fully traits-based approach to modeling global vegetation distribution

Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Her...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 38; pp. 13733 - 13738
Main Authors van Bodegom, Peter M., Douma, Jacob C., Verheijen, Lieneke M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.09.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. Significance Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation attributes, so-called traits. However, the direct impacts of trait variation on global vegetation distribution are unknown. We derived global trait maps based on information on environmental drivers. Subsequently, we characterized nine globally representative vegetation types based on their trait combinations and could make valid predictions of their global occurrence probabilities based on trait maps. This study provides a proof of concept for the link between plant traits and vegetation types, stimulating enhanced application of trait-based approaches in vegetation modeling. We envision that our approach, our observation-driven trait maps, and vegetation maps may inspire a new generation of powerful traits-based vegetation models.
AbstractList Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. Significance Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation attributes, so-called traits. However, the direct impacts of trait variation on global vegetation distribution are unknown. We derived global trait maps based on information on environmental drivers. Subsequently, we characterized nine globally representative vegetation types based on their trait combinations and could make valid predictions of their global occurrence probabilities based on trait maps. This study provides a proof of concept for the link between plant traits and vegetation types, stimulating enhanced application of trait-based approaches in vegetation modeling. We envision that our approach, our observation-driven trait maps, and vegetation maps may inspire a new generation of powerful traits-based vegetation models.
Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation attributes, so-called traits. However, the direct impacts of trait variation on global vegetation distribution are unknown. We derived global trait maps based on information on environmental drivers. Subsequently, we characterized nine globally representative vegetation types based on their trait combinations and could make valid predictions of their global occurrence probabilities based on trait maps. This study provides a proof of concept for the link between plant traits and vegetation types, stimulating enhanced application of trait-based approaches in vegetation modeling. We envision that our approach, our observation-driven trait maps, and vegetation maps may inspire a new generation of powerful traits-based vegetation models. Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
Author van Bodegom, Peter M.
Douma, Jacob C.
Verheijen, Lieneke M.
Author_xml – sequence: 1
  givenname: Peter M.
  surname: van Bodegom
  fullname: van Bodegom, Peter M.
– sequence: 2
  givenname: Jacob C.
  surname: Douma
  fullname: Douma, Jacob C.
– sequence: 3
  givenname: Lieneke M.
  surname: Verheijen
  fullname: Verheijen, Lieneke M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25225413$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFNSsgEhs2aa9febBAQhUFpEosoGvLcZzUI48d7KRV_z02GQboAlaWfb9zfOx7T9CR804j9BzDGYaank9OxjNMgXGOMYZHaIOhxWXFWjhCGwBSlw0j7BidxLgFgJY38AQdE04IZ5hu0OWwWHtfzEGaOZadjLov5DQFL9VNMfti53ttjRuL0fpO2uJWj3qWs_Gu6E2cg-mWvHmKHg_SRv1sv56i68sP3y4-lVdfPn6-eH9VqoqRuawG2WHNagAFvWzaBkArkHVDgVddw_pBEzJQJjtd1ZyqXlctVIR3nerp0Gt6it6uvndy1C7l0k44GZSJwksjrOmCDPfibgnC2bxMSxcFq-uW8CR-t4rT4U73Srv0bCumYHZZlA3-rjhzI0Z_KxhuKGU0GbzZGwT_fdFxFjsTlbZWOu2XKHADFFrGavx_lFecA25xjvX6Abr1S3DpG39SDbS0yYYv_wx_SP2rlQk4XwEVfIxBDwcEg8jDIvKwiN_DkhT8gUKZtbd5HOw_dMU-Si4cbsFY0CZxNc1hXqzINs4-HBiWTCiBbPFqrQ_SCzmG1L_rrwRwBYAZZYDpD_r-4qQ
CitedBy_id crossref_primary_10_1038_srep24110
crossref_primary_10_1002_2017GB005627
crossref_primary_10_3389_fevo_2018_00219
crossref_primary_10_1111_1365_2435_12551
crossref_primary_10_1016_j_biocon_2018_01_002
crossref_primary_10_1038_s41559_018_0699_8
crossref_primary_10_5194_bg_14_481_2017
crossref_primary_10_1111_geb_12749
crossref_primary_10_1007_s10113_016_1093_1
crossref_primary_10_1111_pce_13501
crossref_primary_10_1002_ecm_1271
crossref_primary_10_1111_1365_2745_14278
crossref_primary_10_1111_nph_15609
crossref_primary_10_1111_jvs_12988
crossref_primary_10_1007_s10712_019_09511_5
crossref_primary_10_1111_geb_12583
crossref_primary_10_1038_s41586_024_07731_3
crossref_primary_10_1016_j_tree_2018_11_004
crossref_primary_10_1016_j_rse_2024_114276
crossref_primary_10_3389_fpls_2015_00866
crossref_primary_10_1029_2018MS001453
crossref_primary_10_1111_gcb_13542
crossref_primary_10_1038_nplants_2016_201
crossref_primary_10_1111_ecog_03309
crossref_primary_10_1111_nph_16123
crossref_primary_10_1016_j_rse_2023_113614
crossref_primary_10_5194_gmd_8_1789_2015
crossref_primary_10_1016_j_rse_2021_112406
crossref_primary_10_1111_nph_14740
crossref_primary_10_1002_2017MS000962
crossref_primary_10_1086_706189
crossref_primary_10_1111_ele_14176
crossref_primary_10_1111_geb_13706
crossref_primary_10_3390_rs10081167
crossref_primary_10_1016_j_gecco_2024_e03037
crossref_primary_10_3390_rs10071120
crossref_primary_10_1017_pab_2024_16
crossref_primary_10_1038_s41396_018_0229_3
crossref_primary_10_1111_1365_2745_14423
crossref_primary_10_1111_nph_13815
crossref_primary_10_3389_fpls_2021_733268
crossref_primary_10_1016_j_pld_2016_10_001
crossref_primary_10_5194_essd_9_99_2017
crossref_primary_10_1111_jbi_15079
crossref_primary_10_1016_j_gecco_2019_e00886
crossref_primary_10_1111_1365_2664_13489
crossref_primary_10_1111_nph_14623
crossref_primary_10_3389_fpls_2022_996750
crossref_primary_10_1016_j_tree_2023_08_008
crossref_primary_10_1038_s41559_022_01904_x
crossref_primary_10_1016_j_ppees_2018_10_004
crossref_primary_10_1111_ddi_13431
crossref_primary_10_1016_j_scitotenv_2015_03_141
crossref_primary_10_1111_1365_2435_13541
crossref_primary_10_1016_j_agrformet_2016_09_003
crossref_primary_10_1093_jxb_erab546
crossref_primary_10_1111_1365_2435_13023
crossref_primary_10_1146_annurev_ecolsys_012021_092849
crossref_primary_10_1111_nph_15422
crossref_primary_10_1139_cjb_2020_0077
crossref_primary_10_1029_2023GL104962
crossref_primary_10_1038_s41467_021_25163_9
crossref_primary_10_3389_fpls_2020_599764
crossref_primary_10_1016_j_ecolmodel_2016_01_004
crossref_primary_10_1016_j_cosust_2018_03_005
crossref_primary_10_1007_s10021_018_0314_5
crossref_primary_10_1111_gcb_13291
crossref_primary_10_1111_pce_13322
crossref_primary_10_1111_1365_2435_14591
crossref_primary_10_1111_1365_2745_14177
crossref_primary_10_1038_nature16489
crossref_primary_10_1029_2019MS001889
crossref_primary_10_1111_ele_12802
crossref_primary_10_5194_essd_16_1771_2024
crossref_primary_10_1111_nph_14853
crossref_primary_10_1016_j_rse_2021_112353
crossref_primary_10_1177_0309133315582018
crossref_primary_10_1016_j_scitotenv_2023_168095
crossref_primary_10_1111_nph_13590
crossref_primary_10_1111_nph_14283
crossref_primary_10_1016_j_tplants_2022_12_013
crossref_primary_10_1111_gcb_12871
crossref_primary_10_5194_bg_18_2727_2021
crossref_primary_10_1002_eap_2488
crossref_primary_10_1016_j_jag_2015_05_009
crossref_primary_10_1111_1365_2745_13757
crossref_primary_10_1111_ecog_02637
crossref_primary_10_1016_j_agrformet_2023_109884
crossref_primary_10_1016_j_jag_2015_05_005
crossref_primary_10_1111_gcb_13728
crossref_primary_10_1007_s11367_018_1470_8
crossref_primary_10_1007_s00376_024_4034_9
crossref_primary_10_1002_ecm_1241
crossref_primary_10_1016_j_rse_2019_111272
crossref_primary_10_5194_hess_24_1251_2020
crossref_primary_10_1038_s41598_021_95616_0
crossref_primary_10_1111_jbi_12983
crossref_primary_10_1111_gcb_14375
crossref_primary_10_1111_geb_13089
crossref_primary_10_1038_s41559_020_1217_3
crossref_primary_10_1111_gcb_14096
crossref_primary_10_1111_geb_13086
crossref_primary_10_1038_s41477_020_0655_x
crossref_primary_10_1002_ece3_11690
crossref_primary_10_1016_j_flora_2018_12_004
crossref_primary_10_1073_pnas_1612909114
crossref_primary_10_5194_bg_12_5339_2015
crossref_primary_10_4236_jep_2016_711133
crossref_primary_10_1029_2023JG007753
crossref_primary_10_1007_s11676_023_01650_1
crossref_primary_10_1111_oik_09415
crossref_primary_10_1016_j_rse_2018_02_030
crossref_primary_10_1029_2020MS002214
crossref_primary_10_5194_gmd_8_3593_2015
crossref_primary_10_1111_nph_13623
crossref_primary_10_1007_s10980_024_01991_0
crossref_primary_10_1016_j_aquabot_2021_103454
crossref_primary_10_7717_peerj_14731
crossref_primary_10_1016_j_rse_2018_09_006
crossref_primary_10_1016_j_rse_2016_07_014
crossref_primary_10_1016_j_scitotenv_2021_149567
crossref_primary_10_1111_geb_12535
crossref_primary_10_5194_bg_21_4909_2024
crossref_primary_10_1139_cjfr_2020_0126
crossref_primary_10_1371_journal_pone_0160715
crossref_primary_10_1002_sae2_12031
crossref_primary_10_1111_ecog_03187
crossref_primary_10_1016_j_rse_2024_114082
crossref_primary_10_1007_s11258_023_01328_y
crossref_primary_10_3389_fpls_2019_00908
crossref_primary_10_5194_bg_13_925_2016
crossref_primary_10_1038_ngeo2903
crossref_primary_10_1111_1365_2435_12804
crossref_primary_10_1111_gcb_16574
crossref_primary_10_1038_s42003_024_06777_3
crossref_primary_10_1093_icesjms_fsy090
crossref_primary_10_1111_1365_2435_14422
crossref_primary_10_1016_j_rse_2021_112684
crossref_primary_10_1016_j_fecs_2024_100230
crossref_primary_10_1111_2041_210X_13092
crossref_primary_10_1038_s41598_018_21172_9
crossref_primary_10_5194_gmd_18_287_2025
crossref_primary_10_1111_jbi_12701
crossref_primary_10_1016_j_ecolind_2016_06_022
crossref_primary_10_1016_j_sajb_2015_02_004
crossref_primary_10_1038_s41559_021_01616_8
crossref_primary_10_1111_1365_2745_12755
crossref_primary_10_1073_pnas_1415442111
crossref_primary_10_1016_j_quaint_2022_02_025
crossref_primary_10_1002_ecm_1294
crossref_primary_10_1038_s41559_020_1109_6
crossref_primary_10_1088_1748_9326_acde92
crossref_primary_10_1371_journal_pone_0177778
crossref_primary_10_1002_ecm_1454
crossref_primary_10_1111_nph_16711
crossref_primary_10_1111_gcb_15276
crossref_primary_10_5194_essd_15_25_2023
crossref_primary_10_1111_nph_16558
crossref_primary_10_1002_ecs2_3205
crossref_primary_10_1021_acs_est_9b07228
crossref_primary_10_1029_2019MS001841
crossref_primary_10_1007_s10531_017_1393_x
crossref_primary_10_1007_s10646_016_1671_5
crossref_primary_10_1002_2017GL074150
crossref_primary_10_1111_nph_18204
crossref_primary_10_1111_nph_14486
crossref_primary_10_1038_ismej_2017_115
crossref_primary_10_1073_pnas_1708984114
crossref_primary_10_1029_2021JG006606
crossref_primary_10_1038_s41467_020_16839_9
crossref_primary_10_1016_j_flora_2019_04_001
crossref_primary_10_3390_agronomy10020259
crossref_primary_10_1002_ecs2_2060
crossref_primary_10_1016_j_flora_2019_04_004
crossref_primary_10_1111_pce_15314
crossref_primary_10_3389_fpls_2021_734775
crossref_primary_10_3390_f14010164
crossref_primary_10_1002_ecy_1453
crossref_primary_10_1038_s41467_024_53160_1
crossref_primary_10_5194_essd_14_1735_2022
crossref_primary_10_1016_j_foreco_2021_119948
crossref_primary_10_1111_gcb_13000
crossref_primary_10_1111_nph_14247
crossref_primary_10_1016_j_ecolmodel_2020_109394
crossref_primary_10_1111_nph_14766
crossref_primary_10_3390_rs9060530
crossref_primary_10_1111_geb_13680
Cites_doi 10.1016/j.tree.2010.11.011
10.1016/j.jhydrol.2004.03.028
10.1016/S0169-5347(97)01219-6
10.1111/j.1461-0248.2009.01285.x
10.1111/j.1461-0248.2005.00829.x
10.1146/annurev.ecolsys.33.010802.150452
10.1086/669153
10.1111/j.1461-0248.2010.01444.x
10.1086/649582
10.1111/j.1469-8137.2010.03350.x
10.1146/annurev-ecolsys-102209-144628
10.1111/j.1365-2486.2012.02797.x
10.1890/09-1743.1
10.1111/j.1365-2486.2009.02157.x
10.5194/bg-10-5497-2013
10.1046/j.1365-2486.2001.00383.x
10.1111/j.1654-1103.2009.01144.x
10.1111/j.1654-1103.1997.tb00842.x
10.1111/j.1466-8238.2011.00651.x
10.1037/h0045186
10.1111/j.1600-0587.2011.07068.x
10.1111/j.1466-8238.2008.00441.x
10.1175/2009JCLI3037.1
10.5194/bg-9-3857-2012
10.1111/j.1466-822x.2005.00172.x
10.1111/j.1365-3040.2007.01641.x
10.2307/2845499
10.1111/j.1365-2486.2008.01664.x
10.1073/pnas.0409902102
10.1111/j.1466-8238.2006.00259.x
10.1111/j.1466-8238.2011.00727.x
10.1111/j.1365-2486.2008.01626.x
10.5194/bg-4-707-2007
10.1007/978-3-540-32730-1_15
10.1029/2009GB003521
10.1111/j.1365-2486.2011.02451.x
10.1111/j.1365-2745.2010.01735.x
10.1029/1999GB900046
10.1111/j.1654-1103.2004.tb02266.x
10.1038/nature02403
10.2307/3235676
10.1111/j.1654-1103.2007.tb02574.x
10.1111/j.1466-8238.2011.00717.x
10.1126/science.1160662
10.1111/j.1600-0587.2011.07140.x
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 23, 2014
Wageningen University & Research
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 23, 2014
– notice: Wageningen University & Research
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
QVL
DOI 10.1073/pnas.1304551110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic


AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Traits-based model of global vegetation
EISSN 1091-6490
EndPage 13738
ExternalDocumentID oai_library_wur_nl_wurpubs_477925
PMC4183343
3444742771
25225413
10_1073_pnas_1304551110
111_38_13733
43043200
US201600143401
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
08R
ACEMF
AFDAS
QVL
TAF
XFK
ID FETCH-LOGICAL-c642t-6fab1e4700c0da89800ec0a783056b84dfe22f34abe6753cde690625bbcd3fde3
ISSN 0027-8424
1091-6490
IngestDate Thu Oct 13 09:30:54 EDT 2022
Thu Aug 21 14:08:04 EDT 2025
Thu Jul 10 16:30:40 EDT 2025
Fri Jul 11 02:30:19 EDT 2025
Mon Jun 30 08:14:23 EDT 2025
Mon Jul 21 06:04:31 EDT 2025
Tue Jul 01 01:53:14 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Wed Nov 11 00:30:10 EST 2020
Thu May 29 08:40:54 EDT 2025
Thu Apr 03 09:45:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords trait-environment relationships
functional variation
vegetation attributes
global vegetation map
probabilistic model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c642t-6fab1e4700c0da89800ec0a783056b84dfe22f34abe6753cde690625bbcd3fde3
Notes http://dx.doi.org/10.1073/pnas.1304551110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
2Present address: Centre for Crop System Analysis, Wageningen University and Research Centre, 6700 AK, Wageningen, The Netherlands.
Author contributions: P.M.v.B. designed research; P.M.v.B., J.C.D., and L.M.V. performed research; P.M.v.B. analyzed data; and P.M.v.B., J.C.D., and L.M.V. wrote the paper.
Edited by Peter B. Reich, University of Minnesota, St. Paul, MN, and accepted by the Editorial Board October 22, 2013 (received for review May 16, 2013)
OpenAccessLink http://doi.org/10.1073/pnas.1304551110
PMID 25225413
PQID 1565809381
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_25225413
proquest_miscellaneous_1565501915
crossref_citationtrail_10_1073_pnas_1304551110
pnas_primary_111_38_13733
crossref_primary_10_1073_pnas_1304551110
wageningen_narcis_oai_library_wur_nl_wurpubs_477925
proquest_journals_1565809381
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183343
jstor_primary_43043200
proquest_miscellaneous_1803094471
fao_agris_US201600143401
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-23
PublicationDateYYYYMMDD 2014-09-23
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Hickler T (e_1_3_3_31_2) 2006; 15
Grime JP (e_1_3_3_17_2) 2001
Whittaker RH (e_1_3_3_44_2) 1975
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
Poulter B (e_1_3_3_37_2) 2010; 16
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
15103368 - Nature. 2004 Apr 22;428(6985):821-7
23448882 - Am Nat. 2013 Mar;181(3):314-30
20030563 - Am Nat. 2010 Feb;175(2):225-39
15919825 - Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8245-50
20659253 - New Phytol. 2010 Aug;187(3):647-65
20455917 - Ecol Lett. 2010 Mar;13(3):267-83
23504720 - Glob Chang Biol. 2013 Jan;19(1):45-63
20836445 - Ecology. 2010 Aug;91(8):2234-41
19243406 - Ecol Lett. 2009 Apr;12(4):351-66
18948539 - Science. 2008 Oct 24;322(5901):580-2
17263773 - Plant Cell Environ. 2007 Mar;30(3):258-70
21238163 - Trends Ecol Evol. 1997 Dec;12(12):474-8
21196061 - Trends Ecol Evol. 2011 Feb;26(2):88-95
13880271 - J Abnorm Soc Psychol. 1962 Sep;65:145-53
References_xml – ident: e_1_3_3_34_2
  doi: 10.1016/j.tree.2010.11.011
– ident: e_1_3_3_33_2
  doi: 10.1016/j.jhydrol.2004.03.028
– ident: e_1_3_3_3_2
  doi: 10.1016/S0169-5347(97)01219-6
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1461-0248.2009.01285.x
– ident: e_1_3_3_43_2
  doi: 10.1111/j.1461-0248.2005.00829.x
– ident: e_1_3_3_18_2
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_3_3_41_2
  doi: 10.1086/669153
– ident: e_1_3_3_13_2
  doi: 10.1111/j.1461-0248.2010.01444.x
– ident: e_1_3_3_26_2
  doi: 10.1086/649582
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1469-8137.2010.03350.x
– volume: 15
  start-page: 567
  year: 2006
  ident: e_1_3_3_31_2
  article-title: Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model
  publication-title: Glob Change Biol
– ident: e_1_3_3_5_2
  doi: 10.1146/annurev-ecolsys-102209-144628
– ident: e_1_3_3_11_2
  doi: 10.1111/j.1365-2486.2012.02797.x
– ident: e_1_3_3_27_2
  doi: 10.1890/09-1743.1
– volume: 16
  start-page: 2476
  year: 2010
  ident: e_1_3_3_37_2
  article-title: Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2009.02157.x
– ident: e_1_3_3_12_2
  doi: 10.5194/bg-10-5497-2013
– ident: e_1_3_3_32_2
  doi: 10.1046/j.1365-2486.2001.00383.x
– ident: e_1_3_3_46_2
  doi: 10.1111/j.1654-1103.2009.01144.x
– ident: e_1_3_3_7_2
  doi: 10.1111/j.1654-1103.1997.tb00842.x
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1466-8238.2011.00651.x
– ident: e_1_3_3_47_2
  doi: 10.1037/h0045186
– ident: e_1_3_3_36_2
  doi: 10.1111/j.1600-0587.2011.07068.x
– ident: e_1_3_3_25_2
  doi: 10.1111/j.1466-8238.2008.00441.x
– ident: e_1_3_3_10_2
  doi: 10.1175/2009JCLI3037.1
– ident: e_1_3_3_38_2
  doi: 10.5194/bg-9-3857-2012
– volume-title: Communities and Ecosystems
  year: 1975
  ident: e_1_3_3_44_2
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1466-822x.2005.00172.x
– ident: e_1_3_3_35_2
  doi: 10.1111/j.1365-3040.2007.01641.x
– ident: e_1_3_3_30_2
  doi: 10.2307/2845499
– ident: e_1_3_3_9_2
  doi: 10.1111/j.1365-2486.2008.01664.x
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.0409902102
– volume-title: Plant Strategies, Vegetation Processes, and Ecosystem Properties
  year: 2001
  ident: e_1_3_3_17_2
– ident: e_1_3_3_19_2
  doi: 10.1111/j.1466-8238.2006.00259.x
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1466-8238.2011.00727.x
– ident: e_1_3_3_2_2
  doi: 10.1111/j.1365-2486.2008.01626.x
– ident: e_1_3_3_40_2
  doi: 10.5194/bg-4-707-2007
– ident: e_1_3_3_1_2
  doi: 10.1007/978-3-540-32730-1_15
– ident: e_1_3_3_8_2
  doi: 10.1029/2009GB003521
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_3_3_42_2
  doi: 10.1111/j.1365-2745.2010.01735.x
– ident: e_1_3_3_48_2
  doi: 10.1029/1999GB900046
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– ident: e_1_3_3_15_2
  doi: 10.1038/nature02403
– ident: e_1_3_3_22_2
  doi: 10.2307/3235676
– ident: e_1_3_3_45_2
  doi: 10.1111/j.1654-1103.2007.tb02574.x
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1466-8238.2011.00717.x
– ident: e_1_3_3_23_2
  doi: 10.1126/science.1160662
– ident: e_1_3_3_29_2
  doi: 10.1111/j.1600-0587.2011.07140.x
– reference: 17263773 - Plant Cell Environ. 2007 Mar;30(3):258-70
– reference: 21196061 - Trends Ecol Evol. 2011 Feb;26(2):88-95
– reference: 19243406 - Ecol Lett. 2009 Apr;12(4):351-66
– reference: 13880271 - J Abnorm Soc Psychol. 1962 Sep;65:145-53
– reference: 15919825 - Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8245-50
– reference: 20030563 - Am Nat. 2010 Feb;175(2):225-39
– reference: 15103368 - Nature. 2004 Apr 22;428(6985):821-7
– reference: 21238163 - Trends Ecol Evol. 1997 Dec;12(12):474-8
– reference: 23448882 - Am Nat. 2013 Mar;181(3):314-30
– reference: 23504720 - Glob Chang Biol. 2013 Jan;19(1):45-63
– reference: 20659253 - New Phytol. 2010 Aug;187(3):647-65
– reference: 20455917 - Ecol Lett. 2010 Mar;13(3):267-83
– reference: 20836445 - Ecology. 2010 Aug;91(8):2234-41
– reference: 18948539 - Science. 2008 Oct 24;322(5901):580-2
SSID ssj0009580
Score 2.5462537
Snippet Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly...
Models on vegetation dynamics are indispensable for our understanding of climate change impacts. These models contain variables describing vegetation...
SourceID wageningen
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13733
SubjectTerms acclimation
Adaptation, Physiological
amazonian forest
Biological Sciences
classification
Climate change
Climate models
co2
Dry forests
earth system model
economics spectrum
Ecosystem models
Environmental impact
functional traits
Global climate models
Models, Biological
photosynthesis
Plant Physiological Phenomena
plant traits
Plants
prediction
Quantitative Trait, Heritable
Vegetation
Vegetation mapping
Vegetation structure
vegetation types
Title fully traits-based approach to modeling global vegetation distribution
URI https://www.jstor.org/stable/43043200
http://www.pnas.org/content/111/38/13733.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25225413
https://www.proquest.com/docview/1565809381
https://www.proquest.com/docview/1565501915
https://www.proquest.com/docview/1803094471
https://pubmed.ncbi.nlm.nih.gov/PMC4183343
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F477925
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN_Y-tIXY9VatBpMfKi5gMAuBzxejOZivMsl9kzfNsAu15oK5uDa6F_v7CdcW7_6wl1gWT5mdr6Y-Q1CrxMGhOUl9qIKc49E4LPmBU-9fBxFOeifIpShgdl8PF2Sj6fxaZ86JKtLusIvf95aV3IXqsI-oKuokv0PytpJYQf8B_rCFigM23-i8WQkouc_ZJ-HrvWERmIWJVxYlbLPjQgGaNyPS74y6YVMIObqZldDC3VhNVpr8gfmJmA46ctPtExoR95oMR80M4YLrhrJYwt_JiXPZc9_YK1_U7m5vg3OfuHrM37-VUm_T_5sGIYIiciZUJXCtiwA1B1RBdE-V9IUjBFvTFQ_UCtutXBVfKWgXW7IcRA8ovlwnbeiXTUBsy7U2a9biNnXNNkWZraOgtGrzZrWF-IHGLylJEmyKN5B9yPwK7AJ71iU5lTVLOlnMVhQCX577V62zJidKm9MPqsAyYWhtzksN_Nu965AadSyim5g1Zw8RA-0O-JOFG_to3u8foT2DXHdY41K_uYxmk5cyWzukNlcw2xu17iG2VzFbG7PbO6Q2Z6g5Yf3J--mnm7D4ZXgnHbeuMqLkJMkCMqA5WkGLgYvgzxJhfdZpIRVPIKVTmCNg_eJS8Yl-HVcFCXDFeP4AO3WTc0PkZvhjCVEdBUoKhJnYVEEKQthUlAlESOBg3zzVmmpMerFU11QmSuRYCreLe3J4KBje8J3Bc_y-6GHQCaar0B50uXnSEArCnBLEoQOOpC0s1MQLJAqAzjHkbPYqcFbxilMmmDsoCNDYaplAlwO_KM0yMAMdtArexgktvgMl9e82agxMXhWYfyHMan49EnAcnTQU8U09iYicJlisD0dlGyxkx0guH_7SH1-JpHjCShwTOBM3DMerUXTspb-dc08u9NZz9FeLy6O0G633vAXYMd3xUu59n4BmqT1Aw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+traits-based+approach+to+modeling+global+vegetation+distribution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bodegom%2C+P.M.%2C+van&rft.au=Douma%2C+J.C&rft.au=Verheijen%2C+L.M&rft.date=2014-09-23&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=38&rft_id=info:doi/10.1073%2Fpnas.1304551110&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_477925
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F38.cover.gif