Textural feature based intelligent approach for neurological abnormality detection from brain signal data

The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neur...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 11; p. e0277555
Main Authors Tawhid, Md. Nurul Ahad, Siuly, Siuly, Wang, Kate, Wang, Hua
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.11.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject’s EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data.
AbstractList The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject's EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data.
The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject's EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data.The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject's EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data.
Audience Academic
Author Siuly, Siuly
Tawhid, Md. Nurul Ahad
Wang, Kate
Wang, Hua
AuthorAffiliation Sejong University, KOREA, REPUBLIC OF
2 School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
1 Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia
AuthorAffiliation_xml – name: Sejong University, KOREA, REPUBLIC OF
– name: 2 School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
– name: 1 Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia
Author_xml – sequence: 1
  givenname: Md. Nurul Ahad
  orcidid: 0000-0002-6100-4895
  surname: Tawhid
  fullname: Tawhid, Md. Nurul Ahad
– sequence: 2
  givenname: Siuly
  surname: Siuly
  fullname: Siuly, Siuly
– sequence: 3
  givenname: Kate
  surname: Wang
  fullname: Wang, Kate
– sequence: 4
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36374850$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuLuj_0C0IIhezJg2bTL1QlgWPwYWFnT1NqT56GTIJLNJKu6_99TpyHRZRHrRcPKcN-e8nHOenTjvVJY9L9CiwLR4t_F9cNwudhBeoJLSuq4fZWdFg8s5KRE-OTqfZucxbhCq8ZKQJ9kpJphWyxqdZeZG_Up94DbXisNB5S2PSubGJWWt6ZRLOd_tgudinWsfcqf64K3vjIAc3jofttyadJdLlZRIxrtcB7_N28CNy6PpoMZc8sSfZo81t1E9G_-z7PunjzeXX-ZX159XlxdXc0EqjOcVRkvRNFQWcGqrVoglRYhiWTWU6laUkgupcKEhWsgCk1KLEumaYFVgJTmeZS_3ujvrIxtdiqykgFKCmhqI1Z6Qnm_YLpgtD3fMc8P-BHzoGA_JCKsYbTQhCuum1U2lUd0i3mBUU4HbSldUg9aH8bW-3SopwC8wcyI6vXFmzTr_kzUEysEIBN6MAsHf9iomtjVRgPfcKd_v6yaEluDNLHt1D324u5HqODRgnPbwrhhE2QUtSV01BRm0Fg9Q8Em1NQJGShuITxLeThKASTA6He9jZKtvX_-fvf4xZV8fsWvFbVpHb_thkuIUfHHs9F-LD7MMwPs9IIKPMSjNhEl80IHWjGUFYsPiHExjw-KwcXEgubqXfND_Z9pvSh8dag
CitedBy_id crossref_primary_10_1109_TTS_2023_3239526
crossref_primary_10_1109_ACCESS_2024_3520861
crossref_primary_10_1109_TNSRE_2023_3347032
crossref_primary_10_3390_math11071619
crossref_primary_10_1109_TCDS_2024_3386364
crossref_primary_10_1007_s10548_025_01106_1
Cites_doi 10.1371/journal.pone.0188629
10.1109/TNSRE.2012.2184838
10.1109/ACCESS.2019.2960848
10.1109/TBME.2010.2055564
10.1049/iet-smt.2018.5358
10.1371/journal.pone.0270757
10.1007/s11633-019-1197-4
10.1016/j.cmpb.2017.02.002
10.1007/s13755-020-00129-1
10.1109/TNSRE.2020.3022715
10.1007/s41019-016-0011-3
10.1007/978-3-031-15512-3_13
10.1016/j.compbiomed.2021.104922
10.1109/TIT.1967.1053964
10.1109/CEC45853.2021.9504951
10.1007/978-3-319-47653-7
10.3390/s21144941
10.1007/s00521-014-1753-3
10.1016/j.cmpb.2016.09.008
10.5120/ijca2018915852
10.1049/el.2020.2646
10.3390/s18072183
10.18280/ts.370209
10.1007/s11280-019-00776-9
10.1016/j.cmpb.2016.01.017
10.1007/978-3-030-90888-1_16
10.1371/journal.pone.0253094
10.1109/JSEN.2020.3026830
10.3390/s19050987
10.1049/el.2020.2685
10.1145/1961189.1961199
10.3390/computers4030265
10.1109/TNSRE.2020.3013429
10.1016/j.irbm.2019.05.004
10.3390/s20092505
10.1155/2022/3169927
10.1109/JSEN.2021.3070373
10.1007/s11280-020-00813-y
10.1016/j.parkreldis.2020.08.001
10.1007/978-3-319-68155-9_12
10.1016/j.neunet.2019.12.006
10.1007/978-3-030-90888-1_12
10.1007/978-3-642-02611-9_50
10.1007/s00521-018-3689-5
10.1016/j.bbe.2017.08.006
10.1109/TETCI.2018.2876529
10.1016/j.neucom.2016.08.050
10.1109/BIBM.2018.8621498
10.1023/A:1010933404324
10.1155/2017/9816591
10.1016/j.bspc.2020.102223
10.1007/s13755-020-00125-5
10.1007/BFb0028345
10.1109/RTSI.2016.7740576
ContentType Journal Article
Copyright Copyright: © 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2022 Public Library of Science
2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Tawhid et al 2022 Tawhid et al
Copyright_xml – notice: Copyright: © 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Tawhid et al 2022 Tawhid et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0277555
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Agricultural Science Database
MEDLINE - Academic
CrossRef




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Textural feature based intelligent approach for abnormality detection from brain signal data
EISSN 1932-6203
ExternalDocumentID 2736276095
oai_doaj_org_article_79f66e3f9bf94f05b0a93057c3b4f47f
PMC9662730
A726549163
36374850
10_1371_journal_pone_0277555
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: ;
  grantid: LP170100934
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ESTFP
ID FETCH-LOGICAL-c6433-4308c997d1430b4bcc870073d4977fbc2dacde31f7001d1362fc20f563e13eda3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:50 EDT 2023
Wed Aug 27 01:31:10 EDT 2025
Thu Aug 21 18:39:22 EDT 2025
Fri Jul 11 04:50:05 EDT 2025
Fri Jul 25 10:38:39 EDT 2025
Tue Jun 17 20:47:27 EDT 2025
Tue Jun 10 20:26:23 EDT 2025
Fri Jun 27 04:38:50 EDT 2025
Fri Jun 27 04:02:44 EDT 2025
Thu May 22 21:19:46 EDT 2025
Thu Apr 03 07:03:30 EDT 2025
Tue Jul 01 03:23:41 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2022 Tawhid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6433-4308c997d1430b4bcc870073d4977fbc2dacde31f7001d1362fc20f563e13eda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-6100-4895
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277555
PMID 36374850
PQID 2736276095
PQPubID 1436336
PageCount e0277555
ParticipantIDs plos_journals_2736276095
doaj_primary_oai_doaj_org_article_79f66e3f9bf94f05b0a93057c3b4f47f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9662730
proquest_miscellaneous_2736667243
proquest_journals_2736276095
gale_infotracmisc_A726549163
gale_infotracacademiconefile_A726549163
gale_incontextgauss_ISR_A726549163
gale_incontextgauss_IOV_A726549163
gale_healthsolutions_A726549163
pubmed_primary_36374850
crossref_citationtrail_10_1371_journal_pone_0277555
crossref_primary_10_1371_journal_pone_0277555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-14
PublicationDateYYYYMMDD 2022-11-14
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Siuly (pone.0277555.ref007) 2016; 11
MA Joadder (pone.0277555.ref015) 2019; 40
B Oltu (pone.0277555.ref034) 2021; 63
S Siuly (pone.0277555.ref006) 2020; 28
M Li (pone.0277555.ref021) 2019; 8
ÖF Alçin (pone.0277555.ref041) 2016; 218
EK Dey (pone.0277555.ref043) 2015; 4
N Anjum (pone.0277555.ref063) 2021; 21
S Supriya (pone.0277555.ref019) 2018; 5
pone.0277555.ref036
AR Hassan (pone.0277555.ref022) 2016; 137
SL Oh (pone.0277555.ref031) 2020; 32
G Alfian (pone.0277555.ref005) 2018; 18
L Farsi (pone.0277555.ref011) 2020; 21
MJ Alhaddad (pone.0277555.ref054) 2012; 4
MF Anjum (pone.0277555.ref025) 2020; 79
D Şengür (pone.0277555.ref016) 2020; 56
AA Nur (pone.0277555.ref030) 2020; 9
pone.0277555.ref062
MT Sadiq (pone.0277555.ref003) 2021; 138
Z Aslan (pone.0277555.ref042) 2020; 37
M Tawhid (pone.0277555.ref010) 2020; 56
pone.0277555.ref026
F Zhang (pone.0277555.ref057) 2020; 23
S Siuly (pone.0277555.ref023) 2020; 28
S Siuly (pone.0277555.ref009) 2016; 1
FA Alturki (pone.0277555.ref038) 2020; 20
S Siuly (pone.0277555.ref020) 2018; 13
PN Srinivasu (pone.0277555.ref046) 2022; 2022
S Siuly (pone.0277555.ref014) 2015; 26
S Ibrahim (pone.0277555.ref037) 2018; 38
E Grossi (pone.0277555.ref027) 2017; 142
MNA Tawhid (pone.0277555.ref039) 2021; 16
pone.0277555.ref053
Y Kumar (pone.0277555.ref004) 2022
pone.0277555.ref055
pone.0277555.ref058
MNA Tawhid (pone.0277555.ref048) 2018; 180
EH Houssein (pone.0277555.ref018) 2022
A Keihani (pone.0277555.ref033) 2022; 17
Y Li (pone.0277555.ref012) 2010; 57
S Supriya (pone.0277555.ref032) 2020; 8
E Olejarczyk (pone.0277555.ref024) 2017; 12
C Ieracitano (pone.0277555.ref035) 2020; 123
S Siuly (pone.0277555.ref059) 2016; 127
F Demir (pone.0277555.ref017) 2021; 21
pone.0277555.ref040
J Wu (pone.0277555.ref047) 2010; 33
NA Tawhid (pone.0277555.ref061) 2012; 2
pone.0277555.ref001
pone.0277555.ref045
pone.0277555.ref002
J Yin (pone.0277555.ref008) 2019; 16
T Cover (pone.0277555.ref051) 1967; 13
pone.0277555.ref049
S Siuly (pone.0277555.ref013) 2012; 20
WJ Bosl (pone.0277555.ref028) 2018; 8
CC Chang (pone.0277555.ref050) 2011; 2
J He (pone.0277555.ref056) 2020; 23
L Breiman (pone.0277555.ref052) 2001; 45
R Sarki (pone.0277555.ref060) 2020; 8
R Djemal (pone.0277555.ref029) 2017; 2017
X Jiang (pone.0277555.ref044) 2019; 19
References_xml – volume: 12
  start-page: e0188629
  issue: 11
  year: 2017
  ident: pone.0277555.ref024
  article-title: Graph-based analysis of brain connectivity in schizophrenia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0188629
– volume: 20
  start-page: 526
  issue: 4
  year: 2012
  ident: pone.0277555.ref013
  article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2012.2184838
– volume: 8
  start-page: 9770
  year: 2019
  ident: pone.0277555.ref021
  article-title: Classification Epileptic Seizures in EEG Using Time-Frequency Image and Block Texture Features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960848
– volume: 57
  start-page: 2495
  issue: 10
  year: 2010
  ident: pone.0277555.ref012
  article-title: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2055564
– volume: 4
  start-page: 45
  issue: 2
  year: 2012
  ident: pone.0277555.ref054
  article-title: Diagnosis autism by fisher linear discriminant analysis FLDA via EEG
  publication-title: International Journal of Bio-Science and Bio-Technology
– volume: 13
  start-page: 35
  issue: 1
  year: 2018
  ident: pone.0277555.ref020
  article-title: Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure
  publication-title: IET Science, Measurement & Technology
  doi: 10.1049/iet-smt.2018.5358
– volume: 17
  start-page: e0270757
  issue: 7
  year: 2022
  ident: pone.0277555.ref033
  article-title: Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study
  publication-title: Plos one
  doi: 10.1371/journal.pone.0270757
– volume: 16
  start-page: 786
  issue: 6
  year: 2019
  ident: pone.0277555.ref008
  article-title: An Integrated MCI Detection Framework Based on Spectral-temporal Analysis
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-019-1197-4
– volume: 142
  start-page: 73
  year: 2017
  ident: pone.0277555.ref027
  article-title: Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2017.02.002
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0277555.ref032
  article-title: Automated epilepsy detection techniques from electroencephalogram signals: a review study
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-020-00129-1
– volume: 28
  start-page: 2390
  issue: 11
  year: 2020
  ident: pone.0277555.ref023
  article-title: A computerized method for automatic detection of schizophrenia using EEG signals
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3022715
– volume: 1
  start-page: 54
  issue: 2
  year: 2016
  ident: pone.0277555.ref009
  article-title: Medical big data: neurological diseases diagnosis through medical data analysis
  publication-title: Data Science and Engineering
  doi: 10.1007/s41019-016-0011-3
– ident: pone.0277555.ref045
  doi: 10.1007/978-3-031-15512-3_13
– volume: 138
  start-page: 104922
  year: 2021
  ident: pone.0277555.ref003
  article-title: A novel computer-aided diagnosis framework for EEG-based identification of neural diseases
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104922
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: pone.0277555.ref051
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE transactions on information theory
  doi: 10.1109/TIT.1967.1053964
– ident: pone.0277555.ref053
  doi: 10.1109/CEC45853.2021.9504951
– volume: 33
  start-page: 1489
  issue: 8
  year: 2010
  ident: pone.0277555.ref047
  article-title: Centrist: A visual descriptor for scene categorization
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– ident: pone.0277555.ref002
  doi: 10.1007/978-3-319-47653-7
– volume: 21
  start-page: 4941
  issue: 14
  year: 2021
  ident: pone.0277555.ref063
  article-title: MIND: A Multi-Source Data Fusion Scheme for Intrusion Detection in Networks
  publication-title: Sensors
  doi: 10.3390/s21144941
– volume: 26
  start-page: 799
  issue: 4
  year: 2015
  ident: pone.0277555.ref014
  article-title: Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1753-3
– volume: 137
  start-page: 247
  year: 2016
  ident: pone.0277555.ref022
  article-title: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2016.09.008
– volume: 180
  start-page: 5
  issue: 23
  year: 2018
  ident: pone.0277555.ref048
  article-title: A gender recognition system from facial image
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2018915852
– volume: 56
  start-page: 1372
  issue: 25
  year: 2020
  ident: pone.0277555.ref010
  article-title: Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image-based approach
  publication-title: Electronics Letters
  doi: 10.1049/el.2020.2646
– volume: 18
  start-page: 2183
  issue: 7
  year: 2018
  ident: pone.0277555.ref005
  article-title: A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing
  publication-title: Sensors
  doi: 10.3390/s18072183
– volume: 37
  start-page: 235
  issue: 2
  year: 2020
  ident: pone.0277555.ref042
  article-title: Automatic Detection of Schizophrenia by Applying Deep Learning over Spectrogram Images of EEG Signals
  publication-title: Traitement du Signal
  doi: 10.18280/ts.370209
– volume: 23
  start-page: 2835
  issue: 5
  year: 2020
  ident: pone.0277555.ref056
  article-title: A framework for cardiac arrhythmia detection from IoT-based ECGs
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00776-9
– volume: 9
  start-page: 91
  issue: 1
  year: 2020
  ident: pone.0277555.ref030
  article-title: Autism spectrum disorder classification on electroencephalogram signal using deep learning algorithm
  publication-title: IAES International Journal of Artificial Intelligence
– volume: 127
  start-page: 64
  year: 2016
  ident: pone.0277555.ref059
  article-title: Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2016.01.017
– ident: pone.0277555.ref040
  doi: 10.1007/978-3-030-90888-1_16
– volume: 16
  start-page: e0253094
  issue: 6
  year: 2021
  ident: pone.0277555.ref039
  article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
  publication-title: Plos one
  doi: 10.1371/journal.pone.0253094
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: pone.0277555.ref028
  article-title: EEG analytics for early detection of autism spectrum disorder: a data-driven approach
  publication-title: Scientific reports
– volume: 21
  start-page: 3552
  issue: 3
  year: 2020
  ident: pone.0277555.ref011
  article-title: Classification of alcoholic EEG signals using a deep learning method
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.3026830
– volume: 19
  start-page: 987
  issue: 5
  year: 2019
  ident: pone.0277555.ref044
  article-title: Removal of artifacts from EEG signals: a review
  publication-title: Sensors
  doi: 10.3390/s19050987
– start-page: 1
  year: 2022
  ident: pone.0277555.ref018
  article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review
  publication-title: Neural Computing and Applications
– volume: 11
  start-page: 141
  year: 2016
  ident: pone.0277555.ref007
  article-title: EEG signal analysis and classification
  publication-title: IEEE Trans Neural Syst Rehabilit Eng
– volume: 56
  start-page: 1361
  issue: 25
  year: 2020
  ident: pone.0277555.ref016
  article-title: Efficient approach for EEG-based emotion recognition
  publication-title: Electronics Letters
  doi: 10.1049/el.2020.2685
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: pone.0277555.ref050
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM transactions on intelligent systems and technology (TIST)
  doi: 10.1145/1961189.1961199
– volume: 4
  start-page: 265
  issue: 3
  year: 2015
  ident: pone.0277555.ref043
  article-title: An automated system for garment texture design class identification
  publication-title: Computers
  doi: 10.3390/computers4030265
– volume: 28
  start-page: 1966
  issue: 9
  year: 2020
  ident: pone.0277555.ref006
  article-title: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3013429
– volume: 40
  start-page: 297
  issue: 5
  year: 2019
  ident: pone.0277555.ref015
  article-title: A new design of mental state classification for subject independent BCI systems
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.05.004
– volume: 20
  start-page: 1
  issue: 9
  year: 2020
  ident: pone.0277555.ref038
  article-title: EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques
  publication-title: Sensors
  doi: 10.3390/s20092505
– volume: 2022
  year: 2022
  ident: pone.0277555.ref046
  article-title: Ambient Assistive Living for Monitoring the Physical Activity of Diabetic Adults through Body Area Networks
  publication-title: Mobile Information Systems
  doi: 10.1155/2022/3169927
– volume: 21
  start-page: 14923
  issue: 13
  year: 2021
  ident: pone.0277555.ref017
  article-title: Exploring Deep Learning Features For Automatic Classification Of Human Emotion Using EEG Rhythms
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3070373
– volume: 23
  start-page: 2957
  issue: 5
  year: 2020
  ident: pone.0277555.ref057
  article-title: Decision-based evasion attacks on tree ensemble classifiers
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00813-y
– volume: 79
  start-page: 79
  year: 2020
  ident: pone.0277555.ref025
  article-title: Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease
  publication-title: Parkinsonism & Related Disorders
  doi: 10.1016/j.parkreldis.2020.08.001
– ident: pone.0277555.ref001
  doi: 10.1007/978-3-319-68155-9_12
– volume: 123
  start-page: 176
  year: 2020
  ident: pone.0277555.ref035
  article-title: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.12.006
– ident: pone.0277555.ref058
  doi: 10.1007/978-3-030-90888-1_12
– ident: pone.0277555.ref062
  doi: 10.1007/978-3-642-02611-9_50
– start-page: 1
  year: 2022
  ident: pone.0277555.ref004
  article-title: Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 32
  start-page: 10927
  issue: 15
  year: 2020
  ident: pone.0277555.ref031
  article-title: A deep learning approach for Parkinson’s disease diagnosis from EEG signals
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3689-5
– volume: 38
  start-page: 16
  issue: 1
  year: 2018
  ident: pone.0277555.ref037
  article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2017.08.006
– volume: 5
  start-page: 236
  issue: 2
  year: 2018
  ident: pone.0277555.ref019
  article-title: EEG sleep stages analysis and classification based on weighed complex network features
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2018.2876529
– volume: 218
  start-page: 251
  year: 2016
  ident: pone.0277555.ref041
  article-title: Multi-category EEG signal classification developing time-frequency texture features based Fisher Vector encoding method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.050
– volume: 2
  start-page: 535
  issue: 5
  year: 2012
  ident: pone.0277555.ref061
  article-title: A Vision-based Facial Expression Recognition and Adaptation System from Video Stream
  publication-title: International Journal of Machine Learning and Computing
– ident: pone.0277555.ref026
  doi: 10.1109/BIBM.2018.8621498
– ident: pone.0277555.ref055
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: pone.0277555.ref052
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 2017
  start-page: 1
  year: 2017
  ident: pone.0277555.ref029
  article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN
  publication-title: BioMed Research International
  doi: 10.1155/2017/9816591
– volume: 63
  start-page: 102223
  year: 2021
  ident: pone.0277555.ref034
  article-title: A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102223
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0277555.ref060
  article-title: Automated detection of mild and multi-class diabetic eye diseases using deep learning
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-020-00125-5
– ident: pone.0277555.ref049
  doi: 10.1007/BFb0028345
– ident: pone.0277555.ref036
  doi: 10.1109/RTSI.2016.7740576
SSID ssj0053866
Score 2.4265072
Snippet The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG)...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0277555
SubjectTerms Abnormalities
Algorithms
Alzheimer's disease
Artificial intelligence
Autism
Biology and Life Sciences
Biomarkers
Brain
Brain research
Classification
Classifiers
Computational neuroscience
Computer and Information Sciences
Data mining
Diagnosis
Discriminant analysis
EEG
Electric properties
Electroencephalography
Electroencephalography - methods
Engineering and Technology
Feature extraction
Fourier transforms
Health aspects
Histograms
Humans
Image classification
Machine Learning
Medical imaging
Medicine and Health Sciences
Nervous system diseases
Neurological diseases
Neurological disorders
Neurophysiology
Parkinson's disease
Principal Component Analysis
Principal components analysis
Research and Analysis Methods
Schizophrenia
Segments
Signal Processing, Computer-Assisted
Support Vector Machine
Support vector machines
System effectiveness
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggCoUGSnEREnBIm8SOvTkW1KogARK0qDfLT1ipyq7I7v_vjONEG1SpHHpdT6LsPD_LM58JeVsbLube8byw3OUcal5uGgcG0bIMc6E91zg7_PWbOL_kX67qq62rvrAnrKcH7hV3LJsghGehMaHhoahNoRvwUWmZ4YHLgNkXat6wmepzMESxEGlQjsnyONnlaLVs_RGeWtY42rdViCJf_5iVZ6vrZXcb5Py3c3KrFJ09Jo8ShqQn_bfvkAe-fUJ2UpR29H2ikv7wlCwuIPcisQYNPjJ4Uqxaji5GIs41HVjFKcBXGuktUzqk2rSIaBGoU-fXsWmrpTiQQg3eLEGx-QPksMt0l1yenV58Os_T5Qq5BYOwnLNibptGOgBMheHGWohciHfHAREGYyunrfOsDHgw7Uqoc8FWRagF8yXzTrNnZNaCOvcIdc7a0ngeABrxUvMmVIUGH4DcUEsAoBlhg6aVTczjeAHGtYrHaRJ2IL3iFNpHJftkJB-fWvXMG3fIf0QjjrLImx1_AG9SyZvUXd6UkdfoAqofQh2jX53ISsBOGsBrRt5ECeTOaLE557fedJ36_P3Xfwj9_DERepeEwhLUYXUaiID_hJxcE8n9iSRkADtZ3kOHHbTSKYCkopJIJQhPDk58-_LhuIwvxYa71i83vYwQsuLw9ue9z4-aZQI5i-oiI3ISDRPVT1faxZ9IXd7gfQOseHEftnpJHlY4i4I9mXyfzNZ_N_4VIMS1OYjJ4AY-T2Yw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pk9ixNydUEFVBAiRo0d4sP8tKVbI0u_-fGccbGlQB13gSJTOe8ed45htCXtSGi7l3PC8sdzmHNS83jQODaFmGudCea6wd_vRZHJ_yj4t6kX649SmtchsTY6B2ncV_5AewzIpKIj3am9XPHLtG4elqaqFxndxA6jJM6ZKLccMFvixEKpdjsjxI1tlfda3fx7PLGgv8Li1HkbV_jM2z1XnXXwU8_8yfvLQgHd0mtxKSpIeD6XfINd_eITvJV3v6KhFKv75LlicQgZFegwYfeTwprl2OLkc6zjXdcotTALE0klymoEi1aRHXIlynzq9j6lZLsSyFGuwvQTEFBOQw1_QeOT16f_LuOE8tFnILZmE5Z8XcNo10AJsKw4214L_g9Y4DLgzGVk5b51kZ8HjalWCCYKsi1IL5knmn2X0ya0Gdu4Q6Z21pPA8AkHipeROqQsNMgAhRS4ChGWFbTSub-MexDca5iodqEvYhg-IU2kcl-2QkH-9aDfwb_5B_i0YcZZE9O17oLs5UckYlmyCEZ6ExoeGhqE2hG4h70jLDA5chI09xCqihFHWMAepQVgL20wBhM_I8SiCDRospOmd60_fqw5fv_yH07etE6GUSCh2ow-pUFgHfhMxcE8m9iSTEATsZ3sUJu9VKr357DNy5ncRXDz8bh_GhmHbX-m4zyAghKw5PfzDM-VGzTCBzUV1kRE68YaL66Ui7_BEJzBvsOsCKh39_rUfkZoW1JphzyffIbH2x8Y8BAa7Nk-jmvwC3z117
  priority: 102
  providerName: ProQuest
Title Textural feature based intelligent approach for neurological abnormality detection from brain signal data
URI https://www.ncbi.nlm.nih.gov/pubmed/36374850
https://www.proquest.com/docview/2736276095
https://www.proquest.com/docview/2736667243
https://pubmed.ncbi.nlm.nih.gov/PMC9662730
https://doaj.org/article/79f66e3f9bf94f05b0a93057c3b4f47f
http://dx.doi.org/10.1371/journal.pone.0277555
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYRSDkICHVEns2M0DQtu0MpA20FhR36L4a1Sq0q5ppfHfc5c4EUGd4CUP9Tlqz3fnn-u73xHyJlFcjKzhQai5CTjseYFKDSxILiM3ErnlOdYOn1-Iswn_Mk2mO6Tp2eoVWG492mE_qclqPry9-fURHP5D1bVBRs2k4XJR2CHeSSZJskv2YG-S6KrnvL1XAO8WwhfQ3TWzs0FVPP5ttO4t54tyGxT9O6Pyjy1q_IDc99iSHtXGsE92bPGQ7HvvLek7TzH9_hGZXUFMRsIN6mzF7ElxNzN01hJ0rmnDNk4B1tKK9tKHSZqrApEuAnhq7LpK5iooFqpQhR0nKCaFgBxmnz4mk_Hp1clZ4JsuBBoWigWchSOdptIAkAoVV1qDR0McMByQolM6Nrk2lkUOL6xNBPuf03HoEsFsxKzJ2RPSK0CdB4Qao3WkLHcAmXiU89TFYQ62ATEjkQBM-4Q1ms60ZyTHxhjzrLpmk3AyqRWX4fpkfn36JGhnLWtGjn_IH-MitrLIp119sFhdZ949M5k6ISxzqXIpd2GiwjyFSCg1U9xx6frkJZpAVhentlEhO5KxgBM2gNo-eV1JIKdGgUk71_mmLLPPX3_8h9D3y47QWy_kFqAOnftCCfhNyNXVkTzsSEJk0J3hAzTYRitlBlBVxBIpBmFmY8Tbh1-1w_hSTMQr7GJTywghYw5vf1rbfKtZJpDLKAn7RHa8oaP67kgx-1lRmqfYh4CFz-7-xs_JvRgrTzADkx-S3nq1sS8AD67VgOzKqYTn6CTC5_jTgOwdn158uxxU_7AMqhDwG6cWZqw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNokde3NAqDyqLn0gwbbaW4hfZaUqWZpdIf4Uv5GZxAkNqoBLr-uJNzsefzNez3xDyNNEcTGyhgeh5ibg4PMClRpYkFxGbiRyy3OsHT44FLtH_MM0ma6Qn20tDKZVtphYA7UpNf5HvgVuVsQS6dFez78F2DUKb1fbFhqNWezZH9_hyFa9Gr-D9X0WxzvvJ293A99VINDwJizgLBzpNJUGIoVQcaU1mCwYuuEQCjmlY5NrY1nk8EbWRPCtTsehSwSzEbMmZzDvFXIVHG-IO0pOuwMeYIcQvjyPyWjLW8PmvCzsJt6VJlhQeM791V0COl8wmJ-W1UWB7p_5mucc4M5NcsNHrnS7MbVVsmKLW2TVY0NFX3gC65e3yWwCiI90HtTZmjeUoq80dNbRfy5oy2VOIWimNammB2GaqwLjaDweUGMXdapYQbEMhirsZ0Ex5QTkMLf1Djm6FOXfJYMC1LlGqDFaR8pyBwEZj3KeujjMwfIAkRIJYe-QsFbTmfZ859h24zSrL_EknHsaxWW4PplfnyEJuqfmDd_HP-Tf4CJ2ssjWXX9Qnp1kfvNnMnVCWOZS5VLuwkSFeQo4KzVT3HHphmQDTSBrSl87zMm2ZSzg_A4h85A8qSWQsaPAlKCTfFlV2fjj8X8Iff7UE3ruhVwJ6tC5L8OA34RMYD3J9Z4k4I7uDa-hwbZaqbLfOxSebI344uHH3TBOiml-hS2XjYwQMuYw-73G5jvNMoFMSUk4JLK3G3qq748Us681YXqKXQ5YeP_vr7VBru1ODvaz_fHh3gNyPcY6F8z35OtksDhb2ocQfS7Uo3rLU_LlsjHmF8YEmW4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqQqEGgYBDukns2JsDQoVSdSkUBG21txC_ykpVsjS7Qvw1fh0ziRMaVAGXXtcTKzsefzOOZ74h5HGiuBhbw4NQcxNw8HmBSg0sSC4jNxa55TnWDr_fF7uH_O00ma6Qn20tDKZVtphYA7UpNX4jH4GbFbFEerSR82kRH7d3Xs6_BdhBCm9a23YajYns2R_f4fhWvZhsw1o_ieOdNwevdwPfYSDQ8FYs4Cwc6zSVBqKGUHGlNZgvGL3hEBY5pWOTa2NZ5PB21kTwBk7HoUsEsxGzJmcw7yVyWbIkwj0mp91hD3BECF-qx2Q08paxOS8Lu4n3pgkWF55xhXXHgM4vDOYnZXVe0Ptn7uYZZ7hznVzzUSzdasxulazY4gZZ9ThR0WeezPr5TTI7ABUitQd1tuYQpeg3DZ11VKAL2vKaUwigaU2w6QGZ5qrAmBqPCtTYRZ02VlAsiaEKe1tQTD8BOcxzvUUOL0T5t8mgAHWuEWqM1pGy3EFwxqOcpy4Oc7BCQKdEQgg8JKzVdKY99zm24DjJ6gs9CWegRnEZrk_m12dIgu6pecP98Q_5V7iInSwyd9c_lKfHmQeCTKZOCMtcqlzKXZioME8Bc6Vmijsu3ZBsoAlkTRlshz_ZlowFnOUhfB6SR7UEsncUuA-O82VVZZMPR_8h9PlTT-ipF3IlqEPnviQD_hOygvUk13uSgEG6N7yGBttqpcp-71Z4sjXi84cfdsM4Kab8FbZcNjJCyJjD7Hcam-80ywSyJiXhkMjebuipvj9SzL7W5Okpdjxg4d2_v9YGuQLokr2b7O_dI1djLHnB1E--TgaL06W9D4HoQj2odzwlXy4aYn4B72-dpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Textural+feature+based+intelligent+approach+for+neurological+abnormality+detection+from+brain+signal+data&rft.jtitle=PloS+one&rft.au=Tawhid%2C+Nurul&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Kate&rft.au=Wang%2C+Hua&rft.date=2022-11-14&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0277555&rft.externalDocID=2736276095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon