Textural feature based intelligent approach for neurological abnormality detection from brain signal data
The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neur...
Saved in:
Published in | PloS one Vol. 17; no. 11; p. e0277555 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.11.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject’s EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data. |
---|---|
AbstractList | The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject's EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data. The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject's EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data.The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject's EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data. |
Audience | Academic |
Author | Siuly, Siuly Tawhid, Md. Nurul Ahad Wang, Kate Wang, Hua |
AuthorAffiliation | Sejong University, KOREA, REPUBLIC OF 2 School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia 1 Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia |
AuthorAffiliation_xml | – name: Sejong University, KOREA, REPUBLIC OF – name: 2 School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia – name: 1 Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia |
Author_xml | – sequence: 1 givenname: Md. Nurul Ahad orcidid: 0000-0002-6100-4895 surname: Tawhid fullname: Tawhid, Md. Nurul Ahad – sequence: 2 givenname: Siuly surname: Siuly fullname: Siuly, Siuly – sequence: 3 givenname: Kate surname: Wang fullname: Wang, Kate – sequence: 4 givenname: Hua surname: Wang fullname: Wang, Hua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36374850$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuLuj_0C0IIhezJg2bTL1QlgWPwYWFnT1NqT56GTIJLNJKu6_99TpyHRZRHrRcPKcN-e8nHOenTjvVJY9L9CiwLR4t_F9cNwudhBeoJLSuq4fZWdFg8s5KRE-OTqfZucxbhCq8ZKQJ9kpJphWyxqdZeZG_Up94DbXisNB5S2PSubGJWWt6ZRLOd_tgudinWsfcqf64K3vjIAc3jofttyadJdLlZRIxrtcB7_N28CNy6PpoMZc8sSfZo81t1E9G_-z7PunjzeXX-ZX159XlxdXc0EqjOcVRkvRNFQWcGqrVoglRYhiWTWU6laUkgupcKEhWsgCk1KLEumaYFVgJTmeZS_3ujvrIxtdiqykgFKCmhqI1Z6Qnm_YLpgtD3fMc8P-BHzoGA_JCKsYbTQhCuum1U2lUd0i3mBUU4HbSldUg9aH8bW-3SopwC8wcyI6vXFmzTr_kzUEysEIBN6MAsHf9iomtjVRgPfcKd_v6yaEluDNLHt1D324u5HqODRgnPbwrhhE2QUtSV01BRm0Fg9Q8Em1NQJGShuITxLeThKASTA6He9jZKtvX_-fvf4xZV8fsWvFbVpHb_thkuIUfHHs9F-LD7MMwPs9IIKPMSjNhEl80IHWjGUFYsPiHExjw-KwcXEgubqXfND_Z9pvSh8dag |
CitedBy_id | crossref_primary_10_1109_TTS_2023_3239526 crossref_primary_10_1109_ACCESS_2024_3520861 crossref_primary_10_1109_TNSRE_2023_3347032 crossref_primary_10_3390_math11071619 crossref_primary_10_1109_TCDS_2024_3386364 crossref_primary_10_1007_s10548_025_01106_1 |
Cites_doi | 10.1371/journal.pone.0188629 10.1109/TNSRE.2012.2184838 10.1109/ACCESS.2019.2960848 10.1109/TBME.2010.2055564 10.1049/iet-smt.2018.5358 10.1371/journal.pone.0270757 10.1007/s11633-019-1197-4 10.1016/j.cmpb.2017.02.002 10.1007/s13755-020-00129-1 10.1109/TNSRE.2020.3022715 10.1007/s41019-016-0011-3 10.1007/978-3-031-15512-3_13 10.1016/j.compbiomed.2021.104922 10.1109/TIT.1967.1053964 10.1109/CEC45853.2021.9504951 10.1007/978-3-319-47653-7 10.3390/s21144941 10.1007/s00521-014-1753-3 10.1016/j.cmpb.2016.09.008 10.5120/ijca2018915852 10.1049/el.2020.2646 10.3390/s18072183 10.18280/ts.370209 10.1007/s11280-019-00776-9 10.1016/j.cmpb.2016.01.017 10.1007/978-3-030-90888-1_16 10.1371/journal.pone.0253094 10.1109/JSEN.2020.3026830 10.3390/s19050987 10.1049/el.2020.2685 10.1145/1961189.1961199 10.3390/computers4030265 10.1109/TNSRE.2020.3013429 10.1016/j.irbm.2019.05.004 10.3390/s20092505 10.1155/2022/3169927 10.1109/JSEN.2021.3070373 10.1007/s11280-020-00813-y 10.1016/j.parkreldis.2020.08.001 10.1007/978-3-319-68155-9_12 10.1016/j.neunet.2019.12.006 10.1007/978-3-030-90888-1_12 10.1007/978-3-642-02611-9_50 10.1007/s00521-018-3689-5 10.1016/j.bbe.2017.08.006 10.1109/TETCI.2018.2876529 10.1016/j.neucom.2016.08.050 10.1109/BIBM.2018.8621498 10.1023/A:1010933404324 10.1155/2017/9816591 10.1016/j.bspc.2020.102223 10.1007/s13755-020-00125-5 10.1007/BFb0028345 10.1109/RTSI.2016.7740576 |
ContentType | Journal Article |
Copyright | Copyright: © 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2022 Public Library of Science 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Tawhid et al 2022 Tawhid et al |
Copyright_xml | – notice: Copyright: © 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Tawhid et al 2022 Tawhid et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0277555 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Textural feature based intelligent approach for abnormality detection from brain signal data |
EISSN | 1932-6203 |
ExternalDocumentID | 2736276095 oai_doaj_org_article_79f66e3f9bf94f05b0a93057c3b4f47f PMC9662730 A726549163 36374850 10_1371_journal_pone_0277555 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GrantInformation_xml | – fundername: ; grantid: LP170100934 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK ESTFP |
ID | FETCH-LOGICAL-c6433-4308c997d1430b4bcc870073d4977fbc2dacde31f7001d1362fc20f563e13eda3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Nov 05 00:20:50 EDT 2023 Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 18:39:22 EDT 2025 Fri Jul 11 04:50:05 EDT 2025 Fri Jul 25 10:38:39 EDT 2025 Tue Jun 17 20:47:27 EDT 2025 Tue Jun 10 20:26:23 EDT 2025 Fri Jun 27 04:38:50 EDT 2025 Fri Jun 27 04:02:44 EDT 2025 Thu May 22 21:19:46 EDT 2025 Thu Apr 03 07:03:30 EDT 2025 Tue Jul 01 03:23:41 EDT 2025 Thu Apr 24 23:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright: © 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6433-4308c997d1430b4bcc870073d4977fbc2dacde31f7001d1362fc20f563e13eda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-6100-4895 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277555 |
PMID | 36374850 |
PQID | 2736276095 |
PQPubID | 1436336 |
PageCount | e0277555 |
ParticipantIDs | plos_journals_2736276095 doaj_primary_oai_doaj_org_article_79f66e3f9bf94f05b0a93057c3b4f47f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9662730 proquest_miscellaneous_2736667243 proquest_journals_2736276095 gale_infotracmisc_A726549163 gale_infotracacademiconefile_A726549163 gale_incontextgauss_ISR_A726549163 gale_incontextgauss_IOV_A726549163 gale_healthsolutions_A726549163 pubmed_primary_36374850 crossref_citationtrail_10_1371_journal_pone_0277555 crossref_primary_10_1371_journal_pone_0277555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-14 |
PublicationDateYYYYMMDD | 2022-11-14 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | S Siuly (pone.0277555.ref007) 2016; 11 MA Joadder (pone.0277555.ref015) 2019; 40 B Oltu (pone.0277555.ref034) 2021; 63 S Siuly (pone.0277555.ref006) 2020; 28 M Li (pone.0277555.ref021) 2019; 8 ÖF Alçin (pone.0277555.ref041) 2016; 218 EK Dey (pone.0277555.ref043) 2015; 4 N Anjum (pone.0277555.ref063) 2021; 21 S Supriya (pone.0277555.ref019) 2018; 5 pone.0277555.ref036 AR Hassan (pone.0277555.ref022) 2016; 137 SL Oh (pone.0277555.ref031) 2020; 32 G Alfian (pone.0277555.ref005) 2018; 18 L Farsi (pone.0277555.ref011) 2020; 21 MJ Alhaddad (pone.0277555.ref054) 2012; 4 MF Anjum (pone.0277555.ref025) 2020; 79 D Şengür (pone.0277555.ref016) 2020; 56 AA Nur (pone.0277555.ref030) 2020; 9 pone.0277555.ref062 MT Sadiq (pone.0277555.ref003) 2021; 138 Z Aslan (pone.0277555.ref042) 2020; 37 M Tawhid (pone.0277555.ref010) 2020; 56 pone.0277555.ref026 F Zhang (pone.0277555.ref057) 2020; 23 S Siuly (pone.0277555.ref023) 2020; 28 S Siuly (pone.0277555.ref009) 2016; 1 FA Alturki (pone.0277555.ref038) 2020; 20 S Siuly (pone.0277555.ref020) 2018; 13 PN Srinivasu (pone.0277555.ref046) 2022; 2022 S Siuly (pone.0277555.ref014) 2015; 26 S Ibrahim (pone.0277555.ref037) 2018; 38 E Grossi (pone.0277555.ref027) 2017; 142 MNA Tawhid (pone.0277555.ref039) 2021; 16 pone.0277555.ref053 Y Kumar (pone.0277555.ref004) 2022 pone.0277555.ref055 pone.0277555.ref058 MNA Tawhid (pone.0277555.ref048) 2018; 180 EH Houssein (pone.0277555.ref018) 2022 A Keihani (pone.0277555.ref033) 2022; 17 Y Li (pone.0277555.ref012) 2010; 57 S Supriya (pone.0277555.ref032) 2020; 8 E Olejarczyk (pone.0277555.ref024) 2017; 12 C Ieracitano (pone.0277555.ref035) 2020; 123 S Siuly (pone.0277555.ref059) 2016; 127 F Demir (pone.0277555.ref017) 2021; 21 pone.0277555.ref040 J Wu (pone.0277555.ref047) 2010; 33 NA Tawhid (pone.0277555.ref061) 2012; 2 pone.0277555.ref001 pone.0277555.ref045 pone.0277555.ref002 J Yin (pone.0277555.ref008) 2019; 16 T Cover (pone.0277555.ref051) 1967; 13 pone.0277555.ref049 S Siuly (pone.0277555.ref013) 2012; 20 WJ Bosl (pone.0277555.ref028) 2018; 8 CC Chang (pone.0277555.ref050) 2011; 2 J He (pone.0277555.ref056) 2020; 23 L Breiman (pone.0277555.ref052) 2001; 45 R Sarki (pone.0277555.ref060) 2020; 8 R Djemal (pone.0277555.ref029) 2017; 2017 X Jiang (pone.0277555.ref044) 2019; 19 |
References_xml | – volume: 12 start-page: e0188629 issue: 11 year: 2017 ident: pone.0277555.ref024 article-title: Graph-based analysis of brain connectivity in schizophrenia publication-title: PLoS One doi: 10.1371/journal.pone.0188629 – volume: 20 start-page: 526 issue: 4 year: 2012 ident: pone.0277555.ref013 article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2012.2184838 – volume: 8 start-page: 9770 year: 2019 ident: pone.0277555.ref021 article-title: Classification Epileptic Seizures in EEG Using Time-Frequency Image and Block Texture Features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960848 – volume: 57 start-page: 2495 issue: 10 year: 2010 ident: pone.0277555.ref012 article-title: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2055564 – volume: 4 start-page: 45 issue: 2 year: 2012 ident: pone.0277555.ref054 article-title: Diagnosis autism by fisher linear discriminant analysis FLDA via EEG publication-title: International Journal of Bio-Science and Bio-Technology – volume: 13 start-page: 35 issue: 1 year: 2018 ident: pone.0277555.ref020 article-title: Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure publication-title: IET Science, Measurement & Technology doi: 10.1049/iet-smt.2018.5358 – volume: 17 start-page: e0270757 issue: 7 year: 2022 ident: pone.0277555.ref033 article-title: Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study publication-title: Plos one doi: 10.1371/journal.pone.0270757 – volume: 16 start-page: 786 issue: 6 year: 2019 ident: pone.0277555.ref008 article-title: An Integrated MCI Detection Framework Based on Spectral-temporal Analysis publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-019-1197-4 – volume: 142 start-page: 73 year: 2017 ident: pone.0277555.ref027 article-title: Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2017.02.002 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: pone.0277555.ref032 article-title: Automated epilepsy detection techniques from electroencephalogram signals: a review study publication-title: Health Information Science and Systems doi: 10.1007/s13755-020-00129-1 – volume: 28 start-page: 2390 issue: 11 year: 2020 ident: pone.0277555.ref023 article-title: A computerized method for automatic detection of schizophrenia using EEG signals publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.3022715 – volume: 1 start-page: 54 issue: 2 year: 2016 ident: pone.0277555.ref009 article-title: Medical big data: neurological diseases diagnosis through medical data analysis publication-title: Data Science and Engineering doi: 10.1007/s41019-016-0011-3 – ident: pone.0277555.ref045 doi: 10.1007/978-3-031-15512-3_13 – volume: 138 start-page: 104922 year: 2021 ident: pone.0277555.ref003 article-title: A novel computer-aided diagnosis framework for EEG-based identification of neural diseases publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104922 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: pone.0277555.ref051 article-title: Nearest neighbor pattern classification publication-title: IEEE transactions on information theory doi: 10.1109/TIT.1967.1053964 – ident: pone.0277555.ref053 doi: 10.1109/CEC45853.2021.9504951 – volume: 33 start-page: 1489 issue: 8 year: 2010 ident: pone.0277555.ref047 article-title: Centrist: A visual descriptor for scene categorization publication-title: IEEE transactions on pattern analysis and machine intelligence – ident: pone.0277555.ref002 doi: 10.1007/978-3-319-47653-7 – volume: 21 start-page: 4941 issue: 14 year: 2021 ident: pone.0277555.ref063 article-title: MIND: A Multi-Source Data Fusion Scheme for Intrusion Detection in Networks publication-title: Sensors doi: 10.3390/s21144941 – volume: 26 start-page: 799 issue: 4 year: 2015 ident: pone.0277555.ref014 article-title: Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1753-3 – volume: 137 start-page: 247 year: 2016 ident: pone.0277555.ref022 article-title: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2016.09.008 – volume: 180 start-page: 5 issue: 23 year: 2018 ident: pone.0277555.ref048 article-title: A gender recognition system from facial image publication-title: International Journal of Computer Applications doi: 10.5120/ijca2018915852 – volume: 56 start-page: 1372 issue: 25 year: 2020 ident: pone.0277555.ref010 article-title: Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image-based approach publication-title: Electronics Letters doi: 10.1049/el.2020.2646 – volume: 18 start-page: 2183 issue: 7 year: 2018 ident: pone.0277555.ref005 article-title: A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing publication-title: Sensors doi: 10.3390/s18072183 – volume: 37 start-page: 235 issue: 2 year: 2020 ident: pone.0277555.ref042 article-title: Automatic Detection of Schizophrenia by Applying Deep Learning over Spectrogram Images of EEG Signals publication-title: Traitement du Signal doi: 10.18280/ts.370209 – volume: 23 start-page: 2835 issue: 5 year: 2020 ident: pone.0277555.ref056 article-title: A framework for cardiac arrhythmia detection from IoT-based ECGs publication-title: World Wide Web doi: 10.1007/s11280-019-00776-9 – volume: 9 start-page: 91 issue: 1 year: 2020 ident: pone.0277555.ref030 article-title: Autism spectrum disorder classification on electroencephalogram signal using deep learning algorithm publication-title: IAES International Journal of Artificial Intelligence – volume: 127 start-page: 64 year: 2016 ident: pone.0277555.ref059 article-title: Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2016.01.017 – ident: pone.0277555.ref040 doi: 10.1007/978-3-030-90888-1_16 – volume: 16 start-page: e0253094 issue: 6 year: 2021 ident: pone.0277555.ref039 article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG publication-title: Plos one doi: 10.1371/journal.pone.0253094 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: pone.0277555.ref028 article-title: EEG analytics for early detection of autism spectrum disorder: a data-driven approach publication-title: Scientific reports – volume: 21 start-page: 3552 issue: 3 year: 2020 ident: pone.0277555.ref011 article-title: Classification of alcoholic EEG signals using a deep learning method publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.3026830 – volume: 19 start-page: 987 issue: 5 year: 2019 ident: pone.0277555.ref044 article-title: Removal of artifacts from EEG signals: a review publication-title: Sensors doi: 10.3390/s19050987 – start-page: 1 year: 2022 ident: pone.0277555.ref018 article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review publication-title: Neural Computing and Applications – volume: 11 start-page: 141 year: 2016 ident: pone.0277555.ref007 article-title: EEG signal analysis and classification publication-title: IEEE Trans Neural Syst Rehabilit Eng – volume: 56 start-page: 1361 issue: 25 year: 2020 ident: pone.0277555.ref016 article-title: Efficient approach for EEG-based emotion recognition publication-title: Electronics Letters doi: 10.1049/el.2020.2685 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: pone.0277555.ref050 article-title: LIBSVM: A library for support vector machines publication-title: ACM transactions on intelligent systems and technology (TIST) doi: 10.1145/1961189.1961199 – volume: 4 start-page: 265 issue: 3 year: 2015 ident: pone.0277555.ref043 article-title: An automated system for garment texture design class identification publication-title: Computers doi: 10.3390/computers4030265 – volume: 28 start-page: 1966 issue: 9 year: 2020 ident: pone.0277555.ref006 article-title: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.3013429 – volume: 40 start-page: 297 issue: 5 year: 2019 ident: pone.0277555.ref015 article-title: A new design of mental state classification for subject independent BCI systems publication-title: IRBM doi: 10.1016/j.irbm.2019.05.004 – volume: 20 start-page: 1 issue: 9 year: 2020 ident: pone.0277555.ref038 article-title: EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques publication-title: Sensors doi: 10.3390/s20092505 – volume: 2022 year: 2022 ident: pone.0277555.ref046 article-title: Ambient Assistive Living for Monitoring the Physical Activity of Diabetic Adults through Body Area Networks publication-title: Mobile Information Systems doi: 10.1155/2022/3169927 – volume: 21 start-page: 14923 issue: 13 year: 2021 ident: pone.0277555.ref017 article-title: Exploring Deep Learning Features For Automatic Classification Of Human Emotion Using EEG Rhythms publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3070373 – volume: 23 start-page: 2957 issue: 5 year: 2020 ident: pone.0277555.ref057 article-title: Decision-based evasion attacks on tree ensemble classifiers publication-title: World Wide Web doi: 10.1007/s11280-020-00813-y – volume: 79 start-page: 79 year: 2020 ident: pone.0277555.ref025 article-title: Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease publication-title: Parkinsonism & Related Disorders doi: 10.1016/j.parkreldis.2020.08.001 – ident: pone.0277555.ref001 doi: 10.1007/978-3-319-68155-9_12 – volume: 123 start-page: 176 year: 2020 ident: pone.0277555.ref035 article-title: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia publication-title: Neural Networks doi: 10.1016/j.neunet.2019.12.006 – ident: pone.0277555.ref058 doi: 10.1007/978-3-030-90888-1_12 – ident: pone.0277555.ref062 doi: 10.1007/978-3-642-02611-9_50 – start-page: 1 year: 2022 ident: pone.0277555.ref004 article-title: Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 32 start-page: 10927 issue: 15 year: 2020 ident: pone.0277555.ref031 article-title: A deep learning approach for Parkinson’s disease diagnosis from EEG signals publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3689-5 – volume: 38 start-page: 16 issue: 1 year: 2018 ident: pone.0277555.ref037 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2017.08.006 – volume: 5 start-page: 236 issue: 2 year: 2018 ident: pone.0277555.ref019 article-title: EEG sleep stages analysis and classification based on weighed complex network features publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2018.2876529 – volume: 218 start-page: 251 year: 2016 ident: pone.0277555.ref041 article-title: Multi-category EEG signal classification developing time-frequency texture features based Fisher Vector encoding method publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.050 – volume: 2 start-page: 535 issue: 5 year: 2012 ident: pone.0277555.ref061 article-title: A Vision-based Facial Expression Recognition and Adaptation System from Video Stream publication-title: International Journal of Machine Learning and Computing – ident: pone.0277555.ref026 doi: 10.1109/BIBM.2018.8621498 – ident: pone.0277555.ref055 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: pone.0277555.ref052 article-title: Random forests publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 2017 start-page: 1 year: 2017 ident: pone.0277555.ref029 article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN publication-title: BioMed Research International doi: 10.1155/2017/9816591 – volume: 63 start-page: 102223 year: 2021 ident: pone.0277555.ref034 article-title: A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102223 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: pone.0277555.ref060 article-title: Automated detection of mild and multi-class diabetic eye diseases using deep learning publication-title: Health Information Science and Systems doi: 10.1007/s13755-020-00125-5 – ident: pone.0277555.ref049 doi: 10.1007/BFb0028345 – ident: pone.0277555.ref036 doi: 10.1109/RTSI.2016.7740576 |
SSID | ssj0053866 |
Score | 2.4265072 |
Snippet | The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG)... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0277555 |
SubjectTerms | Abnormalities Algorithms Alzheimer's disease Artificial intelligence Autism Biology and Life Sciences Biomarkers Brain Brain research Classification Classifiers Computational neuroscience Computer and Information Sciences Data mining Diagnosis Discriminant analysis EEG Electric properties Electroencephalography Electroencephalography - methods Engineering and Technology Feature extraction Fourier transforms Health aspects Histograms Humans Image classification Machine Learning Medical imaging Medicine and Health Sciences Nervous system diseases Neurological diseases Neurological disorders Neurophysiology Parkinson's disease Principal Component Analysis Principal components analysis Research and Analysis Methods Schizophrenia Segments Signal Processing, Computer-Assisted Support Vector Machine Support vector machines System effectiveness |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggCoUGSnEREnBIm8SOvTkW1KogARK0qDfLT1ipyq7I7v_vjONEG1SpHHpdT6LsPD_LM58JeVsbLube8byw3OUcal5uGgcG0bIMc6E91zg7_PWbOL_kX67qq62rvrAnrKcH7hV3LJsghGehMaHhoahNoRvwUWmZ4YHLgNkXat6wmepzMESxEGlQjsnyONnlaLVs_RGeWtY42rdViCJf_5iVZ6vrZXcb5Py3c3KrFJ09Jo8ShqQn_bfvkAe-fUJ2UpR29H2ikv7wlCwuIPcisQYNPjJ4Uqxaji5GIs41HVjFKcBXGuktUzqk2rSIaBGoU-fXsWmrpTiQQg3eLEGx-QPksMt0l1yenV58Os_T5Qq5BYOwnLNibptGOgBMheHGWohciHfHAREGYyunrfOsDHgw7Uqoc8FWRagF8yXzTrNnZNaCOvcIdc7a0ngeABrxUvMmVIUGH4DcUEsAoBlhg6aVTczjeAHGtYrHaRJ2IL3iFNpHJftkJB-fWvXMG3fIf0QjjrLImx1_AG9SyZvUXd6UkdfoAqofQh2jX53ISsBOGsBrRt5ECeTOaLE557fedJ36_P3Xfwj9_DERepeEwhLUYXUaiID_hJxcE8n9iSRkADtZ3kOHHbTSKYCkopJIJQhPDk58-_LhuIwvxYa71i83vYwQsuLw9ue9z4-aZQI5i-oiI3ISDRPVT1faxZ9IXd7gfQOseHEftnpJHlY4i4I9mXyfzNZ_N_4VIMS1OYjJ4AY-T2Yw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pk9ixNydUEFVBAiRo0d4sP8tKVbI0u_-fGccbGlQB13gSJTOe8ed45htCXtSGi7l3PC8sdzmHNS83jQODaFmGudCea6wd_vRZHJ_yj4t6kX649SmtchsTY6B2ncV_5AewzIpKIj3am9XPHLtG4elqaqFxndxA6jJM6ZKLccMFvixEKpdjsjxI1tlfda3fx7PLGgv8Li1HkbV_jM2z1XnXXwU8_8yfvLQgHd0mtxKSpIeD6XfINd_eITvJV3v6KhFKv75LlicQgZFegwYfeTwprl2OLkc6zjXdcotTALE0klymoEi1aRHXIlynzq9j6lZLsSyFGuwvQTEFBOQw1_QeOT16f_LuOE8tFnILZmE5Z8XcNo10AJsKw4214L_g9Y4DLgzGVk5b51kZ8HjalWCCYKsi1IL5knmn2X0ya0Gdu4Q6Z21pPA8AkHipeROqQsNMgAhRS4ChGWFbTSub-MexDca5iodqEvYhg-IU2kcl-2QkH-9aDfwb_5B_i0YcZZE9O17oLs5UckYlmyCEZ6ExoeGhqE2hG4h70jLDA5chI09xCqihFHWMAepQVgL20wBhM_I8SiCDRospOmd60_fqw5fv_yH07etE6GUSCh2ow-pUFgHfhMxcE8m9iSTEATsZ3sUJu9VKr357DNy5ncRXDz8bh_GhmHbX-m4zyAghKw5PfzDM-VGzTCBzUV1kRE68YaL66Ui7_BEJzBvsOsCKh39_rUfkZoW1JphzyffIbH2x8Y8BAa7Nk-jmvwC3z117 priority: 102 providerName: ProQuest |
Title | Textural feature based intelligent approach for neurological abnormality detection from brain signal data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36374850 https://www.proquest.com/docview/2736276095 https://www.proquest.com/docview/2736667243 https://pubmed.ncbi.nlm.nih.gov/PMC9662730 https://doaj.org/article/79f66e3f9bf94f05b0a93057c3b4f47f http://dx.doi.org/10.1371/journal.pone.0277555 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYRSDkICHVEns2M0DQtu0MpA20FhR36L4a1Sq0q5ppfHfc5c4EUGd4CUP9Tlqz3fnn-u73xHyJlFcjKzhQai5CTjseYFKDSxILiM3ErnlOdYOn1-Iswn_Mk2mO6Tp2eoVWG492mE_qclqPry9-fURHP5D1bVBRs2k4XJR2CHeSSZJskv2YG-S6KrnvL1XAO8WwhfQ3TWzs0FVPP5ttO4t54tyGxT9O6Pyjy1q_IDc99iSHtXGsE92bPGQ7HvvLek7TzH9_hGZXUFMRsIN6mzF7ElxNzN01hJ0rmnDNk4B1tKK9tKHSZqrApEuAnhq7LpK5iooFqpQhR0nKCaFgBxmnz4mk_Hp1clZ4JsuBBoWigWchSOdptIAkAoVV1qDR0McMByQolM6Nrk2lkUOL6xNBPuf03HoEsFsxKzJ2RPSK0CdB4Qao3WkLHcAmXiU89TFYQ62ATEjkQBM-4Q1ms60ZyTHxhjzrLpmk3AyqRWX4fpkfn36JGhnLWtGjn_IH-MitrLIp119sFhdZ949M5k6ISxzqXIpd2GiwjyFSCg1U9xx6frkJZpAVhentlEhO5KxgBM2gNo-eV1JIKdGgUk71_mmLLPPX3_8h9D3y47QWy_kFqAOnftCCfhNyNXVkTzsSEJk0J3hAzTYRitlBlBVxBIpBmFmY8Tbh1-1w_hSTMQr7GJTywghYw5vf1rbfKtZJpDLKAn7RHa8oaP67kgx-1lRmqfYh4CFz-7-xs_JvRgrTzADkx-S3nq1sS8AD67VgOzKqYTn6CTC5_jTgOwdn158uxxU_7AMqhDwG6cWZqw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNokde3NAqDyqLn0gwbbaW4hfZaUqWZpdIf4Uv5GZxAkNqoBLr-uJNzsefzNez3xDyNNEcTGyhgeh5ibg4PMClRpYkFxGbiRyy3OsHT44FLtH_MM0ma6Qn20tDKZVtphYA7UpNf5HvgVuVsQS6dFez78F2DUKb1fbFhqNWezZH9_hyFa9Gr-D9X0WxzvvJ293A99VINDwJizgLBzpNJUGIoVQcaU1mCwYuuEQCjmlY5NrY1nk8EbWRPCtTsehSwSzEbMmZzDvFXIVHG-IO0pOuwMeYIcQvjyPyWjLW8PmvCzsJt6VJlhQeM791V0COl8wmJ-W1UWB7p_5mucc4M5NcsNHrnS7MbVVsmKLW2TVY0NFX3gC65e3yWwCiI90HtTZmjeUoq80dNbRfy5oy2VOIWimNammB2GaqwLjaDweUGMXdapYQbEMhirsZ0Ex5QTkMLf1Djm6FOXfJYMC1LlGqDFaR8pyBwEZj3KeujjMwfIAkRIJYe-QsFbTmfZ859h24zSrL_EknHsaxWW4PplfnyEJuqfmDd_HP-Tf4CJ2ssjWXX9Qnp1kfvNnMnVCWOZS5VLuwkSFeQo4KzVT3HHphmQDTSBrSl87zMm2ZSzg_A4h85A8qSWQsaPAlKCTfFlV2fjj8X8Iff7UE3ruhVwJ6tC5L8OA34RMYD3J9Z4k4I7uDa-hwbZaqbLfOxSebI344uHH3TBOiml-hS2XjYwQMuYw-73G5jvNMoFMSUk4JLK3G3qq748Us681YXqKXQ5YeP_vr7VBru1ODvaz_fHh3gNyPcY6F8z35OtksDhb2ocQfS7Uo3rLU_LlsjHmF8YEmW4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqQqEGgYBDukns2JsDQoVSdSkUBG21txC_ykpVsjS7Qvw1fh0ziRMaVAGXXtcTKzsefzOOZ74h5HGiuBhbw4NQcxNw8HmBSg0sSC4jNxa55TnWDr_fF7uH_O00ma6Qn20tDKZVtphYA7UpNX4jH4GbFbFEerSR82kRH7d3Xs6_BdhBCm9a23YajYns2R_f4fhWvZhsw1o_ieOdNwevdwPfYSDQ8FYs4Cwc6zSVBqKGUHGlNZgvGL3hEBY5pWOTa2NZ5PB21kTwBk7HoUsEsxGzJmcw7yVyWbIkwj0mp91hD3BECF-qx2Q08paxOS8Lu4n3pgkWF55xhXXHgM4vDOYnZXVe0Ptn7uYZZ7hznVzzUSzdasxulazY4gZZ9ThR0WeezPr5TTI7ABUitQd1tuYQpeg3DZ11VKAL2vKaUwigaU2w6QGZ5qrAmBqPCtTYRZ02VlAsiaEKe1tQTD8BOcxzvUUOL0T5t8mgAHWuEWqM1pGy3EFwxqOcpy4Oc7BCQKdEQgg8JKzVdKY99zm24DjJ6gs9CWegRnEZrk_m12dIgu6pecP98Q_5V7iInSwyd9c_lKfHmQeCTKZOCMtcqlzKXZioME8Bc6Vmijsu3ZBsoAlkTRlshz_ZlowFnOUhfB6SR7UEsncUuA-O82VVZZMPR_8h9PlTT-ipF3IlqEPnviQD_hOygvUk13uSgEG6N7yGBttqpcp-71Z4sjXi84cfdsM4Kab8FbZcNjJCyJjD7Hcam-80ywSyJiXhkMjebuipvj9SzL7W5Okpdjxg4d2_v9YGuQLokr2b7O_dI1djLHnB1E--TgaL06W9D4HoQj2odzwlXy4aYn4B72-dpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Textural+feature+based+intelligent+approach+for+neurological+abnormality+detection+from+brain+signal+data&rft.jtitle=PloS+one&rft.au=Tawhid%2C+Nurul&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Kate&rft.au=Wang%2C+Hua&rft.date=2022-11-14&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0277555&rft.externalDocID=2736276095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |