Freshwater monitoring by nanopore sequencing
While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and...
Saved in:
Published in | eLife Vol. 10 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
19.01.2021
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices.
Many water-dwelling bacteria can cause severe diseases such as cholera, typhoid or leptospirosis. One way to prevent outbreaks is to test water sources to find out which species of microbes they contain, and at which levels.
Traditionally, this involves taking a water sample, followed by growing a few species of ‘indicator bacteria’ that help to estimate whether the water is safe. An alternative technique, called metagenomics, has been available since the mid-2000s. It consists in reviewing (or ‘sequencing’) the genetic information of most of the bacteria present in the water, which allows scientists to spot harmful species. Both methods, however, require well-equipped laboratories with highly trained staff, making them challenging to use in remote areas.
The MinION is a pocket-sized device that – when paired with a laptop or mobile phone – can sequence genetic information ‘on the go’. It has already been harnessed during Ebola, Zika or SARS-CoV-2 epidemics to track the genetic information of viruses in patients and environmental samples. However, it is still difficult to use the MinION and other sequencers to monitor bacteria in water sources, partly because the genetic information of the microbes is highly fragmented during DNA extraction.
To address this challenge, Urban, Holzer et al. set out to optimise hardware and software protocols so the MinION could be used to detect bacterial species present in rivers. The tests focussed on the River Cam in Cambridge, UK, a waterway which faces regular public health problems: local rowers and swimmers often contract waterborne infections, sometimes leading to river closures.
For six months, Urban, Holzer et al. used the MinION to map out the bacteria present across nine river sites, assessing the diversity of species and the presence of disease-causing microbes in the water. In particular, the results showed that optimising the protocols made it possible to tell the difference between closely related species – an important feature since harmful and inoffensive bacteria can sometimes be genetically close. The data also revealed that the levels of harmful bacteria were highest downstream of urban river sections, near a water treatment plant and river barge moorings. Together, these findings demonstrate that optimising MinION protocols can turn this device into a useful tool to easily monitor water quality.
Around the world, climate change, rising urbanisation and the intensification of agriculture all threaten water quality. In fact, access to clean water is one of the United Nations sustainable development goals for 2030. Using the guidelines developed by Urban, Holzer et al., communities could harness the MinION to monitor water quality in remote areas, offering a cost-effective, portable DNA analysis tool to protect populations against deadly diseases. |
---|---|
AbstractList | While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices. While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices. eLife digest Many water-dwelling bacteria can cause severe diseases such as cholera, typhoid or leptospirosis. One way to prevent outbreaks is to test water sources to find out which species of microbes they contain, and at which levels. Traditionally, this involves taking a water sample, followed by growing a few species of 'indicator bacteria' that help to estimate whether the water is safe. An alternative technique, called metagenomics, has been available since the mid-2000s. It consists in reviewing (or 'sequencing') the genetic information of most of the bacteria present in the water, which allows scientists to spot harmful species. Both methods, however, require well-equipped laboratories with highly trained staff, making them challenging to use in remote areas. The MinION is a pocket-sized device that -- when paired with a laptop or mobile phone -- can sequence genetic information 'on the go'. It has already been harnessed during Ebola, Zika or SARS-CoV-2 epidemics to track the genetic information of viruses in patients and environmental samples. However, it is still difficult to use the MinION and other sequencers to monitor bacteria in water sources, partly because the genetic information of the microbes is highly fragmented during DNA extraction. To address this challenge, Urban, Holzer et al. set out to optimise hardware and software protocols so the MinION could be used to detect bacterial species present in rivers. The tests focussed on the River Cam in Cambridge, UK, a waterway which faces regular public health problems: local rowers and swimmers often contract waterborne infections, sometimes leading to river closures. For six months, Urban, Holzer et al. used the MinION to map out the bacteria present across nine river sites, assessing the diversity of species and the presence of disease-causing microbes in the water. In particular, the results showed that optimising the protocols made it possible to tell the difference between closely related species -- an important feature since harmful and inoffensive bacteria can sometimes be genetically close. The data also revealed that the levels of harmful bacteria were highest downstream of urban river sections, near a water treatment plant and river barge moorings. Together, these findings demonstrate that optimising MinION protocols can turn this device into a useful tool to easily monitor water quality. Around the world, climate change, rising urbanisation and the intensification of agriculture all threaten water quality. In fact, access to clean water is one of the United Nations sustainable development goals for 2030. Using the guidelines developed by Urban, Holzer et al., communities could harness the MinION to monitor water quality in remote areas, offering a cost-effective, portable DNA analysis tool to protect populations against deadly diseases. While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices. Many water-dwelling bacteria can cause severe diseases such as cholera, typhoid or leptospirosis. One way to prevent outbreaks is to test water sources to find out which species of microbes they contain, and at which levels. Traditionally, this involves taking a water sample, followed by growing a few species of ‘indicator bacteria’ that help to estimate whether the water is safe. An alternative technique, called metagenomics, has been available since the mid-2000s. It consists in reviewing (or ‘sequencing’) the genetic information of most of the bacteria present in the water, which allows scientists to spot harmful species. Both methods, however, require well-equipped laboratories with highly trained staff, making them challenging to use in remote areas. The MinION is a pocket-sized device that – when paired with a laptop or mobile phone – can sequence genetic information ‘on the go’. It has already been harnessed during Ebola, Zika or SARS-CoV-2 epidemics to track the genetic information of viruses in patients and environmental samples. However, it is still difficult to use the MinION and other sequencers to monitor bacteria in water sources, partly because the genetic information of the microbes is highly fragmented during DNA extraction. To address this challenge, Urban, Holzer et al. set out to optimise hardware and software protocols so the MinION could be used to detect bacterial species present in rivers. The tests focussed on the River Cam in Cambridge, UK, a waterway which faces regular public health problems: local rowers and swimmers often contract waterborne infections, sometimes leading to river closures. For six months, Urban, Holzer et al. used the MinION to map out the bacteria present across nine river sites, assessing the diversity of species and the presence of disease-causing microbes in the water. In particular, the results showed that optimising the protocols made it possible to tell the difference between closely related species – an important feature since harmful and inoffensive bacteria can sometimes be genetically close. The data also revealed that the levels of harmful bacteria were highest downstream of urban river sections, near a water treatment plant and river barge moorings. Together, these findings demonstrate that optimising MinION protocols can turn this device into a useful tool to easily monitor water quality. Around the world, climate change, rising urbanisation and the intensification of agriculture all threaten water quality. In fact, access to clean water is one of the United Nations sustainable development goals for 2030. Using the guidelines developed by Urban, Holzer et al., communities could harness the MinION to monitor water quality in remote areas, offering a cost-effective, portable DNA analysis tool to protect populations against deadly diseases. While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices.While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices. |
Audience | Academic |
Author | Hall, Michael B Holzer, Andre Martin-Herranz, Daniel E Braeuninger-Weimer, Philipp Perera, Surangi N Scherm, Michael J Baronas, J Jotautas Kunz, Daniel J Salter, Susannah J Urban, Lara Tipper, Edward T Stammnitz, Maximilian R |
Author_xml | – sequence: 1 givenname: Lara orcidid: 0000-0002-5445-9314 surname: Urban fullname: Urban, Lara organization: European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom – sequence: 2 givenname: Andre orcidid: 0000-0003-2439-6364 surname: Holzer fullname: Holzer, Andre organization: Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom – sequence: 3 givenname: J Jotautas orcidid: 0000-0002-4027-3965 surname: Baronas fullname: Baronas, J Jotautas organization: Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom – sequence: 4 givenname: Michael B orcidid: 0000-0003-3683-6208 surname: Hall fullname: Hall, Michael B organization: European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom – sequence: 5 givenname: Philipp orcidid: 0000-0001-8677-1647 surname: Braeuninger-Weimer fullname: Braeuninger-Weimer, Philipp organization: Department of Engineering, University of Cambridge, Cambridge, United Kingdom – sequence: 6 givenname: Michael J orcidid: 0000-0002-3289-9159 surname: Scherm fullname: Scherm, Michael J organization: Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom – sequence: 7 givenname: Daniel J orcidid: 0000-0003-3597-6591 surname: Kunz fullname: Kunz, Daniel J organization: Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom, Department of Physics, University of Cambridge, Cambridge, United Kingdom – sequence: 8 givenname: Surangi N orcidid: 0000-0003-4827-9242 surname: Perera fullname: Perera, Surangi N organization: Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom – sequence: 9 givenname: Daniel E orcidid: 0000-0002-2285-3317 surname: Martin-Herranz fullname: Martin-Herranz, Daniel E organization: European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom – sequence: 10 givenname: Edward T orcidid: 0000-0003-3540-3558 surname: Tipper fullname: Tipper, Edward T organization: Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom – sequence: 11 givenname: Susannah J orcidid: 0000-0003-3898-8504 surname: Salter fullname: Salter, Susannah J organization: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom – sequence: 12 givenname: Maximilian R orcidid: 0000-0002-1704-9199 surname: Stammnitz fullname: Stammnitz, Maximilian R organization: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33461660$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt2L1DAUxYOsuOu6T77LgC-KzpjPpn0RlsXVgQHBD_AtpOlNN0ObjEmr7n9vOrOr22UTQtPb3z0hp-cpOvLBA0LPCV5JIfg72DgLq4IIzB-hE4oFXuKS_zi6sz9GZyltcR6SlyWpnqBjxnhBigKfoLeXEdLVbz1AXPTBuyFE59tFfb3w2oddiLBI8HMEb3L5GXpsdZfg7OZ5ir5ffvh28Wm5-fxxfXG-WZqC02FpZGNrqaEoC2AFlVDVpZYkFyQhUugyv1WSE8sFrQ1mZVWwmhOjtTUN1YSdovVBtwl6q3bR9Tpeq6Cd2hdCbJWOgzMdKC1MA5axhtmSQ9VUlLNG2lrLxnBa86z1_qC1G-seGgN-iLqbic6_eHel2vBLyZIIRiaBVzcCMWQj0qB6lwx0nfYQxqQolxXmmPIJfXkP3YYx-myVoqISRPL8m_5Trc4XcN6GfK6ZRNV5wSucl8CZWj1A5dlA70wOgXW5Pmt4PWvIzAB_hlaPKan11y9z9sVdU_65cZuLDJADYGJIKYJVxg16cGHyyHWKYDXFT-3jp_bxyz1v7vXcyj5E_wUTq9ko |
CitedBy_id | crossref_primary_10_3390_nano12091534 crossref_primary_10_3390_genes12101496 crossref_primary_10_1093_biosci_biab027 crossref_primary_10_3389_fmicb_2023_1043967 crossref_primary_10_1038_s41598_023_29037_6 crossref_primary_10_1088_1755_1315_1315_1_012077 crossref_primary_10_3389_fmicb_2023_1164632 crossref_primary_10_1099_mgen_0_000895 crossref_primary_10_1371_journal_pntd_0010589 crossref_primary_10_3390_ijms23179834 crossref_primary_10_2139_ssrn_4045970 crossref_primary_10_3390_w17050661 crossref_primary_10_3390_bios13060598 crossref_primary_10_7554_eLife_84553 crossref_primary_10_1038_s42003_022_03114_4 crossref_primary_10_3390_w14162491 crossref_primary_10_1016_j_mtbio_2023_100583 crossref_primary_10_3389_fmicb_2021_768240 crossref_primary_10_1093_ismeco_ycae099 crossref_primary_10_1016_j_isci_2023_108623 crossref_primary_10_1016_j_scitotenv_2022_153286 crossref_primary_10_3390_f12111515 crossref_primary_10_1186_s13595_024_01236_9 crossref_primary_10_1371_journal_pone_0300381 crossref_primary_10_2144_btn_2022_0087 crossref_primary_10_3390_su13137229 crossref_primary_10_1248_bpb_b22_00690 crossref_primary_10_1111_mam_12302 crossref_primary_10_2166_wh_2024_399 crossref_primary_10_1016_j_buildenv_2024_111651 crossref_primary_10_3390_life15040514 crossref_primary_10_1016_j_fm_2024_104493 crossref_primary_10_1093_plankt_fbae043 crossref_primary_10_1093_molbev_msac040 crossref_primary_10_3390_ijerph19073906 crossref_primary_10_1038_s41598_023_37134_9 crossref_primary_10_1016_j_scitotenv_2024_176792 crossref_primary_10_1016_j_jece_2024_114931 crossref_primary_10_3390_microorganisms11030804 crossref_primary_10_1016_j_jenvman_2023_118737 crossref_primary_10_3390_ijms241814005 crossref_primary_10_1002_imt2_77 crossref_primary_10_1186_s40793_024_00571_8 crossref_primary_10_1016_j_pt_2022_12_010 crossref_primary_10_3389_fmicb_2023_1267652 crossref_primary_10_1016_j_aquaculture_2023_740393 crossref_primary_10_1093_jambio_lxad310 crossref_primary_10_1002_edn3_70009 crossref_primary_10_7554_eLife_84553_2 crossref_primary_10_1038_s41598_023_35219_z crossref_primary_10_15252_msb_202311686 crossref_primary_10_1002_cpz1_1069 crossref_primary_10_1016_j_scitotenv_2022_155121 crossref_primary_10_1038_s41559_023_02056_2 crossref_primary_10_3389_fmars_2022_1070341 crossref_primary_10_3389_fmicb_2022_875347 crossref_primary_10_1016_j_jhazmat_2024_134513 crossref_primary_10_1128_msystems_00859_24 crossref_primary_10_3390_ijerph18115629 crossref_primary_10_1016_j_watres_2021_117941 crossref_primary_10_3389_fmars_2023_1234137 crossref_primary_10_1016_j_csbj_2022_09_024 crossref_primary_10_1016_j_scitotenv_2023_164282 crossref_primary_10_1002_naaq_10309 crossref_primary_10_1038_s43705_023_00239_3 crossref_primary_10_3390_pathogens10091183 |
Cites_doi | 10.1093/bioinformatics/bty191 10.1073/pnas.1222460110 10.1038/s41586-019-0965-1 10.1038/nmeth.2658 10.1126/science.1261359 10.1128/AEM.00062-07 10.3390/genes10110902 10.1038/nrg1709 10.1371/journal.pntd.0007270 10.1186/s13059-019-1891-0 10.1093/jac/dkx017 10.1093/bioinformatics/btx517 10.1016/S0022-2836(05)80360-2 10.1038/s41598-018-31706-w 10.1099/jmm.0.044594-0 10.1038/s41467-020-19687-9 10.1038/s41598-020-70491-3 10.1073/pnas.1222475110 10.1038/s41598-019-46015-z 10.1289/ehp.110-1240845 10.1093/bioinformatics/btp352 10.1038/s41592-020-01041-y 10.1038/s41598-019-51997-x 10.1186/s13059-015-0677-2 10.3390/ijerph16071097 10.1186/s13059-016-1103-0 10.2166/wst.2015.634 10.32614/RJ-2016-025 10.1186/s13059-018-1462-9 10.1093/bioinformatics/btn322 10.1093/bioinformatics/bty841 10.3390/genes10090632 10.1016/S0140-6736(20)30154-9 10.1016/S0009-2541(99)00031-5 10.1007/978-3-642-30120-9_209 10.1186/gb-2014-15-3-r46 10.1093/nar/gkh340 10.1038/s41587-020-00746-x 10.1186/s13742-016-0111-z 10.1016/j.ijheh.2019.05.004 10.1093/nar/gks1219 10.1038/nature22401 10.1038/s41564-019-0626-z 10.1126/science.aat7115 10.1101/074161 10.7717/peerj.2584 10.1038/nrg.2017.88 10.1038/s41587-020-0731-9 10.1038/s41587-019-0202-3 10.1016/j.csbj.2020.01.005 10.1101/gr.210641.116 10.1093/gigascience/giaa053 10.1093/bioinformatics/bts480 10.1038/s41587-019-0209-9 10.1186/s40168-017-0336-9 10.1186/s40168-018-0521-5 10.12688/f1000research.16817.1 10.1093/nar/gkw1017 10.3390/pathogens4020307 10.1038/nmeth.3930 10.1179/2047773214Y.0000000156 10.1016/S0140-6736(05)17991-4 10.1128/AEM.02272-07 10.1093/gigascience/giz043 10.1038/s41564-019-0426-5 10.1186/s12915-014-0087-z 10.1371/journal.pmed.0030308 10.1093/gigascience/giy140 10.1126/science.aau9343 10.1038/s41586-018-0386-6 10.1016/j.cub.2017.01.017 10.1016/j.copbio.2011.11.027 10.1016/j.jhydrol.2007.04.019 10.1111/mec.12480 10.1186/1471-2105-10-421 10.3389/fmicb.2015.01027 10.1128/AEM.01541-09 10.1038/nmeth.3869 10.1038/nature16996 10.1038/s41598-020-59771-0 10.1186/s13059-019-1727-y 10.12952/journal.elementa.000064 10.1186/s12859-015-0747-1 |
ContentType | Journal Article |
Copyright | 2021, Urban et al. COPYRIGHT 2021 eLife Science Publications, Ltd. 2021, Urban et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021, Urban et al 2021 Urban et al |
Copyright_xml | – notice: 2021, Urban et al. – notice: COPYRIGHT 2021 eLife Science Publications, Ltd. – notice: 2021, Urban et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021, Urban et al 2021 Urban et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.61504 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Geography Public Health Ecology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_a5cdef33d3f84e9d9243d7fba7dc42b4 PMC7815314 A649064950 33461660 10_7554_eLife_61504 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: Graduate Student Fellowship (102453/Z/13/Z) – fundername: Wellcome Trust grantid: Graduate Student Fellowship (203828/Z/16/A, 203828/Z/16/Z) – fundername: Biotechnology and Biological Sciences Research Council grantid: OpenPlant Fund (BBSRC BB/L014130/1) – fundername: ; grantid: Graduate Student Fellowship (102453/Z/13/Z) – fundername: ; grantid: Standard Grant (NE/P011659/1) – fundername: ; grantid: Graduate Student Fellowship – fundername: ; grantid: OpenPlant Fund (BBSRC BB/L014130/1) – fundername: ; grantid: Graduate Student Fellowship (203828/Z/16/A, 203828/Z/16/Z) – fundername: ; grantid: OPP1144 – fundername: ; grantid: Public Engagement Starter Grant (RCUK Catalyst Seed Fund) |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c642t-c7dfb7ae686e3627e9b8a71ae671175a88a79741f452bc038963b41caafcd2a13 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:32:53 EDT 2025 Thu Aug 21 18:30:57 EDT 2025 Tue Aug 05 10:06:44 EDT 2025 Sat Aug 23 12:37:54 EDT 2025 Tue Jun 17 21:41:17 EDT 2025 Tue Jun 10 20:28:06 EDT 2025 Fri Jun 27 04:24:57 EDT 2025 Thu Apr 03 06:55:36 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Tue Jul 01 04:13:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | bacterial monitoring computational biology environmental metagenomics nanopore sequencing ecology infectious disease microbiology portable dna analysis freshwater ecology |
Language | English |
License | 2021, Urban et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c642t-c7dfb7ae686e3627e9b8a71ae671175a88a79741f452bc038963b41caafcd2a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3540-3558 0000-0002-2285-3317 0000-0003-3683-6208 0000-0002-3289-9159 0000-0003-4827-9242 0000-0003-3597-6591 0000-0001-8677-1647 0000-0002-5445-9314 0000-0003-3898-8504 0000-0002-4027-3965 0000-0003-2439-6364 0000-0002-1704-9199 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.61504 |
PMID | 33461660 |
PQID | 2595174504 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5cdef33d3f84e9d9243d7fba7dc42b4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7815314 proquest_miscellaneous_2479040244 proquest_journals_2595174504 gale_infotracmisc_A649064950 gale_infotracacademiconefile_A649064950 gale_incontextgauss_ISR_A649064950 pubmed_primary_33461660 crossref_citationtrail_10_7554_eLife_61504 crossref_primary_10_7554_eLife_61504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-19 |
PublicationDateYYYYMMDD | 2021-01-19 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2021 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Köster (bib37) 2012; 28 Kovaka (bib38) 2020 Allard (bib3) 2015; 16 Frank (bib22) 2008; 74 Wood (bib82) 2019; 20 Wood (bib83) 2014; 15 Gowers (bib27) 2019; 10 Kerkhof (bib35) 2017; 5 Wick (bib81) 2019; 20 Public Health England (bib56) 2016 Quick (bib60) 2016; 530 Latorre-Pérez (bib39) 2020; 10 Darby (bib16) 2013; 22 Reddington (bib63) 2020; 9 Lawson (bib40) 2014 Rose (bib65) 2007; 341 Zurek (bib86) 2020; 11 Bahram (bib6) 2018; 560 Numberger (bib49) 2019; 9 Paulson (bib51) 2013; 10 Benítez-Páez (bib8) 2016; 5 Nygaard (bib50) 2020; 10 Rowe (bib67) 2017; 72 Wynwood (bib85) 2014; 108 Loose (bib43) 2016; 13 Public Health England (bib57) 2019 Ramírez-Castillo (bib61) 2015; 4 Jin (bib31) 2018; 8 Wright (bib84) 2016; 8 Edgar (bib17) 2004; 32 Salter (bib69) 2014; 12 Morgulis (bib45) 2008; 24 Edgar (bib18) 2016 Payne (bib52) 2019; 35 Payne (bib53) 2020 Schewe (bib71) 2014; 111 1000 Genome Project Data Processing Subgroup (bib1) 2009; 25 Vincent (bib78) 2019; 13 Wang (bib79) 2007; 73 Chan (bib14) 2020; 395 Tara Oceans coordinators (bib75) 2015; 348 Salazar (bib68) 2017; 27 Santos (bib70) 2020; 18 Tan (bib74) 2015; 6 Li (bib42) 2018; 34 Camacho (bib13) 2009; 10 Faria (bib19) 2017; 546 Rognes (bib64) 2016; 4 Calus (bib12) 2018; 7 Karst (bib33) 2021; 32 Altschul (bib5) 1990; 215 Kafetzopoulou (bib32) 2019; 363 Leggett (bib41) 2020; 5 Tringe (bib76) 2005; 6 Faria (bib20) 2018; 361 Acharya (bib2) 2019; 9 Global Water Microbiome Consortium (bib26) 2019; 4 Gaillardet (bib23) 1999; 159 Haddeland (bib28) 2014; 111 Kim (bib36) 2016; 26 Hamner (bib29) 2019; 16 Jain (bib30) 2016; 17 Rang (bib62) 2018; 19 Prüss-Ustün (bib55) 2019; 222 Prüss (bib54) 2002; 110 Bolyen (bib9) 2019; 37 Kayman (bib34) 2012; 61 Almeida (bib4) 2019; 568 Quick (bib59) 2015; 16 Gardy (bib25) 2018; 19 Nicholls (bib47) 2019; 8 Wattam (bib80) 2017; 45 Murali (bib46) 2018; 6 Boykin (bib10) 2019; 10 Cuscó (bib15) 2018; 7 Nielsen (bib48) 2012; 23 Quast (bib58) 2013; 41 Urban (bib77) 2020 Ganoza (bib24) 2006; 3 Rowe (bib66) 2016; 73 Stewart (bib73) 2019; 37 Schloss (bib72) 2009; 75 Matias Rodrigues (bib44) 2017; 33 Bartram (bib7) 2005; 365 Callahan (bib11) 2016; 13 Fisher (bib21) 2015; 3 |
References_xml | – volume: 34 start-page: 3094 year: 2018 ident: bib42 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 111 start-page: 3245 year: 2014 ident: bib71 article-title: Multimodel assessment of water scarcity under climate change publication-title: PNAS doi: 10.1073/pnas.1222460110 – volume: 568 start-page: 499 year: 2019 ident: bib4 article-title: A new genomic blueprint of the human gut Microbiota publication-title: Nature doi: 10.1038/s41586-019-0965-1 – volume: 10 start-page: 1200 year: 2013 ident: bib51 article-title: Differential abundance analysis for microbial marker-gene surveys publication-title: Nature Methods doi: 10.1038/nmeth.2658 – volume: 348 year: 2015 ident: bib75 article-title: Ocean plankton structure and function of the global ocean microbiome publication-title: Science doi: 10.1126/science.1261359 – volume: 73 start-page: 5261 year: 2007 ident: bib79 article-title: Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00062-07 – volume: 10 year: 2019 ident: bib27 article-title: Entirely Off-Grid and Solar-Powered DNA sequencing of microbial communities during an ice cap traverse expedition publication-title: Genes doi: 10.3390/genes10110902 – volume-title: Software Heritage year: 2020 ident: bib77 article-title: puntseq – volume: 6 start-page: 805 year: 2005 ident: bib76 article-title: Metagenomics: dna sequencing of environmental samples publication-title: Nature Reviews Genetics doi: 10.1038/nrg1709 – volume: 13 year: 2019 ident: bib78 article-title: Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics publication-title: PLOS Neglected Tropical Diseases doi: 10.1371/journal.pntd.0007270 – volume: 20 year: 2019 ident: bib82 article-title: Improved metagenomic analysis with Kraken 2 publication-title: Genome Biology doi: 10.1186/s13059-019-1891-0 – volume: 72 start-page: 1617 year: 2017 ident: bib67 article-title: Overexpression of antibiotic resistance genes in hospital effluents over time publication-title: Journal of Antimicrobial Chemotherapy doi: 10.1093/jac/dkx017 – volume: 33 start-page: 3808 year: 2017 ident: bib44 article-title: MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx517 – volume: 215 start-page: 403 year: 1990 ident: bib5 article-title: Basic local alignment search tool publication-title: Journal of Molecular Biology doi: 10.1016/S0022-2836(05)80360-2 – volume: 8 year: 2018 ident: bib31 article-title: Bacterial communities and potential waterborne pathogens within the typical urban surface waters publication-title: Scientific Reports doi: 10.1038/s41598-018-31706-w – volume: 61 start-page: 1439 year: 2012 ident: bib34 article-title: Emerging pathogen Arcobacter spp in acute gastroenteritis: molecular identification, antibiotic susceptibilities and genotyping of the isolated arcobacters publication-title: Journal of Medical Microbiology doi: 10.1099/jmm.0.044594-0 – volume: 11 year: 2020 ident: bib86 article-title: UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution publication-title: Nature Communications doi: 10.1038/s41467-020-19687-9 – volume: 10 year: 2020 ident: bib39 article-title: Assembly methods for nanopore-based metagenomic sequencing: a comparative study publication-title: Scientific Reports doi: 10.1038/s41598-020-70491-3 – volume: 111 start-page: 3251 year: 2014 ident: bib28 article-title: Global water resources affected by human interventions and climate change publication-title: PNAS doi: 10.1073/pnas.1222475110 – volume: 9 year: 2019 ident: bib49 article-title: Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing publication-title: Scientific Reports doi: 10.1038/s41598-019-46015-z – volume: 110 start-page: 537 year: 2002 ident: bib54 article-title: Estimating the burden of disease from water, sanitation, and hygiene at a global level publication-title: Environmental Health Perspectives doi: 10.1289/ehp.110-1240845 – volume: 25 start-page: 2078 year: 2009 ident: bib1 article-title: The sequence alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 32 year: 2021 ident: bib33 article-title: High-accuracy long-read amplicon sequences using unique molecular identifiers with nanopore or PacBio sequencing publication-title: Nature Methods doi: 10.1038/s41592-020-01041-y – volume: 9 year: 2019 ident: bib2 article-title: A comparative assessment of conventional and molecular methods, including MinION Nanopore Sequencing, for surveying water quality publication-title: Scientific Reports doi: 10.1038/s41598-019-51997-x – volume: 16 year: 2015 ident: bib59 article-title: Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella publication-title: Genome Biology doi: 10.1186/s13059-015-0677-2 – volume: 16 year: 2019 ident: bib29 article-title: Metagenomic profiling of microbial pathogens in the little bighorn river, Montana publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph16071097 – volume: 17 year: 2016 ident: bib30 article-title: The oxford nanopore MinION: delivery of nanopore sequencing to the genomics community publication-title: Genome Biology doi: 10.1186/s13059-016-1103-0 – volume: 73 start-page: 1541 year: 2016 ident: bib66 article-title: Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment publication-title: Water Science and Technology doi: 10.2166/wst.2015.634 – volume: 8 start-page: 352 year: 2016 ident: bib84 article-title: Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R publication-title: The R Journal doi: 10.32614/RJ-2016-025 – volume: 19 year: 2018 ident: bib62 article-title: From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy publication-title: Genome Biology doi: 10.1186/s13059-018-1462-9 – volume: 24 start-page: 1757 year: 2008 ident: bib45 article-title: Database indexing for production MegaBLAST searches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn322 – volume: 35 start-page: 2193 year: 2019 ident: bib52 article-title: BulkVis: a graphical viewer for oxford nanopore bulk FAST5 files publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty841 – volume: 10 year: 2019 ident: bib10 article-title: Tree lab: portable genomics for early detection of plant viruses and pests in Sub-Saharan africa publication-title: Genes doi: 10.3390/genes10090632 – year: 2016 ident: bib56 article-title: Pilot study to improve the surveillance of laboratory-confirmed cases of leptospirosis – volume: 395 start-page: 514 year: 2020 ident: bib14 article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster publication-title: The Lancet doi: 10.1016/S0140-6736(20)30154-9 – volume: 159 start-page: 3 year: 1999 ident: bib23 article-title: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers publication-title: Chemical Geology doi: 10.1016/S0009-2541(99)00031-5 – start-page: 19 volume-title: The Prokaryotes year: 2014 ident: bib40 doi: 10.1007/978-3-642-30120-9_209 – volume-title: Common Animal-Associated Infections (England and Wales): Fourth Quarter 2019 year: 2019 ident: bib57 – volume: 15 year: 2014 ident: bib83 article-title: Kraken: ultrafast metagenomic sequence classification using exact alignments publication-title: Genome Biology doi: 10.1186/gb-2014-15-3-r46 – volume: 32 start-page: 1792 year: 2004 ident: bib17 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh340 – year: 2020 ident: bib53 article-title: Readfish enables targeted nanopore sequencing of gigabase-sized genomes publication-title: Nature Biotechnology doi: 10.1038/s41587-020-00746-x – volume: 5 year: 2016 ident: bib8 article-title: Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION portable nanopore sequencer publication-title: GigaScience doi: 10.1186/s13742-016-0111-z – volume: 222 start-page: 765 year: 2019 ident: bib55 article-title: Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: an updated analysis with a focus on low- and middle-income countries publication-title: International Journal of Hygiene and Environmental Health doi: 10.1016/j.ijheh.2019.05.004 – volume: 41 start-page: D590 year: 2013 ident: bib58 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Research doi: 10.1093/nar/gks1219 – volume: 546 start-page: 406 year: 2017 ident: bib19 article-title: Establishment and cryptic transmission of zika virus in Brazil and the americas publication-title: Nature doi: 10.1038/nature22401 – volume: 5 start-page: 430 year: 2020 ident: bib41 article-title: Rapid MinION profiling of preterm Microbiota and antimicrobial-resistant pathogens publication-title: Nature Microbiology doi: 10.1038/s41564-019-0626-z – volume: 361 start-page: 894 year: 2018 ident: bib20 article-title: Genomic and epidemiological monitoring of yellow fever virus transmission potential publication-title: Science doi: 10.1126/science.aat7115 – volume-title: bioRxiv year: 2016 ident: bib18 article-title: SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences doi: 10.1101/074161 – volume: 4 year: 2016 ident: bib64 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 19 start-page: 9 year: 2018 ident: bib25 article-title: Towards a genomics-informed, real-time, global pathogen surveillance system publication-title: Nature Reviews Genetics doi: 10.1038/nrg.2017.88 – year: 2020 ident: bib38 article-title: Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED publication-title: Nature Biotechnology doi: 10.1038/s41587-020-0731-9 – volume: 37 start-page: 953 year: 2019 ident: bib73 article-title: Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery publication-title: Nature Biotechnology doi: 10.1038/s41587-019-0202-3 – volume: 18 start-page: 296 year: 2020 ident: bib70 article-title: Computational methods for 16S metabarcoding studies using nanopore sequencing data publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2020.01.005 – volume: 26 start-page: 1721 year: 2016 ident: bib36 article-title: Centrifuge: rapid and sensitive classification of metagenomic sequences publication-title: Genome Research doi: 10.1101/gr.210641.116 – volume: 9 year: 2020 ident: bib63 article-title: Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function publication-title: GigaScience doi: 10.1093/gigascience/giaa053 – volume: 28 start-page: 2520 year: 2012 ident: bib37 article-title: Snakemake--a scalable bioinformatics workflow engine publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts480 – volume: 37 start-page: 852 year: 2019 ident: bib9 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nature Biotechnology doi: 10.1038/s41587-019-0209-9 – volume: 5 year: 2017 ident: bib35 article-title: Profiling bacterial communities by MinION sequencing of ribosomal operons publication-title: Microbiome doi: 10.1186/s40168-017-0336-9 – volume: 6 year: 2018 ident: bib46 article-title: IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences publication-title: Microbiome doi: 10.1186/s40168-018-0521-5 – volume: 7 year: 2018 ident: bib15 article-title: Microbiota profiling with long amplicons using nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon publication-title: F1000Research doi: 10.12688/f1000research.16817.1 – volume: 45 start-page: D535 year: 2017 ident: bib80 article-title: Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1017 – volume: 4 start-page: 307 year: 2015 ident: bib61 article-title: Waterborne pathogens: detection methods and challenges publication-title: Pathogens doi: 10.3390/pathogens4020307 – volume: 13 start-page: 751 year: 2016 ident: bib43 article-title: Real-time selective sequencing using nanopore technology publication-title: Nature Methods doi: 10.1038/nmeth.3930 – volume: 108 start-page: 334 year: 2014 ident: bib85 article-title: Leptospirosis from water sources publication-title: Pathogens and Global Health doi: 10.1179/2047773214Y.0000000156 – volume: 365 start-page: 810 year: 2005 ident: bib7 article-title: Focusing on improved water and sanitation for health publication-title: The Lancet doi: 10.1016/S0140-6736(05)17991-4 – volume: 74 start-page: 2461 year: 2008 ident: bib22 article-title: Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02272-07 – volume: 8 year: 2019 ident: bib47 article-title: Ultra-deep, long-read nanopore sequencing of mock microbial community standards publication-title: GigaScience doi: 10.1093/gigascience/giz043 – volume: 4 start-page: 1183 year: 2019 ident: bib26 article-title: Global diversity and biogeography of bacterial communities in wastewater treatment plants publication-title: Nature Microbiology doi: 10.1038/s41564-019-0426-5 – volume: 12 year: 2014 ident: bib69 article-title: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses publication-title: BMC Biology doi: 10.1186/s12915-014-0087-z – volume: 3 year: 2006 ident: bib24 article-title: Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira publication-title: PLOS Medicine doi: 10.1371/journal.pmed.0030308 – volume: 7 year: 2018 ident: bib12 article-title: NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform publication-title: GigaScience doi: 10.1093/gigascience/giy140 – volume: 363 start-page: 74 year: 2019 ident: bib32 article-title: Metagenomic sequencing at the epicenter of the Nigeria 2018 lassa fever outbreak publication-title: Science doi: 10.1126/science.aau9343 – volume: 560 start-page: 233 year: 2018 ident: bib6 article-title: Structure and function of the global topsoil microbiome publication-title: Nature doi: 10.1038/s41586-018-0386-6 – volume: 27 start-page: R489 year: 2017 ident: bib68 article-title: Marine microbial diversity publication-title: Current Biology doi: 10.1016/j.cub.2017.01.017 – volume: 23 start-page: 452 year: 2012 ident: bib48 article-title: Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2011.11.027 – volume: 341 start-page: 42 year: 2007 ident: bib65 article-title: The effects of urbanization on the hydrochemistry of base flow within the chattahoochee river basin (Georgia, USA) publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2007.04.019 – volume: 22 start-page: 5456 year: 2013 ident: bib16 article-title: High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure publication-title: Molecular Ecology doi: 10.1111/mec.12480 – volume: 10 year: 2009 ident: bib13 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 6 year: 2015 ident: bib74 article-title: Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2015.01027 – volume: 75 start-page: 7537 year: 2009 ident: bib72 article-title: Introducing mothur: open-source, Platform-Independent, Community-Supported software for describing and comparing microbial communities publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01541-09 – volume: 13 start-page: 581 year: 2016 ident: bib11 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nature Methods doi: 10.1038/nmeth.3869 – volume: 530 start-page: 228 year: 2016 ident: bib60 article-title: Real-time, portable genome sequencing for ebola surveillance publication-title: Nature doi: 10.1038/nature16996 – volume: 10 year: 2020 ident: bib50 article-title: A preliminary study on the potential of nanopore MinION and illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes publication-title: Scientific Reports doi: 10.1038/s41598-020-59771-0 – volume: 20 year: 2019 ident: bib81 article-title: Performance of neural network basecalling tools for oxford nanopore sequencing publication-title: Genome Biology doi: 10.1186/s13059-019-1727-y – volume: 3 year: 2015 ident: bib21 article-title: Urban microbial ecology of a freshwater estuary of lake Michigan publication-title: Elementa: Science of the Anthropocene doi: 10.12952/journal.elementa.000064 – volume: 16 year: 2015 ident: bib3 article-title: SPINGO: a rapid species-classifier for microbial amplicon sequences publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0747-1 |
SSID | ssj0000748819 |
Score | 2.537377 |
Snippet | While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Aquatic resources Bacteria Bacteria - classification Bacteria - genetics bacterial monitoring Base Sequence Bioinformatics Cholera Classification Cluster Analysis computational biology Computational Biology - methods DNA sequencing Ecology environmental metagenomics Environmental monitoring Environmental Monitoring - methods Epidemics Fresh Water - microbiology freshwater ecology Geography Global temperature changes Health aspects Indicator species Indicators (Biology) Laboratories Metagenome - genetics Metagenomics Metagenomics - methods Microbiology and Infectious Disease Microbiomes Microbiota Microbiota (Symbiotic organisms) Microbiota - genetics nanopore sequencing Nanopore Sequencing - methods Nucleotide sequencing Pathogens portable dna analysis Public health Rivers Rivers - microbiology RNA, Ribosomal, 16S - genetics Sequence Homology, Nucleic Acid Sewage Species Specificity Surface water Surveys Taxonomy Tropical diseases United Kingdom Water Microbiology Waterborne diseases Waterborne infections |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9yUPClWKv1bC2rFATp2stuNh-PVXpUaX3QFu4tTLJJ70D3pHeH9L93Jrs9bmnBFx83mV2S-cjMLJPfMHaktdCVA5_HaBwmKGByXUCRc-7Qe9QA7a33y2_y_Fp8nVSTjVZfVBPWwgO3jDuBytchlmVdRi2CqTFfKGsVHajai8IlJFD0eRvJVDqDFSomN-2FPIUu8yRczGL4SPDnoueCElL_w_N4wyH1iyU3vM_4GdvuwsbstF3uDnsSmudsq20kebfLjseYNU__YNx4m_1KVkq_6zJ3lzXQzDHEDllXM43DL9j1-Ozq83ne9UHIPWYHy9yrOjoFQWoZ0N-oYJwGxXFAEdAmaHzCtIBHURXOE2KeLJ3gHiD6ugBevmSDZt6EVyyjtvJQ-MpLPxJeOIgSBJ55IL0EbUZD9uGeNdZ3IOHUq-KnxWSB-GgTH23i45AdrYl_t9gYj5N9Ih6vSQjQOg2gmG0nZvsvMQ_ZO5KQJciKhmpibmC1WNgvP77bUykMBlamwtW_74jiHFftobtigHsnlKse5UGPEm3K96fvFcF2Nr2wmCgSrHfa0dv1NL1JdWpNmK-QRiiDxyLGTEO21-rNet9lKSSXEj-uehrVY0x_pplNE-K30uiYuHj9Pzi5z54WVJcz4jk3B2ywvF2FNxhYLd1hsqG_rGUi6g priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9UwFA86EQQRna-rU6oMBLHbTZvm8UmmeJmiflAH91s4SZNt4NrtPpD9957T5tYVxY9NTkt6mvPsye8wtqu10JUDn8doHAYoYHJdQJFz7tB61AD9qfcvX-Xhkfg0r-Yp4bZMZZUbndgp6rr1lCPfRzedQJWrqXh7fpFT1yj6u5paaFxnNwi6jEq61FwNORY0jxotXn8sT6Hh3A-fT2PYIxB0MTJEHV7_31r5ilkal0xesUGzu-xOch6zg_5r32PXQrPNbvbtJC-32e0-B5f1R4vuszczjKVPfqE3ucjOOtmlJF7mLrMGmhYd75ClSmocfsCOZh9-vD_MU3eE3GPMsMq9qqNTEKSWAa2QCsZpUBwHFMFvgsYrDBZ4FFXhPOHoydIJ7gGirwvg5UO21bRNeMwyajYPha-89FPhhYMoQaAmBOklaDOdsNcbVlmfoMOpg8VPiyEE8dV2fLUdXydsdyA-7xEz_k32jng-kBDMdTfQLo5tkhoLla9DLMu6jFoEU2OwWNYqOlC1F4XDh7ykL2YJyKKhSpljWC-X9uP3b_ZACoPulqlw9a8SUWxx1R7SwQN8d8K-GlHujChR0vx4erMxbJL0pf2zLyfsxTBNd1L1WhPaNdIIZVBZoic1YY_6fTS8d1kKyaXEh6vRDhsxZjzTnJ50OOBKo7ni4sn_l_WU3SqoDmfKc2522NZqsQ7P0JFaueedtPwGrs0dvA priority: 102 providerName: ProQuest |
Title | Freshwater monitoring by nanopore sequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33461660 https://www.proquest.com/docview/2595174504 https://www.proquest.com/docview/2479040244 https://pubmed.ncbi.nlm.nih.gov/PMC7815314 https://doaj.org/article/a5cdef33d3f84e9d9243d7fba7dc42b4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwELf2IcFeEN8URhXQJCRESp04sf2ENrRqIDahQaW-WWfHXieNBPoh6H_P2XHLAuMx9tmyL3e-O-v8O0IOhGCi0GBS56TGAAVkKjLIUko1Wo8KoH31fnpWnozZx0kx2SLrYpyRgfMbQztfT2o8uxr8-rF6hwqP_uuAozV8az9dOjvwyOZsm-yiSeJeQ0-jnx-OZI5ySmX7Pu_vMXvkVp6zkrYwlX-MU8Dw__ekvmaqummU1-zS6C65Ex3K5LCVgHtky9b3ye1Y23y6ekDejDCinv5En3KWfAsa7K_yEr1Kaqgb3LlNYj41Nj8k49Hx1_cnaayRkBqMHBap4ZXTHGwpSou2iFupBXCKDdyDcILALwwZqGNFpo1H0ytzzagBcKbKgOaPyE7d1PYJSXzJechMYUozZIZpcCUwPA-hNCUIOeyR12vmKBMBxH0diyuFgYRnqgpMVYGpPXKwIf7e4mbcTHbkubwh8WDXoaGZXaioOwoKU1mX51XuBLOywpAxr7jTwCvDMo2TvPT_SHk4i9rny1zAcj5XH76cq8OSSXS6ZIGrfxWJXIOrNhCfH-DePQJWh3K_Q4n6Zrrda1FQa3FVGER6yO-woxebbj_S57DVtlkiDeMSj0z0p3rkcSs5m32vBbBHeEemOozp9tSX04AGzgUaLcqe_nfOZ2Qv84k4Q5pSuU92FrOlfY6e1EL3yTaf8D7ZPTo--3zeD_cR_aA5vwED6x9O |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTggkhGB8FQYENISECGsSx3YeENpgVcu6CY1N2puxHXubBMnoh6b-U_yN3CVpWQTibY-1r5ZzOd-Hc_c7gA0pmUyNtqH3mcEARWehjHUcRpFB65FrXVe97-3zwRH7fJwer8CvRS0MpVUudGKlqPPS0h35JrrpBKqc9tiH858hdY2ir6uLFhq1WOy6-QWGbJP3w0_4fl_FcX_n8OMgbLoKhBZ97WloRe6N0I5L7lB7C5cZqUWEA4JgK7XEX-hkR56lsbGEP8cTwyKrtbd5rKME170GqyzBUKYDq9s7-18Olrc6aJAl2ti6EFCgqd50ozPv3hHsOmuZvqpDwN924JIhbCdpXrJ6_Ttwu3FXg61avu7CiivW4HrdwHK-BrfqW7-gLma6B2_7GL2fXqD_Og5-VNqCrg0DMw8KXZTo6rugyd3G4ftwdCWcewCdoizcIwiovb2ObWq57THLjPZcM9S9mluuZdbrwpsFq5RtwMqpZ8Z3hUEL8VVVfFUVX7uwsSQ-rzE6_k22TTxfkhCwdjVQjk9Uc06VTm3ufJLkiZfMZTmGp0kuvNEityw2uMhLemOKoDMKys050bPJRA2_HqgtzjJ08LIUd_-6IfIl7trqptQBn53QtlqU6y1KPNu2Pb0QDNXolon6cxK68GI5Tf-kfLnClTOkYSJD9Yy-Wxce1nK0fO4kYTziHBcXLQlrMaY9U5ydVsjjQqKBjNjj_2_rOdwYHO6N1Gi4v_sEbsaUBdSLwihbh850PHNP0Y2bmmfN2Qng21Uf199wHlwz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAgJIRhfhQEBDSEhQuvEsZ0HhAaj2tiYEGNS38zZsbdJkIx-aOq_xl_HXZKWRSDe9lj7ajmX-3TOv2NsQ2uhMwsuDiG3mKBAHusEkphzi96jAGhuvX_al9uH4uMoG62wX4u7MFRWubCJtaEuKkdn5H0M0wlUORuIfmjLIj5vDd-e_oypgxR9aV2002hEZNfPzzB9m7zZ2cJ3_TxJhh--vt-O2w4DscO4exo7VQSrwEstPVpy5XOrQXEcUARhCRp_YcDNg8gS6wiLTqZWcAcQXJEAT3HdS-yySjNOOqZGanm-g65Zo7dtrgQqdNp9v3cS_GsCYBcdJ1j3CvjbI5xzid1yzXP-b3iT3WgD12izkbRbbMWXa-xK08pyvsauN-d_UXOt6TZ7NcQ8_vgMI9lx9KO2G3SAGNl5VEJZYdDvo7aKG4fvsMML4dtdtlpWpb_PImp0D4nLnHQD4YSFIEGgFQbpJOh80GMvF6wyroUtp-4Z3w2mL8RXU_PV1HztsY0l8WmD1vFvsnfE8yUJQWzXA9X4yLQaayBzhQ9pWqRBC58XmKimhQoWVOFEYnGRZ_TGDIFolCSORzCbTMzOwRezKUWOoV6e4e5ftEShwl07aC894LMT7laHcr1DiVruutMLwTCtlZmYPzrRY0-X0_RPqpwrfTVDGqFyNNQYxfXYvUaOls-dpkJyKXFx1ZGwDmO6M-XJcY1BrjS6Si4e_H9bT9hVVFKzt7O_-5BdS6gcaMBjnq-z1el45h9hPDe1j2vFidi3i9bU36ydXwM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freshwater+monitoring+by+nanopore+sequencing&rft.jtitle=eLife&rft.au=Urban%2C+Lara&rft.au=Holzer%2C+Andre&rft.au=Baronas%2C+J+Jotautas&rft.au=Hall%2C+Michael+B&rft.date=2021-01-19&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.61504&rft_id=info%3Apmid%2F33461660&rft.externalDocID=33461660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |