fully traits-based approach to modeling global vegetation distribution
Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Her...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 38; pp. 13733 - 13738 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.09.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
Significance Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation attributes, so-called traits. However, the direct impacts of trait variation on global vegetation distribution are unknown. We derived global trait maps based on information on environmental drivers. Subsequently, we characterized nine globally representative vegetation types based on their trait combinations and could make valid predictions of their global occurrence probabilities based on trait maps. This study provides a proof of concept for the link between plant traits and vegetation types, stimulating enhanced application of trait-based approaches in vegetation modeling. We envision that our approach, our observation-driven trait maps, and vegetation maps may inspire a new generation of powerful traits-based vegetation models. |
---|---|
AbstractList | Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. Significance Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation attributes, so-called traits. However, the direct impacts of trait variation on global vegetation distribution are unknown. We derived global trait maps based on information on environmental drivers. Subsequently, we characterized nine globally representative vegetation types based on their trait combinations and could make valid predictions of their global occurrence probabilities based on trait maps. This study provides a proof of concept for the link between plant traits and vegetation types, stimulating enhanced application of trait-based approaches in vegetation modeling. We envision that our approach, our observation-driven trait maps, and vegetation maps may inspire a new generation of powerful traits-based vegetation models. Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation attributes, so-called traits. However, the direct impacts of trait variation on global vegetation distribution are unknown. We derived global trait maps based on information on environmental drivers. Subsequently, we characterized nine globally representative vegetation types based on their trait combinations and could make valid predictions of their global occurrence probabilities based on trait maps. This study provides a proof of concept for the link between plant traits and vegetation types, stimulating enhanced application of trait-based approaches in vegetation modeling. We envision that our approach, our observation-driven trait maps, and vegetation maps may inspire a new generation of powerful traits-based vegetation models. Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. |
Author | van Bodegom, Peter M. Douma, Jacob C. Verheijen, Lieneke M. |
Author_xml | – sequence: 1 givenname: Peter M. surname: van Bodegom fullname: van Bodegom, Peter M. – sequence: 2 givenname: Jacob C. surname: Douma fullname: Douma, Jacob C. – sequence: 3 givenname: Lieneke M. surname: Verheijen fullname: Verheijen, Lieneke M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25225413$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKeFNSsgEhs2aa9febBAQhUFpEosoGvLcZzUI48d7KRV_z02GQboAlaWfb9zfOx7T9CR804j9BzDGYaank9OxjNMgXGOMYZHaIOhxWXFWjhCGwBSlw0j7BidxLgFgJY38AQdE04IZ5hu0OWwWHtfzEGaOZadjLov5DQFL9VNMfti53ttjRuL0fpO2uJWj3qWs_Gu6E2cg-mWvHmKHg_SRv1sv56i68sP3y4-lVdfPn6-eH9VqoqRuawG2WHNagAFvWzaBkArkHVDgVddw_pBEzJQJjtd1ZyqXlctVIR3nerp0Gt6it6uvndy1C7l0k44GZSJwksjrOmCDPfibgnC2bxMSxcFq-uW8CR-t4rT4U73Srv0bCumYHZZlA3-rjhzI0Z_KxhuKGU0GbzZGwT_fdFxFjsTlbZWOu2XKHADFFrGavx_lFecA25xjvX6Abr1S3DpG39SDbS0yYYv_wx_SP2rlQk4XwEVfIxBDwcEg8jDIvKwiN_DkhT8gUKZtbd5HOw_dMU-Si4cbsFY0CZxNc1hXqzINs4-HBiWTCiBbPFqrQ_SCzmG1L_rrwRwBYAZZYDpD_r-4qQ |
CitedBy_id | crossref_primary_10_1038_srep24110 crossref_primary_10_1002_2017GB005627 crossref_primary_10_3389_fevo_2018_00219 crossref_primary_10_1111_1365_2435_12551 crossref_primary_10_1016_j_biocon_2018_01_002 crossref_primary_10_1038_s41559_018_0699_8 crossref_primary_10_5194_bg_14_481_2017 crossref_primary_10_1111_geb_12749 crossref_primary_10_1007_s10113_016_1093_1 crossref_primary_10_1111_pce_13501 crossref_primary_10_1002_ecm_1271 crossref_primary_10_1111_1365_2745_14278 crossref_primary_10_1111_nph_15609 crossref_primary_10_1111_jvs_12988 crossref_primary_10_1007_s10712_019_09511_5 crossref_primary_10_1111_geb_12583 crossref_primary_10_1038_s41586_024_07731_3 crossref_primary_10_1016_j_tree_2018_11_004 crossref_primary_10_1016_j_rse_2024_114276 crossref_primary_10_3389_fpls_2015_00866 crossref_primary_10_1029_2018MS001453 crossref_primary_10_1111_gcb_13542 crossref_primary_10_1038_nplants_2016_201 crossref_primary_10_1111_ecog_03309 crossref_primary_10_1111_nph_16123 crossref_primary_10_1016_j_rse_2023_113614 crossref_primary_10_5194_gmd_8_1789_2015 crossref_primary_10_1016_j_rse_2021_112406 crossref_primary_10_1111_nph_14740 crossref_primary_10_1002_2017MS000962 crossref_primary_10_1086_706189 crossref_primary_10_1111_ele_14176 crossref_primary_10_1111_geb_13706 crossref_primary_10_3390_rs10081167 crossref_primary_10_1016_j_gecco_2024_e03037 crossref_primary_10_3390_rs10071120 crossref_primary_10_1017_pab_2024_16 crossref_primary_10_1038_s41396_018_0229_3 crossref_primary_10_1111_1365_2745_14423 crossref_primary_10_1111_nph_13815 crossref_primary_10_3389_fpls_2021_733268 crossref_primary_10_1016_j_pld_2016_10_001 crossref_primary_10_5194_essd_9_99_2017 crossref_primary_10_1111_jbi_15079 crossref_primary_10_1016_j_gecco_2019_e00886 crossref_primary_10_1111_1365_2664_13489 crossref_primary_10_1111_nph_14623 crossref_primary_10_3389_fpls_2022_996750 crossref_primary_10_1016_j_tree_2023_08_008 crossref_primary_10_1038_s41559_022_01904_x crossref_primary_10_1016_j_ppees_2018_10_004 crossref_primary_10_1111_ddi_13431 crossref_primary_10_1016_j_scitotenv_2015_03_141 crossref_primary_10_1111_1365_2435_13541 crossref_primary_10_1016_j_agrformet_2016_09_003 crossref_primary_10_1093_jxb_erab546 crossref_primary_10_1111_1365_2435_13023 crossref_primary_10_1146_annurev_ecolsys_012021_092849 crossref_primary_10_1111_nph_15422 crossref_primary_10_1139_cjb_2020_0077 crossref_primary_10_1029_2023GL104962 crossref_primary_10_1038_s41467_021_25163_9 crossref_primary_10_3389_fpls_2020_599764 crossref_primary_10_1016_j_ecolmodel_2016_01_004 crossref_primary_10_1016_j_cosust_2018_03_005 crossref_primary_10_1007_s10021_018_0314_5 crossref_primary_10_1111_gcb_13291 crossref_primary_10_1111_pce_13322 crossref_primary_10_1111_1365_2435_14591 crossref_primary_10_1111_1365_2745_14177 crossref_primary_10_1038_nature16489 crossref_primary_10_1029_2019MS001889 crossref_primary_10_1111_ele_12802 crossref_primary_10_5194_essd_16_1771_2024 crossref_primary_10_1111_nph_14853 crossref_primary_10_1016_j_rse_2021_112353 crossref_primary_10_1177_0309133315582018 crossref_primary_10_1016_j_scitotenv_2023_168095 crossref_primary_10_1111_nph_13590 crossref_primary_10_1111_nph_14283 crossref_primary_10_1016_j_tplants_2022_12_013 crossref_primary_10_1111_gcb_12871 crossref_primary_10_5194_bg_18_2727_2021 crossref_primary_10_1002_eap_2488 crossref_primary_10_1016_j_jag_2015_05_009 crossref_primary_10_1111_1365_2745_13757 crossref_primary_10_1111_ecog_02637 crossref_primary_10_1016_j_agrformet_2023_109884 crossref_primary_10_1016_j_jag_2015_05_005 crossref_primary_10_1111_gcb_13728 crossref_primary_10_1007_s11367_018_1470_8 crossref_primary_10_1007_s00376_024_4034_9 crossref_primary_10_1002_ecm_1241 crossref_primary_10_1016_j_rse_2019_111272 crossref_primary_10_5194_hess_24_1251_2020 crossref_primary_10_1038_s41598_021_95616_0 crossref_primary_10_1111_jbi_12983 crossref_primary_10_1111_gcb_14375 crossref_primary_10_1111_geb_13089 crossref_primary_10_1038_s41559_020_1217_3 crossref_primary_10_1111_gcb_14096 crossref_primary_10_1111_geb_13086 crossref_primary_10_1038_s41477_020_0655_x crossref_primary_10_1002_ece3_11690 crossref_primary_10_1016_j_flora_2018_12_004 crossref_primary_10_1073_pnas_1612909114 crossref_primary_10_5194_bg_12_5339_2015 crossref_primary_10_4236_jep_2016_711133 crossref_primary_10_1029_2023JG007753 crossref_primary_10_1007_s11676_023_01650_1 crossref_primary_10_1111_oik_09415 crossref_primary_10_1016_j_rse_2018_02_030 crossref_primary_10_1029_2020MS002214 crossref_primary_10_5194_gmd_8_3593_2015 crossref_primary_10_1111_nph_13623 crossref_primary_10_1007_s10980_024_01991_0 crossref_primary_10_1016_j_aquabot_2021_103454 crossref_primary_10_7717_peerj_14731 crossref_primary_10_1016_j_rse_2018_09_006 crossref_primary_10_1016_j_rse_2016_07_014 crossref_primary_10_1016_j_scitotenv_2021_149567 crossref_primary_10_1111_geb_12535 crossref_primary_10_5194_bg_21_4909_2024 crossref_primary_10_1139_cjfr_2020_0126 crossref_primary_10_1371_journal_pone_0160715 crossref_primary_10_1002_sae2_12031 crossref_primary_10_1111_ecog_03187 crossref_primary_10_1016_j_rse_2024_114082 crossref_primary_10_1007_s11258_023_01328_y crossref_primary_10_3389_fpls_2019_00908 crossref_primary_10_5194_bg_13_925_2016 crossref_primary_10_1038_ngeo2903 crossref_primary_10_1111_1365_2435_12804 crossref_primary_10_1111_gcb_16574 crossref_primary_10_1038_s42003_024_06777_3 crossref_primary_10_1093_icesjms_fsy090 crossref_primary_10_1111_1365_2435_14422 crossref_primary_10_1016_j_rse_2021_112684 crossref_primary_10_1016_j_fecs_2024_100230 crossref_primary_10_1111_2041_210X_13092 crossref_primary_10_1038_s41598_018_21172_9 crossref_primary_10_5194_gmd_18_287_2025 crossref_primary_10_1111_jbi_12701 crossref_primary_10_1016_j_ecolind_2016_06_022 crossref_primary_10_1016_j_sajb_2015_02_004 crossref_primary_10_1038_s41559_021_01616_8 crossref_primary_10_1111_1365_2745_12755 crossref_primary_10_1073_pnas_1415442111 crossref_primary_10_1016_j_quaint_2022_02_025 crossref_primary_10_1002_ecm_1294 crossref_primary_10_1038_s41559_020_1109_6 crossref_primary_10_1088_1748_9326_acde92 crossref_primary_10_1371_journal_pone_0177778 crossref_primary_10_1002_ecm_1454 crossref_primary_10_1111_nph_16711 crossref_primary_10_1111_gcb_15276 crossref_primary_10_5194_essd_15_25_2023 crossref_primary_10_1111_nph_16558 crossref_primary_10_1002_ecs2_3205 crossref_primary_10_1021_acs_est_9b07228 crossref_primary_10_1029_2019MS001841 crossref_primary_10_1007_s10531_017_1393_x crossref_primary_10_1007_s10646_016_1671_5 crossref_primary_10_1002_2017GL074150 crossref_primary_10_1111_nph_18204 crossref_primary_10_1111_nph_14486 crossref_primary_10_1038_ismej_2017_115 crossref_primary_10_1073_pnas_1708984114 crossref_primary_10_1029_2021JG006606 crossref_primary_10_1038_s41467_020_16839_9 crossref_primary_10_1016_j_flora_2019_04_001 crossref_primary_10_3390_agronomy10020259 crossref_primary_10_1002_ecs2_2060 crossref_primary_10_1016_j_flora_2019_04_004 crossref_primary_10_1111_pce_15314 crossref_primary_10_3389_fpls_2021_734775 crossref_primary_10_3390_f14010164 crossref_primary_10_1002_ecy_1453 crossref_primary_10_1038_s41467_024_53160_1 crossref_primary_10_5194_essd_14_1735_2022 crossref_primary_10_1016_j_foreco_2021_119948 crossref_primary_10_1111_gcb_13000 crossref_primary_10_1111_nph_14247 crossref_primary_10_1016_j_ecolmodel_2020_109394 crossref_primary_10_1111_nph_14766 crossref_primary_10_3390_rs9060530 crossref_primary_10_1111_geb_13680 |
Cites_doi | 10.1016/j.tree.2010.11.011 10.1016/j.jhydrol.2004.03.028 10.1016/S0169-5347(97)01219-6 10.1111/j.1461-0248.2009.01285.x 10.1111/j.1461-0248.2005.00829.x 10.1146/annurev.ecolsys.33.010802.150452 10.1086/669153 10.1111/j.1461-0248.2010.01444.x 10.1086/649582 10.1111/j.1469-8137.2010.03350.x 10.1146/annurev-ecolsys-102209-144628 10.1111/j.1365-2486.2012.02797.x 10.1890/09-1743.1 10.1111/j.1365-2486.2009.02157.x 10.5194/bg-10-5497-2013 10.1046/j.1365-2486.2001.00383.x 10.1111/j.1654-1103.2009.01144.x 10.1111/j.1654-1103.1997.tb00842.x 10.1111/j.1466-8238.2011.00651.x 10.1037/h0045186 10.1111/j.1600-0587.2011.07068.x 10.1111/j.1466-8238.2008.00441.x 10.1175/2009JCLI3037.1 10.5194/bg-9-3857-2012 10.1111/j.1466-822x.2005.00172.x 10.1111/j.1365-3040.2007.01641.x 10.2307/2845499 10.1111/j.1365-2486.2008.01664.x 10.1073/pnas.0409902102 10.1111/j.1466-8238.2006.00259.x 10.1111/j.1466-8238.2011.00727.x 10.1111/j.1365-2486.2008.01626.x 10.5194/bg-4-707-2007 10.1007/978-3-540-32730-1_15 10.1029/2009GB003521 10.1111/j.1365-2486.2011.02451.x 10.1111/j.1365-2745.2010.01735.x 10.1029/1999GB900046 10.1111/j.1654-1103.2004.tb02266.x 10.1038/nature02403 10.2307/3235676 10.1111/j.1654-1103.2007.tb02574.x 10.1111/j.1466-8238.2011.00717.x 10.1126/science.1160662 10.1111/j.1600-0587.2011.07140.x |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 23, 2014 Wageningen University & Research |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 23, 2014 – notice: Wageningen University & Research |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM QVL |
DOI | 10.1073/pnas.1304551110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Traits-based model of global vegetation |
EISSN | 1091-6490 |
EndPage | 13738 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_477925 PMC4183343 3444742771 25225413 10_1073_pnas_1304551110 111_38_13733 43043200 US201600143401 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM 08R ACEMF AFDAS QVL TAF XFK |
ID | FETCH-LOGICAL-c642t-6fab1e4700c0da89800ec0a783056b84dfe22f34abe6753cde690625bbcd3fde3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Oct 13 09:30:54 EDT 2022 Thu Aug 21 14:08:04 EDT 2025 Thu Jul 10 16:30:40 EDT 2025 Fri Jul 11 02:30:19 EDT 2025 Mon Jun 30 08:14:23 EDT 2025 Mon Jul 21 06:04:31 EDT 2025 Tue Jul 01 01:53:14 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Wed Nov 11 00:30:10 EST 2020 Thu May 29 08:40:54 EDT 2025 Thu Apr 03 09:45:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | trait-environment relationships functional variation vegetation attributes global vegetation map probabilistic model |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c642t-6fab1e4700c0da89800ec0a783056b84dfe22f34abe6753cde690625bbcd3fde3 |
Notes | http://dx.doi.org/10.1073/pnas.1304551110 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 2Present address: Centre for Crop System Analysis, Wageningen University and Research Centre, 6700 AK, Wageningen, The Netherlands. Author contributions: P.M.v.B. designed research; P.M.v.B., J.C.D., and L.M.V. performed research; P.M.v.B. analyzed data; and P.M.v.B., J.C.D., and L.M.V. wrote the paper. Edited by Peter B. Reich, University of Minnesota, St. Paul, MN, and accepted by the Editorial Board October 22, 2013 (received for review May 16, 2013) |
OpenAccessLink | http://doi.org/10.1073/pnas.1304551110 |
PMID | 25225413 |
PQID | 1565809381 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_25225413 proquest_miscellaneous_1565501915 crossref_citationtrail_10_1073_pnas_1304551110 pnas_primary_111_38_13733 crossref_primary_10_1073_pnas_1304551110 wageningen_narcis_oai_library_wur_nl_wurpubs_477925 proquest_journals_1565809381 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183343 jstor_primary_43043200 proquest_miscellaneous_1803094471 fao_agris_US201600143401 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-23 |
PublicationDateYYYYMMDD | 2014-09-23 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Hickler T (e_1_3_3_31_2) 2006; 15 Grime JP (e_1_3_3_17_2) 2001 Whittaker RH (e_1_3_3_44_2) 1975 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 Poulter B (e_1_3_3_37_2) 2010; 16 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 15103368 - Nature. 2004 Apr 22;428(6985):821-7 23448882 - Am Nat. 2013 Mar;181(3):314-30 20030563 - Am Nat. 2010 Feb;175(2):225-39 15919825 - Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8245-50 20659253 - New Phytol. 2010 Aug;187(3):647-65 20455917 - Ecol Lett. 2010 Mar;13(3):267-83 23504720 - Glob Chang Biol. 2013 Jan;19(1):45-63 20836445 - Ecology. 2010 Aug;91(8):2234-41 19243406 - Ecol Lett. 2009 Apr;12(4):351-66 18948539 - Science. 2008 Oct 24;322(5901):580-2 17263773 - Plant Cell Environ. 2007 Mar;30(3):258-70 21238163 - Trends Ecol Evol. 1997 Dec;12(12):474-8 21196061 - Trends Ecol Evol. 2011 Feb;26(2):88-95 13880271 - J Abnorm Soc Psychol. 1962 Sep;65:145-53 |
References_xml | – ident: e_1_3_3_34_2 doi: 10.1016/j.tree.2010.11.011 – ident: e_1_3_3_33_2 doi: 10.1016/j.jhydrol.2004.03.028 – ident: e_1_3_3_3_2 doi: 10.1016/S0169-5347(97)01219-6 – ident: e_1_3_3_20_2 doi: 10.1111/j.1461-0248.2009.01285.x – ident: e_1_3_3_43_2 doi: 10.1111/j.1461-0248.2005.00829.x – ident: e_1_3_3_18_2 doi: 10.1146/annurev.ecolsys.33.010802.150452 – ident: e_1_3_3_41_2 doi: 10.1086/669153 – ident: e_1_3_3_13_2 doi: 10.1111/j.1461-0248.2010.01444.x – ident: e_1_3_3_26_2 doi: 10.1086/649582 – ident: e_1_3_3_39_2 doi: 10.1111/j.1469-8137.2010.03350.x – volume: 15 start-page: 567 year: 2006 ident: e_1_3_3_31_2 article-title: Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model publication-title: Glob Change Biol – ident: e_1_3_3_5_2 doi: 10.1146/annurev-ecolsys-102209-144628 – ident: e_1_3_3_11_2 doi: 10.1111/j.1365-2486.2012.02797.x – ident: e_1_3_3_27_2 doi: 10.1890/09-1743.1 – volume: 16 start-page: 2476 year: 2010 ident: e_1_3_3_37_2 article-title: Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2009.02157.x – ident: e_1_3_3_12_2 doi: 10.5194/bg-10-5497-2013 – ident: e_1_3_3_32_2 doi: 10.1046/j.1365-2486.2001.00383.x – ident: e_1_3_3_46_2 doi: 10.1111/j.1654-1103.2009.01144.x – ident: e_1_3_3_7_2 doi: 10.1111/j.1654-1103.1997.tb00842.x – ident: e_1_3_3_16_2 doi: 10.1111/j.1466-8238.2011.00651.x – ident: e_1_3_3_47_2 doi: 10.1037/h0045186 – ident: e_1_3_3_36_2 doi: 10.1111/j.1600-0587.2011.07068.x – ident: e_1_3_3_25_2 doi: 10.1111/j.1466-8238.2008.00441.x – ident: e_1_3_3_10_2 doi: 10.1175/2009JCLI3037.1 – ident: e_1_3_3_38_2 doi: 10.5194/bg-9-3857-2012 – volume-title: Communities and Ecosystems year: 1975 ident: e_1_3_3_44_2 – ident: e_1_3_3_28_2 doi: 10.1111/j.1466-822x.2005.00172.x – ident: e_1_3_3_35_2 doi: 10.1111/j.1365-3040.2007.01641.x – ident: e_1_3_3_30_2 doi: 10.2307/2845499 – ident: e_1_3_3_9_2 doi: 10.1111/j.1365-2486.2008.01664.x – ident: e_1_3_3_6_2 doi: 10.1073/pnas.0409902102 – volume-title: Plant Strategies, Vegetation Processes, and Ecosystem Properties year: 2001 ident: e_1_3_3_17_2 – ident: e_1_3_3_19_2 doi: 10.1111/j.1466-8238.2006.00259.x – ident: e_1_3_3_24_2 doi: 10.1111/j.1466-8238.2011.00727.x – ident: e_1_3_3_2_2 doi: 10.1111/j.1365-2486.2008.01626.x – ident: e_1_3_3_40_2 doi: 10.5194/bg-4-707-2007 – ident: e_1_3_3_1_2 doi: 10.1007/978-3-540-32730-1_15 – ident: e_1_3_3_8_2 doi: 10.1029/2009GB003521 – ident: e_1_3_3_14_2 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_3_3_42_2 doi: 10.1111/j.1365-2745.2010.01735.x – ident: e_1_3_3_48_2 doi: 10.1029/1999GB900046 – ident: e_1_3_3_21_2 doi: 10.1111/j.1654-1103.2004.tb02266.x – ident: e_1_3_3_15_2 doi: 10.1038/nature02403 – ident: e_1_3_3_22_2 doi: 10.2307/3235676 – ident: e_1_3_3_45_2 doi: 10.1111/j.1654-1103.2007.tb02574.x – ident: e_1_3_3_4_2 doi: 10.1111/j.1466-8238.2011.00717.x – ident: e_1_3_3_23_2 doi: 10.1126/science.1160662 – ident: e_1_3_3_29_2 doi: 10.1111/j.1600-0587.2011.07140.x – reference: 17263773 - Plant Cell Environ. 2007 Mar;30(3):258-70 – reference: 21196061 - Trends Ecol Evol. 2011 Feb;26(2):88-95 – reference: 19243406 - Ecol Lett. 2009 Apr;12(4):351-66 – reference: 13880271 - J Abnorm Soc Psychol. 1962 Sep;65:145-53 – reference: 15919825 - Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8245-50 – reference: 20030563 - Am Nat. 2010 Feb;175(2):225-39 – reference: 15103368 - Nature. 2004 Apr 22;428(6985):821-7 – reference: 21238163 - Trends Ecol Evol. 1997 Dec;12(12):474-8 – reference: 23448882 - Am Nat. 2013 Mar;181(3):314-30 – reference: 23504720 - Glob Chang Biol. 2013 Jan;19(1):45-63 – reference: 20659253 - New Phytol. 2010 Aug;187(3):647-65 – reference: 20455917 - Ecol Lett. 2010 Mar;13(3):267-83 – reference: 20836445 - Ecology. 2010 Aug;91(8):2234-41 – reference: 18948539 - Science. 2008 Oct 24;322(5901):580-2 |
SSID | ssj0009580 |
Score | 2.5462537 |
Snippet | Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly... Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation... |
SourceID | wageningen pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13733 |
SubjectTerms | acclimation Adaptation, Physiological amazonian forest Biological Sciences classification Climate change Climate models co2 Dry forests earth system model economics spectrum Ecosystem models Environmental impact functional traits Global climate models Models, Biological photosynthesis Plant Physiological Phenomena plant traits Plants prediction Quantitative Trait, Heritable Vegetation Vegetation mapping Vegetation structure vegetation types |
Title | fully traits-based approach to modeling global vegetation distribution |
URI | https://www.jstor.org/stable/43043200 http://www.pnas.org/content/111/38/13733.abstract https://www.ncbi.nlm.nih.gov/pubmed/25225413 https://www.proquest.com/docview/1565809381 https://www.proquest.com/docview/1565501915 https://www.proquest.com/docview/1803094471 https://pubmed.ncbi.nlm.nih.gov/PMC4183343 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F477925 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN_Y-tIXY9VatBpMfKi5gMAuBzxejOZivMsl9kzfNsAu15oK5uDa6F_v7CdcW7_6wl1gWT5mdr6Y-Q1CrxMGhOUl9qIKc49E4LPmBU-9fBxFOeifIpShgdl8PF2Sj6fxaZ86JKtLusIvf95aV3IXqsI-oKuokv0PytpJYQf8B_rCFigM23-i8WQkouc_ZJ-HrvWERmIWJVxYlbLPjQgGaNyPS74y6YVMIObqZldDC3VhNVpr8gfmJmA46ctPtExoR95oMR80M4YLrhrJYwt_JiXPZc9_YK1_U7m5vg3OfuHrM37-VUm_T_5sGIYIiciZUJXCtiwA1B1RBdE-V9IUjBFvTFQ_UCtutXBVfKWgXW7IcRA8ovlwnbeiXTUBsy7U2a9biNnXNNkWZraOgtGrzZrWF-IHGLylJEmyKN5B9yPwK7AJ71iU5lTVLOlnMVhQCX577V62zJidKm9MPqsAyYWhtzksN_Nu965AadSyim5g1Zw8RA-0O-JOFG_to3u8foT2DXHdY41K_uYxmk5cyWzukNlcw2xu17iG2VzFbG7PbO6Q2Z6g5Yf3J--mnm7D4ZXgnHbeuMqLkJMkCMqA5WkGLgYvgzxJhfdZpIRVPIKVTmCNg_eJS8Yl-HVcFCXDFeP4AO3WTc0PkZvhjCVEdBUoKhJnYVEEKQthUlAlESOBg3zzVmmpMerFU11QmSuRYCreLe3J4KBje8J3Bc_y-6GHQCaar0B50uXnSEArCnBLEoQOOpC0s1MQLJAqAzjHkbPYqcFbxilMmmDsoCNDYaplAlwO_KM0yMAMdtArexgktvgMl9e82agxMXhWYfyHMan49EnAcnTQU8U09iYicJlisD0dlGyxkx0guH_7SH1-JpHjCShwTOBM3DMerUXTspb-dc08u9NZz9FeLy6O0G633vAXYMd3xUu59n4BmqT1Aw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+traits-based+approach+to+modeling+global+vegetation+distribution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bodegom%2C+P.M.%2C+van&rft.au=Douma%2C+J.C&rft.au=Verheijen%2C+L.M&rft.date=2014-09-23&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=38&rft_id=info:doi/10.1073%2Fpnas.1304551110&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_477925 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif |