Anomaly detection in virtual machine logs against irrelevant attribute interference

Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 1; p. e0315897
Main Authors Zhang, Hao, Zhou, Yun, Xu, Huahu, Shi, Jiangang, Lin, Xinhua, Gao, Yiqin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types.
AbstractList Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types.
Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types.Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types.
Audience Academic
Author Lin, Xinhua
Xu, Huahu
Zhang, Hao
Zhou, Yun
Shi, Jiangang
Gao, Yiqin
AuthorAffiliation University of Hamburg: Universitat Hamburg, GERMANY
3 Shanghai Shangda Hairun Information System Co., Ltd., Shanghai, China
4 Shanghai Jiao Tong University, Shanghai, China
1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
2 Shanghai KingLong IoT Co., Ltd., Shanghai, China
AuthorAffiliation_xml – name: 1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
– name: 2 Shanghai KingLong IoT Co., Ltd., Shanghai, China
– name: 3 Shanghai Shangda Hairun Information System Co., Ltd., Shanghai, China
– name: University of Hamburg: Universitat Hamburg, GERMANY
– name: 4 Shanghai Jiao Tong University, Shanghai, China
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0001-5553-8153
  surname: Zhang
  fullname: Zhang, Hao
– sequence: 2
  givenname: Yun
  surname: Zhou
  fullname: Zhou, Yun
– sequence: 3
  givenname: Huahu
  surname: Xu
  fullname: Xu, Huahu
– sequence: 4
  givenname: Jiangang
  surname: Shi
  fullname: Shi, Jiangang
– sequence: 5
  givenname: Xinhua
  surname: Lin
  fullname: Lin, Xinhua
– sequence: 6
  givenname: Yiqin
  surname: Gao
  fullname: Gao, Yiqin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39774385$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWD-2fzA2w2BsF8msD0v21QhlH4FCYd12K2T52FFQpFSSw_rvpzRuiUcvhi4kjp7zSuflnPPsxDoLWfYaFXNEOPq0doO30sy3KTwvCCqrmj_LzlBN8IzhgpwcnU-z8xDWRVGSirEX2SmpOaekKs-ym4V1G2nu8hYiqKidzbXNd9rHQZp8I9VKW8iN60Mue6ltiLn2HgzspI25jNHrZoiQkiL4DjxYBS-z5500AV6N-0X26-uXn5ffZ1fX35aXi6uZYhTHWVspxXmrWM1KySivWw6EqYbiuutK2ShQmKEKVNuQGmgJpSwKzChFrSor3JGL7O1Bd2tcEKMfQSQrcJlKZTQRywPROrkWW6830t8JJ7W4DzjfC-mjVgYEg-QW6yqisKSy7JoC74U4UZw2hKGk9Xl8bWg20Cqw0UszEZ3eWL0SvdsJhHjBaEWSwodRwbvbAUIUGx0UGCMtuOH-46TijKMioe_-QZ8ub6R6mSrQtnPpYbUXFYsKY4ZrjKpEzZ-g0mpho1Xqnk6n-CTh4yQhMRH-xF4OIYjlzY__Z69_T9n3R-wKpImr4Myw77owBd8cW_3o8UPbJoAeAOVdCB66RwQVYj8dD3aJ_XSIcTrIXzOHARs
Cites_doi 10.4018/JCIT.330145
10.1145/3441448
10.1080/01969720600734677
10.1007/s11265-021-01644-4
10.3724/SP.J.1001.2011.03856
10.1007/s11280-023-01174-y
10.1145/3133956.3134015
10.1109/TNSM.2020.3034647
10.1016/j.ins.2023.119576
10.1109/ACCESS.2019.2953981
10.1016/j.cose.2018.08.009
10.1145/3468264.3473933
10.1109/MIS.2020.3041174
10.1007/s10664-017-9518-0
10.1109/ACCESS.2023.3311146
10.3390/math11183995
10.1109/TKDE.2018.2875442
10.17762/ijritcc2321-8169.150346
10.17485/ijst/2015/v8i15/88281
10.1109/ACCESS.2018.2843336
10.17485/ijst/2011/v4i9.20
10.1109/TNSM.2022.3224974
10.1145/1629575.1629587
10.7763/IJET.2014.V6.687
10.24963/ijcai.2018/369
10.3390/s19132946
10.3390/app12105089
10.1109/ICCCN49398.2020.9209707
10.1016/j.is.2021.101824
10.1109/TIFS.2021.3053371
10.1109/TDSC.2017.2762673
10.3390/sym14030454
10.1109/ACCESS.2023.3276628
10.1145/3338906.3338931
ContentType Journal Article
Copyright Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Zhang et al 2025 Zhang et al
2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Zhang et al 2025 Zhang et al
– notice: 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0315897
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
MEDLINE - Academic


Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Anomaly detection in virtual machine logs against irrelevant attribute interference
EISSN 1932-6203
ExternalDocumentID 3152505364
oai_doaj_org_article_6e1936f83c2a4a5fb02315273c74b361
PMC11706483
A822629218
39774385
10_1371_journal_pone_0315897
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 202201026
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c642t-d8cc77dc6965a6479d7e36cb429ff5abcec2618ecdb39e45e5a0026441dc582f3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:30 EDT 2025
Wed Aug 27 01:22:15 EDT 2025
Thu Aug 21 18:34:51 EDT 2025
Mon Jul 21 09:37:36 EDT 2025
Fri Jul 25 11:19:35 EDT 2025
Tue Jun 17 21:58:19 EDT 2025
Tue Jun 10 20:53:54 EDT 2025
Fri Jun 27 05:15:04 EDT 2025
Fri Jun 27 05:14:52 EDT 2025
Thu May 22 21:23:31 EDT 2025
Mon Jul 21 05:47:02 EDT 2025
Tue Jul 01 03:31:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-d8cc77dc6965a6479d7e36cb429ff5abcec2618ecdb39e45e5a0026441dc582f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: NO authors have competing interests Enter: The authors have declared that no competing interests exist.
ORCID 0009-0001-5553-8153
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0315897
PMID 39774385
PQID 3152505364
PQPubID 1436336
PageCount e0315897
ParticipantIDs plos_journals_3152505364
doaj_primary_oai_doaj_org_article_6e1936f83c2a4a5fb02315273c74b361
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11706483
proquest_miscellaneous_3153876710
proquest_journals_3152505364
gale_infotracmisc_A822629218
gale_infotracacademiconefile_A822629218
gale_incontextgauss_ISR_A822629218
gale_incontextgauss_IOV_A822629218
gale_healthsolutions_A822629218
pubmed_primary_39774385
crossref_primary_10_1371_journal_pone_0315897
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-07
PublicationDateYYYYMMDD 2025-01-07
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Adam Grzech (pone.0315897.ref011) 2006; 37
Ruizhi Xiao (pone.0315897.ref031) 2023; 20
Siyang Lu (pone.0315897.ref021) 2023; 26
Zhaoli Liu (pone.0315897.ref006) 2018; 6
Ying Fu (pone.0315897.ref005) 2022; 28
Xianyun Wen (pone.0315897.ref035) 2023; 11
Boxiang Dong (pone.0315897.ref002) 2021; 36
pone.0315897.ref043
Lejing Yan (pone.0315897.ref003) 2023; 647
Minnu Paul (pone.0315897.ref019) 2019
pone.0315897.ref044
Piotr Ryciak (pone.0315897.ref024) 2022; 12
pone.0315897.ref025
Shi Ying (pone.0315897.ref020) 2021; 15
pone.0315897.ref007
Lei Pan (pone.0315897.ref029) 2023; 25
Wangyang Wei (pone.0315897.ref036) 2019; 19
pone.0315897.ref009
Min Du (pone.0315897.ref008) 2019; 31
Yuxia Xie (pone.0315897.ref033) 2023
Tuan-Anh Pham (pone.0315897.ref004) 2023; 11
Shuangyong Zhang (pone.0315897.ref045) 2023; 33
Ruipeng Yang (pone.0315897.ref022) 2019; 7
O. Sheeba (pone.0315897.ref039) 2014; 6
(pone.0315897.ref015) 2020; 33
Yiyong Chen (pone.0315897.ref017) 2022; 14
Han van der Aa (pone.0315897.ref023) 2021; 102
G. M. Sangeetha (pone.0315897.ref037) 2015; 8
Xiao-Ming Wang (pone.0315897.ref038) 2011; 22
Pinjia He (pone.0315897.ref012) 2018; 15
Aman Mudgal (pone.0315897.ref042) 2015; 3
Hanh T. M. Tran (pone.0315897.ref028) 2022
pone.0315897.ref010
Shangbin Han (pone.0315897.ref018) 2021; 16
pone.0315897.ref032
pone.0315897.ref034
Suhas Kabinna (pone.0315897.ref001) 2017; 23
pone.0315897.ref013
Zhijun Zhao (pone.0315897.ref040) 2021; 93
pone.0315897.ref014
Shaohan Huang (pone.0315897.ref027) 2020; 17
Oleg Gorokhov (pone.0315897.ref030) 2023; 11
pone.0315897.ref016
Max Landauer (pone.0315897.ref026) 2018; 79
J Arokia Renjit (pone.0315897.ref041) 2011; 4
References_xml – volume: 25
  start-page: 1
  issue: 1
  year: 2023
  ident: pone.0315897.ref029
  article-title: An Intelligent Framework for Log Anomaly Detection Based on Log Template Extraction
  publication-title: Journal of Cases on Information Technology
  doi: 10.4018/JCIT.330145
– ident: pone.0315897.ref016
– volume: 15
  start-page: 1
  issue: 3
  year: 2021
  ident: pone.0315897.ref020
  article-title: An Improved KNN-Based Efficient Log Anomaly Detection Method with Automatically Labeled Samples
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/3441448
– ident: pone.0315897.ref043
– volume: 33
  issue: 11
  year: 2023
  ident: pone.0315897.ref045
  article-title: Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals
  publication-title: International Journal of Neural Systems
– volume: 37
  start-page: 635
  issue: 6
  year: 2006
  ident: pone.0315897.ref011
  article-title: Anomaly Detection in Distributed Computer Communication Systems
  publication-title: Cybernetics and Systems
  doi: 10.1080/01969720600734677
– volume: 93
  start-page: 745
  issue: 7
  year: 2021
  ident: pone.0315897.ref040
  article-title: A LSTM-Based Anomaly Detection Model for Log Analysis
  publication-title: Journal of Signal Processing Systems
  doi: 10.1007/s11265-021-01644-4
– volume: 22
  start-page: 1551
  issue: 7
  year: 2011
  ident: pone.0315897.ref038
  article-title: Theoretical Analysis for the Optimization Problem of Support Vector Data Description
  publication-title: Journal of Software
  doi: 10.3724/SP.J.1001.2011.03856
– volume: 26
  start-page: 3137
  issue: 5
  year: 2023
  ident: pone.0315897.ref021
  article-title: SSDLog: a semi-supervised dual branch model for log anomaly detection
  publication-title: World Wide Web
  doi: 10.1007/s11280-023-01174-y
– ident: pone.0315897.ref034
  doi: 10.1145/3133956.3134015
– volume: 17
  start-page: 2064
  issue: 4
  year: 2020
  ident: pone.0315897.ref027
  article-title: HitAnomaly: Hierarchical Transformers for Anomaly Detection in System Log
  publication-title: IEEE Transactions on Network and Service Management
  doi: 10.1109/TNSM.2020.3034647
– volume: 647
  start-page: 119576
  year: 2023
  ident: pone.0315897.ref003
  article-title: Discrete log anomaly detection: A novel time-aware graph-based link prediction approach
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.119576
– volume: 7
  start-page: 181152
  year: 2019
  ident: pone.0315897.ref022
  article-title: nLSALog: An Anomaly Detection Framework for Log Sequence in Security Management
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953981
– volume: 79
  start-page: 94
  year: 2018
  ident: pone.0315897.ref026
  article-title: Dynamic log file analysis: An unsupervised cluster evolution approach for anomaly detection
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2018.08.009
– start-page: 1
  year: 2023
  ident: pone.0315897.ref033
  article-title: Log Anomaly Detection by Adversarial Autoencoders With Graph Feature Fusion
  publication-title: IEEE Transactions on Reliability
– ident: pone.0315897.ref032
  doi: 10.1145/3468264.3473933
– volume: 36
  start-page: 5
  issue: 3
  year: 2021
  ident: pone.0315897.ref002
  article-title: Anomalous Event Sequence Detection
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2020.3041174
– volume: 23
  start-page: 290
  issue: 1
  year: 2017
  ident: pone.0315897.ref001
  article-title: Examining the stability of logging statements
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-017-9518-0
– volume: 11
  start-page: 96272
  year: 2023
  ident: pone.0315897.ref004
  article-title: TransSentLog: Interpretable Anomaly Detection Using Transformer and Sentiment Analysis on Individual Log Event
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3311146
– start-page: 7
  year: 2022
  ident: pone.0315897.ref028
  article-title: Anomaly Detection Using Prediction Error with Spatio-Temporal Convolutional LSTM
  publication-title: Journal of Science and Technology Issue on Information and Communications Technology
– volume: 11
  start-page: 3995
  issue: 18
  year: 2023
  ident: pone.0315897.ref030
  article-title: Fuzzy CNN Autoencoder for Unsupervised Anomaly Detection in Log Data
  publication-title: Mathematics
  doi: 10.3390/math11183995
– volume: 31
  start-page: 2213
  issue: 11
  year: 2019
  ident: pone.0315897.ref008
  article-title: Spell: Online Streaming Parsing of Large Unstructured System Logs
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2875442
– ident: pone.0315897.ref044
– ident: pone.0315897.ref009
– volume: 3
  start-page: 1106
  issue: 3
  year: 2015
  ident: pone.0315897.ref042
  article-title: Role of Support Vector Machine Fuzzy KMeans and Naive Bayes Classification in Intrusion Detection System
  publication-title: International Journal on Recent and Innovation Trends in Computing and Communication
  doi: 10.17762/ijritcc2321-8169.150346
– volume: 8
  issue: 15
  year: 2015
  ident: pone.0315897.ref037
  article-title: Training the SVM to Larger Dataset Applications using the SVM Sampling Technique
  publication-title: Indian Journal of Science and Technology
  doi: 10.17485/ijst/2015/v8i15/88281
– volume: 6
  start-page: 30602
  year: 2018
  ident: pone.0315897.ref006
  article-title: An Integrated Method for Anomaly Detection From Massive System Logs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2843336
– volume: 4
  start-page: 1105
  issue: 9
  year: 2011
  ident: pone.0315897.ref041
  article-title: Network based anomaly intrusion detection system using SVM
  publication-title: Indian Journal of Science and Technology
  doi: 10.17485/ijst/2011/v4i9.20
– volume: 20
  start-page: 2529
  issue: 3
  year: 2023
  ident: pone.0315897.ref031
  article-title: AllInfoLog: Robust Diverse Anomalies Detection Based on All Log Features
  publication-title: IEEE Transactions on Network and Service Management
  doi: 10.1109/TNSM.2022.3224974
– ident: pone.0315897.ref007
  doi: 10.1145/1629575.1629587
– volume: 28
  issue: 1
  year: 2022
  ident: pone.0315897.ref005
  article-title: An empirical study of the impact of log parsers on the performance of log-based anomaly detection
  publication-title: Empirical Software Engineering
– volume: 6
  start-page: 158
  issue: 2
  year: 2014
  ident: pone.0315897.ref039
  article-title: Glaucoma Detection Using Artificial Neural Network
  publication-title: International Journal of Engineering and Technology
  doi: 10.7763/IJET.2014.V6.687
– ident: pone.0315897.ref013
  doi: 10.24963/ijcai.2018/369
– volume: 19
  start-page: 2946
  issue: 13
  year: 2019
  ident: pone.0315897.ref036
  article-title: An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
  publication-title: Sensors
  doi: 10.3390/s19132946
– volume: 12
  start-page: 5089
  issue: 10
  year: 2022
  ident: pone.0315897.ref024
  article-title: Anomaly Detection in Log Files Using Selected Natural Language Processing Methods
  publication-title: Applied Sciences
  doi: 10.3390/app12105089
– ident: pone.0315897.ref010
– ident: pone.0315897.ref014
  doi: 10.1109/ICCCN49398.2020.9209707
– volume: 102
  start-page: 101824
  year: 2021
  ident: pone.0315897.ref023
  article-title: Natural language-based detection of semantic execution anomalies in event logs
  publication-title: Information Systems
  doi: 10.1016/j.is.2021.101824
– volume: 16
  start-page: 2300
  year: 2021
  ident: pone.0315897.ref018
  article-title: Log-Based Anomaly Detection With Robust Feature Extraction and Online Learning
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2021.3053371
– volume: 15
  start-page: 931
  issue: 6
  year: 2018
  ident: pone.0315897.ref012
  article-title: Towards Automated Log Parsing for Large-Scale Log Data Analysis
  publication-title: IEEE Transactions on Dependable and Secure Computing
  doi: 10.1109/TDSC.2017.2762673
– volume: 14
  start-page: 454
  issue: 3
  year: 2022
  ident: pone.0315897.ref017
  article-title: LogLS: Research on System Log Anomaly Detection Method Based on Dual LSTM
  publication-title: Symmetry
  doi: 10.3390/sym14030454
– year: 2019
  ident: pone.0315897.ref019
  article-title: Using Machine Learning to Detect Anomalies in Internet Browsing Pattern of Users
  publication-title: SSRN Electronic Journal
– volume: 11
  start-page: 48322
  year: 2023
  ident: pone.0315897.ref035
  article-title: Time Series Prediction Based on LSTM-Attention-LSTM Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3276628
– ident: pone.0315897.ref025
  doi: 10.1145/3338906.3338931
– volume: 33
  issue: 7
  year: 2020
  ident: pone.0315897.ref015
  article-title: Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
  publication-title: International Journal of Engineering
SSID ssj0053866
Score 2.4661438
Snippet Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0315897
SubjectTerms Accuracy
Algorithms
Analysis
Anomalies
Automation
Biology and Life Sciences
Clustering
Computer and Information Sciences
Debugging
Engineering and Technology
Error messages
Feature extraction
Humans
Identification methods
Information processing
Long short-term memory
Machine learning
Methods
Operations management
Pareto optimum
Parsing algorithms
Physical Sciences
Research and Analysis Methods
Robustness
Social Sciences
Statistical methods
Support Vector Machine
Support vector machines
System failures
Virtual computer systems
Virtual environments
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQn3hBjF8LDDAICXjI1sWJ7TwOxDSQAIkxtDfLduwt0pZWTYrEf8-d7UYNmgQPvNbXpLk7-75r7r4j5JVjTkusC6vw3TogYpHr-dznEqID7C8LRyB2I3_-wk_Oyk_n1fnWqC-sCYv0wFFxB9wBxOBeMlvoUlfeIGEZsoZZURoWEx-IeZtkKp7BcBfOU6McE4cHyS77y0Xn9nGugUSSp61AFPj6x1N5trxa9DdBzj8rJ7dC0fFdcidhSHoUf_sOueW6e2Qn7dKevklU0m_vk1PI7q_11S_auCHUXHW07ejPdoVdI_Q6FFI6CsdfT_WFbgEq0naFY1QAXw9UD3EclqNIKrFKnYEPyNnxh-_vT_I0RiG3kFwMeSOtFaKxvOaV5qWoG-EYtwbM4H2ljXUW0ijpbGNY7crKVRozM8BJja1k4dlDMutAcbuEliBXaFMbZkzZ1NIc6nrOvbcQ9RsrbEbyjU7VMrJlqPDKTECWEZWj0AYq2SAj71DxoyxyXYcPwANU8gD1Nw_IyHM0m4qNo-OOVUeAfXhRA4bJyMsggXwXHRbUXOh136uPX3_8g9Dpt4nQ6yTkF-AAVqcmBngm5NGaSO5NJGHX2snyLjrZRiu9wkcCNMp4Cd_cON7Nyy_GZbwoFsl1brEOMgyCG2DGjDyKfjpqNuB8JquMyIkHT1Q_Xenay0A3jrOJeCnZ4_9hrCfkdoETlPFPLLFHZsNq7Z4CrBvMs7CDfwOTwUmv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLegXLggxtcCAwxCAg7Z2jixnRMaiDKQAIkxtJtlO06JtCUlSZH473nPccOCJsS1fk3a9_mz_T4IeeaY0xLzwjK8WwdELGI9n5exhOgA9mXBBWI18sdP_Ogk_XCanYYDty6kVW59onfURWPxjPyA4aAe0Bievlr_iHFqFN6uhhEaV8m1BUQaTOmSy3dbTwzv4jyUyzGxOAjS2V83tdvH6QYSWz1dCEe-a__om2frs6a7DHj-nT95ISAtb5IbAUnSw0H0O-SKq2-RnWCrHX0RGkq_vE2OYY9_rs9-0cL1PvOqplVNf1Yt1o7Qc59O6Sg4wY7qla4AMNKqxWEqgLJ7qvthKJaj2FqiDfWBd8jJ8u3XN0dxGKYQW9hi9HEhrRWisDznmeapyAvhGLcGhFGWmTbWWdhMSWcLw3KXZi7TuD8DtFTYTCYlu0tmNTBul9AU6BJtcsOMSYtcmoXO57wsLcT-wgobkXjLU7UeemYof3EmYK8xMEehDFSQQUReI-NHWux47T9o2pUKBqS4A6jJS8lsolOdlQYb12H3OCtSw_giIo9RbGooHx3tVh0CAuJJDkgmIk89BXa9qDGtZqU3Xafef_72H0THXyZEzwNR2YACWB1KGeA_YTetCeXehBJs106Wd1HJtlzp1B8th29uFe_y5SfjMj4UU-Vq12w8DYMQB8gxIvcGPR0569E-k1lE5ESDJ6yfrtTVd990HCcU8VSy-__-XQ_I9QQnJOMhldgjs77duIcA23rzyNvmb0ZdQjs
  priority: 102
  providerName: ProQuest
Title Anomaly detection in virtual machine logs against irrelevant attribute interference
URI https://www.ncbi.nlm.nih.gov/pubmed/39774385
https://www.proquest.com/docview/3152505364
https://www.proquest.com/docview/3153876710
https://pubmed.ncbi.nlm.nih.gov/PMC11706483
https://doaj.org/article/6e1936f83c2a4a5fb02315273c74b361
http://dx.doi.org/10.1371/journal.pone.0315897
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLe27sIFMb4WGMUgJOCQqm0S2zkgtE0tA2kDbRT1FtmOUyp1aZekE7vwt_Oe40YEFYkDFx_i51Z5H_bvxe-DkFcmMFJgXFiEd-uAiLkv-_3MF3A6gH1p2AIxG_nsnJ1Owk_TaLpDNj1bHQPLra4d9pOaFIvej-vb92Dw72zXBj7YLOqtlrnpYdcCEfNdsgdnE8eeBmdhc68A_86YS6D728rWAWXr-De7dWe1WJbboOifEZW_HVHje-Suw5b0qFaGfbJj8vtk31lvSd-4EtNvH5BL8Pqv5OKWpqaysVg5nef0Zl5gNgm9sgGWhsK2WFI5k3OAkHReYHsVwN0VlVXdJstQLDZRuIzBh2QyHn09OfVdewVfg9NR-anQmvNUs5hFkoU8TrkJmFYgniyLpNJGg3sljE5VEJswMpFEjw3wU6ojMcyCR6STA-MOCA2BbihVrAKlwjQWaiDjPssyDWgg1Vx7xN_wNFnVVTQSe5XGwfuomZOgDBInA48cI-MbWqyBbR8si1niTCphBsAny0SghzKUUaawlB3Wk9M8VAEbeOQ5ii2pE0obS06OABOxYQzYxiMvLQXWwcgx0GYm12WZfPz87R-ILi9aRK8dUbYEBdDSJTfAO2F9rRblYYsSrFm3pg9QyTZcKRN8JUCpAQth5Ubxtk-_aKbxRzF4LjfLtaUJ4NADLOmRx7WeNpy1-D8QkUdES4NbrG_P5PPvtgw59ixioQie_A9hPSV3hthZGT9u8UPSqYq1eQZwr1JdssunHEZxMsBx_KFL9o5H518uuvYDStdaOI4_R78Abj9a9Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaKNQgEHBIuxsnjnNAaHksu_SBRFvUm7Edp6zUJssmC-qf4jcykzhLgyrEpdd4EiXj8czneOYbQp5aZpXAvLAIz9YBEce-6vczX0B0gPVlwAViNfLuHh8fhh-PoqMV8quthcG0ytYn1o46LQz-I99i2KgHLIaHr2fffewahaerbQuNxiy27dlP2LKVrybvYH6fBcHo_cHbse-6CvgGsHblp8KYOE4NT3ikeBgnaWwZNxreKssipY01sKsQ1qSaJTaMbKRwowKwITWRCDIGz71CroYMIjlWpo8-tJ4fvo1zV57H4sGWs4bNWZHbTeymIJBa6lz4q7sELGNBb3ZSlBcB3b_zNc8FwNFNcsMhVzpsTG2VrNj8Fll1vqGkLxyB9cvbZH-YF6fq5IymtqozvXI6zemP6RxrVehpnb5pKTjdkqpjNQWASqdzbN4CqL6iqmqacFmKVBZzV494hxxeiprvkl4OilsjNAS5QOlEM63DNBF6oJI-zzIDWCM1sfGI3-pUzhqODlkf1MWwt2mUI3EOpJsDj7xBxS9lkWG7vlDMj6VbsJJbgLY8E8wEKlRRppEoD9nqTBxqxgce2cBpk0256tJPyCEgLh4kgJw88qSWQJaNHNN4jtWiLOXk05f_ENr_3BF67oSyAgzAKFc6Ad-E7F0dyfWOJPgK0xleQyNrtVLKP6sK7mwN7-Lhx8thfCim5uW2WNQyDEIqIFWP3GvsdKnZenfBROQR0bHgjuq7I_n0W01yjh2ReCjY_X-_1wa5Nj7Y3ZE7k73tB-R6gN2Z8QdZvE561XxhHwJkrPSjep1S8vWyHcNvhVCALw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqaKEGgYBDurtxYjsHhJaWVZdCQbRFvQXHcbYrtcmyyYL61_h1zCROaFCFuPQaT6JkPI9v4nkQ8swwoyTmhQV4tg6IWLhqMEhdCd4B9EuDCcRq5I_7fPfIf38cHK-QX00tDKZVNjaxMtRJrvEfeZ_hoB6QGO73U5sW8Xln_Gb-3cUJUnjS2ozTqEVkz5z_hPCteD3Zgb1-7nnjd4fbu66dMOBqwN2lm0ithUg0D3mguC_CRBjGdQxvmKaBirXREGFIo5OYhcYPTKAwaAEIkehAeimD514j1wUTEnVMbrfpJfCdnNtSPSaGfSsZW_M8M1s4WUFim6kLrrCaGND6hd78NC8uA71_525ecIbj2-SWRbF0VIvdKlkx2R2yau1EQV_aZtav7pKDUZafqdNzmpiyyvrK6CyjP2YLrFuhZ1Uqp6FggAuqpmoGYJXOFjjIBRB-SVVZD-QyFNtaLGxt4j1ydCVsvk96GTBujVAf6DwVhzGLYz8JZTxU4YCnqQbckWihHeI2PI3mdb-OqDq0ExDn1MyJcA8iuwcOeYuMb2mx23Z1IV9MI6u8ETcAc3kqmfaUr4I0xqZ52LlOCz9mfOiQTdy2qC5dbW1GNAL0xb0QUJRDnlYU2HEjQ9mdqmVRRJNPX_-D6OBLh-iFJUpzEACtbBkFfBN28upQbnQowW7ozvIaClnDlSL6o2FwZyN4ly8_aZfxoZiml5l8WdEwcK-AWh3yoJbTlrNVpMFk4BDZkeAO67sr2eykaniO05G4L9nDf7_XJrkBJiH6MNnfWyc3PRzUjP_KxAbplYuleQTosYwfV2pKybertgu_AemBhDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+in+virtual+machine+logs+against+irrelevant+attribute+interference&rft.jtitle=PloS+one&rft.au=Hao+Zhang&rft.au=Yun+Zhou&rft.au=Huahu+Xu&rft.au=Jiangang+Shi&rft.date=2025-01-07&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pone.0315897&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6e1936f83c2a4a5fb02315273c74b361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon