Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System
OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored th...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 35; no. 2; pp. 409 - 420 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3 mouse on blood vessel integrity in the central nervous system.
APPROACH AND RESULTS—Notch3 mice showed focal disruptions of the blood–brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood–brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3 mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity.
CONCLUSIONS—We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood–brain barrier function in the mammalian vasculature. |
---|---|
AbstractList | Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system.OBJECTIVEVascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system.Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity.APPROACH AND RESULTSNotch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity.We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.CONCLUSIONSWe demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature. Objective-Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. Approach and Results-Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. Conclusions-We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature. Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature. OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3 mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS—Notch3 mice showed focal disruptions of the blood–brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood–brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3 mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS—We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood–brain barrier function in the mammalian vasculature. OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS: Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers and accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 being expressed also in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS: We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature. |
Author | Betsholtz, Christer Raschperger, Elisabeth Jin, Shaobo Henshall, Tanya L. Wallgard, Elisabet Johansson, Bengt R. Mäe, Maarja Andaloussi Keller, Annika Lendahl, Urban He, Liqun |
AuthorAffiliation | From the Department of Cell and Molecular Biology (T.H., S.J., U.L.) and Department of Medical Biochemistry and Biophysics, Division of Vascular Biology (C.B., E.R.), Karolinska Institute, Stockholm, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (A.K., L.H., E.R., M.A.M., C.B.); EM Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden (B.R.J.); and Octapharma AB, Stockholm, Sweden (E.W.) |
AuthorAffiliation_xml | – name: From the Department of Cell and Molecular Biology (T.H., S.J., U.L.) and Department of Medical Biochemistry and Biophysics, Division of Vascular Biology (C.B., E.R.), Karolinska Institute, Stockholm, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (A.K., L.H., E.R., M.A.M., C.B.); EM Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden (B.R.J.); and Octapharma AB, Stockholm, Sweden (E.W.) |
Author_xml | – sequence: 1 givenname: Tanya surname: Henshall middlename: L. fullname: Henshall, Tanya L. organization: From the Department of Cell and Molecular Biology (T.H., S.J., U.L.) and Department of Medical Biochemistry and Biophysics, Division of Vascular Biology (C.B., E.R.), Karolinska Institute, Stockholm, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (A.K., L.H., E.R., M.A.M., C.B.); EM Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden (B.R.J.); and Octapharma AB, Stockholm, Sweden (E.W.) – sequence: 2 givenname: Annika surname: Keller fullname: Keller, Annika – sequence: 3 givenname: Liqun surname: He fullname: He, Liqun – sequence: 4 givenname: Bengt surname: Johansson middlename: R. fullname: Johansson, Bengt R. – sequence: 5 givenname: Elisabet surname: Wallgard fullname: Wallgard, Elisabet – sequence: 6 givenname: Elisabeth surname: Raschperger fullname: Raschperger, Elisabeth – sequence: 7 givenname: Maarja surname: Mäe middlename: Andaloussi fullname: Mäe, Maarja Andaloussi – sequence: 8 givenname: Shaobo surname: Jin fullname: Jin, Shaobo – sequence: 9 givenname: Christer surname: Betsholtz fullname: Betsholtz, Christer – sequence: 10 givenname: Urban surname: Lendahl fullname: Lendahl, Urban |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25477343$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-239498$$DView record from Swedish Publication Index https://gup.ub.gu.se/publication/212892$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:130502390$$DView record from Swedish Publication Index |
BookMark | eNp9kUtvEzEUhS1URB_wB1ggL1kwxa-xx8tpKDRS1C5asrWcyZ1kqDMOtqdR_j2OJmWBRFa-9-g7R9Y9l-is9z0g9JGSa0ol_Vo_zW_quzov4poTUQn9Bl3QkolCSC7P8kyULkop2Dm6jPEXIUQwRt6hc1YKpbjgF2h271Oz5nga8T00EKMNe9z6gG-c90s8zwo4PO0TrEKX9rjrcVoDnkCfgnXZE178EPHjPibYvEdvW-sifDi-V-jn99unyV0xe_gxndSzopGC6wKIrhrCiGWs1ZVSTLalsEISJUpQsOBcU10qrVrN7VJTsgRdtXkRrZJSS36FijE37mA7LMw2dJv8b-NtZ47Sc57AlFQRrU7yq2FrsrQaDjyjrNIs81_-y3_r5rXxYWWGwTCuha4y_nnEt8H_HiAms-liA87ZHvJxDJW5E6IqSjP66YgOiw0s_ya_FpKBagSa4GMM0JqmSzZ1_nDvzhlKzKF7c-w-L8KM3Wcr-8f6mn7SJEfTzrsEIT67YQfBrMG6tD5l_APleMF7 |
CitedBy_id | crossref_primary_10_1098_rsob_220004 crossref_primary_10_1159_000493151 crossref_primary_10_1161_CIRCULATIONAHA_119_040963 crossref_primary_10_1093_cvr_cvx236 crossref_primary_10_1016_j_intimp_2024_113611 crossref_primary_10_1016_j_ceb_2023_102254 crossref_primary_10_1177_0271678X211056395 crossref_primary_10_1360_SSV_2023_0092 crossref_primary_10_1002_gcc_22981 crossref_primary_10_1155_2015_162145 crossref_primary_10_1172_JCI166134 crossref_primary_10_1016_j_biomaterials_2015_05_021 crossref_primary_10_1073_pnas_2121333119 crossref_primary_10_3390_cells11010133 crossref_primary_10_3390_cells9102235 crossref_primary_10_1093_cvr_cvaa313 crossref_primary_10_1016_j_ajpath_2021_03_015 crossref_primary_10_1038_srep16449 crossref_primary_10_1161_STROKEAHA_118_021560 crossref_primary_10_3390_ijms26051886 crossref_primary_10_1074_jbc_M115_655548 crossref_primary_10_1371_journal_pbio_3002590 crossref_primary_10_1080_17425247_2025_2480654 crossref_primary_10_1016_j_neurobiolaging_2018_06_039 crossref_primary_10_1038_ncomms10960 crossref_primary_10_1111_cge_13382 crossref_primary_10_1172_jci_insight_125940 crossref_primary_10_1152_ajpcell_00044_2021 crossref_primary_10_1038_s41598_017_01392_1 crossref_primary_10_3171_2022_4_FOCUS2291 crossref_primary_10_1111_cns_13200 crossref_primary_10_1038_nn_4288 crossref_primary_10_1111_imr_13419 crossref_primary_10_1016_j_jid_2021_01_027 crossref_primary_10_3390_ijms23116241 crossref_primary_10_1007_s00401_018_1853_8 crossref_primary_10_1093_brain_aww011 crossref_primary_10_3390_biom10030485 crossref_primary_10_15252_embr_201948070 crossref_primary_10_3390_biom14010127 crossref_primary_10_1097_MD_0000000000033289 crossref_primary_10_1126_sciadv_adi1737 crossref_primary_10_3389_fcell_2021_732820 crossref_primary_10_1016_j_neuint_2021_105073 crossref_primary_10_1111_apha_13094 crossref_primary_10_3389_fphys_2023_1150028 crossref_primary_10_1016_j_cell_2015_10_067 crossref_primary_10_1002_nep3_71 crossref_primary_10_3389_fnins_2022_1010164 crossref_primary_10_1172_JCI175789 crossref_primary_10_1242_dev_165589 crossref_primary_10_1016_j_bone_2023_116898 crossref_primary_10_15252_emmm_202215809 crossref_primary_10_1016_j_bone_2022_116476 crossref_primary_10_1186_s43042_025_00641_7 crossref_primary_10_3389_fmolb_2025_1550815 crossref_primary_10_1016_j_brainres_2016_05_008 crossref_primary_10_1093_jb_mvac093 crossref_primary_10_3389_fnins_2019_01142 crossref_primary_10_1016_j_ceb_2023_102302 crossref_primary_10_1097_NRL_0000000000000253 crossref_primary_10_1016_j_stemcr_2019_10_004 crossref_primary_10_1098_rsob_210289 crossref_primary_10_1038_s41598_023_42010_7 crossref_primary_10_1186_s13041_020_00620_6 crossref_primary_10_1007_s43152_020_00014_9 crossref_primary_10_1016_j_devcel_2022_04_019 crossref_primary_10_1007_s00018_022_04403_1 crossref_primary_10_1016_j_it_2024_11_012 crossref_primary_10_1007_s10456_018_9648_z crossref_primary_10_18632_aging_102111 crossref_primary_10_1212_NXG_0000000000000584 crossref_primary_10_1016_j_neuint_2019_03_002 crossref_primary_10_7554_eLife_24419 crossref_primary_10_1152_ajpcell_00320_2021 crossref_primary_10_1016_j_jbc_2024_107787 crossref_primary_10_1038_s41598_019_54807_6 crossref_primary_10_1371_journal_pone_0268225 crossref_primary_10_1042_CS20230023 crossref_primary_10_15252_emmm_202216556 crossref_primary_10_1016_j_preteyeres_2022_101094 crossref_primary_10_1152_ajpheart_00592_2023 crossref_primary_10_1172_JCI172841 crossref_primary_10_1016_j_cccb_2021_100031 crossref_primary_10_1055_a_1739_2722 crossref_primary_10_1016_j_preteyeres_2017_11_001 crossref_primary_10_3390_cells10030593 crossref_primary_10_1084_jem_20161715 crossref_primary_10_1074_jbc_R116_760215 crossref_primary_10_1007_s10072_024_07908_8 crossref_primary_10_1016_j_jare_2024_01_001 crossref_primary_10_1111_micc_12554 crossref_primary_10_1242_dev_148007 crossref_primary_10_1007_s12035_019_1561_y crossref_primary_10_1097_NRL_0000000000000292 crossref_primary_10_3233_JAD_240273 crossref_primary_10_1242_dmm_052056 crossref_primary_10_1152_physrev_00050_2017 crossref_primary_10_2337_db24_0624 crossref_primary_10_3892_mmr_2016_5641 crossref_primary_10_7555_JBR_36_20220208 crossref_primary_10_1101_cshperspect_a041159 crossref_primary_10_1152_physrev_00005_2017 crossref_primary_10_1038_s41598_018_32170_2 crossref_primary_10_1038_s41467_019_10643_w crossref_primary_10_1038_s44161_021_00014_4 crossref_primary_10_1016_j_arr_2016_09_007 crossref_primary_10_1038_s41586_022_04596_2 crossref_primary_10_3390_biom12111671 crossref_primary_10_1146_annurev_physiol_060821_014521 crossref_primary_10_2337_db19_0795 |
Cites_doi | 10.1242/dmm.012005 10.1161/CIRCRESAHA.107.167965 10.1161/CIRCRESAHA.108.184846 10.1146/annurev-physiol-012110-142315 10.1242/dev.063610 10.1016/j.devcel.2011.07.001 10.1161/01.STR.24.1.122 10.1152/physrev.00047.2009 10.1073/pnas.0709867105 10.1038/383707a0 10.1371/journal.pgen.0030164 10.1038/nature05571 10.1242/dev.096107 10.1038/nm.2021 10.1073/pnas.252624099 10.1002/bies.201000093 10.1074/jbc.M111.322107 10.1038/nature09513 10.1371/journal.pone.0013741 10.1093/brain/awt092 10.1038/90074 10.1161/atvbaha.108.171751 10.1167/iovs.14-14046 10.1073/pnas.0709663105 10.1016/S0070-2153(10)92009-7 10.1242/dev.004895 10.1161/CIRCRESAHA.110.218271 10.1016/B978-0-12-394596-9.00002-0 10.1006/geno.1994.1613 10.1161/CIRCULATIONAHA.113.003657 10.1016/0925-4773(94)90081-7 10.1111/j.1365-2133.2004.06264.x 10.1002/humu.22198 10.1002/humu.22432 10.1086/381506 10.1161/CIRCRESAHA.112.281048 10.1084/jem.20070304 10.1073/pnas.1101964108 10.1172/JCI39733 10.1101/gad.308904 10.1016/S0925-4773(00)00459-7 10.1038/nature09522 |
ContentType | Journal Article |
Copyright | 2015 American Heart Association, Inc. 2014 American Heart Association, Inc. |
Copyright_xml | – notice: 2015 American Heart Association, Inc. – notice: 2014 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS DF2 F1U D8T ZZAVC |
DOI | 10.1161/ATVBAHA.114.304849 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles SWEPUB Uppsala universitet SWEPUB Göteborgs universitet SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 420 |
ExternalDocumentID | oai_swepub_ki_se_517097 oai_gup_ub_gu_se_212892 oai_DiVA_org_uu_239498 25477343 10_1161_ATVBAHA_114_304849 10.1161/ATVBAHA.114.304849 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation grantid: 134147 |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN AAYXX ADGHP CITATION CGR CUY CVF ECM EIF NPM 7X8 ADSXY ADTPV AOWAS DF2 F1U D8T ZZAVC |
ID | FETCH-LOGICAL-c6439-e098c020a22f987726f54a460745e7eb339195797f93ad910de98ff934f766963 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Mon Aug 25 03:25:05 EDT 2025 Thu Aug 21 06:56:12 EDT 2025 Thu Aug 21 06:34:46 EDT 2025 Fri Jul 11 10:12:30 EDT 2025 Mon Jul 21 06:03:04 EDT 2025 Thu Apr 24 23:05:20 EDT 2025 Tue Jul 01 02:21:54 EDT 2025 Fri May 16 03:54:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | blood-brain barrier smooth muscle aneurysm fibrin Notch3 |
Language | English |
License | 2014 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c6439-e098c020a22f987726f54a460745e7eb339195797f93ad910de98ff934f766963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:130502390 |
PMID | 25477343 |
PQID | 1652407811 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_517097 swepub_primary_oai_gup_ub_gu_se_212892 swepub_primary_oai_DiVA_org_uu_239498 proquest_miscellaneous_1652407811 pubmed_primary_25477343 crossref_citationtrail_10_1161_ATVBAHA_114_304849 crossref_primary_10_1161_ATVBAHA_114_304849 wolterskluwer_health_10_1161_ATVBAHA_114_304849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-February |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-February |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2015 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_5_28_2 e_1_3_5_27_2 e_1_3_5_26_2 e_1_3_5_25_2 e_1_3_5_24_2 e_1_3_5_23_2 e_1_3_5_22_2 e_1_3_5_21_2 e_1_3_5_43_2 e_1_3_5_44_2 e_1_3_5_29_2 e_1_3_5_2_2 e_1_3_5_40_2 e_1_3_5_41_2 e_1_3_5_42_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_4_2 e_1_3_5_3_2 e_1_3_5_6_2 e_1_3_5_5_2 e_1_3_5_17_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_36_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_19_2 e_1_3_5_18_2 e_1_3_5_31_2 e_1_3_5_30_2 |
References_xml | – ident: e_1_3_5_37_2 doi: 10.1242/dmm.012005 – ident: e_1_3_5_7_2 doi: 10.1161/CIRCRESAHA.107.167965 – ident: e_1_3_5_32_2 doi: 10.1161/CIRCRESAHA.108.184846 – ident: e_1_3_5_2_2 doi: 10.1146/annurev-physiol-012110-142315 – ident: e_1_3_5_9_2 doi: 10.1242/dev.063610 – ident: e_1_3_5_3_2 doi: 10.1016/j.devcel.2011.07.001 – ident: e_1_3_5_17_2 doi: 10.1161/01.STR.24.1.122 – ident: e_1_3_5_36_2 doi: 10.1152/physrev.00047.2009 – ident: e_1_3_5_24_2 doi: 10.1073/pnas.0709867105 – ident: e_1_3_5_15_2 doi: 10.1038/383707a0 – ident: e_1_3_5_35_2 doi: 10.1371/journal.pgen.0030164 – ident: e_1_3_5_10_2 doi: 10.1038/nature05571 – ident: e_1_3_5_38_2 doi: 10.1242/dev.096107 – ident: e_1_3_5_14_2 doi: 10.1038/nm.2021 – ident: e_1_3_5_19_2 doi: 10.1073/pnas.252624099 – ident: e_1_3_5_18_2 doi: 10.1002/bies.201000093 – ident: e_1_3_5_27_2 doi: 10.1074/jbc.M111.322107 – ident: e_1_3_5_5_2 doi: 10.1038/nature09513 – ident: e_1_3_5_28_2 doi: 10.1371/journal.pone.0013741 – ident: e_1_3_5_22_2 doi: 10.1093/brain/awt092 – ident: e_1_3_5_25_2 doi: 10.1038/90074 – ident: e_1_3_5_23_2 doi: 10.1161/atvbaha.108.171751 – ident: e_1_3_5_31_2 doi: 10.1167/iovs.14-14046 – ident: e_1_3_5_44_2 – ident: e_1_3_5_33_2 doi: 10.1073/pnas.0709663105 – ident: e_1_3_5_11_2 doi: 10.1016/S0070-2153(10)92009-7 – ident: e_1_3_5_29_2 doi: 10.1242/dev.004895 – ident: e_1_3_5_8_2 doi: 10.1161/CIRCRESAHA.110.218271 – ident: e_1_3_5_16_2 doi: 10.1016/B978-0-12-394596-9.00002-0 – ident: e_1_3_5_13_2 doi: 10.1006/geno.1994.1613 – ident: e_1_3_5_42_2 doi: 10.1161/CIRCULATIONAHA.113.003657 – ident: e_1_3_5_12_2 doi: 10.1016/0925-4773(94)90081-7 – ident: e_1_3_5_43_2 doi: 10.1111/j.1365-2133.2004.06264.x – ident: e_1_3_5_40_2 doi: 10.1002/humu.22198 – ident: e_1_3_5_39_2 doi: 10.1002/humu.22432 – ident: e_1_3_5_41_2 doi: 10.1086/381506 – ident: e_1_3_5_34_2 doi: 10.1161/CIRCRESAHA.112.281048 – ident: e_1_3_5_30_2 doi: 10.1084/jem.20070304 – ident: e_1_3_5_20_2 doi: 10.1073/pnas.1101964108 – ident: e_1_3_5_21_2 doi: 10.1172/JCI39733 – ident: e_1_3_5_6_2 doi: 10.1101/gad.308904 – ident: e_1_3_5_26_2 doi: 10.1016/S0925-4773(00)00459-7 – ident: e_1_3_5_4_2 doi: 10.1038/nature09522 |
SSID | ssj0004220 |
Score | 2.4874449 |
Snippet | OBJECTIVE—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what... Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they... OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what... Objective-Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what... |
SourceID | swepub proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 409 |
SubjectTerms | Actins - genetics Actins - metabolism aneurysm Animals Apoptosis AUTOSOMAL-DOMINANT ARTERIOPATHY Biomarkers - metabolism Blood Vessels - metabolism blood-brain barrier Blood-Brain Barrier - metabolism Blood-Brain Barrier - pathology BRAIN-BARRIER CADASIL Capillary Permeability DISEASE Endothelial Cells - metabolism EXPRESSION Female fibrin Gene Expression Profiling Gene Expression Regulation, Developmental Genotype Hematologi Hematology INFARCTS ISCHEMIC-STROKE LEUKOENCEPHALOPATHY Male Mice, Inbred C57BL Mice, Knockout Microvessels - metabolism Microvessels - pathology Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology Notch3 Pericytes - metabolism Peripheral Vascular Disease Phenotype Receptor, Notch3 Receptors, Notch - deficiency Receptors, Notch - genetics Receptors, Notch - metabolism Retinal Vessels - metabolism Retinal Vessels - pathology Signal Transduction smooth muscle SMOOTH-MUSCLE-CELLS SUBCORTICAL Transcription, Genetic VASCULAR INTEGRITY |
Title | Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25477343 https://www.proquest.com/docview/1652407811 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-239498 https://gup.ub.gu.se/publication/212892 http://kipublications.ki.se/Default.aspx?queryparsed=id:130502390 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdbB2NjjL3rvdBg25fgNpYl2_ro7EHatYVBGvpN2I6chbR2l8Qb7K_fnSU7CTWl2xeTKPIjdz-fT-e73xHyPooEPHSZdmXUFy7niXRl6IdulkeRTBPNmMba4eOTYHjKD8_E2TptrK4uWaV72Z_OupL_0SqMgV6xSvYfNNseFAbgM-gXtqBh2N5IxyclyNzvHaCtwnR_zIDDtMEBZqP3xkgLfl7H_KbYoq5JabQBXdhn8QsTYA1p-aaXGmOe56xcwungIWpYCLCfwkXafMNwe5vEaomc1mHVYoktWmoogK1Jekdrs95UHsZFMZsn611MfOBn1WL1sPwBT1FbDzbQxXRlcxttiMITTVZza1X7oXRFwLfMrmEpsfBiGzaU13wJHbY9QNsej8aDeBgjx_GeD-bHEJ52cGZ_no1jVS6mqqoU9n-X0W1yh8FiAvtcfPu-wSnPmOGssBdZM-wy7iKVWlNmFXj7V0-87cpcWZ-05LP3yYPfJeY-LOd16cOGAzN6RB7alQeNDYwek1u6eELuHtvciqfkyKCJHixpiyYKaKI1mqhBE23RRGcFBTRRiyZq0UQNmp6R069fRp-Gru214Wbok7q6L6MMlg4JY7mMQEpBLnjCA_AwhQ516vvSwze6YS79ZAI-5kTLKIcvPA-DAKz4c7JTlIXeJVSkIk8Y91PwZUFMOkXq2TyVLMeq5onnEK8Rm8osET32QzlX9YI08JQVNVbMKyNqh_TafS4NDcu1s9812lBgLfEVWFJokIHyAoEhDLgOh7wwamqPxwQPQ5_7Dvlg9Nb-0g0nh3zsmDetLhUMTSu11Ar8wkiy7ol2aD7DicIL-zJ0yP4WUJSphb7mn7684bW-IvfWN-ZrsrNaVPoNeNOr9G19M_wF4VrHXA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Notch3+Is+Necessary+for+Blood+Vessel+Integrity+in+the+Central+Nervous+System&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Henshall%2C+Tanya+L&rft.au=Keller%2C+Annika&rft.au=He%2C+Liqun&rft.au=Johansson%2C+Bengt+R&rft.date=2015-02-01&rft.issn=1079-5642&rft.volume=35&rft.issue=2&rft.spage=409&rft_id=info:doi/10.1161%2FATVBAHA.114.304849&rft.externalDocID=oai_DiVA_org_uu_239498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |