SIFusion: Lightweight infrared and visible image fusion based on semantic injection
The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting the...
Saved in:
Published in | PloS one Vol. 19; no. 11; p. e0307236 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
06.11.2024
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios. |
---|---|
AbstractList | The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios. The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios.The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios. |
Audience | Academic |
Author | Qian, Song Yang, Liwei Li, Ping Xue, Yan |
AuthorAffiliation | Shandong Agricultural University, CHINA Faculty of Information Engineering, Xinjiang Institute of Technology, Aksu, China |
AuthorAffiliation_xml | – name: Faculty of Information Engineering, Xinjiang Institute of Technology, Aksu, China – name: Shandong Agricultural University, CHINA |
Author_xml | – sequence: 1 givenname: Song surname: Qian fullname: Qian, Song – sequence: 2 givenname: Liwei orcidid: 0000-0003-3345-5899 surname: Yang fullname: Yang, Liwei – sequence: 3 givenname: Yan surname: Xue fullname: Xue, Yan – sequence: 4 givenname: Ping orcidid: 0000-0003-4740-884X surname: Li fullname: Li, Ping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39504316$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk22L1DAQx4uceA_6DUQLguiLXfPc1jdyHJ4uLBy46tuQpNNulm6zl7SnfnvT3d6xlXshhTTM_OY_mUnmPDlpXQtJ8hKjOaYZ_rBxvW9VM99F8xxRlBEqniRnuKBkJgiiJ0f70-Q8hA1CnOZCPEtOacERo1icJavV4roP1rUf06Wt190vGNbUtpVXHspUtWV6Z4PVDaR2q2pIqz2eahWiO24CbFXbWRNjNmC66HuePK1UE-DF-L9Iflx__n71dba8-bK4ulzOjGCkmzGaQ0YrU5ZaMVXmWkAmNMuYUKZUJNNGZ8BB80JpoQWpOPDccJ1hrDlkmF4krw-6u8YFOfYjSIoJJ5yJPbE4EKVTG7nzsQL_Rzpl5d7gfC2Vj2dvQLJMYMa5KjQRjBvQjJGMaMQQ1ixXELU-jdl6vYXSQNt51UxEp57WrmXt7iTGnCGC86jwblTw7raH0MmtDQaaRrXg-sPBWc7yoojom3_Qx8sbqVrFCuKduZjYDKLyMsfxilFOh7TzR6j4lbC1Jr6eykb7JOD9JCAyHfzuatWHIBerb__P3vycsm-P2DWoplsH1_TDmwlT8NVxqx96fP9sI8AOgPEuBA_VA4KRHKbjvl1ymA45Tgf9C5TcAIM |
Cites_doi | 10.1016/j.infrared.2017.02.005 10.1109/CVPR42600.2020.00165 10.1007/s11263-021-01501-8 10.1016/j.inffus.2018.09.004 10.1109/TCI.2021.3100986 10.3934/mbe.2023721 10.3390/e25070985 10.1109/TIP.2020.2975984 10.1109/CVPR.2018.00070 10.1016/j.inffus.2023.101870 10.1109/TIP.2018.2887342 10.1145/3503161.3547902 10.1016/j.inffus.2019.07.011 10.1109/ICCVW54120.2021.00389 10.1109/TPAMI.2020.3012548 10.1007/s11263-021-01495-3 10.1109/IROS.2017.8206396 10.1016/j.inffus.2021.06.008 10.1109/TMM.2021.3057493 10.3934/mbe.2023717 10.1016/j.inffus.2021.12.004 10.1016/j.ins.2019.08.066 10.1016/j.inffus.2021.02.023 10.1109/ICCV51070.2023.00745 10.1016/j.infrared.2022.104383 10.1109/TIM.2020.3022438 10.1016/j.inffus.2022.03.007 10.1109/TMM.2022.3228685 10.1109/TIP.2020.2977573 10.1145/3474085.3475291 10.1109/CVPR46437.2021.01074 10.24963/ijcai.2022/487 10.1109/TIM.2021.3075747 10.1016/j.inffus.2023.02.014 10.1016/j.inffus.2022.10.034 10.1016/j.inffus.2018.11.017 10.1109/CVPR46437.2021.00266 10.1109/CVPR52688.2022.00571 10.1016/j.infrared.2016.05.012 10.1109/CVPR52729.2023.00572 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Qian et al 2024 Qian et al 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Qian et al 2024 Qian et al – notice: 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0307236 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | SIFusion |
EISSN | 1932-6203 |
ExternalDocumentID | 3125254671 oai_doaj_org_article_4761455a9b2645ceb44272b0401b48ae PMC11540218 A815040838 39504316 10_1371_journal_pone_0307236 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 2023TCLJ02 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c642t-438e73fcddba4ad8b6e76b4746acda27bcb7e5eb59ab6b62f5e58c5b711b5e713 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Sep 03 00:56:38 EDT 2025 Wed Aug 27 01:14:55 EDT 2025 Thu Aug 21 18:43:42 EDT 2025 Tue Aug 05 09:19:10 EDT 2025 Fri Jul 25 09:16:11 EDT 2025 Tue Jun 17 22:04:10 EDT 2025 Tue Jun 10 21:02:47 EDT 2025 Fri Jun 27 05:29:11 EDT 2025 Fri Jun 27 05:29:25 EDT 2025 Thu May 22 21:23:02 EDT 2025 Mon Jul 21 06:03:23 EDT 2025 Tue Jul 01 01:56:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright: © 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c642t-438e73fcddba4ad8b6e76b4746acda27bcb7e5eb59ab6b62f5e58c5b711b5e713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0003-4740-884X 0000-0003-3345-5899 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0307236 |
PMID | 39504316 |
PQID | 3125254671 |
PQPubID | 1436336 |
PageCount | e0307236 |
ParticipantIDs | plos_journals_3125254671 doaj_primary_oai_doaj_org_article_4761455a9b2645ceb44272b0401b48ae pubmedcentral_primary_oai_pubmedcentral_nih_gov_11540218 proquest_miscellaneous_3125484899 proquest_journals_3125254671 gale_infotracmisc_A815040838 gale_infotracacademiconefile_A815040838 gale_incontextgauss_ISR_A815040838 gale_incontextgauss_IOV_A815040838 gale_healthsolutions_A815040838 pubmed_primary_39504316 crossref_primary_10_1371_journal_pone_0307236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-06 |
PublicationDateYYYYMMDD | 2024-11-06 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2024 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | pone.0307236.ref009 H Li (pone.0307236.ref037) 2021; 73 J Chen (pone.0307236.ref002) 2021; 24 Y Zhang (pone.0307236.ref023) 2020; 54 Z Chen (pone.0307236.ref026) 2023; 20 M Lu (pone.0307236.ref027) 2023 J Ma (pone.0307236.ref019) 2021; 29 H Xu (pone.0307236.ref038) 2021; 7 L Jian (pone.0307236.ref015) 2021; 70 J Chen (pone.0307236.ref010) 2020; 508 L Tang (pone.0307236.ref028) 2023; 91 H Zhang (pone.0307236.ref001) 2021; 76 H Li (pone.0307236.ref012) 2020; 29 W Xue (pone.0307236.ref025) 2022; 127 pone.0307236.ref031 Z Wang (pone.0307236.ref030) 2022; 25 pone.0307236.ref036 H. Liu (pone.0307236.ref032) 2023; 25 pone.0307236.ref035 pone.0307236.ref034 pone.0307236.ref033 H Zhang (pone.0307236.ref024) 2021; 129 Z Fu (pone.0307236.ref011) 2016; 77 J Ma (pone.0307236.ref017) 2021; 70 J Ma (pone.0307236.ref013) 2017; 82 H Li (pone.0307236.ref014) 2019; 28 L Tang (pone.0307236.ref016) 2022; 83 J Ma (pone.0307236.ref018) 2019; 48 D Guan (pone.0307236.ref007) 2019; 50 D K Jain (pone.0307236.ref008) 2023; 95 pone.0307236.ref021 pone.0307236.ref043 Yang Pan (pone.0307236.ref004) 2023; 20 P Zhang (pone.0307236.ref005) 2021; 129 H Xu (pone.0307236.ref039) 2022; 44 pone.0307236.ref042 pone.0307236.ref041 L Tang (pone.0307236.ref020) 2023 L Tang (pone.0307236.ref003) 2022; 82 J Ma (pone.0307236.ref040) 2021; 70 pone.0307236.ref022 pone.0307236.ref029 pone.0307236.ref006 |
References_xml | – volume: 82 start-page: 8 year: 2017 ident: pone.0307236.ref013 article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization publication-title: Infrared Physics & Technology doi: 10.1016/j.infrared.2017.02.005 – ident: pone.0307236.ref043 doi: 10.1109/CVPR42600.2020.00165 – volume: 129 start-page: 2761 year: 2021 ident: pone.0307236.ref024 article-title: SDNet: A versatile squeeze-and-decomposition network for real-time image fusion publication-title: International Journal of Computer Vision doi: 10.1007/s11263-021-01501-8 – volume: 48 start-page: 11 year: 2019 ident: pone.0307236.ref018 article-title: FusionGAN: A generative adversarial network for infrared and visible image fusion publication-title: Information fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 7 start-page: 824 year: 2021 ident: pone.0307236.ref038 article-title: Classification saliency-based rule for visible and infrared image fusion publication-title: IEEE Transactions on Computational Imaging doi: 10.1109/TCI.2021.3100986 – volume: 20 start-page: 16148 issue: 9 year: 2023 ident: pone.0307236.ref004 article-title: Aerial images object detection method based on cross-scale multi-feature fusion publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2023721 – volume: 25 start-page: 985 year: 2023 ident: pone.0307236.ref032 article-title: SCFusion: Infrared and Visible Fusion Based on Salient Compensation publication-title: Entropy doi: 10.3390/e25070985 – volume: 29 start-page: 4733 year: 2020 ident: pone.0307236.ref012 article-title: MDLatLRR: A novel decomposition method for infrared and visible image fusion publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2975984 – ident: pone.0307236.ref031 doi: 10.1109/CVPR.2018.00070 – start-page: 101870 year: 2023 ident: pone.0307236.ref020 article-title: Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity publication-title: Information Fusion doi: 10.1016/j.inffus.2023.101870 – volume: 28 start-page: 2614 issue: 5 year: 2019 ident: pone.0307236.ref014 article-title: DenseFuse: A fusion approach to infrared and visible images publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2887342 – ident: pone.0307236.ref022 doi: 10.1145/3503161.3547902 – volume: 54 start-page: 99 year: 2020 ident: pone.0307236.ref023 article-title: IFCNN: A general image fusion framework based on convolutional neural network publication-title: Information Fusion doi: 10.1016/j.inffus.2019.07.011 – ident: pone.0307236.ref036 doi: 10.1109/ICCVW54120.2021.00389 – volume: 44 start-page: 502 issue: 1 year: 2022 ident: pone.0307236.ref039 article-title: U2Fusion: A unified unsupervised image fusion network publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.3012548 – volume: 129 start-page: 2714 year: 2021 ident: pone.0307236.ref005 article-title: JLearning adaptive attribute-driven representation for real-time RGB-T tracking publication-title: International Journal of Computer Vision doi: 10.1007/s11263-021-01495-3 – ident: pone.0307236.ref006 doi: 10.1109/IROS.2017.8206396 – ident: pone.0307236.ref042 – volume: 70 start-page: 1 year: 2021 ident: pone.0307236.ref040 article-title: GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion publication-title: IEEE Transactions on Instrumentation and Measurement – start-page: 3280496 year: 2023 ident: pone.0307236.ref027 article-title: LDRepFM: A Real-time End-to-End Visible and Infrared Image Fusion Model Based on Layer Decomposition and Re-parameterization publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 76 start-page: 323 year: 2021 ident: pone.0307236.ref001 article-title: Image fusion meets deep learning: A survey and perspective publication-title: Information Fusion doi: 10.1016/j.inffus.2021.06.008 – volume: 24 start-page: 655 year: 2021 ident: pone.0307236.ref002 article-title: Multi-focus image fusion based on multi-scale gradients and image matting publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2021.3057493 – volume: 20 start-page: 16060 issue: 9 year: 2023 ident: pone.0307236.ref026 article-title: FECFusion: Infrared and visible image fusion network based on fast edge convolution publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2023717 – volume: 82 start-page: 28 year: 2022 ident: pone.0307236.ref003 article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network publication-title: Information Fusion doi: 10.1016/j.inffus.2021.12.004 – volume: 508 start-page: 64 year: 2020 ident: pone.0307236.ref010 article-title: Infrared and visible image fusion based on target-enhanced multiscale transform decomposition publication-title: Information Sciences doi: 10.1016/j.ins.2019.08.066 – volume: 73 start-page: 72 year: 2021 ident: pone.0307236.ref037 article-title: RFN-Nest: An end-to-end residual fusion network for infrared and visible images publication-title: Information Fusion doi: 10.1016/j.inffus.2021.02.023 – ident: pone.0307236.ref033 doi: 10.1109/ICCV51070.2023.00745 – volume: 127 start-page: 104383 year: 2022 ident: pone.0307236.ref025 article-title: FLFuse-Net: A fast and lightweight infrared and visible image fusion network via feature flow and edge compensation for salient information publication-title: Infrared Physics & Technology doi: 10.1016/j.infrared.2022.104383 – volume: 70 start-page: 1 year: 2021 ident: pone.0307236.ref015 article-title: SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2020.3022438 – volume: 83 start-page: 79 year: 2022 ident: pone.0307236.ref016 article-title: PIAFusion: A progressive infrared and visible image fusion network based on illumination aware publication-title: Information Fusion doi: 10.1016/j.inffus.2022.03.007 – volume: 25 start-page: 7800 year: 2022 ident: pone.0307236.ref030 article-title: Infrared and visible image fusion via interactive compensatory attention adversarial learning publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2022.3228685 – volume: 29 start-page: 4980 year: 2021 ident: pone.0307236.ref019 article-title: DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2977573 – ident: pone.0307236.ref034 doi: 10.1145/3474085.3475291 – ident: pone.0307236.ref035 doi: 10.1109/CVPR46437.2021.01074 – ident: pone.0307236.ref041 doi: 10.24963/ijcai.2022/487 – volume: 70 start-page: 1 year: 2021 ident: pone.0307236.ref017 article-title: STDFusionNet: An infrared and visible image fusion network based on salient target detection publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2021.3075747 – volume: 95 start-page: 401 year: 2023 ident: pone.0307236.ref008 article-title: Multimodal pedestrian detection using metaheuristics with deep convolutional neural network in crowded scenes publication-title: Information Fusion doi: 10.1016/j.inffus.2023.02.014 – volume: 91 start-page: 477 year: 2023 ident: pone.0307236.ref028 article-title: DIVFusion: Darkness-free infrared and visible image fusion publication-title: Information Fusio doi: 10.1016/j.inffus.2022.10.034 – volume: 50 start-page: 148 year: 2019 ident: pone.0307236.ref007 article-title: Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.017 – ident: pone.0307236.ref009 doi: 10.1109/CVPR46437.2021.00266 – ident: pone.0307236.ref021 doi: 10.1109/CVPR52688.2022.00571 – volume: 77 start-page: 114 year: 2016 ident: pone.0307236.ref011 article-title: Infrared and visible images fusion based on RPCA and NSCT publication-title: Infrared Physics & Technology doi: 10.1016/j.infrared.2016.05.012 – ident: pone.0307236.ref029 doi: 10.1109/CVPR52729.2023.00572 |
SSID | ssj0053866 |
Score | 2.4612064 |
Snippet | The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However,... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0307236 |
SubjectTerms | Algorithms Biology and Life Sciences Cameras Computer and Information Sciences Computer vision Data visualization Deep learning Design Evaluation Humans Image enhancement Image processing Image Processing, Computer-Assisted - methods Information processing Infrared imagery Infrared imaging Infrared Rays Injection Light Lightweight Machine vision Methods Modules Physical Sciences Research and Analysis Methods Semantic networks Semantics Social Sciences Special effects Task complexity Visual perception Visual perception driven algorithms Visual tasks Weight reduction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnHpBFAo1FFgQEnBwG9v7MrdSERXEQwKKelvt2GsIap2oTtS_z8x6Y2pUCQ7cIu_YSma-mZ1xZr5l7BlWDMp5AamDTKSicSotpwWk07JxgLGwVJIGhT98VMcn4t2pPL1y1Bf1hPX0wL3iDgTW2UJKVwJu3bLyIESuc0DsZSCM8xR9cc_bFFN9DEYvVioOyhU6O4h22V8uWr9PsM4DJfPvjSjw9Q9RebI8W3TXpZx_dk5e2Ypmt9jNmEPyw_67b7Mbvr3NtqOXdvxFpJJ-eYdhqJyt6X3YK_6eqvDL8CKUI6ouqPGcu7bmNF0OZ57PzzG08CaIc9rcao4fOn-Oup9XeM_P0LXV7rCT2ZuvR8dpPEYhrbC4WKWiMF4XTVXX4ISrDSivFQiNRqpql2uoQHvpQZYOFKi8kV6aSqKlMpAei9i7bNKi4nYZd2hCTSHJOBClEaVohClqzOlo3naqEpZudGqXPVuGDX-ZaawyeuVYsoGNNkjYa1L8IEtc1-ECIsBGBNi_ISBhj8lsth8cHTzWHhpMdgWmmCZhT4ME8V201FDz3a27zr799O0fhL58Hgk9j0LNAgFQuTjEgL-JeLRGknsjSfTaarS8SyDbaKWzBWaadDaBzvDODfCuX34yLNNDqUmu9Yt1LyOMwAo6Yfd6nA6aLUqiqstQ42aE4JHqxyvt_EegGyfCJsoE7_8PYz1gWzmmhWGaU-2xyepi7R9iWreCR8GDfwEnm0iP priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pN4ljO1xQQawK4iEBRXuLPI5TFrXJstkVf58Zx5sSVCFuUTyJknl5xp75zNgTzBikcQJiA4mIRW1kXEwziKdFbQB9YSFzahT-8FEeHYt383weFty6UFa59YneUVetpTXygwxnYsJuV8nL5c-YTo2i3dVwhMZldoWgy6ikS82HhAttWcrQLpep5CBIZ3_ZNm6flDv1wMzn05FH7R9882R52nYXBZ5_10_-MSHNrrNrIZLkh73od9gl19xgO8FWO_4sAEo_v8nQYc42tCr2gr-nXPyXXw7lqFsrKj_npqk49ZjDqeOLM3QwvPbknKa4iuNF585QAguLz_zwtVvNLXY8e_P19VEcDlOILaYY61hk2qmstlUFRphKg3RKglAoKluZVIEF5XIHeWFAgkzr3OXa5iivBHKHqextNmmQcbuMGxSkIsekDYhCi0LUQmcVRnbUdTuVEYu3PC2XPWZG6TfOFOYaPXNKkkEZZBCxV8T4gZYQr_2NdnVSBgMqhZKEqW4KwBAutw6ESFUK6IMSENq4iD0ksZV9--hgt-WhxpBXYKCpI_bYUxDqRUNlNSdm03Xl20_f_oPoy-cR0dNAVLeoANaEVgb8J0LTGlHujSjRdu1oeJeUbMuVrjzXcnxyq3gXDz8ahumlVCrXuHbT0wgtMI-O2J1eTwfOZgUB1iXIcT3S4BHrxyPN4rsHHSfYJooH7_77u-6xqymGfb5bU-6xyXq1cfcxbFvDA2-bvwE1-0Eo priority: 102 providerName: ProQuest |
Title | SIFusion: Lightweight infrared and visible image fusion based on semantic injection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39504316 https://www.proquest.com/docview/3125254671 https://www.proquest.com/docview/3125484899 https://pubmed.ncbi.nlm.nih.gov/PMC11540218 https://doaj.org/article/4761455a9b2645ceb44272b0401b48ae http://dx.doi.org/10.1371/journal.pone.0307236 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0Nq6F14Q42vZRjEICXhI1SSO7SAhtE0tA7GBBkV9i-zEGZ26pDStgBd-O3fOhwgqEuLFiuq7Srkv3zn3QcgTiBi4Mky7SnvMZZnibjQMtDuMMqXBFkY8xELhs3N-OmFvp-F0izQzW2sClhtDO5wnNVnOB9-__ngFCv_STm0QXoM0WBS5GaDQ-gHfJjtwNglU1TPWflcA7ea8LqD7G2bngLJ9_Ftr3VvMi3KTK_pnRuVvR9T4FrlZ-5b0qBKGXbJl8ttkt9bekj6rW0w_v0PAhI7XeE_2gr7D6PybvSCl8P5LTEinKk8pVp3ruaGzazA5NLPgFA-9lMJDaa6BJ7MEcK5sNld-l0zGo08np249XsFNIOhYuSyQRgRZkqZaMZVKzY3gmglgXpIqX-hECxMaHUZKc839LDShTELgoKdDA8HtPdLLgXB7hCpgrUBTJZVmkWQRy5gMUvD1sA53yB3iNjSNF1UXjdh-ShMQfVTEiZEHcc0Dhxwj4VtY7IFtfyiWl3GtUjETHLusq0iDUxcmRjPmC1-DVfI0k8o45CGyLa4KSltNjo8kOMEMXE_pkMcWAvtg5Jhoc6nWZRm_ef_5H4A-XnSAntZAWQECkKi6uAHeCftrdSAPO5CgzUlnew-FrKFKGQfggeLMAuEBZiN4m7cftdv4p5g8l5tiXcEwySCydsj9Sk5bygYRtrDzgOKyI8Ed0nd38tkX24YcGzmhh7j__6gH5IYPTqKt7eSHpLdars0DcPJWuk-2xVTAKk88XMev-2TneHT-4aJvr036Vq9x_Tn6BdBEWSE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYTCDQMBDtiZxbAcJofFRrawbEmxT34ydOKNoS0rTauKf4m_kzvkYQRPiZW9VfYmS8_l3d87dz4Q8hYyBa8uMp43PPJZp7sWD0HiDONMGsDDmETYK7-3znUP2cRJNVsivphcGyyobTHRAnRYJ7pFvheCJkbtd-G9mPzw8NQq_rjZHaFRmsWt_nkHKVr4evYf5fRYEww8H73a8-lQBL4FYe-GxUFoRZkmaGs10Kg23ghsm4JmTVAfCJEbYyJoo1oYbHmSRjWQSwYP7JrKQ08F9r5Cr4HgHuKLEpE3wADs4r9vzQuFv1dawOStyu4mLKXBE0Ofuz50S0PqC3uykKC8KdP-u1_zDAQ5vkht15Eq3K1NbJSs2v0VWa2wo6YuawPrlbQIAPVziLtwrOsbc_8xtv1Kw5TmWu1OdpxR72s2JpdNTADSaOXGKLjWl8KO0pzDj0wSu-e5qxfI75PBS1HyX9HJQ3BqhGgxHIBBKbVgsWcwyJsMUIkns8h3wPvEanapZxdGh3Ic6AblNpRyFc6DqOeiTt6j4VhYZtt0fxfxY1QtWMcGRw13HBkLGKLGGsUAEBjDPN0xq2ycbOG2qaldtcUJtSwixGQS2sk-eOAlk2cixjOdYL8tSjT4d_YfQl88doee1UFaAASS6bp2Ad0L2ro7kekcSsCLpDK-hkTVaKdX5qoIrG8O7ePhxO4w3xdK83BbLSoZJBnl7n9yr7LTVbBgjQZ4PGpcdC-6ovjuST785knOkicL48_6_n2uDXNs52Bur8Wh_9wG5HkDI6TpF-TrpLeZL-xBCxoV55NYpJV8vGxh-AzfugHE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqlkINAgGHtJvEsR0khApl1aWlIErR3oydOO2iNlk2u6r4a_w6ZpxHCaoQl96ieBI54_HnGWfmMyFPIGLg2jLjaeMzj2Wae_EgNN4gzrQBLIx5hIXCH_b5ziF7P47GS-RXUwuDaZUNJjqgTosE98g3Q1iJkbtd-JtZnRbxaXv4evrDwxOk8E9rc5xGZSK79ucZhG_lq9E2jPXTIBi--_J2x6tPGPAS8LvnHgulFWGWpKnRTKfScCu4YQL6n6Q6ECYxwkbWRLE23PAgi2wkkwg-wjeRhfgO3nuFXBVh5OMcE-M22AMc4bwu1Quhz7VlbEyL3G7gxAocKfT5UuhODGjXhd70pCgvcnr_zt38YzEc3iQ3ai-WblVmt0yWbH6LLNc4UdLnNZn1i9sEwHq4wB25l3QP9wHO3FYsBbueYeo71XlKsb7dnFg6OQVwo5kTp7i8phQuSnsKoz9J4JnvLm8sv0MOL0XNd0kvB8WtEKrBiASCotSGxZLFLGMyTMGrxIrfAe8Tr9GpmlZ8Hcr9tBMQ51TKUTgGqh6DPnmDim9lkW3b3ShmR6qevIoJjnzuOjbgPkaJNYwFIjCAf75hUts-WcdhU1XpaosZakuCu83AyZV98thJIONGjrZ7pBdlqUYfv_6H0MHnjtCzWigrwAASXZdRwDchk1dHcq0jCbiRdJpX0MgarZTqfIbBk43hXdz8qG3Gl2KaXm6LRSXDJIMYvk_uVXbaajaMkSzPB43LjgV3VN9tySfHjvAcKaPQF139d7_WyTWABLU32t-9T64H4H26olG-Rnrz2cI-AO9xbh66aUrJt8vGhd8iR4Sn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIFusion%3A+Lightweight+infrared+and+visible+image+fusion+based+on+semantic+injection&rft.jtitle=PloS+one&rft.au=Qian%2C+Song&rft.au=Yang%2C+Liwei&rft.au=Xue%2C+Yan&rft.au=Li%2C+Ping&rft.date=2024-11-06&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0307236&rft.externalDocID=PMC11540218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |