Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry
Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature i...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 3526 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.02.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters. |
---|---|
AbstractList | Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters. Abstract Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters. Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters. |
ArticleNumber | 3526 |
Author | Endres, Matthias Banneke, Stefanie Emmrich, Julius Valentin Mei, Jie Grittner, Ulrike Riedel, Nico |
Author_xml | – sequence: 1 givenname: Jie surname: Mei fullname: Mei, Jie organization: Department of Neurology and Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health – sequence: 2 givenname: Nico surname: Riedel fullname: Riedel, Nico organization: QUEST – Center for Transforming Biomedical Research, Berlin Institute of Health (BIH) – sequence: 3 givenname: Ulrike surname: Grittner fullname: Grittner, Ulrike organization: Center for Stroke Research, Charité - Universitätsmedizin Berlin, Department of Biostatistics and Clinical Epidemiology, Charité - Universitätsmedizin Berlin – sequence: 4 givenname: Matthias surname: Endres fullname: Endres, Matthias organization: Department of Neurology and Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research, Charité - Universitätsmedizin Berlin, German Center for Neurodegenerative Diseases (DZNE), German Center for Cardiovascular Research (DZHK) – sequence: 5 givenname: Stefanie surname: Banneke fullname: Banneke, Stefanie organization: German Federal Institute for Risk Assessment, German Center for the Protection of Laboratory Animals (Bf3R) – sequence: 6 givenname: Julius Valentin orcidid: 0000-0002-3393-0840 surname: Emmrich fullname: Emmrich, Julius Valentin email: julius.emmrich@charite.de organization: Department of Neurology and Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29476115$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_0D7BAltiwCfgVJ2GBVKoClSqxgbXl2NdTjxI72E6l2fLL8cyU0umi3lwrOefz9fU5rY588FBVbwj-QDDrPiZOmr6rMelqSjHFtXhRnVDMm5oySo8e7Y-r85TWuKyG9pz0r6rjUltBSHNS_fkSzAZlmGaIKi8R0AQqlTqBz8h5NDkNyCzR-RVSesmA3Dh6SOkTctM8Kp_VMMIBIUfl0xy8gYjuIKYloUK0qoCct1FFMCjfQpzCBDluXlcvrRoTnN_Xs-rX16ufl9_rmx_fri8vbmotOMs1I1ZRTHrBzUA5ZlY35Xac0aEVA7HGqrLHjQJsiGoFNkU8ENwxoXjbCcvOqus91wS1lnN0k4obGZSTuw8hrqSK2ekRJGE9B2Z7TEXHG0t7M-hBDYWkVTlIF9bnPWtehgmMLsOKajyAHv7x7lauwp1sOsp73hfA-3tADL8XSFlOLmkYy0AhLElSjNu-w4yRIn33RLoOS_RlVDuV6FqGt8C3jzt6aOXfUxcB3Qt0DClFsA8SguU2UnIfKVkiJXeRkqKYuicm7bLKLmxv5cbnrWxvTfM2PBD_t_2M6y-FteL0 |
CitedBy_id | crossref_primary_10_1016_j_bbih_2022_100477 crossref_primary_10_3390_vaccines8020306 crossref_primary_10_1016_j_omtn_2023_102053 crossref_primary_10_1038_s41598_020_77786_5 crossref_primary_10_1093_cercor_bhac291 crossref_primary_10_1016_j_toxicon_2024_107831 crossref_primary_10_1111_bph_70000 crossref_primary_10_3390_ani11123448 crossref_primary_10_1088_1361_6528_ac49c3 crossref_primary_10_1038_s41586_024_07232_3 crossref_primary_10_1080_21505594_2023_2186331 crossref_primary_10_3389_fphys_2021_634510 crossref_primary_10_1007_s10753_020_01187_z crossref_primary_10_3390_ani12020177 crossref_primary_10_1182_bloodadvances_2019000613 crossref_primary_10_1002_mbo3_905 crossref_primary_10_1111_nmo_13754 crossref_primary_10_3389_fvets_2023_1086003 crossref_primary_10_1016_j_immuni_2021_04_001 crossref_primary_10_1016_j_jhepr_2023_100714 crossref_primary_10_1002_adsr_202300187 crossref_primary_10_1002_advs_202101813 crossref_primary_10_3390_ani13101677 crossref_primary_10_1038_s41598_019_50310_0 crossref_primary_10_3390_nu12102925 crossref_primary_10_3390_biomedicines6040108 crossref_primary_10_1155_2019_5815604 crossref_primary_10_3389_fgene_2022_841043 crossref_primary_10_1152_ajpheart_00337_2022 crossref_primary_10_3390_insects12110968 crossref_primary_10_1017_awf_2025_10 crossref_primary_10_1016_j_physbeh_2021_113347 crossref_primary_10_4103_mtsp_mtsp_11_21 crossref_primary_10_1016_j_xphs_2021_11_003 crossref_primary_10_1242_dmm_050511 crossref_primary_10_3390_biomedicines12071494 crossref_primary_10_1016_j_celrep_2024_114637 crossref_primary_10_3390_toxins15090525 crossref_primary_10_3390_vaccines8040647 crossref_primary_10_1016_j_physbeh_2021_113386 crossref_primary_10_3389_fnins_2021_667708 crossref_primary_10_7759_cureus_76274 crossref_primary_10_1016_j_isci_2020_101561 crossref_primary_10_3389_fnbeh_2022_1013624 crossref_primary_10_1016_j_cell_2022_05_016 crossref_primary_10_1021_acsami_2c12530 crossref_primary_10_1038_s41598_020_62789_z crossref_primary_10_1016_j_isci_2021_103241 crossref_primary_10_1155_2019_9684140 |
Cites_doi | 10.1258/00236770360563769 10.1128/AAC.48.9.3343-3348.2004 10.1186/1756-0500-7-233 10.1111/j.1460-9568.2005.04073.x 10.1038/nm1233 10.1111/j.1600-0684.2006.00159.x 10.1111/j.2041-210x.2012.00261.x 10.1016/0160-5402(89)90031-4 10.1152/ajpregu.90723.2008 10.1016/j.pain.2010.12.019 10.1007/BF01972718 10.1038/bjc.2013.818 10.1258/002367798780559329 10.1017/S0031182014000821 10.1097/00003246-198802000-00011 10.1152/physrev.00015.2003 10.1371/journal.pbio.1000412 10.1111/j.1600-0684.2007.00214.x 10.1128/IAI.67.3.1521-1525.1999 10.1097/ALN.0b013e31817f6d76 10.2460/javma.1998.213.01.76 10.1016/j.bpa.2008.06.004 10.1111/2041-210X.12225 10.1186/s12866-017-1045-z 10.1152/jn.00721.2013 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-018-22020-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_1394e3f9026845f29dbcbab6a4cadfac PMC5824949 29476115 10_1038_s41598_018_22020_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c643t-31fa201964db2403fc5232432b76b1fdfa43205ae0d1a760d201b10836a4786f3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:01 EDT 2025 Thu Aug 21 14:09:46 EDT 2025 Fri Jul 11 12:43:01 EDT 2025 Wed Aug 13 11:26:53 EDT 2025 Thu Jan 02 23:00:33 EST 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 02:50:40 EDT 2025 Fri Feb 21 02:37:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c643t-31fa201964db2403fc5232432b76b1fdfa43205ae0d1a760d201b10836a4786f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3393-0840 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-22020-6 |
PMID | 29476115 |
PQID | 2007687309 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1394e3f9026845f29dbcbab6a4cadfac pubmedcentral_primary_oai_pubmedcentral_nih_gov_5824949 proquest_miscellaneous_2007980331 proquest_journals_2007687309 pubmed_primary_29476115 crossref_primary_10_1038_s41598_018_22020_6 crossref_citationtrail_10_1038_s41598_018_22020_6 springer_journals_10_1038_s41598_018_22020_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-23 |
PublicationDateYYYYMMDD | 2018-02-23 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | ShrumBA robust scoring system to evaluate sepsis severity in an animal modelBMC Res Notes2014710.1186/1756-0500-7-233247257424022086 Russell, W. M. S. & Burch, R. L. The principles of humane experimental technique. (Methuen, 1959). KortWJHekking-WeijmaJMTenKateMTSormVVanStrikRA microchip implant system as a method to determine body temperature of terminally ill rats and miceLab. Anim.1998322602691:STN:280:DyaK1czosVGrtw%3D%3D10.1258/0023677987805593299718473 HunterJEButterworthJPerkinsNDBatesonMRichardsonCAUsing body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphomaBr J Cancer20141109289341:STN:280:DC%2BC2czjs1ektg%3D%3D10.1038/bjc.2013.818244071903929895 TrammellRATothLAMarkers for predicting death as an outcome for mice used in infectious disease researchComp. Med.2011614924981:CAS:528:DC%2BC3MXhs1ektLfJ223305753236690 JohnsonPCDExtension of Nakagawa & Schielzeth’s R2GLMM to random slopes modelsMethods Ecol Evol2014594494610.1111/2041-210X.12225258108964368045 BrunellMKComparison of Noncontact Infrared Thermometry and 3 Commercial Subcutaneous Temperature Transponding Microchips with Rectal Thermometry in Rhesus Macaques (Macaca mulatta)Journal of the American Association for Laboratory Animal Science2012514794841:CAS:528:DC%2BC38Xht1arsbbM230438153400698 Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods In Ecology And Evolution4, (2013). ViannaDMLCarrivePChanges in cutaneous and body temperature during and after conditioned fear to context in the ratEur. J. Neurosci.2005212505251210.1111/j.1460-9568.2005.04073.x15932607 MarksAViannaDMLCarrivePNonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the ratAm. J. Physiol. Regul. Integr. Comp. Physiol.2009296R123912471:CAS:528:DC%2BD1MXkvVynsrk%3D10.1152/ajpregu.90723.200819211724 ClementJGMillsPBrockwayBUse of telemetry to record body temperature and activity in miceJ Pharmacol Methods1989211291401:STN:280:DyaL1M3jslantQ%3D%3D10.1016/0160-5402(89)90031-42716336 KurzAPhysiology of ThermoregulationBest Practice & Research Clinical Anaesthesiology20082262764410.1016/j.bpa.2008.06.004 BastDJNovel Murine Model of Pneumococcal Pneumonia: Use of Temperature as a Measure of Disease Severity To Compare the Efficacies of Moxifloxacin and LevofloxacinAntimicrob Agents Chemother200448334333481:CAS:528:DC%2BD2cXnsVehsr8%3D10.1128/AAC.48.9.3343-3348.200415328095514736 CarrivePChuryukanovMLe BarsDA reassessment of stress-induced ‘analgesia’ in the rat using an unbiased methodPain201115267668610.1016/j.pain.2010.12.01921277086 WarnPAInfrared body temperature measurement of mice as an early predictor of death in experimental fungal infectionsLab. Anim.2003371261311:CAS:528:DC%2BD3sXjvVeqsbk%3D10.1258/0023677036056376912689423 WongJPSaravolacEGClementJGNagataLPDevelopment of a murine hypothermia model for study of respiratory tract influenza virus infectionLab. Anim. Sci.1997471431471:STN:280:DyaK2s3psVyiuw%3D%3D9150492 SheltonLJWhiteCEFeltSAA comparison of non-contact, subcutaneous, and rectal temperatures in captive owl monkeys (Aotus sp.)J. Med. Primatol.20063534635110.1111/j.1600-0684.2006.00159.x17214662 ChenPHWhiteCEComparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus)J. Am. Assoc. Lab. Anim. Sci.20064557631:CAS:528:DC%2BD28Xhtlylt7w%3D16539337 Sessler, D. I. Temperature Monitoring and Perioperative Thermoregulation. Anesthesiology 109, 318thesiologyio El BitarNThermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute painJ. Neurophysiol.20141122185219810.1152/jn.00721.201325008410 QuimbyJMOlea-PopelkaFLappinMRComparison of digital rectal and microchip transponder thermometry in catsJ. Am. Assoc. Lab. Anim. Sci.2009484024041:CAS:528:DC%2BD1MXps1Sksbc%3D196539502715932 NewsomDMBolgosGLColbyLNemzekJAComparison of body surface temperature measurement and conventional methods for measuring temperature in the mouseContemp Top Lab Anim Sci20044313181:CAS:528:DC%2BD2cXnvVygsbo%3D15461434 HuangHPShihHMUse of infrared thermometry and effect of otitis externa on external ear canal temperature in dogsJ. Am. Vet. Med. Assoc.199821376791:STN:280:DyaK1czitVWgsQ%3D%3D9656028 VlachKDBolesJWStilesBGTelemetric Evaluation of Body Temperature and Physical Activity as Predictors of Mortality in a Murine Model of Staphylococcal Enterotoxic ShockComparative Medicine2000501601661:STN:280:DC%2BD3czht1GjsA%3D%3D10857007 StilesBGCampbellYGCastleRMGroveSACorrelation of Temperature and Toxicity in Murine Studies of Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin 1Infect. Immun.199967152115251:CAS:528:DyaK1MXhsFelsro%3D1002460596491 CaroACHankensonFCMarxJOComparison of Thermoregulatory Devices Used during Anesthesia of C57BL/6 Mice and Correlations between Body Temperature and Physiologic ParametersJ Am Assoc Lab Anim Sci2013525775831:CAS:528:DC%2BC3sXhsV2kt7rJ240412143784664 KrarupAChattopadhyayPBhattacharjeeAKBurgeJRRubleGREvaluation of surrogate markers of impending death in the galactosamine-sensitized murine model of bacterial endotoxemiaLab. Anim. Sci.1999495455501:STN:280:DC%2BD3c%2FhslKiuw%3D%3D10551457 SilvestreJ-SLactadherin promotes VEGF-dependent neovascularizationNat. Med.2005114995061:CAS:528:DC%2BD2MXjvVOlsrY%3D10.1038/nm123315834428 PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189 ShinozakiTDeaneRPerkinsFMInfrared tympanic thermometer: evaluation of a new clinical thermometerCrit. Care Med.1988161481501:STN:280:DyaL1c7js1GnsA%3D%3D10.1097/00003246-198802000-000113342626 CannonBNedergaardJBrown adipose tissue: function and physiological significancePhysiol. Rev.2004842773591:CAS:528:DC%2BD2cXotl2qsQ%3D%3D10.1152/physrev.00015.200314715917 SikoskiPComparison of rectal and infrared thermometry for obtaining body temperature in cynomolgus macaques (Macaca fascicularis)J. Med. Primatol.2007363813841:STN:280:DC%2BD2snltFGgug%3D%3D10.1111/j.1600-0684.2007.00214.x17976044 GoodwinSDComparison of Body Temperatures of Goats, Horses, and Sheep Measured With a Tympanic Infrared Thermometer, an Implantable Microchip Transponder, and a Rectal ThermometerJournal of the American Association for Laboratory Animal Science1998375155 DellavalleBKirchhoffJMarettyLCastbergFC& Kurtzhals, J. a. L. Implementation of minimally invasive and objective humane endpoints in the study of murine <span class = “italic” >Plasmodium infectionsParasitology20141411621162710.1017/S0031182014000821 GavinHESatchellKJFSurface hypothermia predicts murine mortality in the intragastric Vibrio vulnificus infection modelBMC Microbiology20171710.1186/s12866-017-1045-z286293175477130 KilkennyCBrowneWJCuthillICEmersonMAltmanDGImproving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal ResearchPLOS Biology20108e100041210.1371/journal.pbio.1000412206138592893951 HankensonFCWeight Loss and Reduced Body Temperature Determine Humane Endpoints in a Mouse Model of Ocular Herpesvirus InfectionJ Am Assoc Lab Anim Sci2013522772851:CAS:528:DC%2BC3sXpslyrsLk%3D238494103690449 OchalskiSJInhibition of endotoxin-induced hypothermia and serum TNF-α levels in CD-1 mice by various pharmacological agentsAgents and Actions199339C52C541:CAS:528:DyaK2cXislw%3D10.1007/BF019727188273585 FC Hankenson (22020_CR13) 2013; 52 JP Wong (22020_CR9) 1997; 47 A Marks (22020_CR26) 2009; 296 C Kilkenny (22020_CR32) 2010; 8 P Carrive (22020_CR27) 2011; 152 LJ Shelton (22020_CR22) 2006; 35 J-S Silvestre (22020_CR33) 2005; 11 F Pedregosa (22020_CR38) 2011; 12 N El Bitar (22020_CR23) 2014; 112 JE Hunter (22020_CR5) 2014; 110 PH Chen (22020_CR21) 2006; 45 AC Caro (22020_CR35) 2013; 52 PCD Johnson (22020_CR37) 2014; 5 JG Clement (22020_CR10) 1989; 21 PA Warn (22020_CR3) 2003; 37 HE Gavin (22020_CR15) 2017; 17 HP Huang (22020_CR14) 1998; 213 RA Trammell (22020_CR4) 2011; 61 B Dellavalle (22020_CR17) 2014; 141 SD Goodwin (22020_CR6) 1998; 37 22020_CR19 BG Stiles (22020_CR30) 1999; 67 WJ Kort (22020_CR2) 1998; 32 B Shrum (22020_CR34) 2014; 7 22020_CR36 JM Quimby (22020_CR11) 2009; 48 A Kurz (22020_CR18) 2008; 22 DM Newsom (22020_CR8) 2004; 43 T Shinozaki (22020_CR12) 1988; 16 22020_CR1 DJ Bast (22020_CR16) 2004; 48 DML Vianna (22020_CR25) 2005; 21 KD Vlach (22020_CR29) 2000; 50 MK Brunell (22020_CR7) 2012; 51 SJ Ochalski (22020_CR28) 1993; 39 B Cannon (22020_CR31) 2004; 84 P Sikoski (22020_CR20) 2007; 36 A Krarup (22020_CR24) 1999; 49 |
References_xml | – reference: HunterJEButterworthJPerkinsNDBatesonMRichardsonCAUsing body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphomaBr J Cancer20141109289341:STN:280:DC%2BC2czjs1ektg%3D%3D10.1038/bjc.2013.818244071903929895 – reference: KrarupAChattopadhyayPBhattacharjeeAKBurgeJRRubleGREvaluation of surrogate markers of impending death in the galactosamine-sensitized murine model of bacterial endotoxemiaLab. Anim. Sci.1999495455501:STN:280:DC%2BD3c%2FhslKiuw%3D%3D10551457 – reference: SilvestreJ-SLactadherin promotes VEGF-dependent neovascularizationNat. Med.2005114995061:CAS:528:DC%2BD2MXjvVOlsrY%3D10.1038/nm123315834428 – reference: ClementJGMillsPBrockwayBUse of telemetry to record body temperature and activity in miceJ Pharmacol Methods1989211291401:STN:280:DyaL1M3jslantQ%3D%3D10.1016/0160-5402(89)90031-42716336 – reference: PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189 – reference: QuimbyJMOlea-PopelkaFLappinMRComparison of digital rectal and microchip transponder thermometry in catsJ. Am. Assoc. Lab. Anim. Sci.2009484024041:CAS:528:DC%2BD1MXps1Sksbc%3D196539502715932 – reference: ShinozakiTDeaneRPerkinsFMInfrared tympanic thermometer: evaluation of a new clinical thermometerCrit. Care Med.1988161481501:STN:280:DyaL1c7js1GnsA%3D%3D10.1097/00003246-198802000-000113342626 – reference: JohnsonPCDExtension of Nakagawa & Schielzeth’s R2GLMM to random slopes modelsMethods Ecol Evol2014594494610.1111/2041-210X.12225258108964368045 – reference: BastDJNovel Murine Model of Pneumococcal Pneumonia: Use of Temperature as a Measure of Disease Severity To Compare the Efficacies of Moxifloxacin and LevofloxacinAntimicrob Agents Chemother200448334333481:CAS:528:DC%2BD2cXnsVehsr8%3D10.1128/AAC.48.9.3343-3348.200415328095514736 – reference: HankensonFCWeight Loss and Reduced Body Temperature Determine Humane Endpoints in a Mouse Model of Ocular Herpesvirus InfectionJ Am Assoc Lab Anim Sci2013522772851:CAS:528:DC%2BC3sXpslyrsLk%3D238494103690449 – reference: GavinHESatchellKJFSurface hypothermia predicts murine mortality in the intragastric Vibrio vulnificus infection modelBMC Microbiology20171710.1186/s12866-017-1045-z286293175477130 – reference: Sessler, D. I. Temperature Monitoring and Perioperative Thermoregulation. Anesthesiology 109, 318thesiologyio – reference: SheltonLJWhiteCEFeltSAA comparison of non-contact, subcutaneous, and rectal temperatures in captive owl monkeys (Aotus sp.)J. Med. Primatol.20063534635110.1111/j.1600-0684.2006.00159.x17214662 – reference: VlachKDBolesJWStilesBGTelemetric Evaluation of Body Temperature and Physical Activity as Predictors of Mortality in a Murine Model of Staphylococcal Enterotoxic ShockComparative Medicine2000501601661:STN:280:DC%2BD3czht1GjsA%3D%3D10857007 – reference: BrunellMKComparison of Noncontact Infrared Thermometry and 3 Commercial Subcutaneous Temperature Transponding Microchips with Rectal Thermometry in Rhesus Macaques (Macaca mulatta)Journal of the American Association for Laboratory Animal Science2012514794841:CAS:528:DC%2BC38Xht1arsbbM230438153400698 – reference: CaroACHankensonFCMarxJOComparison of Thermoregulatory Devices Used during Anesthesia of C57BL/6 Mice and Correlations between Body Temperature and Physiologic ParametersJ Am Assoc Lab Anim Sci2013525775831:CAS:528:DC%2BC3sXhsV2kt7rJ240412143784664 – reference: StilesBGCampbellYGCastleRMGroveSACorrelation of Temperature and Toxicity in Murine Studies of Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin 1Infect. Immun.199967152115251:CAS:528:DyaK1MXhsFelsro%3D1002460596491 – reference: GoodwinSDComparison of Body Temperatures of Goats, Horses, and Sheep Measured With a Tympanic Infrared Thermometer, an Implantable Microchip Transponder, and a Rectal ThermometerJournal of the American Association for Laboratory Animal Science1998375155 – reference: ChenPHWhiteCEComparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus)J. Am. Assoc. Lab. Anim. Sci.20064557631:CAS:528:DC%2BD28Xhtlylt7w%3D16539337 – reference: WarnPAInfrared body temperature measurement of mice as an early predictor of death in experimental fungal infectionsLab. Anim.2003371261311:CAS:528:DC%2BD3sXjvVeqsbk%3D10.1258/0023677036056376912689423 – reference: CannonBNedergaardJBrown adipose tissue: function and physiological significancePhysiol. Rev.2004842773591:CAS:528:DC%2BD2cXotl2qsQ%3D%3D10.1152/physrev.00015.200314715917 – reference: KilkennyCBrowneWJCuthillICEmersonMAltmanDGImproving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal ResearchPLOS Biology20108e100041210.1371/journal.pbio.1000412206138592893951 – reference: CarrivePChuryukanovMLe BarsDA reassessment of stress-induced ‘analgesia’ in the rat using an unbiased methodPain201115267668610.1016/j.pain.2010.12.01921277086 – reference: DellavalleBKirchhoffJMarettyLCastbergFC& Kurtzhals, J. a. L. Implementation of minimally invasive and objective humane endpoints in the study of murine <span class = “italic” >Plasmodium </span> infectionsParasitology20141411621162710.1017/S0031182014000821 – reference: SikoskiPComparison of rectal and infrared thermometry for obtaining body temperature in cynomolgus macaques (Macaca fascicularis)J. Med. Primatol.2007363813841:STN:280:DC%2BD2snltFGgug%3D%3D10.1111/j.1600-0684.2007.00214.x17976044 – reference: TrammellRATothLAMarkers for predicting death as an outcome for mice used in infectious disease researchComp. Med.2011614924981:CAS:528:DC%2BC3MXhs1ektLfJ223305753236690 – reference: ShrumBA robust scoring system to evaluate sepsis severity in an animal modelBMC Res Notes2014710.1186/1756-0500-7-233247257424022086 – reference: Russell, W. M. S. & Burch, R. L. The principles of humane experimental technique. (Methuen, 1959). – reference: KortWJHekking-WeijmaJMTenKateMTSormVVanStrikRA microchip implant system as a method to determine body temperature of terminally ill rats and miceLab. Anim.1998322602691:STN:280:DyaK1czosVGrtw%3D%3D10.1258/0023677987805593299718473 – reference: OchalskiSJInhibition of endotoxin-induced hypothermia and serum TNF-α levels in CD-1 mice by various pharmacological agentsAgents and Actions199339C52C541:CAS:528:DyaK2cXislw%3D10.1007/BF019727188273585 – reference: Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods In Ecology And Evolution4, (2013). – reference: NewsomDMBolgosGLColbyLNemzekJAComparison of body surface temperature measurement and conventional methods for measuring temperature in the mouseContemp Top Lab Anim Sci20044313181:CAS:528:DC%2BD2cXnvVygsbo%3D15461434 – reference: El BitarNThermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute painJ. Neurophysiol.20141122185219810.1152/jn.00721.201325008410 – reference: WongJPSaravolacEGClementJGNagataLPDevelopment of a murine hypothermia model for study of respiratory tract influenza virus infectionLab. Anim. Sci.1997471431471:STN:280:DyaK2s3psVyiuw%3D%3D9150492 – reference: ViannaDMLCarrivePChanges in cutaneous and body temperature during and after conditioned fear to context in the ratEur. J. Neurosci.2005212505251210.1111/j.1460-9568.2005.04073.x15932607 – reference: KurzAPhysiology of ThermoregulationBest Practice & Research Clinical Anaesthesiology20082262764410.1016/j.bpa.2008.06.004 – reference: MarksAViannaDMLCarrivePNonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the ratAm. J. Physiol. Regul. Integr. Comp. Physiol.2009296R123912471:CAS:528:DC%2BD1MXkvVynsrk%3D10.1152/ajpregu.90723.200819211724 – reference: HuangHPShihHMUse of infrared thermometry and effect of otitis externa on external ear canal temperature in dogsJ. Am. Vet. Med. Assoc.199821376791:STN:280:DyaK1czitVWgsQ%3D%3D9656028 – volume: 51 start-page: 479 year: 2012 ident: 22020_CR7 publication-title: Journal of the American Association for Laboratory Animal Science – volume: 37 start-page: 126 year: 2003 ident: 22020_CR3 publication-title: Lab. Anim. doi: 10.1258/00236770360563769 – volume: 48 start-page: 3343 year: 2004 ident: 22020_CR16 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.48.9.3343-3348.2004 – volume: 7 year: 2014 ident: 22020_CR34 publication-title: BMC Res Notes doi: 10.1186/1756-0500-7-233 – volume: 21 start-page: 2505 year: 2005 ident: 22020_CR25 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04073.x – volume: 11 start-page: 499 year: 2005 ident: 22020_CR33 publication-title: Nat. Med. doi: 10.1038/nm1233 – volume: 35 start-page: 346 year: 2006 ident: 22020_CR22 publication-title: J. Med. Primatol. doi: 10.1111/j.1600-0684.2006.00159.x – volume: 48 start-page: 402 year: 2009 ident: 22020_CR11 publication-title: J. Am. Assoc. Lab. Anim. Sci. – volume: 61 start-page: 492 year: 2011 ident: 22020_CR4 publication-title: Comp. Med. – ident: 22020_CR36 doi: 10.1111/j.2041-210x.2012.00261.x – volume: 21 start-page: 129 year: 1989 ident: 22020_CR10 publication-title: J Pharmacol Methods doi: 10.1016/0160-5402(89)90031-4 – volume: 43 start-page: 13 year: 2004 ident: 22020_CR8 publication-title: Contemp Top Lab Anim Sci – volume: 296 start-page: R1239 year: 2009 ident: 22020_CR26 publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.90723.2008 – volume: 49 start-page: 545 year: 1999 ident: 22020_CR24 publication-title: Lab. Anim. Sci. – ident: 22020_CR1 – volume: 152 start-page: 676 year: 2011 ident: 22020_CR27 publication-title: Pain doi: 10.1016/j.pain.2010.12.019 – volume: 39 start-page: C52 year: 1993 ident: 22020_CR28 publication-title: Agents and Actions doi: 10.1007/BF01972718 – volume: 110 start-page: 928 year: 2014 ident: 22020_CR5 publication-title: Br J Cancer doi: 10.1038/bjc.2013.818 – volume: 32 start-page: 260 year: 1998 ident: 22020_CR2 publication-title: Lab. Anim. doi: 10.1258/002367798780559329 – volume: 52 start-page: 277 year: 2013 ident: 22020_CR13 publication-title: J Am Assoc Lab Anim Sci – volume: 141 start-page: 1621 year: 2014 ident: 22020_CR17 publication-title: Parasitology doi: 10.1017/S0031182014000821 – volume: 45 start-page: 57 year: 2006 ident: 22020_CR21 publication-title: J. Am. Assoc. Lab. Anim. Sci. – volume: 16 start-page: 148 year: 1988 ident: 22020_CR12 publication-title: Crit. Care Med. doi: 10.1097/00003246-198802000-00011 – volume: 84 start-page: 277 year: 2004 ident: 22020_CR31 publication-title: Physiol. Rev. doi: 10.1152/physrev.00015.2003 – volume: 8 start-page: e1000412 year: 2010 ident: 22020_CR32 publication-title: PLOS Biology doi: 10.1371/journal.pbio.1000412 – volume: 12 start-page: 2825 year: 2011 ident: 22020_CR38 publication-title: Journal of Machine Learning Research – volume: 47 start-page: 143 year: 1997 ident: 22020_CR9 publication-title: Lab. Anim. Sci. – volume: 36 start-page: 381 year: 2007 ident: 22020_CR20 publication-title: J. Med. Primatol. doi: 10.1111/j.1600-0684.2007.00214.x – volume: 67 start-page: 1521 year: 1999 ident: 22020_CR30 publication-title: Infect. Immun. doi: 10.1128/IAI.67.3.1521-1525.1999 – ident: 22020_CR19 doi: 10.1097/ALN.0b013e31817f6d76 – volume: 213 start-page: 76 year: 1998 ident: 22020_CR14 publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.1998.213.01.76 – volume: 22 start-page: 627 year: 2008 ident: 22020_CR18 publication-title: Best Practice & Research Clinical Anaesthesiology doi: 10.1016/j.bpa.2008.06.004 – volume: 5 start-page: 944 year: 2014 ident: 22020_CR37 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12225 – volume: 17 year: 2017 ident: 22020_CR15 publication-title: BMC Microbiology doi: 10.1186/s12866-017-1045-z – volume: 112 start-page: 2185 year: 2014 ident: 22020_CR23 publication-title: J. Neurophysiol. doi: 10.1152/jn.00721.2013 – volume: 52 start-page: 577 year: 2013 ident: 22020_CR35 publication-title: J Am Assoc Lab Anim Sci – volume: 37 start-page: 51 year: 1998 ident: 22020_CR6 publication-title: Journal of the American Association for Laboratory Animal Science – volume: 50 start-page: 160 year: 2000 ident: 22020_CR29 publication-title: Comparative Medicine |
SSID | ssj0000529419 |
Score | 2.4757748 |
Snippet | Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during... Abstract Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3526 |
SubjectTerms | 631/250/256/2516 64/60 692/308/1426 Body temperature Endotoxins Humanities and Social Sciences Hypothermia Laboratory animals Learning algorithms Lipopolysaccharides multidisciplinary Radio frequency identification Science Science (multidisciplinary) Standardization Surface temperature Temperature effects Temperature measurement Transponders |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGAgV2Gbbu5a0rNGC3zahlyba821qsKAZspxXoTZBkCQuQOEXiHHLdLx8pOWm952W3IJYFhaTIj5H4EeCNCBiWC9XlwQpMUHhhc4Iheaekcrw2UkW2_c9f6ssr-em6ur7T6ovuhCV64CS4U0Qo0ovQFkRLUoWy7ayzxuIsznTBOPK-GPPuJFOJ1btsJW_HKplCqNM1RiqqJuNoGGXMmSaRKBL2_w5l_npZ8qcT0xiILh7CgxFBsg9p5Y_gnu-P4DD1lNw-hu9ny27LiHFqpEtmi9u_AdmsZ9R_nqXqRGbcZvBsNp-Tw3vPZoubOUqaqqkmMwyJAZ3qYBhd49isGc6IYsF3-7CiO-yMgORiufDDavsEri4-fj2_zMdGC7lDQDKgHw6mJKIc2Vni5wuuIqAlStvUlgcUM34uKuOLjpumLjocbDnxWhvZqDqIp3DQL3v_HBhx73hEVYZ7TDRR2cErJZRsnUXXINsM-E7o2o0s5NQMY67jabhQOilKo6J0VJSuM3i7f-cmcXD8dfQZ6XI_kviz4xdoVXq0Kv0vq8rgeGcJetzUa-rYickZukT8Fa_3j3E70hmL6f1yk8a0qhCCZ_AsGc5-JWiSTY0IPINmYlKTpU6f9LNvkfK7UiXRCGXwbmd8t8v6syhe_A9RvIT7Je0aKuMXx3AwrDb-FQKxwZ7EPfcDqFEw9Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDeBBRmJG0Qbx3k4XBCLWK2Q4MRKvVm2Y0OlNilteuiVX86M46Yqj71FiWPZnm_sscfzDcBr4XFZzmSbeiNwg8Izk5IZkraykJZXupCBbf_L1-ryqvg8K2fxwG0Tr1Xu58QwUbe9pTPyszz4jBCPzfvVz5SyRpF3NabQuAm3iLqMUF3P6umMhbxYBW9irEwm5NkG1yuKKeMIjzzsnI7Wo0Db_y9b8-8rk3_4TcNydHEP7kY7kn0YBX8fbrjuAdweM0vuHsKv877dMeKdiqTJbHk4DGTzjlEWejbGKDJtt4Nj88WCpr13bL5cLXC8KabqqIZh5EGnaBhGlzm2G4Y1eo0VIUzXdJOdkTm57JduWO8ewdXFp28fL9OYbiG1aJYMOBt7nRNdTtEaYunztiRzS-Smrgz3rdf4nJXaZS3XdZW1WNhwYrfWRS0rLx7DSdd37ikwYuBxaFtp7nC7iSL3Tkohi8YanCCKJgG-H3RlIxc5pcRYqOATF1KNglIoKBUEpaoE3kz_rEYmjmtLn5Msp5LEoh1e9OvvKiqlQuu3cMI3GVHelD5vWmONNtgfq7G7NoHTPRJUVO2NOgAxgVfTZ1RK8rTozvXbsUwjMyF4Ak9G4EwtQUjWFdrhCdRHkDpq6vGXbv4jEH-XMicyoQTe7sF3aNb_h-LZ9b14Dndy0gcK0xencDKst-4FGlqDeRm06Tcrdibr priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEOXVlIKMxA0i4thJHG5b1KpaCS5QqbfITmxYaTepdrOHvfLLO-M8qkCp1NtqM7Fsz3j8OZ75BuCDcLgtR6oKnRF4QOGRCQmGhJWSquSplsqz7X_7nl5cyvlVcrUH8ZAL44P2PaWld9NDdNjnDW40lAzGUa-xP_I8ggOiakfbPpjN5j_m45cVuruSPO8zZCKh7nh5sgt5sv67EOa_gZJ_3Zb6Tej8GTzt0SObdf09hD1bP4fHXT3J3Qv4c9pUO0ZsUz1VMlvdfgJki5pR7XnWZSYyXW5byxbLJTm7L2yxul7iLFMm1aSFtmM_pxwYRiEc2w3DFp3GhtA41xS_zghErpqVbde7l3B5fvbz60XYF1kISwQjLfpgp2MiyZGVIW4-VyYEskRsstRwVzmNv6NE26jiOkujCoUNJ05rLTOVOvEK9uumtkfAiHfHIqLS3OIhExXtrFJCybw06BZkHgAfJr0oewZyKoSxLPxNuFBFp6gCFVV4RRVpAB_Hd647_o17pU9Jl6MkcWf7P5r1r6K3pQIxr7TC5RER3SQuzitTGm1wPKXG4ZYBnAyWUPQLekPVOvFghu4QR_F-fIxLke5XdG2bbSeTq0gIHsDrznDGnqBJZimi7wCyiUlNujp9Ui9-e7rvRMVEIRTAp8H4brv1_6k4fpj4G3gS0_qgZH1xAvvtemvfItxqzbt-fd0AJU8mBg priority: 102 providerName: Springer Nature |
Title | Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry |
URI | https://link.springer.com/article/10.1038/s41598-018-22020-6 https://www.ncbi.nlm.nih.gov/pubmed/29476115 https://www.proquest.com/docview/2007687309 https://www.proquest.com/docview/2007980331 https://pubmed.ncbi.nlm.nih.gov/PMC5824949 https://doaj.org/article/1394e3f9026845f29dbcbab6a4cadfac |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8dt65xLBN632u6kgsrvccSzcIerCvpWkTXSh257dLty--pc7k7Z7VFfBp5Y2DUlmJvNLk_kNwCtfo1t2eG5r6eMCxXWkTTDEznnAMzcSATds-5dX0cU8mC3CxQH06Y66AVzvXdpRPql5Xby9-bH9iAb_oQ0Z5-_W6IQoUMxFmXtmOXQIx-iZYspocNnB_Zbr20sCk-uDSNhtBBNeF0ezv5qBrzKU_vtw6J_HKX_bUzWu6vw-3OswJhu3SvEADlT5EO60WSe3j-DnpMq3jDipOkJltrr9UciWJaMM9ayNX2Qi2zSKLYuCpsT3bLm6LlAWFG81qKFpOdIpUobRQY_NmmGNWmBFOKg1nXJnBDVX1Uo19fYxzM_Pvk4v7C4Vg50hZGlwptbCIyqdIJfE4KezkKCY78k4kq7OtcB7JxTKyV0RR06OhaVLzNciiHmk_SdwVFalegaM2HkU4i7hKlyKojpoxbnPgySTOHkEiQVuP-hp1vGUU7qMIjX75T5PW0GlKKjUCCqNLHi9--a6Zen4Z-kJyXJXkhi2zYOq_pZ2BpsiMg6UrxOH6HBC7SW5zKSQ2J9MYHczC057TUh7raWcnrh8w0kTe_Fy9xoNlnZhRKmqTVsm4Y7vuxY8bRVn1xJUzzhCjG5BPFCpQVOHb8rld0MKHnKPiIYseNMr322z_j4Uz_9r4E7grkfmQRH9_ikcNfVGvUBM1sgRHMaLeATH4_Hsywyvk7OrT5_x6TSajsx_jpExxV_QLzWK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixB7QbwJLGAkOEG0SZwmDhJCLLDqso_TrtSbsRMbKrVJt02FeuUH8RuZcR5Veextb1XjWHbm88zY4_kG4CW3aJYDUfhWc9yghIH2yQ3xCxGLPExULBzb_slpMjyPv4wGoy341eXC0LXKTic6RV1UOZ2R70UuZoR4zN7PLnyqGkXR1a6ERgOLI7P6gVu2xbvDTyjfV1F08Pns49Bvqwr4OVrfGpWOVRGxwsSFJjI6mw_Iq-CRThMd2sIq_B0MlAmKUKVJUGBjHRKJs4pTkViO_V6D62h4A9rspaO0P9OhqFkcZm1uTsDF3gLtI-WwhQjHyO3UNuyfKxPwL9_27yuaf8Rpnfk7uA23Wr-VfWiAdge2THkXbjSVLFf34Od-VawY8Vy1JM1suj58ZOOSUdV71uREMpUva8PGkwmp2bdsPJ1NUL6Uw7XRQ93wrlP2DaPLI8sFwx6two5wWczp5jwj93VaTU09X92H8ysRxAPYLqvSPAJGjD8GfTkVGtzeIsSsEYKLOMs1KqQ48yDsPrrMW-5zKsExkS4Gz4VsBCVRUNIJSiYevO7fmTXMH5e23idZ9i2Jtdv9Uc2_yVYJSPS2Y8NtFhDFzsBGWaFzrTTOJ1c43dyD3Q4JslUlC7kGvgcv-seoBCiyo0pTLZs2mQg4Dz142ACnHwlCMk3Q7_cg3YDUxlA3n5Tj745ofCAiIi_y4E0HvvWw_v8pHl8-i-dwc3h2ciyPD0-PnsBORGuDKAL4LmzX86V5ik5erZ-5lcXg61Uv5d_-qmGo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXYG4IN4EFjASnCBqEufhICFE2a12WahWiJX25rUTGyq1SWlToV75Wfw6ZvJoVR5721vVOJadeXjGM_MNwHNu8Vj2RO5azdFB8T3tkhni5iIUmR-rUNRo-59G8eFp-OEsOtuBX10tDKVVdjqxVtR5mdEdeT-oY0bIj2nftmkRJ_vDt7PvLnWQokhr106jYZFjs_qB7tvizdE-0vpFEAwPvrw_dNsOA26GJ3GFCsiqgBBiwlwTMJ3NIrIweKCTWPs2twp_e5EyXu6rJPZyHKx9AnRWYSJiy3HeK7CbkFfUg93Bwejk8_qGh2JooZ-2lToeF_0FnpZU0eYjcwa137Z1GtZNA_5l6f6dsPlH1LY-DIc34UZrxbJ3Ddvdgh1T3IarTV_L1R34OSjzFSPUqxaymU03V5FsXLApqifWVEgylS0rw8aTCSnd12w8nU2Q2lTRtTVD1aCwUy0Oo1SS5YLhjFbhRCgkc8qjZ2TMTsupqearu3B6KaS4B72iLMwDYIT_Y9CyU75BZxcZzhohuAjTTKN6ClMH_O6jy6xFQqeGHBNZR-S5kA2hJBJK1oSSsQMv1-_MGhyQC0cPiJbrkYThXf9Rzr_KViVItL1Dw23qEeBOZIM015lWGveTKdxu5sBexwmyVSwLuREDB56tH6NKoDiPKky5bMakwuPcd-B-wzjrlSBLJjF6AQ4kWyy1tdTtJ8X4Ww07HomAoIwceNUx32ZZ__8UDy_exVO4hmIsPx6Njh_B9YBEg_AC-B70qvnSPEaLr9JPWtFicH7Z0vwbo55nQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Body+temperature+measurement+in+mice+during+acute+illness%3A+implantable+temperature+transponder+versus+surface+infrared+thermometry&rft.jtitle=Scientific+reports&rft.au=Mei%2C+Jie&rft.au=Riedel%2C+Nico&rft.au=Grittner%2C+Ulrike&rft.au=Endres%2C+Matthias&rft.date=2018-02-23&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-22020-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_018_22020_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |