SIFusion: Lightweight infrared and visible image fusion based on semantic injection

The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting the...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 11; p. e0307236
Main Authors Qian, Song, Yang, Liwei, Xue, Yan, Li, Ping
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.11.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios.
AbstractList The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios.
The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios.The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However, existing image fusion algorithms predominantly focus on enhancing the visual appeal of the fused image for human perception, often neglecting their impact on subsequent high-level visual tasks, particularly the processing of semantic information. Moreover, these fusion methods that incorporate downstream tasks tend to be overly complex and computationally intensive, which is not conducive to practical applications. To address these issues, a lightweight infrared and visible light image fusion method known as SIFusion, which is based on semantic injection, is proposed in this paper. This method employs a semantic-aware branch to extract semantic feature information, and then integrates these features into the fused features through a Semantic Injection Module (SIM) to meet the semantic requirements of high-level visual tasks. Furthermore, to simplify the complexity of the fusion network, this method introduces an Edge Convolution Module (ECB) based on structural reparameterization technology to enhance the representational capacity of the encoder and decoder. Extensive experimental comparisons demonstrate that the proposed method performs excellently in terms of visual appeal and advanced semantics, providing satisfactory fusion results for subsequent high-level visual tasks even in challenging scenarios.
Audience Academic
Author Qian, Song
Yang, Liwei
Li, Ping
Xue, Yan
AuthorAffiliation Shandong Agricultural University, CHINA
Faculty of Information Engineering, Xinjiang Institute of Technology, Aksu, China
AuthorAffiliation_xml – name: Faculty of Information Engineering, Xinjiang Institute of Technology, Aksu, China
– name: Shandong Agricultural University, CHINA
Author_xml – sequence: 1
  givenname: Song
  surname: Qian
  fullname: Qian, Song
– sequence: 2
  givenname: Liwei
  orcidid: 0000-0003-3345-5899
  surname: Yang
  fullname: Yang, Liwei
– sequence: 3
  givenname: Yan
  surname: Xue
  fullname: Xue, Yan
– sequence: 4
  givenname: Ping
  orcidid: 0000-0003-4740-884X
  surname: Li
  fullname: Li, Ping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39504316$$D View this record in MEDLINE/PubMed
BookMark eNqNk22L1DAQx4uceA_6DUQLguiLXfPc1jdyHJ4uLBy46tuQpNNulm6zl7SnfnvT3d6xlXshhTTM_OY_mUnmPDlpXQtJ8hKjOaYZ_rBxvW9VM99F8xxRlBEqniRnuKBkJgiiJ0f70-Q8hA1CnOZCPEtOacERo1icJavV4roP1rUf06Wt190vGNbUtpVXHspUtWV6Z4PVDaR2q2pIqz2eahWiO24CbFXbWRNjNmC66HuePK1UE-DF-L9Iflx__n71dba8-bK4ulzOjGCkmzGaQ0YrU5ZaMVXmWkAmNMuYUKZUJNNGZ8BB80JpoQWpOPDccJ1hrDlkmF4krw-6u8YFOfYjSIoJJ5yJPbE4EKVTG7nzsQL_Rzpl5d7gfC2Vj2dvQLJMYMa5KjQRjBvQjJGMaMQQ1ixXELU-jdl6vYXSQNt51UxEp57WrmXt7iTGnCGC86jwblTw7raH0MmtDQaaRrXg-sPBWc7yoojom3_Qx8sbqVrFCuKduZjYDKLyMsfxilFOh7TzR6j4lbC1Jr6eykb7JOD9JCAyHfzuatWHIBerb__P3vycsm-P2DWoplsH1_TDmwlT8NVxqx96fP9sI8AOgPEuBA_VA4KRHKbjvl1ymA45Tgf9C5TcAIM
Cites_doi 10.1016/j.infrared.2017.02.005
10.1109/CVPR42600.2020.00165
10.1007/s11263-021-01501-8
10.1016/j.inffus.2018.09.004
10.1109/TCI.2021.3100986
10.3934/mbe.2023721
10.3390/e25070985
10.1109/TIP.2020.2975984
10.1109/CVPR.2018.00070
10.1016/j.inffus.2023.101870
10.1109/TIP.2018.2887342
10.1145/3503161.3547902
10.1016/j.inffus.2019.07.011
10.1109/ICCVW54120.2021.00389
10.1109/TPAMI.2020.3012548
10.1007/s11263-021-01495-3
10.1109/IROS.2017.8206396
10.1016/j.inffus.2021.06.008
10.1109/TMM.2021.3057493
10.3934/mbe.2023717
10.1016/j.inffus.2021.12.004
10.1016/j.ins.2019.08.066
10.1016/j.inffus.2021.02.023
10.1109/ICCV51070.2023.00745
10.1016/j.infrared.2022.104383
10.1109/TIM.2020.3022438
10.1016/j.inffus.2022.03.007
10.1109/TMM.2022.3228685
10.1109/TIP.2020.2977573
10.1145/3474085.3475291
10.1109/CVPR46437.2021.01074
10.24963/ijcai.2022/487
10.1109/TIM.2021.3075747
10.1016/j.inffus.2023.02.014
10.1016/j.inffus.2022.10.034
10.1016/j.inffus.2018.11.017
10.1109/CVPR46437.2021.00266
10.1109/CVPR52688.2022.00571
10.1016/j.infrared.2016.05.012
10.1109/CVPR52729.2023.00572
ContentType Journal Article
Copyright Copyright: © 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Qian et al 2024 Qian et al
2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Qian et al 2024 Qian et al
– notice: 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0307236
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Agricultural Science Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate SIFusion
EISSN 1932-6203
ExternalDocumentID 3125254671
oai_doaj_org_article_4761455a9b2645ceb44272b0401b48ae
PMC11540218
A815040838
39504316
10_1371_journal_pone_0307236
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 2023TCLJ02
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c642t-438e73fcddba4ad8b6e76b4746acda27bcb7e5eb59ab6b62f5e58c5b711b5e713
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Sep 03 00:56:38 EDT 2025
Wed Aug 27 01:14:55 EDT 2025
Thu Aug 21 18:43:42 EDT 2025
Tue Aug 05 09:19:10 EDT 2025
Fri Jul 25 09:16:11 EDT 2025
Tue Jun 17 22:04:10 EDT 2025
Tue Jun 10 21:02:47 EDT 2025
Fri Jun 27 05:29:11 EDT 2025
Fri Jun 27 05:29:25 EDT 2025
Thu May 22 21:23:02 EDT 2025
Mon Jul 21 06:03:23 EDT 2025
Tue Jul 01 01:56:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2024 Qian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-438e73fcddba4ad8b6e76b4746acda27bcb7e5eb59ab6b62f5e58c5b711b5e713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-4740-884X
0000-0003-3345-5899
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0307236
PMID 39504316
PQID 3125254671
PQPubID 1436336
PageCount e0307236
ParticipantIDs plos_journals_3125254671
doaj_primary_oai_doaj_org_article_4761455a9b2645ceb44272b0401b48ae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11540218
proquest_miscellaneous_3125484899
proquest_journals_3125254671
gale_infotracmisc_A815040838
gale_infotracacademiconefile_A815040838
gale_incontextgauss_ISR_A815040838
gale_incontextgauss_IOV_A815040838
gale_healthsolutions_A815040838
pubmed_primary_39504316
crossref_primary_10_1371_journal_pone_0307236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-06
PublicationDateYYYYMMDD 2024-11-06
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0307236.ref009
H Li (pone.0307236.ref037) 2021; 73
J Chen (pone.0307236.ref002) 2021; 24
Y Zhang (pone.0307236.ref023) 2020; 54
Z Chen (pone.0307236.ref026) 2023; 20
M Lu (pone.0307236.ref027) 2023
J Ma (pone.0307236.ref019) 2021; 29
H Xu (pone.0307236.ref038) 2021; 7
L Jian (pone.0307236.ref015) 2021; 70
J Chen (pone.0307236.ref010) 2020; 508
L Tang (pone.0307236.ref028) 2023; 91
H Zhang (pone.0307236.ref001) 2021; 76
H Li (pone.0307236.ref012) 2020; 29
W Xue (pone.0307236.ref025) 2022; 127
pone.0307236.ref031
Z Wang (pone.0307236.ref030) 2022; 25
pone.0307236.ref036
H. Liu (pone.0307236.ref032) 2023; 25
pone.0307236.ref035
pone.0307236.ref034
pone.0307236.ref033
H Zhang (pone.0307236.ref024) 2021; 129
Z Fu (pone.0307236.ref011) 2016; 77
J Ma (pone.0307236.ref017) 2021; 70
J Ma (pone.0307236.ref013) 2017; 82
H Li (pone.0307236.ref014) 2019; 28
L Tang (pone.0307236.ref016) 2022; 83
J Ma (pone.0307236.ref018) 2019; 48
D Guan (pone.0307236.ref007) 2019; 50
D K Jain (pone.0307236.ref008) 2023; 95
pone.0307236.ref021
pone.0307236.ref043
Yang Pan (pone.0307236.ref004) 2023; 20
P Zhang (pone.0307236.ref005) 2021; 129
H Xu (pone.0307236.ref039) 2022; 44
pone.0307236.ref042
pone.0307236.ref041
L Tang (pone.0307236.ref020) 2023
L Tang (pone.0307236.ref003) 2022; 82
J Ma (pone.0307236.ref040) 2021; 70
pone.0307236.ref022
pone.0307236.ref029
pone.0307236.ref006
References_xml – volume: 82
  start-page: 8
  year: 2017
  ident: pone.0307236.ref013
  article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2017.02.005
– ident: pone.0307236.ref043
  doi: 10.1109/CVPR42600.2020.00165
– volume: 129
  start-page: 2761
  year: 2021
  ident: pone.0307236.ref024
  article-title: SDNet: A versatile squeeze-and-decomposition network for real-time image fusion
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01501-8
– volume: 48
  start-page: 11
  year: 2019
  ident: pone.0307236.ref018
  article-title: FusionGAN: A generative adversarial network for infrared and visible image fusion
  publication-title: Information fusion
  doi: 10.1016/j.inffus.2018.09.004
– volume: 7
  start-page: 824
  year: 2021
  ident: pone.0307236.ref038
  article-title: Classification saliency-based rule for visible and infrared image fusion
  publication-title: IEEE Transactions on Computational Imaging
  doi: 10.1109/TCI.2021.3100986
– volume: 20
  start-page: 16148
  issue: 9
  year: 2023
  ident: pone.0307236.ref004
  article-title: Aerial images object detection method based on cross-scale multi-feature fusion
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2023721
– volume: 25
  start-page: 985
  year: 2023
  ident: pone.0307236.ref032
  article-title: SCFusion: Infrared and Visible Fusion Based on Salient Compensation
  publication-title: Entropy
  doi: 10.3390/e25070985
– volume: 29
  start-page: 4733
  year: 2020
  ident: pone.0307236.ref012
  article-title: MDLatLRR: A novel decomposition method for infrared and visible image fusion
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2975984
– ident: pone.0307236.ref031
  doi: 10.1109/CVPR.2018.00070
– start-page: 101870
  year: 2023
  ident: pone.0307236.ref020
  article-title: Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.101870
– volume: 28
  start-page: 2614
  issue: 5
  year: 2019
  ident: pone.0307236.ref014
  article-title: DenseFuse: A fusion approach to infrared and visible images
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2887342
– ident: pone.0307236.ref022
  doi: 10.1145/3503161.3547902
– volume: 54
  start-page: 99
  year: 2020
  ident: pone.0307236.ref023
  article-title: IFCNN: A general image fusion framework based on convolutional neural network
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.07.011
– ident: pone.0307236.ref036
  doi: 10.1109/ICCVW54120.2021.00389
– volume: 44
  start-page: 502
  issue: 1
  year: 2022
  ident: pone.0307236.ref039
  article-title: U2Fusion: A unified unsupervised image fusion network
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.3012548
– volume: 129
  start-page: 2714
  year: 2021
  ident: pone.0307236.ref005
  article-title: JLearning adaptive attribute-driven representation for real-time RGB-T tracking
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01495-3
– ident: pone.0307236.ref006
  doi: 10.1109/IROS.2017.8206396
– ident: pone.0307236.ref042
– volume: 70
  start-page: 1
  year: 2021
  ident: pone.0307236.ref040
  article-title: GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion
  publication-title: IEEE Transactions on Instrumentation and Measurement
– start-page: 3280496
  year: 2023
  ident: pone.0307236.ref027
  article-title: LDRepFM: A Real-time End-to-End Visible and Infrared Image Fusion Model Based on Layer Decomposition and Re-parameterization
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 76
  start-page: 323
  year: 2021
  ident: pone.0307236.ref001
  article-title: Image fusion meets deep learning: A survey and perspective
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.06.008
– volume: 24
  start-page: 655
  year: 2021
  ident: pone.0307236.ref002
  article-title: Multi-focus image fusion based on multi-scale gradients and image matting
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2021.3057493
– volume: 20
  start-page: 16060
  issue: 9
  year: 2023
  ident: pone.0307236.ref026
  article-title: FECFusion: Infrared and visible image fusion network based on fast edge convolution
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2023717
– volume: 82
  start-page: 28
  year: 2022
  ident: pone.0307236.ref003
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.12.004
– volume: 508
  start-page: 64
  year: 2020
  ident: pone.0307236.ref010
  article-title: Infrared and visible image fusion based on target-enhanced multiscale transform decomposition
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.08.066
– volume: 73
  start-page: 72
  year: 2021
  ident: pone.0307236.ref037
  article-title: RFN-Nest: An end-to-end residual fusion network for infrared and visible images
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.02.023
– ident: pone.0307236.ref033
  doi: 10.1109/ICCV51070.2023.00745
– volume: 127
  start-page: 104383
  year: 2022
  ident: pone.0307236.ref025
  article-title: FLFuse-Net: A fast and lightweight infrared and visible image fusion network via feature flow and edge compensation for salient information
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2022.104383
– volume: 70
  start-page: 1
  year: 2021
  ident: pone.0307236.ref015
  article-title: SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2020.3022438
– volume: 83
  start-page: 79
  year: 2022
  ident: pone.0307236.ref016
  article-title: PIAFusion: A progressive infrared and visible image fusion network based on illumination aware
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2022.03.007
– volume: 25
  start-page: 7800
  year: 2022
  ident: pone.0307236.ref030
  article-title: Infrared and visible image fusion via interactive compensatory attention adversarial learning
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2022.3228685
– volume: 29
  start-page: 4980
  year: 2021
  ident: pone.0307236.ref019
  article-title: DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2977573
– ident: pone.0307236.ref034
  doi: 10.1145/3474085.3475291
– ident: pone.0307236.ref035
  doi: 10.1109/CVPR46437.2021.01074
– ident: pone.0307236.ref041
  doi: 10.24963/ijcai.2022/487
– volume: 70
  start-page: 1
  year: 2021
  ident: pone.0307236.ref017
  article-title: STDFusionNet: An infrared and visible image fusion network based on salient target detection
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2021.3075747
– volume: 95
  start-page: 401
  year: 2023
  ident: pone.0307236.ref008
  article-title: Multimodal pedestrian detection using metaheuristics with deep convolutional neural network in crowded scenes
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.02.014
– volume: 91
  start-page: 477
  year: 2023
  ident: pone.0307236.ref028
  article-title: DIVFusion: Darkness-free infrared and visible image fusion
  publication-title: Information Fusio
  doi: 10.1016/j.inffus.2022.10.034
– volume: 50
  start-page: 148
  year: 2019
  ident: pone.0307236.ref007
  article-title: Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.017
– ident: pone.0307236.ref009
  doi: 10.1109/CVPR46437.2021.00266
– ident: pone.0307236.ref021
  doi: 10.1109/CVPR52688.2022.00571
– volume: 77
  start-page: 114
  year: 2016
  ident: pone.0307236.ref011
  article-title: Infrared and visible images fusion based on RPCA and NSCT
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2016.05.012
– ident: pone.0307236.ref029
  doi: 10.1109/CVPR52729.2023.00572
SSID ssj0053866
Score 2.4612064
Snippet The objective of image fusion is to integrate complementary features from source images to better cater to the needs of human and machine vision. However,...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0307236
SubjectTerms Algorithms
Biology and Life Sciences
Cameras
Computer and Information Sciences
Computer vision
Data visualization
Deep learning
Design
Evaluation
Humans
Image enhancement
Image processing
Image Processing, Computer-Assisted - methods
Information processing
Infrared imagery
Infrared imaging
Infrared Rays
Injection
Light
Lightweight
Machine vision
Methods
Modules
Physical Sciences
Research and Analysis Methods
Semantic networks
Semantics
Social Sciences
Special effects
Task complexity
Visual perception
Visual perception driven algorithms
Visual tasks
Weight reduction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnHpBFAo1FFgQEnBwG9v7MrdSERXEQwKKelvt2GsIap2oTtS_z8x6Y2pUCQ7cIu_YSma-mZ1xZr5l7BlWDMp5AamDTKSicSotpwWk07JxgLGwVJIGhT98VMcn4t2pPL1y1Bf1hPX0wL3iDgTW2UJKVwJu3bLyIESuc0DsZSCM8xR9cc_bFFN9DEYvVioOyhU6O4h22V8uWr9PsM4DJfPvjSjw9Q9RebI8W3TXpZx_dk5e2Ypmt9jNmEPyw_67b7Mbvr3NtqOXdvxFpJJ-eYdhqJyt6X3YK_6eqvDL8CKUI6ouqPGcu7bmNF0OZ57PzzG08CaIc9rcao4fOn-Oup9XeM_P0LXV7rCT2ZuvR8dpPEYhrbC4WKWiMF4XTVXX4ISrDSivFQiNRqpql2uoQHvpQZYOFKi8kV6aSqKlMpAei9i7bNKi4nYZd2hCTSHJOBClEaVohClqzOlo3naqEpZudGqXPVuGDX-ZaawyeuVYsoGNNkjYa1L8IEtc1-ECIsBGBNi_ISBhj8lsth8cHTzWHhpMdgWmmCZhT4ME8V201FDz3a27zr799O0fhL58Hgk9j0LNAgFQuTjEgL-JeLRGknsjSfTaarS8SyDbaKWzBWaadDaBzvDODfCuX34yLNNDqUmu9Yt1LyOMwAo6Yfd6nA6aLUqiqstQ42aE4JHqxyvt_EegGyfCJsoE7_8PYz1gWzmmhWGaU-2xyepi7R9iWreCR8GDfwEnm0iP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pN4ljO1xQQawK4iEBRXuLPI5TFrXJstkVf58Zx5sSVCFuUTyJknl5xp75zNgTzBikcQJiA4mIRW1kXEwziKdFbQB9YSFzahT-8FEeHYt383weFty6UFa59YneUVetpTXygwxnYsJuV8nL5c-YTo2i3dVwhMZldoWgy6ikS82HhAttWcrQLpep5CBIZ3_ZNm6flDv1wMzn05FH7R9882R52nYXBZ5_10_-MSHNrrNrIZLkh73od9gl19xgO8FWO_4sAEo_v8nQYc42tCr2gr-nXPyXXw7lqFsrKj_npqk49ZjDqeOLM3QwvPbknKa4iuNF585QAguLz_zwtVvNLXY8e_P19VEcDlOILaYY61hk2qmstlUFRphKg3RKglAoKluZVIEF5XIHeWFAgkzr3OXa5iivBHKHqextNmmQcbuMGxSkIsekDYhCi0LUQmcVRnbUdTuVEYu3PC2XPWZG6TfOFOYaPXNKkkEZZBCxV8T4gZYQr_2NdnVSBgMqhZKEqW4KwBAutw6ESFUK6IMSENq4iD0ksZV9--hgt-WhxpBXYKCpI_bYUxDqRUNlNSdm03Xl20_f_oPoy-cR0dNAVLeoANaEVgb8J0LTGlHujSjRdu1oeJeUbMuVrjzXcnxyq3gXDz8ahumlVCrXuHbT0wgtMI-O2J1eTwfOZgUB1iXIcT3S4BHrxyPN4rsHHSfYJooH7_77u-6xqymGfb5bU-6xyXq1cfcxbFvDA2-bvwE1-0Eo
  priority: 102
  providerName: ProQuest
Title SIFusion: Lightweight infrared and visible image fusion based on semantic injection
URI https://www.ncbi.nlm.nih.gov/pubmed/39504316
https://www.proquest.com/docview/3125254671
https://www.proquest.com/docview/3125484899
https://pubmed.ncbi.nlm.nih.gov/PMC11540218
https://doaj.org/article/4761455a9b2645ceb44272b0401b48ae
http://dx.doi.org/10.1371/journal.pone.0307236
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0Nq6F14Q42vZRjEICXhI1SSO7SAhtE0tA7GBBkV9i-zEGZ26pDStgBd-O3fOhwgqEuLFiuq7Srkv3zn3QcgTiBi4Mky7SnvMZZnibjQMtDuMMqXBFkY8xELhs3N-OmFvp-F0izQzW2sClhtDO5wnNVnOB9-__ngFCv_STm0QXoM0WBS5GaDQ-gHfJjtwNglU1TPWflcA7ea8LqD7G2bngLJ9_Ftr3VvMi3KTK_pnRuVvR9T4FrlZ-5b0qBKGXbJl8ttkt9bekj6rW0w_v0PAhI7XeE_2gr7D6PybvSCl8P5LTEinKk8pVp3ruaGzazA5NLPgFA-9lMJDaa6BJ7MEcK5sNld-l0zGo08np249XsFNIOhYuSyQRgRZkqZaMZVKzY3gmglgXpIqX-hECxMaHUZKc839LDShTELgoKdDA8HtPdLLgXB7hCpgrUBTJZVmkWQRy5gMUvD1sA53yB3iNjSNF1UXjdh-ShMQfVTEiZEHcc0Dhxwj4VtY7IFtfyiWl3GtUjETHLusq0iDUxcmRjPmC1-DVfI0k8o45CGyLa4KSltNjo8kOMEMXE_pkMcWAvtg5Jhoc6nWZRm_ef_5H4A-XnSAntZAWQECkKi6uAHeCftrdSAPO5CgzUlnew-FrKFKGQfggeLMAuEBZiN4m7cftdv4p5g8l5tiXcEwySCydsj9Sk5bygYRtrDzgOKyI8Ed0nd38tkX24YcGzmhh7j__6gH5IYPTqKt7eSHpLdars0DcPJWuk-2xVTAKk88XMev-2TneHT-4aJvr036Vq9x_Tn6BdBEWSE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYTCDQMBDtiZxbAcJofFRrawbEmxT34ydOKNoS0rTauKf4m_kzvkYQRPiZW9VfYmS8_l3d87dz4Q8hYyBa8uMp43PPJZp7sWD0HiDONMGsDDmETYK7-3znUP2cRJNVsivphcGyyobTHRAnRYJ7pFvheCJkbtd-G9mPzw8NQq_rjZHaFRmsWt_nkHKVr4evYf5fRYEww8H73a8-lQBL4FYe-GxUFoRZkmaGs10Kg23ghsm4JmTVAfCJEbYyJoo1oYbHmSRjWQSwYP7JrKQ08F9r5Cr4HgHuKLEpE3wADs4r9vzQuFv1dawOStyu4mLKXBE0Ofuz50S0PqC3uykKC8KdP-u1_zDAQ5vkht15Eq3K1NbJSs2v0VWa2wo6YuawPrlbQIAPVziLtwrOsbc_8xtv1Kw5TmWu1OdpxR72s2JpdNTADSaOXGKLjWl8KO0pzDj0wSu-e5qxfI75PBS1HyX9HJQ3BqhGgxHIBBKbVgsWcwyJsMUIkns8h3wPvEanapZxdGh3Ic6AblNpRyFc6DqOeiTt6j4VhYZtt0fxfxY1QtWMcGRw13HBkLGKLGGsUAEBjDPN0xq2ycbOG2qaldtcUJtSwixGQS2sk-eOAlk2cixjOdYL8tSjT4d_YfQl88doee1UFaAASS6bp2Ad0L2ro7kekcSsCLpDK-hkTVaKdX5qoIrG8O7ePhxO4w3xdK83BbLSoZJBnl7n9yr7LTVbBgjQZ4PGpcdC-6ovjuST785knOkicL48_6_n2uDXNs52Bur8Wh_9wG5HkDI6TpF-TrpLeZL-xBCxoV55NYpJV8vGxh-AzfugHE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPLqlkINAgGHtJvEsR0khApl1aWlIErR3oydOO2iNlk2u6r4a_w6ZpxHCaoQl96ieBI54_HnGWfmMyFPIGLg2jLjaeMzj2Wae_EgNN4gzrQBLIx5hIXCH_b5ziF7P47GS-RXUwuDaZUNJjqgTosE98g3Q1iJkbtd-JtZnRbxaXv4evrDwxOk8E9rc5xGZSK79ucZhG_lq9E2jPXTIBi--_J2x6tPGPAS8LvnHgulFWGWpKnRTKfScCu4YQL6n6Q6ECYxwkbWRLE23PAgi2wkkwg-wjeRhfgO3nuFXBVh5OMcE-M22AMc4bwu1Quhz7VlbEyL3G7gxAocKfT5UuhODGjXhd70pCgvcnr_zt38YzEc3iQ3ai-WblVmt0yWbH6LLNc4UdLnNZn1i9sEwHq4wB25l3QP9wHO3FYsBbueYeo71XlKsb7dnFg6OQVwo5kTp7i8phQuSnsKoz9J4JnvLm8sv0MOL0XNd0kvB8WtEKrBiASCotSGxZLFLGMyTMGrxIrfAe8Tr9GpmlZ8Hcr9tBMQ51TKUTgGqh6DPnmDim9lkW3b3ShmR6qevIoJjnzuOjbgPkaJNYwFIjCAf75hUts-WcdhU1XpaosZakuCu83AyZV98thJIONGjrZ7pBdlqUYfv_6H0MHnjtCzWigrwAASXZdRwDchk1dHcq0jCbiRdJpX0MgarZTqfIbBk43hXdz8qG3Gl2KaXm6LRSXDJIMYvk_uVXbaajaMkSzPB43LjgV3VN9tySfHjvAcKaPQF139d7_WyTWABLU32t-9T64H4H26olG-Rnrz2cI-AO9xbh66aUrJt8vGhd8iR4Sn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIFusion%3A+Lightweight+infrared+and+visible+image+fusion+based+on+semantic+injection&rft.jtitle=PloS+one&rft.au=Qian%2C+Song&rft.au=Yang%2C+Liwei&rft.au=Xue%2C+Yan&rft.au=Li%2C+Ping&rft.date=2024-11-06&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0307236&rft.externalDocID=PMC11540218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon