Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry

Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature i...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 3526 - 10
Main Authors Mei, Jie, Riedel, Nico, Grittner, Ulrike, Endres, Matthias, Banneke, Stefanie, Emmrich, Julius Valentin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.02.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.
AbstractList Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.
Abstract Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.
Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.
ArticleNumber 3526
Author Endres, Matthias
Banneke, Stefanie
Emmrich, Julius Valentin
Mei, Jie
Grittner, Ulrike
Riedel, Nico
Author_xml – sequence: 1
  givenname: Jie
  surname: Mei
  fullname: Mei, Jie
  organization: Department of Neurology and Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health
– sequence: 2
  givenname: Nico
  surname: Riedel
  fullname: Riedel, Nico
  organization: QUEST – Center for Transforming Biomedical Research, Berlin Institute of Health (BIH)
– sequence: 3
  givenname: Ulrike
  surname: Grittner
  fullname: Grittner, Ulrike
  organization: Center for Stroke Research, Charité - Universitätsmedizin Berlin, Department of Biostatistics and Clinical Epidemiology, Charité - Universitätsmedizin Berlin
– sequence: 4
  givenname: Matthias
  surname: Endres
  fullname: Endres, Matthias
  organization: Department of Neurology and Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research, Charité - Universitätsmedizin Berlin, German Center for Neurodegenerative Diseases (DZNE), German Center for Cardiovascular Research (DZHK)
– sequence: 5
  givenname: Stefanie
  surname: Banneke
  fullname: Banneke, Stefanie
  organization: German Federal Institute for Risk Assessment, German Center for the Protection of Laboratory Animals (Bf3R)
– sequence: 6
  givenname: Julius Valentin
  orcidid: 0000-0002-3393-0840
  surname: Emmrich
  fullname: Emmrich, Julius Valentin
  email: julius.emmrich@charite.de
  organization: Department of Neurology and Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29476115$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_0D7BAltiwCfgVJ2GBVKoClSqxgbXl2NdTjxI72E6l2fLL8cyU0umi3lwrOefz9fU5rY588FBVbwj-QDDrPiZOmr6rMelqSjHFtXhRnVDMm5oySo8e7Y-r85TWuKyG9pz0r6rjUltBSHNS_fkSzAZlmGaIKi8R0AQqlTqBz8h5NDkNyCzR-RVSesmA3Dh6SOkTctM8Kp_VMMIBIUfl0xy8gYjuIKYloUK0qoCct1FFMCjfQpzCBDluXlcvrRoTnN_Xs-rX16ufl9_rmx_fri8vbmotOMs1I1ZRTHrBzUA5ZlY35Xac0aEVA7HGqrLHjQJsiGoFNkU8ENwxoXjbCcvOqus91wS1lnN0k4obGZSTuw8hrqSK2ekRJGE9B2Z7TEXHG0t7M-hBDYWkVTlIF9bnPWtehgmMLsOKajyAHv7x7lauwp1sOsp73hfA-3tADL8XSFlOLmkYy0AhLElSjNu-w4yRIn33RLoOS_RlVDuV6FqGt8C3jzt6aOXfUxcB3Qt0DClFsA8SguU2UnIfKVkiJXeRkqKYuicm7bLKLmxv5cbnrWxvTfM2PBD_t_2M6y-FteL0
CitedBy_id crossref_primary_10_1016_j_bbih_2022_100477
crossref_primary_10_3390_vaccines8020306
crossref_primary_10_1016_j_omtn_2023_102053
crossref_primary_10_1038_s41598_020_77786_5
crossref_primary_10_1093_cercor_bhac291
crossref_primary_10_1016_j_toxicon_2024_107831
crossref_primary_10_1111_bph_70000
crossref_primary_10_3390_ani11123448
crossref_primary_10_1088_1361_6528_ac49c3
crossref_primary_10_1038_s41586_024_07232_3
crossref_primary_10_1080_21505594_2023_2186331
crossref_primary_10_3389_fphys_2021_634510
crossref_primary_10_1007_s10753_020_01187_z
crossref_primary_10_3390_ani12020177
crossref_primary_10_1182_bloodadvances_2019000613
crossref_primary_10_1002_mbo3_905
crossref_primary_10_1111_nmo_13754
crossref_primary_10_3389_fvets_2023_1086003
crossref_primary_10_1016_j_immuni_2021_04_001
crossref_primary_10_1016_j_jhepr_2023_100714
crossref_primary_10_1002_adsr_202300187
crossref_primary_10_1002_advs_202101813
crossref_primary_10_3390_ani13101677
crossref_primary_10_1038_s41598_019_50310_0
crossref_primary_10_3390_nu12102925
crossref_primary_10_3390_biomedicines6040108
crossref_primary_10_1155_2019_5815604
crossref_primary_10_3389_fgene_2022_841043
crossref_primary_10_1152_ajpheart_00337_2022
crossref_primary_10_3390_insects12110968
crossref_primary_10_1017_awf_2025_10
crossref_primary_10_1016_j_physbeh_2021_113347
crossref_primary_10_4103_mtsp_mtsp_11_21
crossref_primary_10_1016_j_xphs_2021_11_003
crossref_primary_10_1242_dmm_050511
crossref_primary_10_3390_biomedicines12071494
crossref_primary_10_1016_j_celrep_2024_114637
crossref_primary_10_3390_toxins15090525
crossref_primary_10_3390_vaccines8040647
crossref_primary_10_1016_j_physbeh_2021_113386
crossref_primary_10_3389_fnins_2021_667708
crossref_primary_10_7759_cureus_76274
crossref_primary_10_1016_j_isci_2020_101561
crossref_primary_10_3389_fnbeh_2022_1013624
crossref_primary_10_1016_j_cell_2022_05_016
crossref_primary_10_1021_acsami_2c12530
crossref_primary_10_1038_s41598_020_62789_z
crossref_primary_10_1016_j_isci_2021_103241
crossref_primary_10_1155_2019_9684140
Cites_doi 10.1258/00236770360563769
10.1128/AAC.48.9.3343-3348.2004
10.1186/1756-0500-7-233
10.1111/j.1460-9568.2005.04073.x
10.1038/nm1233
10.1111/j.1600-0684.2006.00159.x
10.1111/j.2041-210x.2012.00261.x
10.1016/0160-5402(89)90031-4
10.1152/ajpregu.90723.2008
10.1016/j.pain.2010.12.019
10.1007/BF01972718
10.1038/bjc.2013.818
10.1258/002367798780559329
10.1017/S0031182014000821
10.1097/00003246-198802000-00011
10.1152/physrev.00015.2003
10.1371/journal.pbio.1000412
10.1111/j.1600-0684.2007.00214.x
10.1128/IAI.67.3.1521-1525.1999
10.1097/ALN.0b013e31817f6d76
10.2460/javma.1998.213.01.76
10.1016/j.bpa.2008.06.004
10.1111/2041-210X.12225
10.1186/s12866-017-1045-z
10.1152/jn.00721.2013
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-018-22020-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_1394e3f9026845f29dbcbab6a4cadfac
PMC5824949
29476115
10_1038_s41598_018_22020_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c643t-31fa201964db2403fc5232432b76b1fdfa43205ae0d1a760d201b10836a4786f3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:20:01 EDT 2025
Thu Aug 21 14:09:46 EDT 2025
Fri Jul 11 12:43:01 EDT 2025
Wed Aug 13 11:26:53 EDT 2025
Thu Jan 02 23:00:33 EST 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 02:50:40 EDT 2025
Fri Feb 21 02:37:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c643t-31fa201964db2403fc5232432b76b1fdfa43205ae0d1a760d201b10836a4786f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3393-0840
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-22020-6
PMID 29476115
PQID 2007687309
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1394e3f9026845f29dbcbab6a4cadfac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5824949
proquest_miscellaneous_2007980331
proquest_journals_2007687309
pubmed_primary_29476115
crossref_primary_10_1038_s41598_018_22020_6
crossref_citationtrail_10_1038_s41598_018_22020_6
springer_journals_10_1038_s41598_018_22020_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-23
PublicationDateYYYYMMDD 2018-02-23
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ShrumBA robust scoring system to evaluate sepsis severity in an animal modelBMC Res Notes2014710.1186/1756-0500-7-233247257424022086
Russell, W. M. S. & Burch, R. L. The principles of humane experimental technique. (Methuen, 1959).
KortWJHekking-WeijmaJMTenKateMTSormVVanStrikRA microchip implant system as a method to determine body temperature of terminally ill rats and miceLab. Anim.1998322602691:STN:280:DyaK1czosVGrtw%3D%3D10.1258/0023677987805593299718473
HunterJEButterworthJPerkinsNDBatesonMRichardsonCAUsing body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphomaBr J Cancer20141109289341:STN:280:DC%2BC2czjs1ektg%3D%3D10.1038/bjc.2013.818244071903929895
TrammellRATothLAMarkers for predicting death as an outcome for mice used in infectious disease researchComp. Med.2011614924981:CAS:528:DC%2BC3MXhs1ektLfJ223305753236690
JohnsonPCDExtension of Nakagawa & Schielzeth’s R2GLMM to random slopes modelsMethods Ecol Evol2014594494610.1111/2041-210X.12225258108964368045
BrunellMKComparison of Noncontact Infrared Thermometry and 3 Commercial Subcutaneous Temperature Transponding Microchips with Rectal Thermometry in Rhesus Macaques (Macaca mulatta)Journal of the American Association for Laboratory Animal Science2012514794841:CAS:528:DC%2BC38Xht1arsbbM230438153400698
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods In Ecology And Evolution4, (2013).
ViannaDMLCarrivePChanges in cutaneous and body temperature during and after conditioned fear to context in the ratEur. J. Neurosci.2005212505251210.1111/j.1460-9568.2005.04073.x15932607
MarksAViannaDMLCarrivePNonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the ratAm. J. Physiol. Regul. Integr. Comp. Physiol.2009296R123912471:CAS:528:DC%2BD1MXkvVynsrk%3D10.1152/ajpregu.90723.200819211724
ClementJGMillsPBrockwayBUse of telemetry to record body temperature and activity in miceJ Pharmacol Methods1989211291401:STN:280:DyaL1M3jslantQ%3D%3D10.1016/0160-5402(89)90031-42716336
KurzAPhysiology of ThermoregulationBest Practice & Research Clinical Anaesthesiology20082262764410.1016/j.bpa.2008.06.004
BastDJNovel Murine Model of Pneumococcal Pneumonia: Use of Temperature as a Measure of Disease Severity To Compare the Efficacies of Moxifloxacin and LevofloxacinAntimicrob Agents Chemother200448334333481:CAS:528:DC%2BD2cXnsVehsr8%3D10.1128/AAC.48.9.3343-3348.200415328095514736
CarrivePChuryukanovMLe BarsDA reassessment of stress-induced ‘analgesia’ in the rat using an unbiased methodPain201115267668610.1016/j.pain.2010.12.01921277086
WarnPAInfrared body temperature measurement of mice as an early predictor of death in experimental fungal infectionsLab. Anim.2003371261311:CAS:528:DC%2BD3sXjvVeqsbk%3D10.1258/0023677036056376912689423
WongJPSaravolacEGClementJGNagataLPDevelopment of a murine hypothermia model for study of respiratory tract influenza virus infectionLab. Anim. Sci.1997471431471:STN:280:DyaK2s3psVyiuw%3D%3D9150492
SheltonLJWhiteCEFeltSAA comparison of non-contact, subcutaneous, and rectal temperatures in captive owl monkeys (Aotus sp.)J. Med. Primatol.20063534635110.1111/j.1600-0684.2006.00159.x17214662
ChenPHWhiteCEComparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus)J. Am. Assoc. Lab. Anim. Sci.20064557631:CAS:528:DC%2BD28Xhtlylt7w%3D16539337
Sessler, D. I. Temperature Monitoring and Perioperative Thermoregulation. Anesthesiology 109, 318thesiologyio
El BitarNThermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute painJ. Neurophysiol.20141122185219810.1152/jn.00721.201325008410
QuimbyJMOlea-PopelkaFLappinMRComparison of digital rectal and microchip transponder thermometry in catsJ. Am. Assoc. Lab. Anim. Sci.2009484024041:CAS:528:DC%2BD1MXps1Sksbc%3D196539502715932
NewsomDMBolgosGLColbyLNemzekJAComparison of body surface temperature measurement and conventional methods for measuring temperature in the mouseContemp Top Lab Anim Sci20044313181:CAS:528:DC%2BD2cXnvVygsbo%3D15461434
HuangHPShihHMUse of infrared thermometry and effect of otitis externa on external ear canal temperature in dogsJ. Am. Vet. Med. Assoc.199821376791:STN:280:DyaK1czitVWgsQ%3D%3D9656028
VlachKDBolesJWStilesBGTelemetric Evaluation of Body Temperature and Physical Activity as Predictors of Mortality in a Murine Model of Staphylococcal Enterotoxic ShockComparative Medicine2000501601661:STN:280:DC%2BD3czht1GjsA%3D%3D10857007
StilesBGCampbellYGCastleRMGroveSACorrelation of Temperature and Toxicity in Murine Studies of Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin 1Infect. Immun.199967152115251:CAS:528:DyaK1MXhsFelsro%3D1002460596491
CaroACHankensonFCMarxJOComparison of Thermoregulatory Devices Used during Anesthesia of C57BL/6 Mice and Correlations between Body Temperature and Physiologic ParametersJ Am Assoc Lab Anim Sci2013525775831:CAS:528:DC%2BC3sXhsV2kt7rJ240412143784664
KrarupAChattopadhyayPBhattacharjeeAKBurgeJRRubleGREvaluation of surrogate markers of impending death in the galactosamine-sensitized murine model of bacterial endotoxemiaLab. Anim. Sci.1999495455501:STN:280:DC%2BD3c%2FhslKiuw%3D%3D10551457
SilvestreJ-SLactadherin promotes VEGF-dependent neovascularizationNat. Med.2005114995061:CAS:528:DC%2BD2MXjvVOlsrY%3D10.1038/nm123315834428
PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189
ShinozakiTDeaneRPerkinsFMInfrared tympanic thermometer: evaluation of a new clinical thermometerCrit. Care Med.1988161481501:STN:280:DyaL1c7js1GnsA%3D%3D10.1097/00003246-198802000-000113342626
CannonBNedergaardJBrown adipose tissue: function and physiological significancePhysiol. Rev.2004842773591:CAS:528:DC%2BD2cXotl2qsQ%3D%3D10.1152/physrev.00015.200314715917
SikoskiPComparison of rectal and infrared thermometry for obtaining body temperature in cynomolgus macaques (Macaca fascicularis)J. Med. Primatol.2007363813841:STN:280:DC%2BD2snltFGgug%3D%3D10.1111/j.1600-0684.2007.00214.x17976044
GoodwinSDComparison of Body Temperatures of Goats, Horses, and Sheep Measured With a Tympanic Infrared Thermometer, an Implantable Microchip Transponder, and a Rectal ThermometerJournal of the American Association for Laboratory Animal Science1998375155
DellavalleBKirchhoffJMarettyLCastbergFC& Kurtzhals, J. a. L. Implementation of minimally invasive and objective humane endpoints in the study of murine <span class = “italic” >Plasmodium infectionsParasitology20141411621162710.1017/S0031182014000821
GavinHESatchellKJFSurface hypothermia predicts murine mortality in the intragastric Vibrio vulnificus infection modelBMC Microbiology20171710.1186/s12866-017-1045-z286293175477130
KilkennyCBrowneWJCuthillICEmersonMAltmanDGImproving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal ResearchPLOS Biology20108e100041210.1371/journal.pbio.1000412206138592893951
HankensonFCWeight Loss and Reduced Body Temperature Determine Humane Endpoints in a Mouse Model of Ocular Herpesvirus InfectionJ Am Assoc Lab Anim Sci2013522772851:CAS:528:DC%2BC3sXpslyrsLk%3D238494103690449
OchalskiSJInhibition of endotoxin-induced hypothermia and serum TNF-α levels in CD-1 mice by various pharmacological agentsAgents and Actions199339C52C541:CAS:528:DyaK2cXislw%3D10.1007/BF019727188273585
FC Hankenson (22020_CR13) 2013; 52
JP Wong (22020_CR9) 1997; 47
A Marks (22020_CR26) 2009; 296
C Kilkenny (22020_CR32) 2010; 8
P Carrive (22020_CR27) 2011; 152
LJ Shelton (22020_CR22) 2006; 35
J-S Silvestre (22020_CR33) 2005; 11
F Pedregosa (22020_CR38) 2011; 12
N El Bitar (22020_CR23) 2014; 112
JE Hunter (22020_CR5) 2014; 110
PH Chen (22020_CR21) 2006; 45
AC Caro (22020_CR35) 2013; 52
PCD Johnson (22020_CR37) 2014; 5
JG Clement (22020_CR10) 1989; 21
PA Warn (22020_CR3) 2003; 37
HE Gavin (22020_CR15) 2017; 17
HP Huang (22020_CR14) 1998; 213
RA Trammell (22020_CR4) 2011; 61
B Dellavalle (22020_CR17) 2014; 141
SD Goodwin (22020_CR6) 1998; 37
22020_CR19
BG Stiles (22020_CR30) 1999; 67
WJ Kort (22020_CR2) 1998; 32
B Shrum (22020_CR34) 2014; 7
22020_CR36
JM Quimby (22020_CR11) 2009; 48
A Kurz (22020_CR18) 2008; 22
DM Newsom (22020_CR8) 2004; 43
T Shinozaki (22020_CR12) 1988; 16
22020_CR1
DJ Bast (22020_CR16) 2004; 48
DML Vianna (22020_CR25) 2005; 21
KD Vlach (22020_CR29) 2000; 50
MK Brunell (22020_CR7) 2012; 51
SJ Ochalski (22020_CR28) 1993; 39
B Cannon (22020_CR31) 2004; 84
P Sikoski (22020_CR20) 2007; 36
A Krarup (22020_CR24) 1999; 49
References_xml – reference: HunterJEButterworthJPerkinsNDBatesonMRichardsonCAUsing body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphomaBr J Cancer20141109289341:STN:280:DC%2BC2czjs1ektg%3D%3D10.1038/bjc.2013.818244071903929895
– reference: KrarupAChattopadhyayPBhattacharjeeAKBurgeJRRubleGREvaluation of surrogate markers of impending death in the galactosamine-sensitized murine model of bacterial endotoxemiaLab. Anim. Sci.1999495455501:STN:280:DC%2BD3c%2FhslKiuw%3D%3D10551457
– reference: SilvestreJ-SLactadherin promotes VEGF-dependent neovascularizationNat. Med.2005114995061:CAS:528:DC%2BD2MXjvVOlsrY%3D10.1038/nm123315834428
– reference: ClementJGMillsPBrockwayBUse of telemetry to record body temperature and activity in miceJ Pharmacol Methods1989211291401:STN:280:DyaL1M3jslantQ%3D%3D10.1016/0160-5402(89)90031-42716336
– reference: PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189
– reference: QuimbyJMOlea-PopelkaFLappinMRComparison of digital rectal and microchip transponder thermometry in catsJ. Am. Assoc. Lab. Anim. Sci.2009484024041:CAS:528:DC%2BD1MXps1Sksbc%3D196539502715932
– reference: ShinozakiTDeaneRPerkinsFMInfrared tympanic thermometer: evaluation of a new clinical thermometerCrit. Care Med.1988161481501:STN:280:DyaL1c7js1GnsA%3D%3D10.1097/00003246-198802000-000113342626
– reference: JohnsonPCDExtension of Nakagawa & Schielzeth’s R2GLMM to random slopes modelsMethods Ecol Evol2014594494610.1111/2041-210X.12225258108964368045
– reference: BastDJNovel Murine Model of Pneumococcal Pneumonia: Use of Temperature as a Measure of Disease Severity To Compare the Efficacies of Moxifloxacin and LevofloxacinAntimicrob Agents Chemother200448334333481:CAS:528:DC%2BD2cXnsVehsr8%3D10.1128/AAC.48.9.3343-3348.200415328095514736
– reference: HankensonFCWeight Loss and Reduced Body Temperature Determine Humane Endpoints in a Mouse Model of Ocular Herpesvirus InfectionJ Am Assoc Lab Anim Sci2013522772851:CAS:528:DC%2BC3sXpslyrsLk%3D238494103690449
– reference: GavinHESatchellKJFSurface hypothermia predicts murine mortality in the intragastric Vibrio vulnificus infection modelBMC Microbiology20171710.1186/s12866-017-1045-z286293175477130
– reference: Sessler, D. I. Temperature Monitoring and Perioperative Thermoregulation. Anesthesiology 109, 318thesiologyio
– reference: SheltonLJWhiteCEFeltSAA comparison of non-contact, subcutaneous, and rectal temperatures in captive owl monkeys (Aotus sp.)J. Med. Primatol.20063534635110.1111/j.1600-0684.2006.00159.x17214662
– reference: VlachKDBolesJWStilesBGTelemetric Evaluation of Body Temperature and Physical Activity as Predictors of Mortality in a Murine Model of Staphylococcal Enterotoxic ShockComparative Medicine2000501601661:STN:280:DC%2BD3czht1GjsA%3D%3D10857007
– reference: BrunellMKComparison of Noncontact Infrared Thermometry and 3 Commercial Subcutaneous Temperature Transponding Microchips with Rectal Thermometry in Rhesus Macaques (Macaca mulatta)Journal of the American Association for Laboratory Animal Science2012514794841:CAS:528:DC%2BC38Xht1arsbbM230438153400698
– reference: CaroACHankensonFCMarxJOComparison of Thermoregulatory Devices Used during Anesthesia of C57BL/6 Mice and Correlations between Body Temperature and Physiologic ParametersJ Am Assoc Lab Anim Sci2013525775831:CAS:528:DC%2BC3sXhsV2kt7rJ240412143784664
– reference: StilesBGCampbellYGCastleRMGroveSACorrelation of Temperature and Toxicity in Murine Studies of Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin 1Infect. Immun.199967152115251:CAS:528:DyaK1MXhsFelsro%3D1002460596491
– reference: GoodwinSDComparison of Body Temperatures of Goats, Horses, and Sheep Measured With a Tympanic Infrared Thermometer, an Implantable Microchip Transponder, and a Rectal ThermometerJournal of the American Association for Laboratory Animal Science1998375155
– reference: ChenPHWhiteCEComparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus)J. Am. Assoc. Lab. Anim. Sci.20064557631:CAS:528:DC%2BD28Xhtlylt7w%3D16539337
– reference: WarnPAInfrared body temperature measurement of mice as an early predictor of death in experimental fungal infectionsLab. Anim.2003371261311:CAS:528:DC%2BD3sXjvVeqsbk%3D10.1258/0023677036056376912689423
– reference: CannonBNedergaardJBrown adipose tissue: function and physiological significancePhysiol. Rev.2004842773591:CAS:528:DC%2BD2cXotl2qsQ%3D%3D10.1152/physrev.00015.200314715917
– reference: KilkennyCBrowneWJCuthillICEmersonMAltmanDGImproving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal ResearchPLOS Biology20108e100041210.1371/journal.pbio.1000412206138592893951
– reference: CarrivePChuryukanovMLe BarsDA reassessment of stress-induced ‘analgesia’ in the rat using an unbiased methodPain201115267668610.1016/j.pain.2010.12.01921277086
– reference: DellavalleBKirchhoffJMarettyLCastbergFC& Kurtzhals, J. a. L. Implementation of minimally invasive and objective humane endpoints in the study of murine <span class = “italic” >Plasmodium </span> infectionsParasitology20141411621162710.1017/S0031182014000821
– reference: SikoskiPComparison of rectal and infrared thermometry for obtaining body temperature in cynomolgus macaques (Macaca fascicularis)J. Med. Primatol.2007363813841:STN:280:DC%2BD2snltFGgug%3D%3D10.1111/j.1600-0684.2007.00214.x17976044
– reference: TrammellRATothLAMarkers for predicting death as an outcome for mice used in infectious disease researchComp. Med.2011614924981:CAS:528:DC%2BC3MXhs1ektLfJ223305753236690
– reference: ShrumBA robust scoring system to evaluate sepsis severity in an animal modelBMC Res Notes2014710.1186/1756-0500-7-233247257424022086
– reference: Russell, W. M. S. & Burch, R. L. The principles of humane experimental technique. (Methuen, 1959).
– reference: KortWJHekking-WeijmaJMTenKateMTSormVVanStrikRA microchip implant system as a method to determine body temperature of terminally ill rats and miceLab. Anim.1998322602691:STN:280:DyaK1czosVGrtw%3D%3D10.1258/0023677987805593299718473
– reference: OchalskiSJInhibition of endotoxin-induced hypothermia and serum TNF-α levels in CD-1 mice by various pharmacological agentsAgents and Actions199339C52C541:CAS:528:DyaK2cXislw%3D10.1007/BF019727188273585
– reference: Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods In Ecology And Evolution4, (2013).
– reference: NewsomDMBolgosGLColbyLNemzekJAComparison of body surface temperature measurement and conventional methods for measuring temperature in the mouseContemp Top Lab Anim Sci20044313181:CAS:528:DC%2BD2cXnvVygsbo%3D15461434
– reference: El BitarNThermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute painJ. Neurophysiol.20141122185219810.1152/jn.00721.201325008410
– reference: WongJPSaravolacEGClementJGNagataLPDevelopment of a murine hypothermia model for study of respiratory tract influenza virus infectionLab. Anim. Sci.1997471431471:STN:280:DyaK2s3psVyiuw%3D%3D9150492
– reference: ViannaDMLCarrivePChanges in cutaneous and body temperature during and after conditioned fear to context in the ratEur. J. Neurosci.2005212505251210.1111/j.1460-9568.2005.04073.x15932607
– reference: KurzAPhysiology of ThermoregulationBest Practice & Research Clinical Anaesthesiology20082262764410.1016/j.bpa.2008.06.004
– reference: MarksAViannaDMLCarrivePNonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the ratAm. J. Physiol. Regul. Integr. Comp. Physiol.2009296R123912471:CAS:528:DC%2BD1MXkvVynsrk%3D10.1152/ajpregu.90723.200819211724
– reference: HuangHPShihHMUse of infrared thermometry and effect of otitis externa on external ear canal temperature in dogsJ. Am. Vet. Med. Assoc.199821376791:STN:280:DyaK1czitVWgsQ%3D%3D9656028
– volume: 51
  start-page: 479
  year: 2012
  ident: 22020_CR7
  publication-title: Journal of the American Association for Laboratory Animal Science
– volume: 37
  start-page: 126
  year: 2003
  ident: 22020_CR3
  publication-title: Lab. Anim.
  doi: 10.1258/00236770360563769
– volume: 48
  start-page: 3343
  year: 2004
  ident: 22020_CR16
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.48.9.3343-3348.2004
– volume: 7
  year: 2014
  ident: 22020_CR34
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-7-233
– volume: 21
  start-page: 2505
  year: 2005
  ident: 22020_CR25
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04073.x
– volume: 11
  start-page: 499
  year: 2005
  ident: 22020_CR33
  publication-title: Nat. Med.
  doi: 10.1038/nm1233
– volume: 35
  start-page: 346
  year: 2006
  ident: 22020_CR22
  publication-title: J. Med. Primatol.
  doi: 10.1111/j.1600-0684.2006.00159.x
– volume: 48
  start-page: 402
  year: 2009
  ident: 22020_CR11
  publication-title: J. Am. Assoc. Lab. Anim. Sci.
– volume: 61
  start-page: 492
  year: 2011
  ident: 22020_CR4
  publication-title: Comp. Med.
– ident: 22020_CR36
  doi: 10.1111/j.2041-210x.2012.00261.x
– volume: 21
  start-page: 129
  year: 1989
  ident: 22020_CR10
  publication-title: J Pharmacol Methods
  doi: 10.1016/0160-5402(89)90031-4
– volume: 43
  start-page: 13
  year: 2004
  ident: 22020_CR8
  publication-title: Contemp Top Lab Anim Sci
– volume: 296
  start-page: R1239
  year: 2009
  ident: 22020_CR26
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.90723.2008
– volume: 49
  start-page: 545
  year: 1999
  ident: 22020_CR24
  publication-title: Lab. Anim. Sci.
– ident: 22020_CR1
– volume: 152
  start-page: 676
  year: 2011
  ident: 22020_CR27
  publication-title: Pain
  doi: 10.1016/j.pain.2010.12.019
– volume: 39
  start-page: C52
  year: 1993
  ident: 22020_CR28
  publication-title: Agents and Actions
  doi: 10.1007/BF01972718
– volume: 110
  start-page: 928
  year: 2014
  ident: 22020_CR5
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2013.818
– volume: 32
  start-page: 260
  year: 1998
  ident: 22020_CR2
  publication-title: Lab. Anim.
  doi: 10.1258/002367798780559329
– volume: 52
  start-page: 277
  year: 2013
  ident: 22020_CR13
  publication-title: J Am Assoc Lab Anim Sci
– volume: 141
  start-page: 1621
  year: 2014
  ident: 22020_CR17
  publication-title: Parasitology
  doi: 10.1017/S0031182014000821
– volume: 45
  start-page: 57
  year: 2006
  ident: 22020_CR21
  publication-title: J. Am. Assoc. Lab. Anim. Sci.
– volume: 16
  start-page: 148
  year: 1988
  ident: 22020_CR12
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-198802000-00011
– volume: 84
  start-page: 277
  year: 2004
  ident: 22020_CR31
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00015.2003
– volume: 8
  start-page: e1000412
  year: 2010
  ident: 22020_CR32
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1000412
– volume: 12
  start-page: 2825
  year: 2011
  ident: 22020_CR38
  publication-title: Journal of Machine Learning Research
– volume: 47
  start-page: 143
  year: 1997
  ident: 22020_CR9
  publication-title: Lab. Anim. Sci.
– volume: 36
  start-page: 381
  year: 2007
  ident: 22020_CR20
  publication-title: J. Med. Primatol.
  doi: 10.1111/j.1600-0684.2007.00214.x
– volume: 67
  start-page: 1521
  year: 1999
  ident: 22020_CR30
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.67.3.1521-1525.1999
– ident: 22020_CR19
  doi: 10.1097/ALN.0b013e31817f6d76
– volume: 213
  start-page: 76
  year: 1998
  ident: 22020_CR14
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.1998.213.01.76
– volume: 22
  start-page: 627
  year: 2008
  ident: 22020_CR18
  publication-title: Best Practice & Research Clinical Anaesthesiology
  doi: 10.1016/j.bpa.2008.06.004
– volume: 5
  start-page: 944
  year: 2014
  ident: 22020_CR37
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12225
– volume: 17
  year: 2017
  ident: 22020_CR15
  publication-title: BMC Microbiology
  doi: 10.1186/s12866-017-1045-z
– volume: 112
  start-page: 2185
  year: 2014
  ident: 22020_CR23
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00721.2013
– volume: 52
  start-page: 577
  year: 2013
  ident: 22020_CR35
  publication-title: J Am Assoc Lab Anim Sci
– volume: 37
  start-page: 51
  year: 1998
  ident: 22020_CR6
  publication-title: Journal of the American Association for Laboratory Animal Science
– volume: 50
  start-page: 160
  year: 2000
  ident: 22020_CR29
  publication-title: Comparative Medicine
SSID ssj0000529419
Score 2.4757748
Snippet Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during...
Abstract Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3526
SubjectTerms 631/250/256/2516
64/60
692/308/1426
Body temperature
Endotoxins
Humanities and Social Sciences
Hypothermia
Laboratory animals
Learning algorithms
Lipopolysaccharides
multidisciplinary
Radio frequency identification
Science
Science (multidisciplinary)
Standardization
Surface temperature
Temperature effects
Temperature measurement
Transponders
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGAgV2Gbbu5a0rNGC3zahlyba821qsKAZspxXoTZBkCQuQOEXiHHLdLx8pOWm952W3IJYFhaTIj5H4EeCNCBiWC9XlwQpMUHhhc4Iheaekcrw2UkW2_c9f6ssr-em6ur7T6ovuhCV64CS4U0Qo0ovQFkRLUoWy7ayzxuIsznTBOPK-GPPuJFOJ1btsJW_HKplCqNM1RiqqJuNoGGXMmSaRKBL2_w5l_npZ8qcT0xiILh7CgxFBsg9p5Y_gnu-P4DD1lNw-hu9ny27LiHFqpEtmi9u_AdmsZ9R_nqXqRGbcZvBsNp-Tw3vPZoubOUqaqqkmMwyJAZ3qYBhd49isGc6IYsF3-7CiO-yMgORiufDDavsEri4-fj2_zMdGC7lDQDKgHw6mJKIc2Vni5wuuIqAlStvUlgcUM34uKuOLjpumLjocbDnxWhvZqDqIp3DQL3v_HBhx73hEVYZ7TDRR2cErJZRsnUXXINsM-E7o2o0s5NQMY67jabhQOilKo6J0VJSuM3i7f-cmcXD8dfQZ6XI_kviz4xdoVXq0Kv0vq8rgeGcJetzUa-rYickZukT8Fa_3j3E70hmL6f1yk8a0qhCCZ_AsGc5-JWiSTY0IPINmYlKTpU6f9LNvkfK7UiXRCGXwbmd8t8v6syhe_A9RvIT7Je0aKuMXx3AwrDb-FQKxwZ7EPfcDqFEw9Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDeBBRmJG0Qbx3k4XBCLWK2Q4MRKvVm2Y0OlNilteuiVX86M46Yqj71FiWPZnm_sscfzDcBr4XFZzmSbeiNwg8Izk5IZkraykJZXupCBbf_L1-ryqvg8K2fxwG0Tr1Xu58QwUbe9pTPyszz4jBCPzfvVz5SyRpF3NabQuAm3iLqMUF3P6umMhbxYBW9irEwm5NkG1yuKKeMIjzzsnI7Wo0Db_y9b8-8rk3_4TcNydHEP7kY7kn0YBX8fbrjuAdweM0vuHsKv877dMeKdiqTJbHk4DGTzjlEWejbGKDJtt4Nj88WCpr13bL5cLXC8KabqqIZh5EGnaBhGlzm2G4Y1eo0VIUzXdJOdkTm57JduWO8ewdXFp28fL9OYbiG1aJYMOBt7nRNdTtEaYunztiRzS-Smrgz3rdf4nJXaZS3XdZW1WNhwYrfWRS0rLx7DSdd37ikwYuBxaFtp7nC7iSL3Tkohi8YanCCKJgG-H3RlIxc5pcRYqOATF1KNglIoKBUEpaoE3kz_rEYmjmtLn5Msp5LEoh1e9OvvKiqlQuu3cMI3GVHelD5vWmONNtgfq7G7NoHTPRJUVO2NOgAxgVfTZ1RK8rTozvXbsUwjMyF4Ak9G4EwtQUjWFdrhCdRHkDpq6vGXbv4jEH-XMicyoQTe7sF3aNb_h-LZ9b14Dndy0gcK0xencDKst-4FGlqDeRm06Tcrdibr
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEOXVlIKMxA0i4thJHG5b1KpaCS5QqbfITmxYaTepdrOHvfLLO-M8qkCp1NtqM7Fsz3j8OZ75BuCDcLgtR6oKnRF4QOGRCQmGhJWSquSplsqz7X_7nl5cyvlVcrUH8ZAL44P2PaWld9NDdNjnDW40lAzGUa-xP_I8ggOiakfbPpjN5j_m45cVuruSPO8zZCKh7nh5sgt5sv67EOa_gZJ_3Zb6Tej8GTzt0SObdf09hD1bP4fHXT3J3Qv4c9pUO0ZsUz1VMlvdfgJki5pR7XnWZSYyXW5byxbLJTm7L2yxul7iLFMm1aSFtmM_pxwYRiEc2w3DFp3GhtA41xS_zghErpqVbde7l3B5fvbz60XYF1kISwQjLfpgp2MiyZGVIW4-VyYEskRsstRwVzmNv6NE26jiOkujCoUNJ05rLTOVOvEK9uumtkfAiHfHIqLS3OIhExXtrFJCybw06BZkHgAfJr0oewZyKoSxLPxNuFBFp6gCFVV4RRVpAB_Hd647_o17pU9Jl6MkcWf7P5r1r6K3pQIxr7TC5RER3SQuzitTGm1wPKXG4ZYBnAyWUPQLekPVOvFghu4QR_F-fIxLke5XdG2bbSeTq0gIHsDrznDGnqBJZimi7wCyiUlNujp9Ui9-e7rvRMVEIRTAp8H4brv1_6k4fpj4G3gS0_qgZH1xAvvtemvfItxqzbt-fd0AJU8mBg
  priority: 102
  providerName: Springer Nature
Title Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry
URI https://link.springer.com/article/10.1038/s41598-018-22020-6
https://www.ncbi.nlm.nih.gov/pubmed/29476115
https://www.proquest.com/docview/2007687309
https://www.proquest.com/docview/2007980331
https://pubmed.ncbi.nlm.nih.gov/PMC5824949
https://doaj.org/article/1394e3f9026845f29dbcbab6a4cadfac
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8dt65xLBN632u6kgsrvccSzcIerCvpWkTXSh257dLty--pc7k7Z7VFfBp5Y2DUlmJvNLk_kNwCtfo1t2eG5r6eMCxXWkTTDEznnAMzcSATds-5dX0cU8mC3CxQH06Y66AVzvXdpRPql5Xby9-bH9iAb_oQ0Z5-_W6IQoUMxFmXtmOXQIx-iZYspocNnB_Zbr20sCk-uDSNhtBBNeF0ezv5qBrzKU_vtw6J_HKX_bUzWu6vw-3OswJhu3SvEADlT5EO60WSe3j-DnpMq3jDipOkJltrr9UciWJaMM9ayNX2Qi2zSKLYuCpsT3bLm6LlAWFG81qKFpOdIpUobRQY_NmmGNWmBFOKg1nXJnBDVX1Uo19fYxzM_Pvk4v7C4Vg50hZGlwptbCIyqdIJfE4KezkKCY78k4kq7OtcB7JxTKyV0RR06OhaVLzNciiHmk_SdwVFalegaM2HkU4i7hKlyKojpoxbnPgySTOHkEiQVuP-hp1vGUU7qMIjX75T5PW0GlKKjUCCqNLHi9--a6Zen4Z-kJyXJXkhi2zYOq_pZ2BpsiMg6UrxOH6HBC7SW5zKSQ2J9MYHczC057TUh7raWcnrh8w0kTe_Fy9xoNlnZhRKmqTVsm4Y7vuxY8bRVn1xJUzzhCjG5BPFCpQVOHb8rld0MKHnKPiIYseNMr322z_j4Uz_9r4E7grkfmQRH9_ikcNfVGvUBM1sgRHMaLeATH4_Hsywyvk7OrT5_x6TSajsx_jpExxV_QLzWK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixB7QbwJLGAkOEG0SZwmDhJCLLDqso_TrtSbsRMbKrVJt02FeuUH8RuZcR5Veextb1XjWHbm88zY4_kG4CW3aJYDUfhWc9yghIH2yQ3xCxGLPExULBzb_slpMjyPv4wGoy341eXC0LXKTic6RV1UOZ2R70UuZoR4zN7PLnyqGkXR1a6ERgOLI7P6gVu2xbvDTyjfV1F08Pns49Bvqwr4OVrfGpWOVRGxwsSFJjI6mw_Iq-CRThMd2sIq_B0MlAmKUKVJUGBjHRKJs4pTkViO_V6D62h4A9rspaO0P9OhqFkcZm1uTsDF3gLtI-WwhQjHyO3UNuyfKxPwL9_27yuaf8Rpnfk7uA23Wr-VfWiAdge2THkXbjSVLFf34Od-VawY8Vy1JM1suj58ZOOSUdV71uREMpUva8PGkwmp2bdsPJ1NUL6Uw7XRQ93wrlP2DaPLI8sFwx6two5wWczp5jwj93VaTU09X92H8ysRxAPYLqvSPAJGjD8GfTkVGtzeIsSsEYKLOMs1KqQ48yDsPrrMW-5zKsExkS4Gz4VsBCVRUNIJSiYevO7fmTXMH5e23idZ9i2Jtdv9Uc2_yVYJSPS2Y8NtFhDFzsBGWaFzrTTOJ1c43dyD3Q4JslUlC7kGvgcv-seoBCiyo0pTLZs2mQg4Dz142ACnHwlCMk3Q7_cg3YDUxlA3n5Tj745ofCAiIi_y4E0HvvWw_v8pHl8-i-dwc3h2ciyPD0-PnsBORGuDKAL4LmzX86V5ik5erZ-5lcXg61Uv5d_-qmGo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXYG4IN4EFjASnCBqEufhICFE2a12WahWiJX25rUTGyq1SWlToV75Wfw6ZvJoVR5721vVOJadeXjGM_MNwHNu8Vj2RO5azdFB8T3tkhni5iIUmR-rUNRo-59G8eFp-OEsOtuBX10tDKVVdjqxVtR5mdEdeT-oY0bIj2nftmkRJ_vDt7PvLnWQokhr106jYZFjs_qB7tvizdE-0vpFEAwPvrw_dNsOA26GJ3GFCsiqgBBiwlwTMJ3NIrIweKCTWPs2twp_e5EyXu6rJPZyHKx9AnRWYSJiy3HeK7CbkFfUg93Bwejk8_qGh2JooZ-2lToeF_0FnpZU0eYjcwa137Z1GtZNA_5l6f6dsPlH1LY-DIc34UZrxbJ3Ddvdgh1T3IarTV_L1R34OSjzFSPUqxaymU03V5FsXLApqifWVEgylS0rw8aTCSnd12w8nU2Q2lTRtTVD1aCwUy0Oo1SS5YLhjFbhRCgkc8qjZ2TMTsupqearu3B6KaS4B72iLMwDYIT_Y9CyU75BZxcZzhohuAjTTKN6ClMH_O6jy6xFQqeGHBNZR-S5kA2hJBJK1oSSsQMv1-_MGhyQC0cPiJbrkYThXf9Rzr_KViVItL1Dw23qEeBOZIM015lWGveTKdxu5sBexwmyVSwLuREDB56tH6NKoDiPKky5bMakwuPcd-B-wzjrlSBLJjF6AQ4kWyy1tdTtJ8X4Ww07HomAoIwceNUx32ZZ__8UDy_exVO4hmIsPx6Njh_B9YBEg_AC-B70qvnSPEaLr9JPWtFicH7Z0vwbo55nQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Body+temperature+measurement+in+mice+during+acute+illness%3A+implantable+temperature+transponder+versus+surface+infrared+thermometry&rft.jtitle=Scientific+reports&rft.au=Mei%2C+Jie&rft.au=Riedel%2C+Nico&rft.au=Grittner%2C+Ulrike&rft.au=Endres%2C+Matthias&rft.date=2018-02-23&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-22020-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_018_22020_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon