Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes

Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality 1 – 5 . Despite considerable efforts, a disconnect persists between the fu...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 599; no. 7885; pp. 404 - 410
Main Authors Chen, Peng, Atallah, Timothy L., Lin, Zhaoyang, Wang, Peiqi, Lee, Sung-Joon, Xu, Junqing, Huang, Zhihong, Duan, Xidong, Ping, Yuan, Huang, Yu, Caram, Justin R., Duan, Xiangfeng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.11.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality 1 – 5 . Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor–contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley–Read–Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton–charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton–charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional transition metal dichalcogenide diodes with defect-free van der Waals contacts allows minimization of the extrinsic interfacial disorder-dominated recombination and access to the intrinsic excitonic behaviour in two-dimensional semiconductor devices.
AbstractList Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality.sup.1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality.sup.1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional transition metal dichalcogenide diodes with defect-free van der Waals contacts allows minimization of the extrinsic interfacial disorder-dominated recombination and access to the intrinsic excitonic behaviour in two-dimensional semiconductor devices.
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality 1 – 5 . Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor–contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley–Read–Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton–charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton–charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional transition metal dichalcogenide diodes with defect-free van der Waals contacts allows minimization of the extrinsic interfacial disorder-dominated recombination and access to the intrinsic excitonic behaviour in two-dimensional semiconductor devices.
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality . Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
Audience Academic
Author Lee, Sung-Joon
Lin, Zhaoyang
Caram, Justin R.
Atallah, Timothy L.
Wang, Peiqi
Duan, Xiangfeng
Ping, Yuan
Chen, Peng
Huang, Zhihong
Huang, Yu
Duan, Xidong
Xu, Junqing
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-8527-1210
  surname: Chen
  fullname: Chen, Peng
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles
– sequence: 2
  givenname: Timothy L.
  surname: Atallah
  fullname: Atallah, Timothy L.
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles
– sequence: 3
  givenname: Zhaoyang
  orcidid: 0000-0002-6474-7184
  surname: Lin
  fullname: Lin, Zhaoyang
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles
– sequence: 4
  givenname: Peiqi
  surname: Wang
  fullname: Wang, Peiqi
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles
– sequence: 5
  givenname: Sung-Joon
  surname: Lee
  fullname: Lee, Sung-Joon
  organization: Department of Materials Science and Engineering, University of California, Los Angeles
– sequence: 6
  givenname: Junqing
  surname: Xu
  fullname: Xu, Junqing
  organization: Department of Chemistry and Biochemistry, University of California Santa Cruz
– sequence: 7
  givenname: Zhihong
  orcidid: 0000-0002-5927-5995
  surname: Huang
  fullname: Huang, Zhihong
  organization: Department of Materials Science and Engineering, University of California, Los Angeles
– sequence: 8
  givenname: Xidong
  orcidid: 0000-0002-4951-901X
  surname: Duan
  fullname: Duan, Xidong
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
– sequence: 9
  givenname: Yuan
  surname: Ping
  fullname: Ping, Yuan
  organization: Department of Chemistry and Biochemistry, University of California Santa Cruz
– sequence: 10
  givenname: Yu
  orcidid: 0000-0003-1793-0741
  surname: Huang
  fullname: Huang, Yu
  organization: Department of Materials Science and Engineering, University of California, Los Angeles, California NanoSystems Institute, University of California, Los Angeles
– sequence: 11
  givenname: Justin R.
  orcidid: 0000-0001-5126-3829
  surname: Caram
  fullname: Caram, Justin R.
  email: xduan@chem.ucla.edu
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, California NanoSystems Institute, University of California, Los Angeles
– sequence: 12
  givenname: Xiangfeng
  orcidid: 0000-0002-4321-6288
  surname: Duan
  fullname: Duan, Xiangfeng
  email: jcaram@chem.ucla.edu
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, California NanoSystems Institute, University of California, Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34789906$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNU7Lb6B7yQwd4oMjVfk2Qul8WPQlHQSi9DNsnspswk2ySD7b8367TULWvJRUjyvC8557xH4MAHbwF4jeApgkR8TBQ1gtUQoxqSlrY1fwZmiHJWUyb4AZhBiEUNBWGH4CilKwhhgzh9AQ4J5aJtIZuBy_lmE4PSa-dXVV7byvkcnU9OV_ZGuxx8tVnflmOqeje4XN6r_DvUxg22UMGrvkp2cDp4M-ocYmVcMDa9BM871Sf76m4_Br8-f7pYfK3Pv385W8zPa80oyTXSmBBMYIeU4UtktWi0gVi17bJpKFFt1yneKrjk3DStUpxTiiyEBhrGrBLkGLybfEsV16NNWQ4uadv3ytswJombUifHgsCCnjxCr8IYSwETxShmiD1QK9Vb6XwXclR6ayrnTOAWC4q3XvUeamW9jaovU-pcud7h3-7h9cZdy3-h0z1QWWZq8B7X9zuCwmR7k1dqTEme_fyxy374Pzu_uFx826Xf3PVqXA7WyE10g4q38j44BRAToGNIKdpOlrCoXAJR_ux6iaDcZlROGZUlo_JvRiUvUvxIeu_-pIhMolRgv7LxYXhPqP4AnX70Dg
CitedBy_id crossref_primary_10_1360_nso_20220034
crossref_primary_10_1021_acs_jpclett_3c02168
crossref_primary_10_1038_s41565_022_01221_1
crossref_primary_10_1038_s41928_022_00858_z
crossref_primary_10_1038_s44160_023_00396_2
crossref_primary_10_1002_adfm_202305490
crossref_primary_10_1038_s41699_022_00354_0
crossref_primary_10_1002_smtd_202300376
crossref_primary_10_1063_5_0117476
crossref_primary_10_1002_smll_202404348
crossref_primary_10_1021_acs_nanolett_4c00057
crossref_primary_10_1038_s41928_023_01055_2
crossref_primary_10_1038_s41928_023_01034_7
crossref_primary_10_1007_s40843_023_2751_0
crossref_primary_10_1007_s11431_022_2285_1
crossref_primary_10_1021_jacs_3c09170
crossref_primary_10_1016_j_nanoen_2024_109725
crossref_primary_10_1021_acs_chemrev_3c00791
crossref_primary_10_1038_s41565_023_01442_y
crossref_primary_10_1063_5_0180501
crossref_primary_10_1002_adma_202303272
crossref_primary_10_1016_j_nanoen_2023_108632
crossref_primary_10_1039_D3NA00670K
crossref_primary_10_1021_acsmaterialslett_4c01919
crossref_primary_10_1088_1674_4926_45_5_051701
crossref_primary_10_1038_s41566_023_01250_9
crossref_primary_10_1039_D4SC05873A
crossref_primary_10_1002_aelm_202101385
crossref_primary_10_1002_adfm_202213277
crossref_primary_10_1016_j_cclet_2023_108796
crossref_primary_10_1038_s41566_024_01487_y
crossref_primary_10_1117_1_AP_6_3_034001
crossref_primary_10_3390_nano13010196
crossref_primary_10_1002_admi_202200060
crossref_primary_10_1063_5_0091289
crossref_primary_10_1021_acsanm_2c03932
crossref_primary_10_1039_D3NR06127B
crossref_primary_10_1002_adma_202207901
crossref_primary_10_1557_s43577_024_00668_y
crossref_primary_10_1002_smll_202408705
crossref_primary_10_1039_D2CS00218C
crossref_primary_10_1039_D4CP04118F
crossref_primary_10_1186_s43593_023_00040_8
crossref_primary_10_1038_s41596_023_00865_0
crossref_primary_10_1038_s41377_023_01187_2
crossref_primary_10_3390_nano15030201
crossref_primary_10_1039_D2NR03784J
crossref_primary_10_1021_acs_jpclett_2c00274
crossref_primary_10_1002_adma_202306689
crossref_primary_10_1002_adma_202302248
crossref_primary_10_1002_adma_202206122
crossref_primary_10_1038_s41928_023_01050_7
crossref_primary_10_1103_PhysRevB_109_115137
crossref_primary_10_1063_5_0177559
crossref_primary_10_1126_sciadv_adr1534
crossref_primary_10_1038_s44310_024_00043_4
crossref_primary_10_1021_acs_jpcc_4c02515
crossref_primary_10_1038_s43586_022_00139_1
crossref_primary_10_1021_acs_jpclett_3c03040
crossref_primary_10_1103_PhysRevLett_133_236201
crossref_primary_10_1021_acsnano_4c15117
crossref_primary_10_1016_j_apcatb_2024_124344
crossref_primary_10_1038_s41566_024_01460_9
crossref_primary_10_1103_PhysRevApplied_20_064050
crossref_primary_10_1002_pssr_202300120
crossref_primary_10_1038_s41699_022_00339_z
crossref_primary_10_1002_aelm_202200672
crossref_primary_10_1016_j_mtphys_2022_100814
crossref_primary_10_1021_acs_chemrev_3c00697
crossref_primary_10_1016_j_mattod_2024_02_009
crossref_primary_10_1038_s41563_023_01676_0
crossref_primary_10_1126_sciadv_adj4060
crossref_primary_10_1021_acsnano_1c09255
crossref_primary_10_1038_s41467_023_36565_2
crossref_primary_10_1002_smll_202410841
crossref_primary_10_1016_j_materresbull_2024_113046
crossref_primary_10_1002_smm2_1180
Cites_doi 10.1021/acs.nanolett.7b04707
10.1103/PhysRevB.86.165202
10.1038/nnano.2014.25
10.1063/1.5093055
10.1038/s41699-017-0019-1
10.1002/adom.201900695
10.1021/acs.nanolett.6b05022
10.1038/nnano.2010.172
10.1063/1.5026478
10.1103/PhysRevB.90.155449
10.1063/1.4973352
10.1038/s42254-020-00272-4
10.1126/science.aan6814
10.1149/2.0372001JSS
10.1038/nnano.2014.14
10.1126/science.aaw8053
10.1103/PhysRevLett.123.027401
10.1038/ncomms2498
10.1039/C5NR00383K
10.1021/nl503799t
10.1038/nnano.2014.167
10.1063/1.366360
10.1038/s41586-019-1402-1
10.1038/s41467-019-10170-8
10.1038/s41467-018-03864-y
10.1038/nphys781
10.1038/s41586-018-0129-8
10.1038/s41560-019-0463-6
10.1126/science.aab4097
10.1021/acs.jpclett.7b00885
10.1103/PhysRevLett.113.076802
10.1038/s41467-018-05917-8
10.1063/1.332568
10.1021/nl502075n
10.1038/s41567-018-0282-x
10.1021/jz5008438
10.1103/PhysRevLett.113.026803
10.1038/nnano.2014.150
10.1038/s41586-019-1052-3
10.1039/C6CP03361J
10.1021/acs.nanolett.0c02190
10.1038/nnano.2014.26
10.1103/PhysRevB.99.165411
10.1007/BF01458701
10.1021/nl502741k
10.1021/acsnano.0c05305
10.1016/j.cpc.2015.05.011
10.1103/PhysRevLett.77.3865
10.1016/j.softx.2017.10.006
10.1002/9780470974704
10.1002/jcc.20495
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Nov 18, 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 18, 2021
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-021-03949-7
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList





PubMed
MEDLINE - Academic

Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 410
ExternalDocumentID A682928420
34789906
10_1038_s41586_021_03949_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAVBQ
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c643t-1c233230f1ad7b1ec85cd02a99b5543a9ffa79a0b77d59aa77441e00d0d66ea83
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Jul 10 19:19:42 EDT 2025
Fri Jul 25 08:54:59 EDT 2025
Tue Jun 17 21:17:41 EDT 2025
Thu Jun 12 23:54:20 EDT 2025
Tue Jun 10 15:34:04 EDT 2025
Tue Jun 10 20:16:48 EDT 2025
Fri Jun 27 04:39:15 EDT 2025
Fri Jun 27 04:34:04 EDT 2025
Mon Jul 21 04:15:35 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Tue Jul 01 02:32:30 EDT 2025
Fri Feb 21 02:36:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7885
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c643t-1c233230f1ad7b1ec85cd02a99b5543a9ffa79a0b77d59aa77441e00d0d66ea83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5927-5995
0000-0002-6474-7184
0000-0002-4951-901X
0000-0001-8527-1210
0000-0001-5126-3829
0000-0003-1793-0741
0000-0002-4321-6288
PMID 34789906
PQID 2599642616
PQPubID 40569
PageCount 7
ParticipantIDs proquest_miscellaneous_2599072830
proquest_journals_2599642616
gale_infotracmisc_A682928420
gale_infotracgeneralonefile_A682928420
gale_infotraccpiq_682928420
gale_infotracacademiconefile_A682928420
gale_incontextgauss_ISR_A682928420
gale_incontextgauss_ATWCN_A682928420
pubmed_primary_34789906
crossref_citationtrail_10_1038_s41586_021_03949_7
crossref_primary_10_1038_s41586_021_03949_7
springer_journals_10_1038_s41586_021_03949_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-18
PublicationDateYYYYMMDD 2021-11-18
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Pólya (CR21) 1921; 84
Zhu (CR20) 2014; 5
CR34
Livache (CR15) 2019; 10
Kadlec (CR38) 2016; 109
Groenendijk (CR53) 2014; 14
He (CR2) 2014; 113
Ross (CR1) 2013; 4
Altermatt, Schmidt, Heiser, Aberle (CR36) 1997; 82
Uddin (CR41) 2020; 14
Lien (CR31) 2019; 364
CR49
Tea, Hin (CR46) 2016; 18
Liu (CR44) 2019; 123
Zhang (CR12) 2017; 357
Ross (CR6) 2014; 9
Li (CR11) 2015; 349
Baugher, Churchill, Yang, Jarillo-Herrero (CR7) 2014; 9
Chen (CR43) 2017; 1
Ye (CR48) 2018; 9
Wen, Xu, Zhao, Khurgin, Xiong (CR14) 2018; 18
Wang (CR27) 2019; 568
Palummo, Bernardi, Grossman (CR47) 2015; 15
Hong (CR17) 2014; 9
Mouri (CR40) 2014; 90
Das, Gupta, Majumdar (CR30) 2019; 99
Liu (CR25) 2018; 557
CR52
Nguyen (CR45) 2019; 572
CR51
Passari, Susi (CR35) 1983; 54
CR50
Elbaz (CR33) 2017; 17
Yuan, Huang (CR4) 2015; 7
Massicotte (CR13) 2018; 9
Steinhoff (CR19) 2018; 14
Richter, Glunz, Werner, Schmidt, Cuevas (CR37) 2012; 86
Lee (CR10) 2014; 9
Khan (CR16) 2019; 7
Cheng (CR9) 2014; 14
Dean (CR23) 2010; 5
Yuan, Wang, Zhu, Zhou, Huang (CR18) 2017; 8
CR28
Chen (CR24) 2019; 115
Chernikov (CR3) 2014; 113
Paul, Kim, Lee (CR5) 2021; 3
CR22
Cadiz (CR39) 2018; 112
Allen, Bullock, Yang, Javey, De Wolf (CR29) 2019; 4
Chow (CR26) 2020; 20
David, Young, Lund, Craven (CR32) 2019; 9
Pospischil, Furchi, Mueller (CR8) 2014; 9
Martin (CR42) 2008; 4
Y Wang (3949_CR27) 2019; 568
3949_CR52
X Wen (3949_CR14) 2018; 18
GA Elbaz (3949_CR33) 2017; 17
KK Paul (3949_CR5) 2021; 3
A David (3949_CR32) 2019; 9
DJ Groenendijk (3949_CR53) 2014; 14
Y Liu (3949_CR25) 2018; 557
M-Y Li (3949_CR11) 2015; 349
JS Ross (3949_CR1) 2013; 4
K He (3949_CR2) 2014; 113
D-H Lien (3949_CR31) 2019; 364
A Richter (3949_CR37) 2012; 86
S Mouri (3949_CR40) 2014; 90
3949_CR49
Z Ye (3949_CR48) 2018; 9
L Yuan (3949_CR4) 2015; 7
A Pospischil (3949_CR8) 2014; 9
3949_CR51
3949_CR50
Q Khan (3949_CR16) 2019; 7
X Hong (3949_CR17) 2014; 9
C Livache (3949_CR15) 2019; 10
X-Y Zhu (3949_CR20) 2014; 5
R Cheng (3949_CR9) 2014; 14
3949_CR34
SZ Uddin (3949_CR41) 2020; 14
A Chernikov (3949_CR3) 2014; 113
G Pólya (3949_CR21) 1921; 84
K Chen (3949_CR43) 2017; 1
E Liu (3949_CR44) 2019; 123
S Das (3949_CR30) 2019; 99
Z Zhang (3949_CR12) 2017; 357
E Kadlec (3949_CR38) 2016; 109
JS Ross (3949_CR6) 2014; 9
P Chen (3949_CR24) 2019; 115
C-H Lee (3949_CR10) 2014; 9
PP Altermatt (3949_CR36) 1997; 82
J Martin (3949_CR42) 2008; 4
M Massicotte (3949_CR13) 2018; 9
3949_CR22
BW Baugher (3949_CR7) 2014; 9
L Yuan (3949_CR18) 2017; 8
3949_CR28
L Passari (3949_CR35) 1983; 54
F Cadiz (3949_CR39) 2018; 112
M Palummo (3949_CR47) 2015; 15
CME Chow (3949_CR26) 2020; 20
PV Nguyen (3949_CR45) 2019; 572
E Tea (3949_CR46) 2016; 18
CR Dean (3949_CR23) 2010; 5
TG Allen (3949_CR29) 2019; 4
A Steinhoff (3949_CR19) 2018; 14
References_xml – ident: CR22
– volume: 18
  start-page: 1686
  year: 2018
  end-page: 1692
  ident: CR14
  article-title: Plasmonic hot carriers-controlled second harmonic generation in WSe bilayers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04707
– ident: CR49
– volume: 86
  start-page: 165202
  year: 2012
  ident: CR37
  article-title: Improved quantitative description of Auger recombination in crystalline silicon
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.165202
– volume: 9
  start-page: 262
  year: 2014
  end-page: 267
  ident: CR7
  article-title: Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.25
– volume: 115
  start-page: 083104
  year: 2019
  ident: CR24
  article-title: Band evolution of two-dimensional transition metal dichalcogenides under electric fields
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5093055
– volume: 1
  year: 2017
  ident: CR43
  article-title: Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-017-0019-1
– ident: CR51
– volume: 7
  start-page: 1900695
  year: 2019
  ident: CR16
  article-title: Overcoming the electroluminescence efficiency limitations in quantum-dot light-emitting diodes
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900695
– volume: 17
  start-page: 1727
  year: 2017
  end-page: 1732
  ident: CR33
  article-title: Unbalanced hole and electron diffusion in lead bromide perovskites
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05022
– volume: 5
  start-page: 722
  year: 2010
  end-page: 726
  ident: CR23
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 112
  start-page: 152106
  year: 2018
  ident: CR39
  article-title: Exciton diffusion in WSe monolayers embedded in a van der Waals heterostructure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5026478
– volume: 90
  start-page: 155449
  year: 2014
  ident: CR40
  article-title: Nonlinear photoluminescence in atomically thin layered WSe arising from diffusion-assisted exciton–exciton annihilation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.155449
– volume: 109
  start-page: 261105
  year: 2016
  ident: CR38
  article-title: Effects of electron doping level on minority carrier lifetimes in n-type mid-wave infrared InAs/InAs Sb type-II superlattices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4973352
– volume: 3
  start-page: 178
  year: 2021
  end-page: 192
  ident: CR5
  article-title: Hot carrier photovoltaics in van der Waals heterostructures
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-00272-4
– volume: 357
  start-page: 788
  year: 2017
  end-page: 792
  ident: CR12
  article-title: Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices
  publication-title: Science
  doi: 10.1126/science.aan6814
– volume: 9
  start-page: 016021
  year: 2019
  ident: CR32
  article-title: The physics of recombinations in III-nitride emitters
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0372001JSS
– volume: 9
  start-page: 257
  year: 2014
  end-page: 261
  ident: CR8
  article-title: Solar-energy conversion and light emission in an atomic monolayer p–n diode
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.14
– volume: 364
  start-page: 468
  year: 2019
  end-page: 471
  ident: CR31
  article-title: Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors
  publication-title: Science
  doi: 10.1126/science.aaw8053
– ident: CR50
– volume: 123
  start-page: 027401
  year: 2019
  ident: CR44
  article-title: Gate tunable dark trions in monolayer WSe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.027401
– volume: 4
  year: 2013
  ident: CR1
  article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2498
– volume: 7
  start-page: 7402
  year: 2015
  end-page: 7408
  ident: CR4
  article-title: Exciton dynamics and annihilation in WS 2D semiconductors
  publication-title: Nanoscale
  doi: 10.1039/C5NR00383K
– volume: 15
  start-page: 2794
  year: 2015
  end-page: 2800
  ident: CR47
  article-title: Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides
  publication-title: Nano Lett.
  doi: 10.1021/nl503799t
– volume: 9
  start-page: 682
  year: 2014
  end-page: 686
  ident: CR17
  article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.167
– volume: 82
  start-page: 4938
  year: 1997
  end-page: 4944
  ident: CR36
  article-title: Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366360
– volume: 572
  start-page: 220
  year: 2019
  end-page: 223
  ident: CR45
  article-title: Visualizing electrostatic gating effects in two-dimensional heterostructures
  publication-title: Nature
  doi: 10.1038/s41586-019-1402-1
– volume: 10
  year: 2019
  ident: CR15
  article-title: A colloidal quantum dot infrared photodetector and its use for intraband detection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10170-8
– volume: 9
  year: 2018
  ident: CR13
  article-title: Dissociation of two-dimensional excitons in monolayer WSe
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03864-y
– volume: 4
  start-page: 144
  year: 2008
  end-page: 148
  ident: CR42
  article-title: Observation of electron–hole puddles in graphene using a scanning single-electron transistor
  publication-title: Nat. Phys.
  doi: 10.1038/nphys781
– volume: 557
  start-page: 696
  year: 2018
  end-page: 700
  ident: CR25
  article-title: Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions
  publication-title: Nature
  doi: 10.1038/s41586-018-0129-8
– volume: 4
  start-page: 914
  year: 2019
  end-page: 928
  ident: CR29
  article-title: Passivating contacts for crystalline silicon solar cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0463-6
– volume: 349
  start-page: 524
  year: 2015
  end-page: 528
  ident: CR11
  article-title: Epitaxial growth of a monolayer WSe –MoS lateral p–n junction with an atomically sharp interface
  publication-title: Science
  doi: 10.1126/science.aab4097
– volume: 8
  start-page: 3371
  year: 2017
  end-page: 3379
  ident: CR18
  article-title: Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00885
– volume: 113
  start-page: 076802
  year: 2014
  ident: CR3
  article-title: Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.076802
– volume: 9
  year: 2018
  ident: CR48
  article-title: Efficient generation of neutral and charged biexcitons in encapsulated WSe monolayers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05917-8
– volume: 54
  start-page: 3935
  year: 1983
  end-page: 3937
  ident: CR35
  article-title: Recombination mechanisms and doping density in silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.332568
– volume: 14
  start-page: 5590
  year: 2014
  end-page: 5597
  ident: CR9
  article-title: Electroluminescence and photocurrent generation from atomically sharp WSe /MoS heterojunction p–n diodes
  publication-title: Nano Lett.
  doi: 10.1021/nl502075n
– volume: 14
  start-page: 1199
  year: 2018
  end-page: 1204
  ident: CR19
  article-title: Biexciton fine structure in monolayer transition metal dichalcogenides
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0282-x
– volume: 5
  start-page: 2283
  year: 2014
  end-page: 2288
  ident: CR20
  article-title: How to draw energy level diagrams in excitonic solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5008438
– volume: 113
  start-page: 026803
  year: 2014
  ident: CR2
  article-title: Tightly bound excitons in monolayer WSe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.026803
– volume: 9
  start-page: 676
  year: 2014
  end-page: 681
  ident: CR10
  article-title: Atomically thin p–n junctions with van der Waals heterointerfaces
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.150
– volume: 568
  start-page: 70
  year: 2019
  end-page: 74
  ident: CR27
  article-title: Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors
  publication-title: Nature
  doi: 10.1038/s41586-019-1052-3
– volume: 18
  start-page: 22706
  year: 2016
  end-page: 22711
  ident: CR46
  article-title: Charge carrier transport and lifetimes in n-type and p-type phosphorene as 2D device active materials: an ab initio study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03361J
– volume: 20
  start-page: 5538
  year: 2020
  end-page: 5543
  ident: CR26
  article-title: Monolayer semiconductor Auger detector
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02190
– volume: 9
  start-page: 268
  year: 2014
  end-page: 272
  ident: CR6
  article-title: Electrically tunable excitonic light-emitting diodes based on monolayer WSe p–n junctions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.26
– volume: 99
  start-page: 165411
  year: 2019
  ident: CR30
  article-title: Layer degree of freedom for excitons in transition metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.165411
– ident: CR52
– volume: 84
  start-page: 149
  year: 1921
  end-page: 160
  ident: CR21
  article-title: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz
  publication-title: Math. Ann.
  doi: 10.1007/BF01458701
– ident: CR34
– volume: 14
  start-page: 5846
  year: 2014
  end-page: 5852
  ident: CR53
  article-title: Photovoltaic and photothermoelectric effect in a double-gated WSe device
  publication-title: Nano Lett.
  doi: 10.1021/nl502741k
– volume: 14
  start-page: 13433
  year: 2020
  end-page: 13440
  ident: CR41
  article-title: Neutral exciton diffusion in monolayer MoS
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05305
– ident: CR28
– volume: 84
  start-page: 149
  year: 1921
  ident: 3949_CR21
  publication-title: Math. Ann.
  doi: 10.1007/BF01458701
– volume: 99
  start-page: 165411
  year: 2019
  ident: 3949_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.165411
– volume: 4
  start-page: 914
  year: 2019
  ident: 3949_CR29
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0463-6
– ident: 3949_CR50
  doi: 10.1016/j.cpc.2015.05.011
– volume: 364
  start-page: 468
  year: 2019
  ident: 3949_CR31
  publication-title: Science
  doi: 10.1126/science.aaw8053
– volume: 90
  start-page: 155449
  year: 2014
  ident: 3949_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.155449
– volume: 123
  start-page: 027401
  year: 2019
  ident: 3949_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.027401
– volume: 3
  start-page: 178
  year: 2021
  ident: 3949_CR5
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-00272-4
– volume: 113
  start-page: 076802
  year: 2014
  ident: 3949_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.076802
– volume: 9
  start-page: 268
  year: 2014
  ident: 3949_CR6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.26
– volume: 9
  start-page: 676
  year: 2014
  ident: 3949_CR10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.150
– volume: 5
  start-page: 2283
  year: 2014
  ident: 3949_CR20
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5008438
– volume: 14
  start-page: 5846
  year: 2014
  ident: 3949_CR53
  publication-title: Nano Lett.
  doi: 10.1021/nl502741k
– volume: 86
  start-page: 165202
  year: 2012
  ident: 3949_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.165202
– ident: 3949_CR51
  doi: 10.1103/PhysRevLett.77.3865
– volume: 18
  start-page: 22706
  year: 2016
  ident: 3949_CR46
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03361J
– volume: 9
  start-page: 682
  year: 2014
  ident: 3949_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.167
– volume: 5
  start-page: 722
  year: 2010
  ident: 3949_CR23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– ident: 3949_CR34
– volume: 568
  start-page: 70
  year: 2019
  ident: 3949_CR27
  publication-title: Nature
  doi: 10.1038/s41586-019-1052-3
– volume: 14
  start-page: 5590
  year: 2014
  ident: 3949_CR9
  publication-title: Nano Lett.
  doi: 10.1021/nl502075n
– volume: 7
  start-page: 1900695
  year: 2019
  ident: 3949_CR16
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900695
– volume: 14
  start-page: 13433
  year: 2020
  ident: 3949_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05305
– ident: 3949_CR49
  doi: 10.1016/j.softx.2017.10.006
– volume: 357
  start-page: 788
  year: 2017
  ident: 3949_CR12
  publication-title: Science
  doi: 10.1126/science.aan6814
– ident: 3949_CR22
– volume: 9
  start-page: 257
  year: 2014
  ident: 3949_CR8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.14
– volume: 54
  start-page: 3935
  year: 1983
  ident: 3949_CR35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.332568
– volume: 15
  start-page: 2794
  year: 2015
  ident: 3949_CR47
  publication-title: Nano Lett.
  doi: 10.1021/nl503799t
– volume: 20
  start-page: 5538
  year: 2020
  ident: 3949_CR26
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02190
– volume: 115
  start-page: 083104
  year: 2019
  ident: 3949_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5093055
– volume: 113
  start-page: 026803
  year: 2014
  ident: 3949_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.026803
– volume: 82
  start-page: 4938
  year: 1997
  ident: 3949_CR36
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366360
– volume: 7
  start-page: 7402
  year: 2015
  ident: 3949_CR4
  publication-title: Nanoscale
  doi: 10.1039/C5NR00383K
– ident: 3949_CR28
  doi: 10.1002/9780470974704
– volume: 4
  year: 2013
  ident: 3949_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2498
– volume: 4
  start-page: 144
  year: 2008
  ident: 3949_CR42
  publication-title: Nat. Phys.
  doi: 10.1038/nphys781
– volume: 349
  start-page: 524
  year: 2015
  ident: 3949_CR11
  publication-title: Science
  doi: 10.1126/science.aab4097
– ident: 3949_CR52
  doi: 10.1002/jcc.20495
– volume: 17
  start-page: 1727
  year: 2017
  ident: 3949_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05022
– volume: 9
  year: 2018
  ident: 3949_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05917-8
– volume: 572
  start-page: 220
  year: 2019
  ident: 3949_CR45
  publication-title: Nature
  doi: 10.1038/s41586-019-1402-1
– volume: 9
  year: 2018
  ident: 3949_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03864-y
– volume: 557
  start-page: 696
  year: 2018
  ident: 3949_CR25
  publication-title: Nature
  doi: 10.1038/s41586-018-0129-8
– volume: 14
  start-page: 1199
  year: 2018
  ident: 3949_CR19
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0282-x
– volume: 8
  start-page: 3371
  year: 2017
  ident: 3949_CR18
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00885
– volume: 10
  year: 2019
  ident: 3949_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10170-8
– volume: 9
  start-page: 262
  year: 2014
  ident: 3949_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.25
– volume: 1
  year: 2017
  ident: 3949_CR43
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-017-0019-1
– volume: 109
  start-page: 261105
  year: 2016
  ident: 3949_CR38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4973352
– volume: 18
  start-page: 1686
  year: 2018
  ident: 3949_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04707
– volume: 9
  start-page: 016021
  year: 2019
  ident: 3949_CR32
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0372001JSS
– volume: 112
  start-page: 152106
  year: 2018
  ident: 3949_CR39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5026478
SSID ssj0005174
Score 2.5884583
Snippet Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 404
SubjectTerms 140/125
142/126
639/766/1130/2799
639/925/357/1018
639/925/927/1007
Augers
Charge density
Diffusion
Diodes
Diodes, Semiconductor
Doping
Electric fields
Electrostatic properties
Exciton theory
Excitons
Humanities and Social Sciences
Interfaces
multidisciplinary
Optical properties
Optoelectronic devices
Photoelectric effect
Photoelectric emission
Photoluminescence
Photons
Recombination
Science
Science (multidisciplinary)
Semiconductor diodes
Semiconductors
Short circuits
Tungsten
Title Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes
URI https://link.springer.com/article/10.1038/s41586-021-03949-7
https://www.ncbi.nlm.nih.gov/pubmed/34789906
https://www.proquest.com/docview/2599642616
https://www.proquest.com/docview/2599072830
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELc20KS9TIN9ZTDkTWgfGhFxvuw8TV1FxyatmhiIvlmO7aBKKCkkFfz5u0vcllSMl7zc2XJ8Pt_Z_vlnQvYLlidGh7nPOLN-bMAVlS5glaIKlavChtbgfsfvcXp8Fv-aJBO34VY7WOViTmwnalNp3CM_DJFHBPP99NvsysdXo_B01T2h8ZhsInUZQrr4hK8gHmsszO7STBCJwxoCl0D4LQKKsjjzeS8wrU_Pd-LT2oFpG4dGz8kzl0DSQWfxLfLIltvkSQvk1PU22XLOWtPPjlH6ywtyPnDM4VAjhYyPTssGaocS1N5q8OmSdjscNb3EC08gp81N5Ruk_u9oO2iNKPqqRHrY6pqaaWVs_ZKcjY5Oh8e-e1HB15B5ND7TYRTBoqNgyvCcWS0SbYJQZVkOaUWksqJQPFNBzrlJMqUgN4yZDQITmDS1SkSvyEZZlfYNoZD48SwH_SSHQJhbMKwSWghjOSuCIvQIW3Sn1I5uHF-9uJTtsXckZGcCCSaQrQkk98jXZZlZR7bxoPY-Wkkii0WJMJkLNa9rOTg9H47lIBVhBqE3DDzy4T61n39PekqfnFJRQSu1cpcT4F-RH6unudPT1LPplbwj_diTXnSWvq-a3Z4iOLXuixdDT7pJpZYrF_DI-6UYSyJQrrTVvNMJOLK6eeR1N2SXXRnFHFbXAZQ-WIzhVeX_7-e3D7dlhzwN0Y0QGil2yUZzPbfvIFFr8r3WG-Erhgy_ox97ZPP70fjPyT-mdDp4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXRMsrtIBB5SVY1etN4t0DQlGhSujjAKmam_Ha3ipStZt2ExX-FL-RmX0k3aj01rPHo13P0_b4G4CtxI871ojY86XvvLZFU9QmwV2KTnSsEyecpfOOg8Nu_6j9fdQZrcDf-i0MlVXWPrFw1DYzdEa-LQhHhPL97pfJmUddo-h2tW6hUarFnvtzgVu2_PPgK8r3jRC734Y7fa_qKuAZjL5TzzciCDDxTnxtZew7E3aM5UJHUYyhNdBRkmgZaR5LaTuR1pgftX3HueW223U6DJDvLbiNgZeTRcmRXJSULKE-V490eBBu5xgoQyr3pQKmqB15shEIl8PBpXi4dEFbxL3dB3C_SlhZr9SwNVhx6TrcKQpHTb4Oa5VzyNn7CsH6w0M47lVI5ciRYYbJxukUueMM5n4b9CEpK09UcnZKD6xwnE0vMs9Sq4ESJoTlVLWfpQRHm50zO86syx_B0Y2s9WNYTbPUPQWGiaaMYqTvxBh4Y4eKpEMThtZJP-GJaIFfL6cyFbw5ddk4VcU1exCqUgQKRaAKESjZgo_zOZMS3ONa6i2SkiLUjJTKck70LM9Vb3i8c6h63VBEGOoFb8Hrq8gGP380iN5VREmGX2l09RgC_5XwuBqUGw1KMxmfqUujbxujJ6Wkr2Kz2SBEJ2Kaw7XqqcqJ5Wphci14NR-mmVSYl7psVtJwSShyLXhSqux8KYO2xN08x9mfah1eMP__Oj-7_ltewt3-8GBf7Q8O9zbgniCTorLMcBNWp-cz9xyTxGn8orBMBr9u2hX8A1R7dAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxMZlZQMMGjexqInT1MkDQtVGtTKoEGxa34zjy1RpSrql1eCv8es4J3HapRp727OPjxKfq-3j7xCybYM00oqlXsAD43U0mKJUFnYp0spUWsOMxvOOb8Pu_lHnyygarZC_9VsYLKusfWLpqHWu8Iy8zRBHBPP9btu6sojve_1PkzMPO0jhTWvdTqNSkQPz5wK2b8XHwR7I-jVj_c-Hu_ue6zDgKYjEUy9QLAwhCbeB1DwNjIojpX0mkySFMBvKxFrJE-mnnOsokRJypU5gfF_7uts1Mg6B7y1ym4dRgDbGR3xRXrKEAO0e7Phh3C4gaMZY-ovFTEkn8XgjKC6HhkuxcemytoyB_Qfkvkteaa_StjWyYrJ1cqcsIlXFOllzjqKg7xya9fuH5LjnUMuBI4Vsk46zKXCHGdT8VuBPMlqdrhT0FB9bwTidXuSexrYDFWQILbCCP88QmjY_p3qca1M8Ikc3staPyWqWZ2aDUEg6eZICfZRCEE4NKJWMVRxrwwPrW9YiQb2cQjmoc-y4cSrKK_cwFpUIBIhAlCIQvEU-zOdMKqCPa6m3UUoCETQy1MUTOSsK0Ts83h2KXjdmCYR95rfIq6vIBj9_NIjeOiKbw1cq6R5GwL8iNleDcrNBqSbjM3Fp9E1j9KSS9FVsthqE4FBUc7hWPeEcWiEW5tciL-fDOBOL9DKTzyoanyOiXIs8qVR2vpRhh8PO3ofZO7UOL5j_f52fXv8tL8hdcALi62B4sEnuMbQorNCMt8jq9HxmnkG-OE2fl4ZJya-b9gT_ABnVeEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+intrinsic+exciton+physics+limit+in+two-dimensional+semiconductor+diodes&rft.jtitle=Nature+%28London%29&rft.au=Chen%2C+Peng&rft.au=Atallah%2C+Timothy+L&rft.au=Lin%2C+Zhaoyang&rft.au=Wang%2C+Peiqi&rft.date=2021-11-18&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=599&rft.issue=7885&rft.spage=404&rft_id=info:doi/10.1038%2Fs41586-021-03949-7&rft.externalDBID=ISR&rft.externalDocID=A682928420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon