Anomaly detection in virtual machine logs against irrelevant attribute interference
Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However...
Saved in:
Published in | PloS one Vol. 20; no. 1; p. e0315897 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
07.01.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types. |
---|---|
AbstractList | Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types. Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types.Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of the virtual machine platform. Therefore, using unsupervised anomaly detection methods to identify abnormal logs is a meaningful task. However, collecting accurate anomaly logs in the real world is often challenging, and there is inherent noise in the log information. Parsing logs and anomaly alerts can be time-consuming, making it important to improve their effectiveness and accuracy. To address these challenges, this paper proposes a method called LADSVM(Long Short-Term Memory + Autoencoder-Decoder + SVM). Firstly, the log parsing algorithm is used to parse the logs. Then, the feature extraction algorithm, which combines Long Short-Term Memory and Autoencoder-Decoder, is applied to extract features. Autoencoder-Decoder reduces the dimensionality of the data by mapping the high-dimensional input to a low-dimensional latent space. This helps eliminate redundant information and noise, extract key features, and increase robustness. Finally, the Support Vector Machine is utilized to detect different feature vector signals. Experimental results demonstrate that compared to traditional methods, this approach is capable of learning better features without any prior knowledge, while also exhibiting superior noise robustness and performance. The LADSVM approach excels at detecting anomalies in virtual machine logs characterized by strong sequential patterns and noise. However, its performance may vary when applied to disordered log data. This highlights the necessity of carefully selecting detection methods that align with the specific characteristics of different log data types. |
Audience | Academic |
Author | Lin, Xinhua Xu, Huahu Zhang, Hao Zhou, Yun Shi, Jiangang Gao, Yiqin |
AuthorAffiliation | University of Hamburg: Universitat Hamburg, GERMANY 3 Shanghai Shangda Hairun Information System Co., Ltd., Shanghai, China 4 Shanghai Jiao Tong University, Shanghai, China 1 School of Computer Engineering and Science, Shanghai University, Shanghai, China 2 Shanghai KingLong IoT Co., Ltd., Shanghai, China |
AuthorAffiliation_xml | – name: 1 School of Computer Engineering and Science, Shanghai University, Shanghai, China – name: 2 Shanghai KingLong IoT Co., Ltd., Shanghai, China – name: 3 Shanghai Shangda Hairun Information System Co., Ltd., Shanghai, China – name: University of Hamburg: Universitat Hamburg, GERMANY – name: 4 Shanghai Jiao Tong University, Shanghai, China |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0001-5553-8153 surname: Zhang fullname: Zhang, Hao – sequence: 2 givenname: Yun surname: Zhou fullname: Zhou, Yun – sequence: 3 givenname: Huahu surname: Xu fullname: Xu, Huahu – sequence: 4 givenname: Jiangang surname: Shi fullname: Shi, Jiangang – sequence: 5 givenname: Xinhua surname: Lin fullname: Lin, Xinhua – sequence: 6 givenname: Yiqin surname: Gao fullname: Gao, Yiqin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39774385$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk11r2zAUhs3oWD-2fzA2w2BsF8msD0v21QhlH4FCYd12K2T52FFQpFSSw_rvpzRuiUcvhi4kjp7zSuflnPPsxDoLWfYaFXNEOPq0doO30sy3KTwvCCqrmj_LzlBN8IzhgpwcnU-z8xDWRVGSirEX2SmpOaekKs-ym4V1G2nu8hYiqKidzbXNd9rHQZp8I9VKW8iN60Mue6ltiLn2HgzspI25jNHrZoiQkiL4DjxYBS-z5500AV6N-0X26-uXn5ffZ1fX35aXi6uZYhTHWVspxXmrWM1KySivWw6EqYbiuutK2ShQmKEKVNuQGmgJpSwKzChFrSor3JGL7O1Bd2tcEKMfQSQrcJlKZTQRywPROrkWW6830t8JJ7W4DzjfC-mjVgYEg-QW6yqisKSy7JoC74U4UZw2hKGk9Xl8bWg20Cqw0UszEZ3eWL0SvdsJhHjBaEWSwodRwbvbAUIUGx0UGCMtuOH-46TijKMioe_-QZ8ub6R6mSrQtnPpYbUXFYsKY4ZrjKpEzZ-g0mpho1Xqnk6n-CTh4yQhMRH-xF4OIYjlzY__Z69_T9n3R-wKpImr4Myw77owBd8cW_3o8UPbJoAeAOVdCB66RwQVYj8dD3aJ_XSIcTrIXzOHARs |
Cites_doi | 10.4018/JCIT.330145 10.1145/3441448 10.1080/01969720600734677 10.1007/s11265-021-01644-4 10.3724/SP.J.1001.2011.03856 10.1007/s11280-023-01174-y 10.1145/3133956.3134015 10.1109/TNSM.2020.3034647 10.1016/j.ins.2023.119576 10.1109/ACCESS.2019.2953981 10.1016/j.cose.2018.08.009 10.1145/3468264.3473933 10.1109/MIS.2020.3041174 10.1007/s10664-017-9518-0 10.1109/ACCESS.2023.3311146 10.3390/math11183995 10.1109/TKDE.2018.2875442 10.17762/ijritcc2321-8169.150346 10.17485/ijst/2015/v8i15/88281 10.1109/ACCESS.2018.2843336 10.17485/ijst/2011/v4i9.20 10.1109/TNSM.2022.3224974 10.1145/1629575.1629587 10.7763/IJET.2014.V6.687 10.24963/ijcai.2018/369 10.3390/s19132946 10.3390/app12105089 10.1109/ICCCN49398.2020.9209707 10.1016/j.is.2021.101824 10.1109/TIFS.2021.3053371 10.1109/TDSC.2017.2762673 10.3390/sym14030454 10.1109/ACCESS.2023.3276628 10.1145/3338906.3338931 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Zhang et al 2025 Zhang et al 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Zhang et al 2025 Zhang et al – notice: 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0315897 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Engineering Database ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Anomaly detection in virtual machine logs against irrelevant attribute interference |
EISSN | 1932-6203 |
ExternalDocumentID | 3152505364 oai_doaj_org_article_6e1936f83c2a4a5fb02315273c74b361 PMC11706483 A822629218 39774385 10_1371_journal_pone_0315897 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 202201026 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c642t-d8cc77dc6965a6479d7e36cb429ff5abcec2618ecdb39e45e5a0026441dc582f3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 13 01:18:30 EDT 2025 Wed Aug 27 01:22:15 EDT 2025 Thu Aug 21 18:34:51 EDT 2025 Mon Jul 21 09:37:36 EDT 2025 Fri Jul 25 11:19:35 EDT 2025 Tue Jun 17 21:58:19 EDT 2025 Tue Jun 10 20:53:54 EDT 2025 Fri Jun 27 05:15:04 EDT 2025 Fri Jun 27 05:14:52 EDT 2025 Thu May 22 21:23:31 EDT 2025 Mon Jul 21 05:47:02 EDT 2025 Tue Jul 01 03:31:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c642t-d8cc77dc6965a6479d7e36cb429ff5abcec2618ecdb39e45e5a0026441dc582f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: NO authors have competing interests Enter: The authors have declared that no competing interests exist. |
ORCID | 0009-0001-5553-8153 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0315897 |
PMID | 39774385 |
PQID | 3152505364 |
PQPubID | 1436336 |
PageCount | e0315897 |
ParticipantIDs | plos_journals_3152505364 doaj_primary_oai_doaj_org_article_6e1936f83c2a4a5fb02315273c74b361 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11706483 proquest_miscellaneous_3153876710 proquest_journals_3152505364 gale_infotracmisc_A822629218 gale_infotracacademiconefile_A822629218 gale_incontextgauss_ISR_A822629218 gale_incontextgauss_IOV_A822629218 gale_healthsolutions_A822629218 pubmed_primary_39774385 crossref_primary_10_1371_journal_pone_0315897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-07 |
PublicationDateYYYYMMDD | 2025-01-07 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Adam Grzech (pone.0315897.ref011) 2006; 37 Ruizhi Xiao (pone.0315897.ref031) 2023; 20 Siyang Lu (pone.0315897.ref021) 2023; 26 Zhaoli Liu (pone.0315897.ref006) 2018; 6 Ying Fu (pone.0315897.ref005) 2022; 28 Xianyun Wen (pone.0315897.ref035) 2023; 11 Boxiang Dong (pone.0315897.ref002) 2021; 36 pone.0315897.ref043 Lejing Yan (pone.0315897.ref003) 2023; 647 Minnu Paul (pone.0315897.ref019) 2019 pone.0315897.ref044 Piotr Ryciak (pone.0315897.ref024) 2022; 12 pone.0315897.ref025 Shi Ying (pone.0315897.ref020) 2021; 15 pone.0315897.ref007 Lei Pan (pone.0315897.ref029) 2023; 25 Wangyang Wei (pone.0315897.ref036) 2019; 19 pone.0315897.ref009 Min Du (pone.0315897.ref008) 2019; 31 Yuxia Xie (pone.0315897.ref033) 2023 Tuan-Anh Pham (pone.0315897.ref004) 2023; 11 Shuangyong Zhang (pone.0315897.ref045) 2023; 33 Ruipeng Yang (pone.0315897.ref022) 2019; 7 O. Sheeba (pone.0315897.ref039) 2014; 6 (pone.0315897.ref015) 2020; 33 Yiyong Chen (pone.0315897.ref017) 2022; 14 Han van der Aa (pone.0315897.ref023) 2021; 102 G. M. Sangeetha (pone.0315897.ref037) 2015; 8 Xiao-Ming Wang (pone.0315897.ref038) 2011; 22 Pinjia He (pone.0315897.ref012) 2018; 15 Aman Mudgal (pone.0315897.ref042) 2015; 3 Hanh T. M. Tran (pone.0315897.ref028) 2022 pone.0315897.ref010 Shangbin Han (pone.0315897.ref018) 2021; 16 pone.0315897.ref032 pone.0315897.ref034 Suhas Kabinna (pone.0315897.ref001) 2017; 23 pone.0315897.ref013 Zhijun Zhao (pone.0315897.ref040) 2021; 93 pone.0315897.ref014 Shaohan Huang (pone.0315897.ref027) 2020; 17 Oleg Gorokhov (pone.0315897.ref030) 2023; 11 pone.0315897.ref016 Max Landauer (pone.0315897.ref026) 2018; 79 J Arokia Renjit (pone.0315897.ref041) 2011; 4 |
References_xml | – volume: 25 start-page: 1 issue: 1 year: 2023 ident: pone.0315897.ref029 article-title: An Intelligent Framework for Log Anomaly Detection Based on Log Template Extraction publication-title: Journal of Cases on Information Technology doi: 10.4018/JCIT.330145 – ident: pone.0315897.ref016 – volume: 15 start-page: 1 issue: 3 year: 2021 ident: pone.0315897.ref020 article-title: An Improved KNN-Based Efficient Log Anomaly Detection Method with Automatically Labeled Samples publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/3441448 – ident: pone.0315897.ref043 – volume: 33 issue: 11 year: 2023 ident: pone.0315897.ref045 article-title: Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals publication-title: International Journal of Neural Systems – volume: 37 start-page: 635 issue: 6 year: 2006 ident: pone.0315897.ref011 article-title: Anomaly Detection in Distributed Computer Communication Systems publication-title: Cybernetics and Systems doi: 10.1080/01969720600734677 – volume: 93 start-page: 745 issue: 7 year: 2021 ident: pone.0315897.ref040 article-title: A LSTM-Based Anomaly Detection Model for Log Analysis publication-title: Journal of Signal Processing Systems doi: 10.1007/s11265-021-01644-4 – volume: 22 start-page: 1551 issue: 7 year: 2011 ident: pone.0315897.ref038 article-title: Theoretical Analysis for the Optimization Problem of Support Vector Data Description publication-title: Journal of Software doi: 10.3724/SP.J.1001.2011.03856 – volume: 26 start-page: 3137 issue: 5 year: 2023 ident: pone.0315897.ref021 article-title: SSDLog: a semi-supervised dual branch model for log anomaly detection publication-title: World Wide Web doi: 10.1007/s11280-023-01174-y – ident: pone.0315897.ref034 doi: 10.1145/3133956.3134015 – volume: 17 start-page: 2064 issue: 4 year: 2020 ident: pone.0315897.ref027 article-title: HitAnomaly: Hierarchical Transformers for Anomaly Detection in System Log publication-title: IEEE Transactions on Network and Service Management doi: 10.1109/TNSM.2020.3034647 – volume: 647 start-page: 119576 year: 2023 ident: pone.0315897.ref003 article-title: Discrete log anomaly detection: A novel time-aware graph-based link prediction approach publication-title: Information Sciences doi: 10.1016/j.ins.2023.119576 – volume: 7 start-page: 181152 year: 2019 ident: pone.0315897.ref022 article-title: nLSALog: An Anomaly Detection Framework for Log Sequence in Security Management publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953981 – volume: 79 start-page: 94 year: 2018 ident: pone.0315897.ref026 article-title: Dynamic log file analysis: An unsupervised cluster evolution approach for anomaly detection publication-title: Computers & Security doi: 10.1016/j.cose.2018.08.009 – start-page: 1 year: 2023 ident: pone.0315897.ref033 article-title: Log Anomaly Detection by Adversarial Autoencoders With Graph Feature Fusion publication-title: IEEE Transactions on Reliability – ident: pone.0315897.ref032 doi: 10.1145/3468264.3473933 – volume: 36 start-page: 5 issue: 3 year: 2021 ident: pone.0315897.ref002 article-title: Anomalous Event Sequence Detection publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2020.3041174 – volume: 23 start-page: 290 issue: 1 year: 2017 ident: pone.0315897.ref001 article-title: Examining the stability of logging statements publication-title: Empirical Software Engineering doi: 10.1007/s10664-017-9518-0 – volume: 11 start-page: 96272 year: 2023 ident: pone.0315897.ref004 article-title: TransSentLog: Interpretable Anomaly Detection Using Transformer and Sentiment Analysis on Individual Log Event publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3311146 – start-page: 7 year: 2022 ident: pone.0315897.ref028 article-title: Anomaly Detection Using Prediction Error with Spatio-Temporal Convolutional LSTM publication-title: Journal of Science and Technology Issue on Information and Communications Technology – volume: 11 start-page: 3995 issue: 18 year: 2023 ident: pone.0315897.ref030 article-title: Fuzzy CNN Autoencoder for Unsupervised Anomaly Detection in Log Data publication-title: Mathematics doi: 10.3390/math11183995 – volume: 31 start-page: 2213 issue: 11 year: 2019 ident: pone.0315897.ref008 article-title: Spell: Online Streaming Parsing of Large Unstructured System Logs publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2875442 – ident: pone.0315897.ref044 – ident: pone.0315897.ref009 – volume: 3 start-page: 1106 issue: 3 year: 2015 ident: pone.0315897.ref042 article-title: Role of Support Vector Machine Fuzzy KMeans and Naive Bayes Classification in Intrusion Detection System publication-title: International Journal on Recent and Innovation Trends in Computing and Communication doi: 10.17762/ijritcc2321-8169.150346 – volume: 8 issue: 15 year: 2015 ident: pone.0315897.ref037 article-title: Training the SVM to Larger Dataset Applications using the SVM Sampling Technique publication-title: Indian Journal of Science and Technology doi: 10.17485/ijst/2015/v8i15/88281 – volume: 6 start-page: 30602 year: 2018 ident: pone.0315897.ref006 article-title: An Integrated Method for Anomaly Detection From Massive System Logs publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2843336 – volume: 4 start-page: 1105 issue: 9 year: 2011 ident: pone.0315897.ref041 article-title: Network based anomaly intrusion detection system using SVM publication-title: Indian Journal of Science and Technology doi: 10.17485/ijst/2011/v4i9.20 – volume: 20 start-page: 2529 issue: 3 year: 2023 ident: pone.0315897.ref031 article-title: AllInfoLog: Robust Diverse Anomalies Detection Based on All Log Features publication-title: IEEE Transactions on Network and Service Management doi: 10.1109/TNSM.2022.3224974 – ident: pone.0315897.ref007 doi: 10.1145/1629575.1629587 – volume: 28 issue: 1 year: 2022 ident: pone.0315897.ref005 article-title: An empirical study of the impact of log parsers on the performance of log-based anomaly detection publication-title: Empirical Software Engineering – volume: 6 start-page: 158 issue: 2 year: 2014 ident: pone.0315897.ref039 article-title: Glaucoma Detection Using Artificial Neural Network publication-title: International Journal of Engineering and Technology doi: 10.7763/IJET.2014.V6.687 – ident: pone.0315897.ref013 doi: 10.24963/ijcai.2018/369 – volume: 19 start-page: 2946 issue: 13 year: 2019 ident: pone.0315897.ref036 article-title: An AutoEncoder and LSTM-Based Traffic Flow Prediction Method publication-title: Sensors doi: 10.3390/s19132946 – volume: 12 start-page: 5089 issue: 10 year: 2022 ident: pone.0315897.ref024 article-title: Anomaly Detection in Log Files Using Selected Natural Language Processing Methods publication-title: Applied Sciences doi: 10.3390/app12105089 – ident: pone.0315897.ref010 – ident: pone.0315897.ref014 doi: 10.1109/ICCCN49398.2020.9209707 – volume: 102 start-page: 101824 year: 2021 ident: pone.0315897.ref023 article-title: Natural language-based detection of semantic execution anomalies in event logs publication-title: Information Systems doi: 10.1016/j.is.2021.101824 – volume: 16 start-page: 2300 year: 2021 ident: pone.0315897.ref018 article-title: Log-Based Anomaly Detection With Robust Feature Extraction and Online Learning publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2021.3053371 – volume: 15 start-page: 931 issue: 6 year: 2018 ident: pone.0315897.ref012 article-title: Towards Automated Log Parsing for Large-Scale Log Data Analysis publication-title: IEEE Transactions on Dependable and Secure Computing doi: 10.1109/TDSC.2017.2762673 – volume: 14 start-page: 454 issue: 3 year: 2022 ident: pone.0315897.ref017 article-title: LogLS: Research on System Log Anomaly Detection Method Based on Dual LSTM publication-title: Symmetry doi: 10.3390/sym14030454 – year: 2019 ident: pone.0315897.ref019 article-title: Using Machine Learning to Detect Anomalies in Internet Browsing Pattern of Users publication-title: SSRN Electronic Journal – volume: 11 start-page: 48322 year: 2023 ident: pone.0315897.ref035 article-title: Time Series Prediction Based on LSTM-Attention-LSTM Model publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3276628 – ident: pone.0315897.ref025 doi: 10.1145/3338906.3338931 – volume: 33 issue: 7 year: 2020 ident: pone.0315897.ref015 article-title: Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies publication-title: International Journal of Engineering |
SSID | ssj0053866 |
Score | 2.4661438 |
Snippet | Virtual machine logs are generated in large quantities. Virtual machine logs may contain some abnormal logs that indicate security risks or system failures of... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0315897 |
SubjectTerms | Accuracy Algorithms Analysis Anomalies Automation Biology and Life Sciences Clustering Computer and Information Sciences Debugging Engineering and Technology Error messages Feature extraction Humans Identification methods Information processing Long short-term memory Machine learning Methods Operations management Pareto optimum Parsing algorithms Physical Sciences Research and Analysis Methods Robustness Social Sciences Statistical methods Support Vector Machine Support vector machines System failures Virtual computer systems Virtual environments |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQn3hBjF8LDDAICXjI1sWJ7TwOxDSQAIkxtDfLduwt0pZWTYrEf8-d7UYNmgQPvNbXpLk7-75r7r4j5JVjTkusC6vw3TogYpHr-dznEqID7C8LRyB2I3_-wk_Oyk_n1fnWqC-sCYv0wFFxB9wBxOBeMlvoUlfeIGEZsoZZURoWEx-IeZtkKp7BcBfOU6McE4cHyS77y0Xn9nGugUSSp61AFPj6x1N5trxa9DdBzj8rJ7dC0fFdcidhSHoUf_sOueW6e2Qn7dKevklU0m_vk1PI7q_11S_auCHUXHW07ejPdoVdI_Q6FFI6CsdfT_WFbgEq0naFY1QAXw9UD3EclqNIKrFKnYEPyNnxh-_vT_I0RiG3kFwMeSOtFaKxvOaV5qWoG-EYtwbM4H2ljXUW0ijpbGNY7crKVRozM8BJja1k4dlDMutAcbuEliBXaFMbZkzZ1NIc6nrOvbcQ9RsrbEbyjU7VMrJlqPDKTECWEZWj0AYq2SAj71DxoyxyXYcPwANU8gD1Nw_IyHM0m4qNo-OOVUeAfXhRA4bJyMsggXwXHRbUXOh136uPX3_8g9Dpt4nQ6yTkF-AAVqcmBngm5NGaSO5NJGHX2snyLjrZRiu9wkcCNMp4Cd_cON7Nyy_GZbwoFsl1brEOMgyCG2DGjDyKfjpqNuB8JquMyIkHT1Q_Xenay0A3jrOJeCnZ4_9hrCfkdoETlPFPLLFHZsNq7Z4CrBvMs7CDfwOTwUmv priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLegXLggxtcCAwxCAg7Z2jixnRMaiDKQAIkxtJtlO06JtCUlSZH473nPccOCJsS1fk3a9_mz_T4IeeaY0xLzwjK8WwdELGI9n5exhOgA9mXBBWI18sdP_Ogk_XCanYYDty6kVW59onfURWPxjPyA4aAe0Bievlr_iHFqFN6uhhEaV8m1BUQaTOmSy3dbTwzv4jyUyzGxOAjS2V83tdvH6QYSWz1dCEe-a__om2frs6a7DHj-nT95ISAtb5IbAUnSw0H0O-SKq2-RnWCrHX0RGkq_vE2OYY9_rs9-0cL1PvOqplVNf1Yt1o7Qc59O6Sg4wY7qla4AMNKqxWEqgLJ7qvthKJaj2FqiDfWBd8jJ8u3XN0dxGKYQW9hi9HEhrRWisDznmeapyAvhGLcGhFGWmTbWWdhMSWcLw3KXZi7TuD8DtFTYTCYlu0tmNTBul9AU6BJtcsOMSYtcmoXO57wsLcT-wgobkXjLU7UeemYof3EmYK8xMEehDFSQQUReI-NHWux47T9o2pUKBqS4A6jJS8lsolOdlQYb12H3OCtSw_giIo9RbGooHx3tVh0CAuJJDkgmIk89BXa9qDGtZqU3Xafef_72H0THXyZEzwNR2YACWB1KGeA_YTetCeXehBJs106Wd1HJtlzp1B8th29uFe_y5SfjMj4UU-Vq12w8DYMQB8gxIvcGPR0569E-k1lE5ESDJ6yfrtTVd990HCcU8VSy-__-XQ_I9QQnJOMhldgjs77duIcA23rzyNvmb0ZdQjs priority: 102 providerName: ProQuest |
Title | Anomaly detection in virtual machine logs against irrelevant attribute interference |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39774385 https://www.proquest.com/docview/3152505364 https://www.proquest.com/docview/3153876710 https://pubmed.ncbi.nlm.nih.gov/PMC11706483 https://doaj.org/article/6e1936f83c2a4a5fb02315273c74b361 http://dx.doi.org/10.1371/journal.pone.0315897 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLe27sIFMb4WGMUgJOCQqm0S2zkgtE0tA2kDbRT1FtmOUyp1aZekE7vwt_Oe40YEFYkDFx_i51Z5H_bvxe-DkFcmMFJgXFiEd-uAiLkv-_3MF3A6gH1p2AIxG_nsnJ1Owk_TaLpDNj1bHQPLra4d9pOaFIvej-vb92Dw72zXBj7YLOqtlrnpYdcCEfNdsgdnE8eeBmdhc68A_86YS6D728rWAWXr-De7dWe1WJbboOifEZW_HVHje-Suw5b0qFaGfbJj8vtk31lvSd-4EtNvH5BL8Pqv5OKWpqaysVg5nef0Zl5gNgm9sgGWhsK2WFI5k3OAkHReYHsVwN0VlVXdJstQLDZRuIzBh2QyHn09OfVdewVfg9NR-anQmvNUs5hFkoU8TrkJmFYgniyLpNJGg3sljE5VEJswMpFEjw3wU6ojMcyCR6STA-MOCA2BbihVrAKlwjQWaiDjPssyDWgg1Vx7xN_wNFnVVTQSe5XGwfuomZOgDBInA48cI-MbWqyBbR8si1niTCphBsAny0SghzKUUaawlB3Wk9M8VAEbeOQ5ii2pE0obS06OABOxYQzYxiMvLQXWwcgx0GYm12WZfPz87R-ILi9aRK8dUbYEBdDSJTfAO2F9rRblYYsSrFm3pg9QyTZcKRN8JUCpAQth5Ubxtk-_aKbxRzF4LjfLtaUJ4NADLOmRx7WeNpy1-D8QkUdES4NbrG_P5PPvtgw59ixioQie_A9hPSV3hthZGT9u8UPSqYq1eQZwr1JdssunHEZxMsBx_KFL9o5H518uuvYDStdaOI4_R78Abj9a9Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaKNQgEHBIuxsnjnNAaHksu_SBRFvUm7Edp6zUJssmC-qf4jcykzhLgyrEpdd4EiXj8czneOYbQp5aZpXAvLAIz9YBEce-6vczX0B0gPVlwAViNfLuHh8fhh-PoqMV8quthcG0ytYn1o46LQz-I99i2KgHLIaHr2fffewahaerbQuNxiy27dlP2LKVrybvYH6fBcHo_cHbse-6CvgGsHblp8KYOE4NT3ikeBgnaWwZNxreKssipY01sKsQ1qSaJTaMbKRwowKwITWRCDIGz71CroYMIjlWpo8-tJ4fvo1zV57H4sGWs4bNWZHbTeymIJBa6lz4q7sELGNBb3ZSlBcB3b_zNc8FwNFNcsMhVzpsTG2VrNj8Fll1vqGkLxyB9cvbZH-YF6fq5IymtqozvXI6zemP6RxrVehpnb5pKTjdkqpjNQWASqdzbN4CqL6iqmqacFmKVBZzV494hxxeiprvkl4OilsjNAS5QOlEM63DNBF6oJI-zzIDWCM1sfGI3-pUzhqODlkf1MWwt2mUI3EOpJsDj7xBxS9lkWG7vlDMj6VbsJJbgLY8E8wEKlRRppEoD9nqTBxqxgce2cBpk0256tJPyCEgLh4kgJw88qSWQJaNHNN4jtWiLOXk05f_ENr_3BF67oSyAgzAKFc6Ad-E7F0dyfWOJPgK0xleQyNrtVLKP6sK7mwN7-Lhx8thfCim5uW2WNQyDEIqIFWP3GvsdKnZenfBROQR0bHgjuq7I_n0W01yjh2ReCjY_X-_1wa5Nj7Y3ZE7k73tB-R6gN2Z8QdZvE561XxhHwJkrPSjep1S8vWyHcNvhVCALw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqaKEGgYBDurtxYjsHhJaWVZdCQbRFvQXHcbYrtcmyyYL61_h1zCROaFCFuPQaT6JkPI9v4nkQ8swwoyTmhQV4tg6IWLhqMEhdCd4B9EuDCcRq5I_7fPfIf38cHK-QX00tDKZVNjaxMtRJrvEfeZ_hoB6QGO73U5sW8Xln_Gb-3cUJUnjS2ozTqEVkz5z_hPCteD3Zgb1-7nnjd4fbu66dMOBqwN2lm0ithUg0D3mguC_CRBjGdQxvmKaBirXREGFIo5OYhcYPTKAwaAEIkehAeimD514j1wUTEnVMbrfpJfCdnNtSPSaGfSsZW_M8M1s4WUFim6kLrrCaGND6hd78NC8uA71_525ecIbj2-SWRbF0VIvdKlkx2R2yau1EQV_aZtav7pKDUZafqdNzmpiyyvrK6CyjP2YLrFuhZ1Uqp6FggAuqpmoGYJXOFjjIBRB-SVVZD-QyFNtaLGxt4j1ydCVsvk96GTBujVAf6DwVhzGLYz8JZTxU4YCnqQbckWihHeI2PI3mdb-OqDq0ExDn1MyJcA8iuwcOeYuMb2mx23Z1IV9MI6u8ETcAc3kqmfaUr4I0xqZ52LlOCz9mfOiQTdy2qC5dbW1GNAL0xb0QUJRDnlYU2HEjQ9mdqmVRRJNPX_-D6OBLh-iFJUpzEACtbBkFfBN28upQbnQowW7ozvIaClnDlSL6o2FwZyN4ly8_aZfxoZiml5l8WdEwcK-AWh3yoJbTlrNVpMFk4BDZkeAO67sr2eykaniO05G4L9nDf7_XJrkBJiH6MNnfWyc3PRzUjP_KxAbplYuleQTosYwfV2pKybertgu_AemBhDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+in+virtual+machine+logs+against+irrelevant+attribute+interference&rft.jtitle=PloS+one&rft.au=Hao+Zhang&rft.au=Yun+Zhou&rft.au=Huahu+Xu&rft.au=Jiangang+Shi&rft.date=2025-01-07&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pone.0315897&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6e1936f83c2a4a5fb02315273c74b361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |