-page: 33
  ident: CR23
  article-title: Randomization of genes by PCR mutagenesis
  publication-title: PCR Methods Appl.
  doi: 10.1101/gr.2.1.28
– volume: 352
  start-page: 624
  year: 1991
  end-page: 628
  ident: CR93
  article-title: Making antibody fragments using phage display libraries
  publication-title: Nature
  doi: 10.1038/352624a0
– volume: 329
  start-page: 305
  year: 2010
  end-page: 309
  ident: CR134
  article-title: Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture
  publication-title: Science
  doi: 10.1126/science.1188934
– volume: 331
  start-page: 589
  year: 2011
  end-page: 592
  ident: CR108
  article-title: Directed evolution of a protein container
  publication-title: Science
  doi: 10.1126/science.1199081
– volume: 20
  start-page: 1044
  year: 2002
  end-page: 1048
  ident: CR104
  article-title: An efficient system for the evolution of aminoacyl-tRNA synthetase specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt742
– volume: 1
  start-page: 602
  year: 2012
  end-page: 609
  ident: CR46
  article-title: Heritable recombination system for synthetic Darwinian evolution in yeast
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb3000904
– volume: 74
  start-page: 7802
  year: 2008
  end-page: 7808
  ident: CR4
  article-title: Directed evolution of citramalate synthase for biosynthesis of 1-propanol and 1-butanol by
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02046-08
– volume: 150
  start-page: 910
  year: 1965
  end-page: 911
  ident: CR69
  article-title: Electronic separation of biological cells by volume
  publication-title: Science
  doi: 10.1126/science.150.3698.910
– volume: 111
  start-page: 13034
  year: 2014
  end-page: 13039
  ident: CR9
  article-title: Directed evolution of a far-red fluorescent rhodopsin
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1413987111
– volume: 24
  start-page: 1
  year: 2015
  end-page: 10
  ident: CR115
  article-title: continuous directed evolution
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.09.040
– volume: 110
  start-page: 7229
  year: 2013
  end-page: 7234
  ident: CR85
  article-title: Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215994110
– volume: 98
  start-page: 3750
  year: 2001
  end-page: 3755
  ident: CR98
  article-title: The use of mRNA display to select high-affinity protein-binding peptides
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.061028198
– volume: 9
  start-page: 90
  year: 2012
  end-page: 130
  ident: CR57
  article-title: Optical recording of action potentials in mammalian neurons using a microbial rhodopsin
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1782
– volume: 107
  start-page: 4004
  year: 2010
  end-page: 4009
  ident: CR88
  article-title: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0910781107
– volume: 1
  start-page: 87
  year: 1959
  end-page: 105
  ident: CR13
  article-title: Specific mutagenic effect of base analogues on Phage-T4
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(59)80038-3
– volume: 339
  start-page: 9
  year: 2005
  end-page: 14
  ident: CR24
  article-title: Reducing mutational bias in random protein libraries
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.11.032
– volume: 249
  start-page: 386
  year: 1990
  end-page: 390
  ident: CR94
  article-title: Searching for peptide ligands with an epitope library
  publication-title: Science
  doi: 10.1126/science.1696028
– volume: 80
  start-page: 7085
  year: 1983
  end-page: 7089
  ident: CR17
  article-title: Identification of the ε-subunit of DNA polymerase III holoenzyme as the gene product: a fidelity subunit for DNA replication
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.80.23.7085
– volume: 1543
  start-page: 408
  year: 2000
  end-page: 415
  ident: CR31
  article-title: The consensus concept for thermostability engineering of proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(00)00238-7
– volume: 17
  start-page: 731
  year: 2004
  end-page: 739
  ident: CR91
  article-title: Rapid isolation of high-affinity protein binding peptides using bacterial display
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzh084
– volume: 453
  start-page: 190
  year: 2008
  end-page: 195
  ident: CR133
  article-title: Kemp elimination catalysts by computational enzyme design
  publication-title: Nature
  doi: 10.1038/nature06879
– volume: 12
  start-page: 2273
  year: 2013
  end-page: 2281
  ident: CR81
  article-title: Receptor-directed chimeric toxins created by sortase-mediated protein fusion
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-13-0358
– volume: 100
  start-page: 9727
  year: 2003
  end-page: 9732
  ident: CR119
  article-title: Targeted gene evolution in using a highly error-prone DNA polymerase I
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1333928100
– volume: 407
  start-page: 391
  year: 2011
  end-page: 412
  ident: CR132
  article-title: Optimization of the -designed kemp eliminase KE70 by computational design and directed evolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.01.041
– volume: 2
  start-page: 629
  year: 2006
  end-page: 645
  ident: CR58
  article-title: Luminogenic cytochrome P450 assays
  publication-title: Expert Opin. Drug Metab. Toxicol.
  doi: 10.1517/17425255.2.4.629
– volume: 53
  start-page: 9203
  year: 2014
  end-page: 9208
  ident: CR82
  article-title: Flow-based enzymatic ligation by sortase A
  publication-title: Angew. Chem. Int. Ed Engl.
  doi: 10.1002/anie.201403582
– volume: 20
  start-page: 219
  year: 2007
  end-page: 226
  ident: CR36
  article-title: Incorporating synthetic oligonucleotides via gene reassembly (ISOR): a versatile tool for generating targeted libraries
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzm014
– volume: 108
  start-page: 498
  year: 2011
  end-page: 503
  ident: CR105
  article-title: 3rd Structure-guided reprogramming of serine recombinase DNA sequence specificity
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1014214108
– ident: CR114
– ident: CR83
– volume: 643
  start-page: 185
  year: 2010
  end-page: 200
  ident: CR29
  article-title: User cloning and user fusion: the ideal cloning techniques for small and big laboratories
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-723-5_13
– volume: 34
  start-page: 315
  year: 1985
  end-page: 323
  ident: CR26
  article-title: Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites
  publication-title: Gene
  doi: 10.1016/0378-1119(85)90140-4
– volume: 15
  start-page: 314
  year: 2004
  end-page: 322
  ident: CR62
  article-title: Enzyme assays for high-throughput screening
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.06.008
– volume: 510
  start-page: 103
  year: 2014
  end-page: 108
  ident: CR128
  article-title: Accurate design of co-assembling multi-component protein nanomaterials
  publication-title: Nature
  doi: 10.1038/nature13404
– volume: 425
  start-page: 662
  year: 2013
  end-page: 677
  ident: CR89
  article-title: Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.11.015
– volume: 77
  start-page: 363
  year: 2008
  end-page: 382
  ident: CR34
  article-title: Macromolecular modeling with rosetta
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.062906.171838
– volume: 82
  start-page: 4193
  year: 1985
  end-page: 4197
  ident: CR14
  article-title: Mutagenic repair in : products of the gene and of the and genes act at different steps in UV-induced mutagenesis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.82.12.4193
– volume: 9
  start-page: 494
  year: 2013
  end-page: 498
  ident: CR61
  article-title: Evolution of a designed retro-aldolase leads to complete active site remodeling
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1276
– volume: 19
  start-page: 456
  year: 2001
  end-page: 460
  ident: CR47
  article-title: Libraries of hybrid proteins from distantly related sequences
  publication-title: Nat. Biotechnol.
  doi: 10.1038/88129
– volume: 14
  start-page: 243
  year: 2013
  end-page: 248
  ident: CR102
  article-title: Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3351
– volume: 102
  start-page: 8466
  year: 2005
  end-page: 8471
  ident: CR75
  article-title: A general method for greatly improving the affinity of antibodies by using combinatorial libraries
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0503543102
– volume: 241
  start-page: 53
  year: 1988
  end-page: 57
  ident: CR30
  article-title: Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences
  publication-title: Science
  doi: 10.1126/science.3388019
– volume: 20
  start-page: 1251
  year: 2002
  end-page: 1255
  ident: CR42
  article-title: Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt754
– volume: 325
  start-page: 151
  year: 2004
  end-page: 157
  ident: CR87
  article-title: compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2003.10.005
– volume: 134
  start-page: 10749
  year: 2012
  end-page: 10752
  ident: CR80
  article-title: Protein thioester synthesis enabled by sortase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302354v
– volume: 47
  start-page: 5085
  year: 2008
  end-page: 5088
  ident: CR136
  article-title: Single-cell high-throughput screening to identify enantioselective hydrolytic enzymes
  publication-title: Angew. Chem. Int. Ed Engl.
  doi: 10.1002/anie.200705236
– volume: 84
  start-page: 775
  year: 2012
  end-page: 783
  ident: CR67
  article-title: Targeted mutagenesis of the flavin reductase FRase I to improve activation of the anticancer prodrug CB1954
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2012.07.002
– volume: 18
  start-page: 619
  year: 2011
  end-page: 630
  ident: CR74
  article-title: Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2011.02.014
– volume: 126
  start-page: 15051
  year: 2004
  end-page: 15059
  ident: CR65
  article-title: Directed evolution of a glycosynthase via chemical complementation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046238v
– volume: 27
  start-page: 49
  year: 2014
  end-page: 58
  ident: CR35
  article-title: Computationally designed libraries for rapid enzyme stabilization
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzt061
– volume: 44
  start-page: 101
  year: 2012
  end-page: 105
  ident: CR117
  article-title: Evolutionary paths to antibiotic resistance under dynamically sustained drug selection
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1034
– volume: 329
  start-page: 309
  year: 2010
  end-page: 313
  ident: CR126
  article-title: Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction
  publication-title: Science
  doi: 10.1126/science.1190239
– volume: 346
  start-page: 1525
  year: 2014
  end-page: 1528
  ident: CR129
  article-title: A designed supramolecular protein assembly with enzymatic activity
  publication-title: Science
  doi: 10.1126/science.1259680
– volume: 415
  start-page: 644
  year: 2002
  end-page: 646
  ident: CR6
  article-title: Genome shuffling leads to rapid phenotypic improvement in bacteria
  publication-title: Nature
  doi: 10.1038/415644a
– year: 2003
  ident: CR70
  publication-title: Practical Flow Cytometry
  doi: 10.1002/0471722731
– volume: 8
  start-page: 2394
  year: 2013
  end-page: 2403
  ident: CR33
  article-title: Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb4004892
– volume: 111
  start-page: 1027
  year: 2002
  end-page: 1039
  ident: CR73
  article-title: Directed evolution of substrate-optimized GroEL/S chaperonins
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01198-4
– volume: 33
  start-page: e117
  year: 2005
  ident: CR39
  article-title: Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gni116
– volume: 99
  start-page: 16537
  year: 2002
  end-page: 16542
  ident: CR64
  article-title: Chemical complementation: a reaction-independent genetic assay for enzyme catalysis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.262420099
– volume: 339
  start-page: 307
  year: 2013
  end-page: 310
  ident: CR8
  article-title: Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes
  publication-title: Science
  doi: 10.1126/science.1231434
– volume: 42
  start-page: 250
  year: 2011
  end-page: 260
  ident: CR130
  article-title: A protein binding pair by computational design and directed evolution
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.010
– volume: 8
  start-page: 238
  year: 2001
  end-page: 242
  ident: CR101
  article-title: Predicting the emergence of antibiotic resistance by directed evolution and structural analysis
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/84981
– volume: 32
  start-page: e26
  year: 2004
  ident: CR25
  article-title: Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnh028
– volume: 6
  start-page: 791
  year: 2014
  end-page: 796
  ident: CR90
  article-title: Evolution of enzyme catalysts caged in biomimetic gel-shell beads
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1996
– volume: 5
  start-page: 5352
  year: 2014
  ident: CR124
  article-title: A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6352
– volume: 14
  start-page: 315
  year: 1996
  end-page: 319
  ident: CR44
  article-title: Improved green fluorescent protein by molecular evolution using DNA shuffling
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0396-315
– year: 2014
  ident: CR54
  publication-title: Directed Evolution Library Creation
– volume: 330
  start-page: 287
  year: 2003
  end-page: 296
  ident: CR51
  article-title: General method for sequence-independent site-directed chimeragenesis
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00590-4
– volume: 255
  start-page: 589
  year: 1996
  end-page: 603
  ident: CR20
  article-title: An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0049
– volume: 99
  start-page: 4185
  year: 2002
  end-page: 4190
  ident: CR72
  article-title: Directed evolution of the site specificity of Cre recombinase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.022039799
– volume: 94
  start-page: 10092
  year: 1997
  end-page: 10097
  ident: CR103
  article-title: Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.19.10092
– volume: 10
  start-page: 135
  year: 1976
  end-page: 156
  ident: CR15
  article-title: Bacterial mutator genes and the control of spontaneous mutation
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.ge.10.120176.001031
– volume: 9
  start-page: e1003187
  year: 2013
  ident: CR118
  article-title: Directed evolution of a model primordial enzyme provides insights into the development of the genetic code
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003187
– volume: 18
  start-page: 3739
  year: 1990
  end-page: 3744
  ident: CR21
  article-title: High fidelity DNA synthesis by the DNA polymerase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.13.3739
– volume: 106
  start-page: 9971
  issue: Suppl. 1
  year: 2009
  end-page: 9978
  ident: CR2
  article-title: From wild animals to domestic pets, an evolutionary view of domestication
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0901586106
– volume: 164
  start-page: 49
  year: 1995
  end-page: 53
  ident: CR41
  article-title: Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00511-4
– volume: 69
  start-page: 51
  year: 2005
  end-page: 78
  ident: CR3
  article-title: Diversifying carotenoid biosynthetic pathways by directed evolution
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.69.1.51-78.2005
– volume: 370
  start-page: 389
  year: 1994
  end-page: 391
  ident: CR37
  article-title: Rapid evolution of a protein by DNA shuffling
  publication-title: Nature
  doi: 10.1038/370389a0
– volume: 8
  start-page: 041102
  year: 2014
  ident: CR59
  article-title: A high-throughput cellulase screening system based on droplet microfluidics
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4886771
– volume: 348
  start-page: 552
  year: 1990
  end-page: 554
  ident: CR92
  article-title: Phage antibodies: filamentous phage displaying antibody variable domains
  publication-title: Nature
  doi: 10.1038/348552a0
– volume: 3
  start-page: 30
  year: 2014
  end-page: 35
  ident: CR78
  article-title: Immobilization of actively thromboresistant assemblies on sterile blood-contacting surfaces
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201300110
– volume: 346
  start-page: 1520
  year: 2014
  end-page: 1524
  ident: CR127
  article-title: design of a transmembrane Zn -transporting four-helix bundle
  publication-title: Science
  doi: 10.1126/science.1261172
– volume: 460
  start-page: 894
  year: 2009
  end-page: 898
  ident: CR5
  article-title: Programming cells by multiplex genome engineering and accelerated evolution
  publication-title: Nature
  doi: 10.1038/nature08187
– volume: 19
  start-page: 354
  year: 2001
  end-page: 359
  ident: CR38
  article-title: DNA shuffling method for generating highly recombined genes and evolved enzymes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/86744
– volume: 108
  start-page: 11399
  year: 2011
  end-page: 11404
  ident: CR77
  article-title: A general strategy for the evolution of bond-forming enzymes using yeast display
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1101046108
– volume: 6
  start-page: 343
  year: 2009
  end-page: 341
  ident: CR27
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1318
– volume: 132
  start-page: 5096
  year: 2010
  end-page: 5104
  ident: CR111
  article-title: CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909180c
– volume: 4
  start-page: 143
  year: 2007
  end-page: 145
  ident: CR76
  article-title: Mining a yeast library for brain endothelial cell-binding antibodies
  publication-title: Nat. Methods
  doi: 10.1038/nmeth993
– volume: 194
  start-page: 182
  year: 1991
  end-page: 187
  ident: CR95
  article-title: High-efficiency transformation of yeast by electroporation
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(91)94015-5
– volume: 101
  start-page: 7011
  year: 2004
  end-page: 7016
  ident: CR49
  article-title: Directed evolution of protein enzymes using nonhomologous random recombination
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0402202101
– volume: 10
  start-page: 175
  year: 2014
  end-page: 177
  ident: CR18
  article-title: An orthogonal DNA replication system in yeast
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1439
– volume: 17
  start-page: 1205
  year: 1999
  end-page: 1209
  ident: CR48
  article-title: A combinatorial approach to hybrid enzymes independent of DNA homology
  publication-title: Nat. Biotechnol.
  doi: 10.1038/70754
– volume: 130
  start-page: 17446
  year: 2008
  end-page: 17452
  ident: CR66
  article-title: High-throughput selection for cellulase catalysts using chemical complementation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8055744
– volume: 32
  start-page: 97
  year: 2014
  end-page: 101
  ident: CR113
  article-title: Directed evolution of genetic parts and circuits by compartmentalized partnered replication
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2714
– volume: 43
  start-page: 3570
  year: 2004
  end-page: 3581
  ident: CR68
  article-title: Correlation between catalytic efficiency and the transcription read-out in chemical complementation: a general assay for enzyme catalysis
  publication-title: Biochemistry
  doi: 10.1021/bi035810c
– volume: 314
  start-page: 1565
  year: 2006
  end-page: 1568
  ident: CR7
  article-title: Engineering yeast transcription machinery for improved ethanol tolerance and production
  publication-title: Science
  doi: 10.1126/science.1131969
– volume: 111
  start-page: 1027
  year: 2002
  ident: BFnrg3927_CR73
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01198-4
– volume: 20
  start-page: 1044
  year: 2002
  ident: BFnrg3927_CR104
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt742
– volume: 69
  start-page: 51
  year: 2005
  ident: BFnrg3927_CR3
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.69.1.51-78.2005
– volume: 25
  start-page: 445
  year: 2012
  ident: BFnrg3927_CR131
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzs025
– volume: 16
  start-page: 652
  year: 1998
  ident: BFnrg3927_CR86
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0798-652
– volume: 78
  start-page: 5708
  year: 2012
  ident: BFnrg3927_CR107
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01419-12
– volume: 425
  start-page: 662
  year: 2013
  ident: BFnrg3927_CR89
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.11.015
– volume: 111
  start-page: 13343
  year: 2014
  ident: BFnrg3927_CR84
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1411179111
– volume: 34
  start-page: 315
  year: 1985
  ident: BFnrg3927_CR26
  publication-title: Gene
  doi: 10.1016/0378-1119(85)90140-4
– volume: 100
  start-page: 9727
  year: 2003
  ident: BFnrg3927_CR119
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1333928100
– volume: 134
  start-page: 10749
  year: 2012
  ident: BFnrg3927_CR80
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302354v
– volume: 1
  start-page: 11
  year: 1989
  ident: BFnrg3927_CR19
  publication-title: Technique
– volume: 7
  start-page: 189
  year: 1997
  ident: BFnrg3927_CR16
  publication-title: Mol. Biotechnol.
  doi: 10.1007/BF02761755
– volume: 101
  start-page: 7011
  year: 2004
  ident: BFnrg3927_CR49
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0402202101
– volume: 44
  start-page: 101
  year: 2012
  ident: BFnrg3927_CR117
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1034
– volume: 5
  start-page: 939
  year: 2008
  ident: BFnrg3927_CR22
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1262
– volume: 91
  start-page: 12501
  year: 1994
  ident: BFnrg3927_CR56
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.26.12501
– volume: 108
  start-page: 498
  year: 2011
  ident: BFnrg3927_CR105
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1014214108
– volume: 8
  start-page: 2394
  year: 2013
  ident: BFnrg3927_CR33
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb4004892
– volume: 133
  start-page: 17536
  year: 2011
  ident: BFnrg3927_CR138
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205630g
– volume: 147
  start-page: 1497
  year: 1997
  ident: BFnrg3927_CR120
  publication-title: Genetics
  doi: 10.1093/genetics/147.4.1497
– volume: 99
  start-page: 4185
  year: 2002
  ident: BFnrg3927_CR72
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.022039799
– volume: 150
  start-page: 910
  year: 1965
  ident: BFnrg3927_CR69
  publication-title: Science
  doi: 10.1126/science.150.3698.910
– volume: 325
  start-page: 151
  year: 2004
  ident: BFnrg3927_CR87
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2003.10.005
– volume: 9
  start-page: 77
  year: 1996
  ident: BFnrg3927_CR55
  publication-title: Protein Eng.
  doi: 10.1093/protein/9.1.77
– volume: 53
  start-page: 9203
  year: 2014
  ident: BFnrg3927_CR82
  publication-title: Angew. Chem. Int. Ed Engl.
  doi: 10.1002/anie.201403582
– volume: 370
  start-page: 389
  year: 1994
  ident: BFnrg3927_CR37
  publication-title: Nature
  doi: 10.1038/370389a0
– volume: 1
  start-page: 602
  year: 2012
  ident: BFnrg3927_CR46
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb3000904
– volume: 15
  start-page: 553
  year: 1997
  ident: BFnrg3927_CR71
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0697-553
– volume: 1
  start-page: 87
  year: 1959
  ident: BFnrg3927_CR13
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(59)80038-3
– volume: 27
  start-page: 49
  year: 2014
  ident: BFnrg3927_CR35
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzt061
– volume: 14
  start-page: 243
  year: 2013
  ident: BFnrg3927_CR102
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3351
– volume: 4
  start-page: 143
  year: 2007
  ident: BFnrg3927_CR76
  publication-title: Nat. Methods
  doi: 10.1038/nmeth993
– volume: 255
  start-page: 589
  year: 1996
  ident: BFnrg3927_CR20
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0049
– volume: 3
  start-page: 30
  year: 2014
  ident: BFnrg3927_CR78
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201300110
– volume: 346
  start-page: 1520
  year: 2014
  ident: BFnrg3927_CR127
  publication-title: Science
  doi: 10.1126/science.1261172
– volume: 331
  start-page: 589
  year: 2011
  ident: BFnrg3927_CR108
  publication-title: Science
  doi: 10.1126/science.1199081
– volume: 33
  start-page: e117
  year: 2005
  ident: BFnrg3927_CR39
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gni116
– volume: 19
  start-page: 423
  year: 2001
  ident: BFnrg3927_CR52
  publication-title: Nat. Biotechnol.
  doi: 10.1038/88084
– volume: 99
  start-page: 16537
  year: 2002
  ident: BFnrg3927_CR64
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.262420099
– volume: 86
  start-page: 622
  year: 2004
  ident: BFnrg3927_CR11
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20066
– volume: 18
  start-page: 619
  year: 2011
  ident: BFnrg3927_CR74
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2011.02.014
– volume: 111
  start-page: 10131
  year: 2014
  ident: BFnrg3927_CR79
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1409861111
– volume: 15
  start-page: 291
  year: 2004
  ident: BFnrg3927_CR135
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.05.004
– volume: 16
  start-page: 258
  year: 1998
  ident: BFnrg3927_CR40
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0398-258
– volume: 107
  start-page: 4004
  year: 2010
  ident: BFnrg3927_CR88
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0910781107
– volume: 9
  start-page: e1003187
  year: 2013
  ident: BFnrg3927_CR118
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003187
– volume: 32
  start-page: 97
  year: 2014
  ident: BFnrg3927_CR113
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2714
– volume: 6
  start-page: 343
  year: 2009
  ident: BFnrg3927_CR27
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1318
– volume: 10
  start-page: 216
  year: 2014
  ident: BFnrg3927_CR123
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1453
– volume: 24
  start-page: 1
  year: 2015
  ident: BFnrg3927_CR115
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.09.040
– volume: 111
  start-page: 13034
  year: 2014
  ident: BFnrg3927_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1413987111
– volume: 20
  start-page: 1251
  year: 2002
  ident: BFnrg3927_CR42
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt754
– volume: 330
  start-page: 287
  year: 2003
  ident: BFnrg3927_CR51
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00590-4
– volume: 15
  start-page: 314
  year: 2004
  ident: BFnrg3927_CR62
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.06.008
– volume: 94
  start-page: 4937
  year: 1997
  ident: BFnrg3927_CR97
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.10.4937
– volume: 407
  start-page: 391
  year: 2011
  ident: BFnrg3927_CR132
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.01.041
– volume: 126
  start-page: 15051
  year: 2004
  ident: BFnrg3927_CR65
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046238v
– volume: 308
  start-page: 1310
  year: 2005
  ident: BFnrg3927_CR1
  publication-title: Science
  doi: 10.1126/science.1107891
– volume: 340
  start-page: 245
  year: 1989
  ident: BFnrg3927_CR63
  publication-title: Nature
  doi: 10.1038/340245a0
– volume: 98
  start-page: 4552
  year: 2001
  ident: BFnrg3927_CR110
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.071052198
– volume: 14
  start-page: 315
  year: 1996
  ident: BFnrg3927_CR44
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0396-315
– volume: 111
  start-page: 131
  year: 2014
  ident: BFnrg3927_CR106
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1311970111
– volume: 19
  start-page: 354
  year: 2001
  ident: BFnrg3927_CR38
  publication-title: Nat. Biotechnol.
  doi: 10.1038/86744
– volume: 329
  start-page: 305
  year: 2010
  ident: BFnrg3927_CR134
  publication-title: Science
  doi: 10.1126/science.1188934
– volume: 7
  start-page: 120
  year: 2011
  ident: BFnrg3927_CR60
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.510
– volume: 84
  start-page: 775
  year: 2012
  ident: BFnrg3927_CR67
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2012.07.002
– volume-title: Practical Flow Cytometry
  year: 2003
  ident: BFnrg3927_CR70
  doi: 10.1002/0471722731
– volume: 460
  start-page: 894
  year: 2009
  ident: BFnrg3927_CR5
  publication-title: Nature
  doi: 10.1038/nature08187
– volume: 98
  start-page: 3750
  year: 2001
  ident: BFnrg3927_CR98
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.061028198
– volume: 170
  start-page: 19
  year: 2005
  ident: BFnrg3927_CR121
  publication-title: Genetics
  doi: 10.1534/genetics.104.034488
– volume-title: Directed Evolution Library Creation
  year: 2014
  ident: BFnrg3927_CR54
  doi: 10.1007/978-1-4939-1053-3
– volume: 329
  start-page: 309
  year: 2010
  ident: BFnrg3927_CR126
  publication-title: Science
  doi: 10.1126/science.1190239
– volume: 6
  start-page: 791
  year: 2014
  ident: BFnrg3927_CR90
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1996
– volume: 91
  start-page: 6808
  year: 1994
  ident: BFnrg3927_CR116
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.15.6808
– volume: 448
  start-page: 828
  year: 2007
  ident: BFnrg3927_CR100
  publication-title: Nature
  doi: 10.1038/nature06032
– volume: 110
  start-page: 7229
  year: 2013
  ident: BFnrg3927_CR85
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215994110
– volume: 472
  start-page: 499
  year: 2011
  ident: BFnrg3927_CR122
  publication-title: Nature
  doi: 10.1038/nature09929
– volume: 80
  start-page: 7085
  year: 1983
  ident: BFnrg3927_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.80.23.7085
– volume: 32
  start-page: e26
  year: 2004
  ident: BFnrg3927_CR25
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnh028
– volume: 4
  start-page: 34
  year: 2003
  ident: BFnrg3927_CR43
  publication-title: Chembiochem
  doi: 10.1002/cbic.200390011
– volume: 339
  start-page: 307
  year: 2013
  ident: BFnrg3927_CR8
  publication-title: Science
  doi: 10.1126/science.1231434
– volume: 12
  start-page: 899
  year: 1994
  ident: BFnrg3927_CR10
  publication-title: Biotechnology
– volume: 391
  start-page: 288
  year: 1998
  ident: BFnrg3927_CR45
  publication-title: Nature
  doi: 10.1038/34663
– volume: 102
  start-page: 8466
  year: 2005
  ident: BFnrg3927_CR75
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0503543102
– volume: 124
  start-page: 9396
  year: 2002
  ident: BFnrg3927_CR99
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025870q
– ident: BFnrg3927_CR83
  doi: 10.1021/cb500462t
– volume: 164
  start-page: 49
  year: 1995
  ident: BFnrg3927_CR41
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00511-4
– volume: 8
  start-page: 041102
  year: 2014
  ident: BFnrg3927_CR59
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4886771
– volume: 9
  start-page: 494
  year: 2013
  ident: BFnrg3927_CR61
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1276
– volume: 42
  start-page: 250
  year: 2011
  ident: BFnrg3927_CR130
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.010
– volume: 14
  start-page: 1176
  year: 2007
  ident: BFnrg3927_CR137
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2007.09.008
– volume: 2
  start-page: 629
  year: 2006
  ident: BFnrg3927_CR58
  publication-title: Expert Opin. Drug Metab. Toxicol.
  doi: 10.1517/17425255.2.4.629
– volume: 241
  start-page: 53
  year: 1988
  ident: BFnrg3927_CR30
  publication-title: Science
  doi: 10.1126/science.3388019
– volume: 8
  start-page: 238
  year: 2001
  ident: BFnrg3927_CR101
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/84981
– volume: 132
  start-page: 5096
  year: 2010
  ident: BFnrg3927_CR111
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909180c
– volume: 314
  start-page: 1565
  year: 2006
  ident: BFnrg3927_CR7
  publication-title: Science
  doi: 10.1126/science.1131969
– volume: 10
  start-page: 135
  year: 1976
  ident: BFnrg3927_CR15
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.ge.10.120176.001031
– volume: 16
  start-page: 6127
  year: 1988
  ident: BFnrg3927_CR96
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/16.13.6127
– volume: 346
  start-page: 1525
  year: 2014
  ident: BFnrg3927_CR129
  publication-title: Science
  doi: 10.1126/science.1259680
– volume: 352
  start-page: 624
  year: 1991
  ident: BFnrg3927_CR93
  publication-title: Nature
  doi: 10.1038/352624a0
– volume: 43
  start-page: 3570
  year: 2004
  ident: BFnrg3927_CR68
  publication-title: Biochemistry
  doi: 10.1021/bi035810c
– ident: BFnrg3927_CR114
  doi: 10.1021/sb500299c
– volume: 82
  start-page: 4193
  year: 1985
  ident: BFnrg3927_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.82.12.4193
– volume: 77
  start-page: 61
  year: 1989
  ident: BFnrg3927_CR53
  publication-title: Gene
  doi: 10.1016/0378-1119(89)90359-4
– volume: 9
  start-page: 553
  year: 2002
  ident: BFnrg3927_CR50
  publication-title: Nat. Struct. Biol.
– volume: 94
  start-page: 10092
  year: 1997
  ident: BFnrg3927_CR103
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.19.10092
– volume: 2
  start-page: 28
  year: 1992
  ident: BFnrg3927_CR23
  publication-title: PCR Methods Appl.
  doi: 10.1101/gr.2.1.28
– volume: 18
  start-page: 3739
  year: 1990
  ident: BFnrg3927_CR21
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.13.3739
– volume: 194
  start-page: 182
  year: 1991
  ident: BFnrg3927_CR95
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(91)94015-5
– volume: 47
  start-page: 5085
  year: 2008
  ident: BFnrg3927_CR136
  publication-title: Angew. Chem. Int. Ed Engl.
  doi: 10.1002/anie.200705236
– volume: 4
  start-page: e6441
  year: 2009
  ident: BFnrg3927_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006441
– volume: 106
  start-page: 9971
  issue: Suppl. 1
  year: 2009
  ident: BFnrg3927_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0901586106
– volume: 415
  start-page: 644
  year: 2002
  ident: BFnrg3927_CR6
  publication-title: Nature
  doi: 10.1038/415644a
– volume: 12
  start-page: 2273
  year: 2013
  ident: BFnrg3927_CR81
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-13-0358
– volume: 229
  start-page: 242
  year: 1985
  ident: BFnrg3927_CR12
  publication-title: Science
  doi: 10.1126/science.2990046
– volume: 19
  start-page: 456
  year: 2001
  ident: BFnrg3927_CR47
  publication-title: Nat. Biotechnol.
  doi: 10.1038/88129
– volume: 249
  start-page: 386
  year: 1990
  ident: BFnrg3927_CR94
  publication-title: Science
  doi: 10.1126/science.1696028
– volume: 17
  start-page: 731
  year: 2004
  ident: BFnrg3927_CR91
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzh084
– volume: 108
  start-page: 11399
  year: 2011
  ident: BFnrg3927_CR77
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1101046108
– volume: 510
  start-page: 103
  year: 2014
  ident: BFnrg3927_CR128
  publication-title: Nature
  doi: 10.1038/nature13404
– volume: 5
  start-page: 5352
  year: 2014
  ident: BFnrg3927_CR124
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6352
– volume: 1543
  start-page: 408
  year: 2000
  ident: BFnrg3927_CR31
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(00)00238-7
– volume: 10
  start-page: 175
  year: 2014
  ident: BFnrg3927_CR18
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1439
– volume: 130
  start-page: 17446
  year: 2008
  ident: BFnrg3927_CR66
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8055744
– volume: 348
  start-page: 552
  year: 1990
  ident: BFnrg3927_CR92
  publication-title: Nature
  doi: 10.1038/348552a0
– volume: 453
  start-page: 190
  year: 2008
  ident: BFnrg3927_CR133
  publication-title: Nature
  doi: 10.1038/nature06879
– volume: 9
  start-page: 90
  year: 2012
  ident: BFnrg3927_CR57
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1782
– volume: 319
  start-page: 1387
  year: 2008
  ident: BFnrg3927_CR125
  publication-title: Science
  doi: 10.1126/science.1152692
– volume: 339
  start-page: 9
  year: 2005
  ident: BFnrg3927_CR24
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.11.032
– volume: 77
  start-page: 363
  year: 2008
  ident: BFnrg3927_CR34
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.062906.171838
– volume: 25
  start-page: 939
  year: 2007
  ident: BFnrg3927_CR112
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1321
– volume: 111
  start-page: 4061
  year: 2014
  ident: BFnrg3927_CR109
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1321030111
– volume: 20
  start-page: 219
  year: 2007
  ident: BFnrg3927_CR36
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzm014
– volume: 74
  start-page: 7802
  year: 2008
  ident: BFnrg3927_CR4
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02046-08
– volume: 17
  start-page: 1205
  year: 1999
  ident: BFnrg3927_CR48
  publication-title: Nat. Biotechnol.
  doi: 10.1038/70754
– volume: 643
  start-page: 185
  year: 2010
  ident: BFnrg3927_CR29
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-723-5_13
– volume: 107
  start-page: 1948
  year: 2010
  ident: BFnrg3927_CR32
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0908463107
– reference: 21458342 - Mol Cell. 2011 Apr 22;42(2):250-60
– reference: 21187418 - Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):498-503
– reference: 20142500 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9
– reference: 19528637 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9971-8
– reference: 3041370 - Nucleic Acids Res. 1988 Jul 11;16(13):6127-45
– reference: 11904359 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4185-90
– reference: 7521646 - Biotechnology (N Y). 1994 Sep;12(9):899-903
– reference: 11329016 - Nat Biotechnol. 2001 May;19(5):456-60
– reference: 17700701 - Nature. 2007 Aug 16;448(7155):828-31
– reference: 24487693 - Nat Chem Biol. 2014 Mar;10(3):175-7
– reference: 18512207 - Angew Chem Int Ed Engl. 2008;47(27):5085-8
– reference: 15687276 - Genetics. 2005 May;170(1):19-31
– reference: 3891521 - Gene. 1985;34(2-3):315-23
– reference: 10585719 - Nat Biotechnol. 1999 Dec;17(12):1205-9
– reference: 24487694 - Nat Chem Biol. 2014 Mar;10(3):216-22
– reference: 15358001 - Curr Opin Biotechnol. 2004 Aug;15(4):314-22
– reference: 2547163 - Nature. 1989 Jul 20;340(6230):245-6
– reference: 17206151 - Nat Methods. 2007 Feb;4(2):143-5
– reference: 21217689 - Nat Chem Biol. 2011 Feb;7(2):120-5
– reference: 8047147 - Nature. 1994 Aug 4;370(6488):389-91
– reference: 23589865 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7229-34
– reference: 11150616 - Biochim Biophys Acta. 2000 Dec 29;1543(2):408-415
– reference: 17632524 - Nat Biotechnol. 2007 Aug;25(8):939-43
– reference: 15035627 - Biochemistry. 2004 Mar 30;43(12):3570-81
– reference: 11224569 - Nat Struct Biol. 2001 Mar;8(3):238-42
– reference: 24344268 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):131-6
– reference: 18931667 - Nat Methods. 2008 Nov;5(11):939-42
– reference: 22120467 - Nat Methods. 2011 Nov 27;9(1):90-5
– reference: 14715296 - Anal Biochem. 2004 Feb 1;325(1):151-7
– reference: 15531628 - Protein Eng Des Sel. 2004 Oct;17(10):731-9
– reference: 24982154 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10131-6
– reference: 24989829 - Angew Chem Int Ed Engl. 2014 Aug 25;53(35):9203-8
– reference: 20647463 - Science. 2010 Jul 16;329(5989):309-13
– reference: 9440693 - Nature. 1998 Jan 15;391(6664):288-91
– reference: 12507429 - Cell. 2002 Dec 27;111(7):1027-39
– reference: 24402331 - Protein Eng Des Sel. 2014 Feb;27(2):49-58
– reference: 24591643 - Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4061-6
– reference: 1907718 - Nature. 1991 Aug 15;352(6336):624-8
– reference: 797306 - Annu Rev Genet. 1976;10:135-56
– reference: 21277311 - J Mol Biol. 2011 Apr 1;407(3):391-412
– reference: 9144168 - Proc Natl Acad Sci U S A. 1997 May 13;94(10):4937-42
– reference: 25187567 - Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13343-8
– reference: 25461718 - Curr Opin Chem Biol. 2015 Feb;24:1-10
– reference: 17961829 - Chem Biol. 2007 Oct;14(10):1176-85
– reference: 12426575 - Nat Biotechnol. 2002 Dec;20(12):1251-5
– reference: 23945077 - Mol Cancer Ther. 2013 Oct;12(10):2273-81
– reference: 8041701 - Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808-14
– reference: 15755953 - Microbiol Mol Biol Rev. 2005 Mar;69(1):51-78
– reference: 24870237 - Nature. 2014 Jun 5;510(7503):103-8
– reference: 11274392 - Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3750-5
– reference: 22685138 - Appl Environ Microbiol. 2012 Aug;78(16):5708-16
– reference: 11274352 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4552-7
– reference: 23748672 - Nat Chem Biol. 2013 Aug;9(8):494-8
– reference: 12042875 - Nat Struct Biol. 2002 Jul;9(7):553-8
– reference: 9294168 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092-7
– reference: 12167034 - J Am Chem Soc. 2002 Aug 14;124(32):9396-403
– reference: 22796568 - Biochem Pharmacol. 2012 Sep 15;84(6):775-83
– reference: 18410248 - Annu Rev Biochem. 2008;77:363-82
– reference: 12909725 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9727-32
– reference: 19053460 - J Am Chem Soc. 2008 Dec 24;130(51):17446-52
– reference: 20558668 - Science. 2010 Jul 16;329(5989):305-9
– reference: 3388019 - Science. 1988 Jul 1;241(4861):53-7
– reference: 12823968 - J Mol Biol. 2003 Jul 4;330(2):287-96
– reference: 24041203 - ACS Chem Biol. 2013 Nov 15;8(11):2394-403
– reference: 12512074 - Chembiochem. 2003 Jan 3;4(1):34-9
– reference: 19363495 - Nat Methods. 2009 May;6(5):343-5
– reference: 9661199 - Nat Biotechnol. 1998 Jul;16(7):652-6
– reference: 23258409 - Science. 2013 Jan 18;339(6117):307-10
– reference: 2005786 - Methods Enzymol. 1991;194:182-7
– reference: 9409816 - Genetics. 1997 Dec;147(4):1497-507
– reference: 15118093 - Proc Natl Acad Sci U S A. 2004 May 4;101(18):7011-6
– reference: 1696028 - Science. 1990 Jul 27;249(4967):386-90
– reference: 17158319 - Science. 2006 Dec 8;314(5805):1565-8
– reference: 20552452 - Methods Mol Biol. 2010;643:185-200
– reference: 15919994 - Science. 2005 May 27;308(5726):1310-4
– reference: 9053906 - Protein Eng. 1996 Jan;9(1):77-83
– reference: 25525248 - Science. 2014 Dec 19;346(6216):1520-4
– reference: 24185096 - Nat Biotechnol. 2014 Jan;32(1):97-101
– reference: 21609843 - Chem Biol. 2011 May 27;18(5):619-30
– reference: 6359162 - Proc Natl Acad Sci U S A. 1983 Dec;80(23):7085-9
– reference: 19633652 - Nature. 2009 Aug 13;460(7257):894-8
– reference: 23419278 - Nat Rev Genet. 2013 Apr;14(4):243-8
– reference: 12244330 - Nat Biotechnol. 2002 Oct;20(10):1044-8
– reference: 5891056 - Science. 1965 Nov 12;150(3698):910-1
– reference: 19649325 - PLoS One. 2009 Jul 30;4(7):e6441
– reference: 23300488 - PLoS Genet. 2013;9(1):e1003187
– reference: 21978125 - J Am Chem Soc. 2011 Nov 9;133(44):17536-9
– reference: 25279711 - ACS Synth Biol. 2015 Oct 16;4(10):1070-6
– reference: 16859410 - Expert Opin Drug Metab Toxicol. 2006 Aug;2(4):629-45
– reference: 12482929 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16537-42
– reference: 9181578 - Nat Biotechnol. 1997 Jun;15(6):553-7
– reference: 14872057 - Nucleic Acids Res. 2004 Feb 10;32(3):e26
– reference: 20080675 - Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1948-53
– reference: 22179135 - Nat Genet. 2011 Dec 18;44(1):101-5
– reference: 25143214 - Nat Chem. 2014 Sep;6(9):791-6
– reference: 25525249 - Science. 2014 Dec 19;346(6216):1525-8
– reference: 23164568 - J Mol Biol. 2013 Feb 8;425(3):662-77
– reference: 15137072 - Biotechnol Bioeng. 2004 Jun 20;86(6):622-7
– reference: 16061932 - Nucleic Acids Res. 2005 Aug 01;33(13):e117
– reference: 22665824 - Protein Eng Des Sel. 2012 Sep;25(9):445-52
– reference: 2374708 - Nucleic Acids Res. 1990 Jul 11;18(13):3739-44
– reference: 9630892 - Nat Biotechnol. 1996 Mar;14(3):315-9
– reference: 11283594 - Nat Biotechnol. 2001 Apr;19(4):354-9
– reference: 11329010 - Nat Biotechnol. 2001 May;19(5):423-8
– reference: 25355134 - Nat Commun. 2014 Oct 30;5:5352
– reference: 22686546 - J Am Chem Soc. 2012 Jul 4;134(26):10749-52
– reference: 2247164 - Nature. 1990 Dec 6;348(6301):552-4
– reference: 8568899 - J Mol Biol. 1996 Feb 2;255(4):589-603
– reference: 15296927 - Curr Opin Biotechnol. 2004 Aug;15(4):291-7
– reference: 7590320 - Gene. 1995 Oct 16;164(1):49-53
– reference: 21478873 - Nature. 2011 Apr 28;472(7344):499-503
– reference: 15766704 - Anal Biochem. 2005 Apr 1;339(1):9-14
– reference: 11832946 - Nature. 2002 Feb 7;415(6872):644-6
– reference: 2744488 - Gene. 1989 Apr 15;77(1):61-8
– reference: 20235594 - J Am Chem Soc. 2010 Apr 14;132(14):5096-104
– reference: 25379082 - Biomicrofluidics. 2014 Jul 02;8(4):041102
– reference: 21292977 - Science. 2011 Feb 4;331(6017):589-92
– reference: 15548001 - J Am Chem Soc. 2004 Nov 24;126(46):15051-9
– reference: 17483523 - Protein Eng Des Sel. 2007 May;20(5):219-26
– reference: 25360987 - ACS Chem Biol. 2015 Feb 20;10(2):460-5
– reference: 9219234 - Mol Biotechnol. 1997 Apr;7(2):189-95
– reference: 18952866 - Appl Environ Microbiol. 2008 Dec;74(24):7802-8
– reference: 23412545 - ACS Synth Biol. 2012 Dec 21;1(12):602-9
– reference: 18354394 - Nature. 2008 May 8;453(7192):190-5
– reference: 2990046 - Science. 1985 Jul 19;229(4710):242-7
– reference: 21697512 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11399-404
– reference: 18323453 - Science. 2008 Mar 7;319(5868):1387-91
– reference: 25157169 - Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13034-9
– reference: 3889923 - Proc Natl Acad Sci U S A. 1985 Jun;82(12):4193-7
– reference: 9528005 - Nat Biotechnol. 1998 Mar;16(3):258-61
– reference: 7809066 - Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12501-4
– reference: 15939870 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8466-71
– reference: 23788402 - Adv Healthc Mater. 2014 Jan;3(1):30-5
SSID ssj0016173
Score 2.6472452
SecondaryResourceType review_article
Snippet Key Points Directed evolution is a cyclic process that alternates between gene diversification and screening for or selection of functional gene variants....
Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 379
SubjectTerms 49/40
631/1647/1513
631/1647/2163
631/181/735
631/208/191/1908
631/61/338
Agriculture
Animal Genetics and Genomics
Animals
Biomedicine
Cancer Research
Cellular proteins
Directed Molecular Evolution
Gene Function
Genetic regulation
Genetic research
Genetic Techniques
Human Genetics
Humans
Properties
Protein Engineering - methods
Proteins - genetics
Proteins - metabolism
review-article
Substrate Specificity
Title Methods for the directed evolution of proteins
URI https://link.springer.com/article/10.1038/nrg3927
https://www.ncbi.nlm.nih.gov/pubmed/26055155
https://www.proquest.com/docview/1766289334
https://www.proquest.com/docview/1690217948
https://www.proquest.com/docview/1773836920
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3ahEIvJf12kqZqKe3JjS1LtnUKaUhICwklbWBvxitpQqHYSbxb6L_PjK114xRyWdj1M2hHM9KTNHoD8IF-TlxNAYg5mlhliHGZZj6muFPI-iIK-e7wyWl-fK6-zfQsbLh1Ia1yNSb2A7VrLe-R77KQoeTa8Grv8irmqlF8uhpKaDyEdZYuY68uZuOCi6l7n2BPA3DMmpfDpVmWBN9tri-IGRST2ejumHxrUrpzStpPPkcb8CSwRrE_dPNTeOCbZ_BoqCP59zl8PunrQHeCGKggRieGico74f8E1xItil6T4VfTvYDzo8OfB8dxKIQQWyIMizhTqDVriTlppSkQXZrUiGpeoMnLOisSjVmNqa4dhZvUniVu0EtU3sy1s9lLWGvaxr8GYaSkrqmJNlmnXFrOpbeaviuFPnNYRvBxZZDKBpVwLlbxu-pPq7OyCpaLQIzAy0EY43_IW7ZoNdzoHEOp2le8lZWURkbwvkewEEXDmS4X9bLrqq8_ziagTwGELTXF1uHiAP0h1q6aILcnSIoUO3286toqRGpX_fOrCN6Nj_lNzj5rfLskTG546WZUeQ-mKGixnxuZRPBqcJvRLrxm5FI69PbKj241YGq0zfsbuQWPibLpIWF4G9YW10v_hmjRYr7T-z59lgfpDqx_OTz9fnYDsrgLwQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4gxugL8QpFlNV4ear07G4v-2AMQck5wuFBIeGt9nR3iAlpgZ6j4U_5G53pTYoJbzy2_dpspzM7s92ZbwDe0OnAZmSAGKHxtUL0k5FyPtmdRuYX0ci1w9ODaHykvx6Hx0vwp6uF4bTKbk6sJ2pb5vyPfIuJDCX3htefzs597hrFu6tdC41GLfbc5W9aslUfJ5_p-76VcvfL4c7Yb7sK-Dl537mvNIYhE3NZmUsTI9pRkCHqWYwmSjIVByGqDEdhZkl3ZeiYLwadRO3MLLS5oufegbtakWlyZfpOn1LCS4U6oZ8mfJ85NpsiXaYg3youTigSiQfe77oPuOIEr-3K1s5u9yGstFGq2G7U6hEsueIx3Gv6Vl4-gQ_Tuu90JSjiFRRBisYxOivcr1aVRYmi5oD4WVRP4ehWRPQMlouycGsgjJSkChmFabnVdpTMpMtDOtYanbKYePCuE0iat6zk3BzjNK13x1WStpLzQPTAs4aI43_IJks0bSpIe9NNtzX_OgsSIz14XSOY-KLgzJqTbFFV6eT7twHofQvCkoaSZ22hAr0Qc2UNkBsDJFlmPrzcfdq0nRmq9J8ee_Cqv8x3crZb4coFYSLDS0WjkxswcawSFRkZeLDaqE0vF16jcuseurvToysDGApt_eZBbsL98eF0P92fHOw9hwcULoZNsvIGLM8vFu4FhWTz2cvaDgT8uG3D-wvH3UZT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4gRsML8QpFlNV4eaqnZ3fbbh-MIeAJR4QYlYS32tPdISSmRXqOhr_mr3OmNykmvPHYdtpsp9_szHZnvgF4SacDm5EBYoSJrxWib8bK-WR3GplfRCPXDh8cRntH-uNxeLwEf7paGE6r7ObEeqK2Zc7_yEdMZCi5N7weYZsW8Xl38v7sp88dpHintWun0UBk3138puVb9W66S9_6lZSTD9929vy2w4Cfkyee-0pjGDJJl5W5TGJEOw4yRD2LMYlMpuIgRJXhOMws4ViGjrlj0EnULpmFNlf03FtwO1axYRszO316CS8b6uR-mvx95ttsCnaZjnxUnJ9QVBIPPOFVf3DJIV7Zoa0d3-QerLYRq9huIHYfllzxAO40PSwvHsLbg7oHdSUo-hUUTYrGSTor3K8W1qJEUfNBnBbVIzi6ERU9huWiLNw6iERKgkVGIVtutR2bmXR5SMdao1MWjQevO4WkectQzo0yfqT1Trkyaas5D0QveNaQcvwvssUaTZtq0t6M023Nv9ECk0gPXtQSTIJRMJxOskVVpdOvXwZCb1ohLGkoedYWLdALMW_WQHJzIElWmg8vd582bWeJKv2HaQ-e95f5Ts58K1y5IJko4WVjos01MnGsjIoSGXiw1sCm1wuvV7mND93d4ejSAIZK27h-kFtwl0wu_TQ93H8CKxQ5hk3e8iYsz88X7ilFZ_PZs9oMBHy_abv7CxMqSok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+the+directed+evolution+of+proteins&rft.jtitle=Nature+reviews.+Genetics&rft.au=Packer%2C+Michael+S.&rft.au=Liu%2C+David+R.&rft.date=2015-07-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=16&rft.issue=7&rft.spage=379&rft.epage=394&rft_id=info:doi/10.1038%2Fnrg3927&rft.externalDocID=10_1038_nrg3927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon