Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics

Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is cru...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 55; no. 10; pp. 2085 - 2096
Main Authors Lee, Yeji, Jeong, Michaela, Park, Jeongeun, Jung, Hyein, Lee, Hyukjin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2023
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Lipid nanoparticles (LNP): investigating the immune impacts of mRNA/LNP Drugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations.
AbstractList Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.
Abstract Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.Lipid nanoparticles (LNP): investigating the immune impacts of mRNA/LNPDrugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations.
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. KCI Citation Count: 0
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Drugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations.
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Lipid nanoparticles (LNP): investigating the immune impacts of mRNA/LNP Drugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations.
Author Jeong, Michaela
Jung, Hyein
Lee, Yeji
Park, Jeongeun
Lee, Hyukjin
Author_xml – sequence: 1
  givenname: Yeji
  surname: Lee
  fullname: Lee, Yeji
  organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University
– sequence: 2
  givenname: Michaela
  surname: Jeong
  fullname: Jeong, Michaela
  organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University
– sequence: 3
  givenname: Jeongeun
  surname: Park
  fullname: Park, Jeongeun
  organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University
– sequence: 4
  givenname: Hyein
  surname: Jung
  fullname: Jung, Hyein
  organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University
– sequence: 5
  givenname: Hyukjin
  orcidid: 0000-0001-9478-8473
  surname: Lee
  fullname: Lee, Hyukjin
  email: hyukjin@ewha.ac.kr
  organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37779140$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003013109$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kktr3DAUhU1JaR7tH-iiGLopBbd6WZJXZQh9DIQWQroWsnw1UWJLrmSH5N9XM560SRZZXSF953A4usfFgQ8eiuItRp8wovJzwoQIXiFCK4SR5NXti-KIoIZUnGF68OB8WByndIUQqZlgr4pDKoRoMENHhV0Pw-zDBrwzbrorgy17N7qu9NqHUcfJmR5SqX1XuimVbhi1mcrgy-kSSrDWGW12quH856q80cY4v-czEfUIc7ZIr4uXVvcJ3uznSfH729eL0x_V2a_v69PVWWU4I1MF2CIratF1tAWDaouEaQBaXNuWWKKtAKqJBtRQKlrecY6IppQZ0LqVtKEnxcfF10erro1TQbvd3AR1HdXq_GKtcneESkIzvF7gLugrNUY36Hi3U-wuQtyofQFK8kZS1nGGOsYopS2jgiDOOhCdNGLr9WXxGud2gM6An6LuH5k-fvHuMoe6yWk4lqQW2eHD3iGGPzOkSQ0uGeh77SHMSREpMK8ZIzyj75-gV2GOPhebKclYI7BAmXr3MNK_LPefnwG5ACaGlCJYlVdATy5sE7o-R9t2JdWyZyrvmdrtmbrNUvJEeu_-rIguopRhv4H4P_Yzqr9KneVy
CitedBy_id crossref_primary_10_1007_s00204_024_03912_1
crossref_primary_10_1038_s41598_023_50279_x
crossref_primary_10_34133_bmr_0080
crossref_primary_10_1002_advs_202406545
crossref_primary_10_1080_17425247_2024_2409142
crossref_primary_10_1093_eurheartj_ehae883
crossref_primary_10_34133_bmr_0120
crossref_primary_10_1038_s41467_024_55721_w
crossref_primary_10_3390_biochem4030010
crossref_primary_10_1016_j_addr_2024_115359
crossref_primary_10_1177_09760016241290651
crossref_primary_10_1016_j_actbio_2025_02_065
crossref_primary_10_1039_D4BM00580E
crossref_primary_10_1039_D3NA01125A
crossref_primary_10_1021_acs_langmuir_4c05176
crossref_primary_10_3390_biom14040503
crossref_primary_10_1186_s12951_024_02630_1
crossref_primary_10_1111_cpr_13739
crossref_primary_10_1002_smll_202405642
crossref_primary_10_3390_vaccines12050543
crossref_primary_10_1002_adfm_202413220
crossref_primary_10_1016_j_addr_2024_115346
crossref_primary_10_1021_acsnano_4c00063
crossref_primary_10_3389_fimmu_2024_1370564
crossref_primary_10_3390_vaccines12080848
crossref_primary_10_1002_advs_202401935
crossref_primary_10_1016_j_jconrel_2025_01_071
crossref_primary_10_37349_ei_2024_00161
crossref_primary_10_1007_s12094_024_03577_3
crossref_primary_10_3390_vaccines12121382
crossref_primary_10_1002_gch2_202400217
crossref_primary_10_2174_277227081901241223145542
crossref_primary_10_1021_acsami_5c00920
crossref_primary_10_1038_s41467_025_57446_w
crossref_primary_10_1016_j_compbiolchem_2024_108271
crossref_primary_10_1021_jacs_4c16987
crossref_primary_10_7759_cureus_50723
crossref_primary_10_3201_eid3011_240610
crossref_primary_10_1039_D4NR01487A
crossref_primary_10_1016_j_omtm_2025_101427
crossref_primary_10_3390_pharmaceutics16060771
crossref_primary_10_1186_s12951_024_02972_w
crossref_primary_10_1186_s12985_025_02645_6
crossref_primary_10_3390_biom15030359
crossref_primary_10_1016_j_ijpharm_2025_125470
crossref_primary_10_1016_j_jconrel_2024_07_052
crossref_primary_10_1016_j_phrs_2024_107352
crossref_primary_10_1007_s13346_025_01815_x
crossref_primary_10_2745_dds_39_314
crossref_primary_10_1007_s40291_024_00705_1
crossref_primary_10_1039_D4PY00298A
crossref_primary_10_1016_j_omtm_2025_101436
crossref_primary_10_2174_0113816128296588240321072042
crossref_primary_10_3389_fnano_2025_1475969
crossref_primary_10_1021_acsnano_4c18636
crossref_primary_10_1016_j_jconrel_2025_02_067
crossref_primary_10_1016_j_bioactmat_2025_01_028
crossref_primary_10_1016_j_ijpharm_2025_125485
crossref_primary_10_1038_s41569_025_01141_2
crossref_primary_10_1002_smll_202401631
crossref_primary_10_1016_j_ymthe_2024_12_019
crossref_primary_10_1038_s41541_024_00838_8
crossref_primary_10_3390_life15010095
crossref_primary_10_59717_j_xinn_med_2024_100081
crossref_primary_10_1016_j_ejps_2025_107050
crossref_primary_10_1126_sciadv_adk0716
crossref_primary_10_1016_j_omtm_2024_101325
crossref_primary_10_1002_smll_202406082
crossref_primary_10_1039_D4NR03159H
crossref_primary_10_1016_j_mtchem_2025_102549
crossref_primary_10_1021_acs_biomac_4c00954
crossref_primary_10_3389_fddev_2024_1383038
crossref_primary_10_3389_fnano_2024_1458894
crossref_primary_10_1016_j_ccr_2025_216601
crossref_primary_10_1515_psr_2025_0001
crossref_primary_10_1002_anbr_202400037
crossref_primary_10_1038_s41392_024_02035_4
crossref_primary_10_3389_fimmu_2025_1513546
crossref_primary_10_3390_vaccines12060659
crossref_primary_10_1016_j_omtm_2024_101314
crossref_primary_10_3390_pharmaceutics16121521
crossref_primary_10_1002_mame_202400356
crossref_primary_10_1016_j_ymthe_2024_09_011
crossref_primary_10_1038_s41467_024_53396_x
crossref_primary_10_1080_14760584_2024_2320327
crossref_primary_10_3390_biomedicines12122852
crossref_primary_10_3390_vaccines13010025
crossref_primary_10_3390_vaccines12101148
crossref_primary_10_1186_s12929_024_01080_z
crossref_primary_10_3390_pharmaceutics16111366
crossref_primary_10_3390_ijms252011254
crossref_primary_10_1016_j_ymthe_2024_03_035
crossref_primary_10_1177_17562864241239755
crossref_primary_10_1002_cac2_70002
crossref_primary_10_3390_jfb15080225
crossref_primary_10_1016_j_jconrel_2024_07_018
crossref_primary_10_1016_j_xcrm_2024_101756
crossref_primary_10_1016_j_bioactmat_2024_03_017
crossref_primary_10_1016_j_addr_2024_115292
crossref_primary_10_3390_jpm14111092
crossref_primary_10_1016_j_addr_2024_115291
crossref_primary_10_2174_0124522716311647240613050008
crossref_primary_10_3390_pharmaceutics16020247
crossref_primary_10_3390_biom14081036
crossref_primary_10_3390_vaccines12060603
crossref_primary_10_1039_D4PM00179F
crossref_primary_10_1039_D4PM00128A
crossref_primary_10_1038_s41467_024_51056_8
crossref_primary_10_1016_j_jconrel_2024_11_007
Cites_doi 10.1016/j.immuni.2006.08.010
10.1586/14760584.2014.882775
10.1038/s41467-020-14527-2
10.1016/j.smim.2013.05.007
10.1016/0923-2494(92)80060-X
10.3389/fchem.2020.589959
10.1021/acsomega.8b00341
10.1126/science.abo2523
10.1021/mp500400k
10.1016/j.cyto.2021.155654
10.1016/j.cyto.2015.03.001
10.1016/j.jconrel.2022.03.046
10.1016/j.jconrel.2007.05.015
10.1016/j.jconrel.2021.05.021
10.1038/s41590-023-01450-z
10.1208/s12249-020-01838-2
10.1016/j.jconrel.2016.05.059
10.1073/pnas.0706663105
10.1006/bbrc.1997.7749
10.1146/annurev-pathol-020117-043952
10.1101/cshperspect.a006049
10.1038/s41587-019-0247-3
10.1023/A:1018932714745
10.1038/s41467-022-32587-4
10.1016/j.biomaterials.2014.10.036
10.3389/falgy.2021.801322
10.1038/mt.2008.200
10.1016/j.biomaterials.2010.02.049
10.1016/j.jconrel.2020.03.022
10.1016/j.omtn.2020.09.004
10.3109/1061186X.2014.997735
10.1016/j.biochi.2007.03.001
10.1016/j.tibtech.2018.10.004
10.1038/s41565-020-0669-6
10.1038/nature18300
10.1073/pnas.2109256118
10.1084/jem.20050914
10.1080/09687860600790537
10.1016/j.immuni.2021.11.001
10.1126/sciadv.abf4398
10.1038/nature01320
10.3390/vaccines9010065
10.1111/j.1365-2036.2006.03002.x
10.1016/j.jconrel.2022.09.031
10.1152/ajpheart.00622.2005
10.1038/mtna.2016.38
10.1016/j.ymthe.2022.07.007
10.3390/pharmaceutics14050973
10.1021/acs.molpharmaceut.9b01182
10.1097/ACI.0000000000000762
10.1038/d41573-023-00002-2
10.1007/s13346-013-0161-z
10.1038/s41590-022-01160-y
10.1016/j.tmaid.2020.101868
10.1016/j.jconrel.2021.12.008
10.1016/j.ijpharm.2010.03.022
10.1021/acs.nanolett.6b03329
10.1016/S0169-409X(01)00154-5
10.1097/GOX.0000000000003417
10.1126/science.8009221
10.1016/j.cell.2010.01.022
10.1016/j.phrs.2015.08.003
10.1016/j.jaci.2009.07.016
10.1016/S0168-3659(99)00097-8
10.1038/ni1112
10.1542/peds.83.5.679
10.1080/17425247.2016.1182485
10.1021/acs.nanolett.2c04883
10.1021/acs.bioconjchem.0c00366
10.1093/mrcr/rxac014
10.1021/acs.analchem.6b03437
10.1039/C9BM01564G
10.1016/j.immuni.2019.03.026
10.1038/ni.2283
10.1038/ni0407-345
10.1021/acsnano.8b00966
10.1007/s40005-022-00569-9
10.1016/j.ijpharm.2020.119792
10.1016/j.biomaterials.2022.121570
10.1016/j.molimm.2004.09.037
10.1080/14686996.2019.1627174
10.1034/j.1600-065X.2000.917309.x
10.1146/annurev-bioeng-101515-014413
10.2174/1871528114666160105113046
10.1016/S0005-2736(00)00343-6
10.1016/j.vaccine.2011.11.020
10.1016/j.immuni.2005.06.008
10.1038/ni.3123
10.1016/j.jaci.2021.04.002
10.1038/nri3787
10.1111/imm.13443
10.1038/s41467-021-27493-0
10.2807/1560-7917.ES.2021.26.17.2100420
10.1111/cea.13874
10.3389/fimmu.2013.00114
10.3389/fimmu.2018.00847
10.1007/s11095-012-0874-6
10.1016/S0952-7915(99)80003-X
10.1038/mt.2009.36
10.1038/s41577-021-00504-3
10.1039/C9NR09347H
10.1016/S0140-6736(03)14802-7
10.1186/s12943-021-01335-5
10.3390/ph15081017
10.1039/D1BM01454D
10.1038/nbt1402
10.1038/nri1604
10.1016/j.coi.2006.11.007
10.1021/acsnano.2c04543
10.18632/oncotarget.23208
10.1038/s41590-022-01364-2
10.1084/jem.20050630
10.3390/biomedicines10061260
10.1038/s41590-022-01163-9
10.1016/j.molimm.2014.06.038
10.1016/j.tmaid.2021.102007
10.1002/art.20254
10.1021/acs.bioconjchem.8b00237
10.4049/jimmunol.1800016
10.1136/bmj.321.7271.1237
10.1007/82_2011_123
10.1038/nri1957
10.1021/acs.nanolett.5b02497
10.1056/NEJMc2109975
10.1038/nri3446
10.1007/s40120-020-00208-1
10.1074/jbc.M310175200
10.1038/nri3581
10.3390/vaccines9121375
10.1111/all.14794
10.1126/science.271.5247.348
10.1504/IJNM.2014.062978
10.1007/978-3-319-99593-9_6
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
ACYCR
DOI 10.1038/s12276-023-01086-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database


CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 2096
ExternalDocumentID oai_kci_go_kr_ARTI_10323823
oai_doaj_org_article_869834d640d44333b4372064de7d8c73
PMC10618257
37779140
10_1038_s12276_023_01086_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: 2022M3E5F1081328; 2019M3A9H1103786; 2019M3A9H1103786; 2022M3E5F1081328; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786
  funderid: https://doi.org/10.13039/501100003725
– fundername: Ministry of Food and Drug Safety (MFDS)
  grantid: DY0002259453; DY0002259453; DY0002259453; DY0002259453; DY0002259453
  funderid: https://doi.org/10.13039/501100003569
– fundername: ;
  grantid: DY0002259453; DY0002259453; DY0002259453; DY0002259453; DY0002259453
– fundername: ;
  grantid: 2022M3E5F1081328; 2019M3A9H1103786; 2019M3A9H1103786; 2022M3E5F1081328; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
COVID
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
AAADF
AFGXO
ID FETCH-LOGICAL-c642t-e1f0f757dd3bec05f07c9eeb15fb2f2af7e3a2ae09337b6d6602a334ceaab8393
IEDL.DBID DOA
ISSN 2092-6413
1226-3613
IngestDate Sat Mar 02 03:21:41 EST 2024
Wed Aug 27 01:28:53 EDT 2025
Thu Aug 21 18:36:28 EDT 2025
Fri Jul 11 09:29:53 EDT 2025
Wed Aug 13 07:38:52 EDT 2025
Thu Jan 02 22:37:36 EST 2025
Tue Jul 01 04:10:32 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Fri Feb 21 02:40:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-e1f0f757dd3bec05f07c9eeb15fb2f2af7e3a2ae09337b6d6602a334ceaab8393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9478-8473
OpenAccessLink https://doaj.org/article/869834d640d44333b4372064de7d8c73
PMID 37779140
PQID 2884497170
PQPubID 2041975
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10323823
doaj_primary_oai_doaj_org_article_869834d640d44333b4372064de7d8c73
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618257
proquest_miscellaneous_2871654426
proquest_journals_2884497170
pubmed_primary_37779140
crossref_citationtrail_10_1038_s12276_023_01086_x
crossref_primary_10_1038_s12276_023_01086_x
springer_journals_10_1038_s12276_023_01086_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
– name: 생화학분자생물학회
References Zhang (CR110) 2023; 23
Barrat (CR70) 2005; 202
Thomas, Rohner, Edwards (CR83) 2016; 18
Son (CR97) 2020; 322
Zheng (CR140) 2023; 24
O’Neill, Golenbock, Bowie (CR136) 2013; 13
Xu, Wang, Deng, Chen (CR96) 2010; 31
Li, Jones, Geiger (CR36) 2018; 201
Ishida, Wang, Shimizu, Nawata, Kiwada (CR64) 2007; 122
Takeuchi, Akira (CR19) 2010; 140
McNab, Mayer-Barber, Sher, Wack, O’Garra (CR27) 2015; 15
Karikó, Ni, Capodici, Lamphier, Weissman (CR38) 2004; 279
Schnyder (CR116) 2021; 41
Akinc (CR3) 2008; 26
Iwasaki, Medzhitov (CR33) 2004; 5
Kranz (CR45) 2016; 534
Hilgers, Snippe (CR87) 1992; 143
Mohamed (CR60) 2019; 20
Platanias (CR24) 2005; 5
Intapiboon (CR120) 2021; 9
Lappalainen, Jääskeläinen, Syrjänen, Urtti, Syrjänen (CR89) 1994; 11
Hung, Preclaro, Chung, Wang (CR53) 2022; 10
Medzhitov, Janeway (CR135) 2000; 173
Miao (CR108) 2019; 37
Kim, Jarrahian, Zehrung, Mitragotri, Prausnitz (CR126) 2012; 351
Urits (CR12) 2020; 9
LaRosa (CR35) 2008; 105
Chen (CR51) 2022; 165
Vangasseri (CR84) 2006; 23
Newton, Dixit (CR20) 2012; 4
Nishimura (CR49) 2023; 7
Toussirot, Bereau (CR67) 2015; 14
Parums (CR48) 2021; 27
Cheng (CR78) 2020; 15
Mehvar (CR94) 2000; 3
Schnyder (CR128) 2020; 37
Kagan (CR141) 2023; 24
Sellaturay, Nasser, Islam, Gurugama, Ewan (CR56) 2021; 51
Oussoren, Storm (CR123) 2001; 50
Patel (CR8) 2020; 11
Karikó (CR41) 2008; 16
Kokkinopoulos, Jordan, Ritter (CR39) 2005; 42
Semple (CR91) 2001; 1510
Miteva (CR93) 2015; 38
Lee (CR105) 2020; 8
CR131
Wraith, Goldman, Lambert (CR68) 2003; 362
Ipp (CR130) 1989; 83
Oberli (CR1) 2017; 17
Van Hoecke (CR117) 2020; 22
Hassett (CR77) 2021; 335
Akinc (CR11) 2009; 17
Buschmann (CR109) 2021; 9
Miao, Zhang, Huang (CR99) 2021; 20
Han (CR4) 2021; 12
Nilsson, Csuth, Storsaeter, Garvey, Jenmalm (CR54) 2021; 21
Li (CR43) 2022; 23
Banchereau, Pascual (CR69) 2006; 25
Fabrizi, Dixit, Magnini, Elli, Martin (CR127) 2006; 24
Risma (CR46) 2021; 147
Verma (CR15) 2023; 22
Müller (CR26) 1994; 264
Koide (CR63) 2010; 392
Lövgren, Eloranta, Båve, Alm, Rönnblom (CR71) 2004; 50
AWATE, Babiuk, Mutwiri (CR102) 2013; 4
Szebeni (CR65) 2006; 290
Hunter (CR121) 2008; 22
Guimarães, Baker, Perricone, Shoenfeld (CR66) 2015; 100
Kulkarni, Witzigmann, Leung, Tam, Cullis (CR7) 2019; 11
Karikó, Buckstein, Ni, Weissman (CR40) 2005; 23
Kabelitz (CR32) 2007; 19
Romani (CR124) 2012; 351
Marshak-Rothstein (CR72) 2006; 6
Zuckerman (CR119) 2000; 321
Luan, Cao, Wang, Lin, Liu (CR106) 2022; 14
Iwasaki, Medzhitov (CR21) 2015; 16
Mao (CR134) 2022; 378
Szebeni (CR62) 2014; 61
CR112
Chen (CR75) 2016; 235
Kang, Tanaka, Narazaki, Kishimoto (CR23) 2019; 50
Yang (CR61) 2016; 88
Wilson (CR92) 2015; 12
Hu, Hou, Wang, Lu (CR98) 2018; 29
Shimosakai, Khalil, Kimura, Harashima (CR101) 2022; 15
Kis, Winter, Myschik (CR125) 2012; 30
LoPresti, Arral, Chaudhary, Whitehead (CR79) 2022; 345
Garcia, Meurs, Esteban (CR30) 2007; 89
Bevers (CR80) 2022; 30
Tang, Nguyen (CR132) 2014; 13
Xu (CR139) 2012; 13
Nathan (CR18) 2002; 420
Gill, Kaddoumi, Nazzal (CR57) 2015; 23
D’souza, Shegokar (CR58) 2016; 13
Klimek (CR55) 2021; 76
Tahtinen (CR42) 2022; 23
Jiao (CR95) 2020; 21
Verma, Lavine, Lin (CR47) 2021; 385
Nakamura (CR82) 2020; 17
Perkins, Vogel (CR29) 2015; 74
Leveque (CR122) 2014; 34
Castro, Cardoso, Gonçalves, Serre, Oliveira (CR25) 2018; 9
Kimura (CR76) 2018; 3
Hwang, Aljuffali, Lin, Chang, Fang (CR88) 2015; 10
Nakanishi (CR85) 1997; 240
Álvarez-Benedicto (CR6) 2022; 10
CR16
Dempsey, Allison, Akkaraju, Goodnow, Fearon (CR31) 1996; 271
Zhu, Tuo (CR107) 2016; 3
Broos (CR133) 2016; 5
CR13
Ibrahim (CR59) 2022; 351
Kauffman (CR2) 2015; 15
Karmacharya, Patil, Kim (CR142) 2022; 52
Bettelli, Oukka, Kuchroo (CR34) 2007; 8
Tom (CR104) 2019; 37
Jung, Kim (CR129) 2021; 9
Francia, Schiffelers, Cullis, Witzigmann (CR113) 2020; 31
Laisuan (CR52) 2021; 2
Kopp, Medzhitov (CR137) 1999; 11
Brito, Malyala, O’Hagan (CR103) 2013; 25
Fabiani (CR14) 2021; 26
Alameh (CR44) 2021; 54
Flemming (CR50) 2021; 21
Lau (CR73) 2005; 202
Ju (CR10) 2022; 16
Ivashkiv, Donlin (CR28) 2014; 14
Bao (CR9) 2013; 30
Korn, Hiltensperger (CR37) 2021; 146
Suzuki (CR81) 2020; 588
Clement (CR138) 2022; 13
Ripoll (CR111) 2022; 286
Crow, Olferiev, Kirou (CR74) 2019; 14
Dilliard, Cheng, Siegwart (CR118) 2021; 118
Chen (CR22) 2017; 9
Kim (CR5) 2021; 7
Anderluzzi (CR115) 2022; 342
Van der Jeught (CR114) 2018; 12
Wan, Allen, Cullis (CR90) 2014; 4
Nakanishi (CR86) 1999; 61
Guevara, Persano, Persano (CR100) 2020; 8
Turvey, Broide (CR17) 2010; 125
SI Hung (1086_CR53) 2022; 10
JA Kulkarni (1086_CR7) 2019; 11
F McNab (1086_CR27) 2015; 15
TL Hwang (1086_CR88) 2015; 10
D Kabelitz (1086_CR32) 2007; 19
MK Crow (1086_CR74) 2019; 14
LA Hilgers (1086_CR87) 1992; 143
M Mohamed (1086_CR60) 2019; 20
A Flemming (1086_CR50) 2021; 21
É Toussirot (1086_CR67) 2015; 14
R Mehvar (1086_CR94) 2000; 3
M Fabiani (1086_CR14) 2021; 26
W Laisuan (1086_CR52) 2021; 2
M Clement (1086_CR138) 2022; 13
T Ishida (1086_CR64) 2007; 122
SN Thomas (1086_CR83) 2016; 18
Y-C Kim (1086_CR126) 2012; 351
MA Oberli (1086_CR1) 2017; 17
MM Ipp (1086_CR130) 1989; 83
M-G Alameh (1086_CR44) 2021; 54
DF LaRosa (1086_CR35) 2008; 105
S Bevers (1086_CR80) 2022; 30
KJ Hassett (1086_CR77) 2021; 335
DC Wraith (1086_CR68) 2003; 362
JL Schnyder (1086_CR116) 2021; 41
LE Guimarães (1086_CR66) 2015; 100
E Bettelli (1086_CR34) 2007; 8
T Lövgren (1086_CR71) 2004; 50
S Xu (1086_CR139) 2012; 13
DV Parums (1086_CR48) 2021; 27
M Ibrahim (1086_CR59) 2022; 351
C Wan (1086_CR90) 2014; 4
A Akinc (1086_CR11) 2009; 17
Q Yang (1086_CR61) 2016; 88
S Chen (1086_CR75) 2016; 235
SC Wilson (1086_CR92) 2015; 12
1086_CR112
K Van der Jeught (1086_CR114) 2018; 12
KJ Kauffman (1086_CR2) 2015; 15
1086_CR16
P Intapiboon (1086_CR120) 2021; 9
Y Chen (1086_CR51) 2022; 165
1086_CR13
LB Ivashkiv (1086_CR28) 2014; 14
J Jiao (1086_CR95) 2020; 21
LA Brito (1086_CR103) 2013; 25
D Zheng (1086_CR140) 2023; 24
MD Buschmann (1086_CR109) 2021; 9
I Kokkinopoulos (1086_CR39) 2005; 42
K Son (1086_CR97) 2020; 322
M Ripoll (1086_CR111) 2022; 286
S Kang (1086_CR23) 2019; 50
X Han (1086_CR4) 2021; 12
T Nakanishi (1086_CR86) 1999; 61
J Szebeni (1086_CR65) 2006; 290
L Miao (1086_CR99) 2021; 20
D Zhu (1086_CR107) 2016; 3
JC Kagan (1086_CR141) 2023; 24
JL Schnyder (1086_CR128) 2020; 37
P Karmacharya (1086_CR142) 2022; 52
PW Dempsey (1086_CR31) 1996; 271
K Broos (1086_CR133) 2016; 5
R Shimosakai (1086_CR101) 2022; 15
Q Cheng (1086_CR78) 2020; 15
R Medzhitov (1086_CR135) 2000; 173
B Li (1086_CR36) 2018; 201
C Oussoren (1086_CR123) 2001; 50
G Anderluzzi (1086_CR115) 2022; 342
N Kimura (1086_CR76) 2018; 3
AK Verma (1086_CR47) 2021; 385
T Mao (1086_CR134) 2022; 378
DC Tang (1086_CR132) 2014; 13
M Verma (1086_CR15) 2023; 22
KA Risma (1086_CR46) 2021; 147
ST LoPresti (1086_CR79) 2022; 345
K Karikó (1086_CR40) 2005; 23
K Karikó (1086_CR38) 2004; 279
K Lee (1086_CR105) 2020; 8
A Iwasaki (1086_CR33) 2004; 5
H Koide (1086_CR63) 2010; 392
KK Gill (1086_CR57) 2015; 23
Y Zhang (1086_CR110) 2023; 23
U Müller (1086_CR26) 1994; 264
SA Dilliard (1086_CR118) 2021; 118
L Chen (1086_CR22) 2017; 9
T Nakamura (1086_CR82) 2020; 17
H Xu (1086_CR96) 2010; 31
FJ Barrat (1086_CR70) 2005; 202
LM Kranz (1086_CR45) 2016; 534
A Akinc (1086_CR3) 2008; 26
J Szebeni (1086_CR62) 2014; 61
J Banchereau (1086_CR69) 2006; 25
Y Bao (1086_CR9) 2013; 30
J Hunter (1086_CR121) 2008; 22
D Leveque (1086_CR122) 2014; 34
EB Kopp (1086_CR137) 1999; 11
A Iwasaki (1086_CR21) 2015; 16
L Nilsson (1086_CR54) 2021; 21
CM Lau (1086_CR73) 2005; 202
M Miteva (1086_CR93) 2015; 38
M Garcia (1086_CR30) 2007; 89
LAJ O’Neill (1086_CR136) 2013; 13
A Marshak-Rothstein (1086_CR72) 2006; 6
1086_CR131
C Li (1086_CR43) 2022; 23
SC Semple (1086_CR91) 2001; 1510
T Nakanishi (1086_CR85) 1997; 240
I Urits (1086_CR12) 2020; 9
C Nathan (1086_CR18) 2002; 420
JK Tom (1086_CR104) 2019; 37
L Van Hoecke (1086_CR117) 2020; 22
O Takeuchi (1086_CR19) 2010; 140
EE Kis (1086_CR125) 2012; 30
S Tahtinen (1086_CR42) 2022; 23
N Nishimura (1086_CR49) 2023; 7
L Klimek (1086_CR55) 2021; 76
N Luan (1086_CR106) 2022; 14
K Lappalainen (1086_CR89) 1994; 11
K Karikó (1086_CR41) 2008; 16
DJ Perkins (1086_CR29) 2015; 74
N Romani (1086_CR124) 2012; 351
F Fabrizi (1086_CR127) 2006; 24
JN Zuckerman (1086_CR119) 2000; 321
Y Ju (1086_CR10) 2022; 16
AA D’souza (1086_CR58) 2016; 13
L Miao (1086_CR108) 2019; 37
S Patel (1086_CR8) 2020; 11
V Francia (1086_CR113) 2020; 31
P Sellaturay (1086_CR56) 2021; 51
K Newton (1086_CR20) 2012; 4
S AWATE (1086_CR102) 2013; 4
ML Guevara (1086_CR100) 2020; 8
GS Jung (1086_CR129) 2021; 9
M Kim (1086_CR5) 2021; 7
Y Hu (1086_CR98) 2018; 29
SE Turvey (1086_CR17) 2010; 125
DP Vangasseri (1086_CR84) 2006; 23
T Suzuki (1086_CR81) 2020; 588
T Korn (1086_CR37) 2021; 146
E Álvarez-Benedicto (1086_CR6) 2022; 10
F Castro (1086_CR25) 2018; 9
LC Platanias (1086_CR24) 2005; 5
References_xml – volume: 25
  start-page: 383
  year: 2006
  end-page: 392
  ident: CR69
  article-title: Type I interferon in systemic lupus erythematosus and other autoimmune diseases
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.010
– volume: 13
  start-page: 417
  year: 2014
  end-page: 427
  ident: CR132
  article-title: The Yin-Yang arms of vaccines: disease-fighting power versus tissue-destructive inflammation
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/14760584.2014.882775
– volume: 11
  year: 2020
  ident: CR8
  article-title: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14527-2
– volume: 25
  start-page: 130
  year: 2013
  end-page: 145
  ident: CR103
  article-title: Vaccine adjuvant formulations: a pharmaceutical perspective
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2013.05.007
– volume: 143
  start-page: 494
  year: 1992
  end-page: 503
  ident: CR87
  article-title: DDA as an immunological adjuvant
  publication-title: Res. Immunol.
  doi: 10.1016/0923-2494(92)80060-X
– volume: 8
  start-page: 589959
  year: 2020
  ident: CR100
  article-title: Advances in lipid nanoparticles for mRNA-based cancer immunotherapy
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.589959
– volume: 3
  start-page: 5044
  year: 2018
  end-page: 5051
  ident: CR76
  article-title: Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00341
– volume: 378
  start-page: eabo2523
  year: 2022
  ident: CR134
  article-title: Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses
  publication-title: Science
  doi: 10.1126/science.abo2523
– ident: CR16
– volume: 12
  start-page: 386
  year: 2015
  end-page: 392
  ident: CR92
  article-title: Real time measurement of PEG shedding from lipid nanoparticles in serum via NMR spectroscopy
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500400k
– volume: 146
  start-page: 155654
  year: 2021
  ident: CR37
  article-title: Role of IL-6 in the commitment of T cell subsets
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2021.155654
– volume: 74
  start-page: 171
  year: 2015
  end-page: 174
  ident: CR29
  article-title: Space and time: new considerations about the relationship between Toll-like receptors (TLRs) and type I interferons (IFNs)
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2015.03.001
– volume: 345
  start-page: 819
  year: 2022
  end-page: 831
  ident: CR79
  article-title: The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2022.03.046
– volume: 122
  start-page: 349
  year: 2007
  end-page: 355
  ident: CR64
  article-title: PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2007.05.015
– volume: 335
  start-page: 237
  year: 2021
  end-page: 246
  ident: CR77
  article-title: Impact of lipid nanoparticle size on mRNA vaccine immunogenicity
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.05.021
– volume: 24
  start-page: 585
  year: 2023
  end-page: 594
  ident: CR140
  article-title: Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-023-01450-z
– volume: 21
  start-page: 300
  year: 2020
  ident: CR95
  article-title: The contribution of PEG molecular weights in PEGylated emulsions to the various phases in the accelerated blood clearance (ABC) phenomenon in rats
  publication-title: AAPS PharmSciTech.
  doi: 10.1208/s12249-020-01838-2
– volume: 235
  start-page: 236
  year: 2016
  end-page: 244
  ident: CR75
  article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.05.059
– volume: 105
  start-page: 3855
  year: 2008
  end-page: 3860
  ident: CR35
  article-title: T cell expression of MyD88 is required for resistance to Toxoplasma gondii
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0706663105
– volume: 240
  start-page: 793
  year: 1997
  end-page: 797
  ident: CR85
  article-title: Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.7749
– volume: 14
  start-page: 369
  year: 2019
  end-page: 393
  ident: CR74
  article-title: Type I interferons in autoimmune disease
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-020117-043952
– volume: 4
  start-page: 3
  year: 2012
  ident: CR20
  article-title: Signaling in innate immunity and inflammation
  publication-title: Cold Spring Harb. Perspect. Biol
  doi: 10.1101/cshperspect.a006049
– volume: 37
  start-page: 1174
  year: 2019
  end-page: 1185
  ident: CR108
  article-title: Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0247-3
– volume: 11
  start-page: 1127
  year: 1994
  end-page: 1131
  ident: CR89
  article-title: Comparison of cell proliferation and toxicity assays using two cationic liposomes
  publication-title: Pharm. Res.
  doi: 10.1023/A:1018932714745
– volume: 13
  year: 2022
  ident: CR138
  article-title: IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32587-4
– ident: CR112
– volume: 38
  start-page: 97
  year: 2015
  end-page: 107
  ident: CR93
  article-title: Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.036
– volume: 2
  start-page: 801322
  year: 2021
  ident: CR52
  article-title: COVID-19 vaccine anaphylaxis: current evidence and future approaches
  publication-title: Front. Allergy
  doi: 10.3389/falgy.2021.801322
– volume: 16
  start-page: 1833
  year: 2008
  end-page: 1840
  ident: CR41
  article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 31
  start-page: 4757
  year: 2010
  end-page: 4763
  ident: CR96
  article-title: Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.049
– volume: 322
  start-page: 209
  year: 2020
  end-page: 216
  ident: CR97
  article-title: Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.03.022
– volume: 22
  start-page: 373
  year: 2020
  end-page: 381
  ident: CR117
  article-title: The opposing effect of type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2020.09.004
– volume: 23
  start-page: 222
  year: 2015
  end-page: 231
  ident: CR57
  article-title: PEG–lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2014.997735
– volume: 351
  start-page: 113
  year: 2012
  end-page: 138
  ident: CR124
  article-title: Targeting skin dendritic cells to improve intradermal vaccination
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 89
  start-page: 799
  year: 2007
  end-page: 811
  ident: CR30
  article-title: The dsRNA protein kinase PKR: virus and cell control
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2007.03.001
– volume: 37
  start-page: 373
  year: 2019
  end-page: 388
  ident: CR104
  article-title: Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.10.004
– volume: 15
  start-page: 313
  year: 2020
  end-page: 320
  ident: CR78
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0669-6
– volume: 534
  start-page: 396
  year: 2016
  end-page: 401
  ident: CR45
  article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
  publication-title: Nature
  doi: 10.1038/nature18300
– volume: 22
  start-page: 35
  year: 2008
  ident: CR121
  article-title: Intramuscular injection techniques
  publication-title: Nurs. Stand.
– volume: 118
  start-page: e2109256118
  year: 2021
  ident: CR118
  article-title: On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2109256118
– volume: 202
  start-page: 1131
  year: 2005
  end-page: 1139
  ident: CR70
  article-title: Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050914
– volume: 23
  start-page: 385
  year: 2006
  end-page: 395
  ident: CR84
  article-title: Immunostimulation of dendritic cells by cationic liposomes
  publication-title: Mol. Membr. Biol.
  doi: 10.1080/09687860600790537
– volume: 54
  start-page: 2877
  year: 2021
  end-page: 2892.e2877
  ident: CR44
  article-title: Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.11.001
– volume: 7
  start-page: eabf4398
  year: 2021
  ident: CR5
  article-title: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4398
– volume: 420
  start-page: 846
  year: 2002
  end-page: 852
  ident: CR18
  article-title: Points of control in inflammation
  publication-title: Nature
  doi: 10.1038/nature01320
– volume: 9
  start-page: 65
  year: 2021
  ident: CR109
  article-title: Nanomaterial delivery systems for mRNA vaccines
  publication-title: Vaccines
  doi: 10.3390/vaccines9010065
– volume: 24
  start-page: 497
  year: 2006
  end-page: 506
  ident: CR127
  article-title: Meta-analysis: intradermal vs. intramuscular vaccination against hepatitis B virus in patients with chronic kidney disease
  publication-title: Aliment Pharm. Ther.
  doi: 10.1111/j.1365-2036.2006.03002.x
– volume: 351
  start-page: 215
  year: 2022
  end-page: 230
  ident: CR59
  article-title: Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2022.09.031
– volume: 290
  start-page: H1050
  year: 2006
  end-page: H1058
  ident: CR65
  article-title: Complement activation-related cardiac anaphylaxis in pigs: role of C5a anaphylatoxin and adenosine in liposome-induced abnormalities in ECG and heart function
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00622.2005
– volume: 3
  start-page: e113
  year: 2016
  ident: CR107
  article-title: QS-21: a potent vaccine adjuvant
  publication-title: Nat. Prod. Chem. Res.
– volume: 5
  start-page: e326
  year: 2016
  ident: CR133
  article-title: Particle-mediated intravenous delivery of antigen mRNA results in strong antigen-specific T-cell responses despite the induction of Type I interferon
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2016.38
– volume: 30
  start-page: 3078
  year: 2022
  end-page: 3094
  ident: CR80
  article-title: mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2022.07.007
– volume: 14
  start-page: 973
  year: 2022
  ident: CR106
  article-title: Ionizable lipid nanoparticles enhanced the synergistic adjuvant effect of CpG ODNs and QS21 in a varicella zoster virus glycoprotein E subunit vaccine
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14050973
– volume: 17
  start-page: 944
  year: 2020
  end-page: 953
  ident: CR82
  article-title: The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b01182
– volume: 21
  start-page: 401
  year: 2021
  end-page: 409
  ident: CR54
  article-title: Vaccine allergy: evidence to consider for COVID-19 vaccines
  publication-title: Curr. Opin. Allergy Clin. Immunol.
  doi: 10.1097/ACI.0000000000000762
– volume: 22
  start-page: 349
  year: 2023
  end-page: 350
  ident: CR15
  article-title: The landscape for lipid-nanoparticle-based genomic medicines
  publication-title: Nat. Rev. drug Discov.
  doi: 10.1038/d41573-023-00002-2
– volume: 4
  start-page: 74
  year: 2014
  end-page: 83
  ident: CR90
  article-title: Lipid nanoparticle delivery systems for siRNA-based therapeutics
  publication-title: Drug Deliv. Transl. Res.
  doi: 10.1007/s13346-013-0161-z
– volume: 23
  start-page: 532
  year: 2022
  end-page: 542
  ident: CR42
  article-title: IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01160-y
– volume: 27
  start-page: e932899
  year: 2021
  ident: CR48
  article-title: Editorial: SARS-CoV-2 mRNA vaccines and the possible mechanism of vaccine-induced immune thrombotic thrombocytopenia (VITT)
  publication-title: Med. Sci. Monit.
– volume: 37
  start-page: 101868
  year: 2020
  ident: CR128
  article-title: Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination - A systematic review and meta-analysis
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2020.101868
– ident: CR13
– volume: 342
  start-page: 388
  year: 2022
  end-page: 399
  ident: CR115
  article-title: The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.12.008
– volume: 392
  start-page: 218
  year: 2010
  end-page: 223
  ident: CR63
  article-title: T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2010.03.022
– volume: 17
  start-page: 1326
  year: 2017
  end-page: 1335
  ident: CR1
  article-title: Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03329
– volume: 50
  start-page: 143
  year: 2001
  end-page: 156
  ident: CR123
  article-title: Liposomes to target the lymphatics by subcutaneous administration
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(01)00154-5
– volume: 9
  start-page: e3417
  year: 2021
  ident: CR129
  article-title: A novel technique to reduce pain from intradermal injection of botulinum toxin type A
  publication-title: Plast. Reconstr. Surg. Glob. Open
  doi: 10.1097/GOX.0000000000003417
– volume: 264
  start-page: 1918
  year: 1994
  end-page: 1921
  ident: CR26
  article-title: Functional role of Type I and Type II interferons in antiviral defense
  publication-title: Science
  doi: 10.1126/science.8009221
– volume: 140
  start-page: 805
  year: 2010
  end-page: 820
  ident: CR19
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 100
  start-page: 190
  year: 2015
  end-page: 209
  ident: CR66
  article-title: Vaccines, adjuvants and autoimmunity
  publication-title: Pharm. Res.
  doi: 10.1016/j.phrs.2015.08.003
– volume: 125
  start-page: S24
  year: 2010
  end-page: S32
  ident: CR17
  article-title: Innate immunity
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2009.07.016
– volume: 61
  start-page: 233
  year: 1999
  end-page: 240
  ident: CR86
  article-title: Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(99)00097-8
– volume: 5
  start-page: 987
  year: 2004
  end-page: 995
  ident: CR33
  article-title: Toll-like receptor control of the adaptive immune responses
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1112
– volume: 83
  start-page: 679
  year: 1989
  end-page: 682
  ident: CR130
  article-title: Adverse reactions to diphtheria, tetanus, pertussis-polio vaccination at 18 months of age: effect of injection site and needle length
  publication-title: Pediatrics
  doi: 10.1542/peds.83.5.679
– volume: 13
  start-page: 1257
  year: 2016
  end-page: 1275
  ident: CR58
  article-title: Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2016.1182485
– volume: 23
  start-page: 2593
  year: 2023
  end-page: 2600
  ident: CR110
  article-title: STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c04883
– ident: CR131
– volume: 31
  start-page: 2046
  year: 2020
  end-page: 2059
  ident: CR113
  article-title: The biomolecular corona of lipid nanoparticles for gene therapy
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.0c00366
– volume: 7
  start-page: 122
  year: 2023
  end-page: 126
  ident: CR49
  article-title: IgA vasculitis following COVID-19 vaccination
  publication-title: Mod. Rheumatol. Case Rep.
  doi: 10.1093/mrcr/rxac014
– volume: 88
  start-page: 11804
  year: 2016
  end-page: 11812
  ident: CR61
  article-title: Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03437
– volume: 8
  start-page: 1101
  year: 2020
  end-page: 1105
  ident: CR105
  article-title: Adjuvant incorporated lipid nanoparticles for enhanced mRNA-mediated cancer immunotherapy
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01564G
– volume: 50
  start-page: 1007
  year: 2019
  end-page: 1023
  ident: CR23
  article-title: Targeting interleukin-6 signaling in clinic
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.026
– volume: 3
  start-page: 125
  year: 2000
  end-page: 136
  ident: CR94
  article-title: Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation
  publication-title: J. Pharm. Pharm. Sci.
– volume: 13
  start-page: 551
  year: 2012
  end-page: 559
  ident: CR139
  article-title: Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps–SHP-2 pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2283
– volume: 8
  start-page: 345
  year: 2007
  end-page: 350
  ident: CR34
  article-title: T(H)-17 cells in the circle of immunity and autoimmunity
  publication-title: Nat. Immunol.
  doi: 10.1038/ni0407-345
– volume: 12
  start-page: 9815
  year: 2018
  end-page: 9829
  ident: CR114
  article-title: Dendritic cell targeting mRNA lipopolyplexes combine strong antitumor T-cell immunity with improved inflammatory safety
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00966
– volume: 52
  start-page: 415
  year: 2022
  end-page: 426
  ident: CR142
  article-title: Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-022-00569-9
– volume: 588
  start-page: 119792
  year: 2020
  ident: CR81
  article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119792
– volume: 286
  start-page: 121570
  year: 2022
  ident: CR111
  article-title: An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121570
– volume: 42
  start-page: 957
  year: 2005
  end-page: 968
  ident: CR39
  article-title: Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2004.09.037
– volume: 20
  start-page: 710
  year: 2019
  end-page: 724
  ident: CR60
  article-title: PEGylated liposomes: immunological responses
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2019.1627174
– volume: 173
  start-page: 89
  year: 2000
  end-page: 97
  ident: CR135
  article-title: Innate immune recognition: mechanisms and pathways
  publication-title: Immunol. Rev.
  doi: 10.1034/j.1600-065X.2000.917309.x
– volume: 18
  start-page: 207
  year: 2016
  end-page: 233
  ident: CR83
  article-title: Implications of lymphatic transport to lymph nodes in immunity and immunotherapy
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-101515-014413
– volume: 14
  start-page: 94
  year: 2015
  end-page: 98
  ident: CR67
  article-title: Vaccination and induction of autoimmune diseases
  publication-title: Inflamm. Allergy Drug Targets
  doi: 10.2174/1871528114666160105113046
– volume: 1510
  start-page: 152
  year: 2001
  end-page: 166
  ident: CR91
  article-title: Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(00)00343-6
– volume: 30
  start-page: 523
  year: 2012
  end-page: 538
  ident: CR125
  article-title: Devices for intradermal vaccination
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2011.11.020
– volume: 23
  start-page: 165
  year: 2005
  end-page: 175
  ident: CR40
  article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.06.008
– volume: 16
  start-page: 343
  year: 2015
  end-page: 353
  ident: CR21
  article-title: Control of adaptive immunity by the innate immune system
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3123
– volume: 147
  start-page: 2075
  year: 2021
  end-page: 2082.e2072
  ident: CR46
  article-title: Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2021.04.002
– volume: 15
  start-page: 87
  year: 2015
  end-page: 103
  ident: CR27
  article-title: Type I interferons in infectious disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3787
– volume: 165
  start-page: 386
  year: 2022
  end-page: 401
  ident: CR51
  article-title: New-onset autoimmune phenomena post-COVID-19 vaccination
  publication-title: Immunology
  doi: 10.1111/imm.13443
– volume: 12
  year: 2021
  ident: CR4
  article-title: An ionizable lipid toolbox for RNA delivery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27493-0
– volume: 26
  start-page: 2100420
  year: 2021
  ident: CR14
  article-title: Effectiveness of the Comirnaty (BNT162b2, BioNTech/Pfizer) vaccine in preventing SARS-CoV-2 infection among healthcare workers, Treviso province, Veneto region, Italy, 27 December 2020 to 24 March 2021
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2021.26.17.2100420
– volume: 51
  start-page: 861
  year: 2021
  end-page: 863
  ident: CR56
  article-title: Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine
  publication-title: Clin. Exp. Allergy
  doi: 10.1111/cea.13874
– volume: 4
  start-page: 114
  year: 2013
  ident: CR102
  article-title: Mechanisms of action of adjuvants
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2013.00114
– volume: 9
  start-page: 847
  year: 2018
  ident: CR25
  article-title: Interferon-gamma at the crossroads of tumor immune surveillance or evasion
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00847
– volume: 34
  start-page: 1579
  year: 2014
  end-page: 1586
  ident: CR122
  article-title: Subcutaneous administration of anticancer agents
  publication-title: Anticancer Res.
– volume: 30
  start-page: 342
  year: 2013
  end-page: 351
  ident: CR9
  article-title: Effect of PEGylation on biodistribution and gene silencing of siRNA/Lipid nanoparticle complexes
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-012-0874-6
– volume: 11
  start-page: 13
  year: 1999
  end-page: 18
  ident: CR137
  article-title: The Toll-receptor family and control of innate immunity
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/S0952-7915(99)80003-X
– volume: 17
  start-page: 872
  year: 2009
  end-page: 879
  ident: CR11
  article-title: Development of lipidoid-siRNA formulations for systemic delivery to the liver
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.36
– volume: 21
  start-page: 72
  year: 2021
  end-page: 72
  ident: CR50
  article-title: mRNA vaccine shows promise in autoimmunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00504-3
– volume: 11
  start-page: 21733
  year: 2019
  end-page: 21739
  ident: CR7
  article-title: On the role of helper lipids in lipid nanoparticle formulations of siRNA
  publication-title: Nanoscale
  doi: 10.1039/C9NR09347H
– volume: 362
  start-page: 1659
  year: 2003
  end-page: 1666
  ident: CR68
  article-title: Vaccination and autoimmune disease: what is the evidence
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14802-7
– volume: 20
  year: 2021
  ident: CR99
  article-title: mRNA vaccine for cancer immunotherapy
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-021-01335-5
– volume: 15
  start-page: 1017
  year: 2022
  ident: CR101
  article-title: mRNA-loaded lipid nanoparticles targeting immune cells in the spleen for use as cancer vaccines
  publication-title: Pharmaceuticals
  doi: 10.3390/ph15081017
– volume: 10
  start-page: 549
  year: 2022
  end-page: 559
  ident: CR6
  article-title: Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA)
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM01454D
– volume: 26
  start-page: 561
  year: 2008
  end-page: 569
  ident: CR3
  article-title: A combinatorial library of lipid-like materials for delivery of RNAi therapeutics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1402
– volume: 5
  start-page: 375
  year: 2005
  end-page: 386
  ident: CR24
  article-title: Mechanisms of type-I- and type-II-interferon-mediated signalling
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1604
– volume: 19
  start-page: 39
  year: 2007
  end-page: 45
  ident: CR32
  article-title: Expression and function of Toll-like receptors in T lymphocytes
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2006.11.007
– volume: 16
  start-page: 11769
  year: 2022
  end-page: 11780
  ident: CR10
  article-title: Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c04543
– volume: 9
  start-page: 7204
  year: 2017
  end-page: 7218
  ident: CR22
  article-title: Inflammatory responses and inflammation-associated diseases in organs
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23208
– volume: 10
  start-page: 371
  year: 2015
  end-page: 385
  ident: CR88
  article-title: Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles
  publication-title: Int. J. Nanomed.
– volume: 24
  start-page: 3
  year: 2023
  end-page: 4
  ident: CR141
  article-title: Excess lipids on endosomes dictate NLRP3 localization and inflammasome activation
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01364-2
– volume: 202
  start-page: 1171
  year: 2005
  end-page: 1177
  ident: CR73
  article-title: RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050630
– volume: 10
  start-page: 1260
  year: 2022
  ident: CR53
  article-title: Immediate hypersensitivity reactions induced by COVID-19 vaccines: current trends, potential mechanisms and prevention strategies
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10061260
– volume: 23
  start-page: 543
  year: 2022
  end-page: 555
  ident: CR43
  article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01163-9
– volume: 61
  start-page: 163
  year: 2014
  end-page: 173
  ident: CR62
  article-title: Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.06.038
– volume: 41
  start-page: 102007
  year: 2021
  ident: CR116
  article-title: Comparison of equivalent fractional vaccine doses delivered by intradermal and intramuscular or subcutaneous routes: a systematic review
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2021.102007
– volume: 50
  start-page: 1861
  year: 2004
  end-page: 1872
  ident: CR71
  article-title: Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.20254
– volume: 29
  start-page: 2232
  year: 2018
  end-page: 2238
  ident: CR98
  article-title: Polysarcosine as an alternative to PEG for therapeutic protein conjugation
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.8b00237
– volume: 201
  start-page: 2934
  year: 2018
  end-page: 2946
  ident: CR36
  article-title: IL-6 promotes T cell proliferation and expansion under inflammatory conditions in association with low-level RORγt expression
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1800016
– volume: 321
  start-page: 1237
  year: 2000
  end-page: 1238
  ident: CR119
  article-title: The importance of injecting vaccines into muscle. Different patients need different needle sizes
  publication-title: BMJ
  doi: 10.1136/bmj.321.7271.1237
– volume: 351
  start-page: 77
  year: 2012
  end-page: 112
  ident: CR126
  article-title: Delivery systems for intradermal vaccination
  publication-title: Intradermal Immun.
  doi: 10.1007/82_2011_123
– volume: 6
  start-page: 823
  year: 2006
  end-page: 835
  ident: CR72
  article-title: Toll-like receptors in systemic autoimmune disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1957
– volume: 15
  start-page: 7300
  year: 2015
  end-page: 7306
  ident: CR2
  article-title: Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02497
– volume: 385
  start-page: 1332
  year: 2021
  end-page: 1334
  ident: CR47
  article-title: Myocarditis after Covid-19 mRNA vaccination
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2109975
– volume: 13
  start-page: 453
  year: 2013
  end-page: 460
  ident: CR136
  article-title: The history of Toll-like receptors — redefining innate immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3446
– volume: 9
  start-page: 301
  year: 2020
  end-page: 315
  ident: CR12
  article-title: A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis
  publication-title: Neurol. Ther.
  doi: 10.1007/s40120-020-00208-1
– volume: 279
  start-page: 12542
  year: 2004
  end-page: 12550
  ident: CR38
  article-title: mRNA is an endogenous ligand for Toll-like receptor 3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M310175200
– volume: 14
  start-page: 36
  year: 2014
  end-page: 49
  ident: CR28
  article-title: Regulation of type I interferon responses
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3581
– volume: 9
  start-page: 1375
  year: 2021
  ident: CR120
  article-title: Immunogenicity and safety of an intradermal BNT162b2 mRNA vaccine booster after two doses of inactivated SARS-CoV-2 vaccine in healthy population
  publication-title: Vaccines
  doi: 10.3390/vaccines9121375
– volume: 76
  start-page: 3307
  year: 2021
  end-page: 3313
  ident: CR55
  article-title: Allergenic components of the mRNA-1273 vaccine for COVID-19: possible involvement of polyethylene glycol and IgG-mediated complement activation
  publication-title: Allergy
  doi: 10.1111/all.14794
– volume: 271
  start-page: 348
  year: 1996
  end-page: 350
  ident: CR31
  article-title: C3d of complement as a molecular adjuvant: bridging innate and acquired immunity
  publication-title: Science
  doi: 10.1126/science.271.5247.348
– volume: 15
  start-page: 313
  year: 2020
  ident: 1086_CR78
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0669-6
– volume: 51
  start-page: 861
  year: 2021
  ident: 1086_CR56
  publication-title: Clin. Exp. Allergy
  doi: 10.1111/cea.13874
– volume: 4
  start-page: 74
  year: 2014
  ident: 1086_CR90
  publication-title: Drug Deliv. Transl. Res.
  doi: 10.1007/s13346-013-0161-z
– volume: 20
  start-page: 710
  year: 2019
  ident: 1086_CR60
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2019.1627174
– volume: 15
  start-page: 87
  year: 2015
  ident: 1086_CR27
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3787
– volume: 165
  start-page: 386
  year: 2022
  ident: 1086_CR51
  publication-title: Immunology
  doi: 10.1111/imm.13443
– volume: 11
  start-page: 21733
  year: 2019
  ident: 1086_CR7
  publication-title: Nanoscale
  doi: 10.1039/C9NR09347H
– volume: 7
  start-page: eabf4398
  year: 2021
  ident: 1086_CR5
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4398
– volume: 22
  start-page: 373
  year: 2020
  ident: 1086_CR117
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2020.09.004
– volume: 5
  start-page: 987
  year: 2004
  ident: 1086_CR33
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1112
– volume: 202
  start-page: 1171
  year: 2005
  ident: 1086_CR73
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050630
– volume: 31
  start-page: 2046
  year: 2020
  ident: 1086_CR113
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.0c00366
– volume: 17
  start-page: 1326
  year: 2017
  ident: 1086_CR1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03329
– volume: 25
  start-page: 383
  year: 2006
  ident: 1086_CR69
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.010
– volume: 29
  start-page: 2232
  year: 2018
  ident: 1086_CR98
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.8b00237
– volume: 31
  start-page: 4757
  year: 2010
  ident: 1086_CR96
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.049
– volume: 4
  start-page: 3
  year: 2012
  ident: 1086_CR20
  publication-title: Cold Spring Harb. Perspect. Biol
  doi: 10.1101/cshperspect.a006049
– volume: 125
  start-page: S24
  year: 2010
  ident: 1086_CR17
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2009.07.016
– volume: 8
  start-page: 1101
  year: 2020
  ident: 1086_CR105
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01564G
– volume: 385
  start-page: 1332
  year: 2021
  ident: 1086_CR47
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2109975
– volume: 23
  start-page: 222
  year: 2015
  ident: 1086_CR57
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2014.997735
– volume: 26
  start-page: 2100420
  year: 2021
  ident: 1086_CR14
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2021.26.17.2100420
– volume: 5
  start-page: e326
  year: 2016
  ident: 1086_CR133
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2016.38
– volume: 52
  start-page: 415
  year: 2022
  ident: 1086_CR142
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-022-00569-9
– volume: 8
  start-page: 589959
  year: 2020
  ident: 1086_CR100
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.589959
– volume: 351
  start-page: 77
  year: 2012
  ident: 1086_CR126
  publication-title: Intradermal Immun.
  doi: 10.1007/82_2011_123
– volume: 10
  start-page: 371
  year: 2015
  ident: 1086_CR88
  publication-title: Int. J. Nanomed.
  doi: 10.1504/IJNM.2014.062978
– volume: 24
  start-page: 585
  year: 2023
  ident: 1086_CR140
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-023-01450-z
– volume: 8
  start-page: 345
  year: 2007
  ident: 1086_CR34
  publication-title: Nat. Immunol.
  doi: 10.1038/ni0407-345
– volume: 13
  start-page: 417
  year: 2014
  ident: 1086_CR132
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/14760584.2014.882775
– volume: 240
  start-page: 793
  year: 1997
  ident: 1086_CR85
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.7749
– volume: 143
  start-page: 494
  year: 1992
  ident: 1086_CR87
  publication-title: Res. Immunol.
  doi: 10.1016/0923-2494(92)80060-X
– volume: 50
  start-page: 1861
  year: 2004
  ident: 1086_CR71
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.20254
– ident: 1086_CR16
– volume: 38
  start-page: 97
  year: 2015
  ident: 1086_CR93
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.036
– volume: 83
  start-page: 679
  year: 1989
  ident: 1086_CR130
  publication-title: Pediatrics
  doi: 10.1542/peds.83.5.679
– volume: 25
  start-page: 130
  year: 2013
  ident: 1086_CR103
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2013.05.007
– volume: 13
  year: 2022
  ident: 1086_CR138
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32587-4
– ident: 1086_CR13
– volume: 18
  start-page: 207
  year: 2016
  ident: 1086_CR83
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-101515-014413
– volume: 279
  start-page: 12542
  year: 2004
  ident: 1086_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M310175200
– volume: 21
  start-page: 72
  year: 2021
  ident: 1086_CR50
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00504-3
– volume: 23
  start-page: 543
  year: 2022
  ident: 1086_CR43
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01163-9
– volume: 13
  start-page: 551
  year: 2012
  ident: 1086_CR139
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2283
– volume: 202
  start-page: 1131
  year: 2005
  ident: 1086_CR70
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050914
– volume: 14
  start-page: 973
  year: 2022
  ident: 1086_CR106
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14050973
– volume: 21
  start-page: 401
  year: 2021
  ident: 1086_CR54
  publication-title: Curr. Opin. Allergy Clin. Immunol.
  doi: 10.1097/ACI.0000000000000762
– volume: 88
  start-page: 11804
  year: 2016
  ident: 1086_CR61
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03437
– volume: 420
  start-page: 846
  year: 2002
  ident: 1086_CR18
  publication-title: Nature
  doi: 10.1038/nature01320
– volume: 27
  start-page: e932899
  year: 2021
  ident: 1086_CR48
  publication-title: Med. Sci. Monit.
– volume: 201
  start-page: 2934
  year: 2018
  ident: 1086_CR36
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1800016
– volume: 16
  start-page: 11769
  year: 2022
  ident: 1086_CR10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c04543
– volume: 7
  start-page: 122
  year: 2023
  ident: 1086_CR49
  publication-title: Mod. Rheumatol. Case Rep.
  doi: 10.1093/mrcr/rxac014
– volume: 61
  start-page: 233
  year: 1999
  ident: 1086_CR86
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(99)00097-8
– volume: 30
  start-page: 523
  year: 2012
  ident: 1086_CR125
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2011.11.020
– volume: 4
  start-page: 114
  year: 2013
  ident: 1086_CR102
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2013.00114
– volume: 335
  start-page: 237
  year: 2021
  ident: 1086_CR77
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.05.021
– volume: 9
  start-page: 1375
  year: 2021
  ident: 1086_CR120
  publication-title: Vaccines
  doi: 10.3390/vaccines9121375
– volume: 6
  start-page: 823
  year: 2006
  ident: 1086_CR72
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1957
– volume: 13
  start-page: 453
  year: 2013
  ident: 1086_CR136
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3446
– volume: 2
  start-page: 801322
  year: 2021
  ident: 1086_CR52
  publication-title: Front. Allergy
  doi: 10.3389/falgy.2021.801322
– volume: 34
  start-page: 1579
  year: 2014
  ident: 1086_CR122
  publication-title: Anticancer Res.
– volume: 140
  start-page: 805
  year: 2010
  ident: 1086_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 76
  start-page: 3307
  year: 2021
  ident: 1086_CR55
  publication-title: Allergy
  doi: 10.1111/all.14794
– volume: 23
  start-page: 532
  year: 2022
  ident: 1086_CR42
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01160-y
– volume: 24
  start-page: 497
  year: 2006
  ident: 1086_CR127
  publication-title: Aliment Pharm. Ther.
  doi: 10.1111/j.1365-2036.2006.03002.x
– volume: 342
  start-page: 388
  year: 2022
  ident: 1086_CR115
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.12.008
– volume: 11
  start-page: 13
  year: 1999
  ident: 1086_CR137
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/S0952-7915(99)80003-X
– volume: 14
  start-page: 369
  year: 2019
  ident: 1086_CR74
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-020117-043952
– volume: 41
  start-page: 102007
  year: 2021
  ident: 1086_CR116
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2021.102007
– volume: 351
  start-page: 113
  year: 2012
  ident: 1086_CR124
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 21
  start-page: 300
  year: 2020
  ident: 1086_CR95
  publication-title: AAPS PharmSciTech.
  doi: 10.1208/s12249-020-01838-2
– volume: 22
  start-page: 349
  year: 2023
  ident: 1086_CR15
  publication-title: Nat. Rev. drug Discov.
  doi: 10.1038/d41573-023-00002-2
– volume: 61
  start-page: 163
  year: 2014
  ident: 1086_CR62
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.06.038
– volume: 17
  start-page: 872
  year: 2009
  ident: 1086_CR11
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.36
– volume: 5
  start-page: 375
  year: 2005
  ident: 1086_CR24
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1604
– volume: 345
  start-page: 819
  year: 2022
  ident: 1086_CR79
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2022.03.046
– volume: 11
  start-page: 1127
  year: 1994
  ident: 1086_CR89
  publication-title: Pharm. Res.
  doi: 10.1023/A:1018932714745
– volume: 16
  start-page: 1833
  year: 2008
  ident: 1086_CR41
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 24
  start-page: 3
  year: 2023
  ident: 1086_CR141
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01364-2
– volume: 9
  start-page: e3417
  year: 2021
  ident: 1086_CR129
  publication-title: Plast. Reconstr. Surg. Glob. Open
  doi: 10.1097/GOX.0000000000003417
– volume: 50
  start-page: 143
  year: 2001
  ident: 1086_CR123
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(01)00154-5
– volume: 54
  start-page: 2877
  year: 2021
  ident: 1086_CR44
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.11.001
– volume: 122
  start-page: 349
  year: 2007
  ident: 1086_CR64
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2007.05.015
– volume: 3
  start-page: 125
  year: 2000
  ident: 1086_CR94
  publication-title: J. Pharm. Pharm. Sci.
– volume: 37
  start-page: 373
  year: 2019
  ident: 1086_CR104
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.10.004
– volume: 147
  start-page: 2075
  year: 2021
  ident: 1086_CR46
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2021.04.002
– volume: 173
  start-page: 89
  year: 2000
  ident: 1086_CR135
  publication-title: Immunol. Rev.
  doi: 10.1034/j.1600-065X.2000.917309.x
– volume: 9
  start-page: 301
  year: 2020
  ident: 1086_CR12
  publication-title: Neurol. Ther.
  doi: 10.1007/s40120-020-00208-1
– volume: 23
  start-page: 165
  year: 2005
  ident: 1086_CR40
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.06.008
– volume: 15
  start-page: 1017
  year: 2022
  ident: 1086_CR101
  publication-title: Pharmaceuticals
  doi: 10.3390/ph15081017
– volume: 10
  start-page: 549
  year: 2022
  ident: 1086_CR6
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM01454D
– volume: 9
  start-page: 847
  year: 2018
  ident: 1086_CR25
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00847
– volume: 42
  start-page: 957
  year: 2005
  ident: 1086_CR39
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2004.09.037
– volume: 9
  start-page: 7204
  year: 2017
  ident: 1086_CR22
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23208
– volume: 12
  start-page: 386
  year: 2015
  ident: 1086_CR92
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500400k
– volume: 37
  start-page: 101868
  year: 2020
  ident: 1086_CR128
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2020.101868
– volume: 12
  year: 2021
  ident: 1086_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27493-0
– volume: 1510
  start-page: 152
  year: 2001
  ident: 1086_CR91
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(00)00343-6
– volume: 321
  start-page: 1237
  year: 2000
  ident: 1086_CR119
  publication-title: BMJ
  doi: 10.1136/bmj.321.7271.1237
– volume: 30
  start-page: 342
  year: 2013
  ident: 1086_CR9
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-012-0874-6
– volume: 19
  start-page: 39
  year: 2007
  ident: 1086_CR32
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2006.11.007
– volume: 37
  start-page: 1174
  year: 2019
  ident: 1086_CR108
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0247-3
– volume: 264
  start-page: 1918
  year: 1994
  ident: 1086_CR26
  publication-title: Science
  doi: 10.1126/science.8009221
– volume: 16
  start-page: 343
  year: 2015
  ident: 1086_CR21
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3123
– volume: 74
  start-page: 171
  year: 2015
  ident: 1086_CR29
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2015.03.001
– volume: 14
  start-page: 94
  year: 2015
  ident: 1086_CR67
  publication-title: Inflamm. Allergy Drug Targets
  doi: 10.2174/1871528114666160105113046
– volume: 235
  start-page: 236
  year: 2016
  ident: 1086_CR75
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.05.059
– volume: 378
  start-page: eabo2523
  year: 2022
  ident: 1086_CR134
  publication-title: Science
  doi: 10.1126/science.abo2523
– volume: 3
  start-page: 5044
  year: 2018
  ident: 1086_CR76
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00341
– volume: 118
  start-page: e2109256118
  year: 2021
  ident: 1086_CR118
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2109256118
– volume: 14
  start-page: 36
  year: 2014
  ident: 1086_CR28
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3581
– volume: 9
  start-page: 65
  year: 2021
  ident: 1086_CR109
  publication-title: Vaccines
  doi: 10.3390/vaccines9010065
– ident: 1086_CR131
– volume: 17
  start-page: 944
  year: 2020
  ident: 1086_CR82
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b01182
– volume: 23
  start-page: 2593
  year: 2023
  ident: 1086_CR110
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c04883
– volume: 271
  start-page: 348
  year: 1996
  ident: 1086_CR31
  publication-title: Science
  doi: 10.1126/science.271.5247.348
– volume: 30
  start-page: 3078
  year: 2022
  ident: 1086_CR80
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2022.07.007
– volume: 15
  start-page: 7300
  year: 2015
  ident: 1086_CR2
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02497
– volume: 10
  start-page: 1260
  year: 2022
  ident: 1086_CR53
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10061260
– volume: 286
  start-page: 121570
  year: 2022
  ident: 1086_CR111
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121570
– volume: 22
  start-page: 35
  year: 2008
  ident: 1086_CR121
  publication-title: Nurs. Stand.
– volume: 322
  start-page: 209
  year: 2020
  ident: 1086_CR97
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.03.022
– volume: 50
  start-page: 1007
  year: 2019
  ident: 1086_CR23
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.026
– volume: 588
  start-page: 119792
  year: 2020
  ident: 1086_CR81
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119792
– volume: 100
  start-page: 190
  year: 2015
  ident: 1086_CR66
  publication-title: Pharm. Res.
  doi: 10.1016/j.phrs.2015.08.003
– ident: 1086_CR112
  doi: 10.1007/978-3-319-99593-9_6
– volume: 146
  start-page: 155654
  year: 2021
  ident: 1086_CR37
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2021.155654
– volume: 13
  start-page: 1257
  year: 2016
  ident: 1086_CR58
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2016.1182485
– volume: 351
  start-page: 215
  year: 2022
  ident: 1086_CR59
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2022.09.031
– volume: 362
  start-page: 1659
  year: 2003
  ident: 1086_CR68
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14802-7
– volume: 89
  start-page: 799
  year: 2007
  ident: 1086_CR30
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2007.03.001
– volume: 534
  start-page: 396
  year: 2016
  ident: 1086_CR45
  publication-title: Nature
  doi: 10.1038/nature18300
– volume: 23
  start-page: 385
  year: 2006
  ident: 1086_CR84
  publication-title: Mol. Membr. Biol.
  doi: 10.1080/09687860600790537
– volume: 3
  start-page: e113
  year: 2016
  ident: 1086_CR107
  publication-title: Nat. Prod. Chem. Res.
– volume: 26
  start-page: 561
  year: 2008
  ident: 1086_CR3
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1402
– volume: 12
  start-page: 9815
  year: 2018
  ident: 1086_CR114
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00966
– volume: 20
  year: 2021
  ident: 1086_CR99
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-021-01335-5
– volume: 11
  year: 2020
  ident: 1086_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14527-2
– volume: 392
  start-page: 218
  year: 2010
  ident: 1086_CR63
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2010.03.022
– volume: 105
  start-page: 3855
  year: 2008
  ident: 1086_CR35
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0706663105
– volume: 290
  start-page: H1050
  year: 2006
  ident: 1086_CR65
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00622.2005
SSID ssj0025474
Score 2.6584108
SecondaryResourceType review_article
Snippet Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles...
Abstract Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2085
SubjectTerms 42/109
631/61/2300
631/61/350/354
Adaptive immunity
Biomedical and Life Sciences
Biomedicine
COVID-19
Immune response
Immune system
Immunogenicity
Immunosuppressive agents
Innate immunity
Lipids
Liposomes
Medical Biochemistry
Molecular Medicine
mRNA
mRNA Vaccines
Nanoparticles
Review
Review Article
Side effects
Stem Cells
Vaccines
생화학
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLgpZHoCAjEBeImsRO7JzQgqhaJHpAVNqb5fjRrto6y-4Wtf-eGce7y_LoKZJj5-EZz8PzzZiQN5XVoGRdm1vmfM47W-YSFEeueSuMa7A8SwTIHjUHx_zLuB6nDbd5glUuZWIU1LY3uEe-V0nJYXwpig_THzmeGoXR1XSExm1yB0uXIaRLjNcOV81jFeYSTIycgd5KSTMFk3tzaBQIv0U0EZj1-dWGYor1-0HdhJn_l-n5N4LyjzBq1E77D8j9ZFbS0cAHD8ktF7bJziiAS31xTd_SCPSMO-jb5O7XFE_fIf4Q00N6YCJoWFzT3tPzyXRiadABvOkEmqM6WDpZzOmQUkn7QMFspA6rT2gTR118OxrRn9rgY4f-vyV2zR-R4_3P3z8d5OnkhdyAP7LIXekLL2phLQMaF7UvhGkdiPXad5WvtBeO6Uo73A4RXWObpqg0Y9w4rTswudhjshX64J4SWjJvtGukLm3HC2472eii69pGl752bZWRcjntyqSy5Hg6xrmK4XEm1UAqBaRSkVTqKiPvVmOmQ1GOG3t_RGquemJB7djQz05Umkklm1YybhteWM4ZYx3GM8Fcs05YaQTLyGvgBXVmJnE8Xk96dTZT4HYc4psrDKhmZHfJKyrJgrlac25GXq1uwyrG0IwOrr_EPgLTysBcysiTgbVW38uEEC34wRmRG0y38UObd8LkNFYKR39fglDOyPslf66_6_8z9uzm33hO7lW4cCKkcZdsLWaX7gWYZovuZVx_vwBY0TRn
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUJcELQ8AgUZgbhARGI7tnNcVlQtEj0gKvVmObFdVm2TaneL6L9nxskuLBQkTpGccWJ7xp5vMo8AvOLeoZINde5FiLlsfJkbVBy5k7Vug6LyLClA9kgdHMuPJ9XJFvBVLkwK2k8lLdMxvYoOe7coOdcULkvRPwjDc8SNt6h0O0n1VE3XRlYltRyTYwphbui3oYBSnX5UK9083gQx_4yU_M1dmrTQ_j24O8JHNhkGfB-2QrcDuxOcS39xzV6zFNCZvpTvwO1Po998F-IhpYH0KCzYsLxmfWTns8uZZ53r0Goep89c59lsuWBD6iTrO4bwkAWqMuHa1Ovi89GEfXMtPXag_yWBa_EAjvc_fJke5OMfFvIW7Y5lHspYRF1p7wXysqhiods64PFdxYZH7qIOwnEX6LOHbpRXquBOCNkG5xqEVuIhbHd9Fx4DK0VsXVDGlb6RhfSNUa5omlq5Mlah5hmUq2W37Vh-nP6CcW6TG1wYO7DKIqtsYpX9nsGbdZ_LofjGP6nfEzfXlFQ4OzX081M7rqQ1qjZCeiULL6UQoiG_JcIyH7Q3rRYZvERZsGftLPWn62lvz-YWzYtDejMnx2kGeytZseOeX1hujEQJL3WRwYv1bdyt5IJxXeiviEZT-hjCogweDaK1Hq_QWtdo72ZgNoRuY0Kbd7rZ11QRnOx6NPV1Bm9X8vlzXH9fsSf_R_4U7nDaSCmUcQ-2l_Or8Awh2bJ5nvbgD_DiML8
  priority: 102
  providerName: Springer Nature
Title Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics
URI https://link.springer.com/article/10.1038/s12276-023-01086-x
https://www.ncbi.nlm.nih.gov/pubmed/37779140
https://www.proquest.com/docview/2884497170
https://www.proquest.com/docview/2871654426
https://pubmed.ncbi.nlm.nih.gov/PMC10618257
https://doaj.org/article/869834d640d44333b4372064de7d8c73
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003013109
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental and Molecular Medicine, 2023, 55(0), , pp.2085-2096
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BkBAvCDY-AqMyAvEC0RLbiZ3Hrtq0TaJCg0l9s5zYHtU2Z2o7tP33nJ20rHy-8BTJsRPn7py78939DPCWGo1K1lapYdalvDZ5KlFxpJpXorFlgGeJCbLj8uCEH02Kya2jvkJOWAcP3BFuR5aVZNyUPDOcM8bqEGhCPWqsMLIREecTdd7SmepdrYIL3pfIZEzuzHNKRUi2DblDaMSn12tqKKL1o3LxM_c7Q_PXfMmfgqZRF-0_goe9EUmG3eQfwx3rN2Fr6NGBvrgh70hM64z75Ztw_2MfPd8CdxiKQVoUGWxY3JDWkfPp5dQQrz36zn2KHNHekOliTroCStJ6gkYisQFrQjdx1MXxeEi-6SY8tut_q4xr_gRO9ve-jA7S_pyFtEHvY5Ha3GVOFMIYhhzNCpeJprL4Ey9cTR3VTlimqbZh80PUpSnLjGrGeGO1rtHAYk9hw7fePgeSM9doW0qdm5pn3NSy1FldV6XOXWErmkC-JLtqehDycBbGuYrBcCZVxyqFrFKRVeo6gferMZcdBMdfe-8Gbq56Bvjs2IBCpXpKqn8JVQJvUBbUWTON48P1tFVnM4VOxmF4Mw3h0wS2l7Ki-pU_V1RKjnKeiyyB16vbuGZDIEZ7216FPiIUkaFxlMCzTrRW82VCiAq93gTkmtCtfdD6HT_9GnHBg3ePDr9I4MNSPn_M688Ue_E_KPYSHtCwvGKa4zZsLGZX9hWaa4t6AHfFRAzg3nB49PkIr7t740_H2DoqR4O4ar8DD7w-Og
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EvCCYOMSGGDE5YVFS2InTh4Q6mBTy7YKTZu0N-PE9qi2JaXtYP0pvpFjJ-kol73tKZJjJ7bP8bn43ABeRUoik9WZr6g2PstV6KfIOHzJMl7oxKZncQ6yg6R3yD4dxUdL8LONhbFulS1NdIRaVYW9I9-I0pTh-JAH70fffFs1ylpX2xIaNVrs6NkPVNkm7_ofEb6vo2h76-BDz2-qCvgFytpTX4cmMDzmSlGcfxCbgBeZRpIVmzwykTRcUxlJbVV9nicqSYJIUsoKLWWO4gTF796AZUZRlenA8ubW4PP-XMWLmcv7HKJQ41PklE2YTkDTjQk2cuvwa_2XUJHwLxZYoasYgAyuHJt_Cbt_-2z-Ybh1_HD7LtxpBFnSrTHvHizpcgVWuyUq8Wcz8oY411J3Z78CN_caC_4qmL4NSKkQbbFhOiOVIafD0VCRUpaovzduekSWigynE1IHcZKqJCioEm3zXcjCjTrbH3TJd1nYz9b9fwslm9yHw2uBygPolFWpHwEJqSmkTlIZqpwFTOVpIoM8zxIZmlhnkQdhu-2iaBKh23ocp8IZ5GkqalAJBJVwoBIXHrydjxnVaUCu7L1poTnvaVN4u4ZqfCyanRRpkqWUqYQFijFKaW4tqCggKs1VWnDqwUvEBXFSDN14-zyuxMlYoKLTt3-OrAnXg7UWV0RDfSbi8qx48GL-GumGNQbJUlfntg-3gWwooHnwsEat-Xwp5zxDzduDdAHpFha0-KYcfnW5ye0NQ4pswIP1Fj8v5_X_HXt89TKew63ewd6u2O0Pdp7A7cgeIudQuQad6fhcP0XBcJo_a04jgS_XTQB-AUVRdI4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GgMaeIFwcYlMMCIywtETWIndh4QKoxqZVAhxKS9eU5sj2pbUtoO1l_j6zh20pZy2dueKjl2GvvcfW4ATxOtUMiaPNTU2JAVOg4FCo5QsZyXJnPlWXyA7CDb3WfvD9KDNfg5z4VxYZVznugZta5Ld0feSYRguD7mUce2YRGfdnqvR99C10HKeVrn7TQaFNkzsx9ovk1e9XcQ1s-SpPfuy9vdsO0wEJaod09DE9vI8pRrTXEvUWojXuYG2Vdqi8QmynJDVaKMM_t5keksixJFKSuNUgWqFhTfewWucprGjsb4wdLYS5mvAB2jehNSlJltwk5ERWeCg9yF_rpIJjQpwvMVoeh7B6Coq8b2X2rv39Gbf7hwvWTs3YDrrUpLug0O3oQ1U23CVrdCc_50Rp4TH2Tqb-83YeNj68vfAtt3qSk1IjAOTGektuRkOBpqUqkKLfk2YI-oSpPhdEKadE5SVwRVVmJc5QtV-lWnnwdd8l2V7rXN_N-Syia3YP9SYHIb1qu6MneBxNSWymRCxbpgEdOFyFRUFHmmYpuaPAkgnh-7LNuS6K4zx4n0rnkqZAMqiaCSHlTyPIAXizWjpiDIhbPfOGguZrpi3n6gHh_J9iSlyHJBmc5YpBmjlBbOl4qqojZci5LTAJ4gLsjjcujXu9-jWh6PJZo8fffPiXPmBrA9xxXZ8qGJXFJNAI8Xj5GDOLeQqkx95uZwl9KGqloAdxrUWnwv5ZznaIMHIFaQbmVDq0-q4VdfpdzdNQgUCAG8nOPn8rv-f2L3Lt7GI9hAspcf-oO9-3AtcTTkIyu3YX06PjMPUEOcFg89KRI4vGza_wV2HXde
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunogenicity+of+lipid+nanoparticles+and+its+impact+on+the+efficacy+of+mRNA+vaccines+and+therapeutics&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Lee%2C+Yeji&rft.au=Jeong%2C+Michaela&rft.au=Park%2C+Jeongeun&rft.au=Jung%2C+Hyein&rft.date=2023-10-01&rft.issn=2092-6413&rft.eissn=2092-6413&rft.volume=55&rft.issue=10&rft.spage=2085&rft_id=info:doi/10.1038%2Fs12276-023-01086-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon