Progress in the ecology and conservation of giant pandas
Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological s...
Saved in:
Published in | Conservation biology Vol. 29; no. 6; pp. 1497 - 1507 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Scientific Publications
01.12.2015
Blackwell Publishing Ltd Wiley Periodicals Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas’ morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments’ creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old‐growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat. |
---|---|
AbstractList | Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas' morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments' creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old-growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat. La conservación del panda gigante (Ailuropoda melanoleuca) es una historia de éxito en potencia. Si se puede evitar la extinción de esta especie emblemática en peligro, se convertirá en un programa de escaparate para el gobierno chino y sus colaboradores. Revisamos los principales avances en la ciencia ecológica del panda gigante mediante la evaluación de cómo han contribuido a su conservación estos avances. Las adaptaciones morfológicas y conductuales del panda a una dieta de bambú, las cuales tienen una fuerte influencia sobre la ecología del movimiento, han sido bien estudiadas, lo que proporciona conocimiento para guiar las acciones de manejo desde el diseño de una reserva hasta la mitigación del cambio climático. La ecología de la búsqueda de alimento también ha proporcionado información esencial que se utiliza en la creación de modelos de paisaje del hábitat del panda. Ya que la pérdida del hábitat y la fragmentación son los principales conductores de la declinación de la población de la especie, se han realizado esfuerzos para ayudar a identificar áreas núcleo de hábitat, establecer en dónde se necesitan corredores de hábitat y para priorizar áreas para su protección y restauración. Por esto, los modelos de hábitat han proporcionado una guía para la creación de 67 áreas protegidas por parte del gobierno chino. Las investigaciones conductuales han revelado un sistema eficiente y complejo de comunicación y han documentado la necesidad de proteger al hábitat que sirve como una plataforma de comunicación para juntar a los sexos al momento del apareamiento. Investigaciones más detalladas muestran que los sitios de guarida en los bosques primarios pueden ser un recurso limitante, lo que indica un valor potencial en la dotación de sitios de guarida alternos para las crías. Los avances de la ecología molecular han sido revolucionarios y se han aplicado a los censos poblacionales, a la determinación de la estructura poblacional y la diversidad genética, a la evaluación de la conectividad después de una fragmentación de hábitat y al entendimiento de los patrones de dispersión. Estos avances forman una base para el incremento de la aplicación de estrategias de manejo adaptativo para avanzar la conservación del panda de manera más rápida. Mientras el gobierno chino ha hecho un gran avance en la creación de las áreas protegidas, un énfasis futuro será el manejo mejorado de los pandas y su hábitat. Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas’ morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments’ creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old‐growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat. Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas' morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments' creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old-growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat. Avances en la Ecología y Conservación del Panda Gigante Resumen La conservación del panda gigante (Ailuropoda melanoleuca) es una historia de éxito en potencia. Si se puede evitar la extinción de esta especie emblemática en peligro, se convertirá en un programa de escaparate para el gobierno chino y sus colaboradores. Revisamos los principales avances en la ciencia ecológica del panda gigante mediante la evaluación de cómo han contribuido a su conservación estos avances. Las adaptaciones morfológicas y conductuales del panda a una dieta de bambú, las cuales tienen una fuerte influencia sobre la ecología del movimiento, han sido bien estudiadas, lo que proporciona conocimiento para guiar las acciones de manejo desde el diseño de una reserva hasta la mitigación del cambio climático. La ecología de la búsqueda de alimento también ha proporcionado información esencial que se utiliza en la creación de modelos de paisaje del hábitat del panda. Ya que la pérdida del hábitat y la fragmentación son los principales conductores de la declinación de la población de la especie, se han realizado esfuerzos para ayudar a identificar áreas núcleo de hábitat, establecer en dónde se necesitan corredores de hábitat y para priorizar áreas para su protección y restauración. Por esto, los modelos de hábitat han proporcionado una guía para la creación de 67 áreas protegidas por parte del gobierno chino. Las investigaciones conductuales han revelado un sistema eficiente y complejo de comunicación y han documentado la necesidad de proteger al hábitat que sirve como una plataforma de comunicación para juntar a los sexos al momento del apareamiento. Investigaciones más detalladas muestran que los sitios de guarida en los bosques primarios pueden ser un recurso limitante, lo que indica un valor potencial en la dotación de sitios de guarida alternos para las crías. Los avances de la ecología molecular han sido revolucionarios y se han aplicado a los censos poblacionales, a la determinación de la estructura poblacional y la diversidad genética, a la evaluación de la conectividad después de una fragmentación de hábitat y al entendimiento de los patrones de dispersión. Estos avances forman una base para el incremento de la aplicación de estrategias de manejo adaptativo para avanzar la conservación del panda de manera más rápida. Mientras el gobierno chino ha hecho un gran avance en la creación de las áreas protegidas, un énfasis futuro será el manejo mejorado de los pandas y su hábitat. Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas' morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments' creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old-growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat.Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas' morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments' creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old-growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat. Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas’ morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments’ creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old‐growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat. Avances en la Ecología y Conservación del Panda Gigante Resumen La conservación del panda gigante (Ailuropoda melanoleuca) es una historia de éxito en potencia. Si se puede evitar la extinción de esta especie emblemática en peligro, se convertirá en un programa de escaparate para el gobierno chino y sus colaboradores. Revisamos los principales avances en la ciencia ecológica del panda gigante mediante la evaluación de cómo han contribuido a su conservación estos avances. Las adaptaciones morfológicas y conductuales del panda a una dieta de bambú, las cuales tienen una fuerte influencia sobre la ecología del movimiento, han sido bien estudiadas, lo que proporciona conocimiento para guiar las acciones de manejo desde el diseño de una reserva hasta la mitigación del cambio climático. La ecología de la búsqueda de alimento también ha proporcionado información esencial que se utiliza en la creación de modelos de paisaje del hábitat del panda. Ya que la pérdida del hábitat y la fragmentación son los principales conductores de la declinación de la población de la especie, se han realizado esfuerzos para ayudar a identificar áreas núcleo de hábitat, establecer en dónde se necesitan corredores de hábitat y para priorizar áreas para su protección y restauración. Por esto, los modelos de hábitat han proporcionado una guía para la creación de 67 áreas protegidas por parte del gobierno chino. Las investigaciones conductuales han revelado un sistema eficiente y complejo de comunicación y han documentado la necesidad de proteger al hábitat que sirve como una plataforma de comunicación para juntar a los sexos al momento del apareamiento. Investigaciones más detalladas muestran que los sitios de guarida en los bosques primarios pueden ser un recurso limitante, lo que indica un valor potencial en la dotación de sitios de guarida alternos para las crías. Los avances de la ecología molecular han sido revolucionarios y se han aplicado a los censos poblacionales, a la determinación de la estructura poblacional y la diversidad genética, a la evaluación de la conectividad después de una fragmentación de hábitat y al entendimiento de los patrones de dispersión. Estos avances forman una base para el incremento de la aplicación de estrategias de manejo adaptativo para avanzar la conservación del panda de manera más rápida. Mientras el gobierno chino ha hecho un gran avance en la creación de las áreas protegidas, un énfasis futuro será el manejo mejorado de los pandas y su hábitat. |
Author | Hu, Yibo Yan, Li Swaisgood, Ronald Zhu, Lifeng Zhang, Zejun Qi, Dunwu Wei, Fuwen Nie, Yonggang |
Author_xml | – sequence: 1 fullname: Wei, Fuwen – sequence: 2 fullname: Swaisgood, Ronald – sequence: 3 fullname: Hu, Yibo – sequence: 4 fullname: Nie, Yonggang – sequence: 5 fullname: Yan, Li – sequence: 6 fullname: Zhang, Zejun – sequence: 7 fullname: Qi, Dunwu – sequence: 8 fullname: Zhu, Lifeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26372302$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1LHDEUxUNR6mr70ve2A32Rwtib7-SxXequICpYEfoSMrOZbbazk20yq93_vllHLUgp5uU-nN855N6zj3a60DmE3mA4wvl9qkPljzDhirxAI8wJLbGkegeNQClVKqXJHtpPaQEAmmP2Eu0RQSWhQEZIXcQwjy6lwndF_8MVrg5tmG8K282KOnTJxRvb-9AVoSnm3nZ9scqSTa_QbmPb5F7fzwN0dfz123hanp5PTsafT8taMEpKpoUWRAismOO2UsQ1BJxkmmFHtaSWi3rmhJCSY0uwspxVmDdMEl2RWd7jAB0OuasYfq1d6s3Sp9q1re1cWCeTg0UOEkI_AwUKSnL9jFQpQBOpFcvohyfoIqxjl3fOFJfbewPJ1Lt7al0t3cysol_auDEPl87AxwGoY0gpuuYRwWC2NZptjeauxgzDE7j2_V0NfbS-_bcFD5Zb37rNf8LN-PzLyYPn7eBZpD7Ev39mUmAQNOvloPvUu9-Puo0_jZBUcnN9NjHf8fWFupxOzDTz7we-scHYefTJXF0SwAIAUwzA6R9nz8ws |
CitedBy_id | crossref_primary_10_1016_j_biocon_2019_03_013 crossref_primary_10_1093_jhered_esw024 crossref_primary_10_1002_ajp_23302 crossref_primary_10_1016_j_heliyon_2024_e37398 crossref_primary_10_3390_d16070412 crossref_primary_10_1073_pnas_1711437114 crossref_primary_10_3390_ani13081278 crossref_primary_10_1007_s11427_018_9423_3 crossref_primary_10_1111_acv_12803 crossref_primary_10_1016_j_gecco_2019_e00894 crossref_primary_10_1016_j_jenvman_2025_124499 crossref_primary_10_1016_j_gecco_2021_e01766 crossref_primary_10_1016_j_anbehav_2015_10_008 crossref_primary_10_1038_srep37715 crossref_primary_10_1002_ece3_2981 crossref_primary_10_3390_ani14152137 crossref_primary_10_1002_jwmg_21783 crossref_primary_10_1016_j_forpol_2023_102931 crossref_primary_10_1186_s13750_021_00253_9 crossref_primary_10_3390_ani13040718 crossref_primary_10_1016_j_scitotenv_2020_138210 crossref_primary_10_1093_conphys_coaa085 crossref_primary_10_1016_j_gecco_2019_e00644 crossref_primary_10_1146_annurev_animal_021022_054730 crossref_primary_10_1186_s12898_018_0161_4 crossref_primary_10_1016_j_biocon_2019_03_030 crossref_primary_10_1016_j_biocon_2017_07_010 crossref_primary_10_1111_1749_4877_12652 crossref_primary_10_1111_mec_16306 crossref_primary_10_3390_ani13213332 crossref_primary_10_3389_fmed_2022_983992 crossref_primary_10_1111_eva_12686 crossref_primary_10_1098_rspb_2020_0358 crossref_primary_10_3389_fimmu_2022_894820 crossref_primary_10_1016_j_envdev_2021_100656 crossref_primary_10_1093_biosci_biad065 crossref_primary_10_1016_j_ygcen_2019_113262 crossref_primary_10_1016_j_scitotenv_2020_142975 crossref_primary_10_1111_conl_12575 crossref_primary_10_1186_s13071_022_05240_8 crossref_primary_10_1016_j_biocon_2017_08_012 crossref_primary_10_1007_s11629_015_3734_0 crossref_primary_10_1016_j_ecoinf_2022_101892 crossref_primary_10_1111_gcb_14022 crossref_primary_10_3390_plants12112109 crossref_primary_10_1002_pan3_10425 crossref_primary_10_1016_j_scitotenv_2023_169298 crossref_primary_10_1007_s10980_021_01262_2 crossref_primary_10_1016_j_biocon_2017_01_010 crossref_primary_10_1016_j_biocon_2016_04_021 crossref_primary_10_1016_j_vas_2023_100295 crossref_primary_10_3390_ani13010142 crossref_primary_10_1002_ece3_6327 crossref_primary_10_1016_j_scitotenv_2020_140941 crossref_primary_10_1163_15707563_00002521 crossref_primary_10_1016_j_cub_2020_01_062 crossref_primary_10_1093_conphys_coae061 crossref_primary_10_1002_ece3_8628 crossref_primary_10_1002_ece3_10517 crossref_primary_10_1016_j_gecco_2020_e00947 crossref_primary_10_1038_s41598_017_12843_0 crossref_primary_10_1007_s13364_019_00418_5 crossref_primary_10_1016_j_biocon_2021_109074 crossref_primary_10_1038_s41598_018_37447_0 crossref_primary_10_3390_su17020755 crossref_primary_10_1007_s11427_018_9388_9 crossref_primary_10_1016_j_biocon_2021_109423 crossref_primary_10_1007_s10531_018_1614_y crossref_primary_10_1007_s11356_019_04420_x crossref_primary_10_3389_fevo_2022_1000841 crossref_primary_10_1016_j_biocon_2020_108615 crossref_primary_10_1111_conl_12355 crossref_primary_10_1016_j_oneear_2021_09_005 crossref_primary_10_1038_ncomms10125 crossref_primary_10_1111_acv_13019 crossref_primary_10_1016_j_gecco_2024_e03102 crossref_primary_10_1016_j_biocon_2019_108273 crossref_primary_10_1016_j_ijppaw_2020_07_007 crossref_primary_10_1186_s40462_022_00354_1 crossref_primary_10_1126_sciadv_abl8637 crossref_primary_10_3389_fgene_2022_995700 crossref_primary_10_1186_s12917_023_03663_8 crossref_primary_10_1002_jwmg_21743 crossref_primary_10_1002_ece3_11189 crossref_primary_10_1002_zoo_21853 crossref_primary_10_1016_j_cub_2018_05_046 crossref_primary_10_1101_cshperspect_a041455 crossref_primary_10_1002_ecy_4507 crossref_primary_10_1016_j_parint_2021_102380 crossref_primary_10_1016_j_tig_2019_09_009 crossref_primary_10_3390_d14060485 crossref_primary_10_1016_j_biocon_2018_12_031 crossref_primary_10_1016_j_biocon_2018_02_014 crossref_primary_10_25225_fozo_054_2019 crossref_primary_10_1007_s42991_023_00386_z crossref_primary_10_1016_j_scitotenv_2022_158207 crossref_primary_10_3389_fmicb_2022_906737 crossref_primary_10_1007_s10592_019_01173_5 crossref_primary_10_1038_s41598_024_79806_0 crossref_primary_10_1038_s41598_020_62990_0 crossref_primary_10_3389_fcosc_2023_1029447 crossref_primary_10_1002_ece3_1901 crossref_primary_10_1007_s11356_019_06384_4 crossref_primary_10_1016_j_gecco_2024_e03167 crossref_primary_10_1016_j_physbeh_2022_113744 crossref_primary_10_1016_j_biocon_2017_11_029 crossref_primary_10_3390_su10041081 crossref_primary_10_1016_j_biocon_2019_01_019 crossref_primary_10_1007_s00436_023_08016_w crossref_primary_10_1016_j_applanim_2021_105353 crossref_primary_10_1016_j_ijgeop_2020_11_011 crossref_primary_10_1016_j_isci_2024_109115 crossref_primary_10_1038_s41598_017_14315_x crossref_primary_10_3390_ani14162345 crossref_primary_10_3390_ani8050069 crossref_primary_10_1038_srep39954 crossref_primary_10_1007_s11427_019_9468_8 crossref_primary_10_1016_j_gecco_2019_e00542 crossref_primary_10_1016_j_biocon_2017_09_025 crossref_primary_10_1186_s13750_023_00299_x crossref_primary_10_3389_fmicb_2022_884880 crossref_primary_10_1016_j_gecco_2020_e00906 crossref_primary_10_1098_rspb_2017_0955 crossref_primary_10_1371_journal_pgen_1007608 crossref_primary_10_1016_j_biocon_2024_110635 |
Cites_doi | 10.2307/2404882 10.1002/jwmg.347 10.1515/mamm.1999.63.4.417 10.1098/rsbl.2009.0786 10.1111/1365-2435.12302 10.1111/j.1365-294X.2007.03450.x 10.1016/j.biocon.2011.04.028 10.1006/anbe.1998.1070 10.1017/CBO9780511542244.012 10.1017/S0952836901000139 10.1111/j.1523-1739.2006.00627.x 10.1046/j.1523-1739.2003.01494.x 10.1111/1749-4877.12030 10.1111/j.1523-1739.2009.01264.x 10.1111/j.1523-1739.2011.01748.x 10.1071/RD09178 10.1126/science.1058104 10.1126/science.339.6119.521 10.1046/j.1365-294X.2003.01702.x 10.1098/rsbl.2010.0582 10.1890/140137 10.2193/2006-504 10.1098/rsbl.2009.0331 10.1007/s10344-011-0569-z 10.1038/nclimate1727 10.1016/j.ecolmodel.2013.11.023 10.1111/conl.12143 10.1016/j.cub.2006.05.042 10.1073/pnas.1210127110 10.1111/j.1523-1739.2010.01499.x 10.1093/oso/9780198526841.001.0001 10.1073/pnas.0800375105 10.1098/rsbl.2010.1081 10.1007/s11258-010-9800-3 10.1111/mec.12096 10.1007/s00265-012-1320-9 10.1111/j.1523-1739.2008.01038.x 10.1093/molbev/msu278 10.1016/j.tree.2006.08.007 10.1038/nature01359 10.1086/284321 10.1017/CBO9780511542244 10.1046/j.1523-1739.1999.98418.x 10.1111/1749-4877.12068 10.1016/j.biocon.2004.05.011 10.1016/j.biocon.2010.04.046 10.1073/pnas.1017956108 10.1016/j.landusepol.2012.12.003 10.1890/080192 10.1111/j.1749-4877.2011.00250.x 10.1016/j.anbehav.2012.03.026 10.1016/j.biocon.2014.11.037 10.1080/01431160802411867 10.1371/journal.pone.0021159 10.1890/12-1451.1 10.1016/S0006-3207(00)00037-9 10.1093/jmammal/gyu031 10.1098/rspb.2009.1431 10.1111/j.1523-1739.2008.01070.x 10.1155/2012/108752 10.1038/ng.2494 |
ContentType | Journal Article |
Copyright | 2015 Society for Conservation Biology 2015 Society for Conservation Biology. 2015, Society for Conservation Biology |
Copyright_xml | – notice: 2015 Society for Conservation Biology – notice: 2015 Society for Conservation Biology. – notice: 2015, Society for Conservation Biology |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/cobi.12582 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 1507 |
ExternalDocumentID | 3922628961 26372302 10_1111_cobi_12582 COBI12582 24761063 ark_67375_WNG_Z1WP8SHG_H US201600131005 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review Feature |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: San Diego Zoological Society – fundername: National Natural Science Foundation funderid: 31230011; 31270418 |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AAONW AASGY AAUTI AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACHIC ACNCT ACPOU ACPRK ACPVT ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT ADACV AEUQT AFPWT BSCLL DOOOF ESX JSODD QN7 WRC AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AAYXX ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c6432-49696266184e5ab82ef20e74941e3973a56cde667751a218a54b15f4729b2d173 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 1523-1739 |
IngestDate | Fri Jul 11 13:05:14 EDT 2025 Fri Jul 11 18:36:19 EDT 2025 Fri Jul 11 13:12:06 EDT 2025 Fri Jul 25 10:34:03 EDT 2025 Thu Apr 03 07:05:23 EDT 2025 Tue Jul 01 02:25:25 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Wed Jan 22 16:30:25 EST 2025 Thu Jul 03 22:31:17 EDT 2025 Wed Oct 30 09:48:16 EDT 2024 Thu Apr 03 09:44:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ecología de forrajeo ecología molecular ecología de paisaje manejo adaptativo molecular ecology behavioral ecology ecología de comportamiento adaptive management cambio climático foraging ecology landscape ecology climate change |
Language | English |
License | 2015 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6432-49696266184e5ab82ef20e74941e3973a56cde667751a218a54b15f4729b2d173 |
Notes | http://dx.doi.org/10.1111/cobi.12582 ArticleID:COBI12582 National Natural Science Foundation - No. 31230011; No. 31270418 San Diego Zoological Society ark:/67375/WNG-Z1WP8SHG-H istex:A796444D2AE8FB41708D4271E37219BF8A7897C2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 26372302 |
PQID | 1757152302 |
PQPubID | 36794 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1846397669 proquest_miscellaneous_1803087597 proquest_miscellaneous_1760927984 proquest_journals_1757152302 pubmed_primary_26372302 crossref_primary_10_1111_cobi_12582 crossref_citationtrail_10_1111_cobi_12582 wiley_primary_10_1111_cobi_12582_COBI12582 jstor_primary_24761063 istex_primary_ark_67375_WNG_Z1WP8SHG_H fao_agris_US201600131005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2015 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conservation Biology |
PublicationYear | 2015 |
Publisher | Blackwell Scientific Publications Blackwell Publishing Ltd Wiley Periodicals Inc |
Publisher_xml | – name: Blackwell Scientific Publications – name: Blackwell Publishing Ltd – name: Wiley Periodicals Inc |
References | Zhang ZJ, Swaisgood RR, Wu H, Li M, Yong Y, Hu J, Wei FW. 2007. Factors predicting den use by maternal giant pandas. Journal of Wildlife Management 71:2694-2698. Shier DM, Swaisgood RR. 2012. Fitness costs of neighborhood disruption in translocations of a solitary mammal. Conservation Biology 26:116-123. Zhang ZJ, Yuan S, Qi D, Zhang M. 2014b. The Lushan earthquake and the giant panda: impacts and conservation. Integrative Zoology 9:376-378. Nie YG, Zhang ZJ, Swisgood RR, Wei FW. 2012c. Effects of season and social interaction on fecal testosterone metabolites in wild male giant pandas: implications for energetics and mating strategies. European Journal of Wildlife Research 58:235-241. Hull V, Shortbridge A, Liu B, Bearer S, Zhou X, Huang J, Zhou S, Zhang H, Ouyan Z, Liu J. 2011. The impact of giant panda foraging on bamboo dynamics in an isolated environment. Plant Ecology 212:43-54. Zhu X, Lindburg DG, Pan W, Forney KA, Wang D. 2001. The reproductive strategy of giant pandas (Ailuropoda melanoleuca): infant growth and development and mother-infant relationships. Journal of Zoology 253:141-155. Nichols JD, Williams BK. 2006. Monitoring for conservation. Trends in Ecology & Evolution 21:668-673. Zhu LF, Wu Q, Dai JY, Zhang SN, Wei FW. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences of the United States of America 108(43):17714-17719. Nie YG, Swaisgood RR, Zhang ZJ, Hu YB, Ma YS, Wei FW. 2012a. Giant panda scent-marking strategies in the wild: role of season, sex and marking surface. Animal Behaviour 84:39-44. Swaisgood RR, Wei FW, Wildt DE, Kouba AJ, Zhang ZJ. 2010. Giant panda conservation science: how far we have come. Biology Letters 6:143-145. Wang T, Skidmore AK, Toxopeus AG. 2009. Improved understorey bamboo cover mapping using a novel hybrid neural network and expert system. International Journal of Remote Sensing 30:965-981. State Forestry Administration. 2015. Release of the fourth national survey report on giant panda in China. State Forestry Administration, Beijing. Available from http://www.forestry.gov.cn/main/72/content-742880.html. Zhou Z, Pan WS. 1997. Analysis of the viability of a giant panda population. Journal of Applied Ecology 34:363-374. Smith JM, Harper D. 2003. Animal signals. Oxford University Press, Oxford. Nie YG, Swaisgood RR, Zhang ZJ, Liu XB, Wei FW. 2012b. Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behavioral Ecology and Sociobiology 66:721-730. Germano JM, Field KJ, Griffiths RA, Clulow S, Foster J, Harding G, Swaisgood RR. 2015. Mitigation-driven translocations: Are we moving wildlife in the right direction? Frontiers in Ecology and the Environment 13:101-105. Wei FW, Hu YB, Yan L, Nie YG, Wu Q, Zhang ZJ. 2015. Giant pandas are not an evolutionary cul-de-sac: Evidence from multidisciplinary research. Molecular Biology and Evolution 32:4-12. Liu J, Linderman M, Ouyang Z, An L, Zhang H. 2001. Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas. Science 292:98-101. Xu WH, Wang X, Ouyang Z, Zhang J, Li Z, Xiao Y, Zheng H. 2009. Conservation of giant panda habitat in South Minshan, China, after the May 2008 earthquake. Frontiers in Ecology and the Environment 7:353-358. Yang B, Busch J, Zhang L, Ran J, Gu X, Zhang W, Du B, Xu Y, Mittermeier RA. 2015. China's collective forest tenure reform and the future of the giant panda. Conservation Letters. DOI: 10.1111/conl.12143. Zhang ZJ, Swaisgood RR, Zhang S, Nordstrom LA, Wang H, Gu X, Hu J, Wei FW. 2011. Old-growth forest is what giant pandas really need. Biology Letters 7:403-406. Charlton BD, Keating JL, Li R, Yan H, Swaisgood RR. 2011. Vocal cues to androgen levels in male giant pandas. Biology Letters 7:71-74. Loucks CJ, Lü Z, Dinerstein E, Wang DJ, Fu D, Wang H. 2003. The giant pandas of the Qinling Mountains, China: a case study in designing conservation landscapes for elevational migrants. Conservation Biology 17:558-565. Zhu LF, Hu YB, Qi DW, Wu H, Zhan X, Zhang Z, Bruford MW, Wang J, Yang X, Gu X, et al. 2013. Genetic consequences of historical anthropogenic and ecological events on giant pandas. Ecology 94:2346-2357. Seddon, PJ, Armstrong DP, Maloney RF. 2007. Developing the science of reintroduction biology. Conservation Biology 21:303-312. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. 2008. Moving forward with movement ecology. Proceedings of the National Academy of Sciences of the United States of America 105:19052-19059. Schaller GB, Hu JC, Pan WS, Zhu J. 1985. The giant panda of Wolong. University of Chicago Press, Chicago. Willis EL, Kersey DC, Durrant BS, Kouba AJ. 2011. The acute phase protein ceruloplasmin as a non-invasive marker of pseudopregnancy, pregnancy, and pregnancy loss in the giant panda. PLoS ONE 6:e21159 DOI: 10.1371/journal.pone.0021159. Kersey DC, Wildt DE, Brown JL, Snyder RJ, Huang Y, Monfort SL. 2010. Endocrine milieu of perioestrus in the giant panda (Ailuropoda melanoleuca), as determined by non-invasive hormone measures. Reproduction, Fertility and Development 22:901-912. Viña A, Tuanmu MN, Xu W, Li Y, Ouyang Z, DeFries R, Liu J. 2010. Range-wide analysis of wildlife habitat: implications for conservation. Biological Conservation 143:1960-1969. Zhan XJ, Li M, Zhang ZJ, Goossens B, Chen Y, Wang H, Bruford MW, Wei FW. 2006. Molecular censusing doubles giant panda population estimate in a key nature reserve. Current Biology 16:R451-452. Charlton BD, Keating JL, Li R, Yan H, Swaisgood RR. 2010. Female giant panda (Ailuropoda melanoleuca) chirps advertise the caller's fertile phase. Proceeding of the Royal Society B: Biological Sciences 277:1101-1106. Zhu LF, Zhan X, Wu H, Zhang S, Meng T, Bruford MW, Wei FW. 2010. Drastic reduction of the smallest and most isolated giant panda population: implications for conservation. Conservation Biology 24:1299-1306. Songer M, Delion M, Biggs A, Huang Q. 2012. Modeling impacts of climate change on giant panda habitat. International Journal of Ecology. DOI: 10.1155/2012/108752. Pan WS, Lü Z, Zhu X, Wang D, Wang H, Long Y, Fu D, Xin Z. 2014. A chance for lasting survival: ecology and behavior of wild giant pandas. Smithsonian Institution Scholarly Press, Washington D.C. Schaller GB. 1994. The last panda. University of Chicago Press, Chicago. Nie YG, Zhang ZJ, Raubenheimer D, Elser JJ, Wei W, Wei FW. 2015. Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology. 29:26-34. Linderman M, Bearer S, An L, Tan Y, Ouyang ZY, Liu J. 2005. The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biological Conservation 121:383-390. Swaisgood RR, Wei FW, Mcshea WJ, Wildt DE, Kouba AJ, Zhang ZJ. 2011. Can science save the giant panda (Ailuropoda melanoleuca)? Unifying science and policy in an adaptive management paradigm. Integrative Zoology 6:290-296. Swaisgood RR, Lindburg DG, Zhou X. 1999. Giant pandas discriminate individual differences in conspecific scent. Animal Behaviour 57:1045-1053. Wang DJ, Li S, Sun S, Wang H, Chen A, Li S, Lü Z. 2008. Turning earthquake disaster into long-term benefits for the panda. Conservation Biology 22:1356-1360. Hull V, Zhang J, Zhou S, Huang J, Li R, Liu D, Xu W, Huang Y, Ouyang Z, Zhang H, Liu J. 2015. Space use by endangered giant pandas. Journal of Mammalogy 96:230-236. Li Y, Viña A, Yang W, Chen X, Zhang J, Ouyang ZY, Liang L, Liu J. 2013. Effects of conservation policies on forest cover change in giant panda habitat regions, China. Land Use Policy 33:42-53. Shen G, Feng C, Xie Z, Ouyang Z, Li J, Pascal M. 2008. Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conservation Biology 22:1144-1153. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Lu Z, Marquet PA, Hijmans RJ. 2013. Climate change, wine, and conservation. Proceedings of the National Academy of Sciences 110:6907-6912. Mawdsley JR, O'Malley R, Ojima DS. 2009. A review of climate change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology 23:1080-1089. Wei FW, Feng X, Wang Z, Li M. 1999. Feeding strategy and resource partitioning between giant and red pandas. Mammalia 63:417-430. Zhao SC, Zheng P, Dong S, Zhan X, Wu Q, Guo X, Hu Y, He W, Zhang S, Fan W, et al. 2013. Whole genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45:67-71. Frankham R, Briscoe DA, Ballou JD. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge. Qi DW, Zhang ZJ, Hu YB, Yang XY, Wang HJ, Wei FW. 2012. Measures of giant panda habitat selection across multiple spatial scales for species conservation. Journal of Wildlife Management 76:1092-1100. Wildt DE, Zhang A, Zhang H, Janssen D, Ellis S. 2006. Giant pandas: biology, veterinary medicine and management. Cambridge: Cambridge University Press. Yang B, Busch J, Zhang L, Ran J, Gu X, Zhang W, Du B, Mittermeier R. 2013. Eco-compensation for giant panda habitat. Science 339:521. Anthony LL, Blumstein DT. 2000. Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne. Biological Conservation 95:303-315. Liu J, Daily GC, Ehrlich PR, Luck GW. 2003. Effects of household dynamics on resource consumption and biodiversity. Nature 421:530-533. Tuanmu MN, Vina A, Winkler JA, Li Y, Xu W, Ouyang Z, Liu J. 2013. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains. Nature Climate Change 3:249-253. Zhan XJ, Zhang ZJ, Wu H, Goossens B, Li M, Jiang S, Bruford MW, Wei FW. 2007. Molecular analysis of dispersal in giant pandas. Molecular Ecology 16:3792-3800. Liu J, Ouyang Z, Taylor W, Groop R, Tan Y, Zhang H. 1999. A framework for evaluating effects of human factors on wildlife habitats: the case of the giant pandas. Conservation Biology 13:1360-1370. Cha 2015; 182 2013; 3 1984; 124 2015; 32 2010; 143 2000; 95 2003; 17 2008; 105 2007; 71 2012; 58 2010; 22 2001; 253 2010; 24 2001; 292 2006; 21 2013; 94 2010; 277 1999; 13 1999; 57 1985 2008; 22 2013; 110 2012; 26 2014; 9 2007; 21 2012; 66 2012; 21 2010; 6 2015; 13 2009; 23 2011; 212 2012 2013; 45 2006; 16 2015; 96 2006 1994 2004 1999; 63 2003 2002 2011; 6 2014; 274 2012; 76 2011; 7 2007; 16 2009; 30 2011; 108 2015; 29 2013; 33 2005; 121 2013; 339 1997; 34 2009; 7 2015 2009; 5 2014 2003; 421 2011; 144 2012; 84 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Pan WS (e_1_2_8_29_1) 2014 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 Schaller GB. (e_1_2_8_31_1) 1994 e_1_2_8_9_1 Smith JM (e_1_2_8_36_1) 2003 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 Schaller GB (e_1_2_8_32_1) 1985 e_1_2_8_17_1 Swaisgood RR (e_1_2_8_40_1) 2004 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 State Forestry Administration (e_1_2_8_38_1) 2015 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – reference: Campbell-Palmer R, Rosell F. 2011. The importance of chemical communication studies to mammalian conservation biology: A review. Biological Conservation 144:1919-1930. – reference: Charlton BD, Huang Y, Swaisgood RR. 2009. Vocal discrimination of potential mates by female giant pandas (Ailuropoda melanoleuca). Biology Letters 5:597-599. – reference: Liu J, Linderman M, Ouyang Z, An L, Zhang H. 2001. Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas. Science 292:98-101. – reference: Zhu X, Lindburg DG, Pan W, Forney KA, Wang D. 2001. The reproductive strategy of giant pandas (Ailuropoda melanoleuca): infant growth and development and mother-infant relationships. Journal of Zoology 253:141-155. – reference: Frankham R, Briscoe DA, Ballou JD. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge. – reference: Zhan XJ, Li M, Zhang ZJ, Goossens B, Chen Y, Wang H, Bruford MW, Wei FW. 2006. Molecular censusing doubles giant panda population estimate in a key nature reserve. Current Biology 16:R451-452. – reference: Nie YG, Swaisgood RR, Zhang ZJ, Liu XB, Wei FW. 2012b. Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behavioral Ecology and Sociobiology 66:721-730. – reference: Schaller GB. 1994. The last panda. University of Chicago Press, Chicago. – reference: Charlton BD, Keating JL, Li R, Yan H, Swaisgood RR. 2011. Vocal cues to androgen levels in male giant pandas. Biology Letters 7:71-74. – reference: Fan J, Li J, Xia R, Hu L, Wu X, Li G. 2014. Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China. Ecological Modelling 274:12-20. – reference: Nie YG, Zhang ZJ, Swisgood RR, Wei FW. 2012c. Effects of season and social interaction on fecal testosterone metabolites in wild male giant pandas: implications for energetics and mating strategies. European Journal of Wildlife Research 58:235-241. – reference: Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. 2008. Moving forward with movement ecology. Proceedings of the National Academy of Sciences of the United States of America 105:19052-19059. – reference: Zhu LF, Zhan X, Wu H, Zhang S, Meng T, Bruford MW, Wei FW. 2010. Drastic reduction of the smallest and most isolated giant panda population: implications for conservation. Conservation Biology 24:1299-1306. – reference: Germano JM, Field KJ, Griffiths RA, Clulow S, Foster J, Harding G, Swaisgood RR. 2015. Mitigation-driven translocations: Are we moving wildlife in the right direction? Frontiers in Ecology and the Environment 13:101-105. – reference: Zhang ZJ, Swaisgood RR, Wu H, Li M, Yong Y, Hu J, Wei FW. 2007. Factors predicting den use by maternal giant pandas. Journal of Wildlife Management 71:2694-2698. – reference: Zhan XJ, Zhang ZJ, Wu H, Goossens B, Li M, Jiang S, Bruford MW, Wei FW. 2007. Molecular analysis of dispersal in giant pandas. Molecular Ecology 16:3792-3800. – reference: Zhang ZJ, Swaisgood RR, Zhang S, Nordstrom LA, Wang H, Gu X, Hu J, Wei FW. 2011. Old-growth forest is what giant pandas really need. Biology Letters 7:403-406. – reference: Zhao SC, Zheng P, Dong S, Zhan X, Wu Q, Guo X, Hu Y, He W, Zhang S, Fan W, et al. 2013. Whole genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45:67-71. – reference: Songer M, Delion M, Biggs A, Huang Q. 2012. Modeling impacts of climate change on giant panda habitat. International Journal of Ecology. DOI: 10.1155/2012/108752. – reference: Wildt DE, Zhang A, Zhang H, Janssen D, Ellis S. 2006. Giant pandas: biology, veterinary medicine and management. Cambridge: Cambridge University Press. – reference: Pan WS, Lü Z, Zhu X, Wang D, Wang H, Long Y, Fu D, Xin Z. 2014. A chance for lasting survival: ecology and behavior of wild giant pandas. Smithsonian Institution Scholarly Press, Washington D.C. – reference: Shen G, Feng C, Xie Z, Ouyang Z, Li J, Pascal M. 2008. Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conservation Biology 22:1144-1153. – reference: Nie YG, Swaisgood RR, Zhang ZJ, Hu YB, Ma YS, Wei FW. 2012a. Giant panda scent-marking strategies in the wild: role of season, sex and marking surface. Animal Behaviour 84:39-44. – reference: Xu WH, Wang X, Ouyang Z, Zhang J, Li Z, Xiao Y, Zheng H. 2009. Conservation of giant panda habitat in South Minshan, China, after the May 2008 earthquake. Frontiers in Ecology and the Environment 7:353-358. – reference: McNaughton SJ. 1984. Grazing lawns: animals in herds, plant form, and coevolution. The American Naturalist 124:863-886. – reference: Charlton BD, Keating JL, Li R, Yan H, Swaisgood RR. 2010. Female giant panda (Ailuropoda melanoleuca) chirps advertise the caller's fertile phase. Proceeding of the Royal Society B: Biological Sciences 277:1101-1106. – reference: Zhang ZJ, Yuan S, Qi D, Zhang M. 2014b. The Lushan earthquake and the giant panda: impacts and conservation. Integrative Zoology 9:376-378. – reference: Kersey DC, Wildt DE, Brown JL, Snyder RJ, Huang Y, Monfort SL. 2010. Endocrine milieu of perioestrus in the giant panda (Ailuropoda melanoleuca), as determined by non-invasive hormone measures. Reproduction, Fertility and Development 22:901-912. – reference: Yang B, Busch J, Zhang L, Ran J, Gu X, Zhang W, Du B, Mittermeier R. 2013. Eco-compensation for giant panda habitat. Science 339:521. – reference: State Forestry Administration. 2015. Release of the fourth national survey report on giant panda in China. State Forestry Administration, Beijing. Available from http://www.forestry.gov.cn/main/72/content-742880.html. – reference: Wei FW, Hu YB, Yan L, Nie YG, Wu Q, Zhang ZJ. 2015. Giant pandas are not an evolutionary cul-de-sac: Evidence from multidisciplinary research. Molecular Biology and Evolution 32:4-12. – reference: Loucks CJ, Lü Z, Dinerstein E, Wang DJ, Fu D, Wang H. 2003. The giant pandas of the Qinling Mountains, China: a case study in designing conservation landscapes for elevational migrants. Conservation Biology 17:558-565. – reference: Schaller GB, Hu JC, Pan WS, Zhu J. 1985. The giant panda of Wolong. University of Chicago Press, Chicago. – reference: Hull V, Shortbridge A, Liu B, Bearer S, Zhou X, Huang J, Zhou S, Zhang H, Ouyan Z, Liu J. 2011. The impact of giant panda foraging on bamboo dynamics in an isolated environment. Plant Ecology 212:43-54. – reference: Zhou Z, Pan WS. 1997. Analysis of the viability of a giant panda population. Journal of Applied Ecology 34:363-374. – reference: Zhu LF, Wu Q, Dai JY, Zhang SN, Wei FW. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences of the United States of America 108(43):17714-17719. – reference: Swaisgood RR, Lindburg DG, Zhou X. 1999. Giant pandas discriminate individual differences in conspecific scent. Animal Behaviour 57:1045-1053. – reference: Li Y, Viña A, Yang W, Chen X, Zhang J, Ouyang ZY, Liang L, Liu J. 2013. Effects of conservation policies on forest cover change in giant panda habitat regions, China. Land Use Policy 33:42-53. – reference: Nichols JD, Williams BK. 2006. Monitoring for conservation. Trends in Ecology & Evolution 21:668-673. – reference: Nie YG, Zhang ZJ, Raubenheimer D, Elser JJ, Wei W, Wei FW. 2015. Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology. 29:26-34. – reference: Willis EL, Kersey DC, Durrant BS, Kouba AJ. 2011. The acute phase protein ceruloplasmin as a non-invasive marker of pseudopregnancy, pregnancy, and pregnancy loss in the giant panda. PLoS ONE 6:e21159 DOI: 10.1371/journal.pone.0021159. – reference: Seddon, PJ, Armstrong DP, Maloney RF. 2007. Developing the science of reintroduction biology. Conservation Biology 21:303-312. – reference: Smith JM, Harper D. 2003. Animal signals. Oxford University Press, Oxford. – reference: Wang T, Skidmore AK, Toxopeus AG. 2009. Improved understorey bamboo cover mapping using a novel hybrid neural network and expert system. International Journal of Remote Sensing 30:965-981. – reference: Wang DJ, Li S, Sun S, Wang H, Chen A, Li S, Lü Z. 2008. Turning earthquake disaster into long-term benefits for the panda. Conservation Biology 22:1356-1360. – reference: Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Lu Z, Marquet PA, Hijmans RJ. 2013. Climate change, wine, and conservation. Proceedings of the National Academy of Sciences 110:6907-6912. – reference: Zhu LF, Hu YB, Qi DW, Wu H, Zhan X, Zhang Z, Bruford MW, Wang J, Yang X, Gu X, et al. 2013. Genetic consequences of historical anthropogenic and ecological events on giant pandas. Ecology 94:2346-2357. – reference: Zhang ZJ, Sheppard J, Zhu J, Swaisgood RR, Wang G, Nie Y, Wei W, Wei FW. 2014a. Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integrative Zoology 9:46-60. – reference: Liu J, Ouyang Z, Taylor W, Groop R, Tan Y, Zhang H. 1999. A framework for evaluating effects of human factors on wildlife habitats: the case of the giant pandas. Conservation Biology 13:1360-1370. – reference: Anthony LL, Blumstein DT. 2000. Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne. Biological Conservation 95:303-315. – reference: Viña A, Tuanmu MN, Xu W, Li Y, Ouyang Z, DeFries R, Liu J. 2010. Range-wide analysis of wildlife habitat: implications for conservation. Biological Conservation 143:1960-1969. – reference: Wei FW, Feng X, Wang Z, Li M. 1999. Feeding strategy and resource partitioning between giant and red pandas. Mammalia 63:417-430. – reference: Yang B, Busch J, Zhang L, Ran J, Gu X, Zhang W, Du B, Xu Y, Mittermeier RA. 2015. China's collective forest tenure reform and the future of the giant panda. Conservation Letters. DOI: 10.1111/conl.12143. – reference: Wei FW, Hu YB, Zhu LF, Bruford MW, Zhan XJ, Zhang L. 2012. Black and white and read all over: the past, present and future of giant panda genetics. Molecular Ecology 21:5660-5674. – reference: Liu J, Daily GC, Ehrlich PR, Luck GW. 2003. Effects of household dynamics on resource consumption and biodiversity. Nature 421:530-533. – reference: Li R, Xu M, Wang MHG, Qiu S, Li X, Ehrenfeld D, Li D. 2015. Climate change threatens giant panda protection in the 21st century. Biological Conservation 182:93-101. – reference: Shier DM, Swaisgood RR. 2012. Fitness costs of neighborhood disruption in translocations of a solitary mammal. Conservation Biology 26:116-123. – reference: Linderman M, Bearer S, An L, Tan Y, Ouyang ZY, Liu J. 2005. The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biological Conservation 121:383-390. – reference: Mawdsley JR, O'Malley R, Ojima DS. 2009. A review of climate change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology 23:1080-1089. – reference: Qi DW, Zhang ZJ, Hu YB, Yang XY, Wang HJ, Wei FW. 2012. Measures of giant panda habitat selection across multiple spatial scales for species conservation. Journal of Wildlife Management 76:1092-1100. – reference: Swaisgood RR, Wei FW, Mcshea WJ, Wildt DE, Kouba AJ, Zhang ZJ. 2011. Can science save the giant panda (Ailuropoda melanoleuca)? Unifying science and policy in an adaptive management paradigm. Integrative Zoology 6:290-296. – reference: Tuanmu MN, Vina A, Winkler JA, Li Y, Xu W, Ouyang Z, Liu J. 2013. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains. Nature Climate Change 3:249-253. – reference: Swaisgood RR, Wei FW, Wildt DE, Kouba AJ, Zhang ZJ. 2010. Giant panda conservation science: how far we have come. Biology Letters 6:143-145. – reference: Hull V, Zhang J, Zhou S, Huang J, Li R, Liu D, Xu W, Huang Y, Ouyang Z, Zhang H, Liu J. 2015. Space use by endangered giant pandas. Journal of Mammalogy 96:230-236. – year: 1985 – volume: 16 start-page: R451 year: 2006 end-page: 452 article-title: Molecular censusing doubles giant panda population estimate in a key nature reserve publication-title: Current Biology – volume: 76 start-page: 1092 year: 2012 end-page: 1100 article-title: Measures of giant panda habitat selection across multiple spatial scales for species conservation publication-title: Journal of Wildlife Management – volume: 339 start-page: 521 year: 2013 article-title: Eco‐compensation for giant panda habitat publication-title: Science – volume: 9 start-page: 46 year: 2014 end-page: 60 article-title: Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas publication-title: Integrative Zoology – volume: 45 start-page: 67 year: 2013 end-page: 71 article-title: Whole genome sequencing of giant pandas provides insights into demographic history and local adaptation publication-title: Nature Genetics – volume: 17 start-page: 558 year: 2003 end-page: 565 article-title: The giant pandas of the Qinling Mountains, China: a case study in designing conservation landscapes for elevational migrants publication-title: Conservation Biology – volume: 253 start-page: 141 year: 2001 end-page: 155 article-title: The reproductive strategy of giant pandas ( ): infant growth and development and mother‐infant relationships publication-title: Journal of Zoology – year: 2015 article-title: Release of the fourth national survey report on giant panda in China publication-title: State Forestry Administration, Beijing – volume: 21 start-page: 5660 year: 2012 end-page: 5674 article-title: Black and white and read all over: the past, present and future of giant panda genetics publication-title: Molecular Ecology – volume: 29 start-page: 26 year: 2015 end-page: 34 article-title: Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry publication-title: Functional Ecology – volume: 22 start-page: 1144 year: 2008 end-page: 1153 article-title: Proposed conservation landscape for giant pandas in the Minshan Mountains, China publication-title: Conservation Biology – volume: 277 start-page: 1101 year: 2010 end-page: 1106 article-title: Female giant panda ( ) chirps advertise the caller's fertile phase publication-title: Proceeding of the Royal Society B: Biological Sciences – volume: 7 start-page: 71 year: 2011 end-page: 74 article-title: Vocal cues to androgen levels in male giant pandas publication-title: Biology Letters – volume: 292 start-page: 98 year: 2001 end-page: 101 article-title: Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas publication-title: Science – volume: 274 start-page: 12 year: 2014 end-page: 20 article-title: Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China publication-title: Ecological Modelling – year: 2015 article-title: China's collective forest tenure reform and the future of the giant panda publication-title: Conservation Letters – volume: 3 start-page: 249 year: 2013 end-page: 253 article-title: Climate‐change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains publication-title: Nature Climate Change – volume: 13 start-page: 1360 year: 1999 end-page: 1370 article-title: A framework for evaluating effects of human factors on wildlife habitats: the case of the giant pandas publication-title: Conservation Biology – volume: 84 start-page: 39 year: 2012 end-page: 44 article-title: Giant panda scent‐marking strategies in the wild: role of season, sex and marking surface publication-title: Animal Behaviour – volume: 6 start-page: 290 year: 2011 end-page: 296 article-title: Can science save the giant panda ( ? Unifying science and policy in an adaptive management paradigm publication-title: Integrative Zoology – year: 2014 – year: 1994 – volume: 110 start-page: 6907 year: 2013 end-page: 6912 article-title: Climate change, wine, and conservation publication-title: Proceedings of the National Academy of Sciences – volume: 22 start-page: 901 year: 2010 end-page: 912 article-title: Endocrine milieu of perioestrus in the giant panda ( ), as determined by non‐invasive hormone measures publication-title: Reproduction, Fertility and Development – volume: 33 start-page: 42 year: 2013 end-page: 53 article-title: Effects of conservation policies on forest cover change in giant panda habitat regions, China publication-title: Land Use Policy – volume: 6 start-page: 143 year: 2010 end-page: 145 article-title: Giant panda conservation science: how far we have come publication-title: Biology Letters – volume: 9 start-page: 376 year: 2014 end-page: 378 article-title: The Lushan earthquake and the giant panda: impacts and conservation publication-title: Integrative Zoology – volume: 6 start-page: e21159 year: 2011 article-title: The acute phase protein ceruloplasmin as a non‐invasive marker of pseudopregnancy, pregnancy, and pregnancy loss in the giant panda publication-title: PLoS ONE – volume: 66 start-page: 721 year: 2012 end-page: 730 article-title: Reproductive competition and fecal testosterone in wild male giant pandas ( ) publication-title: Behavioral Ecology and Sociobiology – volume: 22 start-page: 1356 year: 2008 end-page: 1360 article-title: Turning earthquake disaster into long‐term benefits for the panda publication-title: Conservation Biology – volume: 105 start-page: 19052 year: 2008 end-page: 19059 article-title: Moving forward with movement ecology publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 106 year: 2004 end-page: 120 – volume: 7 start-page: 403 year: 2011 end-page: 406 article-title: Old‐growth forest is what giant pandas really need publication-title: Biology Letters – volume: 5 start-page: 597 year: 2009 end-page: 599 article-title: Vocal discrimination of potential mates by female giant pandas ( ) publication-title: Biology Letters – volume: 95 start-page: 303 year: 2000 end-page: 315 article-title: Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne publication-title: Biological Conservation – volume: 13 start-page: 101 year: 2015 end-page: 105 article-title: Mitigation‐driven translocations: Are we moving wildlife in the right direction? publication-title: Frontiers in Ecology and the Environment – volume: 30 start-page: 965 year: 2009 end-page: 981 article-title: Improved understorey bamboo cover mapping using a novel hybrid neural network and expert system publication-title: International Journal of Remote Sensing – volume: 32 start-page: 4 year: 2015 end-page: 12 article-title: Giant pandas are not an evolutionary cul‐de‐sac: Evidence from multidisciplinary research publication-title: Molecular Biology and Evolution – volume: 23 start-page: 1080 year: 2009 end-page: 1089 article-title: A review of climate change adaptation strategies for wildlife management and biodiversity conservation publication-title: Conservation Biology – volume: 96 start-page: 230 year: 2015 end-page: 236 article-title: Space use by endangered giant pandas publication-title: Journal of Mammalogy – volume: 71 start-page: 2694 year: 2007 end-page: 2698 article-title: Factors predicting den use by maternal giant pandas publication-title: Journal of Wildlife Management – volume: 57 start-page: 1045 year: 1999 end-page: 1053 article-title: Giant pandas discriminate individual differences in conspecific scent publication-title: Animal Behaviour – volume: 182 start-page: 93 year: 2015 end-page: 101 article-title: Climate change threatens giant panda protection in the 21st century publication-title: Biological Conservation – volume: 143 start-page: 1960 year: 2010 end-page: 1969 article-title: Range‐wide analysis of wildlife habitat: implications for conservation publication-title: Biological Conservation – year: 2003 – volume: 108 start-page: 17714 issue: 43 year: 2011 end-page: 17719 article-title: Evidence of cellulose metabolism by the giant panda gut microbiome publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 274 year: 2006 end-page: 298 – volume: 58 start-page: 235 year: 2012 end-page: 241 article-title: Effects of season and social interaction on fecal testosterone metabolites in wild male giant pandas: implications for energetics and mating strategies publication-title: European Journal of Wildlife Research – volume: 144 start-page: 1919 year: 2011 end-page: 1930 article-title: The importance of chemical communication studies to mammalian conservation biology: A review publication-title: Biological Conservation – volume: 212 start-page: 43 year: 2011 end-page: 54 article-title: The impact of giant panda foraging on bamboo dynamics in an isolated environment publication-title: Plant Ecology – volume: 21 start-page: 668 year: 2006 end-page: 673 article-title: Monitoring for conservation publication-title: Trends in Ecology & Evolution – volume: 24 start-page: 1299 year: 2010 end-page: 1306 article-title: Drastic reduction of the smallest and most isolated giant panda population: implications for conservation publication-title: Conservation Biology – volume: 21 start-page: 303 year: 2007 end-page: 312 article-title: Developing the science of reintroduction biology publication-title: Conservation Biology – volume: 34 start-page: 363 year: 1997 end-page: 374 article-title: Analysis of the viability of a giant panda population publication-title: Journal of Applied Ecology – volume: 7 start-page: 353 year: 2009 end-page: 358 article-title: Conservation of giant panda habitat in South Minshan, China, after the May 2008 earthquake publication-title: Frontiers in Ecology and the Environment – year: 2002 – volume: 121 start-page: 383 year: 2005 end-page: 390 article-title: The effects of understory bamboo on broad‐scale estimates of giant panda habitat publication-title: Biological Conservation – year: 2006 – year: 2012 article-title: Modeling impacts of climate change on giant panda habitat publication-title: International Journal of Ecology – volume: 94 start-page: 2346 year: 2013 end-page: 2357 article-title: Genetic consequences of historical anthropogenic and ecological events on giant pandas publication-title: Ecology – volume: 124 start-page: 863 year: 1984 end-page: 886 article-title: Grazing lawns: animals in herds, plant form, and coevolution publication-title: The American Naturalist – volume: 421 start-page: 530 year: 2003 end-page: 533 article-title: Effects of household dynamics on resource consumption and biodiversity publication-title: Nature – volume: 26 start-page: 116 year: 2012 end-page: 123 article-title: Fitness costs of neighborhood disruption in translocations of a solitary mammal publication-title: Conservation Biology – volume: 63 start-page: 417 year: 1999 end-page: 430 article-title: Feeding strategy and resource partitioning between giant and red pandas publication-title: Mammalia – volume: 16 start-page: 3792 year: 2007 end-page: 3800 article-title: Molecular analysis of dispersal in giant pandas publication-title: Molecular Ecology – ident: e_1_2_8_63_1 doi: 10.2307/2404882 – ident: e_1_2_8_30_1 doi: 10.1002/jwmg.347 – ident: e_1_2_8_48_1 doi: 10.1515/mamm.1999.63.4.417 – ident: e_1_2_8_42_1 doi: 10.1098/rsbl.2009.0786 – ident: e_1_2_8_28_1 doi: 10.1111/1365-2435.12302 – ident: e_1_2_8_57_1 doi: 10.1111/j.1365-294X.2007.03450.x – ident: e_1_2_8_3_1 doi: 10.1016/j.biocon.2011.04.028 – ident: e_1_2_8_39_1 doi: 10.1006/anbe.1998.1070 – ident: e_1_2_8_41_1 doi: 10.1017/CBO9780511542244.012 – ident: e_1_2_8_67_1 doi: 10.1017/S0952836901000139 – ident: e_1_2_8_33_1 doi: 10.1111/j.1523-1739.2006.00627.x – ident: e_1_2_8_20_1 doi: 10.1046/j.1523-1739.2003.01494.x – volume-title: The last panda year: 1994 ident: e_1_2_8_31_1 – ident: e_1_2_8_60_1 doi: 10.1111/1749-4877.12030 – ident: e_1_2_8_21_1 doi: 10.1111/j.1523-1739.2009.01264.x – ident: e_1_2_8_35_1 doi: 10.1111/j.1523-1739.2011.01748.x – ident: e_1_2_8_13_1 doi: 10.1071/RD09178 – ident: e_1_2_8_18_1 doi: 10.1126/science.1058104 – volume-title: The giant panda of Wolong year: 1985 ident: e_1_2_8_32_1 – year: 2015 ident: e_1_2_8_38_1 article-title: Release of the fourth national survey report on giant panda in China publication-title: State Forestry Administration, Beijing – ident: e_1_2_8_54_1 doi: 10.1126/science.339.6119.521 – ident: e_1_2_8_8_1 doi: 10.1046/j.1365-294X.2003.01702.x – ident: e_1_2_8_6_1 doi: 10.1098/rsbl.2010.0582 – ident: e_1_2_8_9_1 doi: 10.1890/140137 – ident: e_1_2_8_58_1 doi: 10.2193/2006-504 – ident: e_1_2_8_4_1 doi: 10.1098/rsbl.2009.0331 – ident: e_1_2_8_27_1 doi: 10.1007/s10344-011-0569-z – ident: e_1_2_8_44_1 doi: 10.1038/nclimate1727 – volume-title: A chance for lasting survival: ecology and behavior of wild giant pandas year: 2014 ident: e_1_2_8_29_1 – start-page: 106 volume-title: Giant pandas: biology and conservation year: 2004 ident: e_1_2_8_40_1 – ident: e_1_2_8_7_1 doi: 10.1016/j.ecolmodel.2013.11.023 – ident: e_1_2_8_55_1 doi: 10.1111/conl.12143 – ident: e_1_2_8_56_1 doi: 10.1016/j.cub.2006.05.042 – ident: e_1_2_8_10_1 doi: 10.1073/pnas.1210127110 – ident: e_1_2_8_64_1 doi: 10.1111/j.1523-1739.2010.01499.x – volume-title: Animal signals year: 2003 ident: e_1_2_8_36_1 doi: 10.1093/oso/9780198526841.001.0001 – ident: e_1_2_8_23_1 doi: 10.1073/pnas.0800375105 – ident: e_1_2_8_59_1 doi: 10.1098/rsbl.2010.1081 – ident: e_1_2_8_11_1 doi: 10.1007/s11258-010-9800-3 – ident: e_1_2_8_49_1 doi: 10.1111/mec.12096 – ident: e_1_2_8_26_1 doi: 10.1007/s00265-012-1320-9 – ident: e_1_2_8_34_1 doi: 10.1111/j.1523-1739.2008.01038.x – ident: e_1_2_8_50_1 doi: 10.1093/molbev/msu278 – ident: e_1_2_8_24_1 doi: 10.1016/j.tree.2006.08.007 – ident: e_1_2_8_19_1 doi: 10.1038/nature01359 – ident: e_1_2_8_22_1 doi: 10.1086/284321 – ident: e_1_2_8_51_1 doi: 10.1017/CBO9780511542244 – ident: e_1_2_8_17_1 doi: 10.1046/j.1523-1739.1999.98418.x – ident: e_1_2_8_61_1 doi: 10.1111/1749-4877.12068 – ident: e_1_2_8_16_1 doi: 10.1016/j.biocon.2004.05.011 – ident: e_1_2_8_45_1 doi: 10.1016/j.biocon.2010.04.046 – ident: e_1_2_8_65_1 doi: 10.1073/pnas.1017956108 – ident: e_1_2_8_14_1 doi: 10.1016/j.landusepol.2012.12.003 – ident: e_1_2_8_53_1 doi: 10.1890/080192 – ident: e_1_2_8_43_1 doi: 10.1111/j.1749-4877.2011.00250.x – ident: e_1_2_8_25_1 doi: 10.1016/j.anbehav.2012.03.026 – ident: e_1_2_8_15_1 doi: 10.1016/j.biocon.2014.11.037 – ident: e_1_2_8_47_1 doi: 10.1080/01431160802411867 – ident: e_1_2_8_52_1 doi: 10.1371/journal.pone.0021159 – ident: e_1_2_8_66_1 doi: 10.1890/12-1451.1 – ident: e_1_2_8_2_1 doi: 10.1016/S0006-3207(00)00037-9 – ident: e_1_2_8_12_1 doi: 10.1093/jmammal/gyu031 – ident: e_1_2_8_5_1 doi: 10.1098/rspb.2009.1431 – ident: e_1_2_8_46_1 doi: 10.1111/j.1523-1739.2008.01070.x – ident: e_1_2_8_37_1 doi: 10.1155/2012/108752 – ident: e_1_2_8_62_1 doi: 10.1038/ng.2494 |
SSID | ssj0009514 |
Score | 2.5232787 |
SecondaryResourceType | review_article |
Snippet | Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided,... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1497 |
SubjectTerms | Adaptive management Ailuropoda melanoleuca Animals bamboos behavioral ecology cambio climático China Climate change Climate change mitigation communications technology Conservation conservation areas Conservation of Natural Resources diet Ecology ecología de comportamiento ecología de forrajeo ecología de paisaje ecología molecular Endangered & extinct species Endangered Species Environmental restoration extinction foraging foraging ecology Genetic diversity genetic variation habitat conservation habitat destruction Habitat fragmentation Habitat loss Habitats landscape ecology landscapes manejo adaptativo molecular ecology Offspring old-growth forests Pandas Population decline population dynamics Population structure progeny Protected areas rearing Special Section: Balancing Conservation and Development to Preserve China's Biodiversity Species extinction Ursidae - physiology Wildlife conservation |
Title | Progress in the ecology and conservation of giant pandas |
URI | https://api.istex.fr/ark:/67375/WNG-Z1WP8SHG-H/fulltext.pdf https://www.jstor.org/stable/24761063 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12582 https://www.ncbi.nlm.nih.gov/pubmed/26372302 https://www.proquest.com/docview/1757152302 https://www.proquest.com/docview/1760927984 https://www.proquest.com/docview/1803087597 https://www.proquest.com/docview/1846397669 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61IPhi66V2bJWIIijM0snkNuCLlrarYC3WpUWQkGQzpVRmSncXrL_ec5KZbStlQd8G5oSZnJzLl-TkCyGvPGRRK0WRK1GJHDfmcleDu9eVclZY5dPZqs_7cjjin47F8RJ515-FSfwQ8wU39IwYr9HBrZtcc3LfutMBpGeNARiLtRARfWXXGHcTsTdM8XKtK9Zxk2IZz1XTG9noTm1bwKio3l99eeJtwPMmjo2JaHeF_Oi7kOpPzgazqRv433-xO_5vH1fJ_Q6h0vfJpB6QpdA8JHfTnZWX8LQTea4vHxF9gLVdECnpaUMBR9KQ3lDbjKnHKu1uvZe2NT0BM5zSc1y3mDwmo92db9vDvLuIIfcAWFjOkUIHM7nmQVinWajZVlC84kUAPFNaIf04SKmUKCxgBiu4K0TNAbg7Ni5UuUaWm7YJ64RCgADAVlpo4HlZBwsAyfpKjz1EXcd8Rt70A2J8x1KOl2X8NP1sBXViok4y8nIue564OW6VWodxNfYEgqYZHTKk1EOSIQg_GXkdB3ve2l6cYaGbEuZof898L44O9OFwzwwzshatYS7IuIJuyDIjm715mM75JwYQmSpwtR2-_WL-GtwW92JsE9oZysitiqlK8wUyOvI1wpRvkQzHrVkpq4w8SeZ59ZOyVOkv3kYjW6Aks_3lw8f49PRfhDfIPdCnSOU9m2R5ejELzwCkTd3z6Ix_AN_lL1o |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN8oxugLfiJV1DUaE016odv96qMicCicRLhAfNls97aEQFrC3SXiX-_Mbq-AIZfoW5POpu3szOxvZ6e_IeSdg1XUSpGlShQixYO5tKzA3atClVZY5eK_VTsD2R_yr4fisK3NwX9hIj9El3BDzwjxGh0cE9JXvNw15XEP1mcNEfgOtvRG6vwvP9gVzt1I7Q2bvFTrgrXspFjIczn22np0u7INoFRU8K9ZgeJN0PM6kg1L0caD2G91HBgMsQLlpDedlD33-y9-x__-yodksQWp9FO0qkfklq8fk7uxbeUFXK0HquuLJ0TvYnkXBEt6XFOAktTHO9TWI-qwULtN-dKmokdgiRN6hqmL8VMy3FjfX-unbS-G1AFmYSlHFh1czDX3wpaa-YqtesULnnmANLkV0o28lEqJzAJssIKXmag4YPeSjTKVL5GFuqn9MqEQIwCz5RYGOJ5X3gJGsq7QIweBt2QuIR9mM2JcS1SO_TJOzWzDgjoxQScJedvJnkV6jhullmFijT2CuGmGewxZ9ZBnCCJQQt6H2e5G2_MTrHVTwhwMNs3P7GBX7_U3TT8hS8EcOkHGFXyGzBOyMrMP0_r_2AAoUxkm3OHZb7rb4Ll4HGNr30xRRq4WTBWaz5HRgbIRdn3zZDiezkpZJORZtM_Ll5S5im_xMVjZHCWZte-ft8LV838Rfk3u9fd3ts321uDbC3IfdCtitc8KWZicT_1LwGyT8lXwzD_RjDN2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH-YE8Uvvs9Vp1YUQaHHmuat4Bfddrv5ch5ux4YgIU3TMSbtsd2B86_3SdLeNhkH-q3QJ7R58rz8kjz5BeCVwSyqOUsTwXKWuI25pKjQ3atcFJppYcLZqi9DPhjTjwfsYAnedWdhAj_EfMHNeYaP187BJ2V1wclNUxz1MD1LDMDXKV_P3cUNm9_IBcrdwOyNc7xEypy05KSujue87aV0dK3SDYJUp99fXX3iVcjzMpD1mah_B350fQgFKMe92bTomd9_0Tv-byfvwu0Wosbvg03dgyVb34cb4dLKM3za8kTXZw9AjlxxF4bK-KiOEUjGNryJdV3GxpVptwu-cVPFh2iH03jiFi5OH8K4v7W3MUjamxgSg4iFJNRx6LhULqllupDEVmTdCprT1CKgyTTjprScC8FSjaBBM1qkrKKI3AtSpiJbgeW6qe0qxBghELFlGhsYmlVWI0LSJpelwbBbEBPBm25AlGlpyt1tGT9VN11xOlFeJxG8nMtOAjnHlVKrOK5KH2LUVONd4jj1HMsQxp8IXvvBnrfWJ8eu0k0wtT_cVt_T_ZHcHWyrQQQr3hrmgoQK7AbPIljrzEO13n-qEJKJ1C2347dfzF-j37rNGF3bZuZk0GSJyCVdICM9YSPO-RbJULc3y3kewaNgnuc_yTMR_uKtN7IFSlIbXz_s-KfH_yL8HG6ONvvq887w0xO4haplodRnDZanJzP7FAHbtHjm_fIP_bIyJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+the+ecology+and+conservation+of+giant+pandas&rft.jtitle=Conservation+biology&rft.au=Wei%2C+Fuwen&rft.au=Swaisgood%2C+Ronald&rft.au=Hu%2C+Yibo&rft.au=Nie%2C+Yonggang&rft.date=2015-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=29&rft.issue=6&rft.spage=1497&rft.epage=1507&rft_id=info:doi/10.1111%2Fcobi.12582&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_Z1WP8SHG_H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |