Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality 1 – 5 . Despite considerable efforts, a disconnect persists between the fu...
Saved in:
Published in | Nature (London) Vol. 599; no. 7885; pp. 404 - 410 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality
1
–
5
. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor–contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley–Read–Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton–charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton–charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
Two-dimensional transition metal dichalcogenide diodes with defect-free van der Waals contacts allows minimization of the extrinsic interfacial disorder-dominated recombination and access to the intrinsic excitonic behaviour in two-dimensional semiconductor devices. |
---|---|
AbstractList | Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality.sup.1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality.sup.1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional transition metal dichalcogenide diodes with defect-free van der Waals contacts allows minimization of the extrinsic interfacial disorder-dominated recombination and access to the intrinsic excitonic behaviour in two-dimensional semiconductor devices. Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality 1 – 5 . Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor–contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley–Read–Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton–charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton–charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional transition metal dichalcogenide diodes with defect-free van der Waals contacts allows minimization of the extrinsic interfacial disorder-dominated recombination and access to the intrinsic excitonic behaviour in two-dimensional semiconductor devices. Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality . Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices. |
Audience | Academic |
Author | Lee, Sung-Joon Lin, Zhaoyang Caram, Justin R. Atallah, Timothy L. Wang, Peiqi Duan, Xiangfeng Ping, Yuan Chen, Peng Huang, Zhihong Huang, Yu Duan, Xidong Xu, Junqing |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0001-8527-1210 surname: Chen fullname: Chen, Peng organization: Department of Chemistry and Biochemistry, University of California, Los Angeles – sequence: 2 givenname: Timothy L. surname: Atallah fullname: Atallah, Timothy L. organization: Department of Chemistry and Biochemistry, University of California, Los Angeles – sequence: 3 givenname: Zhaoyang orcidid: 0000-0002-6474-7184 surname: Lin fullname: Lin, Zhaoyang organization: Department of Chemistry and Biochemistry, University of California, Los Angeles – sequence: 4 givenname: Peiqi surname: Wang fullname: Wang, Peiqi organization: Department of Chemistry and Biochemistry, University of California, Los Angeles – sequence: 5 givenname: Sung-Joon surname: Lee fullname: Lee, Sung-Joon organization: Department of Materials Science and Engineering, University of California, Los Angeles – sequence: 6 givenname: Junqing surname: Xu fullname: Xu, Junqing organization: Department of Chemistry and Biochemistry, University of California Santa Cruz – sequence: 7 givenname: Zhihong orcidid: 0000-0002-5927-5995 surname: Huang fullname: Huang, Zhihong organization: Department of Materials Science and Engineering, University of California, Los Angeles – sequence: 8 givenname: Xidong orcidid: 0000-0002-4951-901X surname: Duan fullname: Duan, Xidong organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University – sequence: 9 givenname: Yuan surname: Ping fullname: Ping, Yuan organization: Department of Chemistry and Biochemistry, University of California Santa Cruz – sequence: 10 givenname: Yu orcidid: 0000-0003-1793-0741 surname: Huang fullname: Huang, Yu organization: Department of Materials Science and Engineering, University of California, Los Angeles, California NanoSystems Institute, University of California, Los Angeles – sequence: 11 givenname: Justin R. orcidid: 0000-0001-5126-3829 surname: Caram fullname: Caram, Justin R. email: xduan@chem.ucla.edu organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, California NanoSystems Institute, University of California, Los Angeles – sequence: 12 givenname: Xiangfeng orcidid: 0000-0002-4321-6288 surname: Duan fullname: Duan, Xiangfeng email: jcaram@chem.ucla.edu organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, California NanoSystems Institute, University of California, Los Angeles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34789906$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFDEUhoNU7Lb6B7yQwd4oMjVfk2Qul8WPQlHQSi9DNsnspswk2ySD7b8367TULWvJRUjyvC8557xH4MAHbwF4jeApgkR8TBQ1gtUQoxqSlrY1fwZmiHJWUyb4AZhBiEUNBWGH4CilKwhhgzh9AQ4J5aJtIZuBy_lmE4PSa-dXVV7byvkcnU9OV_ZGuxx8tVnflmOqeje4XN6r_DvUxg22UMGrvkp2cDp4M-ocYmVcMDa9BM871Sf76m4_Br8-f7pYfK3Pv385W8zPa80oyTXSmBBMYIeU4UtktWi0gVi17bJpKFFt1yneKrjk3DStUpxTiiyEBhrGrBLkGLybfEsV16NNWQ4uadv3ytswJombUifHgsCCnjxCr8IYSwETxShmiD1QK9Vb6XwXclR6ayrnTOAWC4q3XvUeamW9jaovU-pcud7h3-7h9cZdy3-h0z1QWWZq8B7X9zuCwmR7k1dqTEme_fyxy374Pzu_uFx826Xf3PVqXA7WyE10g4q38j44BRAToGNIKdpOlrCoXAJR_ux6iaDcZlROGZUlo_JvRiUvUvxIeu_-pIhMolRgv7LxYXhPqP4AnX70Dg |
CitedBy_id | crossref_primary_10_1360_nso_20220034 crossref_primary_10_1021_acs_jpclett_3c02168 crossref_primary_10_1038_s41565_022_01221_1 crossref_primary_10_1038_s41928_022_00858_z crossref_primary_10_1038_s44160_023_00396_2 crossref_primary_10_1002_adfm_202305490 crossref_primary_10_1038_s41699_022_00354_0 crossref_primary_10_1002_smtd_202300376 crossref_primary_10_1063_5_0117476 crossref_primary_10_1002_smll_202404348 crossref_primary_10_1021_acs_nanolett_4c00057 crossref_primary_10_1038_s41928_023_01055_2 crossref_primary_10_1038_s41928_023_01034_7 crossref_primary_10_1007_s40843_023_2751_0 crossref_primary_10_1007_s11431_022_2285_1 crossref_primary_10_1021_jacs_3c09170 crossref_primary_10_1016_j_nanoen_2024_109725 crossref_primary_10_1021_acs_chemrev_3c00791 crossref_primary_10_1038_s41565_023_01442_y crossref_primary_10_1063_5_0180501 crossref_primary_10_1002_adma_202303272 crossref_primary_10_1016_j_nanoen_2023_108632 crossref_primary_10_1039_D3NA00670K crossref_primary_10_1021_acsmaterialslett_4c01919 crossref_primary_10_1088_1674_4926_45_5_051701 crossref_primary_10_1038_s41566_023_01250_9 crossref_primary_10_1039_D4SC05873A crossref_primary_10_1002_aelm_202101385 crossref_primary_10_1002_adfm_202213277 crossref_primary_10_1016_j_cclet_2023_108796 crossref_primary_10_1038_s41566_024_01487_y crossref_primary_10_1117_1_AP_6_3_034001 crossref_primary_10_3390_nano13010196 crossref_primary_10_1002_admi_202200060 crossref_primary_10_1063_5_0091289 crossref_primary_10_1021_acsanm_2c03932 crossref_primary_10_1039_D3NR06127B crossref_primary_10_1002_adma_202207901 crossref_primary_10_1557_s43577_024_00668_y crossref_primary_10_1002_smll_202408705 crossref_primary_10_1039_D2CS00218C crossref_primary_10_1039_D4CP04118F crossref_primary_10_1186_s43593_023_00040_8 crossref_primary_10_1038_s41596_023_00865_0 crossref_primary_10_1038_s41377_023_01187_2 crossref_primary_10_3390_nano15030201 crossref_primary_10_1039_D2NR03784J crossref_primary_10_1021_acs_jpclett_2c00274 crossref_primary_10_1002_adma_202306689 crossref_primary_10_1002_adma_202302248 crossref_primary_10_1002_adma_202206122 crossref_primary_10_1038_s41928_023_01050_7 crossref_primary_10_1103_PhysRevB_109_115137 crossref_primary_10_1063_5_0177559 crossref_primary_10_1126_sciadv_adr1534 crossref_primary_10_1038_s44310_024_00043_4 crossref_primary_10_1021_acs_jpcc_4c02515 crossref_primary_10_1038_s43586_022_00139_1 crossref_primary_10_1021_acs_jpclett_3c03040 crossref_primary_10_1103_PhysRevLett_133_236201 crossref_primary_10_1021_acsnano_4c15117 crossref_primary_10_1016_j_apcatb_2024_124344 crossref_primary_10_1038_s41566_024_01460_9 crossref_primary_10_1103_PhysRevApplied_20_064050 crossref_primary_10_1002_pssr_202300120 crossref_primary_10_1038_s41699_022_00339_z crossref_primary_10_1002_aelm_202200672 crossref_primary_10_1016_j_mtphys_2022_100814 crossref_primary_10_1021_acs_chemrev_3c00697 crossref_primary_10_1016_j_mattod_2024_02_009 crossref_primary_10_1038_s41563_023_01676_0 crossref_primary_10_1126_sciadv_adj4060 crossref_primary_10_1021_acsnano_1c09255 crossref_primary_10_1038_s41467_023_36565_2 crossref_primary_10_1002_smll_202410841 crossref_primary_10_1016_j_materresbull_2024_113046 crossref_primary_10_1002_smm2_1180 |
Cites_doi | 10.1021/acs.nanolett.7b04707 10.1103/PhysRevB.86.165202 10.1038/nnano.2014.25 10.1063/1.5093055 10.1038/s41699-017-0019-1 10.1002/adom.201900695 10.1021/acs.nanolett.6b05022 10.1038/nnano.2010.172 10.1063/1.5026478 10.1103/PhysRevB.90.155449 10.1063/1.4973352 10.1038/s42254-020-00272-4 10.1126/science.aan6814 10.1149/2.0372001JSS 10.1038/nnano.2014.14 10.1126/science.aaw8053 10.1103/PhysRevLett.123.027401 10.1038/ncomms2498 10.1039/C5NR00383K 10.1021/nl503799t 10.1038/nnano.2014.167 10.1063/1.366360 10.1038/s41586-019-1402-1 10.1038/s41467-019-10170-8 10.1038/s41467-018-03864-y 10.1038/nphys781 10.1038/s41586-018-0129-8 10.1038/s41560-019-0463-6 10.1126/science.aab4097 10.1021/acs.jpclett.7b00885 10.1103/PhysRevLett.113.076802 10.1038/s41467-018-05917-8 10.1063/1.332568 10.1021/nl502075n 10.1038/s41567-018-0282-x 10.1021/jz5008438 10.1103/PhysRevLett.113.026803 10.1038/nnano.2014.150 10.1038/s41586-019-1052-3 10.1039/C6CP03361J 10.1021/acs.nanolett.0c02190 10.1038/nnano.2014.26 10.1103/PhysRevB.99.165411 10.1007/BF01458701 10.1021/nl502741k 10.1021/acsnano.0c05305 10.1016/j.cpc.2015.05.011 10.1103/PhysRevLett.77.3865 10.1016/j.softx.2017.10.006 10.1002/9780470974704 10.1002/jcc.20495 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Nov 18, 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 18, 2021 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-021-03949-7 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 410 |
ExternalDocumentID | A682928420 34789906 10_1038_s41586_021_03949_7 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAVBQ AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c643t-1c233230f1ad7b1ec85cd02a99b5543a9ffa79a0b77d59aa77441e00d0d66ea83 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Jul 10 19:19:42 EDT 2025 Fri Jul 25 08:54:59 EDT 2025 Tue Jun 17 21:17:41 EDT 2025 Thu Jun 12 23:54:20 EDT 2025 Tue Jun 10 15:34:04 EDT 2025 Tue Jun 10 20:16:48 EDT 2025 Fri Jun 27 04:39:15 EDT 2025 Fri Jun 27 04:34:04 EDT 2025 Mon Jul 21 04:15:35 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Tue Jul 01 02:32:30 EDT 2025 Fri Feb 21 02:36:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7885 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c643t-1c233230f1ad7b1ec85cd02a99b5543a9ffa79a0b77d59aa77441e00d0d66ea83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5927-5995 0000-0002-6474-7184 0000-0002-4951-901X 0000-0001-8527-1210 0000-0001-5126-3829 0000-0003-1793-0741 0000-0002-4321-6288 |
PMID | 34789906 |
PQID | 2599642616 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2599072830 proquest_journals_2599642616 gale_infotracmisc_A682928420 gale_infotracgeneralonefile_A682928420 gale_infotraccpiq_682928420 gale_infotracacademiconefile_A682928420 gale_incontextgauss_ISR_A682928420 gale_incontextgauss_ATWCN_A682928420 pubmed_primary_34789906 crossref_citationtrail_10_1038_s41586_021_03949_7 crossref_primary_10_1038_s41586_021_03949_7 springer_journals_10_1038_s41586_021_03949_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-18 |
PublicationDateYYYYMMDD | 2021-11-18 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Pólya (CR21) 1921; 84 Zhu (CR20) 2014; 5 CR34 Livache (CR15) 2019; 10 Kadlec (CR38) 2016; 109 Groenendijk (CR53) 2014; 14 He (CR2) 2014; 113 Ross (CR1) 2013; 4 Altermatt, Schmidt, Heiser, Aberle (CR36) 1997; 82 Uddin (CR41) 2020; 14 Lien (CR31) 2019; 364 CR49 Tea, Hin (CR46) 2016; 18 Liu (CR44) 2019; 123 Zhang (CR12) 2017; 357 Ross (CR6) 2014; 9 Li (CR11) 2015; 349 Baugher, Churchill, Yang, Jarillo-Herrero (CR7) 2014; 9 Chen (CR43) 2017; 1 Ye (CR48) 2018; 9 Wen, Xu, Zhao, Khurgin, Xiong (CR14) 2018; 18 Wang (CR27) 2019; 568 Palummo, Bernardi, Grossman (CR47) 2015; 15 Hong (CR17) 2014; 9 Mouri (CR40) 2014; 90 Das, Gupta, Majumdar (CR30) 2019; 99 Liu (CR25) 2018; 557 CR52 Nguyen (CR45) 2019; 572 CR51 Passari, Susi (CR35) 1983; 54 CR50 Elbaz (CR33) 2017; 17 Yuan, Huang (CR4) 2015; 7 Massicotte (CR13) 2018; 9 Steinhoff (CR19) 2018; 14 Richter, Glunz, Werner, Schmidt, Cuevas (CR37) 2012; 86 Lee (CR10) 2014; 9 Khan (CR16) 2019; 7 Cheng (CR9) 2014; 14 Dean (CR23) 2010; 5 Yuan, Wang, Zhu, Zhou, Huang (CR18) 2017; 8 CR28 Chen (CR24) 2019; 115 Chernikov (CR3) 2014; 113 Paul, Kim, Lee (CR5) 2021; 3 CR22 Cadiz (CR39) 2018; 112 Allen, Bullock, Yang, Javey, De Wolf (CR29) 2019; 4 Chow (CR26) 2020; 20 David, Young, Lund, Craven (CR32) 2019; 9 Pospischil, Furchi, Mueller (CR8) 2014; 9 Martin (CR42) 2008; 4 Y Wang (3949_CR27) 2019; 568 3949_CR52 X Wen (3949_CR14) 2018; 18 GA Elbaz (3949_CR33) 2017; 17 KK Paul (3949_CR5) 2021; 3 A David (3949_CR32) 2019; 9 DJ Groenendijk (3949_CR53) 2014; 14 Y Liu (3949_CR25) 2018; 557 M-Y Li (3949_CR11) 2015; 349 JS Ross (3949_CR1) 2013; 4 K He (3949_CR2) 2014; 113 D-H Lien (3949_CR31) 2019; 364 A Richter (3949_CR37) 2012; 86 S Mouri (3949_CR40) 2014; 90 3949_CR49 Z Ye (3949_CR48) 2018; 9 L Yuan (3949_CR4) 2015; 7 A Pospischil (3949_CR8) 2014; 9 3949_CR51 3949_CR50 Q Khan (3949_CR16) 2019; 7 X Hong (3949_CR17) 2014; 9 C Livache (3949_CR15) 2019; 10 X-Y Zhu (3949_CR20) 2014; 5 R Cheng (3949_CR9) 2014; 14 3949_CR34 SZ Uddin (3949_CR41) 2020; 14 A Chernikov (3949_CR3) 2014; 113 G Pólya (3949_CR21) 1921; 84 K Chen (3949_CR43) 2017; 1 E Liu (3949_CR44) 2019; 123 S Das (3949_CR30) 2019; 99 Z Zhang (3949_CR12) 2017; 357 E Kadlec (3949_CR38) 2016; 109 JS Ross (3949_CR6) 2014; 9 P Chen (3949_CR24) 2019; 115 C-H Lee (3949_CR10) 2014; 9 PP Altermatt (3949_CR36) 1997; 82 J Martin (3949_CR42) 2008; 4 M Massicotte (3949_CR13) 2018; 9 3949_CR22 BW Baugher (3949_CR7) 2014; 9 L Yuan (3949_CR18) 2017; 8 3949_CR28 L Passari (3949_CR35) 1983; 54 F Cadiz (3949_CR39) 2018; 112 M Palummo (3949_CR47) 2015; 15 CME Chow (3949_CR26) 2020; 20 PV Nguyen (3949_CR45) 2019; 572 E Tea (3949_CR46) 2016; 18 CR Dean (3949_CR23) 2010; 5 TG Allen (3949_CR29) 2019; 4 A Steinhoff (3949_CR19) 2018; 14 |
References_xml | – ident: CR22 – volume: 18 start-page: 1686 year: 2018 end-page: 1692 ident: CR14 article-title: Plasmonic hot carriers-controlled second harmonic generation in WSe bilayers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04707 – ident: CR49 – volume: 86 start-page: 165202 year: 2012 ident: CR37 article-title: Improved quantitative description of Auger recombination in crystalline silicon publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.165202 – volume: 9 start-page: 262 year: 2014 end-page: 267 ident: CR7 article-title: Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.25 – volume: 115 start-page: 083104 year: 2019 ident: CR24 article-title: Band evolution of two-dimensional transition metal dichalcogenides under electric fields publication-title: Appl. Phys. Lett. doi: 10.1063/1.5093055 – volume: 1 year: 2017 ident: CR43 article-title: Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-017-0019-1 – ident: CR51 – volume: 7 start-page: 1900695 year: 2019 ident: CR16 article-title: Overcoming the electroluminescence efficiency limitations in quantum-dot light-emitting diodes publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900695 – volume: 17 start-page: 1727 year: 2017 end-page: 1732 ident: CR33 article-title: Unbalanced hole and electron diffusion in lead bromide perovskites publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05022 – volume: 5 start-page: 722 year: 2010 end-page: 726 ident: CR23 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 112 start-page: 152106 year: 2018 ident: CR39 article-title: Exciton diffusion in WSe monolayers embedded in a van der Waals heterostructure publication-title: Appl. Phys. Lett. doi: 10.1063/1.5026478 – volume: 90 start-page: 155449 year: 2014 ident: CR40 article-title: Nonlinear photoluminescence in atomically thin layered WSe arising from diffusion-assisted exciton–exciton annihilation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.155449 – volume: 109 start-page: 261105 year: 2016 ident: CR38 article-title: Effects of electron doping level on minority carrier lifetimes in n-type mid-wave infrared InAs/InAs Sb type-II superlattices publication-title: Appl. Phys. Lett. doi: 10.1063/1.4973352 – volume: 3 start-page: 178 year: 2021 end-page: 192 ident: CR5 article-title: Hot carrier photovoltaics in van der Waals heterostructures publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-00272-4 – volume: 357 start-page: 788 year: 2017 end-page: 792 ident: CR12 article-title: Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices publication-title: Science doi: 10.1126/science.aan6814 – volume: 9 start-page: 016021 year: 2019 ident: CR32 article-title: The physics of recombinations in III-nitride emitters publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0372001JSS – volume: 9 start-page: 257 year: 2014 end-page: 261 ident: CR8 article-title: Solar-energy conversion and light emission in an atomic monolayer p–n diode publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.14 – volume: 364 start-page: 468 year: 2019 end-page: 471 ident: CR31 article-title: Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors publication-title: Science doi: 10.1126/science.aaw8053 – ident: CR50 – volume: 123 start-page: 027401 year: 2019 ident: CR44 article-title: Gate tunable dark trions in monolayer WSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.027401 – volume: 4 year: 2013 ident: CR1 article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor publication-title: Nat. Commun. doi: 10.1038/ncomms2498 – volume: 7 start-page: 7402 year: 2015 end-page: 7408 ident: CR4 article-title: Exciton dynamics and annihilation in WS 2D semiconductors publication-title: Nanoscale doi: 10.1039/C5NR00383K – volume: 15 start-page: 2794 year: 2015 end-page: 2800 ident: CR47 article-title: Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides publication-title: Nano Lett. doi: 10.1021/nl503799t – volume: 9 start-page: 682 year: 2014 end-page: 686 ident: CR17 article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.167 – volume: 82 start-page: 4938 year: 1997 end-page: 4944 ident: CR36 article-title: Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon publication-title: J. Appl. Phys. doi: 10.1063/1.366360 – volume: 572 start-page: 220 year: 2019 end-page: 223 ident: CR45 article-title: Visualizing electrostatic gating effects in two-dimensional heterostructures publication-title: Nature doi: 10.1038/s41586-019-1402-1 – volume: 10 year: 2019 ident: CR15 article-title: A colloidal quantum dot infrared photodetector and its use for intraband detection publication-title: Nat. Commun. doi: 10.1038/s41467-019-10170-8 – volume: 9 year: 2018 ident: CR13 article-title: Dissociation of two-dimensional excitons in monolayer WSe publication-title: Nat. Commun. doi: 10.1038/s41467-018-03864-y – volume: 4 start-page: 144 year: 2008 end-page: 148 ident: CR42 article-title: Observation of electron–hole puddles in graphene using a scanning single-electron transistor publication-title: Nat. Phys. doi: 10.1038/nphys781 – volume: 557 start-page: 696 year: 2018 end-page: 700 ident: CR25 article-title: Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions publication-title: Nature doi: 10.1038/s41586-018-0129-8 – volume: 4 start-page: 914 year: 2019 end-page: 928 ident: CR29 article-title: Passivating contacts for crystalline silicon solar cells publication-title: Nat. Energy doi: 10.1038/s41560-019-0463-6 – volume: 349 start-page: 524 year: 2015 end-page: 528 ident: CR11 article-title: Epitaxial growth of a monolayer WSe –MoS lateral p–n junction with an atomically sharp interface publication-title: Science doi: 10.1126/science.aab4097 – volume: 8 start-page: 3371 year: 2017 end-page: 3379 ident: CR18 article-title: Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00885 – volume: 113 start-page: 076802 year: 2014 ident: CR3 article-title: Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.076802 – volume: 9 year: 2018 ident: CR48 article-title: Efficient generation of neutral and charged biexcitons in encapsulated WSe monolayers publication-title: Nat. Commun. doi: 10.1038/s41467-018-05917-8 – volume: 54 start-page: 3935 year: 1983 end-page: 3937 ident: CR35 article-title: Recombination mechanisms and doping density in silicon publication-title: J. Appl. Phys. doi: 10.1063/1.332568 – volume: 14 start-page: 5590 year: 2014 end-page: 5597 ident: CR9 article-title: Electroluminescence and photocurrent generation from atomically sharp WSe /MoS heterojunction p–n diodes publication-title: Nano Lett. doi: 10.1021/nl502075n – volume: 14 start-page: 1199 year: 2018 end-page: 1204 ident: CR19 article-title: Biexciton fine structure in monolayer transition metal dichalcogenides publication-title: Nat. Phys. doi: 10.1038/s41567-018-0282-x – volume: 5 start-page: 2283 year: 2014 end-page: 2288 ident: CR20 article-title: How to draw energy level diagrams in excitonic solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5008438 – volume: 113 start-page: 026803 year: 2014 ident: CR2 article-title: Tightly bound excitons in monolayer WSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.026803 – volume: 9 start-page: 676 year: 2014 end-page: 681 ident: CR10 article-title: Atomically thin p–n junctions with van der Waals heterointerfaces publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.150 – volume: 568 start-page: 70 year: 2019 end-page: 74 ident: CR27 article-title: Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors publication-title: Nature doi: 10.1038/s41586-019-1052-3 – volume: 18 start-page: 22706 year: 2016 end-page: 22711 ident: CR46 article-title: Charge carrier transport and lifetimes in n-type and p-type phosphorene as 2D device active materials: an ab initio study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03361J – volume: 20 start-page: 5538 year: 2020 end-page: 5543 ident: CR26 article-title: Monolayer semiconductor Auger detector publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02190 – volume: 9 start-page: 268 year: 2014 end-page: 272 ident: CR6 article-title: Electrically tunable excitonic light-emitting diodes based on monolayer WSe p–n junctions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.26 – volume: 99 start-page: 165411 year: 2019 ident: CR30 article-title: Layer degree of freedom for excitons in transition metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.165411 – ident: CR52 – volume: 84 start-page: 149 year: 1921 end-page: 160 ident: CR21 article-title: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz publication-title: Math. Ann. doi: 10.1007/BF01458701 – ident: CR34 – volume: 14 start-page: 5846 year: 2014 end-page: 5852 ident: CR53 article-title: Photovoltaic and photothermoelectric effect in a double-gated WSe device publication-title: Nano Lett. doi: 10.1021/nl502741k – volume: 14 start-page: 13433 year: 2020 end-page: 13440 ident: CR41 article-title: Neutral exciton diffusion in monolayer MoS publication-title: ACS Nano doi: 10.1021/acsnano.0c05305 – ident: CR28 – volume: 84 start-page: 149 year: 1921 ident: 3949_CR21 publication-title: Math. Ann. doi: 10.1007/BF01458701 – volume: 99 start-page: 165411 year: 2019 ident: 3949_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.165411 – volume: 4 start-page: 914 year: 2019 ident: 3949_CR29 publication-title: Nat. Energy doi: 10.1038/s41560-019-0463-6 – ident: 3949_CR50 doi: 10.1016/j.cpc.2015.05.011 – volume: 364 start-page: 468 year: 2019 ident: 3949_CR31 publication-title: Science doi: 10.1126/science.aaw8053 – volume: 90 start-page: 155449 year: 2014 ident: 3949_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.155449 – volume: 123 start-page: 027401 year: 2019 ident: 3949_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.027401 – volume: 3 start-page: 178 year: 2021 ident: 3949_CR5 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-00272-4 – volume: 113 start-page: 076802 year: 2014 ident: 3949_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.076802 – volume: 9 start-page: 268 year: 2014 ident: 3949_CR6 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.26 – volume: 9 start-page: 676 year: 2014 ident: 3949_CR10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.150 – volume: 5 start-page: 2283 year: 2014 ident: 3949_CR20 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5008438 – volume: 14 start-page: 5846 year: 2014 ident: 3949_CR53 publication-title: Nano Lett. doi: 10.1021/nl502741k – volume: 86 start-page: 165202 year: 2012 ident: 3949_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.165202 – ident: 3949_CR51 doi: 10.1103/PhysRevLett.77.3865 – volume: 18 start-page: 22706 year: 2016 ident: 3949_CR46 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03361J – volume: 9 start-page: 682 year: 2014 ident: 3949_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.167 – volume: 5 start-page: 722 year: 2010 ident: 3949_CR23 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – ident: 3949_CR34 – volume: 568 start-page: 70 year: 2019 ident: 3949_CR27 publication-title: Nature doi: 10.1038/s41586-019-1052-3 – volume: 14 start-page: 5590 year: 2014 ident: 3949_CR9 publication-title: Nano Lett. doi: 10.1021/nl502075n – volume: 7 start-page: 1900695 year: 2019 ident: 3949_CR16 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900695 – volume: 14 start-page: 13433 year: 2020 ident: 3949_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.0c05305 – ident: 3949_CR49 doi: 10.1016/j.softx.2017.10.006 – volume: 357 start-page: 788 year: 2017 ident: 3949_CR12 publication-title: Science doi: 10.1126/science.aan6814 – ident: 3949_CR22 – volume: 9 start-page: 257 year: 2014 ident: 3949_CR8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.14 – volume: 54 start-page: 3935 year: 1983 ident: 3949_CR35 publication-title: J. Appl. Phys. doi: 10.1063/1.332568 – volume: 15 start-page: 2794 year: 2015 ident: 3949_CR47 publication-title: Nano Lett. doi: 10.1021/nl503799t – volume: 20 start-page: 5538 year: 2020 ident: 3949_CR26 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02190 – volume: 115 start-page: 083104 year: 2019 ident: 3949_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5093055 – volume: 113 start-page: 026803 year: 2014 ident: 3949_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.026803 – volume: 82 start-page: 4938 year: 1997 ident: 3949_CR36 publication-title: J. Appl. Phys. doi: 10.1063/1.366360 – volume: 7 start-page: 7402 year: 2015 ident: 3949_CR4 publication-title: Nanoscale doi: 10.1039/C5NR00383K – ident: 3949_CR28 doi: 10.1002/9780470974704 – volume: 4 year: 2013 ident: 3949_CR1 publication-title: Nat. Commun. doi: 10.1038/ncomms2498 – volume: 4 start-page: 144 year: 2008 ident: 3949_CR42 publication-title: Nat. Phys. doi: 10.1038/nphys781 – volume: 349 start-page: 524 year: 2015 ident: 3949_CR11 publication-title: Science doi: 10.1126/science.aab4097 – ident: 3949_CR52 doi: 10.1002/jcc.20495 – volume: 17 start-page: 1727 year: 2017 ident: 3949_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05022 – volume: 9 year: 2018 ident: 3949_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05917-8 – volume: 572 start-page: 220 year: 2019 ident: 3949_CR45 publication-title: Nature doi: 10.1038/s41586-019-1402-1 – volume: 9 year: 2018 ident: 3949_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03864-y – volume: 557 start-page: 696 year: 2018 ident: 3949_CR25 publication-title: Nature doi: 10.1038/s41586-018-0129-8 – volume: 14 start-page: 1199 year: 2018 ident: 3949_CR19 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0282-x – volume: 8 start-page: 3371 year: 2017 ident: 3949_CR18 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00885 – volume: 10 year: 2019 ident: 3949_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10170-8 – volume: 9 start-page: 262 year: 2014 ident: 3949_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.25 – volume: 1 year: 2017 ident: 3949_CR43 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-017-0019-1 – volume: 109 start-page: 261105 year: 2016 ident: 3949_CR38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4973352 – volume: 18 start-page: 1686 year: 2018 ident: 3949_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04707 – volume: 9 start-page: 016021 year: 2019 ident: 3949_CR32 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0372001JSS – volume: 112 start-page: 152106 year: 2018 ident: 3949_CR39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5026478 |
SSID | ssj0005174 |
Score | 2.5884583 |
Snippet | Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 404 |
SubjectTerms | 140/125 142/126 639/766/1130/2799 639/925/357/1018 639/925/927/1007 Augers Charge density Diffusion Diodes Diodes, Semiconductor Doping Electric fields Electrostatic properties Exciton theory Excitons Humanities and Social Sciences Interfaces multidisciplinary Optical properties Optoelectronic devices Photoelectric effect Photoelectric emission Photoluminescence Photons Recombination Science Science (multidisciplinary) Semiconductor diodes Semiconductors Short circuits Tungsten |
Title | Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes |
URI | https://link.springer.com/article/10.1038/s41586-021-03949-7 https://www.ncbi.nlm.nih.gov/pubmed/34789906 https://www.proquest.com/docview/2599642616 https://www.proquest.com/docview/2599072830 |
Volume | 599 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELc20KS9TIN9ZTDkTWgfGhFxvuw8TV1FxyatmhiIvlmO7aBKKCkkFfz5u0vcllSMl7zc2XJ8Pt_Z_vlnQvYLlidGh7nPOLN-bMAVlS5glaIKlavChtbgfsfvcXp8Fv-aJBO34VY7WOViTmwnalNp3CM_DJFHBPP99NvsysdXo_B01T2h8ZhsInUZQrr4hK8gHmsszO7STBCJwxoCl0D4LQKKsjjzeS8wrU_Pd-LT2oFpG4dGz8kzl0DSQWfxLfLIltvkSQvk1PU22XLOWtPPjlH6ywtyPnDM4VAjhYyPTssGaocS1N5q8OmSdjscNb3EC08gp81N5Ruk_u9oO2iNKPqqRHrY6pqaaWVs_ZKcjY5Oh8e-e1HB15B5ND7TYRTBoqNgyvCcWS0SbYJQZVkOaUWksqJQPFNBzrlJMqUgN4yZDQITmDS1SkSvyEZZlfYNoZD48SwH_SSHQJhbMKwSWghjOSuCIvQIW3Sn1I5uHF-9uJTtsXckZGcCCSaQrQkk98jXZZlZR7bxoPY-Wkkii0WJMJkLNa9rOTg9H47lIBVhBqE3DDzy4T61n39PekqfnFJRQSu1cpcT4F-RH6unudPT1LPplbwj_diTXnSWvq-a3Z4iOLXuixdDT7pJpZYrF_DI-6UYSyJQrrTVvNMJOLK6eeR1N2SXXRnFHFbXAZQ-WIzhVeX_7-e3D7dlhzwN0Y0QGil2yUZzPbfvIFFr8r3WG-Erhgy_ox97ZPP70fjPyT-mdDp4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXRMsrtIBB5SVY1etN4t0DQlGhSujjAKmam_Ha3ipStZt2ExX-FL-RmX0k3aj01rPHo13P0_b4G4CtxI871ojY86XvvLZFU9QmwV2KTnSsEyecpfOOg8Nu_6j9fdQZrcDf-i0MlVXWPrFw1DYzdEa-LQhHhPL97pfJmUddo-h2tW6hUarFnvtzgVu2_PPgK8r3jRC734Y7fa_qKuAZjL5TzzciCDDxTnxtZew7E3aM5UJHUYyhNdBRkmgZaR5LaTuR1pgftX3HueW223U6DJDvLbiNgZeTRcmRXJSULKE-V490eBBu5xgoQyr3pQKmqB15shEIl8PBpXi4dEFbxL3dB3C_SlhZr9SwNVhx6TrcKQpHTb4Oa5VzyNn7CsH6w0M47lVI5ciRYYbJxukUueMM5n4b9CEpK09UcnZKD6xwnE0vMs9Sq4ESJoTlVLWfpQRHm50zO86syx_B0Y2s9WNYTbPUPQWGiaaMYqTvxBh4Y4eKpEMThtZJP-GJaIFfL6cyFbw5ddk4VcU1exCqUgQKRaAKESjZgo_zOZMS3ONa6i2SkiLUjJTKck70LM9Vb3i8c6h63VBEGOoFb8Hrq8gGP380iN5VREmGX2l09RgC_5XwuBqUGw1KMxmfqUujbxujJ6Wkr2Kz2SBEJ2Kaw7XqqcqJ5Wphci14NR-mmVSYl7psVtJwSShyLXhSqux8KYO2xN08x9mfah1eMP__Oj-7_ltewt3-8GBf7Q8O9zbgniCTorLMcBNWp-cz9xyTxGn8orBMBr9u2hX8A1R7dAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxMZlZQMMGjexqInT1MkDQtVGtTKoEGxa34zjy1RpSrql1eCv8es4J3HapRp727OPjxKfq-3j7xCybYM00oqlXsAD43U0mKJUFnYp0spUWsOMxvOOb8Pu_lHnyygarZC_9VsYLKusfWLpqHWu8Iy8zRBHBPP9btu6sojve_1PkzMPO0jhTWvdTqNSkQPz5wK2b8XHwR7I-jVj_c-Hu_ue6zDgKYjEUy9QLAwhCbeB1DwNjIojpX0mkySFMBvKxFrJE-mnnOsokRJypU5gfF_7uts1Mg6B7y1ym4dRgDbGR3xRXrKEAO0e7Phh3C4gaMZY-ovFTEkn8XgjKC6HhkuxcemytoyB_Qfkvkteaa_StjWyYrJ1cqcsIlXFOllzjqKg7xya9fuH5LjnUMuBI4Vsk46zKXCHGdT8VuBPMlqdrhT0FB9bwTidXuSexrYDFWQILbCCP88QmjY_p3qca1M8Ikc3staPyWqWZ2aDUEg6eZICfZRCEE4NKJWMVRxrwwPrW9YiQb2cQjmoc-y4cSrKK_cwFpUIBIhAlCIQvEU-zOdMKqCPa6m3UUoCETQy1MUTOSsK0Ts83h2KXjdmCYR95rfIq6vIBj9_NIjeOiKbw1cq6R5GwL8iNleDcrNBqSbjM3Fp9E1j9KSS9FVsthqE4FBUc7hWPeEcWiEW5tciL-fDOBOL9DKTzyoanyOiXIs8qVR2vpRhh8PO3ofZO7UOL5j_f52fXv8tL8hdcALi62B4sEnuMbQorNCMt8jq9HxmnkG-OE2fl4ZJya-b9gT_ABnVeEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+intrinsic+exciton+physics+limit+in+two-dimensional+semiconductor+diodes&rft.jtitle=Nature+%28London%29&rft.au=Chen%2C+Peng&rft.au=Atallah%2C+Timothy+L&rft.au=Lin%2C+Zhaoyang&rft.au=Wang%2C+Peiqi&rft.date=2021-11-18&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=599&rft.issue=7885&rft.spage=404&rft_id=info:doi/10.1038%2Fs41586-021-03949-7&rft.externalDBID=ISR&rft.externalDocID=A682928420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |