Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System

OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored th...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 35; no. 2; pp. 409 - 420
Main Authors Henshall, Tanya L., Keller, Annika, He, Liqun, Johansson, Bengt R., Wallgard, Elisabet, Raschperger, Elisabeth, Mäe, Maarja Andaloussi, Jin, Shaobo, Betsholtz, Christer, Lendahl, Urban
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3 mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS—Notch3 mice showed focal disruptions of the blood–brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood–brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3 mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS—We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood–brain barrier function in the mammalian vasculature.
AbstractList Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system.OBJECTIVEVascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system.Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity.APPROACH AND RESULTSNotch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity.We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.CONCLUSIONSWe demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.
Objective-Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. Approach and Results-Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. Conclusions-We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.
Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.
OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3 mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS—Notch3 mice showed focal disruptions of the blood–brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood–brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3 mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS—We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood–brain barrier function in the mammalian vasculature.
OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS: Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers and accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 being expressed also in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS: We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.
Author Betsholtz, Christer
Raschperger, Elisabeth
Jin, Shaobo
Henshall, Tanya L.
Wallgard, Elisabet
Johansson, Bengt R.
Mäe, Maarja Andaloussi
Keller, Annika
Lendahl, Urban
He, Liqun
AuthorAffiliation From the Department of Cell and Molecular Biology (T.H., S.J., U.L.) and Department of Medical Biochemistry and Biophysics, Division of Vascular Biology (C.B., E.R.), Karolinska Institute, Stockholm, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (A.K., L.H., E.R., M.A.M., C.B.); EM Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden (B.R.J.); and Octapharma AB, Stockholm, Sweden (E.W.)
AuthorAffiliation_xml – name: From the Department of Cell and Molecular Biology (T.H., S.J., U.L.) and Department of Medical Biochemistry and Biophysics, Division of Vascular Biology (C.B., E.R.), Karolinska Institute, Stockholm, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (A.K., L.H., E.R., M.A.M., C.B.); EM Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden (B.R.J.); and Octapharma AB, Stockholm, Sweden (E.W.)
Author_xml – sequence: 1
  givenname: Tanya
  surname: Henshall
  middlename: L.
  fullname: Henshall, Tanya L.
  organization: From the Department of Cell and Molecular Biology (T.H., S.J., U.L.) and Department of Medical Biochemistry and Biophysics, Division of Vascular Biology (C.B., E.R.), Karolinska Institute, Stockholm, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (A.K., L.H., E.R., M.A.M., C.B.); EM Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden (B.R.J.); and Octapharma AB, Stockholm, Sweden (E.W.)
– sequence: 2
  givenname: Annika
  surname: Keller
  fullname: Keller, Annika
– sequence: 3
  givenname: Liqun
  surname: He
  fullname: He, Liqun
– sequence: 4
  givenname: Bengt
  surname: Johansson
  middlename: R.
  fullname: Johansson, Bengt R.
– sequence: 5
  givenname: Elisabet
  surname: Wallgard
  fullname: Wallgard, Elisabet
– sequence: 6
  givenname: Elisabeth
  surname: Raschperger
  fullname: Raschperger, Elisabeth
– sequence: 7
  givenname: Maarja
  surname: Mäe
  middlename: Andaloussi
  fullname: Mäe, Maarja Andaloussi
– sequence: 8
  givenname: Shaobo
  surname: Jin
  fullname: Jin, Shaobo
– sequence: 9
  givenname: Christer
  surname: Betsholtz
  fullname: Betsholtz, Christer
– sequence: 10
  givenname: Urban
  surname: Lendahl
  fullname: Lendahl, Urban
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25477343$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-239498$$DView record from Swedish Publication Index
https://gup.ub.gu.se/publication/212892$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:130502390$$DView record from Swedish Publication Index
BookMark eNp9kUtvEzEUhS1URB_wB1ggL1kwxa-xx8tpKDRS1C5asrWcyZ1kqDMOtqdR_j2OJmWBRFa-9-g7R9Y9l-is9z0g9JGSa0ol_Vo_zW_quzov4poTUQn9Bl3QkolCSC7P8kyULkop2Dm6jPEXIUQwRt6hc1YKpbjgF2h271Oz5nga8T00EKMNe9z6gG-c90s8zwo4PO0TrEKX9rjrcVoDnkCfgnXZE178EPHjPibYvEdvW-sifDi-V-jn99unyV0xe_gxndSzopGC6wKIrhrCiGWs1ZVSTLalsEISJUpQsOBcU10qrVrN7VJTsgRdtXkRrZJSS36FijE37mA7LMw2dJv8b-NtZ47Sc57AlFQRrU7yq2FrsrQaDjyjrNIs81_-y3_r5rXxYWWGwTCuha4y_nnEt8H_HiAms-liA87ZHvJxDJW5E6IqSjP66YgOiw0s_ya_FpKBagSa4GMM0JqmSzZ1_nDvzhlKzKF7c-w-L8KM3Wcr-8f6mn7SJEfTzrsEIT67YQfBrMG6tD5l_APleMF7
CitedBy_id crossref_primary_10_1098_rsob_220004
crossref_primary_10_1159_000493151
crossref_primary_10_1161_CIRCULATIONAHA_119_040963
crossref_primary_10_1093_cvr_cvx236
crossref_primary_10_1016_j_intimp_2024_113611
crossref_primary_10_1016_j_ceb_2023_102254
crossref_primary_10_1177_0271678X211056395
crossref_primary_10_1360_SSV_2023_0092
crossref_primary_10_1002_gcc_22981
crossref_primary_10_1155_2015_162145
crossref_primary_10_1172_JCI166134
crossref_primary_10_1016_j_biomaterials_2015_05_021
crossref_primary_10_1073_pnas_2121333119
crossref_primary_10_3390_cells11010133
crossref_primary_10_3390_cells9102235
crossref_primary_10_1093_cvr_cvaa313
crossref_primary_10_1016_j_ajpath_2021_03_015
crossref_primary_10_1038_srep16449
crossref_primary_10_1161_STROKEAHA_118_021560
crossref_primary_10_3390_ijms26051886
crossref_primary_10_1074_jbc_M115_655548
crossref_primary_10_1371_journal_pbio_3002590
crossref_primary_10_1080_17425247_2025_2480654
crossref_primary_10_1016_j_neurobiolaging_2018_06_039
crossref_primary_10_1038_ncomms10960
crossref_primary_10_1111_cge_13382
crossref_primary_10_1172_jci_insight_125940
crossref_primary_10_1152_ajpcell_00044_2021
crossref_primary_10_1038_s41598_017_01392_1
crossref_primary_10_3171_2022_4_FOCUS2291
crossref_primary_10_1111_cns_13200
crossref_primary_10_1038_nn_4288
crossref_primary_10_1111_imr_13419
crossref_primary_10_1016_j_jid_2021_01_027
crossref_primary_10_3390_ijms23116241
crossref_primary_10_1007_s00401_018_1853_8
crossref_primary_10_1093_brain_aww011
crossref_primary_10_3390_biom10030485
crossref_primary_10_15252_embr_201948070
crossref_primary_10_3390_biom14010127
crossref_primary_10_1097_MD_0000000000033289
crossref_primary_10_1126_sciadv_adi1737
crossref_primary_10_3389_fcell_2021_732820
crossref_primary_10_1016_j_neuint_2021_105073
crossref_primary_10_1111_apha_13094
crossref_primary_10_3389_fphys_2023_1150028
crossref_primary_10_1016_j_cell_2015_10_067
crossref_primary_10_1002_nep3_71
crossref_primary_10_3389_fnins_2022_1010164
crossref_primary_10_1172_JCI175789
crossref_primary_10_1242_dev_165589
crossref_primary_10_1016_j_bone_2023_116898
crossref_primary_10_15252_emmm_202215809
crossref_primary_10_1016_j_bone_2022_116476
crossref_primary_10_1186_s43042_025_00641_7
crossref_primary_10_3389_fmolb_2025_1550815
crossref_primary_10_1016_j_brainres_2016_05_008
crossref_primary_10_1093_jb_mvac093
crossref_primary_10_3389_fnins_2019_01142
crossref_primary_10_1016_j_ceb_2023_102302
crossref_primary_10_1097_NRL_0000000000000253
crossref_primary_10_1016_j_stemcr_2019_10_004
crossref_primary_10_1098_rsob_210289
crossref_primary_10_1038_s41598_023_42010_7
crossref_primary_10_1186_s13041_020_00620_6
crossref_primary_10_1007_s43152_020_00014_9
crossref_primary_10_1016_j_devcel_2022_04_019
crossref_primary_10_1007_s00018_022_04403_1
crossref_primary_10_1016_j_it_2024_11_012
crossref_primary_10_1007_s10456_018_9648_z
crossref_primary_10_18632_aging_102111
crossref_primary_10_1212_NXG_0000000000000584
crossref_primary_10_1016_j_neuint_2019_03_002
crossref_primary_10_7554_eLife_24419
crossref_primary_10_1152_ajpcell_00320_2021
crossref_primary_10_1016_j_jbc_2024_107787
crossref_primary_10_1038_s41598_019_54807_6
crossref_primary_10_1371_journal_pone_0268225
crossref_primary_10_1042_CS20230023
crossref_primary_10_15252_emmm_202216556
crossref_primary_10_1016_j_preteyeres_2022_101094
crossref_primary_10_1152_ajpheart_00592_2023
crossref_primary_10_1172_JCI172841
crossref_primary_10_1016_j_cccb_2021_100031
crossref_primary_10_1055_a_1739_2722
crossref_primary_10_1016_j_preteyeres_2017_11_001
crossref_primary_10_3390_cells10030593
crossref_primary_10_1084_jem_20161715
crossref_primary_10_1074_jbc_R116_760215
crossref_primary_10_1007_s10072_024_07908_8
crossref_primary_10_1016_j_jare_2024_01_001
crossref_primary_10_1111_micc_12554
crossref_primary_10_1242_dev_148007
crossref_primary_10_1007_s12035_019_1561_y
crossref_primary_10_1097_NRL_0000000000000292
crossref_primary_10_3233_JAD_240273
crossref_primary_10_1242_dmm_052056
crossref_primary_10_1152_physrev_00050_2017
crossref_primary_10_2337_db24_0624
crossref_primary_10_3892_mmr_2016_5641
crossref_primary_10_7555_JBR_36_20220208
crossref_primary_10_1101_cshperspect_a041159
crossref_primary_10_1152_physrev_00005_2017
crossref_primary_10_1038_s41598_018_32170_2
crossref_primary_10_1038_s41467_019_10643_w
crossref_primary_10_1038_s44161_021_00014_4
crossref_primary_10_1016_j_arr_2016_09_007
crossref_primary_10_1038_s41586_022_04596_2
crossref_primary_10_3390_biom12111671
crossref_primary_10_1146_annurev_physiol_060821_014521
crossref_primary_10_2337_db19_0795
Cites_doi 10.1242/dmm.012005
10.1161/CIRCRESAHA.107.167965
10.1161/CIRCRESAHA.108.184846
10.1146/annurev-physiol-012110-142315
10.1242/dev.063610
10.1016/j.devcel.2011.07.001
10.1161/01.STR.24.1.122
10.1152/physrev.00047.2009
10.1073/pnas.0709867105
10.1038/383707a0
10.1371/journal.pgen.0030164
10.1038/nature05571
10.1242/dev.096107
10.1038/nm.2021
10.1073/pnas.252624099
10.1002/bies.201000093
10.1074/jbc.M111.322107
10.1038/nature09513
10.1371/journal.pone.0013741
10.1093/brain/awt092
10.1038/90074
10.1161/atvbaha.108.171751
10.1167/iovs.14-14046
10.1073/pnas.0709663105
10.1016/S0070-2153(10)92009-7
10.1242/dev.004895
10.1161/CIRCRESAHA.110.218271
10.1016/B978-0-12-394596-9.00002-0
10.1006/geno.1994.1613
10.1161/CIRCULATIONAHA.113.003657
10.1016/0925-4773(94)90081-7
10.1111/j.1365-2133.2004.06264.x
10.1002/humu.22198
10.1002/humu.22432
10.1086/381506
10.1161/CIRCRESAHA.112.281048
10.1084/jem.20070304
10.1073/pnas.1101964108
10.1172/JCI39733
10.1101/gad.308904
10.1016/S0925-4773(00)00459-7
10.1038/nature09522
ContentType Journal Article
Copyright 2015 American Heart Association, Inc.
2014 American Heart Association, Inc.
Copyright_xml – notice: 2015 American Heart Association, Inc.
– notice: 2014 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
DF2
F1U
D8T
ZZAVC
DOI 10.1161/ATVBAHA.114.304849
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
SWEPUB Göteborgs universitet
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 420
ExternalDocumentID oai_swepub_ki_se_517097
oai_gup_ub_gu_se_212892
oai_DiVA_org_uu_239498
25477343
10_1161_ATVBAHA_114_304849
10.1161/ATVBAHA.114.304849
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: 134147
GroupedDBID ---
.3C
.55
.GJ
.Z2
01R
0R~
1J1
23N
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHJKT
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB2
OCUKA
ODA
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
PZZ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADSXY
ADTPV
AOWAS
DF2
F1U
D8T
ZZAVC
ID FETCH-LOGICAL-c6439-e098c020a22f987726f54a460745e7eb339195797f93ad910de98ff934f766963
ISSN 1079-5642
1524-4636
IngestDate Mon Aug 25 03:25:05 EDT 2025
Thu Aug 21 06:56:12 EDT 2025
Thu Aug 21 06:34:46 EDT 2025
Fri Jul 11 10:12:30 EDT 2025
Mon Jul 21 06:03:04 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
Tue Jul 01 02:21:54 EDT 2025
Fri May 16 03:54:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords blood-brain barrier
smooth muscle
aneurysm
fibrin
Notch3
Language English
License 2014 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c6439-e098c020a22f987726f54a460745e7eb339195797f93ad910de98ff934f766963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:130502390
PMID 25477343
PQID 1652407811
PQPubID 23479
PageCount 12
ParticipantIDs swepub_primary_oai_swepub_ki_se_517097
swepub_primary_oai_gup_ub_gu_se_212892
swepub_primary_oai_DiVA_org_uu_239498
proquest_miscellaneous_1652407811
pubmed_primary_25477343
crossref_citationtrail_10_1161_ATVBAHA_114_304849
crossref_primary_10_1161_ATVBAHA_114_304849
wolterskluwer_health_10_1161_ATVBAHA_114_304849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-February
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-February
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arteriosclerosis, thrombosis, and vascular biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2015
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_5_28_2
e_1_3_5_27_2
e_1_3_5_26_2
e_1_3_5_25_2
e_1_3_5_24_2
e_1_3_5_23_2
e_1_3_5_22_2
e_1_3_5_21_2
e_1_3_5_43_2
e_1_3_5_44_2
e_1_3_5_29_2
e_1_3_5_2_2
e_1_3_5_40_2
e_1_3_5_41_2
e_1_3_5_42_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_4_2
e_1_3_5_3_2
e_1_3_5_6_2
e_1_3_5_5_2
e_1_3_5_17_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_36_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_19_2
e_1_3_5_18_2
e_1_3_5_31_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_37_2
  doi: 10.1242/dmm.012005
– ident: e_1_3_5_7_2
  doi: 10.1161/CIRCRESAHA.107.167965
– ident: e_1_3_5_32_2
  doi: 10.1161/CIRCRESAHA.108.184846
– ident: e_1_3_5_2_2
  doi: 10.1146/annurev-physiol-012110-142315
– ident: e_1_3_5_9_2
  doi: 10.1242/dev.063610
– ident: e_1_3_5_3_2
  doi: 10.1016/j.devcel.2011.07.001
– ident: e_1_3_5_17_2
  doi: 10.1161/01.STR.24.1.122
– ident: e_1_3_5_36_2
  doi: 10.1152/physrev.00047.2009
– ident: e_1_3_5_24_2
  doi: 10.1073/pnas.0709867105
– ident: e_1_3_5_15_2
  doi: 10.1038/383707a0
– ident: e_1_3_5_35_2
  doi: 10.1371/journal.pgen.0030164
– ident: e_1_3_5_10_2
  doi: 10.1038/nature05571
– ident: e_1_3_5_38_2
  doi: 10.1242/dev.096107
– ident: e_1_3_5_14_2
  doi: 10.1038/nm.2021
– ident: e_1_3_5_19_2
  doi: 10.1073/pnas.252624099
– ident: e_1_3_5_18_2
  doi: 10.1002/bies.201000093
– ident: e_1_3_5_27_2
  doi: 10.1074/jbc.M111.322107
– ident: e_1_3_5_5_2
  doi: 10.1038/nature09513
– ident: e_1_3_5_28_2
  doi: 10.1371/journal.pone.0013741
– ident: e_1_3_5_22_2
  doi: 10.1093/brain/awt092
– ident: e_1_3_5_25_2
  doi: 10.1038/90074
– ident: e_1_3_5_23_2
  doi: 10.1161/atvbaha.108.171751
– ident: e_1_3_5_31_2
  doi: 10.1167/iovs.14-14046
– ident: e_1_3_5_44_2
– ident: e_1_3_5_33_2
  doi: 10.1073/pnas.0709663105
– ident: e_1_3_5_11_2
  doi: 10.1016/S0070-2153(10)92009-7
– ident: e_1_3_5_29_2
  doi: 10.1242/dev.004895
– ident: e_1_3_5_8_2
  doi: 10.1161/CIRCRESAHA.110.218271
– ident: e_1_3_5_16_2
  doi: 10.1016/B978-0-12-394596-9.00002-0
– ident: e_1_3_5_13_2
  doi: 10.1006/geno.1994.1613
– ident: e_1_3_5_42_2
  doi: 10.1161/CIRCULATIONAHA.113.003657
– ident: e_1_3_5_12_2
  doi: 10.1016/0925-4773(94)90081-7
– ident: e_1_3_5_43_2
  doi: 10.1111/j.1365-2133.2004.06264.x
– ident: e_1_3_5_40_2
  doi: 10.1002/humu.22198
– ident: e_1_3_5_39_2
  doi: 10.1002/humu.22432
– ident: e_1_3_5_41_2
  doi: 10.1086/381506
– ident: e_1_3_5_34_2
  doi: 10.1161/CIRCRESAHA.112.281048
– ident: e_1_3_5_30_2
  doi: 10.1084/jem.20070304
– ident: e_1_3_5_20_2
  doi: 10.1073/pnas.1101964108
– ident: e_1_3_5_21_2
  doi: 10.1172/JCI39733
– ident: e_1_3_5_6_2
  doi: 10.1101/gad.308904
– ident: e_1_3_5_26_2
  doi: 10.1016/S0925-4773(00)00459-7
– ident: e_1_3_5_4_2
  doi: 10.1038/nature09522
SSID ssj0004220
Score 2.4874449
Snippet OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what...
Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they...
OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what...
Objective-Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what...
SourceID swepub
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 409
SubjectTerms Actins - genetics
Actins - metabolism
aneurysm
Animals
Apoptosis
AUTOSOMAL-DOMINANT ARTERIOPATHY
Biomarkers - metabolism
Blood Vessels - metabolism
blood-brain barrier
Blood-Brain Barrier - metabolism
Blood-Brain Barrier - pathology
BRAIN-BARRIER
CADASIL
Capillary Permeability
DISEASE
Endothelial Cells - metabolism
EXPRESSION
Female
fibrin
Gene Expression Profiling
Gene Expression Regulation, Developmental
Genotype
Hematologi
Hematology
INFARCTS
ISCHEMIC-STROKE
LEUKOENCEPHALOPATHY
Male
Mice, Inbred C57BL
Mice, Knockout
Microvessels - metabolism
Microvessels - pathology
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
Notch3
Pericytes - metabolism
Peripheral Vascular Disease
Phenotype
Receptor, Notch3
Receptors, Notch - deficiency
Receptors, Notch - genetics
Receptors, Notch - metabolism
Retinal Vessels - metabolism
Retinal Vessels - pathology
Signal Transduction
smooth muscle
SMOOTH-MUSCLE-CELLS
SUBCORTICAL
Transcription, Genetic
VASCULAR INTEGRITY
Title Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System
URI https://www.ncbi.nlm.nih.gov/pubmed/25477343
https://www.proquest.com/docview/1652407811
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-239498
https://gup.ub.gu.se/publication/212892
http://kipublications.ki.se/Default.aspx?queryparsed=id:130502390
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdbB2NjjL3rvdBg25fgNpYl2_ro7EHatYVBGvpN2I6chbR2l8Qb7K_fnSU7CTWl2xeTKPIjdz-fT-e73xHyPooEPHSZdmXUFy7niXRl6IdulkeRTBPNmMba4eOTYHjKD8_E2TptrK4uWaV72Z_OupL_0SqMgV6xSvYfNNseFAbgM-gXtqBh2N5IxyclyNzvHaCtwnR_zIDDtMEBZqP3xkgLfl7H_KbYoq5JabQBXdhn8QsTYA1p-aaXGmOe56xcwungIWpYCLCfwkXafMNwe5vEaomc1mHVYoktWmoogK1Jekdrs95UHsZFMZsn611MfOBn1WL1sPwBT1FbDzbQxXRlcxttiMITTVZza1X7oXRFwLfMrmEpsfBiGzaU13wJHbY9QNsej8aDeBgjx_GeD-bHEJ52cGZ_no1jVS6mqqoU9n-X0W1yh8FiAvtcfPu-wSnPmOGssBdZM-wy7iKVWlNmFXj7V0-87cpcWZ-05LP3yYPfJeY-LOd16cOGAzN6RB7alQeNDYwek1u6eELuHtvciqfkyKCJHixpiyYKaKI1mqhBE23RRGcFBTRRiyZq0UQNmp6R069fRp-Gru214Wbok7q6L6MMlg4JY7mMQEpBLnjCA_AwhQ516vvSwze6YS79ZAI-5kTLKIcvPA-DAKz4c7JTlIXeJVSkIk8Y91PwZUFMOkXq2TyVLMeq5onnEK8Rm8osET32QzlX9YI08JQVNVbMKyNqh_TafS4NDcu1s9812lBgLfEVWFJokIHyAoEhDLgOh7wwamqPxwQPQ5_7Dvlg9Nb-0g0nh3zsmDetLhUMTSu11Ar8wkiy7ol2aD7DicIL-zJ0yP4WUJSphb7mn7684bW-IvfWN-ZrsrNaVPoNeNOr9G19M_wF4VrHXA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Notch3+Is+Necessary+for+Blood+Vessel+Integrity+in+the+Central+Nervous+System&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Henshall%2C+Tanya+L&rft.au=Keller%2C+Annika&rft.au=He%2C+Liqun&rft.au=Johansson%2C+Bengt+R&rft.date=2015-02-01&rft.issn=1079-5642&rft.volume=35&rft.issue=2&rft.spage=409&rft_id=info:doi/10.1161%2FATVBAHA.114.304849&rft.externalDocID=oai_DiVA_org_uu_239498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon