Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is cru...
Saved in:
Published in | Experimental & molecular medicine Vol. 55; no. 10; pp. 2085 - 2096 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2023
Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.
Lipid nanoparticles (LNP): investigating the immune impacts of mRNA/LNP
Drugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations. |
---|---|
AbstractList | Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Abstract Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.Lipid nanoparticles (LNP): investigating the immune impacts of mRNA/LNPDrugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations. Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. KCI Citation Count: 0 Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Drugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations. Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles. Lipid nanoparticles (LNP): investigating the immune impacts of mRNA/LNP Drugs consisting of mRNA encapsulated in lipid nanoparticles (LNP), such as the vaccines developed for COVID-19, are poised to have a massive impact in future therapy, but researchers are still learning about their interactions with the immune system. Hyukjin Lee and colleagues at Ewha Womans University, Seoul, South Korea, have reviewed how the formulated RNA/LNP can positively stimulate the immune response to elicit more robust vaccine protection, but also show potential for harm arising from inappropriate or excessive immune activation. The natural response to lipids or foreign RNA may possibly contribute to allergic or even autoimmune conditions. Fortunately, there are strategies for counteracting these adverse effects, including chemical modifications to the RNA, changes in the lipid formulation, or altering the adminiration routes of delivery. More experience with this promising drug class should yield safer and more effective LNP formulations. |
Author | Jeong, Michaela Jung, Hyein Lee, Yeji Park, Jeongeun Lee, Hyukjin |
Author_xml | – sequence: 1 givenname: Yeji surname: Lee fullname: Lee, Yeji organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University – sequence: 2 givenname: Michaela surname: Jeong fullname: Jeong, Michaela organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University – sequence: 3 givenname: Jeongeun surname: Park fullname: Park, Jeongeun organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University – sequence: 4 givenname: Hyein surname: Jung fullname: Jung, Hyein organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University – sequence: 5 givenname: Hyukjin orcidid: 0000-0001-9478-8473 surname: Lee fullname: Lee, Hyukjin email: hyukjin@ewha.ac.kr organization: College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37779140$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003013109$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kktr3DAUhU1JaR7tH-iiGLopBbd6WZJXZQh9DIQWQroWsnw1UWJLrmSH5N9XM560SRZZXSF953A4usfFgQ8eiuItRp8wovJzwoQIXiFCK4SR5NXti-KIoIZUnGF68OB8WByndIUQqZlgr4pDKoRoMENHhV0Pw-zDBrwzbrorgy17N7qu9NqHUcfJmR5SqX1XuimVbhi1mcrgy-kSSrDWGW12quH856q80cY4v-czEfUIc7ZIr4uXVvcJ3uznSfH729eL0x_V2a_v69PVWWU4I1MF2CIratF1tAWDaouEaQBaXNuWWKKtAKqJBtRQKlrecY6IppQZ0LqVtKEnxcfF10erro1TQbvd3AR1HdXq_GKtcneESkIzvF7gLugrNUY36Hi3U-wuQtyofQFK8kZS1nGGOsYopS2jgiDOOhCdNGLr9WXxGud2gM6An6LuH5k-fvHuMoe6yWk4lqQW2eHD3iGGPzOkSQ0uGeh77SHMSREpMK8ZIzyj75-gV2GOPhebKclYI7BAmXr3MNK_LPefnwG5ACaGlCJYlVdATy5sE7o-R9t2JdWyZyrvmdrtmbrNUvJEeu_-rIguopRhv4H4P_Yzqr9KneVy |
CitedBy_id | crossref_primary_10_1007_s00204_024_03912_1 crossref_primary_10_1038_s41598_023_50279_x crossref_primary_10_34133_bmr_0080 crossref_primary_10_1002_advs_202406545 crossref_primary_10_1080_17425247_2024_2409142 crossref_primary_10_1093_eurheartj_ehae883 crossref_primary_10_34133_bmr_0120 crossref_primary_10_1038_s41467_024_55721_w crossref_primary_10_3390_biochem4030010 crossref_primary_10_1016_j_addr_2024_115359 crossref_primary_10_1177_09760016241290651 crossref_primary_10_1016_j_actbio_2025_02_065 crossref_primary_10_1039_D4BM00580E crossref_primary_10_1039_D3NA01125A crossref_primary_10_1021_acs_langmuir_4c05176 crossref_primary_10_3390_biom14040503 crossref_primary_10_1186_s12951_024_02630_1 crossref_primary_10_1111_cpr_13739 crossref_primary_10_1002_smll_202405642 crossref_primary_10_3390_vaccines12050543 crossref_primary_10_1002_adfm_202413220 crossref_primary_10_1016_j_addr_2024_115346 crossref_primary_10_1021_acsnano_4c00063 crossref_primary_10_3389_fimmu_2024_1370564 crossref_primary_10_3390_vaccines12080848 crossref_primary_10_1002_advs_202401935 crossref_primary_10_1016_j_jconrel_2025_01_071 crossref_primary_10_37349_ei_2024_00161 crossref_primary_10_1007_s12094_024_03577_3 crossref_primary_10_3390_vaccines12121382 crossref_primary_10_1002_gch2_202400217 crossref_primary_10_2174_277227081901241223145542 crossref_primary_10_1021_acsami_5c00920 crossref_primary_10_1038_s41467_025_57446_w crossref_primary_10_1016_j_compbiolchem_2024_108271 crossref_primary_10_1021_jacs_4c16987 crossref_primary_10_7759_cureus_50723 crossref_primary_10_3201_eid3011_240610 crossref_primary_10_1039_D4NR01487A crossref_primary_10_1016_j_omtm_2025_101427 crossref_primary_10_3390_pharmaceutics16060771 crossref_primary_10_1186_s12951_024_02972_w crossref_primary_10_1186_s12985_025_02645_6 crossref_primary_10_3390_biom15030359 crossref_primary_10_1016_j_ijpharm_2025_125470 crossref_primary_10_1016_j_jconrel_2024_07_052 crossref_primary_10_1016_j_phrs_2024_107352 crossref_primary_10_1007_s13346_025_01815_x crossref_primary_10_2745_dds_39_314 crossref_primary_10_1007_s40291_024_00705_1 crossref_primary_10_1039_D4PY00298A crossref_primary_10_1016_j_omtm_2025_101436 crossref_primary_10_2174_0113816128296588240321072042 crossref_primary_10_3389_fnano_2025_1475969 crossref_primary_10_1021_acsnano_4c18636 crossref_primary_10_1016_j_jconrel_2025_02_067 crossref_primary_10_1016_j_bioactmat_2025_01_028 crossref_primary_10_1016_j_ijpharm_2025_125485 crossref_primary_10_1038_s41569_025_01141_2 crossref_primary_10_1002_smll_202401631 crossref_primary_10_1016_j_ymthe_2024_12_019 crossref_primary_10_1038_s41541_024_00838_8 crossref_primary_10_3390_life15010095 crossref_primary_10_59717_j_xinn_med_2024_100081 crossref_primary_10_1016_j_ejps_2025_107050 crossref_primary_10_1126_sciadv_adk0716 crossref_primary_10_1016_j_omtm_2024_101325 crossref_primary_10_1002_smll_202406082 crossref_primary_10_1039_D4NR03159H crossref_primary_10_1016_j_mtchem_2025_102549 crossref_primary_10_1021_acs_biomac_4c00954 crossref_primary_10_3389_fddev_2024_1383038 crossref_primary_10_3389_fnano_2024_1458894 crossref_primary_10_1016_j_ccr_2025_216601 crossref_primary_10_1515_psr_2025_0001 crossref_primary_10_1002_anbr_202400037 crossref_primary_10_1038_s41392_024_02035_4 crossref_primary_10_3389_fimmu_2025_1513546 crossref_primary_10_3390_vaccines12060659 crossref_primary_10_1016_j_omtm_2024_101314 crossref_primary_10_3390_pharmaceutics16121521 crossref_primary_10_1002_mame_202400356 crossref_primary_10_1016_j_ymthe_2024_09_011 crossref_primary_10_1038_s41467_024_53396_x crossref_primary_10_1080_14760584_2024_2320327 crossref_primary_10_3390_biomedicines12122852 crossref_primary_10_3390_vaccines13010025 crossref_primary_10_3390_vaccines12101148 crossref_primary_10_1186_s12929_024_01080_z crossref_primary_10_3390_pharmaceutics16111366 crossref_primary_10_3390_ijms252011254 crossref_primary_10_1016_j_ymthe_2024_03_035 crossref_primary_10_1177_17562864241239755 crossref_primary_10_1002_cac2_70002 crossref_primary_10_3390_jfb15080225 crossref_primary_10_1016_j_jconrel_2024_07_018 crossref_primary_10_1016_j_xcrm_2024_101756 crossref_primary_10_1016_j_bioactmat_2024_03_017 crossref_primary_10_1016_j_addr_2024_115292 crossref_primary_10_3390_jpm14111092 crossref_primary_10_1016_j_addr_2024_115291 crossref_primary_10_2174_0124522716311647240613050008 crossref_primary_10_3390_pharmaceutics16020247 crossref_primary_10_3390_biom14081036 crossref_primary_10_3390_vaccines12060603 crossref_primary_10_1039_D4PM00179F crossref_primary_10_1039_D4PM00128A crossref_primary_10_1038_s41467_024_51056_8 crossref_primary_10_1016_j_jconrel_2024_11_007 |
Cites_doi | 10.1016/j.immuni.2006.08.010 10.1586/14760584.2014.882775 10.1038/s41467-020-14527-2 10.1016/j.smim.2013.05.007 10.1016/0923-2494(92)80060-X 10.3389/fchem.2020.589959 10.1021/acsomega.8b00341 10.1126/science.abo2523 10.1021/mp500400k 10.1016/j.cyto.2021.155654 10.1016/j.cyto.2015.03.001 10.1016/j.jconrel.2022.03.046 10.1016/j.jconrel.2007.05.015 10.1016/j.jconrel.2021.05.021 10.1038/s41590-023-01450-z 10.1208/s12249-020-01838-2 10.1016/j.jconrel.2016.05.059 10.1073/pnas.0706663105 10.1006/bbrc.1997.7749 10.1146/annurev-pathol-020117-043952 10.1101/cshperspect.a006049 10.1038/s41587-019-0247-3 10.1023/A:1018932714745 10.1038/s41467-022-32587-4 10.1016/j.biomaterials.2014.10.036 10.3389/falgy.2021.801322 10.1038/mt.2008.200 10.1016/j.biomaterials.2010.02.049 10.1016/j.jconrel.2020.03.022 10.1016/j.omtn.2020.09.004 10.3109/1061186X.2014.997735 10.1016/j.biochi.2007.03.001 10.1016/j.tibtech.2018.10.004 10.1038/s41565-020-0669-6 10.1038/nature18300 10.1073/pnas.2109256118 10.1084/jem.20050914 10.1080/09687860600790537 10.1016/j.immuni.2021.11.001 10.1126/sciadv.abf4398 10.1038/nature01320 10.3390/vaccines9010065 10.1111/j.1365-2036.2006.03002.x 10.1016/j.jconrel.2022.09.031 10.1152/ajpheart.00622.2005 10.1038/mtna.2016.38 10.1016/j.ymthe.2022.07.007 10.3390/pharmaceutics14050973 10.1021/acs.molpharmaceut.9b01182 10.1097/ACI.0000000000000762 10.1038/d41573-023-00002-2 10.1007/s13346-013-0161-z 10.1038/s41590-022-01160-y 10.1016/j.tmaid.2020.101868 10.1016/j.jconrel.2021.12.008 10.1016/j.ijpharm.2010.03.022 10.1021/acs.nanolett.6b03329 10.1016/S0169-409X(01)00154-5 10.1097/GOX.0000000000003417 10.1126/science.8009221 10.1016/j.cell.2010.01.022 10.1016/j.phrs.2015.08.003 10.1016/j.jaci.2009.07.016 10.1016/S0168-3659(99)00097-8 10.1038/ni1112 10.1542/peds.83.5.679 10.1080/17425247.2016.1182485 10.1021/acs.nanolett.2c04883 10.1021/acs.bioconjchem.0c00366 10.1093/mrcr/rxac014 10.1021/acs.analchem.6b03437 10.1039/C9BM01564G 10.1016/j.immuni.2019.03.026 10.1038/ni.2283 10.1038/ni0407-345 10.1021/acsnano.8b00966 10.1007/s40005-022-00569-9 10.1016/j.ijpharm.2020.119792 10.1016/j.biomaterials.2022.121570 10.1016/j.molimm.2004.09.037 10.1080/14686996.2019.1627174 10.1034/j.1600-065X.2000.917309.x 10.1146/annurev-bioeng-101515-014413 10.2174/1871528114666160105113046 10.1016/S0005-2736(00)00343-6 10.1016/j.vaccine.2011.11.020 10.1016/j.immuni.2005.06.008 10.1038/ni.3123 10.1016/j.jaci.2021.04.002 10.1038/nri3787 10.1111/imm.13443 10.1038/s41467-021-27493-0 10.2807/1560-7917.ES.2021.26.17.2100420 10.1111/cea.13874 10.3389/fimmu.2013.00114 10.3389/fimmu.2018.00847 10.1007/s11095-012-0874-6 10.1016/S0952-7915(99)80003-X 10.1038/mt.2009.36 10.1038/s41577-021-00504-3 10.1039/C9NR09347H 10.1016/S0140-6736(03)14802-7 10.1186/s12943-021-01335-5 10.3390/ph15081017 10.1039/D1BM01454D 10.1038/nbt1402 10.1038/nri1604 10.1016/j.coi.2006.11.007 10.1021/acsnano.2c04543 10.18632/oncotarget.23208 10.1038/s41590-022-01364-2 10.1084/jem.20050630 10.3390/biomedicines10061260 10.1038/s41590-022-01163-9 10.1016/j.molimm.2014.06.038 10.1016/j.tmaid.2021.102007 10.1002/art.20254 10.1021/acs.bioconjchem.8b00237 10.4049/jimmunol.1800016 10.1136/bmj.321.7271.1237 10.1007/82_2011_123 10.1038/nri1957 10.1021/acs.nanolett.5b02497 10.1056/NEJMc2109975 10.1038/nri3446 10.1007/s40120-020-00208-1 10.1074/jbc.M310175200 10.1038/nri3581 10.3390/vaccines9121375 10.1111/all.14794 10.1126/science.271.5247.348 10.1504/IJNM.2014.062978 10.1007/978-3-319-99593-9_6 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA ACYCR |
DOI | 10.1038/s12276-023-01086-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central - New (Subscription) Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 2096 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10323823 oai_doaj_org_article_869834d640d44333b4372064de7d8c73 PMC10618257 37779140 10_1038_s12276_023_01086_x |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: 2022M3E5F1081328; 2019M3A9H1103786; 2019M3A9H1103786; 2022M3E5F1081328; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786 funderid: https://doi.org/10.13039/501100003725 – fundername: Ministry of Food and Drug Safety (MFDS) grantid: DY0002259453; DY0002259453; DY0002259453; DY0002259453; DY0002259453 funderid: https://doi.org/10.13039/501100003569 – fundername: ; grantid: DY0002259453; DY0002259453; DY0002259453; DY0002259453; DY0002259453 – fundername: ; grantid: 2022M3E5F1081328; 2019M3A9H1103786; 2019M3A9H1103786; 2022M3E5F1081328; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786; 2022M3E5F1081328; 2019M3A9H1103786 |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC COVID DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO AAADF AFGXO |
ID | FETCH-LOGICAL-c642t-e1f0f757dd3bec05f07c9eeb15fb2f2af7e3a2ae09337b6d6602a334ceaab8393 |
IEDL.DBID | DOA |
ISSN | 2092-6413 1226-3613 |
IngestDate | Sat Mar 02 03:21:41 EST 2024 Wed Aug 27 01:28:53 EDT 2025 Thu Aug 21 18:36:28 EDT 2025 Fri Jul 11 09:29:53 EDT 2025 Wed Aug 13 07:38:52 EDT 2025 Thu Jan 02 22:37:36 EST 2025 Tue Jul 01 04:10:32 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Fri Feb 21 02:40:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c642t-e1f0f757dd3bec05f07c9eeb15fb2f2af7e3a2ae09337b6d6602a334ceaab8393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9478-8473 |
OpenAccessLink | https://doaj.org/article/869834d640d44333b4372064de7d8c73 |
PMID | 37779140 |
PQID | 2884497170 |
PQPubID | 2041975 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10323823 doaj_primary_oai_doaj_org_article_869834d640d44333b4372064de7d8c73 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10618257 proquest_miscellaneous_2871654426 proquest_journals_2884497170 pubmed_primary_37779140 crossref_citationtrail_10_1038_s12276_023_01086_x crossref_primary_10_1038_s12276_023_01086_x springer_journals_10_1038_s12276_023_01086_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group – name: 생화학분자생물학회 |
References | Zhang (CR110) 2023; 23 Barrat (CR70) 2005; 202 Thomas, Rohner, Edwards (CR83) 2016; 18 Son (CR97) 2020; 322 Zheng (CR140) 2023; 24 O’Neill, Golenbock, Bowie (CR136) 2013; 13 Xu, Wang, Deng, Chen (CR96) 2010; 31 Li, Jones, Geiger (CR36) 2018; 201 Ishida, Wang, Shimizu, Nawata, Kiwada (CR64) 2007; 122 Takeuchi, Akira (CR19) 2010; 140 McNab, Mayer-Barber, Sher, Wack, O’Garra (CR27) 2015; 15 Karikó, Ni, Capodici, Lamphier, Weissman (CR38) 2004; 279 Schnyder (CR116) 2021; 41 Akinc (CR3) 2008; 26 Iwasaki, Medzhitov (CR33) 2004; 5 Kranz (CR45) 2016; 534 Hilgers, Snippe (CR87) 1992; 143 Mohamed (CR60) 2019; 20 Platanias (CR24) 2005; 5 Intapiboon (CR120) 2021; 9 Lappalainen, Jääskeläinen, Syrjänen, Urtti, Syrjänen (CR89) 1994; 11 Hung, Preclaro, Chung, Wang (CR53) 2022; 10 Medzhitov, Janeway (CR135) 2000; 173 Miao (CR108) 2019; 37 Kim, Jarrahian, Zehrung, Mitragotri, Prausnitz (CR126) 2012; 351 Urits (CR12) 2020; 9 LaRosa (CR35) 2008; 105 Chen (CR51) 2022; 165 Vangasseri (CR84) 2006; 23 Newton, Dixit (CR20) 2012; 4 Nishimura (CR49) 2023; 7 Toussirot, Bereau (CR67) 2015; 14 Parums (CR48) 2021; 27 Cheng (CR78) 2020; 15 Mehvar (CR94) 2000; 3 Schnyder (CR128) 2020; 37 Kagan (CR141) 2023; 24 Sellaturay, Nasser, Islam, Gurugama, Ewan (CR56) 2021; 51 Oussoren, Storm (CR123) 2001; 50 Patel (CR8) 2020; 11 Karikó (CR41) 2008; 16 Kokkinopoulos, Jordan, Ritter (CR39) 2005; 42 Semple (CR91) 2001; 1510 Miteva (CR93) 2015; 38 Lee (CR105) 2020; 8 CR131 Wraith, Goldman, Lambert (CR68) 2003; 362 Ipp (CR130) 1989; 83 Oberli (CR1) 2017; 17 Van Hoecke (CR117) 2020; 22 Hassett (CR77) 2021; 335 Akinc (CR11) 2009; 17 Buschmann (CR109) 2021; 9 Miao, Zhang, Huang (CR99) 2021; 20 Han (CR4) 2021; 12 Nilsson, Csuth, Storsaeter, Garvey, Jenmalm (CR54) 2021; 21 Li (CR43) 2022; 23 Banchereau, Pascual (CR69) 2006; 25 Fabrizi, Dixit, Magnini, Elli, Martin (CR127) 2006; 24 Risma (CR46) 2021; 147 Verma (CR15) 2023; 22 Müller (CR26) 1994; 264 Koide (CR63) 2010; 392 Lövgren, Eloranta, Båve, Alm, Rönnblom (CR71) 2004; 50 AWATE, Babiuk, Mutwiri (CR102) 2013; 4 Szebeni (CR65) 2006; 290 Hunter (CR121) 2008; 22 Guimarães, Baker, Perricone, Shoenfeld (CR66) 2015; 100 Kulkarni, Witzigmann, Leung, Tam, Cullis (CR7) 2019; 11 Karikó, Buckstein, Ni, Weissman (CR40) 2005; 23 Kabelitz (CR32) 2007; 19 Romani (CR124) 2012; 351 Marshak-Rothstein (CR72) 2006; 6 Zuckerman (CR119) 2000; 321 Luan, Cao, Wang, Lin, Liu (CR106) 2022; 14 Iwasaki, Medzhitov (CR21) 2015; 16 Mao (CR134) 2022; 378 Szebeni (CR62) 2014; 61 CR112 Chen (CR75) 2016; 235 Kang, Tanaka, Narazaki, Kishimoto (CR23) 2019; 50 Yang (CR61) 2016; 88 Wilson (CR92) 2015; 12 Hu, Hou, Wang, Lu (CR98) 2018; 29 Shimosakai, Khalil, Kimura, Harashima (CR101) 2022; 15 Kis, Winter, Myschik (CR125) 2012; 30 LoPresti, Arral, Chaudhary, Whitehead (CR79) 2022; 345 Garcia, Meurs, Esteban (CR30) 2007; 89 Bevers (CR80) 2022; 30 Tang, Nguyen (CR132) 2014; 13 Xu (CR139) 2012; 13 Nathan (CR18) 2002; 420 Gill, Kaddoumi, Nazzal (CR57) 2015; 23 D’souza, Shegokar (CR58) 2016; 13 Klimek (CR55) 2021; 76 Tahtinen (CR42) 2022; 23 Jiao (CR95) 2020; 21 Verma, Lavine, Lin (CR47) 2021; 385 Nakamura (CR82) 2020; 17 Perkins, Vogel (CR29) 2015; 74 Leveque (CR122) 2014; 34 Castro, Cardoso, Gonçalves, Serre, Oliveira (CR25) 2018; 9 Kimura (CR76) 2018; 3 Hwang, Aljuffali, Lin, Chang, Fang (CR88) 2015; 10 Nakanishi (CR85) 1997; 240 Álvarez-Benedicto (CR6) 2022; 10 CR16 Dempsey, Allison, Akkaraju, Goodnow, Fearon (CR31) 1996; 271 Zhu, Tuo (CR107) 2016; 3 Broos (CR133) 2016; 5 CR13 Ibrahim (CR59) 2022; 351 Kauffman (CR2) 2015; 15 Karmacharya, Patil, Kim (CR142) 2022; 52 Bettelli, Oukka, Kuchroo (CR34) 2007; 8 Tom (CR104) 2019; 37 Jung, Kim (CR129) 2021; 9 Francia, Schiffelers, Cullis, Witzigmann (CR113) 2020; 31 Laisuan (CR52) 2021; 2 Kopp, Medzhitov (CR137) 1999; 11 Brito, Malyala, O’Hagan (CR103) 2013; 25 Fabiani (CR14) 2021; 26 Alameh (CR44) 2021; 54 Flemming (CR50) 2021; 21 Lau (CR73) 2005; 202 Ju (CR10) 2022; 16 Ivashkiv, Donlin (CR28) 2014; 14 Bao (CR9) 2013; 30 Korn, Hiltensperger (CR37) 2021; 146 Suzuki (CR81) 2020; 588 Clement (CR138) 2022; 13 Ripoll (CR111) 2022; 286 Crow, Olferiev, Kirou (CR74) 2019; 14 Dilliard, Cheng, Siegwart (CR118) 2021; 118 Chen (CR22) 2017; 9 Kim (CR5) 2021; 7 Anderluzzi (CR115) 2022; 342 Van der Jeught (CR114) 2018; 12 Wan, Allen, Cullis (CR90) 2014; 4 Nakanishi (CR86) 1999; 61 Guevara, Persano, Persano (CR100) 2020; 8 Turvey, Broide (CR17) 2010; 125 SI Hung (1086_CR53) 2022; 10 JA Kulkarni (1086_CR7) 2019; 11 F McNab (1086_CR27) 2015; 15 TL Hwang (1086_CR88) 2015; 10 D Kabelitz (1086_CR32) 2007; 19 MK Crow (1086_CR74) 2019; 14 LA Hilgers (1086_CR87) 1992; 143 M Mohamed (1086_CR60) 2019; 20 A Flemming (1086_CR50) 2021; 21 É Toussirot (1086_CR67) 2015; 14 R Mehvar (1086_CR94) 2000; 3 M Fabiani (1086_CR14) 2021; 26 W Laisuan (1086_CR52) 2021; 2 M Clement (1086_CR138) 2022; 13 T Ishida (1086_CR64) 2007; 122 SN Thomas (1086_CR83) 2016; 18 Y-C Kim (1086_CR126) 2012; 351 MA Oberli (1086_CR1) 2017; 17 MM Ipp (1086_CR130) 1989; 83 M-G Alameh (1086_CR44) 2021; 54 DF LaRosa (1086_CR35) 2008; 105 S Bevers (1086_CR80) 2022; 30 KJ Hassett (1086_CR77) 2021; 335 DC Wraith (1086_CR68) 2003; 362 JL Schnyder (1086_CR116) 2021; 41 LE Guimarães (1086_CR66) 2015; 100 E Bettelli (1086_CR34) 2007; 8 T Lövgren (1086_CR71) 2004; 50 S Xu (1086_CR139) 2012; 13 DV Parums (1086_CR48) 2021; 27 M Ibrahim (1086_CR59) 2022; 351 C Wan (1086_CR90) 2014; 4 A Akinc (1086_CR11) 2009; 17 Q Yang (1086_CR61) 2016; 88 S Chen (1086_CR75) 2016; 235 SC Wilson (1086_CR92) 2015; 12 1086_CR112 K Van der Jeught (1086_CR114) 2018; 12 KJ Kauffman (1086_CR2) 2015; 15 1086_CR16 P Intapiboon (1086_CR120) 2021; 9 Y Chen (1086_CR51) 2022; 165 1086_CR13 LB Ivashkiv (1086_CR28) 2014; 14 J Jiao (1086_CR95) 2020; 21 LA Brito (1086_CR103) 2013; 25 D Zheng (1086_CR140) 2023; 24 MD Buschmann (1086_CR109) 2021; 9 I Kokkinopoulos (1086_CR39) 2005; 42 K Son (1086_CR97) 2020; 322 M Ripoll (1086_CR111) 2022; 286 S Kang (1086_CR23) 2019; 50 X Han (1086_CR4) 2021; 12 T Nakanishi (1086_CR86) 1999; 61 J Szebeni (1086_CR65) 2006; 290 L Miao (1086_CR99) 2021; 20 D Zhu (1086_CR107) 2016; 3 JC Kagan (1086_CR141) 2023; 24 JL Schnyder (1086_CR128) 2020; 37 P Karmacharya (1086_CR142) 2022; 52 PW Dempsey (1086_CR31) 1996; 271 K Broos (1086_CR133) 2016; 5 R Shimosakai (1086_CR101) 2022; 15 Q Cheng (1086_CR78) 2020; 15 R Medzhitov (1086_CR135) 2000; 173 B Li (1086_CR36) 2018; 201 C Oussoren (1086_CR123) 2001; 50 G Anderluzzi (1086_CR115) 2022; 342 N Kimura (1086_CR76) 2018; 3 AK Verma (1086_CR47) 2021; 385 T Mao (1086_CR134) 2022; 378 DC Tang (1086_CR132) 2014; 13 M Verma (1086_CR15) 2023; 22 KA Risma (1086_CR46) 2021; 147 ST LoPresti (1086_CR79) 2022; 345 K Karikó (1086_CR40) 2005; 23 K Karikó (1086_CR38) 2004; 279 K Lee (1086_CR105) 2020; 8 A Iwasaki (1086_CR33) 2004; 5 H Koide (1086_CR63) 2010; 392 KK Gill (1086_CR57) 2015; 23 Y Zhang (1086_CR110) 2023; 23 U Müller (1086_CR26) 1994; 264 SA Dilliard (1086_CR118) 2021; 118 L Chen (1086_CR22) 2017; 9 T Nakamura (1086_CR82) 2020; 17 H Xu (1086_CR96) 2010; 31 FJ Barrat (1086_CR70) 2005; 202 LM Kranz (1086_CR45) 2016; 534 A Akinc (1086_CR3) 2008; 26 J Szebeni (1086_CR62) 2014; 61 J Banchereau (1086_CR69) 2006; 25 Y Bao (1086_CR9) 2013; 30 J Hunter (1086_CR121) 2008; 22 D Leveque (1086_CR122) 2014; 34 EB Kopp (1086_CR137) 1999; 11 A Iwasaki (1086_CR21) 2015; 16 L Nilsson (1086_CR54) 2021; 21 CM Lau (1086_CR73) 2005; 202 M Miteva (1086_CR93) 2015; 38 M Garcia (1086_CR30) 2007; 89 LAJ O’Neill (1086_CR136) 2013; 13 A Marshak-Rothstein (1086_CR72) 2006; 6 1086_CR131 C Li (1086_CR43) 2022; 23 SC Semple (1086_CR91) 2001; 1510 T Nakanishi (1086_CR85) 1997; 240 I Urits (1086_CR12) 2020; 9 C Nathan (1086_CR18) 2002; 420 JK Tom (1086_CR104) 2019; 37 L Van Hoecke (1086_CR117) 2020; 22 O Takeuchi (1086_CR19) 2010; 140 EE Kis (1086_CR125) 2012; 30 S Tahtinen (1086_CR42) 2022; 23 N Nishimura (1086_CR49) 2023; 7 L Klimek (1086_CR55) 2021; 76 N Luan (1086_CR106) 2022; 14 K Lappalainen (1086_CR89) 1994; 11 K Karikó (1086_CR41) 2008; 16 DJ Perkins (1086_CR29) 2015; 74 N Romani (1086_CR124) 2012; 351 F Fabrizi (1086_CR127) 2006; 24 JN Zuckerman (1086_CR119) 2000; 321 Y Ju (1086_CR10) 2022; 16 AA D’souza (1086_CR58) 2016; 13 L Miao (1086_CR108) 2019; 37 S Patel (1086_CR8) 2020; 11 V Francia (1086_CR113) 2020; 31 P Sellaturay (1086_CR56) 2021; 51 K Newton (1086_CR20) 2012; 4 S AWATE (1086_CR102) 2013; 4 ML Guevara (1086_CR100) 2020; 8 GS Jung (1086_CR129) 2021; 9 M Kim (1086_CR5) 2021; 7 Y Hu (1086_CR98) 2018; 29 SE Turvey (1086_CR17) 2010; 125 DP Vangasseri (1086_CR84) 2006; 23 T Suzuki (1086_CR81) 2020; 588 T Korn (1086_CR37) 2021; 146 E Álvarez-Benedicto (1086_CR6) 2022; 10 F Castro (1086_CR25) 2018; 9 LC Platanias (1086_CR24) 2005; 5 |
References_xml | – volume: 25 start-page: 383 year: 2006 end-page: 392 ident: CR69 article-title: Type I interferon in systemic lupus erythematosus and other autoimmune diseases publication-title: Immunity doi: 10.1016/j.immuni.2006.08.010 – volume: 13 start-page: 417 year: 2014 end-page: 427 ident: CR132 article-title: The Yin-Yang arms of vaccines: disease-fighting power versus tissue-destructive inflammation publication-title: Expert Rev. Vaccines doi: 10.1586/14760584.2014.882775 – volume: 11 year: 2020 ident: CR8 article-title: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA publication-title: Nat. Commun. doi: 10.1038/s41467-020-14527-2 – volume: 25 start-page: 130 year: 2013 end-page: 145 ident: CR103 article-title: Vaccine adjuvant formulations: a pharmaceutical perspective publication-title: Semin. Immunol. doi: 10.1016/j.smim.2013.05.007 – volume: 143 start-page: 494 year: 1992 end-page: 503 ident: CR87 article-title: DDA as an immunological adjuvant publication-title: Res. Immunol. doi: 10.1016/0923-2494(92)80060-X – volume: 8 start-page: 589959 year: 2020 ident: CR100 article-title: Advances in lipid nanoparticles for mRNA-based cancer immunotherapy publication-title: Front. Chem. doi: 10.3389/fchem.2020.589959 – volume: 3 start-page: 5044 year: 2018 end-page: 5051 ident: CR76 article-title: Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery publication-title: ACS Omega doi: 10.1021/acsomega.8b00341 – volume: 378 start-page: eabo2523 year: 2022 ident: CR134 article-title: Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses publication-title: Science doi: 10.1126/science.abo2523 – ident: CR16 – volume: 12 start-page: 386 year: 2015 end-page: 392 ident: CR92 article-title: Real time measurement of PEG shedding from lipid nanoparticles in serum via NMR spectroscopy publication-title: Mol. Pharm. doi: 10.1021/mp500400k – volume: 146 start-page: 155654 year: 2021 ident: CR37 article-title: Role of IL-6 in the commitment of T cell subsets publication-title: Cytokine doi: 10.1016/j.cyto.2021.155654 – volume: 74 start-page: 171 year: 2015 end-page: 174 ident: CR29 article-title: Space and time: new considerations about the relationship between Toll-like receptors (TLRs) and type I interferons (IFNs) publication-title: Cytokine doi: 10.1016/j.cyto.2015.03.001 – volume: 345 start-page: 819 year: 2022 end-page: 831 ident: CR79 article-title: The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs publication-title: J. Control. Release doi: 10.1016/j.jconrel.2022.03.046 – volume: 122 start-page: 349 year: 2007 end-page: 355 ident: CR64 article-title: PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner publication-title: J. Control. Release doi: 10.1016/j.jconrel.2007.05.015 – volume: 335 start-page: 237 year: 2021 end-page: 246 ident: CR77 article-title: Impact of lipid nanoparticle size on mRNA vaccine immunogenicity publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.05.021 – volume: 24 start-page: 585 year: 2023 end-page: 594 ident: CR140 article-title: Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation publication-title: Nat. Immunol. doi: 10.1038/s41590-023-01450-z – volume: 21 start-page: 300 year: 2020 ident: CR95 article-title: The contribution of PEG molecular weights in PEGylated emulsions to the various phases in the accelerated blood clearance (ABC) phenomenon in rats publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-020-01838-2 – volume: 235 start-page: 236 year: 2016 end-page: 244 ident: CR75 article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.05.059 – volume: 105 start-page: 3855 year: 2008 end-page: 3860 ident: CR35 article-title: T cell expression of MyD88 is required for resistance to Toxoplasma gondii publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0706663105 – volume: 240 start-page: 793 year: 1997 end-page: 797 ident: CR85 article-title: Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.7749 – volume: 14 start-page: 369 year: 2019 end-page: 393 ident: CR74 article-title: Type I interferons in autoimmune disease publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-020117-043952 – volume: 4 start-page: 3 year: 2012 ident: CR20 article-title: Signaling in innate immunity and inflammation publication-title: Cold Spring Harb. Perspect. Biol doi: 10.1101/cshperspect.a006049 – volume: 37 start-page: 1174 year: 2019 end-page: 1185 ident: CR108 article-title: Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0247-3 – volume: 11 start-page: 1127 year: 1994 end-page: 1131 ident: CR89 article-title: Comparison of cell proliferation and toxicity assays using two cationic liposomes publication-title: Pharm. Res. doi: 10.1023/A:1018932714745 – volume: 13 year: 2022 ident: CR138 article-title: IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses publication-title: Nat. Commun. doi: 10.1038/s41467-022-32587-4 – ident: CR112 – volume: 38 start-page: 97 year: 2015 end-page: 107 ident: CR93 article-title: Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.036 – volume: 2 start-page: 801322 year: 2021 ident: CR52 article-title: COVID-19 vaccine anaphylaxis: current evidence and future approaches publication-title: Front. Allergy doi: 10.3389/falgy.2021.801322 – volume: 16 start-page: 1833 year: 2008 end-page: 1840 ident: CR41 article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 31 start-page: 4757 year: 2010 end-page: 4763 ident: CR96 article-title: Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.049 – volume: 322 start-page: 209 year: 2020 end-page: 216 ident: CR97 article-title: Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.03.022 – volume: 22 start-page: 373 year: 2020 end-page: 381 ident: CR117 article-title: The opposing effect of type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2020.09.004 – volume: 23 start-page: 222 year: 2015 end-page: 231 ident: CR57 article-title: PEG–lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication publication-title: J. Drug Target. doi: 10.3109/1061186X.2014.997735 – volume: 351 start-page: 113 year: 2012 end-page: 138 ident: CR124 article-title: Targeting skin dendritic cells to improve intradermal vaccination publication-title: Curr. Top. Microbiol. Immunol. – volume: 89 start-page: 799 year: 2007 end-page: 811 ident: CR30 article-title: The dsRNA protein kinase PKR: virus and cell control publication-title: Biochimie doi: 10.1016/j.biochi.2007.03.001 – volume: 37 start-page: 373 year: 2019 end-page: 388 ident: CR104 article-title: Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.10.004 – volume: 15 start-page: 313 year: 2020 end-page: 320 ident: CR78 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0669-6 – volume: 534 start-page: 396 year: 2016 end-page: 401 ident: CR45 article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy publication-title: Nature doi: 10.1038/nature18300 – volume: 22 start-page: 35 year: 2008 ident: CR121 article-title: Intramuscular injection techniques publication-title: Nurs. Stand. – volume: 118 start-page: e2109256118 year: 2021 ident: CR118 article-title: On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2109256118 – volume: 202 start-page: 1131 year: 2005 end-page: 1139 ident: CR70 article-title: Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus publication-title: J. Exp. Med. doi: 10.1084/jem.20050914 – volume: 23 start-page: 385 year: 2006 end-page: 395 ident: CR84 article-title: Immunostimulation of dendritic cells by cationic liposomes publication-title: Mol. Membr. Biol. doi: 10.1080/09687860600790537 – volume: 54 start-page: 2877 year: 2021 end-page: 2892.e2877 ident: CR44 article-title: Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses publication-title: Immunity doi: 10.1016/j.immuni.2021.11.001 – volume: 7 start-page: eabf4398 year: 2021 ident: CR5 article-title: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4398 – volume: 420 start-page: 846 year: 2002 end-page: 852 ident: CR18 article-title: Points of control in inflammation publication-title: Nature doi: 10.1038/nature01320 – volume: 9 start-page: 65 year: 2021 ident: CR109 article-title: Nanomaterial delivery systems for mRNA vaccines publication-title: Vaccines doi: 10.3390/vaccines9010065 – volume: 24 start-page: 497 year: 2006 end-page: 506 ident: CR127 article-title: Meta-analysis: intradermal vs. intramuscular vaccination against hepatitis B virus in patients with chronic kidney disease publication-title: Aliment Pharm. Ther. doi: 10.1111/j.1365-2036.2006.03002.x – volume: 351 start-page: 215 year: 2022 end-page: 230 ident: CR59 article-title: Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products publication-title: J. Control Release doi: 10.1016/j.jconrel.2022.09.031 – volume: 290 start-page: H1050 year: 2006 end-page: H1058 ident: CR65 article-title: Complement activation-related cardiac anaphylaxis in pigs: role of C5a anaphylatoxin and adenosine in liposome-induced abnormalities in ECG and heart function publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00622.2005 – volume: 3 start-page: e113 year: 2016 ident: CR107 article-title: QS-21: a potent vaccine adjuvant publication-title: Nat. Prod. Chem. Res. – volume: 5 start-page: e326 year: 2016 ident: CR133 article-title: Particle-mediated intravenous delivery of antigen mRNA results in strong antigen-specific T-cell responses despite the induction of Type I interferon publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2016.38 – volume: 30 start-page: 3078 year: 2022 end-page: 3094 ident: CR80 article-title: mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.07.007 – volume: 14 start-page: 973 year: 2022 ident: CR106 article-title: Ionizable lipid nanoparticles enhanced the synergistic adjuvant effect of CpG ODNs and QS21 in a varicella zoster virus glycoprotein E subunit vaccine publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14050973 – volume: 17 start-page: 944 year: 2020 end-page: 953 ident: CR82 article-title: The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b01182 – volume: 21 start-page: 401 year: 2021 end-page: 409 ident: CR54 article-title: Vaccine allergy: evidence to consider for COVID-19 vaccines publication-title: Curr. Opin. Allergy Clin. Immunol. doi: 10.1097/ACI.0000000000000762 – volume: 22 start-page: 349 year: 2023 end-page: 350 ident: CR15 article-title: The landscape for lipid-nanoparticle-based genomic medicines publication-title: Nat. Rev. drug Discov. doi: 10.1038/d41573-023-00002-2 – volume: 4 start-page: 74 year: 2014 end-page: 83 ident: CR90 article-title: Lipid nanoparticle delivery systems for siRNA-based therapeutics publication-title: Drug Deliv. Transl. Res. doi: 10.1007/s13346-013-0161-z – volume: 23 start-page: 532 year: 2022 end-page: 542 ident: CR42 article-title: IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01160-y – volume: 27 start-page: e932899 year: 2021 ident: CR48 article-title: Editorial: SARS-CoV-2 mRNA vaccines and the possible mechanism of vaccine-induced immune thrombotic thrombocytopenia (VITT) publication-title: Med. Sci. Monit. – volume: 37 start-page: 101868 year: 2020 ident: CR128 article-title: Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination - A systematic review and meta-analysis publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2020.101868 – ident: CR13 – volume: 342 start-page: 388 year: 2022 end-page: 399 ident: CR115 article-title: The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.12.008 – volume: 392 start-page: 218 year: 2010 end-page: 223 ident: CR63 article-title: T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.03.022 – volume: 17 start-page: 1326 year: 2017 end-page: 1335 ident: CR1 article-title: Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03329 – volume: 50 start-page: 143 year: 2001 end-page: 156 ident: CR123 article-title: Liposomes to target the lymphatics by subcutaneous administration publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(01)00154-5 – volume: 9 start-page: e3417 year: 2021 ident: CR129 article-title: A novel technique to reduce pain from intradermal injection of botulinum toxin type A publication-title: Plast. Reconstr. Surg. Glob. Open doi: 10.1097/GOX.0000000000003417 – volume: 264 start-page: 1918 year: 1994 end-page: 1921 ident: CR26 article-title: Functional role of Type I and Type II interferons in antiviral defense publication-title: Science doi: 10.1126/science.8009221 – volume: 140 start-page: 805 year: 2010 end-page: 820 ident: CR19 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 100 start-page: 190 year: 2015 end-page: 209 ident: CR66 article-title: Vaccines, adjuvants and autoimmunity publication-title: Pharm. Res. doi: 10.1016/j.phrs.2015.08.003 – volume: 125 start-page: S24 year: 2010 end-page: S32 ident: CR17 article-title: Innate immunity publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2009.07.016 – volume: 61 start-page: 233 year: 1999 end-page: 240 ident: CR86 article-title: Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins publication-title: J. Control. Release doi: 10.1016/S0168-3659(99)00097-8 – volume: 5 start-page: 987 year: 2004 end-page: 995 ident: CR33 article-title: Toll-like receptor control of the adaptive immune responses publication-title: Nat. Immunol. doi: 10.1038/ni1112 – volume: 83 start-page: 679 year: 1989 end-page: 682 ident: CR130 article-title: Adverse reactions to diphtheria, tetanus, pertussis-polio vaccination at 18 months of age: effect of injection site and needle length publication-title: Pediatrics doi: 10.1542/peds.83.5.679 – volume: 13 start-page: 1257 year: 2016 end-page: 1275 ident: CR58 article-title: Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1182485 – volume: 23 start-page: 2593 year: 2023 end-page: 2600 ident: CR110 article-title: STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c04883 – ident: CR131 – volume: 31 start-page: 2046 year: 2020 end-page: 2059 ident: CR113 article-title: The biomolecular corona of lipid nanoparticles for gene therapy publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.0c00366 – volume: 7 start-page: 122 year: 2023 end-page: 126 ident: CR49 article-title: IgA vasculitis following COVID-19 vaccination publication-title: Mod. Rheumatol. Case Rep. doi: 10.1093/mrcr/rxac014 – volume: 88 start-page: 11804 year: 2016 end-page: 11812 ident: CR61 article-title: Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03437 – volume: 8 start-page: 1101 year: 2020 end-page: 1105 ident: CR105 article-title: Adjuvant incorporated lipid nanoparticles for enhanced mRNA-mediated cancer immunotherapy publication-title: Biomater. Sci. doi: 10.1039/C9BM01564G – volume: 50 start-page: 1007 year: 2019 end-page: 1023 ident: CR23 article-title: Targeting interleukin-6 signaling in clinic publication-title: Immunity doi: 10.1016/j.immuni.2019.03.026 – volume: 3 start-page: 125 year: 2000 end-page: 136 ident: CR94 article-title: Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation publication-title: J. Pharm. Pharm. Sci. – volume: 13 start-page: 551 year: 2012 end-page: 559 ident: CR139 article-title: Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps–SHP-2 pathway publication-title: Nat. Immunol. doi: 10.1038/ni.2283 – volume: 8 start-page: 345 year: 2007 end-page: 350 ident: CR34 article-title: T(H)-17 cells in the circle of immunity and autoimmunity publication-title: Nat. Immunol. doi: 10.1038/ni0407-345 – volume: 12 start-page: 9815 year: 2018 end-page: 9829 ident: CR114 article-title: Dendritic cell targeting mRNA lipopolyplexes combine strong antitumor T-cell immunity with improved inflammatory safety publication-title: ACS Nano doi: 10.1021/acsnano.8b00966 – volume: 52 start-page: 415 year: 2022 end-page: 426 ident: CR142 article-title: Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy publication-title: J. Pharm. Investig. doi: 10.1007/s40005-022-00569-9 – volume: 588 start-page: 119792 year: 2020 ident: CR81 article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119792 – volume: 286 start-page: 121570 year: 2022 ident: CR111 article-title: An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121570 – volume: 42 start-page: 957 year: 2005 end-page: 968 ident: CR39 article-title: Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2004.09.037 – volume: 20 start-page: 710 year: 2019 end-page: 724 ident: CR60 article-title: PEGylated liposomes: immunological responses publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1627174 – volume: 173 start-page: 89 year: 2000 end-page: 97 ident: CR135 article-title: Innate immune recognition: mechanisms and pathways publication-title: Immunol. Rev. doi: 10.1034/j.1600-065X.2000.917309.x – volume: 18 start-page: 207 year: 2016 end-page: 233 ident: CR83 article-title: Implications of lymphatic transport to lymph nodes in immunity and immunotherapy publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-101515-014413 – volume: 14 start-page: 94 year: 2015 end-page: 98 ident: CR67 article-title: Vaccination and induction of autoimmune diseases publication-title: Inflamm. Allergy Drug Targets doi: 10.2174/1871528114666160105113046 – volume: 1510 start-page: 152 year: 2001 end-page: 166 ident: CR91 article-title: Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(00)00343-6 – volume: 30 start-page: 523 year: 2012 end-page: 538 ident: CR125 article-title: Devices for intradermal vaccination publication-title: Vaccine doi: 10.1016/j.vaccine.2011.11.020 – volume: 23 start-page: 165 year: 2005 end-page: 175 ident: CR40 article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA publication-title: Immunity doi: 10.1016/j.immuni.2005.06.008 – volume: 16 start-page: 343 year: 2015 end-page: 353 ident: CR21 article-title: Control of adaptive immunity by the innate immune system publication-title: Nat. Immunol. doi: 10.1038/ni.3123 – volume: 147 start-page: 2075 year: 2021 end-page: 2082.e2072 ident: CR46 article-title: Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2021.04.002 – volume: 15 start-page: 87 year: 2015 end-page: 103 ident: CR27 article-title: Type I interferons in infectious disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3787 – volume: 165 start-page: 386 year: 2022 end-page: 401 ident: CR51 article-title: New-onset autoimmune phenomena post-COVID-19 vaccination publication-title: Immunology doi: 10.1111/imm.13443 – volume: 12 year: 2021 ident: CR4 article-title: An ionizable lipid toolbox for RNA delivery publication-title: Nat. Commun. doi: 10.1038/s41467-021-27493-0 – volume: 26 start-page: 2100420 year: 2021 ident: CR14 article-title: Effectiveness of the Comirnaty (BNT162b2, BioNTech/Pfizer) vaccine in preventing SARS-CoV-2 infection among healthcare workers, Treviso province, Veneto region, Italy, 27 December 2020 to 24 March 2021 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2021.26.17.2100420 – volume: 51 start-page: 861 year: 2021 end-page: 863 ident: CR56 article-title: Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine publication-title: Clin. Exp. Allergy doi: 10.1111/cea.13874 – volume: 4 start-page: 114 year: 2013 ident: CR102 article-title: Mechanisms of action of adjuvants publication-title: Front. Immunol doi: 10.3389/fimmu.2013.00114 – volume: 9 start-page: 847 year: 2018 ident: CR25 article-title: Interferon-gamma at the crossroads of tumor immune surveillance or evasion publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00847 – volume: 34 start-page: 1579 year: 2014 end-page: 1586 ident: CR122 article-title: Subcutaneous administration of anticancer agents publication-title: Anticancer Res. – volume: 30 start-page: 342 year: 2013 end-page: 351 ident: CR9 article-title: Effect of PEGylation on biodistribution and gene silencing of siRNA/Lipid nanoparticle complexes publication-title: Pharm. Res. doi: 10.1007/s11095-012-0874-6 – volume: 11 start-page: 13 year: 1999 end-page: 18 ident: CR137 article-title: The Toll-receptor family and control of innate immunity publication-title: Curr. Opin. Immunol. doi: 10.1016/S0952-7915(99)80003-X – volume: 17 start-page: 872 year: 2009 end-page: 879 ident: CR11 article-title: Development of lipidoid-siRNA formulations for systemic delivery to the liver publication-title: Mol. Ther. doi: 10.1038/mt.2009.36 – volume: 21 start-page: 72 year: 2021 end-page: 72 ident: CR50 article-title: mRNA vaccine shows promise in autoimmunity publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00504-3 – volume: 11 start-page: 21733 year: 2019 end-page: 21739 ident: CR7 article-title: On the role of helper lipids in lipid nanoparticle formulations of siRNA publication-title: Nanoscale doi: 10.1039/C9NR09347H – volume: 362 start-page: 1659 year: 2003 end-page: 1666 ident: CR68 article-title: Vaccination and autoimmune disease: what is the evidence publication-title: Lancet doi: 10.1016/S0140-6736(03)14802-7 – volume: 20 year: 2021 ident: CR99 article-title: mRNA vaccine for cancer immunotherapy publication-title: Mol. Cancer doi: 10.1186/s12943-021-01335-5 – volume: 15 start-page: 1017 year: 2022 ident: CR101 article-title: mRNA-loaded lipid nanoparticles targeting immune cells in the spleen for use as cancer vaccines publication-title: Pharmaceuticals doi: 10.3390/ph15081017 – volume: 10 start-page: 549 year: 2022 end-page: 559 ident: CR6 article-title: Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA) publication-title: Biomater. Sci. doi: 10.1039/D1BM01454D – volume: 26 start-page: 561 year: 2008 end-page: 569 ident: CR3 article-title: A combinatorial library of lipid-like materials for delivery of RNAi therapeutics publication-title: Nat. Biotechnol. doi: 10.1038/nbt1402 – volume: 5 start-page: 375 year: 2005 end-page: 386 ident: CR24 article-title: Mechanisms of type-I- and type-II-interferon-mediated signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1604 – volume: 19 start-page: 39 year: 2007 end-page: 45 ident: CR32 article-title: Expression and function of Toll-like receptors in T lymphocytes publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2006.11.007 – volume: 16 start-page: 11769 year: 2022 end-page: 11780 ident: CR10 article-title: Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine publication-title: ACS Nano doi: 10.1021/acsnano.2c04543 – volume: 9 start-page: 7204 year: 2017 end-page: 7218 ident: CR22 article-title: Inflammatory responses and inflammation-associated diseases in organs publication-title: Oncotarget doi: 10.18632/oncotarget.23208 – volume: 10 start-page: 371 year: 2015 end-page: 385 ident: CR88 article-title: Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles publication-title: Int. J. Nanomed. – volume: 24 start-page: 3 year: 2023 end-page: 4 ident: CR141 article-title: Excess lipids on endosomes dictate NLRP3 localization and inflammasome activation publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01364-2 – volume: 202 start-page: 1171 year: 2005 end-page: 1177 ident: CR73 article-title: RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement publication-title: J. Exp. Med. doi: 10.1084/jem.20050630 – volume: 10 start-page: 1260 year: 2022 ident: CR53 article-title: Immediate hypersensitivity reactions induced by COVID-19 vaccines: current trends, potential mechanisms and prevention strategies publication-title: Biomedicines doi: 10.3390/biomedicines10061260 – volume: 23 start-page: 543 year: 2022 end-page: 555 ident: CR43 article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01163-9 – volume: 61 start-page: 163 year: 2014 end-page: 173 ident: CR62 article-title: Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.06.038 – volume: 41 start-page: 102007 year: 2021 ident: CR116 article-title: Comparison of equivalent fractional vaccine doses delivered by intradermal and intramuscular or subcutaneous routes: a systematic review publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2021.102007 – volume: 50 start-page: 1861 year: 2004 end-page: 1872 ident: CR71 article-title: Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG publication-title: Arthritis Rheum. doi: 10.1002/art.20254 – volume: 29 start-page: 2232 year: 2018 end-page: 2238 ident: CR98 article-title: Polysarcosine as an alternative to PEG for therapeutic protein conjugation publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.8b00237 – volume: 201 start-page: 2934 year: 2018 end-page: 2946 ident: CR36 article-title: IL-6 promotes T cell proliferation and expansion under inflammatory conditions in association with low-level RORγt expression publication-title: J. Immunol. doi: 10.4049/jimmunol.1800016 – volume: 321 start-page: 1237 year: 2000 end-page: 1238 ident: CR119 article-title: The importance of injecting vaccines into muscle. Different patients need different needle sizes publication-title: BMJ doi: 10.1136/bmj.321.7271.1237 – volume: 351 start-page: 77 year: 2012 end-page: 112 ident: CR126 article-title: Delivery systems for intradermal vaccination publication-title: Intradermal Immun. doi: 10.1007/82_2011_123 – volume: 6 start-page: 823 year: 2006 end-page: 835 ident: CR72 article-title: Toll-like receptors in systemic autoimmune disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1957 – volume: 15 start-page: 7300 year: 2015 end-page: 7306 ident: CR2 article-title: Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02497 – volume: 385 start-page: 1332 year: 2021 end-page: 1334 ident: CR47 article-title: Myocarditis after Covid-19 mRNA vaccination publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2109975 – volume: 13 start-page: 453 year: 2013 end-page: 460 ident: CR136 article-title: The history of Toll-like receptors — redefining innate immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3446 – volume: 9 start-page: 301 year: 2020 end-page: 315 ident: CR12 article-title: A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis publication-title: Neurol. Ther. doi: 10.1007/s40120-020-00208-1 – volume: 279 start-page: 12542 year: 2004 end-page: 12550 ident: CR38 article-title: mRNA is an endogenous ligand for Toll-like receptor 3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310175200 – volume: 14 start-page: 36 year: 2014 end-page: 49 ident: CR28 article-title: Regulation of type I interferon responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – volume: 9 start-page: 1375 year: 2021 ident: CR120 article-title: Immunogenicity and safety of an intradermal BNT162b2 mRNA vaccine booster after two doses of inactivated SARS-CoV-2 vaccine in healthy population publication-title: Vaccines doi: 10.3390/vaccines9121375 – volume: 76 start-page: 3307 year: 2021 end-page: 3313 ident: CR55 article-title: Allergenic components of the mRNA-1273 vaccine for COVID-19: possible involvement of polyethylene glycol and IgG-mediated complement activation publication-title: Allergy doi: 10.1111/all.14794 – volume: 271 start-page: 348 year: 1996 end-page: 350 ident: CR31 article-title: C3d of complement as a molecular adjuvant: bridging innate and acquired immunity publication-title: Science doi: 10.1126/science.271.5247.348 – volume: 15 start-page: 313 year: 2020 ident: 1086_CR78 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0669-6 – volume: 51 start-page: 861 year: 2021 ident: 1086_CR56 publication-title: Clin. Exp. Allergy doi: 10.1111/cea.13874 – volume: 4 start-page: 74 year: 2014 ident: 1086_CR90 publication-title: Drug Deliv. Transl. Res. doi: 10.1007/s13346-013-0161-z – volume: 20 start-page: 710 year: 2019 ident: 1086_CR60 publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1627174 – volume: 15 start-page: 87 year: 2015 ident: 1086_CR27 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3787 – volume: 165 start-page: 386 year: 2022 ident: 1086_CR51 publication-title: Immunology doi: 10.1111/imm.13443 – volume: 11 start-page: 21733 year: 2019 ident: 1086_CR7 publication-title: Nanoscale doi: 10.1039/C9NR09347H – volume: 7 start-page: eabf4398 year: 2021 ident: 1086_CR5 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4398 – volume: 22 start-page: 373 year: 2020 ident: 1086_CR117 publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2020.09.004 – volume: 5 start-page: 987 year: 2004 ident: 1086_CR33 publication-title: Nat. Immunol. doi: 10.1038/ni1112 – volume: 202 start-page: 1171 year: 2005 ident: 1086_CR73 publication-title: J. Exp. Med. doi: 10.1084/jem.20050630 – volume: 31 start-page: 2046 year: 2020 ident: 1086_CR113 publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.0c00366 – volume: 17 start-page: 1326 year: 2017 ident: 1086_CR1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03329 – volume: 25 start-page: 383 year: 2006 ident: 1086_CR69 publication-title: Immunity doi: 10.1016/j.immuni.2006.08.010 – volume: 29 start-page: 2232 year: 2018 ident: 1086_CR98 publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.8b00237 – volume: 31 start-page: 4757 year: 2010 ident: 1086_CR96 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.049 – volume: 4 start-page: 3 year: 2012 ident: 1086_CR20 publication-title: Cold Spring Harb. Perspect. Biol doi: 10.1101/cshperspect.a006049 – volume: 125 start-page: S24 year: 2010 ident: 1086_CR17 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2009.07.016 – volume: 8 start-page: 1101 year: 2020 ident: 1086_CR105 publication-title: Biomater. Sci. doi: 10.1039/C9BM01564G – volume: 385 start-page: 1332 year: 2021 ident: 1086_CR47 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2109975 – volume: 23 start-page: 222 year: 2015 ident: 1086_CR57 publication-title: J. Drug Target. doi: 10.3109/1061186X.2014.997735 – volume: 26 start-page: 2100420 year: 2021 ident: 1086_CR14 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2021.26.17.2100420 – volume: 5 start-page: e326 year: 2016 ident: 1086_CR133 publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2016.38 – volume: 52 start-page: 415 year: 2022 ident: 1086_CR142 publication-title: J. Pharm. Investig. doi: 10.1007/s40005-022-00569-9 – volume: 8 start-page: 589959 year: 2020 ident: 1086_CR100 publication-title: Front. Chem. doi: 10.3389/fchem.2020.589959 – volume: 351 start-page: 77 year: 2012 ident: 1086_CR126 publication-title: Intradermal Immun. doi: 10.1007/82_2011_123 – volume: 10 start-page: 371 year: 2015 ident: 1086_CR88 publication-title: Int. J. Nanomed. doi: 10.1504/IJNM.2014.062978 – volume: 24 start-page: 585 year: 2023 ident: 1086_CR140 publication-title: Nat. Immunol. doi: 10.1038/s41590-023-01450-z – volume: 8 start-page: 345 year: 2007 ident: 1086_CR34 publication-title: Nat. Immunol. doi: 10.1038/ni0407-345 – volume: 13 start-page: 417 year: 2014 ident: 1086_CR132 publication-title: Expert Rev. Vaccines doi: 10.1586/14760584.2014.882775 – volume: 240 start-page: 793 year: 1997 ident: 1086_CR85 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.7749 – volume: 143 start-page: 494 year: 1992 ident: 1086_CR87 publication-title: Res. Immunol. doi: 10.1016/0923-2494(92)80060-X – volume: 50 start-page: 1861 year: 2004 ident: 1086_CR71 publication-title: Arthritis Rheum. doi: 10.1002/art.20254 – ident: 1086_CR16 – volume: 38 start-page: 97 year: 2015 ident: 1086_CR93 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.036 – volume: 83 start-page: 679 year: 1989 ident: 1086_CR130 publication-title: Pediatrics doi: 10.1542/peds.83.5.679 – volume: 25 start-page: 130 year: 2013 ident: 1086_CR103 publication-title: Semin. Immunol. doi: 10.1016/j.smim.2013.05.007 – volume: 13 year: 2022 ident: 1086_CR138 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32587-4 – ident: 1086_CR13 – volume: 18 start-page: 207 year: 2016 ident: 1086_CR83 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-101515-014413 – volume: 279 start-page: 12542 year: 2004 ident: 1086_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310175200 – volume: 21 start-page: 72 year: 2021 ident: 1086_CR50 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00504-3 – volume: 23 start-page: 543 year: 2022 ident: 1086_CR43 publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01163-9 – volume: 13 start-page: 551 year: 2012 ident: 1086_CR139 publication-title: Nat. Immunol. doi: 10.1038/ni.2283 – volume: 202 start-page: 1131 year: 2005 ident: 1086_CR70 publication-title: J. Exp. Med. doi: 10.1084/jem.20050914 – volume: 14 start-page: 973 year: 2022 ident: 1086_CR106 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14050973 – volume: 21 start-page: 401 year: 2021 ident: 1086_CR54 publication-title: Curr. Opin. Allergy Clin. Immunol. doi: 10.1097/ACI.0000000000000762 – volume: 88 start-page: 11804 year: 2016 ident: 1086_CR61 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03437 – volume: 420 start-page: 846 year: 2002 ident: 1086_CR18 publication-title: Nature doi: 10.1038/nature01320 – volume: 27 start-page: e932899 year: 2021 ident: 1086_CR48 publication-title: Med. Sci. Monit. – volume: 201 start-page: 2934 year: 2018 ident: 1086_CR36 publication-title: J. Immunol. doi: 10.4049/jimmunol.1800016 – volume: 16 start-page: 11769 year: 2022 ident: 1086_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.2c04543 – volume: 7 start-page: 122 year: 2023 ident: 1086_CR49 publication-title: Mod. Rheumatol. Case Rep. doi: 10.1093/mrcr/rxac014 – volume: 61 start-page: 233 year: 1999 ident: 1086_CR86 publication-title: J. Control. Release doi: 10.1016/S0168-3659(99)00097-8 – volume: 30 start-page: 523 year: 2012 ident: 1086_CR125 publication-title: Vaccine doi: 10.1016/j.vaccine.2011.11.020 – volume: 4 start-page: 114 year: 2013 ident: 1086_CR102 publication-title: Front. Immunol doi: 10.3389/fimmu.2013.00114 – volume: 335 start-page: 237 year: 2021 ident: 1086_CR77 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.05.021 – volume: 9 start-page: 1375 year: 2021 ident: 1086_CR120 publication-title: Vaccines doi: 10.3390/vaccines9121375 – volume: 6 start-page: 823 year: 2006 ident: 1086_CR72 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1957 – volume: 13 start-page: 453 year: 2013 ident: 1086_CR136 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3446 – volume: 2 start-page: 801322 year: 2021 ident: 1086_CR52 publication-title: Front. Allergy doi: 10.3389/falgy.2021.801322 – volume: 34 start-page: 1579 year: 2014 ident: 1086_CR122 publication-title: Anticancer Res. – volume: 140 start-page: 805 year: 2010 ident: 1086_CR19 publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 76 start-page: 3307 year: 2021 ident: 1086_CR55 publication-title: Allergy doi: 10.1111/all.14794 – volume: 23 start-page: 532 year: 2022 ident: 1086_CR42 publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01160-y – volume: 24 start-page: 497 year: 2006 ident: 1086_CR127 publication-title: Aliment Pharm. Ther. doi: 10.1111/j.1365-2036.2006.03002.x – volume: 342 start-page: 388 year: 2022 ident: 1086_CR115 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.12.008 – volume: 11 start-page: 13 year: 1999 ident: 1086_CR137 publication-title: Curr. Opin. Immunol. doi: 10.1016/S0952-7915(99)80003-X – volume: 14 start-page: 369 year: 2019 ident: 1086_CR74 publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-020117-043952 – volume: 41 start-page: 102007 year: 2021 ident: 1086_CR116 publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2021.102007 – volume: 351 start-page: 113 year: 2012 ident: 1086_CR124 publication-title: Curr. Top. Microbiol. Immunol. – volume: 21 start-page: 300 year: 2020 ident: 1086_CR95 publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-020-01838-2 – volume: 22 start-page: 349 year: 2023 ident: 1086_CR15 publication-title: Nat. Rev. drug Discov. doi: 10.1038/d41573-023-00002-2 – volume: 61 start-page: 163 year: 2014 ident: 1086_CR62 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.06.038 – volume: 17 start-page: 872 year: 2009 ident: 1086_CR11 publication-title: Mol. Ther. doi: 10.1038/mt.2009.36 – volume: 5 start-page: 375 year: 2005 ident: 1086_CR24 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1604 – volume: 345 start-page: 819 year: 2022 ident: 1086_CR79 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2022.03.046 – volume: 11 start-page: 1127 year: 1994 ident: 1086_CR89 publication-title: Pharm. Res. doi: 10.1023/A:1018932714745 – volume: 16 start-page: 1833 year: 2008 ident: 1086_CR41 publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 24 start-page: 3 year: 2023 ident: 1086_CR141 publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01364-2 – volume: 9 start-page: e3417 year: 2021 ident: 1086_CR129 publication-title: Plast. Reconstr. Surg. Glob. Open doi: 10.1097/GOX.0000000000003417 – volume: 50 start-page: 143 year: 2001 ident: 1086_CR123 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(01)00154-5 – volume: 54 start-page: 2877 year: 2021 ident: 1086_CR44 publication-title: Immunity doi: 10.1016/j.immuni.2021.11.001 – volume: 122 start-page: 349 year: 2007 ident: 1086_CR64 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2007.05.015 – volume: 3 start-page: 125 year: 2000 ident: 1086_CR94 publication-title: J. Pharm. Pharm. Sci. – volume: 37 start-page: 373 year: 2019 ident: 1086_CR104 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.10.004 – volume: 147 start-page: 2075 year: 2021 ident: 1086_CR46 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2021.04.002 – volume: 173 start-page: 89 year: 2000 ident: 1086_CR135 publication-title: Immunol. Rev. doi: 10.1034/j.1600-065X.2000.917309.x – volume: 9 start-page: 301 year: 2020 ident: 1086_CR12 publication-title: Neurol. Ther. doi: 10.1007/s40120-020-00208-1 – volume: 23 start-page: 165 year: 2005 ident: 1086_CR40 publication-title: Immunity doi: 10.1016/j.immuni.2005.06.008 – volume: 15 start-page: 1017 year: 2022 ident: 1086_CR101 publication-title: Pharmaceuticals doi: 10.3390/ph15081017 – volume: 10 start-page: 549 year: 2022 ident: 1086_CR6 publication-title: Biomater. Sci. doi: 10.1039/D1BM01454D – volume: 9 start-page: 847 year: 2018 ident: 1086_CR25 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00847 – volume: 42 start-page: 957 year: 2005 ident: 1086_CR39 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2004.09.037 – volume: 9 start-page: 7204 year: 2017 ident: 1086_CR22 publication-title: Oncotarget doi: 10.18632/oncotarget.23208 – volume: 12 start-page: 386 year: 2015 ident: 1086_CR92 publication-title: Mol. Pharm. doi: 10.1021/mp500400k – volume: 37 start-page: 101868 year: 2020 ident: 1086_CR128 publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2020.101868 – volume: 12 year: 2021 ident: 1086_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27493-0 – volume: 1510 start-page: 152 year: 2001 ident: 1086_CR91 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(00)00343-6 – volume: 321 start-page: 1237 year: 2000 ident: 1086_CR119 publication-title: BMJ doi: 10.1136/bmj.321.7271.1237 – volume: 30 start-page: 342 year: 2013 ident: 1086_CR9 publication-title: Pharm. Res. doi: 10.1007/s11095-012-0874-6 – volume: 19 start-page: 39 year: 2007 ident: 1086_CR32 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2006.11.007 – volume: 37 start-page: 1174 year: 2019 ident: 1086_CR108 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0247-3 – volume: 264 start-page: 1918 year: 1994 ident: 1086_CR26 publication-title: Science doi: 10.1126/science.8009221 – volume: 16 start-page: 343 year: 2015 ident: 1086_CR21 publication-title: Nat. Immunol. doi: 10.1038/ni.3123 – volume: 74 start-page: 171 year: 2015 ident: 1086_CR29 publication-title: Cytokine doi: 10.1016/j.cyto.2015.03.001 – volume: 14 start-page: 94 year: 2015 ident: 1086_CR67 publication-title: Inflamm. Allergy Drug Targets doi: 10.2174/1871528114666160105113046 – volume: 235 start-page: 236 year: 2016 ident: 1086_CR75 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.05.059 – volume: 378 start-page: eabo2523 year: 2022 ident: 1086_CR134 publication-title: Science doi: 10.1126/science.abo2523 – volume: 3 start-page: 5044 year: 2018 ident: 1086_CR76 publication-title: ACS Omega doi: 10.1021/acsomega.8b00341 – volume: 118 start-page: e2109256118 year: 2021 ident: 1086_CR118 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2109256118 – volume: 14 start-page: 36 year: 2014 ident: 1086_CR28 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – volume: 9 start-page: 65 year: 2021 ident: 1086_CR109 publication-title: Vaccines doi: 10.3390/vaccines9010065 – ident: 1086_CR131 – volume: 17 start-page: 944 year: 2020 ident: 1086_CR82 publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b01182 – volume: 23 start-page: 2593 year: 2023 ident: 1086_CR110 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c04883 – volume: 271 start-page: 348 year: 1996 ident: 1086_CR31 publication-title: Science doi: 10.1126/science.271.5247.348 – volume: 30 start-page: 3078 year: 2022 ident: 1086_CR80 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.07.007 – volume: 15 start-page: 7300 year: 2015 ident: 1086_CR2 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02497 – volume: 10 start-page: 1260 year: 2022 ident: 1086_CR53 publication-title: Biomedicines doi: 10.3390/biomedicines10061260 – volume: 286 start-page: 121570 year: 2022 ident: 1086_CR111 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121570 – volume: 22 start-page: 35 year: 2008 ident: 1086_CR121 publication-title: Nurs. Stand. – volume: 322 start-page: 209 year: 2020 ident: 1086_CR97 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.03.022 – volume: 50 start-page: 1007 year: 2019 ident: 1086_CR23 publication-title: Immunity doi: 10.1016/j.immuni.2019.03.026 – volume: 588 start-page: 119792 year: 2020 ident: 1086_CR81 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119792 – volume: 100 start-page: 190 year: 2015 ident: 1086_CR66 publication-title: Pharm. Res. doi: 10.1016/j.phrs.2015.08.003 – ident: 1086_CR112 doi: 10.1007/978-3-319-99593-9_6 – volume: 146 start-page: 155654 year: 2021 ident: 1086_CR37 publication-title: Cytokine doi: 10.1016/j.cyto.2021.155654 – volume: 13 start-page: 1257 year: 2016 ident: 1086_CR58 publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1182485 – volume: 351 start-page: 215 year: 2022 ident: 1086_CR59 publication-title: J. Control Release doi: 10.1016/j.jconrel.2022.09.031 – volume: 362 start-page: 1659 year: 2003 ident: 1086_CR68 publication-title: Lancet doi: 10.1016/S0140-6736(03)14802-7 – volume: 89 start-page: 799 year: 2007 ident: 1086_CR30 publication-title: Biochimie doi: 10.1016/j.biochi.2007.03.001 – volume: 534 start-page: 396 year: 2016 ident: 1086_CR45 publication-title: Nature doi: 10.1038/nature18300 – volume: 23 start-page: 385 year: 2006 ident: 1086_CR84 publication-title: Mol. Membr. Biol. doi: 10.1080/09687860600790537 – volume: 3 start-page: e113 year: 2016 ident: 1086_CR107 publication-title: Nat. Prod. Chem. Res. – volume: 26 start-page: 561 year: 2008 ident: 1086_CR3 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1402 – volume: 12 start-page: 9815 year: 2018 ident: 1086_CR114 publication-title: ACS Nano doi: 10.1021/acsnano.8b00966 – volume: 20 year: 2021 ident: 1086_CR99 publication-title: Mol. Cancer doi: 10.1186/s12943-021-01335-5 – volume: 11 year: 2020 ident: 1086_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14527-2 – volume: 392 start-page: 218 year: 2010 ident: 1086_CR63 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.03.022 – volume: 105 start-page: 3855 year: 2008 ident: 1086_CR35 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0706663105 – volume: 290 start-page: H1050 year: 2006 ident: 1086_CR65 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00622.2005 |
SSID | ssj0025474 |
Score | 2.6584108 |
SecondaryResourceType | review_article |
Snippet | Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles... Abstract Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2085 |
SubjectTerms | 42/109 631/61/2300 631/61/350/354 Adaptive immunity Biomedical and Life Sciences Biomedicine COVID-19 Immune response Immune system Immunogenicity Immunosuppressive agents Innate immunity Lipids Liposomes Medical Biochemistry Molecular Medicine mRNA mRNA Vaccines Nanoparticles Review Review Article Side effects Stem Cells Vaccines 생화학 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLgpZHoCAjEBeImsRO7JzQgqhaJHpAVNqb5fjRrto6y-4Wtf-eGce7y_LoKZJj5-EZz8PzzZiQN5XVoGRdm1vmfM47W-YSFEeueSuMa7A8SwTIHjUHx_zLuB6nDbd5glUuZWIU1LY3uEe-V0nJYXwpig_THzmeGoXR1XSExm1yB0uXIaRLjNcOV81jFeYSTIycgd5KSTMFk3tzaBQIv0U0EZj1-dWGYor1-0HdhJn_l-n5N4LyjzBq1E77D8j9ZFbS0cAHD8ktF7bJziiAS31xTd_SCPSMO-jb5O7XFE_fIf4Q00N6YCJoWFzT3tPzyXRiadABvOkEmqM6WDpZzOmQUkn7QMFspA6rT2gTR118OxrRn9rgY4f-vyV2zR-R4_3P3z8d5OnkhdyAP7LIXekLL2phLQMaF7UvhGkdiPXad5WvtBeO6Uo73A4RXWObpqg0Y9w4rTswudhjshX64J4SWjJvtGukLm3HC2472eii69pGl752bZWRcjntyqSy5Hg6xrmK4XEm1UAqBaRSkVTqKiPvVmOmQ1GOG3t_RGquemJB7djQz05Umkklm1YybhteWM4ZYx3GM8Fcs05YaQTLyGvgBXVmJnE8Xk96dTZT4HYc4psrDKhmZHfJKyrJgrlac25GXq1uwyrG0IwOrr_EPgLTysBcysiTgbVW38uEEC34wRmRG0y38UObd8LkNFYKR39fglDOyPslf66_6_8z9uzm33hO7lW4cCKkcZdsLWaX7gWYZovuZVx_vwBY0TRn priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUJcELQ8AgUZgbhARGI7tnNcVlQtEj0gKvVmObFdVm2TaneL6L9nxskuLBQkTpGccWJ7xp5vMo8AvOLeoZINde5FiLlsfJkbVBy5k7Vug6LyLClA9kgdHMuPJ9XJFvBVLkwK2k8lLdMxvYoOe7coOdcULkvRPwjDc8SNt6h0O0n1VE3XRlYltRyTYwphbui3oYBSnX5UK9083gQx_4yU_M1dmrTQ_j24O8JHNhkGfB-2QrcDuxOcS39xzV6zFNCZvpTvwO1Po998F-IhpYH0KCzYsLxmfWTns8uZZ53r0Goep89c59lsuWBD6iTrO4bwkAWqMuHa1Ovi89GEfXMtPXag_yWBa_EAjvc_fJke5OMfFvIW7Y5lHspYRF1p7wXysqhiods64PFdxYZH7qIOwnEX6LOHbpRXquBOCNkG5xqEVuIhbHd9Fx4DK0VsXVDGlb6RhfSNUa5omlq5Mlah5hmUq2W37Vh-nP6CcW6TG1wYO7DKIqtsYpX9nsGbdZ_LofjGP6nfEzfXlFQ4OzX081M7rqQ1qjZCeiULL6UQoiG_JcIyH7Q3rRYZvERZsGftLPWn62lvz-YWzYtDejMnx2kGeytZseOeX1hujEQJL3WRwYv1bdyt5IJxXeiviEZT-hjCogweDaK1Hq_QWtdo72ZgNoRuY0Kbd7rZ11QRnOx6NPV1Bm9X8vlzXH9fsSf_R_4U7nDaSCmUcQ-2l_Or8Awh2bJ5nvbgD_DiML8 priority: 102 providerName: Springer Nature |
Title | Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics |
URI | https://link.springer.com/article/10.1038/s12276-023-01086-x https://www.ncbi.nlm.nih.gov/pubmed/37779140 https://www.proquest.com/docview/2884497170 https://www.proquest.com/docview/2871654426 https://pubmed.ncbi.nlm.nih.gov/PMC10618257 https://doaj.org/article/869834d640d44333b4372064de7d8c73 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003013109 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental and Molecular Medicine, 2023, 55(0), , pp.2085-2096 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BkBAvCDY-AqMyAvEC0RLbiZ3Hrtq0TaJCg0l9s5zYHtU2Z2o7tP33nJ20rHy-8BTJsRPn7py78939DPCWGo1K1lapYdalvDZ5KlFxpJpXorFlgGeJCbLj8uCEH02Kya2jvkJOWAcP3BFuR5aVZNyUPDOcM8bqEGhCPWqsMLIREecTdd7SmepdrYIL3pfIZEzuzHNKRUi2DblDaMSn12tqKKL1o3LxM_c7Q_PXfMmfgqZRF-0_goe9EUmG3eQfwx3rN2Fr6NGBvrgh70hM64z75Ztw_2MfPd8CdxiKQVoUGWxY3JDWkfPp5dQQrz36zn2KHNHekOliTroCStJ6gkYisQFrQjdx1MXxeEi-6SY8tut_q4xr_gRO9ve-jA7S_pyFtEHvY5Ha3GVOFMIYhhzNCpeJprL4Ey9cTR3VTlimqbZh80PUpSnLjGrGeGO1rtHAYk9hw7fePgeSM9doW0qdm5pn3NSy1FldV6XOXWErmkC-JLtqehDycBbGuYrBcCZVxyqFrFKRVeo6gferMZcdBMdfe-8Gbq56Bvjs2IBCpXpKqn8JVQJvUBbUWTON48P1tFVnM4VOxmF4Mw3h0wS2l7Ki-pU_V1RKjnKeiyyB16vbuGZDIEZ7216FPiIUkaFxlMCzTrRW82VCiAq93gTkmtCtfdD6HT_9GnHBg3ePDr9I4MNSPn_M688Ue_E_KPYSHtCwvGKa4zZsLGZX9hWaa4t6AHfFRAzg3nB49PkIr7t740_H2DoqR4O4ar8DD7w-Og |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EvCCYOMSGGDE5YVFS2InTh4Q6mBTy7YKTZu0N-PE9qi2JaXtYP0pvpFjJ-kol73tKZJjJ7bP8bn43ABeRUoik9WZr6g2PstV6KfIOHzJMl7oxKZncQ6yg6R3yD4dxUdL8LONhbFulS1NdIRaVYW9I9-I0pTh-JAH70fffFs1ylpX2xIaNVrs6NkPVNkm7_ofEb6vo2h76-BDz2-qCvgFytpTX4cmMDzmSlGcfxCbgBeZRpIVmzwykTRcUxlJbVV9nicqSYJIUsoKLWWO4gTF796AZUZRlenA8ubW4PP-XMWLmcv7HKJQ41PklE2YTkDTjQk2cuvwa_2XUJHwLxZYoasYgAyuHJt_Cbt_-2z-Ybh1_HD7LtxpBFnSrTHvHizpcgVWuyUq8Wcz8oY411J3Z78CN_caC_4qmL4NSKkQbbFhOiOVIafD0VCRUpaovzduekSWigynE1IHcZKqJCioEm3zXcjCjTrbH3TJd1nYz9b9fwslm9yHw2uBygPolFWpHwEJqSmkTlIZqpwFTOVpIoM8zxIZmlhnkQdhu-2iaBKh23ocp8IZ5GkqalAJBJVwoBIXHrydjxnVaUCu7L1poTnvaVN4u4ZqfCyanRRpkqWUqYQFijFKaW4tqCggKs1VWnDqwUvEBXFSDN14-zyuxMlYoKLTt3-OrAnXg7UWV0RDfSbi8qx48GL-GumGNQbJUlfntg-3gWwooHnwsEat-Xwp5zxDzduDdAHpFha0-KYcfnW5ye0NQ4pswIP1Fj8v5_X_HXt89TKew63ewd6u2O0Pdp7A7cgeIudQuQad6fhcP0XBcJo_a04jgS_XTQB-AUVRdI4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GgMaeIFwcYlMMCIywtETWIndh4QKoxqZVAhxKS9eU5sj2pbUtoO1l_j6zh20pZy2dueKjl2GvvcfW4ATxOtUMiaPNTU2JAVOg4FCo5QsZyXJnPlWXyA7CDb3WfvD9KDNfg5z4VxYZVznugZta5Ld0feSYRguD7mUce2YRGfdnqvR99C10HKeVrn7TQaFNkzsx9ovk1e9XcQ1s-SpPfuy9vdsO0wEJaod09DE9vI8pRrTXEvUWojXuYG2Vdqi8QmynJDVaKMM_t5keksixJFKSuNUgWqFhTfewWucprGjsb4wdLYS5mvAB2jehNSlJltwk5ERWeCg9yF_rpIJjQpwvMVoeh7B6Coq8b2X2rv39Gbf7hwvWTs3YDrrUpLug0O3oQ1U23CVrdCc_50Rp4TH2Tqb-83YeNj68vfAtt3qSk1IjAOTGektuRkOBpqUqkKLfk2YI-oSpPhdEKadE5SVwRVVmJc5QtV-lWnnwdd8l2V7rXN_N-Syia3YP9SYHIb1qu6MneBxNSWymRCxbpgEdOFyFRUFHmmYpuaPAkgnh-7LNuS6K4zx4n0rnkqZAMqiaCSHlTyPIAXizWjpiDIhbPfOGguZrpi3n6gHh_J9iSlyHJBmc5YpBmjlBbOl4qqojZci5LTAJ4gLsjjcujXu9-jWh6PJZo8fffPiXPmBrA9xxXZ8qGJXFJNAI8Xj5GDOLeQqkx95uZwl9KGqloAdxrUWnwv5ZznaIMHIFaQbmVDq0-q4VdfpdzdNQgUCAG8nOPn8rv-f2L3Lt7GI9hAspcf-oO9-3AtcTTkIyu3YX06PjMPUEOcFg89KRI4vGza_wV2HXde |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunogenicity+of+lipid+nanoparticles+and+its+impact+on+the+efficacy+of+mRNA+vaccines+and+therapeutics&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Lee%2C+Yeji&rft.au=Jeong%2C+Michaela&rft.au=Park%2C+Jeongeun&rft.au=Jung%2C+Hyein&rft.date=2023-10-01&rft.issn=2092-6413&rft.eissn=2092-6413&rft.volume=55&rft.issue=10&rft.spage=2085&rft_id=info:doi/10.1038%2Fs12276-023-01086-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon |