Biotransformation of 2-keto-4-hydroxybutyrate via aldol condensation using an efficient and thermostable carboligase from Deinococcus radiodurans

The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly bioca...

Full description

Saved in:
Bibliographic Details
Published inBioresources and bioprocessing Vol. 11; no. 1; pp. 9 - 13
Main Authors Jeong, Yeon-Ju, Seo, Min-Ju, Sung, Bong Hyun, Kim, Jeong-Sun, Yeom, Soo-Jin
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 16.01.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2197-4365
2197-4365
DOI10.1186/s40643-024-00727-x

Cover

Abstract The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min –1  mg –1 . Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg 2+ , 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L –1 ) 2-KHB over 60 min with a volumetric productivity of 8.94 g L –1  h –1 and a specific productivity of 357.6 mg mg-enzyme –1  h –1 . Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L –1 ) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L –1  h –1 and 583.4 mg mg-enzyme –1  h –1 , respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. Graphical Abstract
AbstractList The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min  mg . Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg , 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L ) 2-KHB over 60 min with a volumetric productivity of 8.94 g L  h and a specific productivity of 357.6 mg mg-enzyme  h . Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L ) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L  h and 583.4 mg mg-enzyme  h , respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.
The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.
The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min –1  mg –1 . Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg 2+ , 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L –1 ) 2-KHB over 60 min with a volumetric productivity of 8.94 g L –1  h –1 and a specific productivity of 357.6 mg mg-enzyme –1  h –1 . Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L –1 ) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L –1  h –1 and 583.4 mg mg-enzyme –1  h –1 , respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. Graphical Abstract
Abstract The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min–1 mg–1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L–1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L–1 h–1 and a specific productivity of 357.6 mg mg-enzyme–1 h–1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L–1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L–1 h–1 and 583.4 mg mg-enzyme–1 h–1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. Graphical Abstract
The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min–1 mg–1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L–1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L–1 h–1 and a specific productivity of 357.6 mg mg-enzyme–1 h–1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L–1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L–1 h–1 and 583.4 mg mg-enzyme–1 h–1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.
The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min –1  mg –1 . Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg 2+ , 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L –1 ) 2-KHB over 60 min with a volumetric productivity of 8.94 g L –1  h –1 and a specific productivity of 357.6 mg mg-enzyme –1  h –1 . Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L –1 ) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L –1  h –1 and 583.4 mg mg-enzyme –1  h –1 , respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.
ArticleNumber 9
Author Seo, Min-Ju
Kim, Jeong-Sun
Yeom, Soo-Jin
Sung, Bong Hyun
Jeong, Yeon-Ju
Author_xml – sequence: 1
  givenname: Yeon-Ju
  surname: Jeong
  fullname: Jeong, Yeon-Ju
  organization: School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University
– sequence: 2
  givenname: Min-Ju
  surname: Seo
  fullname: Seo, Min-Ju
  organization: School of Biological Sciences and Technology, Chonnam National University, Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University
– sequence: 3
  givenname: Bong Hyun
  surname: Sung
  fullname: Sung, Bong Hyun
  email: bhsung@kribb.re.kr
  organization: Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology
– sequence: 4
  givenname: Jeong-Sun
  surname: Kim
  fullname: Kim, Jeong-Sun
  email: jsunkim@chonnam.ac.kr
  organization: Department of Chemistry, Chonnam National University
– sequence: 5
  givenname: Soo-Jin
  orcidid: 0000-0001-7307-237X
  surname: Yeom
  fullname: Yeom, Soo-Jin
  email: soojin258@jnu.ac.kr
  organization: School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, School of Biological Sciences and Technology, Chonnam National University, Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38647973$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAYjFARLaV_gAOyxIVLwK_EyQlBeVWqxAXOlmN_3vWS2MV2qt2fwT_Guyml7aEnv2bG4_E8r4588FBVLwl-S0jXvksct5zVmPIaY0FFvX1SnVDSi5qztjm6Mz-uzlLaYIwJ44zw5ll1zLqWi16wk-rPRxdyVD7ZECeVXfAoWETrX5BDzev1zsSw3Q1z3kWVAV07hdRowoh08AZ8Wihzcn6FlEdgrdMOfC4Lg_Ia4hRSVsMISKs4hNGtVAJkY5jQJ3A-6KD1nFBUxgUz7428qJ5aNSY4uxlPq59fPv84_1Zffv96cf7hstYtp7nmxGDoe60a1TIQPcGkIT0QPUDJRxgsMAihiDUWU2IJxQQYZbY3TJHOdOy0ulh0TVAbeRXdpOJOBuXkYSPElVQxOz2CHDpuOzqIxrKWmw53Q6sarFotKGF9j4vW-0Xrah4mMLoEENV4T_T-iXdruQrXkuC-p7SjReHNjUIMv2dIWU4uaRhH5SHMSTLMG0KaFu-hrx9AN2GOvmQlaU8azhvBm4J6ddfSrZd_X18AdAHoGFKKYG8hBMt9xeRSMVkqJg8Vk9tC6h6QtMuHDpRnufFxKluoqdzjVxD_236E9Reik-hv
CitedBy_id crossref_primary_10_1021_acssuschemeng_4c07133
Cites_doi 10.1021/acssuschemeng.1c00699
10.1039/C5SC04574F
10.1016/s0079-6603(08)60099-9
10.1021/ja104412a
10.1073/pnas.1500545112
10.1021/acssynbio.9b00003
10.1002/anie.201711289
10.3390/ijms23073990
10.1016/S0009-2797(00)00272-6
10.1021/acs.iecr.1c02343
10.1021/acscatal.6b03181
10.1038/227680a0
10.3389/fmicb.2023.1156924
10.1021/ja208754r
10.1021/bi800943g
10.1039/D2GC00667G
10.1038/nmeth.1318
10.1016/j.ymben.2020.03.002
10.1021/ja073911i
10.1021/acssynbio.7b00029
10.1021/bi00784a013
10.1002/adsc.201900128
10.1021/ja065233q
10.1039/D1GC02226A
10.1016/0014-5793(96)00830-7
10.1016/j.checat.2022.11.006
10.1016/j.biortech.2021.125344
10.1186/s13036-020-00250-5
10.1021/acssynbio.9b00102
10.1021/bi100251u
10.1002/biot.201400235
10.1016/S0021-9258(19)42405-8
10.1074/jbc.M110.159509
10.1016/j.molcatb.2014.01.004
10.1093/nar/18.20.6069
10.1371/journal.pone.0184183
10.1002/biot.201900003
10.1021/acscatal.9b03128
10.1021/acs.jafc.2c09108
10.1039/c9re00453j
10.1021/acssynbio.0c00597
10.1016/0003-2697(76)90527-3
10.1038/s41598-019-48091-7
10.1039/d1gc03549e
10.1016/j.molcatb.2010.10.008
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s40643-024-00727-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2197-4365
EndPage 13
ExternalDocumentID oai_doaj_org_article_b84f82b75f364d808b6a50a6c7213990
PMC10992282
38647973
10_1186_s40643_024_00727_x
Genre Journal Article
GrantInformation_xml – fundername: C1 Gas Refinery Program
  grantid: NRF-2018M3D3A1A01056181
– fundername: Enzyme engineering for next generation biorefinery
  grantid: NRF-2022M3J5A1056169; NRF-2022M3J5A1085239
– fundername: Korea Research Institute of Bioscience and the Biotechnology (KRIBB) Research Initiative Program
  grantid: KGM5402322
– fundername: Enzyme engineering for next generation biorefinery
  grantid: NRF-2022M3J5A1056169
– fundername: Enzyme engineering for next generation biorefinery
  grantid: NRF-2022M3J5A1085239
GroupedDBID 0R~
5VS
8FE
8FG
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACPRK
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ASPBG
AVWKF
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
C24
C6C
CCPQU
DIK
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
IHR
ISR
ITC
KQ8
L6V
LK8
M7P
M7S
M~E
OK1
PGMZT
PIMPY
PROAC
PTHSS
RPM
RSV
RVI
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c642t-41d0e99ca5a63e79101519e1cbe1187d070e77a1fdf021f1201e323f9d3a18d83
IEDL.DBID DOA
ISSN 2197-4365
IngestDate Wed Aug 27 01:20:34 EDT 2025
Thu Aug 21 18:34:26 EDT 2025
Fri Sep 05 07:11:57 EDT 2025
Fri Jul 25 10:57:54 EDT 2025
Wed Feb 19 02:08:56 EST 2025
Tue Jul 01 01:24:40 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Fri Feb 21 02:41:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pyruvate
Pyruvate aldolase
2-keto-4-hydroxybutyrate
Formaldehyde
Deinococcus radiodurans
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-41d0e99ca5a63e79101519e1cbe1187d070e77a1fdf021f1201e323f9d3a18d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7307-237X
OpenAccessLink https://doaj.org/article/b84f82b75f364d808b6a50a6c7213990
PMID 38647973
PQID 2915445745
PQPubID 2034794
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_b84f82b75f364d808b6a50a6c7213990
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10992282
proquest_miscellaneous_3045115602
proquest_journals_2915445745
pubmed_primary_38647973
crossref_primary_10_1186_s40643_024_00727_x
crossref_citationtrail_10_1186_s40643_024_00727_x
springer_journals_10_1186_s40643_024_00727_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-16
PublicationDateYYYYMMDD 2024-01-16
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-16
  day: 16
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Bioresources and bioprocessing
PublicationTitleAbbrev Bioresour. Bioprocess
PublicationTitleAlternate Bioresour Bioprocess
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Chen, Geng, Zeng (CR7) 2015; 10
Teng, Beard, Pourahmad, Moridani, Easson, Poon, O'Brien (CR38) 2001; 130–132
Gastaldi, Mekhloufi, Forano, Gautier, Guérard-Hélaine (CR14) 2022; 24
Xu, Meng, Ren, Zeng (CR43) 2020
Aslanidis, de Jong (CR1) 1990; 18
Williams, Woodhall, Farnsworth, Nelson, Berry (CR42) 2006; 128
Dekker, Lane, Shapley (CR8) 1971; 10
Gong, Xiu, Dong, Han, Xu, Ni (CR16) 2021; 337
Bradford (CR5) 1976; 72
Jo, Kim, Kim, Seo, Kim, Kim, Yu, Cheon, Lee, Kim, Park (CR25) 2022; 24
He, Hoper, Dodenhoft, Marliere, Bar-Even (CR20) 2020; 60
Laurent, Uzel, Hélaine, Nauton, Traïkia, Gefflaut, Salanoubat, de Berardinis, Lemaire, Guérard-Hélaine (CR29) 2019; 361
Meng, Wang, Yuan, Ren, Zeng (CR32) 2021; 10
Rea, Hovington, Rakus, Gerlt, Fulop, Bugg, Roper (CR34) 2008; 47
Bouzon, Perret, Loreau, Delmas, Perchat, Weissenbach, Taran, Marliere (CR4) 2017; 6
Cesnik, Sudar, Hernandez, Charnock, Vasic-Racki, Clapes, Blazevic (CR6) 2020; 5
Li, Yao, Zhang, Feng, Su, Liu, Sheng, Wu, Zhu, Ma (CR30) 2023; 3
Sugiyama, Hong, Liang, Dean, Whalen, Greenberg, Wong (CR37) 2007; 129
Ju, Seo, Yeom (CR26) 2022; 23
Bosch, Sanchez-Freire, Del Pozo, C̆esnik, Quesada, Mate, Hernández, Qi, Clapés, Vasić-Račk (CR3) 2021; 9
Wang, Ren, Zhou, Li, Chen, Zeng (CR39) 2019; 8
Laemmli (CR28) 1970; 227
Wang, Baker, Seah (CR40) 2010; 49
Dick, Hartmann, Weiergräber, Bisterfeld, Classen, Schwarten, Neudecker, Willbold, Pietruszka (CR10) 2016; 7
Wang, Mazurkewich, Kimber, Seah (CR41) 2010; 285
Hansen, Lane, Dekker (CR18) 1974; 249
Güner, Wegat, Pick, Sieber (CR17) 2021; 23
Hernandez, Bujons, Joglar, Charnock, de Maria, Fessner, Clapes (CR21) 2017; 7
Hernandez, Joglar, Bujons, Parella, Clapes (CR22) 2018; 57
Zhong, Zhang, Wu, Liu, Chen (CR45) 2019; 8
Nara, Togashi, Ono, Egami, Sekikawa, Suzuki, Masuda, Ogawa, Horinouchi, Shimizu, Mizukami, Tsunoda (CR33) 2011; 68
Baker, Seah (CR2) 2012; 134
Liu, Wei, Yang, Wang, Chen, Ouyang, Zhang (CR31) 2023
Jeong, Seo, Seo, Ju, Kim, Yeom (CR24) 2023; 71
Desmons, Fauré, Bontemps (CR9) 2019; 9
Hixon, Sinerius, Schneider, Walter, Fessner, Schloss (CR23) 1996; 392
Zhang, Ma, Dischert, Soucaille, Zeng (CR44) 2019; 14
Katulic, Sudar, Hernandez, Qi, Charnock, Vasic-Racki, Clapes, Blazevic (CR27) 2021; 60
Royer, Haslett, Crennell, Hough, Danson, Bull (CR35) 2010; 132
Hartley, French, Scoble, Williams, Churches, Frazer, Taylor, Coia, Simpson, Turner, Scott (CR19) 2017; 12
Siegel, Smith, Poust, Wargacki, Bar-Even, Louw, Shen, Eiben, Tran, Noor, Gallaher, Bale, Yoshikuni, Gelb, Keasling, Stoddard, Lidstrom, Baker (CR36) 2015; 112
Feldman (CR12) 1973; 13
Fei, Xu, Wu, Yang (CR11) 2014; 101
Gibson, Young, Chuang, Venter, Hutchison, Smith (CR15) 2009; 6
Frazao, Trichez, Serrano-Bataille, Dagkesamanskaia, Topham, Walther, Francois (CR13) 2019; 9
K Hernandez (727_CR22) 2018; 57
TY Nara (727_CR33) 2011; 68
Y Zhang (727_CR44) 2019; 14
Y Li (727_CR30) 2023; 3
S Güner (727_CR17) 2021; 23
H He (727_CR20) 2020; 60
CJ Hartley (727_CR19) 2017; 12
H Meng (727_CR32) 2021; 10
S Teng (727_CR38) 2001; 130–132
EE Dekker (727_CR8) 1971; 10
Y-J Jeong (727_CR24) 2023; 71
W Wang (727_CR40) 2010; 49
C Wang (727_CR39) 2019; 8
C Aslanidis (727_CR1) 1990; 18
L Gong (727_CR16) 2021; 337
UK Laemmli (727_CR28) 1970; 227
S Bosch (727_CR3) 2021; 9
Z Chen (727_CR7) 2015; 10
M Hixon (727_CR23) 1996; 392
CJR Frazao (727_CR13) 2019; 9
GJ Williams (727_CR42) 2006; 128
D Rea (727_CR34) 2008; 47
SF Royer (727_CR35) 2010; 132
M Cesnik (727_CR6) 2020; 5
S Desmons (727_CR9) 2019; 9
WQ Zhong (727_CR45) 2019; 8
MM Bradford (727_CR5) 1976; 72
S-B Ju (727_CR26) 2022; 23
M Bouzon (727_CR4) 2017; 6
H Fei (727_CR11) 2014; 101
BA Hansen (727_CR18) 1974; 249
W Wang (727_CR41) 2010; 285
YY Xu (727_CR43) 2020
M Dick (727_CR10) 2016; 7
DG Gibson (727_CR15) 2009; 6
JB Siegel (727_CR36) 2015; 112
Q Liu (727_CR31) 2023
MY Feldman (727_CR12) 1973; 13
HJ Jo (727_CR25) 2022; 24
M Sugiyama (727_CR37) 2007; 129
K Hernandez (727_CR21) 2017; 7
V Laurent (727_CR29) 2019; 361
P Baker (727_CR2) 2012; 134
MC Katulic (727_CR27) 2021; 60
C Gastaldi (727_CR14) 2022; 24
References_xml – volume: 9
  start-page: 5430
  issue: 15
  year: 2021
  end-page: 5436
  ident: CR3
  article-title: Thermostability engineering of a class II pyruvate aldolase from by in vivo folding interference
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.1c00699
– volume: 7
  start-page: 4492
  issue: 7
  year: 2016
  end-page: 4502
  ident: CR10
  article-title: Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies
  publication-title: Chem Sci
  doi: 10.1039/C5SC04574F
– volume: 13
  start-page: 1
  year: 1973
  end-page: 49
  ident: CR12
  article-title: Reactions of nucleic acids and nucleoproteins with formaldehyde
  publication-title: Prog Nucleic Acid Res Mol Biol
  doi: 10.1016/s0079-6603(08)60099-9
– volume: 132
  start-page: 11753
  issue: 33
  year: 2010
  end-page: 11758
  ident: CR35
  article-title: Structurally informed site-directed mutagenesis of a stereochemically promiscuous aldolase to afford stereochemically complementary biocatalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/ja104412a
– volume: 112
  start-page: 3704
  issue: 12
  year: 2015
  end-page: 3709
  ident: CR36
  article-title: Computational protein design enables a novel one-carbon assimilation pathway
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1500545112
– volume: 8
  start-page: 587
  issue: 3
  year: 2019
  end-page: 595
  ident: CR45
  article-title: Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1,3-propanediol from glucose
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.9b00003
– volume: 57
  start-page: 3583
  issue: 14
  year: 2018
  end-page: 3587
  ident: CR22
  article-title: Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU from
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201711289
– volume: 23
  start-page: 3990
  issue: 7
  year: 2022
  ident: CR26
  article-title: In vitro one-pot 3-hydroxypropanal production from cheap C1 and C2 compounds
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23073990
– volume: 130–132
  start-page: 285
  year: 2001
  end-page: 296
  ident: CR38
  article-title: The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes
  publication-title: Chem Biol Interact
  doi: 10.1016/S0009-2797(00)00272-6
– volume: 60
  start-page: 13846
  issue: 38
  year: 2021
  end-page: 13858
  ident: CR27
  article-title: Cascade synthesis of -homoserine catalyzed by lyophilized whole cells containing transaminase and aldolase activities: the mathematical modeling approach
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.1c02343
– volume: 7
  start-page: 1707
  issue: 3
  year: 2017
  end-page: 1711
  ident: CR21
  article-title: Combining aldolases and transaminases for the synthesis of 2-amino-4-hydroxybutanoic acid
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03181
– volume: 227
  start-page: 680
  issue: 5259
  year: 1970
  end-page: 685
  ident: CR28
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
  doi: 10.1038/227680a0
– year: 2023
  ident: CR31
  article-title: One-pot biosynthesis of -acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, -acetylglucosamine-2-epimerase, and -neuraminic acid aldolase
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2023.1156924
– volume: 134
  start-page: 507
  issue: 1
  year: 2012
  end-page: 513
  ident: CR2
  article-title: Rational design of stereoselectivity in the class II pyruvate aldolase BphI
  publication-title: J Am Chem Soc
  doi: 10.1021/ja208754r
– volume: 47
  start-page: 9955
  issue: 38
  year: 2008
  end-page: 9965
  ident: CR34
  article-title: Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from K12
  publication-title: Biochem
  doi: 10.1021/bi800943g
– volume: 24
  start-page: 3634
  issue: 9
  year: 2022
  end-page: 3639
  ident: CR14
  article-title: Mixing chemo- and biocatalysis for rare monosaccharide production by combining aldolase and -heterocyclic carbene gold catalysts
  publication-title: Green Chem
  doi: 10.1039/D2GC00667G
– volume: 6
  start-page: 343
  issue: 5
  year: 2009
  end-page: 345
  ident: CR15
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1318
– volume: 60
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR20
  article-title: An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in .
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2020.03.002
– volume: 129
  start-page: 14811
  issue: 47
  year: 2007
  end-page: 14817
  ident: CR37
  article-title: d-Fructose-6-phosphate aldolase-catalyzed one-pot synthesis of iminocyclitols
  publication-title: J Am Chem Soc
  doi: 10.1021/ja073911i
– volume: 6
  start-page: 1520
  issue: 8
  year: 2017
  end-page: 1533
  ident: CR4
  article-title: A synthetic alternative to canonical one-carbon metabolism
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.7b00029
– volume: 10
  start-page: 1353
  issue: 8
  year: 1971
  end-page: 1364
  ident: CR8
  article-title: 2-keto-4-hydroxybutyrate aldolase. Identification as 2-keto-4-hydroxyglutarate aldolase, catalytic properties, and role in the mammalian metabolism of l-homoserine
  publication-title: Biochemistry
  doi: 10.1021/bi00784a013
– volume: 361
  start-page: 2713
  issue: 11
  year: 2019
  end-page: 2717
  ident: CR29
  article-title: Exploration of aldol reactions catalyzed by stereoselective pyruvate aldolases with 2-oxobutyric acid as nucleophile
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201900128
– volume: 128
  start-page: 16238
  issue: 50
  year: 2006
  end-page: 16247
  ident: CR42
  article-title: Creation of a pair of stereochemically complementary biocatalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/ja065233q
– volume: 23
  start-page: 6583
  issue: 17
  year: 2021
  end-page: 6590
  ident: CR17
  article-title: Design of a synthetic enzyme cascade for the in vitro fixation of a C1 carbon source to a functional C4 sugar
  publication-title: Green Chem
  doi: 10.1039/D1GC02226A
– volume: 392
  start-page: 281
  issue: 3
  year: 1996
  end-page: 284
  ident: CR23
  article-title: Quo vadis photorespiration: a tale of two aldolases
  publication-title: Febs Lett
  doi: 10.1016/0014-5793(96)00830-7
– volume: 3
  issue: 1
  year: 2023
  ident: CR30
  article-title: Creating a new benzaldehyde lyase for atom-economic synthesis of chiral 1,2,4-butanetriol and 2-aminobutane-1,4-diol from formaldehyde
  publication-title: Chem Catal
  doi: 10.1016/j.checat.2022.11.006
– volume: 337
  year: 2021
  ident: CR16
  article-title: Sustainable one-pot chemo-enzymatic synthesis of chiral furan amino acid from biomass via magnetic solid acid and threonine aldolase
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.125344
– year: 2020
  ident: CR43
  article-title: Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-propanediol
  publication-title: J Biol Eng
  doi: 10.1186/s13036-020-00250-5
– volume: 8
  start-page: 2483
  issue: 11
  year: 2019
  end-page: 2493
  ident: CR39
  article-title: An aldolase-catalyzed new metabolic pathway for the assimilation of formaldehyde and methanol to synthesize 2-Keto-4-hydroxybutyrate and 1,3-propanediol in
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.9b00102
– volume: 49
  start-page: 3774
  issue: 17
  year: 2010
  end-page: 3782
  ident: CR40
  article-title: Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling
  publication-title: Biochem
  doi: 10.1021/bi100251u
– volume: 10
  start-page: 284
  issue: 2
  year: 2015
  end-page: 289
  ident: CR7
  article-title: Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400235
– volume: 249
  start-page: 4891
  issue: 15
  year: 1974
  end-page: 4896
  ident: CR18
  article-title: Formaldehyde binding by 2-Keto-4-hydroxyglutarate aldolase: formation and characterization of an inactive aldolase-formaldehyde-cyanide adduct
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)42405-8
– volume: 285
  start-page: 36608
  issue: 47
  year: 2010
  end-page: 36615
  ident: CR41
  article-title: Structural and kinetic characterization of 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate aldolase, a protocatechuate degradation enzyme evolutionarily convergent with the HpaI and DmpG pyruvate aldolases
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.159509
– volume: 101
  start-page: 87
  year: 2014
  end-page: 91
  ident: CR11
  article-title: Improvement of the thermal stability and aldehyde tolerance of deoxyriboaldolase via immobilization on nano-magnet material
  publication-title: J Mol Catal B Enzym
  doi: 10.1016/j.molcatb.2014.01.004
– volume: 18
  start-page: 6069
  issue: 20
  year: 1990
  end-page: 6074
  ident: CR1
  article-title: Ligation-independent cloning of PCR products (LIC-PCR)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.20.6069
– volume: 12
  issue: 11
  year: 2017
  ident: CR19
  article-title: Sugar analog synthesis by in vitro biocatalytic cascade: a comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184183
– volume: 14
  issue: 9
  year: 2019
  ident: CR44
  article-title: Engineering of phosphoserine aminotransferase increases the conversion of -homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose
  publication-title: Biotechnol J
  doi: 10.1002/biot.201900003
– volume: 9
  start-page: 9575
  issue: 10
  year: 2019
  end-page: 9588
  ident: CR9
  article-title: Formaldehyde as a promising C1 source: the instrumental role of biocatalysis for stereocontrolled reactions
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03128
– volume: 71
  start-page: 4328
  issue: 10
  year: 2023
  end-page: 4336
  ident: CR24
  article-title: One-pot biosynthesis of 2-Keto-4-hydroxybutyrate from cheap C1 compounds using rationally designed pyruvate aldolase and methanol dehydrogenase
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c09108
– volume: 5
  start-page: 747
  issue: 4
  year: 2020
  end-page: 759
  ident: CR6
  article-title: Cascade enzymatic synthesis of -homoserine - mathematical modelling as a tool for process optimisation and design
  publication-title: React Chem Eng
  doi: 10.1039/c9re00453j
– volume: 10
  start-page: 799
  issue: 4
  year: 2021
  end-page: 809
  ident: CR32
  article-title: An aldolase-based new pathway for bioconversion of formaldehyde and ethanol into 1,3-propanediol in
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.0c00597
– volume: 72
  start-page: 248
  issue: 1
  year: 1976
  end-page: 254
  ident: CR5
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(76)90527-3
– volume: 9
  start-page: 11576
  issue: 1
  year: 2019
  ident: CR13
  article-title: Construction of a synthetic pathway for the production of 1,3-propanediol from glucose
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48091-7
– volume: 24
  start-page: 218
  issue: 1
  year: 2022
  end-page: 226
  ident: CR25
  article-title: Glyoxylate carboligase-based whole-cell biotransformation of formaldehyde into ethylene glycol via glycotaldehyde
  publication-title: Green Chem
  doi: 10.1039/d1gc03549e
– volume: 68
  start-page: 181
  issue: 2
  year: 2011
  end-page: 186
  ident: CR33
  article-title: Improvement of aldehyde tolerance and sequential aldol condensation activity of deoxyriboaldolase via immobilization on interparticle pore type mesoporous silica
  publication-title: J Mol Catal B Enzym
  doi: 10.1016/j.molcatb.2010.10.008
– volume: 7
  start-page: 4492
  issue: 7
  year: 2016
  ident: 727_CR10
  publication-title: Chem Sci
  doi: 10.1039/C5SC04574F
– volume: 9
  start-page: 11576
  issue: 1
  year: 2019
  ident: 727_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48091-7
– volume: 71
  start-page: 4328
  issue: 10
  year: 2023
  ident: 727_CR24
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c09108
– volume: 132
  start-page: 11753
  issue: 33
  year: 2010
  ident: 727_CR35
  publication-title: J Am Chem Soc
  doi: 10.1021/ja104412a
– volume: 134
  start-page: 507
  issue: 1
  year: 2012
  ident: 727_CR2
  publication-title: J Am Chem Soc
  doi: 10.1021/ja208754r
– volume: 249
  start-page: 4891
  issue: 15
  year: 1974
  ident: 727_CR18
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)42405-8
– volume: 7
  start-page: 1707
  issue: 3
  year: 2017
  ident: 727_CR21
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03181
– volume: 285
  start-page: 36608
  issue: 47
  year: 2010
  ident: 727_CR41
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.159509
– volume: 6
  start-page: 1520
  issue: 8
  year: 2017
  ident: 727_CR4
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.7b00029
– volume: 68
  start-page: 181
  issue: 2
  year: 2011
  ident: 727_CR33
  publication-title: J Mol Catal B Enzym
  doi: 10.1016/j.molcatb.2010.10.008
– volume: 24
  start-page: 218
  issue: 1
  year: 2022
  ident: 727_CR25
  publication-title: Green Chem
  doi: 10.1039/d1gc03549e
– volume: 10
  start-page: 284
  issue: 2
  year: 2015
  ident: 727_CR7
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400235
– volume: 392
  start-page: 281
  issue: 3
  year: 1996
  ident: 727_CR23
  publication-title: Febs Lett
  doi: 10.1016/0014-5793(96)00830-7
– volume: 129
  start-page: 14811
  issue: 47
  year: 2007
  ident: 727_CR37
  publication-title: J Am Chem Soc
  doi: 10.1021/ja073911i
– volume: 9
  start-page: 9575
  issue: 10
  year: 2019
  ident: 727_CR9
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03128
– volume: 5
  start-page: 747
  issue: 4
  year: 2020
  ident: 727_CR6
  publication-title: React Chem Eng
  doi: 10.1039/c9re00453j
– volume: 47
  start-page: 9955
  issue: 38
  year: 2008
  ident: 727_CR34
  publication-title: Biochem
  doi: 10.1021/bi800943g
– volume: 49
  start-page: 3774
  issue: 17
  year: 2010
  ident: 727_CR40
  publication-title: Biochem
  doi: 10.1021/bi100251u
– volume: 14
  issue: 9
  year: 2019
  ident: 727_CR44
  publication-title: Biotechnol J
  doi: 10.1002/biot.201900003
– volume: 12
  issue: 11
  year: 2017
  ident: 727_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184183
– volume: 18
  start-page: 6069
  issue: 20
  year: 1990
  ident: 727_CR1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.20.6069
– volume: 101
  start-page: 87
  year: 2014
  ident: 727_CR11
  publication-title: J Mol Catal B Enzym
  doi: 10.1016/j.molcatb.2014.01.004
– year: 2023
  ident: 727_CR31
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2023.1156924
– volume: 57
  start-page: 3583
  issue: 14
  year: 2018
  ident: 727_CR22
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201711289
– volume: 23
  start-page: 6583
  issue: 17
  year: 2021
  ident: 727_CR17
  publication-title: Green Chem
  doi: 10.1039/D1GC02226A
– year: 2020
  ident: 727_CR43
  publication-title: J Biol Eng
  doi: 10.1186/s13036-020-00250-5
– volume: 13
  start-page: 1
  year: 1973
  ident: 727_CR12
  publication-title: Prog Nucleic Acid Res Mol Biol
  doi: 10.1016/s0079-6603(08)60099-9
– volume: 8
  start-page: 2483
  issue: 11
  year: 2019
  ident: 727_CR39
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.9b00102
– volume: 227
  start-page: 680
  issue: 5259
  year: 1970
  ident: 727_CR28
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 8
  start-page: 587
  issue: 3
  year: 2019
  ident: 727_CR45
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.9b00003
– volume: 60
  start-page: 13846
  issue: 38
  year: 2021
  ident: 727_CR27
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.1c02343
– volume: 6
  start-page: 343
  issue: 5
  year: 2009
  ident: 727_CR15
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1318
– volume: 128
  start-page: 16238
  issue: 50
  year: 2006
  ident: 727_CR42
  publication-title: J Am Chem Soc
  doi: 10.1021/ja065233q
– volume: 337
  year: 2021
  ident: 727_CR16
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.125344
– volume: 60
  start-page: 1
  year: 2020
  ident: 727_CR20
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2020.03.002
– volume: 361
  start-page: 2713
  issue: 11
  year: 2019
  ident: 727_CR29
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201900128
– volume: 10
  start-page: 1353
  issue: 8
  year: 1971
  ident: 727_CR8
  publication-title: Biochemistry
  doi: 10.1021/bi00784a013
– volume: 24
  start-page: 3634
  issue: 9
  year: 2022
  ident: 727_CR14
  publication-title: Green Chem
  doi: 10.1039/D2GC00667G
– volume: 3
  issue: 1
  year: 2023
  ident: 727_CR30
  publication-title: Chem Catal
  doi: 10.1016/j.checat.2022.11.006
– volume: 23
  start-page: 3990
  issue: 7
  year: 2022
  ident: 727_CR26
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23073990
– volume: 130–132
  start-page: 285
  year: 2001
  ident: 727_CR38
  publication-title: Chem Biol Interact
  doi: 10.1016/S0009-2797(00)00272-6
– volume: 10
  start-page: 799
  issue: 4
  year: 2021
  ident: 727_CR32
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.0c00597
– volume: 72
  start-page: 248
  issue: 1
  year: 1976
  ident: 727_CR5
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(76)90527-3
– volume: 112
  start-page: 3704
  issue: 12
  year: 2015
  ident: 727_CR36
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1500545112
– volume: 9
  start-page: 5430
  issue: 15
  year: 2021
  ident: 727_CR3
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.1c00699
SSID ssj0001343145
Score 2.271323
Snippet The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential...
Abstract The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms 2-keto-4-hydroxybutyrate
Aldehydes
Aldolase
Amino acids
Biocatalysts
Biochemical Engineering
Bioconversion
Biotransformation
Carboxylic acids
Chemistry
Chemistry and Materials Science
Condensates
Deinococcus radiodurans
Environmental Engineering/Biotechnology
Enzymatic activity
Enzyme activity
Enzymes
Formaldehyde
Industrial and Production Engineering
Magnesium
Maltose
Maltose-binding protein
Productivity
Pyruvate
Pyruvate aldolase
Pyruvic acid
Substrates
γ-Hydroxybutyric acid
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucAB8SawICNxA2uT2HGcE2KBskKCEyvtzbJjuxtR4qVN0e7P4B8z46btlscem4fkZl7feMbfEPKykVUwkPkwkC8kKJVvmA1WMleXQZogwb5wv-PzF3l0LD6dVCfjhttibKtc-8TkqF1scY_8oGwSb0wtqjdnPxhOjcLq6jhC4zq5UUCkQT1Xk4_bPRYO4VFU67MySh4sBIZgBoGJIWd2zc534lGi7f8X1vy7ZfKPumkKR5M75PaII-nbleDvkmu-v0duXWIXvE9-HXZxuIRLY09joCX75ofIBDu9cNjCYpfDBdJF0J-doWbm4oxCigzeaNXmQ7ExfkpNT30im4CFwQ9HETd-jwAt7czT1sxtnHVTiIgUz6vQ977rI7jadrmgc-O66Ja4kAfkePLh67sjNk5gYC3kJQMThct907SmMpL7GqAFAITGF631OKbcgb_wdW2K4AJghVAAmvC85KFx3BTKKf6Q7PWx948JVa03vPK5bFUuAMZYYTmgFw4OpS5CEBkp1nLQ7UhPjlMyZjqlKUrqlew0yE4n2enzjLzavHO2Iue48ulDFO_mSSTWThfifKpHO9VWiaBKW1eBS-FUrqw0VW5kC5kyYLk8I_tr5dCjtS_0Vjcz8mJzG-wUiy-m93G50FiRLvDYepmRRytd2qyEKynqpuYZUTtatrPU3Tt9d5q4wLGwWULanJHXa4Xcruv_3-LJ1X_jKblZJhvBIeL7ZG-YL_0zAF-DfZ4s7DfMNi5M
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQOQAHBOUrUJCRuIFFEjuOc6QLVYUEJyr1ZtmxvY0IMdokVfsz-MeMnWTpQkHimMSRrIxn5k1m5g1CrypeOAWRDwH5QoBS2IpopzkxZe64chz0K_zv-PSZH5-wj6fF6dwU1i_V7ktKMlrqqNaCv-1Z8J4EfAoJdNclAeR4s4DYPQxsWM09DvHPCgWnyIqlQ-baV3e8UCTrvw5h_lko-Vu2NDqho3vo7owe8btJ3PfRDdvto1urZWjbPrpzhV_wAfpx2PjhCjL1HfYO5-SrHTxh5OzShCIWPQ6XgTACnzcKq9b4FkOQDPZoKvTBoTR-jVWHbaSbgE3ChcEBOX7zAC51a3GtNtq3zRp8Ig4dK_i9bToPxrYee7xRpvFmDBt5iE6OPnxZHZN5BgOpITIZCMtMaquqVoXi1JYALgAiVDartQ2Dyg1YDFuWKnPGAVpwGeAJS3PqKkNVJoygj9Be5zv7BGFRW0ULm_JapAyAjGaaAn6hYFLKzDmWoGyRiaxngvIwJ6OVMVARXE5ylCBHGeUoLxL0evvO94me45-rD4OotysDtXa84TdrOWuq1II5keuycJQzI1KhuSpSxWuIlQHNpQk6WA6KnPW9l3kVWY1KViTo5fYxyD6kX1Rn_djLkJPOQuN6nqDH07na7oQKzsqqpAkSOyduZ6u7T7rmLLKBh9RmDoFzgt4sh_PXvv7-LZ7-3_Jn6HYe9SeMFT9Ae8NmtM8Bjg36RdS-n8FmL1Y
  priority: 102
  providerName: Springer Nature
Title Biotransformation of 2-keto-4-hydroxybutyrate via aldol condensation using an efficient and thermostable carboligase from Deinococcus radiodurans
URI https://link.springer.com/article/10.1186/s40643-024-00727-x
https://www.ncbi.nlm.nih.gov/pubmed/38647973
https://www.proquest.com/docview/2915445745
https://www.proquest.com/docview/3045115602
https://pubmed.ncbi.nlm.nih.gov/PMC10992282
https://doaj.org/article/b84f82b75f364d808b6a50a6c7213990
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBMoKyNxA6tJ7DjOkV26VEhUCFGpN8uO7TbqEqPdBLU_g3_M2MkuuzwvXCLlJY08M55v7PE3CL2oeOEUZD4E9AsJSmErop3mxJS548px8K-w3vH-mB-dsHenxelWq69QEzbQAw8Dd6AFcyLXZeEoZ0akQnNVpIrXkLpAcI3ZelqlW8lUXF2hEBhZsT4lI_jBioXgSyAkkcCWXZLLnUgUCft_hzJ_LZb8acc0BqL5HXR7RJD49SD5XXTNtvfQrS1ewfvo27Tx3RYi9S32DufkwnaeMHJ-ZULxiu67q0AUgb82CquF8QsMyTHMQ0OBDw4l8WdYtdhGmgkQDG4MDojxswdQqRcW12qp_aI5g1iIw0kV_MY2rYdJtu5XeKlM400fBHmATuaHn2ZHZOy9QGrISDrCMpPaqqpVoTi1JYAKgAaVzWptQ4NyAzOFLUuVOeMAJbgMcISlOXWVoSoTRtCHaK_1rX2MsKitooVNeS1SBgBGM00Bt1CYSsrMOZagbK0HWY_E5KE_xkLGBEVwOehOgu5k1J28TNDLzT9fBlqOv349DerdfBkoteMDMDQ5Gpr8l6ElaH9tHHL085XMq8hmVLIiQc83r8FDw7aLaq3vVzLsRWfhwHqeoEeDLW0koYKzsippgsSOle2Iuvumbc4jC3jY0swhYU7Qq7VB_pDrz2Px5H-MxVN0M4-eFJqM76O9btnbZwDOOj1B18X87QTdmB4ef_gId7OchSufTaKHfgccrzn3
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wA8IO4EBhgJnsBaEjtO8oAQZZs6tlUIbdLeMju2u4gSjzaF9WfwR_iNHOfSrlz2tsfmUp323L7jc0PoZcojIyDyIcBfCFAinRJpJCcqDg0XhoN-ufOOgyEfHLGPx9HxGvrV9cK4ssrOJtaGWtncnZFvhmk9NyZm0buzb8RtjXLZ1W6FRiMWe3r-A0K26dvdLeDvqzDc2T78MCDtVgGSA9auCAuUr9M0F5HgVMfgLsHppTrIpXartxXogI5jERhlwP-ZADykpiE1qaIiSFRC4XuvoXXmOlp7aL2_Pfz0eXmqQ8Ehs6jrzkn45pQ5p0_AFRI3pTsm5ysesF4U8C90-3eR5h-Z2toB7txGt1rkit83onYHrenyLrp5YZ7hPfSzX9jqAhK2JbYGh-SLrixh5HSuXNGMnFVzN6ACfy8EFmNlxxiCcrB_TWERdqX4IyxKrOvxFkAYfFDYIdWvFsCsHGuci4m042IEPhi7Dhm8pYvSgnHPZ1M8EaqwauYIuY-OroQ7D1CvtKV-hHCSa0Ej7fM88RkAJ8kkBbxEwYTFgTHMQ0HHhyxvB6K7vRzjrA6MEp41vMuAd1nNu-zcQ68X75w140Aufbrv2Lt40o3yri_YyShrLUMmE2aSUMaRoZypxE8kF5EveA6xOaBH30MbnXBkrX2ZZktt8NCLxW2wDC7dI0ptZ9PM5cAD1ygfeuhhI0sLSmjCWZzG1EPJipStkLp6pyxO6-njLpUaQqDuoTedQC7p-v9_8fjyn_EcXR8cHuxn-7vDvSfoRljri1thvoF61WSmnwL0q-SzVt8wOrlqFf8N2BVrew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcEG8WChgJTmBld73r9R4QooTQUqg4UKk3Y6_tdEVYl2QDzc_g7_DrGO8jaXj01mP2ETmZx_eNZzyD0JOcpVZC5ENAvhCgpCYnyipGdBZbJi0D-_L7HR_22c5B8u4wPdxAv_qzML6ssveJjaPWrvB75IM4b_rGZEk6sF1ZxMfh6OXxN-InSPlMaz9Oo1WRPbP4AeHb7MXuEGT9NI5Hbz693iHdhAFSAO-uSRLp0OR5IVPJqMkAOgEAcxMVyvgx3BrswWSZjKy2gIU2ArQ0NKY211RGXHMK33sBXcxolvvAj4_ervZ3KEBzkvbndDgbzBIP_wRAkfh-3Rk5WcPCZmTAv3ju3-Waf-RsGygcXUNXOw6LX7VKdx1tmOoGunKqs-FN9HO7dPUpTuwq7CyOyRdTO5KQo4X25TNqXi98qwr8vZRYTrSbYAjPwRO2JUbYF-WPsaywaRpdwMLgg8aes351QGvVxOBCTpWblGNAY-zPyuChKSsHbr6Yz_BU6tLpuV_ILXRwLrK5jTYrV5m7CPPCSJqakBU8TIBCqURRYE4UnFkWWZsEKOrlIIquNbqf0DERTYjEmWhlJ0B2opGdOAnQs-U7x21jkDOf3vbiXT7pm3o3F9x0LDofIRRPLI9VllrKEs1DrphMQ8kKiNKBR4YB2uqVQ3SeZiZWdhGgx8vb4CN84kdWxs1nwmfDI39kPg7QnVaXliuhnCWgvTRAfE3L1pa6fqcqj5o-5D6pGkPIHqDnvUKu1vX__-Le2T_jEboEhi3e7-7v3UeX48Zc_CzzLbRZT-fmAXDAWj1sjA2jz-dt3b8BsC9uSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biotransformation+of+2-keto-4-hydroxybutyrate+via+aldol+condensation+using+an+efficient+and+thermostable+carboligase+from+Deinococcus+radiodurans&rft.jtitle=Bioresources+and+bioprocessing&rft.au=Yeon-Ju+Jeong&rft.au=Min-Ju+Seo&rft.au=Bong+Hyun+Sung&rft.au=Jeong-Sun+Kim&rft.date=2024-01-16&rft.pub=SpringerOpen&rft.eissn=2197-4365&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs40643-024-00727-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b84f82b75f364d808b6a50a6c7213990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4365&client=summon