Negative regulation of autophagy by UBA6-BIRC6–mediated ubiquitination of LC3

Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tan...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 8
Main Authors Jia, Rui, Bonifacino, Juan S
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 06.11.2019
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders.
AbstractList Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders.
Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and [alpha]-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders.
Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders.Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders.
Audience Academic
Author Jia, Rui
Bonifacino, Juan S
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-1797-4069
  surname: Jia
  fullname: Jia, Rui
  organization: Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, United States
– sequence: 2
  givenname: Juan S
  orcidid: 0000-0002-5673-6370
  surname: Bonifacino
  fullname: Bonifacino, Juan S
  organization: Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31692446$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiJbSFXs0EhsQSvBl7PFskNKIS6SISoVK7CxfjqeOJuN0xlORHe_AG_IkOEkJTVV7Ycv-zm-fc_7n2VEbWsiylxiNS8aK9zD3DsYMIVo8yU4IYmiERPHj6N7-ODvr-wVKoyyEwNWz7JhiXpGi4CfZxVeoVfS3kHdQD03ahjYPLldDDKtrVa9zvc6vzid8dD67nPI_v34vwXoVweaD9jeDj77dB82n9EX21Kmmh7O79TS7-vTx-_TLaH7xeTadzEeGFySOMMG0tMbZsnSOcgtIMGYrhRihDGmtwVVY6JLjkgCQilmskcVcU2GhBE5Ps9lO1wa1kKvOL1W3lkF5uT0IXS1VF71pQDKOqbOCElLaAhlXaURBGGMAawZOJK0PO63VoFN2BtrYqeZA9PCm9deyDreSC045KZPAmzuBLtwM0Ee59L2BplEthKGXhGLCUrfwBn39AF2EoWtTqRJFUOqZwOg_VauUgG9dSO-ajaiccMQJoRyRRI0fodK0sPQm-cT5dH4Q8PYgIDERfsZaDX0vZ98uD9lX94uyr8Y_6yTg3Q4wXej7DtwewUhuvCm33pRbbyYaP6CNj1vjpD_75tGYvxDx5JM
CitedBy_id crossref_primary_10_1126_science_ade8873
crossref_primary_10_1016_j_isci_2025_112118
crossref_primary_10_1016_j_intimp_2023_111438
crossref_primary_10_1158_2159_8290_CD_22_1230
crossref_primary_10_3390_ijms222112083
crossref_primary_10_3389_fgene_2022_834935
crossref_primary_10_1038_s41420_023_01712_7
crossref_primary_10_7554_eLife_77461
crossref_primary_10_3390_ijms25052843
crossref_primary_10_1038_s41467_022_32613_5
crossref_primary_10_1186_s12967_024_05565_1
crossref_primary_10_3390_cancers15041112
crossref_primary_10_5650_oleoscience_23_11
crossref_primary_10_1016_j_jbc_2024_107908
crossref_primary_10_3390_ijms24032476
crossref_primary_10_1038_s41467_024_45222_1
crossref_primary_10_1126_science_adg9605
crossref_primary_10_1126_science_ade5750
crossref_primary_10_1016_j_xpro_2021_100966
crossref_primary_10_1080_15548627_2024_2395727
crossref_primary_10_1242_jcs_259725
crossref_primary_10_1093_nar_gkab309
crossref_primary_10_18632_aging_204069
crossref_primary_10_1016_j_mam_2021_101018
crossref_primary_10_1016_j_tibs_2020_07_006
crossref_primary_10_1038_s41467_024_55105_0
crossref_primary_10_3390_cells9092008
crossref_primary_10_1016_j_jbc_2021_100405
crossref_primary_10_3390_ijms21083028
crossref_primary_10_1080_15548627_2019_1709766
crossref_primary_10_3389_fcell_2021_760226
crossref_primary_10_1021_acsptsci_1c00130
crossref_primary_10_1172_JCI169428
crossref_primary_10_3389_fcell_2022_743287
crossref_primary_10_3390_ijms21249387
crossref_primary_10_1016_j_jbc_2024_108134
crossref_primary_10_3724_abbs_2023149
crossref_primary_10_3389_fcell_2022_886537
crossref_primary_10_15252_embj_2022112799
crossref_primary_10_3390_ijms21124196
crossref_primary_10_1093_toxsci_kfaa071
crossref_primary_10_3390_biom12091192
crossref_primary_10_1186_s13287_024_03831_z
crossref_primary_10_1126_science_ade8840
crossref_primary_10_3390_cells11030556
crossref_primary_10_3390_ijms23137301
crossref_primary_10_1080_15548627_2021_2021495
crossref_primary_10_3389_fcell_2022_830046
crossref_primary_10_1038_s41598_020_68607_w
crossref_primary_10_1038_s41587_024_02512_9
crossref_primary_10_1111_tra_12902
crossref_primary_10_1080_14728222_2023_2177151
crossref_primary_10_1002_1873_3468_14280
crossref_primary_10_1186_s13073_024_01414_4
crossref_primary_10_1016_j_jbc_2021_100780
crossref_primary_10_3390_cells12060897
crossref_primary_10_1016_j_ejcb_2022_151203
crossref_primary_10_1016_j_mcp_2020_101612
crossref_primary_10_1080_15548627_2020_1847443
crossref_primary_10_1016_j_tcb_2022_04_006
crossref_primary_10_1016_j_celrep_2023_113045
crossref_primary_10_3390_cells9092025
crossref_primary_10_1016_j_ijbiomac_2025_142277
crossref_primary_10_1080_10715762_2024_2358026
Cites_doi 10.1016/j.neuropharm.2015.02.003
10.1073/pnas.1523597113
10.1083/jcb.200907015
10.1038/nprot.2008.73
10.1074/jbc.M900301200
10.1016/j.molcel.2012.07.011
10.1038/s41580-018-0003-4
10.1074/jbc.M702824200
10.1016/j.nbd.2014.04.003
10.4161/auto.4012
10.1038/nature05902
10.3402/pba.v5.28743
10.4161/15548627.2014.981792
10.1038/nmeth.3047
10.7554/eLife.17290
10.1242/jcs.140426
10.1016/j.molcel.2019.03.033
10.1038/ncb2425
10.1038/nature14498
10.1080/15548627.2016.1140293
10.1016/j.devcel.2015.02.002
10.1016/j.molcel.2015.05.031
10.1074/jbc.M109.080796
10.1371/journal.pone.0052868
10.1074/jbc.M300227200
10.1016/S0021-9258(19)78150-2
10.1038/ncb1159
10.1146/annurev.biochem.70.1.503
10.1080/15548627.2017.1343768
10.1242/jcs.152371
10.1038/nrm2673
10.1016/j.molcel.2014.11.013
10.1016/j.cell.2011.08.037
10.1016/j.molcel.2014.12.013
10.1073/pnas.1601844113
10.1016/j.molcel.2014.11.006
10.1126/science.276.5321.2045
10.1038/nm1066
10.1038/45257
10.15252/embr.201845889
10.1016/j.tibs.2008.01.005
10.1016/j.devcel.2017.11.024
10.1083/jcb.200507002
10.1073/pnas.1901039116
10.1038/ncb2708
10.1371/journal.pone.0009313
10.1016/j.cell.2007.12.018
10.1016/j.molcel.2007.08.020
10.1016/j.tibs.2003.09.005
10.1371/journal.pone.0125281
10.1074/jbc.C700111200
10.1074/jbc.M802182200
10.1172/JCI73942
10.1111/j.1432-1033.1997.0240a.x
10.1146/annurev-biochem-060815-014556
10.4161/auto.4451
10.1242/jcs.107789
10.1128/MCB.00992-06
10.1016/j.molcel.2016.08.021
10.1016/j.ccr.2014.05.015
10.1126/science.aac7041
10.1126/science.1196371
10.1074/jbc.273.7.3963
10.1038/ncb3423
10.1186/s13059-014-0554-4
10.15252/embj.201694401
10.4161/auto.2731
10.1016/j.molcel.2004.05.018
10.1002/ijc.29194
10.1093/emboj/19.1.94
10.1242/jcs.126128
10.1016/j.molcel.2013.06.020
10.4161/auto.1.2.1697
10.1016/j.neuroscience.2014.07.046
10.1126/scisignal.2000751
10.1038/3311
10.1038/s41580-019-0099-1
10.1242/jcs.01131
10.1038/nprot.2017.016
10.1073/pnas.0408744102
10.1038/ncb2757
10.1038/s41467-018-02823-x
10.1038/ncb2329
10.1371/journal.pbio.2007044
10.1016/j.neuron.2012.07.007
10.1128/MCB.00392-17
10.1073/pnas.1608644113
10.1016/S0070-2153(06)76003-3
10.1007/s13311-014-0294-x
10.7554/eLife.25555
10.1016/j.molcel.2011.05.034
10.1371/journal.pone.0055837
10.1038/ncb2152
10.1016/j.cell.2007.05.044
10.4161/auto.5.5.8566
10.1016/j.cell.2017.03.035
10.1083/jcb.201804132
10.1097/SLA.0b013e318269d0e2
10.1083/jcb.201607039
10.1038/cddis.2012.13
10.1016/j.molcel.2015.11.001
10.1042/BJ20111424
10.1038/cdd.2014.143
10.1038/nature03029
10.1016/j.devcel.2015.02.011
10.1016/j.jmb.2019.07.016
ContentType Journal Article
Copyright COPYRIGHT 2019 eLife Science Publications, Ltd.
2019. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2019 eLife Science Publications, Ltd.
– notice: 2019. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.50034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_5613fd83227d40cf9b03e8ccce1b5ef8
PMC6863627
A606223602
31692446
10_7554_eLife_50034
Genre Journal Article
Research Support, N.I.H., Intramural
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: ZIA HD001607
– fundername: NIH HHS
  grantid: ZIA HD001607
– fundername: Intramural NIH HHS
  grantid: ZIA HD001607
– fundername: ;
  grantid: ZIA HD001607
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c642t-12137dcfd77ff36de0855d9a052350bbbef918b76172ee295d1b0d16b38de7e63
IEDL.DBID 7X7
ISSN 2050-084X
IngestDate Wed Aug 27 01:27:54 EDT 2025
Thu Aug 21 14:31:36 EDT 2025
Fri Jul 11 07:15:44 EDT 2025
Fri Jul 25 09:36:37 EDT 2025
Tue Jun 17 20:54:23 EDT 2025
Tue Jun 10 20:30:23 EDT 2025
Fri Jun 27 04:10:35 EDT 2025
Mon Jul 21 05:43:13 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
Tue Jul 01 04:12:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords autophagy
cell biology
rat
UBA6
ubiquitination
BIRC6
LC3
human
Language English
License http://creativecommons.org/publicdomain/zero/1.0
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-12137dcfd77ff36de0855d9a052350bbbef918b76172ee295d1b0d16b38de7e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1797-4069
0000-0002-5673-6370
OpenAccessLink https://www.proquest.com/docview/2320050810?pq-origsite=%requestingapplication%
PMID 31692446
PQID 2320050810
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_5613fd83227d40cf9b03e8ccce1b5ef8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6863627
proquest_miscellaneous_2312555417
proquest_journals_2320050810
gale_infotracmisc_A606223602
gale_infotracacademiconefile_A606223602
gale_incontextgauss_ISR_A606223602
pubmed_primary_31692446
crossref_primary_10_7554_eLife_50034
crossref_citationtrail_10_7554_eLife_50034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-06
PublicationDateYYYYMMDD 2019-11-06
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2019
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Chiu (bib12) 2007; 27
Dikic (bib17) 2018; 19
Nazio (bib64) 2013; 15
Pu (bib75) 2015; 33
Huang (bib30) 2015; 57
Russell (bib79) 2013; 15
Levine (bib48) 2008; 132
Thoreen (bib94) 2009; 284
Jia (bib33) 2017; 13
Grumati (bib25) 2017; 6
Webb (bib101) 2003; 278
Jiang (bib34) 2015; 125
Clague (bib13) 2019; 20
Ichimura (bib32) 2008; 283
Kabeya (bib39) 2004; 117
Wild (bib103) 2014; 127
Lim (bib51) 2015; 32
Bento (bib5) 2016; 85
Alexopoulou (bib2) 2016; 113
DeJesus (bib16) 2016; 5
Kim (bib42) 2015; 57
Xu (bib106) 2014; 10
Farías (bib22) 2012; 75
Smith (bib89) 2018; 44
Braten (bib10) 2016; 113
Lo (bib57) 2013; 257
Spinnenhirn (bib90) 2014; 127
Liu (bib56) 2015; 22
Egan (bib21) 2015; 59
Boutet (bib9) 2007; 130
Platta (bib73) 2012; 441
Kuma (bib45) 2004; 432
Jiang (bib35) 2019; 116
Khaminets (bib40) 2015; 522
Lee (bib47) 2011; 43
Ross (bib78) 2004; 10 Suppl
Tang (bib92) 2015; 136
McEwan (bib60) 2015; 57
Schmittgen (bib83) 2008; 3
Webster (bib102) 2016; 35
Saxton (bib82) 2017; 169
Ren (bib76) 2005; 102
Richter (bib77) 2014; 11
Williams (bib104) 2006; 76
Egan (bib20) 2011; 331
Mihaylova (bib61) 2011; 13
Kimura (bib43) 2007; 3
Crews (bib15) 2010; 5
Pickart (bib72) 2001; 70
Bai (bib3) 2015; 5
Noda (bib66) 1998; 273
Linares (bib52) 2013; 51
Shi (bib86) 2012; 3
Blommaart (bib8) 1997; 243
Conway (bib14) 1998; 4
Sanjana (bib80) 2014; 11
Birgisdottir (bib6) 2013; 126
Liu (bib54) 2014; 26
Watanabe (bib100) 2012; 7
Kuma (bib46) 2007; 3
Vaites (bib97) 2017; 38
Morita (bib63) 2018; 217
Aichem (bib1) 2012; 125
Tonami (bib96) 2007; 27
Schulman (bib84) 2009; 10
Szeto (bib91) 2006; 2
Kim (bib41) 2011; 13
Haglund (bib27) 2003; 28
Pankiv (bib68) 2010; 188
Patil (bib70) 2014; 277
Bjørkøy (bib7) 2005; 171
Guo (bib26) 2016; 113
Li (bib49) 2014; 15
Tanida (bib93) 2005; 1
Moretti (bib62) 2018; 19
Wu (bib105) 2010; 285
Mann (bib59) 1994; 269
Shoemaker (bib88) 2019; 17
Hao (bib28) 2004; 6
Hung (bib31) 2015; 93
Polymeropoulos (bib74) 1997; 276
Joung (bib38) 2017; 12
Jin (bib36) 2007; 447
Liang (bib50) 1999; 402
Liu (bib53) 2011; 147
Pankiv (bib67) 2007; 282
Shi (bib87) 2010; 3
Liu (bib55) 2016; 61
Wang (bib98) 2015; 350
Thrower (bib95) 2000; 19
Groettrup (bib24) 2008; 33
Park (bib69) 2016; 12
Fumagalli (bib23) 2016; 18
Nguyen (bib65) 2016; 215
Savolainen (bib81) 2014; 68
Ebner (bib19) 2018; 9
Kirkin (bib44) 2009; 5
Wang (bib99) 2016; 63
Bartke (bib4) 2004; 14
Pelzer (bib71) 2007; 282
Chino (bib11) 2019; 74
Dimova (bib18) 2012; 14
Low (bib58) 2013; 8
Johansen (bib37) 2019; 19
Shabek (bib85) 2012; 48
Hu (bib29) 2015; 10
References_xml – volume: 93
  start-page: 243
  year: 2015
  ident: bib31
  article-title: LC3 overexpression reduces aβ neurotoxicity through increasing α7nachr expression and autophagic activity in neurons and mice
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2015.02.003
– volume: 113
  start-page: E4688
  year: 2016
  ident: bib2
  article-title: Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease
  publication-title: PNAS
  doi: 10.1073/pnas.1523597113
– volume: 188
  start-page: 253
  year: 2010
  ident: bib68
  article-title: FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200907015
– volume: 3
  start-page: 1101
  year: 2008
  ident: bib83
  article-title: Analyzing real-time PCR data by the comparative C(T) method
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2008.73
– volume: 284
  start-page: 8023
  year: 2009
  ident: bib94
  article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M900301200
– volume: 48
  start-page: 87
  year: 2012
  ident: bib85
  article-title: The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2012.07.011
– volume: 19
  start-page: 349
  year: 2018
  ident: bib17
  article-title: Mechanism and medical implications of mammalian autophagy
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/s41580-018-0003-4
– volume: 282
  start-page: 24131
  year: 2007
  ident: bib67
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M702824200
– volume: 68
  start-page: 1
  year: 2014
  ident: bib81
  article-title: The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alpha-synuclein clearance and autophagy in A30P transgenic mouse
  publication-title: Neurobiology of Disease
  doi: 10.1016/j.nbd.2014.04.003
– volume: 3
  start-page: 323
  year: 2007
  ident: bib46
  article-title: LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization
  publication-title: Autophagy
  doi: 10.4161/auto.4012
– volume: 447
  start-page: 1135
  year: 2007
  ident: bib36
  article-title: Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging
  publication-title: Nature
  doi: 10.1038/nature05902
– volume: 5
  year: 2015
  ident: bib3
  article-title: Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy
  publication-title: Pathobiology of Aging & Age-Related Diseases
  doi: 10.3402/pba.v5.28743
– volume: 10
  start-page: 2239
  year: 2014
  ident: bib106
  article-title: Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.981792
– volume: 11
  start-page: 783
  year: 2014
  ident: bib80
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3047
– volume: 5
  year: 2016
  ident: bib16
  article-title: Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62
  publication-title: eLife
  doi: 10.7554/eLife.17290
– volume: 127
  start-page: 3
  year: 2014
  ident: bib103
  article-title: The LC3 interactome at a glance
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.140426
– volume: 74
  start-page: 909
  year: 2019
  ident: bib11
  article-title: Intrinsically disordered protein TEX264 mediates ER-phagy
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2019.03.033
– volume: 14
  start-page: 168
  year: 2012
  ident: bib18
  article-title: APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2425
– volume: 522
  start-page: 354
  year: 2015
  ident: bib40
  article-title: Regulation of endoplasmic reticulum turnover by selective autophagy
  publication-title: Nature
  doi: 10.1038/nature14498
– volume: 12
  start-page: 547
  year: 2016
  ident: bib69
  article-title: The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1140293
– volume: 32
  start-page: 491
  year: 2015
  ident: bib51
  article-title: Neuronal aggregates: formation, clearance, and spreading
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2015.02.002
– volume: 59
  start-page: 285
  year: 2015
  ident: bib21
  article-title: Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.05.031
– volume: 285
  start-page: 10850
  year: 2010
  ident: bib105
  article-title: Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M109.080796
– volume: 7
  year: 2012
  ident: bib100
  article-title: p62/SQSTM1-dependent autophagy of Lewy body-like α-synuclein inclusions
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0052868
– volume: 278
  start-page: 25009
  year: 2003
  ident: bib101
  article-title: Alpha-Synuclein is degraded by both autophagy and the proteasome
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M300227200
– volume: 269
  start-page: 11492
  year: 1994
  ident: bib59
  article-title: Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B
  publication-title: The Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(19)78150-2
– volume: 6
  start-page: 849
  year: 2004
  ident: bib28
  article-title: Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1159
– volume: 70
  start-page: 503
  year: 2001
  ident: bib72
  article-title: Mechanisms underlying ubiquitination
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.biochem.70.1.503
– volume: 13
  start-page: 1648
  year: 2017
  ident: bib33
  article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1343768
– volume: 127
  start-page: 4883
  year: 2014
  ident: bib90
  article-title: The ubiquitin-like modifier FAT10 decorates autophagy-targeted Salmonella and contributes to Salmonella resistance in mice
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.152371
– volume: 10
  start-page: 319
  year: 2009
  ident: bib84
  article-title: Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm2673
– volume: 57
  start-page: 207
  year: 2015
  ident: bib42
  article-title: mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2014.11.013
– volume: 147
  start-page: 223
  year: 2011
  ident: bib53
  article-title: Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.037
– volume: 57
  start-page: 456
  year: 2015
  ident: bib30
  article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2014.12.013
– volume: 113
  start-page: E5318
  year: 2016
  ident: bib26
  article-title: Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon
  publication-title: PNAS
  doi: 10.1073/pnas.1601844113
– volume: 57
  start-page: 39
  year: 2015
  ident: bib60
  article-title: PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2014.11.006
– volume: 276
  start-page: 2045
  year: 1997
  ident: bib74
  article-title: Mutation in the alpha-synuclein gene identified in families with Parkinson's disease
  publication-title: Science
  doi: 10.1126/science.276.5321.2045
– volume: 10 Suppl
  start-page: S10
  year: 2004
  ident: bib78
  article-title: Protein aggregation and neurodegenerative disease
  publication-title: Nature Medicine
  doi: 10.1038/nm1066
– volume: 402
  start-page: 672
  year: 1999
  ident: bib50
  article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1
  publication-title: Nature
  doi: 10.1038/45257
– volume: 19
  year: 2018
  ident: bib62
  article-title: TMEM41B is a novel regulator of autophagy and lipid mobilization
  publication-title: EMBO Reports
  doi: 10.15252/embr.201845889
– volume: 33
  start-page: 230
  year: 2008
  ident: bib24
  article-title: Activating the ubiquitin family: uba6 challenges the field
  publication-title: Trends in Biochemical Sciences
  doi: 10.1016/j.tibs.2008.01.005
– volume: 44
  start-page: 217
  year: 2018
  ident: bib89
  article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-Phagy and pancreatic ER proteostasis
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2017.11.024
– volume: 171
  start-page: 603
  year: 2005
  ident: bib7
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200507002
– volume: 116
  start-page: 13404
  year: 2019
  ident: bib35
  article-title: SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation
  publication-title: PNAS
  doi: 10.1073/pnas.1901039116
– volume: 15
  start-page: 406
  year: 2013
  ident: bib64
  article-title: mTOR inhibits autophagy by controlling ULK1 Ubiquitylation, self-association and function through AMBRA1 and TRAF6
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2708
– volume: 5
  year: 2010
  ident: bib15
  article-title: Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0009313
– volume: 132
  start-page: 27
  year: 2008
  ident: bib48
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.018
– volume: 27
  start-page: 1014
  year: 2007
  ident: bib12
  article-title: E1-L2 activates both ubiquitin and FAT10
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2007.08.020
– volume: 28
  start-page: 598
  year: 2003
  ident: bib27
  article-title: Distinct monoubiquitin signals in receptor endocytosis
  publication-title: Trends in Biochemical Sciences
  doi: 10.1016/j.tibs.2003.09.005
– volume: 10
  year: 2015
  ident: bib29
  article-title: Overexpression of BIRC6 is a predictor of prognosis for colorectal cancer
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0125281
– volume: 282
  start-page: 23010
  year: 2007
  ident: bib71
  article-title: UBE1L2, a novel E1 enzyme specific for ubiquitin
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.C700111200
– volume: 283
  start-page: 22847
  year: 2008
  ident: bib32
  article-title: Structural basis for sorting mechanism of p62 in selective autophagy
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M802182200
– volume: 125
  start-page: 47
  year: 2015
  ident: bib34
  article-title: Autophagy in cellular metabolism and cancer
  publication-title: Journal of Clinical Investigation
  doi: 10.1172/JCI73942
– volume: 243
  start-page: 240
  year: 1997
  ident: bib8
  article-title: The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes
  publication-title: European Journal of Biochemistry
  doi: 10.1111/j.1432-1033.1997.0240a.x
– volume: 85
  start-page: 685
  year: 2016
  ident: bib5
  article-title: Mammalian autophagy: how does it work?
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev-biochem-060815-014556
– volume: 3
  start-page: 452
  year: 2007
  ident: bib43
  article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
  publication-title: Autophagy
  doi: 10.4161/auto.4451
– volume: 125
  start-page: 4576
  year: 2012
  ident: bib1
  article-title: The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.107789
– volume: 27
  start-page: 2548
  year: 2007
  ident: bib96
  article-title: Calpain 6 is involved in microtubule stabilization and cytoskeletal organization
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.00992-06
– volume: 63
  start-page: 781
  year: 2016
  ident: bib99
  article-title: The Vici syndrome protein EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2016.08.021
– volume: 26
  start-page: 106
  year: 2014
  ident: bib54
  article-title: Ubiquitylation of autophagy receptor optineurin by HACE1 activates selective autophagy for tumor suppression
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.05.015
– volume: 350
  start-page: 1096
  year: 2015
  ident: bib98
  article-title: Identification and characterization of essential genes in the human genome
  publication-title: Science
  doi: 10.1126/science.aac7041
– volume: 331
  start-page: 456
  year: 2011
  ident: bib20
  article-title: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
  publication-title: Science
  doi: 10.1126/science.1196371
– volume: 273
  start-page: 3963
  year: 1998
  ident: bib66
  article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.273.7.3963
– volume: 18
  start-page: 1173
  year: 2016
  ident: bib23
  article-title: Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb3423
– volume: 15
  year: 2014
  ident: bib49
  article-title: MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
  publication-title: Genome Biology
  doi: 10.1186/s13059-014-0554-4
– volume: 35
  start-page: 1656
  year: 2016
  ident: bib102
  article-title: The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy
  publication-title: The EMBO Journal
  doi: 10.15252/embj.201694401
– volume: 2
  start-page: 189
  year: 2006
  ident: bib91
  article-title: ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.2731
– volume: 14
  start-page: 801
  year: 2004
  ident: bib4
  article-title: Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2004.05.018
– volume: 136
  start-page: E475
  year: 2015
  ident: bib92
  article-title: BIRC6 promotes hepatocellular carcinogenesis: interaction of BIRC6 with p53 facilitating p53 degradation
  publication-title: International Journal of Cancer
  doi: 10.1002/ijc.29194
– volume: 19
  start-page: 94
  year: 2000
  ident: bib95
  article-title: Recognition of the polyubiquitin proteolytic signal
  publication-title: The EMBO Journal
  doi: 10.1093/emboj/19.1.94
– volume: 126
  start-page: 3237
  year: 2013
  ident: bib6
  article-title: The LIR motif - crucial for selective autophagy
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.126128
– volume: 51
  start-page: 283
  year: 2013
  ident: bib52
  article-title: K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2013.06.020
– volume: 1
  start-page: 84
  year: 2005
  ident: bib93
  article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.1.2.1697
– volume: 277
  start-page: 747
  year: 2014
  ident: bib70
  article-title: Neuroprotective effect of metformin in MPTP-induced parkinson's disease in mice
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.07.046
– volume: 3
  year: 2010
  ident: bib87
  article-title: TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
  publication-title: Science Signaling
  doi: 10.1126/scisignal.2000751
– volume: 4
  start-page: 1318
  year: 1998
  ident: bib14
  article-title: Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset parkinson disease
  publication-title: Nature Medicine
  doi: 10.1038/3311
– volume: 20
  start-page: 338
  year: 2019
  ident: bib13
  article-title: Breaking the chains: deubiquitylating enzyme specificity begets function
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/s41580-019-0099-1
– volume: 117
  start-page: 2805
  year: 2004
  ident: bib39
  article-title: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.01131
– volume: 12
  start-page: 828
  year: 2017
  ident: bib38
  article-title: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2017.016
– volume: 102
  start-page: 565
  year: 2005
  ident: bib76
  article-title: The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development
  publication-title: PNAS
  doi: 10.1073/pnas.0408744102
– volume: 15
  start-page: 741
  year: 2013
  ident: bib79
  article-title: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2757
– volume: 9
  year: 2018
  ident: bib19
  article-title: The IAP family member BRUCE regulates autophagosome-lysosome fusion
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-02823-x
– volume: 13
  start-page: 1016
  year: 2011
  ident: bib61
  article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2329
– volume: 17
  year: 2019
  ident: bib88
  article-title: CRISPR screening using an expanded toolkit of autophagy reporters identifies TMEM41B as a novel autophagy factor
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.2007044
– volume: 75
  start-page: 810
  year: 2012
  ident: bib22
  article-title: Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.07.007
– volume: 38
  year: 2017
  ident: bib97
  article-title: Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macroautophagic and selective autophagic flux
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.00392-17
– volume: 113
  start-page: E4639
  year: 2016
  ident: bib10
  article-title: Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination
  publication-title: PNAS
  doi: 10.1073/pnas.1608644113
– volume: 76
  start-page: 89
  year: 2006
  ident: bib104
  article-title: Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications
  publication-title: Current Topics in Developmental Biology
  doi: 10.1016/S0070-2153(06)76003-3
– volume: 11
  start-page: 840
  year: 2014
  ident: bib77
  article-title: A GCase chaperone improves motor function in a mouse model of synucleinopathy
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-014-0294-x
– volume: 6
  year: 2017
  ident: bib25
  article-title: Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy
  publication-title: eLife
  doi: 10.7554/eLife.25555
– volume: 43
  start-page: 392
  year: 2011
  ident: bib47
  article-title: Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2011.05.034
– volume: 8
  year: 2013
  ident: bib58
  article-title: BIRC6 protein, an inhibitor of apoptosis: role in survival of human prostate cancer cells
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0055837
– volume: 13
  start-page: 132
  year: 2011
  ident: bib41
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2152
– volume: 130
  start-page: 349
  year: 2007
  ident: bib9
  article-title: Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.044
– volume: 5
  start-page: 732
  year: 2009
  ident: bib44
  article-title: NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets
  publication-title: Autophagy
  doi: 10.4161/auto.5.5.8566
– volume: 169
  start-page: 361
  year: 2017
  ident: bib82
  article-title: mTOR signaling in growth, metabolism, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.035
– volume: 217
  start-page: 3817
  year: 2018
  ident: bib63
  article-title: Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201804132
– volume: 257
  start-page: 352
  year: 2013
  ident: bib57
  article-title: Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice
  publication-title: Annals of Surgery
  doi: 10.1097/SLA.0b013e318269d0e2
– volume: 215
  start-page: 857
  year: 2016
  ident: bib65
  article-title: Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201607039
– volume: 3
  year: 2012
  ident: bib86
  article-title: Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
  publication-title: Cell Death & Disease
  doi: 10.1038/cddis.2012.13
– volume: 61
  start-page: 84
  year: 2016
  ident: bib55
  article-title: Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.11.001
– volume: 441
  start-page: 399
  year: 2012
  ident: bib73
  article-title: Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor beclin 1
  publication-title: Biochemical Journal
  doi: 10.1042/BJ20111424
– volume: 22
  start-page: 367
  year: 2015
  ident: bib56
  article-title: Autosis and autophagic cell death: the dark side of autophagy
  publication-title: Cell Death & Differentiation
  doi: 10.1038/cdd.2014.143
– volume: 432
  start-page: 1032
  year: 2004
  ident: bib45
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 33
  start-page: 176
  year: 2015
  ident: bib75
  article-title: BORC, a multisubunit complex that regulates lysosome positioning
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2015.02.011
– volume: 19
  year: 2019
  ident: bib37
  article-title: Selective autophagy: atg8 family proteins, LIR motifs and cargo receptors
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2019.07.016
SSID ssj0000748819
Score 2.4899616
Snippet Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Autophagy
BIRC6
Cell Biology
Cell Line
CRISPR
Enzymes
Gene expression
Gene Expression Regulation, Enzymologic
Gene Knockout Techniques
Genetic Testing
Genomes
Genomics
Hippocampus
Humans
Inhibitor of Apoptosis Proteins - metabolism
Kinases
LC3
Ligases
Microtubule-Associated Proteins - metabolism
Nervous system diseases
Neurodegenerative diseases
Neurons
Novels
Phagocytosis
Phosphorylation
Polymerization
Proteasome Endopeptidase Complex - metabolism
Proteasomes
Protein biosynthesis
Protein Interaction Maps
Protein synthesis
Proteins
Proteolysis
Scientific equipment industry
Sedimentation & deposition
Synuclein
UBA6
Ubiquitin
Ubiquitin-Activating Enzymes - metabolism
Ubiquitin-conjugating enzyme
Ubiquitin-protein ligase
Ubiquitination
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEF1CoJBLaZq0VZMWNQQKBTW7XmlXOtomISn5gLSG3BbtlyMochtbB9_6H_oP-0s6s1KERQu99GTwjkB6O6t5I2beEHIsPQMSa8qEeu8T4Ld5UlJu4LiPGLfOGx10Zq-uxfks_XSX3W2M-sKasFYeuAXuBAmut-h30qbU-EJT7nJjjGM6cz60-ULM20imwjtYgmOyom3IkxAyT9xl5d3HDPVYBiEoKPX_-T7eCEjDYsmN6HP2jDztaGM8bm93l2y5-jl50g6SXO-Rm2s3Dwre8UM7Wx7Qjhc-LhvUDSjn61iv49lkLJLJxe1U_PrxM3SMANuMG119b6pVVfcXXU75PpmdnX6ZnifdqITEQAKxShBZaY23UnrPhXVYfmaLEj_6ZlRr7XzBci2Rrzg3KjLLNLVMaJ5bJ53gL8h2vajdKxJDxAK8stSm8CNpmY90wVNpbF4Y2FQakQ-P6CnT6YjjOIuvCvIJhFoFqFWAOiLHvfG3Vj7j72YT3IbeBDWvwx_gCarzBPUvT4jIEW6iQlWLGstm5mWzXKqLz7dqDGka8CBBRxF53xn5Bdy1KbsuBHh2FMIaWB4OLOHYmeHyo6-o7tgvFdBTFNTJGaD0rl_GK7GUrXaLBm0Q4CxlMiIvW9fqn5szAflwKiIiB043AGa4Ulf3QRRc5AK4iHz9P5A8IDvAC4vQcikOyfbqoXFvgHut9NtwzH4DiAgtCw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9RAEB5qRfCL-G5qlSgFQciZXJLd5JPcHZZW2grVg35bsm9noCT27gK9b_4H_6G_xJlNLjRa_HRwOwvJszM7z4TdZwAOuI2QxKoiCK21AfLbLCjCWGG4j6NYG6uk05k9PWNH8-TzRXqxA9tmnB2Aq1tLO-onNV9ejq6vNh8x4JG_jjhmww_mpLRmlJLUyh24iymJUyuD047nuy2Zo59GeXs_7-85g4zkhPv_3Z5v5Kfh2ckbyejwITzoWKQ_aZf9EeyY6jHca_tKbp7AlzOzcILe_rJtNY_g-7X1i4ZkBIrFxpcbfz6dsGB6fD5jv3_-chdIkHz6jSyvmnJdVv2kk1n8FOaHn77NjoKuc0KgsJ5YBwQ018pqzq2NmTZ0Gk3nBX0DTkMppbF5lElO9MWYcZ7qSIY6YjLOtOGGxc9gt6or8wJ8TGCIV5roBH94WGRjmccJVzrLFa5x6MH7LXpCdbLi1N3iUmB5QVALB7VwUHtw0Bv_aNU0bjeb0jL0JiSB7f6olwvRRZSgysdq2pC4TkJlcxnGJlNKmUimxmYevKVFFCRyUdEpmkXRrFbi-Ou5mGDVhrSIhWMP3nVGtsanVkV3KQHfnXSxBpb7A0uMQjUc3vqK2DqxQLZK-jpZhCi96YdpJp1sq0zdkA0BnKLTevC8da3-veOIYXmcMA_4wOkGwAxHqvK70whnGUNqwvf-_1gv4T4SwNzdrWT7sLteNuYVkqy1fO0C6A8_NiYL
  priority: 102
  providerName: Scholars Portal
Title Negative regulation of autophagy by UBA6-BIRC6–mediated ubiquitination of LC3
URI https://www.ncbi.nlm.nih.gov/pubmed/31692446
https://www.proquest.com/docview/2320050810
https://www.proquest.com/docview/2312555417
https://pubmed.ncbi.nlm.nih.gov/PMC6863627
https://doaj.org/article/5613fd83227d40cf9b03e8ccce1b5ef8
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF6mdj6xGlIAixySXZ3TzJ3dHSSnvK6cG9LdmvMyBJe3d5uDf_B_9D_xJnNrnYoPiSQHYC2dmZnY_M_oaQE2YjcGJVHoTW2gD8Wx7kYaxA3YdRrI1V0uHMXk_pxTz5uEgXbcJt3ZZV7vZEt1HrSmGO_BQsP2KV8Cj8cHMbYNco_LvattC4T_YRugylmi1Yl2MB88jB4jXH8hgYzlNzVVjzPkVUlp4hcnj9f-_Kd8xSv2Tyjg06PyCPWufRHzWr_ZjcM-UT8qBpJ7l9Sj5NzdLhePurpsM88NyvrJ_XiB6QL7e-3Prz8YgG48vZhP768dOdGwGf069lcVsXm6LsXrqaxM_I_Pzs6-QiaBsmBArCiE2A_GVaWc2YtTHVBovQdJZj6jcNpZTGZhGXDL0WY4ZZqiMZ6ojKmGvDDI2fk72yKs0h8cFuAb_SRCdwY2HOhzKLE6Y0zxQsbeiRdzvuCdWiiWNTi-8CogpktXCsFo7VHjnpiG8aEI1_k41xGToSRL52D6rVUrSKJDDgsRr3IaaTUNlMhrHhSikTydRY7pE3uIgCsS1KLJ5Z5vV6LS6_zMQIgjXwhmg49MjblshW8NUqb88iwNwRDqtHedyjBOVT_eGdrIhW-dfij6h65HU3jG9iQVtpqhppkMFpEjGPvGhEq5t3HFGIihPqEdYTuh5j-iNl8c1Bg1NOwSNhL___WUfkIfh9mTtSSY_J3mZVm1fgW23kwCnQgOyPz6afZwOXoYDrdcJ_AzZ8JvI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIgQXxD-GAgYVISGZ-nfXPiCUBKqGpkEqjZTb1vsXIiG7TWKh3HgH3oOH4kmYWTumFohbT5Gy42g9O7PfzGb2G0J2mQkgiJW55xtjPIhvUy_3IwnuHgaR0kYKyzN7NKYHk_jjNJlukZ-buzBYVrnZE-1GrUqJZ-R7gPzIVZIG_ruzcw-7RuG_q5sWGrVZHOr1N0jZlm-H72F9X4bh_oeTwYHXdBXwJMTaKw8nwZQ0ijFjIqo0VmqpLMfz0cQXQmiTBalgCO1ah1miAuGrgIooVZppGsHvXiFXAXh9TPbYlLVnOgDHKSBsfQ2QAVDv6dHc6DcJssB0gM_2B_gbBS7AYLdE8wLm7d8iN5tg1e3V1nWbbOniDrlWt69c3yWfxnpmecPdRd3RHtbYLY2bV8hWkM_Wrli7k36Pev3h8YD--v7D3lOBGNetxPy8mq_mRfvQaBDdI5NLUeV9sl2UhX5IXMBJ0FcSqxg-mJ-nociimEmVZhJMyXfI6432uGzYy7GJxlcOWQyqmltVc6tqh-y2wmc1ace_xfq4DK0IMm3bL8rFjDeOyzHBMgr3PaZiX5pM-JFOpZQ6EIk2qUNe4CJy5NIosFhnllfLJR9-PuY9SA4h-qJ-6JBXjZApYdYyb-4-wLsj_VZHcqcjCc4uu8MbW-HNZrPkf1zDIc_bYXwSC-gKXVYogwpO4oA55EFtWu17RwGFLDymDmEdo-sopjtSzL9YKnKaUoiA2KP_T-sZuX5wcjTio-H48DG5ATFnZq9z0h2yvVpU-gnEdSvx1DqTS04v23t_AwthYJI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVCAuiH8MBQwqQkIy8e-ufUAoSRs1NIQqEKm3xfsXIiG7TWKh3HgH3obH4UmYsR1TC8Stp0jZcbSendlvZjP7DSH7zHgQxMrUcY0xDsS3sZO6gQR3971AaSNFyTP7fkKPZuG70-h0h_zc3oXBssrtnlhu1CqXeEbeBeRHrpLYc7umLos4ORi-PTt3sIMU_tO6badRmcix3nyD9G31ZnQAa_3C94eHnwZHTt1hwJEQd68dnBBT0ijGjAmo0li1pZIUz0ojVwihTeLFgiHMa-0nkfKEqzwqglhppmkAv3uF7DLMijpkt384OZk2JzwAzjHgbXUpkAFsd_V4YfTrCDlhWjBYdgv4GxMugGK7YPMCAg5vkht16Gr3Klu7RXZ0dptcrZpZbu6QDxM9L1nE7WXV3x5W3M6NnRbIXZDON7bY2LN-jzr90XRAf33_Ud5agYjXLsTivFisF1nz0HgQ3CWzS1HmPdLJ8kw_IDagJugrClUIH8xNY18kQcikihMJhuVa5NVWe1zWXObYUuMrh5wGVc1LVfNS1RbZb4TPKgqPf4v1cRkaEeTdLr_Il3NeuzHHdMso3AWZCl1pEuEGOpZSak9E2sQWeY6LyJFZI0MbnafFasVHH6e8B6kixGLU9S3yshYyOcxapvVNCHh3JONqSe61JMH1ZXt4ayu83npW_I-jWORZM4xPYjldpvMCZVDBUegxi9yvTKt578CjkJOH1CKsZXQtxbRHssWXkpicxhTiIfbw_9N6Sq6B5_LxaHL8iFyHADQp73bSPdJZLwv9GIK8tXhSe5NNPl-2A_8Gd1JmLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+regulation+of+autophagy+by+UBA6-BIRC6%E2%80%93mediated+ubiquitination+of+LC3&rft.jtitle=eLife&rft.au=Jia+Rui&rft.au=Bonifacino%2C+Juan+S&rft.date=2019-11-06&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.50034&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon