Biotransformation of 2-keto-4-hydroxybutyrate via aldol condensation using an efficient and thermostable carboligase from Deinococcus radiodurans
The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly bioca...
Saved in:
Published in | Bioresources and bioprocessing Vol. 11; no. 1; pp. 9 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
16.01.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2197-4365 2197-4365 |
DOI | 10.1186/s40643-024-00727-x |
Cover
Abstract | The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from
Deinococcus radiodurans
with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min
–1
mg
–1
. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg
2+
, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L
–1
) 2-KHB over 60 min with a volumetric productivity of 8.94 g L
–1
h
–1
and a specific productivity of 357.6 mg mg-enzyme
–1
h
–1
. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L
–1
) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L
–1
h
–1
and 583.4 mg mg-enzyme
–1
h
–1
, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.
Graphical Abstract |
---|---|
AbstractList | The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min
mg
. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg
, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L
) 2-KHB over 60 min with a volumetric productivity of 8.94 g L
h
and a specific productivity of 357.6 mg mg-enzyme
h
. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L
) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L
h
and 583.4 mg mg-enzyme
h
, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min –1 mg –1 . Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg 2+ , 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L –1 ) 2-KHB over 60 min with a volumetric productivity of 8.94 g L –1 h –1 and a specific productivity of 357.6 mg mg-enzyme –1 h –1 . Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L –1 ) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L –1 h –1 and 583.4 mg mg-enzyme –1 h –1 , respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. Graphical Abstract Abstract The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min–1 mg–1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L–1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L–1 h–1 and a specific productivity of 357.6 mg mg-enzyme–1 h–1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L–1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L–1 h–1 and 583.4 mg mg-enzyme–1 h–1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. Graphical Abstract The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min–1 mg–1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L–1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L–1 h–1 and a specific productivity of 357.6 mg mg-enzyme–1 h–1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L–1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L–1 h–1 and 583.4 mg mg-enzyme–1 h–1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min –1 mg –1 . Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg 2+ , 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L –1 ) 2-KHB over 60 min with a volumetric productivity of 8.94 g L –1 h –1 and a specific productivity of 357.6 mg mg-enzyme –1 h –1 . Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L –1 ) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L –1 h –1 and 583.4 mg mg-enzyme –1 h –1 , respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde. |
ArticleNumber | 9 |
Author | Seo, Min-Ju Kim, Jeong-Sun Yeom, Soo-Jin Sung, Bong Hyun Jeong, Yeon-Ju |
Author_xml | – sequence: 1 givenname: Yeon-Ju surname: Jeong fullname: Jeong, Yeon-Ju organization: School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University – sequence: 2 givenname: Min-Ju surname: Seo fullname: Seo, Min-Ju organization: School of Biological Sciences and Technology, Chonnam National University, Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University – sequence: 3 givenname: Bong Hyun surname: Sung fullname: Sung, Bong Hyun email: bhsung@kribb.re.kr organization: Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology – sequence: 4 givenname: Jeong-Sun surname: Kim fullname: Kim, Jeong-Sun email: jsunkim@chonnam.ac.kr organization: Department of Chemistry, Chonnam National University – sequence: 5 givenname: Soo-Jin orcidid: 0000-0001-7307-237X surname: Yeom fullname: Yeom, Soo-Jin email: soojin258@jnu.ac.kr organization: School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, School of Biological Sciences and Technology, Chonnam National University, Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38647973$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAYjFARLaV_gAOyxIVLwK_EyQlBeVWqxAXOlmN_3vWS2MV2qt2fwT_Guyml7aEnv2bG4_E8r4588FBVLwl-S0jXvksct5zVmPIaY0FFvX1SnVDSi5qztjm6Mz-uzlLaYIwJ44zw5ll1zLqWi16wk-rPRxdyVD7ZECeVXfAoWETrX5BDzev1zsSw3Q1z3kWVAV07hdRowoh08AZ8Wihzcn6FlEdgrdMOfC4Lg_Ia4hRSVsMISKs4hNGtVAJkY5jQJ3A-6KD1nFBUxgUz7428qJ5aNSY4uxlPq59fPv84_1Zffv96cf7hstYtp7nmxGDoe60a1TIQPcGkIT0QPUDJRxgsMAihiDUWU2IJxQQYZbY3TJHOdOy0ulh0TVAbeRXdpOJOBuXkYSPElVQxOz2CHDpuOzqIxrKWmw53Q6sarFotKGF9j4vW-0Xrah4mMLoEENV4T_T-iXdruQrXkuC-p7SjReHNjUIMv2dIWU4uaRhH5SHMSTLMG0KaFu-hrx9AN2GOvmQlaU8azhvBm4J6ddfSrZd_X18AdAHoGFKKYG8hBMt9xeRSMVkqJg8Vk9tC6h6QtMuHDpRnufFxKluoqdzjVxD_236E9Reik-hv |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_4c07133 |
Cites_doi | 10.1021/acssuschemeng.1c00699 10.1039/C5SC04574F 10.1016/s0079-6603(08)60099-9 10.1021/ja104412a 10.1073/pnas.1500545112 10.1021/acssynbio.9b00003 10.1002/anie.201711289 10.3390/ijms23073990 10.1016/S0009-2797(00)00272-6 10.1021/acs.iecr.1c02343 10.1021/acscatal.6b03181 10.1038/227680a0 10.3389/fmicb.2023.1156924 10.1021/ja208754r 10.1021/bi800943g 10.1039/D2GC00667G 10.1038/nmeth.1318 10.1016/j.ymben.2020.03.002 10.1021/ja073911i 10.1021/acssynbio.7b00029 10.1021/bi00784a013 10.1002/adsc.201900128 10.1021/ja065233q 10.1039/D1GC02226A 10.1016/0014-5793(96)00830-7 10.1016/j.checat.2022.11.006 10.1016/j.biortech.2021.125344 10.1186/s13036-020-00250-5 10.1021/acssynbio.9b00102 10.1021/bi100251u 10.1002/biot.201400235 10.1016/S0021-9258(19)42405-8 10.1074/jbc.M110.159509 10.1016/j.molcatb.2014.01.004 10.1093/nar/18.20.6069 10.1371/journal.pone.0184183 10.1002/biot.201900003 10.1021/acscatal.9b03128 10.1021/acs.jafc.2c09108 10.1039/c9re00453j 10.1021/acssynbio.0c00597 10.1016/0003-2697(76)90527-3 10.1038/s41598-019-48091-7 10.1039/d1gc03549e 10.1016/j.molcatb.2010.10.008 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1186/s40643-024-00727-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2197-4365 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_b84f82b75f364d808b6a50a6c7213990 PMC10992282 38647973 10_1186_s40643_024_00727_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: C1 Gas Refinery Program grantid: NRF-2018M3D3A1A01056181 – fundername: Enzyme engineering for next generation biorefinery grantid: NRF-2022M3J5A1056169; NRF-2022M3J5A1085239 – fundername: Korea Research Institute of Bioscience and the Biotechnology (KRIBB) Research Initiative Program grantid: KGM5402322 – fundername: Enzyme engineering for next generation biorefinery grantid: NRF-2022M3J5A1056169 – fundername: Enzyme engineering for next generation biorefinery grantid: NRF-2022M3J5A1085239 |
GroupedDBID | 0R~ 5VS 8FE 8FG 8FH AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACIWK ACPRK ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ASPBG AVWKF BAPOH BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI C24 C6C CCPQU DIK EBLON EBS GROUPED_DOAJ HCIFZ IAO IHR ISR ITC KQ8 L6V LK8 M7P M7S M~E OK1 PGMZT PIMPY PROAC PTHSS RPM RSV RVI SOJ AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c642t-41d0e99ca5a63e79101519e1cbe1187d070e77a1fdf021f1201e323f9d3a18d83 |
IEDL.DBID | DOA |
ISSN | 2197-4365 |
IngestDate | Wed Aug 27 01:20:34 EDT 2025 Thu Aug 21 18:34:26 EDT 2025 Fri Sep 05 07:11:57 EDT 2025 Fri Jul 25 10:57:54 EDT 2025 Wed Feb 19 02:08:56 EST 2025 Tue Jul 01 01:24:40 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 Fri Feb 21 02:41:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Pyruvate Pyruvate aldolase 2-keto-4-hydroxybutyrate Formaldehyde Deinococcus radiodurans |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c642t-41d0e99ca5a63e79101519e1cbe1187d070e77a1fdf021f1201e323f9d3a18d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7307-237X |
OpenAccessLink | https://doaj.org/article/b84f82b75f364d808b6a50a6c7213990 |
PMID | 38647973 |
PQID | 2915445745 |
PQPubID | 2034794 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b84f82b75f364d808b6a50a6c7213990 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10992282 proquest_miscellaneous_3045115602 proquest_journals_2915445745 pubmed_primary_38647973 crossref_primary_10_1186_s40643_024_00727_x crossref_citationtrail_10_1186_s40643_024_00727_x springer_journals_10_1186_s40643_024_00727_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-16 |
PublicationDateYYYYMMDD | 2024-01-16 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Bioresources and bioprocessing |
PublicationTitleAbbrev | Bioresour. Bioprocess |
PublicationTitleAlternate | Bioresour Bioprocess |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Chen, Geng, Zeng (CR7) 2015; 10 Teng, Beard, Pourahmad, Moridani, Easson, Poon, O'Brien (CR38) 2001; 130–132 Gastaldi, Mekhloufi, Forano, Gautier, Guérard-Hélaine (CR14) 2022; 24 Xu, Meng, Ren, Zeng (CR43) 2020 Aslanidis, de Jong (CR1) 1990; 18 Williams, Woodhall, Farnsworth, Nelson, Berry (CR42) 2006; 128 Dekker, Lane, Shapley (CR8) 1971; 10 Gong, Xiu, Dong, Han, Xu, Ni (CR16) 2021; 337 Bradford (CR5) 1976; 72 Jo, Kim, Kim, Seo, Kim, Kim, Yu, Cheon, Lee, Kim, Park (CR25) 2022; 24 He, Hoper, Dodenhoft, Marliere, Bar-Even (CR20) 2020; 60 Laurent, Uzel, Hélaine, Nauton, Traïkia, Gefflaut, Salanoubat, de Berardinis, Lemaire, Guérard-Hélaine (CR29) 2019; 361 Meng, Wang, Yuan, Ren, Zeng (CR32) 2021; 10 Rea, Hovington, Rakus, Gerlt, Fulop, Bugg, Roper (CR34) 2008; 47 Bouzon, Perret, Loreau, Delmas, Perchat, Weissenbach, Taran, Marliere (CR4) 2017; 6 Cesnik, Sudar, Hernandez, Charnock, Vasic-Racki, Clapes, Blazevic (CR6) 2020; 5 Li, Yao, Zhang, Feng, Su, Liu, Sheng, Wu, Zhu, Ma (CR30) 2023; 3 Sugiyama, Hong, Liang, Dean, Whalen, Greenberg, Wong (CR37) 2007; 129 Ju, Seo, Yeom (CR26) 2022; 23 Bosch, Sanchez-Freire, Del Pozo, C̆esnik, Quesada, Mate, Hernández, Qi, Clapés, Vasić-Račk (CR3) 2021; 9 Wang, Ren, Zhou, Li, Chen, Zeng (CR39) 2019; 8 Laemmli (CR28) 1970; 227 Wang, Baker, Seah (CR40) 2010; 49 Dick, Hartmann, Weiergräber, Bisterfeld, Classen, Schwarten, Neudecker, Willbold, Pietruszka (CR10) 2016; 7 Wang, Mazurkewich, Kimber, Seah (CR41) 2010; 285 Hansen, Lane, Dekker (CR18) 1974; 249 Güner, Wegat, Pick, Sieber (CR17) 2021; 23 Hernandez, Bujons, Joglar, Charnock, de Maria, Fessner, Clapes (CR21) 2017; 7 Hernandez, Joglar, Bujons, Parella, Clapes (CR22) 2018; 57 Zhong, Zhang, Wu, Liu, Chen (CR45) 2019; 8 Nara, Togashi, Ono, Egami, Sekikawa, Suzuki, Masuda, Ogawa, Horinouchi, Shimizu, Mizukami, Tsunoda (CR33) 2011; 68 Baker, Seah (CR2) 2012; 134 Liu, Wei, Yang, Wang, Chen, Ouyang, Zhang (CR31) 2023 Jeong, Seo, Seo, Ju, Kim, Yeom (CR24) 2023; 71 Desmons, Fauré, Bontemps (CR9) 2019; 9 Hixon, Sinerius, Schneider, Walter, Fessner, Schloss (CR23) 1996; 392 Zhang, Ma, Dischert, Soucaille, Zeng (CR44) 2019; 14 Katulic, Sudar, Hernandez, Qi, Charnock, Vasic-Racki, Clapes, Blazevic (CR27) 2021; 60 Royer, Haslett, Crennell, Hough, Danson, Bull (CR35) 2010; 132 Hartley, French, Scoble, Williams, Churches, Frazer, Taylor, Coia, Simpson, Turner, Scott (CR19) 2017; 12 Siegel, Smith, Poust, Wargacki, Bar-Even, Louw, Shen, Eiben, Tran, Noor, Gallaher, Bale, Yoshikuni, Gelb, Keasling, Stoddard, Lidstrom, Baker (CR36) 2015; 112 Feldman (CR12) 1973; 13 Fei, Xu, Wu, Yang (CR11) 2014; 101 Gibson, Young, Chuang, Venter, Hutchison, Smith (CR15) 2009; 6 Frazao, Trichez, Serrano-Bataille, Dagkesamanskaia, Topham, Walther, Francois (CR13) 2019; 9 K Hernandez (727_CR22) 2018; 57 TY Nara (727_CR33) 2011; 68 Y Zhang (727_CR44) 2019; 14 Y Li (727_CR30) 2023; 3 S Güner (727_CR17) 2021; 23 H He (727_CR20) 2020; 60 CJ Hartley (727_CR19) 2017; 12 H Meng (727_CR32) 2021; 10 S Teng (727_CR38) 2001; 130–132 EE Dekker (727_CR8) 1971; 10 Y-J Jeong (727_CR24) 2023; 71 W Wang (727_CR40) 2010; 49 C Wang (727_CR39) 2019; 8 C Aslanidis (727_CR1) 1990; 18 L Gong (727_CR16) 2021; 337 UK Laemmli (727_CR28) 1970; 227 S Bosch (727_CR3) 2021; 9 Z Chen (727_CR7) 2015; 10 M Hixon (727_CR23) 1996; 392 CJR Frazao (727_CR13) 2019; 9 GJ Williams (727_CR42) 2006; 128 D Rea (727_CR34) 2008; 47 SF Royer (727_CR35) 2010; 132 M Cesnik (727_CR6) 2020; 5 S Desmons (727_CR9) 2019; 9 WQ Zhong (727_CR45) 2019; 8 MM Bradford (727_CR5) 1976; 72 S-B Ju (727_CR26) 2022; 23 M Bouzon (727_CR4) 2017; 6 H Fei (727_CR11) 2014; 101 BA Hansen (727_CR18) 1974; 249 W Wang (727_CR41) 2010; 285 YY Xu (727_CR43) 2020 M Dick (727_CR10) 2016; 7 DG Gibson (727_CR15) 2009; 6 JB Siegel (727_CR36) 2015; 112 Q Liu (727_CR31) 2023 MY Feldman (727_CR12) 1973; 13 HJ Jo (727_CR25) 2022; 24 M Sugiyama (727_CR37) 2007; 129 K Hernandez (727_CR21) 2017; 7 V Laurent (727_CR29) 2019; 361 P Baker (727_CR2) 2012; 134 MC Katulic (727_CR27) 2021; 60 C Gastaldi (727_CR14) 2022; 24 |
References_xml | – volume: 9 start-page: 5430 issue: 15 year: 2021 end-page: 5436 ident: CR3 article-title: Thermostability engineering of a class II pyruvate aldolase from by in vivo folding interference publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.1c00699 – volume: 7 start-page: 4492 issue: 7 year: 2016 end-page: 4502 ident: CR10 article-title: Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies publication-title: Chem Sci doi: 10.1039/C5SC04574F – volume: 13 start-page: 1 year: 1973 end-page: 49 ident: CR12 article-title: Reactions of nucleic acids and nucleoproteins with formaldehyde publication-title: Prog Nucleic Acid Res Mol Biol doi: 10.1016/s0079-6603(08)60099-9 – volume: 132 start-page: 11753 issue: 33 year: 2010 end-page: 11758 ident: CR35 article-title: Structurally informed site-directed mutagenesis of a stereochemically promiscuous aldolase to afford stereochemically complementary biocatalysts publication-title: J Am Chem Soc doi: 10.1021/ja104412a – volume: 112 start-page: 3704 issue: 12 year: 2015 end-page: 3709 ident: CR36 article-title: Computational protein design enables a novel one-carbon assimilation pathway publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1500545112 – volume: 8 start-page: 587 issue: 3 year: 2019 end-page: 595 ident: CR45 article-title: Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1,3-propanediol from glucose publication-title: ACS Synth Biol doi: 10.1021/acssynbio.9b00003 – volume: 57 start-page: 3583 issue: 14 year: 2018 end-page: 3587 ident: CR22 article-title: Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU from publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201711289 – volume: 23 start-page: 3990 issue: 7 year: 2022 ident: CR26 article-title: In vitro one-pot 3-hydroxypropanal production from cheap C1 and C2 compounds publication-title: Int J Mol Sci doi: 10.3390/ijms23073990 – volume: 130–132 start-page: 285 year: 2001 end-page: 296 ident: CR38 article-title: The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes publication-title: Chem Biol Interact doi: 10.1016/S0009-2797(00)00272-6 – volume: 60 start-page: 13846 issue: 38 year: 2021 end-page: 13858 ident: CR27 article-title: Cascade synthesis of -homoserine catalyzed by lyophilized whole cells containing transaminase and aldolase activities: the mathematical modeling approach publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.1c02343 – volume: 7 start-page: 1707 issue: 3 year: 2017 end-page: 1711 ident: CR21 article-title: Combining aldolases and transaminases for the synthesis of 2-amino-4-hydroxybutanoic acid publication-title: ACS Catal doi: 10.1021/acscatal.6b03181 – volume: 227 start-page: 680 issue: 5259 year: 1970 end-page: 685 ident: CR28 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature doi: 10.1038/227680a0 – year: 2023 ident: CR31 article-title: One-pot biosynthesis of -acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, -acetylglucosamine-2-epimerase, and -neuraminic acid aldolase publication-title: Front Microbiol doi: 10.3389/fmicb.2023.1156924 – volume: 134 start-page: 507 issue: 1 year: 2012 end-page: 513 ident: CR2 article-title: Rational design of stereoselectivity in the class II pyruvate aldolase BphI publication-title: J Am Chem Soc doi: 10.1021/ja208754r – volume: 47 start-page: 9955 issue: 38 year: 2008 end-page: 9965 ident: CR34 article-title: Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from K12 publication-title: Biochem doi: 10.1021/bi800943g – volume: 24 start-page: 3634 issue: 9 year: 2022 end-page: 3639 ident: CR14 article-title: Mixing chemo- and biocatalysis for rare monosaccharide production by combining aldolase and -heterocyclic carbene gold catalysts publication-title: Green Chem doi: 10.1039/D2GC00667G – volume: 6 start-page: 343 issue: 5 year: 2009 end-page: 345 ident: CR15 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat Methods doi: 10.1038/nmeth.1318 – volume: 60 start-page: 1 year: 2020 end-page: 13 ident: CR20 article-title: An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in . publication-title: Metab Eng doi: 10.1016/j.ymben.2020.03.002 – volume: 129 start-page: 14811 issue: 47 year: 2007 end-page: 14817 ident: CR37 article-title: d-Fructose-6-phosphate aldolase-catalyzed one-pot synthesis of iminocyclitols publication-title: J Am Chem Soc doi: 10.1021/ja073911i – volume: 6 start-page: 1520 issue: 8 year: 2017 end-page: 1533 ident: CR4 article-title: A synthetic alternative to canonical one-carbon metabolism publication-title: ACS Synth Biol doi: 10.1021/acssynbio.7b00029 – volume: 10 start-page: 1353 issue: 8 year: 1971 end-page: 1364 ident: CR8 article-title: 2-keto-4-hydroxybutyrate aldolase. Identification as 2-keto-4-hydroxyglutarate aldolase, catalytic properties, and role in the mammalian metabolism of l-homoserine publication-title: Biochemistry doi: 10.1021/bi00784a013 – volume: 361 start-page: 2713 issue: 11 year: 2019 end-page: 2717 ident: CR29 article-title: Exploration of aldol reactions catalyzed by stereoselective pyruvate aldolases with 2-oxobutyric acid as nucleophile publication-title: Adv Synth Catal doi: 10.1002/adsc.201900128 – volume: 128 start-page: 16238 issue: 50 year: 2006 end-page: 16247 ident: CR42 article-title: Creation of a pair of stereochemically complementary biocatalysts publication-title: J Am Chem Soc doi: 10.1021/ja065233q – volume: 23 start-page: 6583 issue: 17 year: 2021 end-page: 6590 ident: CR17 article-title: Design of a synthetic enzyme cascade for the in vitro fixation of a C1 carbon source to a functional C4 sugar publication-title: Green Chem doi: 10.1039/D1GC02226A – volume: 392 start-page: 281 issue: 3 year: 1996 end-page: 284 ident: CR23 article-title: Quo vadis photorespiration: a tale of two aldolases publication-title: Febs Lett doi: 10.1016/0014-5793(96)00830-7 – volume: 3 issue: 1 year: 2023 ident: CR30 article-title: Creating a new benzaldehyde lyase for atom-economic synthesis of chiral 1,2,4-butanetriol and 2-aminobutane-1,4-diol from formaldehyde publication-title: Chem Catal doi: 10.1016/j.checat.2022.11.006 – volume: 337 year: 2021 ident: CR16 article-title: Sustainable one-pot chemo-enzymatic synthesis of chiral furan amino acid from biomass via magnetic solid acid and threonine aldolase publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.125344 – year: 2020 ident: CR43 article-title: Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-propanediol publication-title: J Biol Eng doi: 10.1186/s13036-020-00250-5 – volume: 8 start-page: 2483 issue: 11 year: 2019 end-page: 2493 ident: CR39 article-title: An aldolase-catalyzed new metabolic pathway for the assimilation of formaldehyde and methanol to synthesize 2-Keto-4-hydroxybutyrate and 1,3-propanediol in publication-title: ACS Synth Biol doi: 10.1021/acssynbio.9b00102 – volume: 49 start-page: 3774 issue: 17 year: 2010 end-page: 3782 ident: CR40 article-title: Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling publication-title: Biochem doi: 10.1021/bi100251u – volume: 10 start-page: 284 issue: 2 year: 2015 end-page: 289 ident: CR7 article-title: Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose publication-title: Biotechnol J doi: 10.1002/biot.201400235 – volume: 249 start-page: 4891 issue: 15 year: 1974 end-page: 4896 ident: CR18 article-title: Formaldehyde binding by 2-Keto-4-hydroxyglutarate aldolase: formation and characterization of an inactive aldolase-formaldehyde-cyanide adduct publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)42405-8 – volume: 285 start-page: 36608 issue: 47 year: 2010 end-page: 36615 ident: CR41 article-title: Structural and kinetic characterization of 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate aldolase, a protocatechuate degradation enzyme evolutionarily convergent with the HpaI and DmpG pyruvate aldolases publication-title: J Biol Chem doi: 10.1074/jbc.M110.159509 – volume: 101 start-page: 87 year: 2014 end-page: 91 ident: CR11 article-title: Improvement of the thermal stability and aldehyde tolerance of deoxyriboaldolase via immobilization on nano-magnet material publication-title: J Mol Catal B Enzym doi: 10.1016/j.molcatb.2014.01.004 – volume: 18 start-page: 6069 issue: 20 year: 1990 end-page: 6074 ident: CR1 article-title: Ligation-independent cloning of PCR products (LIC-PCR) publication-title: Nucleic Acids Res doi: 10.1093/nar/18.20.6069 – volume: 12 issue: 11 year: 2017 ident: CR19 article-title: Sugar analog synthesis by in vitro biocatalytic cascade: a comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis publication-title: PLoS ONE doi: 10.1371/journal.pone.0184183 – volume: 14 issue: 9 year: 2019 ident: CR44 article-title: Engineering of phosphoserine aminotransferase increases the conversion of -homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose publication-title: Biotechnol J doi: 10.1002/biot.201900003 – volume: 9 start-page: 9575 issue: 10 year: 2019 end-page: 9588 ident: CR9 article-title: Formaldehyde as a promising C1 source: the instrumental role of biocatalysis for stereocontrolled reactions publication-title: ACS Catal doi: 10.1021/acscatal.9b03128 – volume: 71 start-page: 4328 issue: 10 year: 2023 end-page: 4336 ident: CR24 article-title: One-pot biosynthesis of 2-Keto-4-hydroxybutyrate from cheap C1 compounds using rationally designed pyruvate aldolase and methanol dehydrogenase publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.2c09108 – volume: 5 start-page: 747 issue: 4 year: 2020 end-page: 759 ident: CR6 article-title: Cascade enzymatic synthesis of -homoserine - mathematical modelling as a tool for process optimisation and design publication-title: React Chem Eng doi: 10.1039/c9re00453j – volume: 10 start-page: 799 issue: 4 year: 2021 end-page: 809 ident: CR32 article-title: An aldolase-based new pathway for bioconversion of formaldehyde and ethanol into 1,3-propanediol in publication-title: ACS Synth Biol doi: 10.1021/acssynbio.0c00597 – volume: 72 start-page: 248 issue: 1 year: 1976 end-page: 254 ident: CR5 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal Biochem doi: 10.1016/0003-2697(76)90527-3 – volume: 9 start-page: 11576 issue: 1 year: 2019 ident: CR13 article-title: Construction of a synthetic pathway for the production of 1,3-propanediol from glucose publication-title: Sci Rep doi: 10.1038/s41598-019-48091-7 – volume: 24 start-page: 218 issue: 1 year: 2022 end-page: 226 ident: CR25 article-title: Glyoxylate carboligase-based whole-cell biotransformation of formaldehyde into ethylene glycol via glycotaldehyde publication-title: Green Chem doi: 10.1039/d1gc03549e – volume: 68 start-page: 181 issue: 2 year: 2011 end-page: 186 ident: CR33 article-title: Improvement of aldehyde tolerance and sequential aldol condensation activity of deoxyriboaldolase via immobilization on interparticle pore type mesoporous silica publication-title: J Mol Catal B Enzym doi: 10.1016/j.molcatb.2010.10.008 – volume: 7 start-page: 4492 issue: 7 year: 2016 ident: 727_CR10 publication-title: Chem Sci doi: 10.1039/C5SC04574F – volume: 9 start-page: 11576 issue: 1 year: 2019 ident: 727_CR13 publication-title: Sci Rep doi: 10.1038/s41598-019-48091-7 – volume: 71 start-page: 4328 issue: 10 year: 2023 ident: 727_CR24 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.2c09108 – volume: 132 start-page: 11753 issue: 33 year: 2010 ident: 727_CR35 publication-title: J Am Chem Soc doi: 10.1021/ja104412a – volume: 134 start-page: 507 issue: 1 year: 2012 ident: 727_CR2 publication-title: J Am Chem Soc doi: 10.1021/ja208754r – volume: 249 start-page: 4891 issue: 15 year: 1974 ident: 727_CR18 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)42405-8 – volume: 7 start-page: 1707 issue: 3 year: 2017 ident: 727_CR21 publication-title: ACS Catal doi: 10.1021/acscatal.6b03181 – volume: 285 start-page: 36608 issue: 47 year: 2010 ident: 727_CR41 publication-title: J Biol Chem doi: 10.1074/jbc.M110.159509 – volume: 6 start-page: 1520 issue: 8 year: 2017 ident: 727_CR4 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.7b00029 – volume: 68 start-page: 181 issue: 2 year: 2011 ident: 727_CR33 publication-title: J Mol Catal B Enzym doi: 10.1016/j.molcatb.2010.10.008 – volume: 24 start-page: 218 issue: 1 year: 2022 ident: 727_CR25 publication-title: Green Chem doi: 10.1039/d1gc03549e – volume: 10 start-page: 284 issue: 2 year: 2015 ident: 727_CR7 publication-title: Biotechnol J doi: 10.1002/biot.201400235 – volume: 392 start-page: 281 issue: 3 year: 1996 ident: 727_CR23 publication-title: Febs Lett doi: 10.1016/0014-5793(96)00830-7 – volume: 129 start-page: 14811 issue: 47 year: 2007 ident: 727_CR37 publication-title: J Am Chem Soc doi: 10.1021/ja073911i – volume: 9 start-page: 9575 issue: 10 year: 2019 ident: 727_CR9 publication-title: ACS Catal doi: 10.1021/acscatal.9b03128 – volume: 5 start-page: 747 issue: 4 year: 2020 ident: 727_CR6 publication-title: React Chem Eng doi: 10.1039/c9re00453j – volume: 47 start-page: 9955 issue: 38 year: 2008 ident: 727_CR34 publication-title: Biochem doi: 10.1021/bi800943g – volume: 49 start-page: 3774 issue: 17 year: 2010 ident: 727_CR40 publication-title: Biochem doi: 10.1021/bi100251u – volume: 14 issue: 9 year: 2019 ident: 727_CR44 publication-title: Biotechnol J doi: 10.1002/biot.201900003 – volume: 12 issue: 11 year: 2017 ident: 727_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0184183 – volume: 18 start-page: 6069 issue: 20 year: 1990 ident: 727_CR1 publication-title: Nucleic Acids Res doi: 10.1093/nar/18.20.6069 – volume: 101 start-page: 87 year: 2014 ident: 727_CR11 publication-title: J Mol Catal B Enzym doi: 10.1016/j.molcatb.2014.01.004 – year: 2023 ident: 727_CR31 publication-title: Front Microbiol doi: 10.3389/fmicb.2023.1156924 – volume: 57 start-page: 3583 issue: 14 year: 2018 ident: 727_CR22 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201711289 – volume: 23 start-page: 6583 issue: 17 year: 2021 ident: 727_CR17 publication-title: Green Chem doi: 10.1039/D1GC02226A – year: 2020 ident: 727_CR43 publication-title: J Biol Eng doi: 10.1186/s13036-020-00250-5 – volume: 13 start-page: 1 year: 1973 ident: 727_CR12 publication-title: Prog Nucleic Acid Res Mol Biol doi: 10.1016/s0079-6603(08)60099-9 – volume: 8 start-page: 2483 issue: 11 year: 2019 ident: 727_CR39 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.9b00102 – volume: 227 start-page: 680 issue: 5259 year: 1970 ident: 727_CR28 publication-title: Nature doi: 10.1038/227680a0 – volume: 8 start-page: 587 issue: 3 year: 2019 ident: 727_CR45 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.9b00003 – volume: 60 start-page: 13846 issue: 38 year: 2021 ident: 727_CR27 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.1c02343 – volume: 6 start-page: 343 issue: 5 year: 2009 ident: 727_CR15 publication-title: Nat Methods doi: 10.1038/nmeth.1318 – volume: 128 start-page: 16238 issue: 50 year: 2006 ident: 727_CR42 publication-title: J Am Chem Soc doi: 10.1021/ja065233q – volume: 337 year: 2021 ident: 727_CR16 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.125344 – volume: 60 start-page: 1 year: 2020 ident: 727_CR20 publication-title: Metab Eng doi: 10.1016/j.ymben.2020.03.002 – volume: 361 start-page: 2713 issue: 11 year: 2019 ident: 727_CR29 publication-title: Adv Synth Catal doi: 10.1002/adsc.201900128 – volume: 10 start-page: 1353 issue: 8 year: 1971 ident: 727_CR8 publication-title: Biochemistry doi: 10.1021/bi00784a013 – volume: 24 start-page: 3634 issue: 9 year: 2022 ident: 727_CR14 publication-title: Green Chem doi: 10.1039/D2GC00667G – volume: 3 issue: 1 year: 2023 ident: 727_CR30 publication-title: Chem Catal doi: 10.1016/j.checat.2022.11.006 – volume: 23 start-page: 3990 issue: 7 year: 2022 ident: 727_CR26 publication-title: Int J Mol Sci doi: 10.3390/ijms23073990 – volume: 130–132 start-page: 285 year: 2001 ident: 727_CR38 publication-title: Chem Biol Interact doi: 10.1016/S0009-2797(00)00272-6 – volume: 10 start-page: 799 issue: 4 year: 2021 ident: 727_CR32 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.0c00597 – volume: 72 start-page: 248 issue: 1 year: 1976 ident: 727_CR5 publication-title: Anal Biochem doi: 10.1016/0003-2697(76)90527-3 – volume: 112 start-page: 3704 issue: 12 year: 2015 ident: 727_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1500545112 – volume: 9 start-page: 5430 issue: 15 year: 2021 ident: 727_CR3 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.1c00699 |
SSID | ssj0001343145 |
Score | 2.271323 |
Snippet | The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential... Abstract The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | 2-keto-4-hydroxybutyrate Aldehydes Aldolase Amino acids Biocatalysts Biochemical Engineering Bioconversion Biotransformation Carboxylic acids Chemistry Chemistry and Materials Science Condensates Deinococcus radiodurans Environmental Engineering/Biotechnology Enzymatic activity Enzyme activity Enzymes Formaldehyde Industrial and Production Engineering Magnesium Maltose Maltose-binding protein Productivity Pyruvate Pyruvate aldolase Pyruvic acid Substrates γ-Hydroxybutyric acid |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucAB8SawICNxA2uT2HGcE2KBskKCEyvtzbJjuxtR4qVN0e7P4B8z46btlscem4fkZl7feMbfEPKykVUwkPkwkC8kKJVvmA1WMleXQZogwb5wv-PzF3l0LD6dVCfjhttibKtc-8TkqF1scY_8oGwSb0wtqjdnPxhOjcLq6jhC4zq5UUCkQT1Xk4_bPRYO4VFU67MySh4sBIZgBoGJIWd2zc534lGi7f8X1vy7ZfKPumkKR5M75PaII-nbleDvkmu-v0duXWIXvE9-HXZxuIRLY09joCX75ofIBDu9cNjCYpfDBdJF0J-doWbm4oxCigzeaNXmQ7ExfkpNT30im4CFwQ9HETd-jwAt7czT1sxtnHVTiIgUz6vQ977rI7jadrmgc-O66Ja4kAfkePLh67sjNk5gYC3kJQMThct907SmMpL7GqAFAITGF631OKbcgb_wdW2K4AJghVAAmvC85KFx3BTKKf6Q7PWx948JVa03vPK5bFUuAMZYYTmgFw4OpS5CEBkp1nLQ7UhPjlMyZjqlKUrqlew0yE4n2enzjLzavHO2Iue48ulDFO_mSSTWThfifKpHO9VWiaBKW1eBS-FUrqw0VW5kC5kyYLk8I_tr5dCjtS_0Vjcz8mJzG-wUiy-m93G50FiRLvDYepmRRytd2qyEKynqpuYZUTtatrPU3Tt9d5q4wLGwWULanJHXa4Xcruv_3-LJ1X_jKblZJhvBIeL7ZG-YL_0zAF-DfZ4s7DfMNi5M priority: 102 providerName: ProQuest – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQOQAHBOUrUJCRuIFFEjuOc6QLVYUEJyr1ZtmxvY0IMdokVfsz-MeMnWTpQkHimMSRrIxn5k1m5g1CrypeOAWRDwH5QoBS2IpopzkxZe64chz0K_zv-PSZH5-wj6fF6dwU1i_V7ktKMlrqqNaCv-1Z8J4EfAoJdNclAeR4s4DYPQxsWM09DvHPCgWnyIqlQ-baV3e8UCTrvw5h_lko-Vu2NDqho3vo7owe8btJ3PfRDdvto1urZWjbPrpzhV_wAfpx2PjhCjL1HfYO5-SrHTxh5OzShCIWPQ6XgTACnzcKq9b4FkOQDPZoKvTBoTR-jVWHbaSbgE3ChcEBOX7zAC51a3GtNtq3zRp8Ig4dK_i9bToPxrYee7xRpvFmDBt5iE6OPnxZHZN5BgOpITIZCMtMaquqVoXi1JYALgAiVDartQ2Dyg1YDFuWKnPGAVpwGeAJS3PqKkNVJoygj9Be5zv7BGFRW0ULm_JapAyAjGaaAn6hYFLKzDmWoGyRiaxngvIwJ6OVMVARXE5ylCBHGeUoLxL0evvO94me45-rD4OotysDtXa84TdrOWuq1II5keuycJQzI1KhuSpSxWuIlQHNpQk6WA6KnPW9l3kVWY1KViTo5fYxyD6kX1Rn_djLkJPOQuN6nqDH07na7oQKzsqqpAkSOyduZ6u7T7rmLLKBh9RmDoFzgt4sh_PXvv7-LZ7-3_Jn6HYe9SeMFT9Ae8NmtM8Bjg36RdS-n8FmL1Y priority: 102 providerName: Springer Nature |
Title | Biotransformation of 2-keto-4-hydroxybutyrate via aldol condensation using an efficient and thermostable carboligase from Deinococcus radiodurans |
URI | https://link.springer.com/article/10.1186/s40643-024-00727-x https://www.ncbi.nlm.nih.gov/pubmed/38647973 https://www.proquest.com/docview/2915445745 https://www.proquest.com/docview/3045115602 https://pubmed.ncbi.nlm.nih.gov/PMC10992282 https://doaj.org/article/b84f82b75f364d808b6a50a6c7213990 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBMoKyNxA6tJ7DjOkV26VEhUCFGpN8uO7TbqEqPdBLU_g3_M2MkuuzwvXCLlJY08M55v7PE3CL2oeOEUZD4E9AsJSmErop3mxJS548px8K-w3vH-mB-dsHenxelWq69QEzbQAw8Dd6AFcyLXZeEoZ0akQnNVpIrXkLpAcI3ZelqlW8lUXF2hEBhZsT4lI_jBioXgSyAkkcCWXZLLnUgUCft_hzJ_LZb8acc0BqL5HXR7RJD49SD5XXTNtvfQrS1ewfvo27Tx3RYi9S32DufkwnaeMHJ-ZULxiu67q0AUgb82CquF8QsMyTHMQ0OBDw4l8WdYtdhGmgkQDG4MDojxswdQqRcW12qp_aI5g1iIw0kV_MY2rYdJtu5XeKlM400fBHmATuaHn2ZHZOy9QGrISDrCMpPaqqpVoTi1JYAKgAaVzWptQ4NyAzOFLUuVOeMAJbgMcISlOXWVoSoTRtCHaK_1rX2MsKitooVNeS1SBgBGM00Bt1CYSsrMOZagbK0HWY_E5KE_xkLGBEVwOehOgu5k1J28TNDLzT9fBlqOv349DerdfBkoteMDMDQ5Gpr8l6ElaH9tHHL085XMq8hmVLIiQc83r8FDw7aLaq3vVzLsRWfhwHqeoEeDLW0koYKzsippgsSOle2Iuvumbc4jC3jY0swhYU7Qq7VB_pDrz2Px5H-MxVN0M4-eFJqM76O9btnbZwDOOj1B18X87QTdmB4ef_gId7OchSufTaKHfgccrzn3 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wA8IO4EBhgJnsBaEjtO8oAQZZs6tlUIbdLeMju2u4gSjzaF9WfwR_iNHOfSrlz2tsfmUp323L7jc0PoZcojIyDyIcBfCFAinRJpJCcqDg0XhoN-ufOOgyEfHLGPx9HxGvrV9cK4ssrOJtaGWtncnZFvhmk9NyZm0buzb8RtjXLZ1W6FRiMWe3r-A0K26dvdLeDvqzDc2T78MCDtVgGSA9auCAuUr9M0F5HgVMfgLsHppTrIpXartxXogI5jERhlwP-ZADykpiE1qaIiSFRC4XuvoXXmOlp7aL2_Pfz0eXmqQ8Ehs6jrzkn45pQ5p0_AFRI3pTsm5ysesF4U8C90-3eR5h-Z2toB7txGt1rkit83onYHrenyLrp5YZ7hPfSzX9jqAhK2JbYGh-SLrixh5HSuXNGMnFVzN6ACfy8EFmNlxxiCcrB_TWERdqX4IyxKrOvxFkAYfFDYIdWvFsCsHGuci4m042IEPhi7Dhm8pYvSgnHPZ1M8EaqwauYIuY-OroQ7D1CvtKV-hHCSa0Ej7fM88RkAJ8kkBbxEwYTFgTHMQ0HHhyxvB6K7vRzjrA6MEp41vMuAd1nNu-zcQ68X75w140Aufbrv2Lt40o3yri_YyShrLUMmE2aSUMaRoZypxE8kF5EveA6xOaBH30MbnXBkrX2ZZktt8NCLxW2wDC7dI0ptZ9PM5cAD1ygfeuhhI0sLSmjCWZzG1EPJipStkLp6pyxO6-njLpUaQqDuoTedQC7p-v9_8fjyn_EcXR8cHuxn-7vDvSfoRljri1thvoF61WSmnwL0q-SzVt8wOrlqFf8N2BVrew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcEG8WChgJTmBld73r9R4QooTQUqg4UKk3Y6_tdEVYl2QDzc_g7_DrGO8jaXj01mP2ETmZx_eNZzyD0JOcpVZC5ENAvhCgpCYnyipGdBZbJi0D-_L7HR_22c5B8u4wPdxAv_qzML6ssveJjaPWrvB75IM4b_rGZEk6sF1ZxMfh6OXxN-InSPlMaz9Oo1WRPbP4AeHb7MXuEGT9NI5Hbz693iHdhAFSAO-uSRLp0OR5IVPJqMkAOgEAcxMVyvgx3BrswWSZjKy2gIU2ArQ0NKY211RGXHMK33sBXcxolvvAj4_ervZ3KEBzkvbndDgbzBIP_wRAkfh-3Rk5WcPCZmTAv3ju3-Waf-RsGygcXUNXOw6LX7VKdx1tmOoGunKqs-FN9HO7dPUpTuwq7CyOyRdTO5KQo4X25TNqXi98qwr8vZRYTrSbYAjPwRO2JUbYF-WPsaywaRpdwMLgg8aes351QGvVxOBCTpWblGNAY-zPyuChKSsHbr6Yz_BU6tLpuV_ILXRwLrK5jTYrV5m7CPPCSJqakBU8TIBCqURRYE4UnFkWWZsEKOrlIIquNbqf0DERTYjEmWhlJ0B2opGdOAnQs-U7x21jkDOf3vbiXT7pm3o3F9x0LDofIRRPLI9VllrKEs1DrphMQ8kKiNKBR4YB2uqVQ3SeZiZWdhGgx8vb4CN84kdWxs1nwmfDI39kPg7QnVaXliuhnCWgvTRAfE3L1pa6fqcqj5o-5D6pGkPIHqDnvUKu1vX__-Le2T_jEboEhi3e7-7v3UeX48Zc_CzzLbRZT-fmAXDAWj1sjA2jz-dt3b8BsC9uSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biotransformation+of+2-keto-4-hydroxybutyrate+via+aldol+condensation+using+an+efficient+and+thermostable+carboligase+from+Deinococcus+radiodurans&rft.jtitle=Bioresources+and+bioprocessing&rft.au=Yeon-Ju+Jeong&rft.au=Min-Ju+Seo&rft.au=Bong+Hyun+Sung&rft.au=Jeong-Sun+Kim&rft.date=2024-01-16&rft.pub=SpringerOpen&rft.eissn=2197-4365&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs40643-024-00727-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b84f82b75f364d808b6a50a6c7213990 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4365&client=summon |