Negative regulation of autophagy by UBA6-BIRC6–mediated ubiquitination of LC3
Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tan...
Saved in:
Published in | eLife Vol. 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
06.11.2019
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders. |
---|---|
AbstractList | Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders. Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and [alpha]-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders. Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders.Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy regulators, we performed a whole-genome CRISPR/Cas9 knockout screen in H4 human neuroglioma cells expressing endogenous LC3B tagged with a tandem of GFP and mCherry. Using this methodology, we identified the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as autophagy regulators. We found that these enzymes cooperate to monoubiquitinate LC3B, targeting it for proteasomal degradation. Knockout of UBA6 or BIRC6 increased autophagic flux under conditions of nutrient deprivation or protein synthesis inhibition. Moreover, UBA6 or BIRC6 depletion decreased the formation of aggresome-like induced structures in H4 cells, and α-synuclein aggregates in rat hippocampal neurons. These findings demonstrate that UBA6 and BIRC6 negatively regulate autophagy by limiting the availability of LC3B. Inhibition of UBA6/BIRC6 could be used to enhance autophagic clearance of protein aggregates in neurodegenerative disorders. |
Audience | Academic |
Author | Jia, Rui Bonifacino, Juan S |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-1797-4069 surname: Jia fullname: Jia, Rui organization: Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, United States – sequence: 2 givenname: Juan S orcidid: 0000-0002-5673-6370 surname: Bonifacino fullname: Bonifacino, Juan S organization: Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31692446$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiJbSFXs0EhsQSvBl7PFskNKIS6SISoVK7CxfjqeOJuN0xlORHe_AG_IkOEkJTVV7Ycv-zm-fc_7n2VEbWsiylxiNS8aK9zD3DsYMIVo8yU4IYmiERPHj6N7-ODvr-wVKoyyEwNWz7JhiXpGi4CfZxVeoVfS3kHdQD03ahjYPLldDDKtrVa9zvc6vzid8dD67nPI_v34vwXoVweaD9jeDj77dB82n9EX21Kmmh7O79TS7-vTx-_TLaH7xeTadzEeGFySOMMG0tMbZsnSOcgtIMGYrhRihDGmtwVVY6JLjkgCQilmskcVcU2GhBE5Ps9lO1wa1kKvOL1W3lkF5uT0IXS1VF71pQDKOqbOCElLaAhlXaURBGGMAawZOJK0PO63VoFN2BtrYqeZA9PCm9deyDreSC045KZPAmzuBLtwM0Ee59L2BplEthKGXhGLCUrfwBn39AF2EoWtTqRJFUOqZwOg_VauUgG9dSO-ajaiccMQJoRyRRI0fodK0sPQm-cT5dH4Q8PYgIDERfsZaDX0vZ98uD9lX94uyr8Y_6yTg3Q4wXej7DtwewUhuvCm33pRbbyYaP6CNj1vjpD_75tGYvxDx5JM |
CitedBy_id | crossref_primary_10_1126_science_ade8873 crossref_primary_10_1016_j_isci_2025_112118 crossref_primary_10_1016_j_intimp_2023_111438 crossref_primary_10_1158_2159_8290_CD_22_1230 crossref_primary_10_3390_ijms222112083 crossref_primary_10_3389_fgene_2022_834935 crossref_primary_10_1038_s41420_023_01712_7 crossref_primary_10_7554_eLife_77461 crossref_primary_10_3390_ijms25052843 crossref_primary_10_1038_s41467_022_32613_5 crossref_primary_10_1186_s12967_024_05565_1 crossref_primary_10_3390_cancers15041112 crossref_primary_10_5650_oleoscience_23_11 crossref_primary_10_1016_j_jbc_2024_107908 crossref_primary_10_3390_ijms24032476 crossref_primary_10_1038_s41467_024_45222_1 crossref_primary_10_1126_science_adg9605 crossref_primary_10_1126_science_ade5750 crossref_primary_10_1016_j_xpro_2021_100966 crossref_primary_10_1080_15548627_2024_2395727 crossref_primary_10_1242_jcs_259725 crossref_primary_10_1093_nar_gkab309 crossref_primary_10_18632_aging_204069 crossref_primary_10_1016_j_mam_2021_101018 crossref_primary_10_1016_j_tibs_2020_07_006 crossref_primary_10_1038_s41467_024_55105_0 crossref_primary_10_3390_cells9092008 crossref_primary_10_1016_j_jbc_2021_100405 crossref_primary_10_3390_ijms21083028 crossref_primary_10_1080_15548627_2019_1709766 crossref_primary_10_3389_fcell_2021_760226 crossref_primary_10_1021_acsptsci_1c00130 crossref_primary_10_1172_JCI169428 crossref_primary_10_3389_fcell_2022_743287 crossref_primary_10_3390_ijms21249387 crossref_primary_10_1016_j_jbc_2024_108134 crossref_primary_10_3724_abbs_2023149 crossref_primary_10_3389_fcell_2022_886537 crossref_primary_10_15252_embj_2022112799 crossref_primary_10_3390_ijms21124196 crossref_primary_10_1093_toxsci_kfaa071 crossref_primary_10_3390_biom12091192 crossref_primary_10_1186_s13287_024_03831_z crossref_primary_10_1126_science_ade8840 crossref_primary_10_3390_cells11030556 crossref_primary_10_3390_ijms23137301 crossref_primary_10_1080_15548627_2021_2021495 crossref_primary_10_3389_fcell_2022_830046 crossref_primary_10_1038_s41598_020_68607_w crossref_primary_10_1038_s41587_024_02512_9 crossref_primary_10_1111_tra_12902 crossref_primary_10_1080_14728222_2023_2177151 crossref_primary_10_1002_1873_3468_14280 crossref_primary_10_1186_s13073_024_01414_4 crossref_primary_10_1016_j_jbc_2021_100780 crossref_primary_10_3390_cells12060897 crossref_primary_10_1016_j_ejcb_2022_151203 crossref_primary_10_1016_j_mcp_2020_101612 crossref_primary_10_1080_15548627_2020_1847443 crossref_primary_10_1016_j_tcb_2022_04_006 crossref_primary_10_1016_j_celrep_2023_113045 crossref_primary_10_3390_cells9092025 crossref_primary_10_1016_j_ijbiomac_2025_142277 crossref_primary_10_1080_10715762_2024_2358026 |
Cites_doi | 10.1016/j.neuropharm.2015.02.003 10.1073/pnas.1523597113 10.1083/jcb.200907015 10.1038/nprot.2008.73 10.1074/jbc.M900301200 10.1016/j.molcel.2012.07.011 10.1038/s41580-018-0003-4 10.1074/jbc.M702824200 10.1016/j.nbd.2014.04.003 10.4161/auto.4012 10.1038/nature05902 10.3402/pba.v5.28743 10.4161/15548627.2014.981792 10.1038/nmeth.3047 10.7554/eLife.17290 10.1242/jcs.140426 10.1016/j.molcel.2019.03.033 10.1038/ncb2425 10.1038/nature14498 10.1080/15548627.2016.1140293 10.1016/j.devcel.2015.02.002 10.1016/j.molcel.2015.05.031 10.1074/jbc.M109.080796 10.1371/journal.pone.0052868 10.1074/jbc.M300227200 10.1016/S0021-9258(19)78150-2 10.1038/ncb1159 10.1146/annurev.biochem.70.1.503 10.1080/15548627.2017.1343768 10.1242/jcs.152371 10.1038/nrm2673 10.1016/j.molcel.2014.11.013 10.1016/j.cell.2011.08.037 10.1016/j.molcel.2014.12.013 10.1073/pnas.1601844113 10.1016/j.molcel.2014.11.006 10.1126/science.276.5321.2045 10.1038/nm1066 10.1038/45257 10.15252/embr.201845889 10.1016/j.tibs.2008.01.005 10.1016/j.devcel.2017.11.024 10.1083/jcb.200507002 10.1073/pnas.1901039116 10.1038/ncb2708 10.1371/journal.pone.0009313 10.1016/j.cell.2007.12.018 10.1016/j.molcel.2007.08.020 10.1016/j.tibs.2003.09.005 10.1371/journal.pone.0125281 10.1074/jbc.C700111200 10.1074/jbc.M802182200 10.1172/JCI73942 10.1111/j.1432-1033.1997.0240a.x 10.1146/annurev-biochem-060815-014556 10.4161/auto.4451 10.1242/jcs.107789 10.1128/MCB.00992-06 10.1016/j.molcel.2016.08.021 10.1016/j.ccr.2014.05.015 10.1126/science.aac7041 10.1126/science.1196371 10.1074/jbc.273.7.3963 10.1038/ncb3423 10.1186/s13059-014-0554-4 10.15252/embj.201694401 10.4161/auto.2731 10.1016/j.molcel.2004.05.018 10.1002/ijc.29194 10.1093/emboj/19.1.94 10.1242/jcs.126128 10.1016/j.molcel.2013.06.020 10.4161/auto.1.2.1697 10.1016/j.neuroscience.2014.07.046 10.1126/scisignal.2000751 10.1038/3311 10.1038/s41580-019-0099-1 10.1242/jcs.01131 10.1038/nprot.2017.016 10.1073/pnas.0408744102 10.1038/ncb2757 10.1038/s41467-018-02823-x 10.1038/ncb2329 10.1371/journal.pbio.2007044 10.1016/j.neuron.2012.07.007 10.1128/MCB.00392-17 10.1073/pnas.1608644113 10.1016/S0070-2153(06)76003-3 10.1007/s13311-014-0294-x 10.7554/eLife.25555 10.1016/j.molcel.2011.05.034 10.1371/journal.pone.0055837 10.1038/ncb2152 10.1016/j.cell.2007.05.044 10.4161/auto.5.5.8566 10.1016/j.cell.2017.03.035 10.1083/jcb.201804132 10.1097/SLA.0b013e318269d0e2 10.1083/jcb.201607039 10.1038/cddis.2012.13 10.1016/j.molcel.2015.11.001 10.1042/BJ20111424 10.1038/cdd.2014.143 10.1038/nature03029 10.1016/j.devcel.2015.02.011 10.1016/j.jmb.2019.07.016 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 eLife Science Publications, Ltd. 2019. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2019 eLife Science Publications, Ltd. – notice: 2019. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.50034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_5613fd83227d40cf9b03e8ccce1b5ef8 PMC6863627 A606223602 31692446 10_7554_eLife_50034 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GeographicLocations | United States United States--US |
GeographicLocations_xml | – name: United States – name: United States--US |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: ZIA HD001607 – fundername: NIH HHS grantid: ZIA HD001607 – fundername: Intramural NIH HHS grantid: ZIA HD001607 – fundername: ; grantid: ZIA HD001607 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c642t-12137dcfd77ff36de0855d9a052350bbbef918b76172ee295d1b0d16b38de7e63 |
IEDL.DBID | 7X7 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:27:54 EDT 2025 Thu Aug 21 14:31:36 EDT 2025 Fri Jul 11 07:15:44 EDT 2025 Fri Jul 25 09:36:37 EDT 2025 Tue Jun 17 20:54:23 EDT 2025 Tue Jun 10 20:30:23 EDT 2025 Fri Jun 27 04:10:35 EDT 2025 Mon Jul 21 05:43:13 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 Tue Jul 01 04:12:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | autophagy cell biology rat UBA6 ubiquitination BIRC6 LC3 human |
Language | English |
License | http://creativecommons.org/publicdomain/zero/1.0 This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c642t-12137dcfd77ff36de0855d9a052350bbbef918b76172ee295d1b0d16b38de7e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1797-4069 0000-0002-5673-6370 |
OpenAccessLink | https://www.proquest.com/docview/2320050810?pq-origsite=%requestingapplication% |
PMID | 31692446 |
PQID | 2320050810 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5613fd83227d40cf9b03e8ccce1b5ef8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6863627 proquest_miscellaneous_2312555417 proquest_journals_2320050810 gale_infotracmisc_A606223602 gale_infotracacademiconefile_A606223602 gale_incontextgauss_ISR_A606223602 pubmed_primary_31692446 crossref_primary_10_7554_eLife_50034 crossref_citationtrail_10_7554_eLife_50034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-06 |
PublicationDateYYYYMMDD | 2019-11-06 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2019 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Chiu (bib12) 2007; 27 Dikic (bib17) 2018; 19 Nazio (bib64) 2013; 15 Pu (bib75) 2015; 33 Huang (bib30) 2015; 57 Russell (bib79) 2013; 15 Levine (bib48) 2008; 132 Thoreen (bib94) 2009; 284 Jia (bib33) 2017; 13 Grumati (bib25) 2017; 6 Webb (bib101) 2003; 278 Jiang (bib34) 2015; 125 Clague (bib13) 2019; 20 Ichimura (bib32) 2008; 283 Kabeya (bib39) 2004; 117 Wild (bib103) 2014; 127 Lim (bib51) 2015; 32 Bento (bib5) 2016; 85 Alexopoulou (bib2) 2016; 113 DeJesus (bib16) 2016; 5 Kim (bib42) 2015; 57 Xu (bib106) 2014; 10 Farías (bib22) 2012; 75 Smith (bib89) 2018; 44 Braten (bib10) 2016; 113 Lo (bib57) 2013; 257 Spinnenhirn (bib90) 2014; 127 Liu (bib56) 2015; 22 Egan (bib21) 2015; 59 Boutet (bib9) 2007; 130 Platta (bib73) 2012; 441 Kuma (bib45) 2004; 432 Jiang (bib35) 2019; 116 Khaminets (bib40) 2015; 522 Lee (bib47) 2011; 43 Ross (bib78) 2004; 10 Suppl Tang (bib92) 2015; 136 McEwan (bib60) 2015; 57 Schmittgen (bib83) 2008; 3 Webster (bib102) 2016; 35 Saxton (bib82) 2017; 169 Ren (bib76) 2005; 102 Richter (bib77) 2014; 11 Williams (bib104) 2006; 76 Egan (bib20) 2011; 331 Mihaylova (bib61) 2011; 13 Kimura (bib43) 2007; 3 Crews (bib15) 2010; 5 Pickart (bib72) 2001; 70 Bai (bib3) 2015; 5 Noda (bib66) 1998; 273 Linares (bib52) 2013; 51 Shi (bib86) 2012; 3 Blommaart (bib8) 1997; 243 Conway (bib14) 1998; 4 Sanjana (bib80) 2014; 11 Birgisdottir (bib6) 2013; 126 Liu (bib54) 2014; 26 Watanabe (bib100) 2012; 7 Kuma (bib46) 2007; 3 Vaites (bib97) 2017; 38 Morita (bib63) 2018; 217 Aichem (bib1) 2012; 125 Tonami (bib96) 2007; 27 Schulman (bib84) 2009; 10 Szeto (bib91) 2006; 2 Kim (bib41) 2011; 13 Haglund (bib27) 2003; 28 Pankiv (bib68) 2010; 188 Patil (bib70) 2014; 277 Bjørkøy (bib7) 2005; 171 Guo (bib26) 2016; 113 Li (bib49) 2014; 15 Tanida (bib93) 2005; 1 Moretti (bib62) 2018; 19 Wu (bib105) 2010; 285 Mann (bib59) 1994; 269 Shoemaker (bib88) 2019; 17 Hao (bib28) 2004; 6 Hung (bib31) 2015; 93 Polymeropoulos (bib74) 1997; 276 Joung (bib38) 2017; 12 Jin (bib36) 2007; 447 Liang (bib50) 1999; 402 Liu (bib53) 2011; 147 Pankiv (bib67) 2007; 282 Shi (bib87) 2010; 3 Liu (bib55) 2016; 61 Wang (bib98) 2015; 350 Thrower (bib95) 2000; 19 Groettrup (bib24) 2008; 33 Park (bib69) 2016; 12 Fumagalli (bib23) 2016; 18 Nguyen (bib65) 2016; 215 Savolainen (bib81) 2014; 68 Ebner (bib19) 2018; 9 Kirkin (bib44) 2009; 5 Wang (bib99) 2016; 63 Bartke (bib4) 2004; 14 Pelzer (bib71) 2007; 282 Chino (bib11) 2019; 74 Dimova (bib18) 2012; 14 Low (bib58) 2013; 8 Johansen (bib37) 2019; 19 Shabek (bib85) 2012; 48 Hu (bib29) 2015; 10 |
References_xml | – volume: 93 start-page: 243 year: 2015 ident: bib31 article-title: LC3 overexpression reduces aβ neurotoxicity through increasing α7nachr expression and autophagic activity in neurons and mice publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.02.003 – volume: 113 start-page: E4688 year: 2016 ident: bib2 article-title: Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease publication-title: PNAS doi: 10.1073/pnas.1523597113 – volume: 188 start-page: 253 year: 2010 ident: bib68 article-title: FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200907015 – volume: 3 start-page: 1101 year: 2008 ident: bib83 article-title: Analyzing real-time PCR data by the comparative C(T) method publication-title: Nature Protocols doi: 10.1038/nprot.2008.73 – volume: 284 start-page: 8023 year: 2009 ident: bib94 article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M900301200 – volume: 48 start-page: 87 year: 2012 ident: bib85 article-title: The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation publication-title: Molecular Cell doi: 10.1016/j.molcel.2012.07.011 – volume: 19 start-page: 349 year: 2018 ident: bib17 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/s41580-018-0003-4 – volume: 282 start-page: 24131 year: 2007 ident: bib67 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M702824200 – volume: 68 start-page: 1 year: 2014 ident: bib81 article-title: The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alpha-synuclein clearance and autophagy in A30P transgenic mouse publication-title: Neurobiology of Disease doi: 10.1016/j.nbd.2014.04.003 – volume: 3 start-page: 323 year: 2007 ident: bib46 article-title: LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization publication-title: Autophagy doi: 10.4161/auto.4012 – volume: 447 start-page: 1135 year: 2007 ident: bib36 article-title: Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging publication-title: Nature doi: 10.1038/nature05902 – volume: 5 year: 2015 ident: bib3 article-title: Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy publication-title: Pathobiology of Aging & Age-Related Diseases doi: 10.3402/pba.v5.28743 – volume: 10 start-page: 2239 year: 2014 ident: bib106 article-title: Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination publication-title: Autophagy doi: 10.4161/15548627.2014.981792 – volume: 11 start-page: 783 year: 2014 ident: bib80 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nature Methods doi: 10.1038/nmeth.3047 – volume: 5 year: 2016 ident: bib16 article-title: Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62 publication-title: eLife doi: 10.7554/eLife.17290 – volume: 127 start-page: 3 year: 2014 ident: bib103 article-title: The LC3 interactome at a glance publication-title: Journal of Cell Science doi: 10.1242/jcs.140426 – volume: 74 start-page: 909 year: 2019 ident: bib11 article-title: Intrinsically disordered protein TEX264 mediates ER-phagy publication-title: Molecular Cell doi: 10.1016/j.molcel.2019.03.033 – volume: 14 start-page: 168 year: 2012 ident: bib18 article-title: APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1 publication-title: Nature Cell Biology doi: 10.1038/ncb2425 – volume: 522 start-page: 354 year: 2015 ident: bib40 article-title: Regulation of endoplasmic reticulum turnover by selective autophagy publication-title: Nature doi: 10.1038/nature14498 – volume: 12 start-page: 547 year: 2016 ident: bib69 article-title: The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14 publication-title: Autophagy doi: 10.1080/15548627.2016.1140293 – volume: 32 start-page: 491 year: 2015 ident: bib51 article-title: Neuronal aggregates: formation, clearance, and spreading publication-title: Developmental Cell doi: 10.1016/j.devcel.2015.02.002 – volume: 59 start-page: 285 year: 2015 ident: bib21 article-title: Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates publication-title: Molecular Cell doi: 10.1016/j.molcel.2015.05.031 – volume: 285 start-page: 10850 year: 2010 ident: bib105 article-title: Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M109.080796 – volume: 7 year: 2012 ident: bib100 article-title: p62/SQSTM1-dependent autophagy of Lewy body-like α-synuclein inclusions publication-title: PLOS ONE doi: 10.1371/journal.pone.0052868 – volume: 278 start-page: 25009 year: 2003 ident: bib101 article-title: Alpha-Synuclein is degraded by both autophagy and the proteasome publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M300227200 – volume: 269 start-page: 11492 year: 1994 ident: bib59 article-title: Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B publication-title: The Journal of Biological Chemistry doi: 10.1016/S0021-9258(19)78150-2 – volume: 6 start-page: 849 year: 2004 ident: bib28 article-title: Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function publication-title: Nature Cell Biology doi: 10.1038/ncb1159 – volume: 70 start-page: 503 year: 2001 ident: bib72 article-title: Mechanisms underlying ubiquitination publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.biochem.70.1.503 – volume: 13 start-page: 1648 year: 2017 ident: bib33 article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes publication-title: Autophagy doi: 10.1080/15548627.2017.1343768 – volume: 127 start-page: 4883 year: 2014 ident: bib90 article-title: The ubiquitin-like modifier FAT10 decorates autophagy-targeted Salmonella and contributes to Salmonella resistance in mice publication-title: Journal of Cell Science doi: 10.1242/jcs.152371 – volume: 10 start-page: 319 year: 2009 ident: bib84 article-title: Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2673 – volume: 57 start-page: 207 year: 2015 ident: bib42 article-title: mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.11.013 – volume: 147 start-page: 223 year: 2011 ident: bib53 article-title: Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 publication-title: Cell doi: 10.1016/j.cell.2011.08.037 – volume: 57 start-page: 456 year: 2015 ident: bib30 article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.12.013 – volume: 113 start-page: E5318 year: 2016 ident: bib26 article-title: Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon publication-title: PNAS doi: 10.1073/pnas.1601844113 – volume: 57 start-page: 39 year: 2015 ident: bib60 article-title: PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.11.006 – volume: 276 start-page: 2045 year: 1997 ident: bib74 article-title: Mutation in the alpha-synuclein gene identified in families with Parkinson's disease publication-title: Science doi: 10.1126/science.276.5321.2045 – volume: 10 Suppl start-page: S10 year: 2004 ident: bib78 article-title: Protein aggregation and neurodegenerative disease publication-title: Nature Medicine doi: 10.1038/nm1066 – volume: 402 start-page: 672 year: 1999 ident: bib50 article-title: Induction of autophagy and inhibition of tumorigenesis by beclin 1 publication-title: Nature doi: 10.1038/45257 – volume: 19 year: 2018 ident: bib62 article-title: TMEM41B is a novel regulator of autophagy and lipid mobilization publication-title: EMBO Reports doi: 10.15252/embr.201845889 – volume: 33 start-page: 230 year: 2008 ident: bib24 article-title: Activating the ubiquitin family: uba6 challenges the field publication-title: Trends in Biochemical Sciences doi: 10.1016/j.tibs.2008.01.005 – volume: 44 start-page: 217 year: 2018 ident: bib89 article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-Phagy and pancreatic ER proteostasis publication-title: Developmental Cell doi: 10.1016/j.devcel.2017.11.024 – volume: 171 start-page: 603 year: 2005 ident: bib7 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200507002 – volume: 116 start-page: 13404 year: 2019 ident: bib35 article-title: SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation publication-title: PNAS doi: 10.1073/pnas.1901039116 – volume: 15 start-page: 406 year: 2013 ident: bib64 article-title: mTOR inhibits autophagy by controlling ULK1 Ubiquitylation, self-association and function through AMBRA1 and TRAF6 publication-title: Nature Cell Biology doi: 10.1038/ncb2708 – volume: 5 year: 2010 ident: bib15 article-title: Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy publication-title: PLOS ONE doi: 10.1371/journal.pone.0009313 – volume: 132 start-page: 27 year: 2008 ident: bib48 article-title: Autophagy in the pathogenesis of disease publication-title: Cell doi: 10.1016/j.cell.2007.12.018 – volume: 27 start-page: 1014 year: 2007 ident: bib12 article-title: E1-L2 activates both ubiquitin and FAT10 publication-title: Molecular Cell doi: 10.1016/j.molcel.2007.08.020 – volume: 28 start-page: 598 year: 2003 ident: bib27 article-title: Distinct monoubiquitin signals in receptor endocytosis publication-title: Trends in Biochemical Sciences doi: 10.1016/j.tibs.2003.09.005 – volume: 10 year: 2015 ident: bib29 article-title: Overexpression of BIRC6 is a predictor of prognosis for colorectal cancer publication-title: PLOS ONE doi: 10.1371/journal.pone.0125281 – volume: 282 start-page: 23010 year: 2007 ident: bib71 article-title: UBE1L2, a novel E1 enzyme specific for ubiquitin publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.C700111200 – volume: 283 start-page: 22847 year: 2008 ident: bib32 article-title: Structural basis for sorting mechanism of p62 in selective autophagy publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M802182200 – volume: 125 start-page: 47 year: 2015 ident: bib34 article-title: Autophagy in cellular metabolism and cancer publication-title: Journal of Clinical Investigation doi: 10.1172/JCI73942 – volume: 243 start-page: 240 year: 1997 ident: bib8 article-title: The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes publication-title: European Journal of Biochemistry doi: 10.1111/j.1432-1033.1997.0240a.x – volume: 85 start-page: 685 year: 2016 ident: bib5 article-title: Mammalian autophagy: how does it work? publication-title: Annual Review of Biochemistry doi: 10.1146/annurev-biochem-060815-014556 – volume: 3 start-page: 452 year: 2007 ident: bib43 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy doi: 10.4161/auto.4451 – volume: 125 start-page: 4576 year: 2012 ident: bib1 article-title: The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation publication-title: Journal of Cell Science doi: 10.1242/jcs.107789 – volume: 27 start-page: 2548 year: 2007 ident: bib96 article-title: Calpain 6 is involved in microtubule stabilization and cytoskeletal organization publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.00992-06 – volume: 63 start-page: 781 year: 2016 ident: bib99 article-title: The Vici syndrome protein EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes publication-title: Molecular Cell doi: 10.1016/j.molcel.2016.08.021 – volume: 26 start-page: 106 year: 2014 ident: bib54 article-title: Ubiquitylation of autophagy receptor optineurin by HACE1 activates selective autophagy for tumor suppression publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.05.015 – volume: 350 start-page: 1096 year: 2015 ident: bib98 article-title: Identification and characterization of essential genes in the human genome publication-title: Science doi: 10.1126/science.aac7041 – volume: 331 start-page: 456 year: 2011 ident: bib20 article-title: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy publication-title: Science doi: 10.1126/science.1196371 – volume: 273 start-page: 3963 year: 1998 ident: bib66 article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.7.3963 – volume: 18 start-page: 1173 year: 2016 ident: bib23 article-title: Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery publication-title: Nature Cell Biology doi: 10.1038/ncb3423 – volume: 15 year: 2014 ident: bib49 article-title: MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens publication-title: Genome Biology doi: 10.1186/s13059-014-0554-4 – volume: 35 start-page: 1656 year: 2016 ident: bib102 article-title: The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy publication-title: The EMBO Journal doi: 10.15252/embj.201694401 – volume: 2 start-page: 189 year: 2006 ident: bib91 article-title: ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy publication-title: Autophagy doi: 10.4161/auto.2731 – volume: 14 start-page: 801 year: 2004 ident: bib4 article-title: Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase publication-title: Molecular Cell doi: 10.1016/j.molcel.2004.05.018 – volume: 136 start-page: E475 year: 2015 ident: bib92 article-title: BIRC6 promotes hepatocellular carcinogenesis: interaction of BIRC6 with p53 facilitating p53 degradation publication-title: International Journal of Cancer doi: 10.1002/ijc.29194 – volume: 19 start-page: 94 year: 2000 ident: bib95 article-title: Recognition of the polyubiquitin proteolytic signal publication-title: The EMBO Journal doi: 10.1093/emboj/19.1.94 – volume: 126 start-page: 3237 year: 2013 ident: bib6 article-title: The LIR motif - crucial for selective autophagy publication-title: Journal of Cell Science doi: 10.1242/jcs.126128 – volume: 51 start-page: 283 year: 2013 ident: bib52 article-title: K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells publication-title: Molecular Cell doi: 10.1016/j.molcel.2013.06.020 – volume: 1 start-page: 84 year: 2005 ident: bib93 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy doi: 10.4161/auto.1.2.1697 – volume: 277 start-page: 747 year: 2014 ident: bib70 article-title: Neuroprotective effect of metformin in MPTP-induced parkinson's disease in mice publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.07.046 – volume: 3 year: 2010 ident: bib87 article-title: TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy publication-title: Science Signaling doi: 10.1126/scisignal.2000751 – volume: 4 start-page: 1318 year: 1998 ident: bib14 article-title: Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset parkinson disease publication-title: Nature Medicine doi: 10.1038/3311 – volume: 20 start-page: 338 year: 2019 ident: bib13 article-title: Breaking the chains: deubiquitylating enzyme specificity begets function publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/s41580-019-0099-1 – volume: 117 start-page: 2805 year: 2004 ident: bib39 article-title: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation publication-title: Journal of Cell Science doi: 10.1242/jcs.01131 – volume: 12 start-page: 828 year: 2017 ident: bib38 article-title: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening publication-title: Nature Protocols doi: 10.1038/nprot.2017.016 – volume: 102 start-page: 565 year: 2005 ident: bib76 article-title: The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development publication-title: PNAS doi: 10.1073/pnas.0408744102 – volume: 15 start-page: 741 year: 2013 ident: bib79 article-title: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase publication-title: Nature Cell Biology doi: 10.1038/ncb2757 – volume: 9 year: 2018 ident: bib19 article-title: The IAP family member BRUCE regulates autophagosome-lysosome fusion publication-title: Nature Communications doi: 10.1038/s41467-018-02823-x – volume: 13 start-page: 1016 year: 2011 ident: bib61 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nature Cell Biology doi: 10.1038/ncb2329 – volume: 17 year: 2019 ident: bib88 article-title: CRISPR screening using an expanded toolkit of autophagy reporters identifies TMEM41B as a novel autophagy factor publication-title: PLOS Biology doi: 10.1371/journal.pbio.2007044 – volume: 75 start-page: 810 year: 2012 ident: bib22 article-title: Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons publication-title: Neuron doi: 10.1016/j.neuron.2012.07.007 – volume: 38 year: 2017 ident: bib97 article-title: Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macroautophagic and selective autophagic flux publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.00392-17 – volume: 113 start-page: E4639 year: 2016 ident: bib10 article-title: Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination publication-title: PNAS doi: 10.1073/pnas.1608644113 – volume: 76 start-page: 89 year: 2006 ident: bib104 article-title: Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications publication-title: Current Topics in Developmental Biology doi: 10.1016/S0070-2153(06)76003-3 – volume: 11 start-page: 840 year: 2014 ident: bib77 article-title: A GCase chaperone improves motor function in a mouse model of synucleinopathy publication-title: Neurotherapeutics doi: 10.1007/s13311-014-0294-x – volume: 6 year: 2017 ident: bib25 article-title: Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy publication-title: eLife doi: 10.7554/eLife.25555 – volume: 43 start-page: 392 year: 2011 ident: bib47 article-title: Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins publication-title: Molecular Cell doi: 10.1016/j.molcel.2011.05.034 – volume: 8 year: 2013 ident: bib58 article-title: BIRC6 protein, an inhibitor of apoptosis: role in survival of human prostate cancer cells publication-title: PLOS ONE doi: 10.1371/journal.pone.0055837 – volume: 13 start-page: 132 year: 2011 ident: bib41 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nature Cell Biology doi: 10.1038/ncb2152 – volume: 130 start-page: 349 year: 2007 ident: bib9 article-title: Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors publication-title: Cell doi: 10.1016/j.cell.2007.05.044 – volume: 5 start-page: 732 year: 2009 ident: bib44 article-title: NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets publication-title: Autophagy doi: 10.4161/auto.5.5.8566 – volume: 169 start-page: 361 year: 2017 ident: bib82 article-title: mTOR signaling in growth, metabolism, and disease publication-title: Cell doi: 10.1016/j.cell.2017.03.035 – volume: 217 start-page: 3817 year: 2018 ident: bib63 article-title: Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201804132 – volume: 257 start-page: 352 year: 2013 ident: bib57 article-title: Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice publication-title: Annals of Surgery doi: 10.1097/SLA.0b013e318269d0e2 – volume: 215 start-page: 857 year: 2016 ident: bib65 article-title: Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201607039 – volume: 3 year: 2012 ident: bib86 article-title: Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy publication-title: Cell Death & Disease doi: 10.1038/cddis.2012.13 – volume: 61 start-page: 84 year: 2016 ident: bib55 article-title: Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination publication-title: Molecular Cell doi: 10.1016/j.molcel.2015.11.001 – volume: 441 start-page: 399 year: 2012 ident: bib73 article-title: Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor beclin 1 publication-title: Biochemical Journal doi: 10.1042/BJ20111424 – volume: 22 start-page: 367 year: 2015 ident: bib56 article-title: Autosis and autophagic cell death: the dark side of autophagy publication-title: Cell Death & Differentiation doi: 10.1038/cdd.2014.143 – volume: 432 start-page: 1032 year: 2004 ident: bib45 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature doi: 10.1038/nature03029 – volume: 33 start-page: 176 year: 2015 ident: bib75 article-title: BORC, a multisubunit complex that regulates lysosome positioning publication-title: Developmental Cell doi: 10.1016/j.devcel.2015.02.011 – volume: 19 year: 2019 ident: bib37 article-title: Selective autophagy: atg8 family proteins, LIR motifs and cargo receptors publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2019.07.016 |
SSID | ssj0000748819 |
Score | 2.4899616 |
Snippet | Although the process of autophagy has been extensively studied, the mechanisms that regulate it remain insufficiently understood. To identify novel autophagy... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Autophagy BIRC6 Cell Biology Cell Line CRISPR Enzymes Gene expression Gene Expression Regulation, Enzymologic Gene Knockout Techniques Genetic Testing Genomes Genomics Hippocampus Humans Inhibitor of Apoptosis Proteins - metabolism Kinases LC3 Ligases Microtubule-Associated Proteins - metabolism Nervous system diseases Neurodegenerative diseases Neurons Novels Phagocytosis Phosphorylation Polymerization Proteasome Endopeptidase Complex - metabolism Proteasomes Protein biosynthesis Protein Interaction Maps Protein synthesis Proteins Proteolysis Scientific equipment industry Sedimentation & deposition Synuclein UBA6 Ubiquitin Ubiquitin-Activating Enzymes - metabolism Ubiquitin-conjugating enzyme Ubiquitin-protein ligase Ubiquitination Variance analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEF1CoJBLaZq0VZMWNQQKBTW7XmlXOtomISn5gLSG3BbtlyMochtbB9_6H_oP-0s6s1KERQu99GTwjkB6O6t5I2beEHIsPQMSa8qEeu8T4Ld5UlJu4LiPGLfOGx10Zq-uxfks_XSX3W2M-sKasFYeuAXuBAmut-h30qbU-EJT7nJjjGM6cz60-ULM20imwjtYgmOyom3IkxAyT9xl5d3HDPVYBiEoKPX_-T7eCEjDYsmN6HP2jDztaGM8bm93l2y5-jl50g6SXO-Rm2s3Dwre8UM7Wx7Qjhc-LhvUDSjn61iv49lkLJLJxe1U_PrxM3SMANuMG119b6pVVfcXXU75PpmdnX6ZnifdqITEQAKxShBZaY23UnrPhXVYfmaLEj_6ZlRr7XzBci2Rrzg3KjLLNLVMaJ5bJ53gL8h2vajdKxJDxAK8stSm8CNpmY90wVNpbF4Y2FQakQ-P6CnT6YjjOIuvCvIJhFoFqFWAOiLHvfG3Vj7j72YT3IbeBDWvwx_gCarzBPUvT4jIEW6iQlWLGstm5mWzXKqLz7dqDGka8CBBRxF53xn5Bdy1KbsuBHh2FMIaWB4OLOHYmeHyo6-o7tgvFdBTFNTJGaD0rl_GK7GUrXaLBm0Q4CxlMiIvW9fqn5szAflwKiIiB043AGa4Ulf3QRRc5AK4iHz9P5A8IDvAC4vQcikOyfbqoXFvgHut9NtwzH4DiAgtCw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9RAEB5qRfCL-G5qlSgFQciZXJLd5JPcHZZW2grVg35bsm9noCT27gK9b_4H_6G_xJlNLjRa_HRwOwvJszM7z4TdZwAOuI2QxKoiCK21AfLbLCjCWGG4j6NYG6uk05k9PWNH8-TzRXqxA9tmnB2Aq1tLO-onNV9ejq6vNh8x4JG_jjhmww_mpLRmlJLUyh24iymJUyuD047nuy2Zo59GeXs_7-85g4zkhPv_3Z5v5Kfh2ckbyejwITzoWKQ_aZf9EeyY6jHca_tKbp7AlzOzcILe_rJtNY_g-7X1i4ZkBIrFxpcbfz6dsGB6fD5jv3_-chdIkHz6jSyvmnJdVv2kk1n8FOaHn77NjoKuc0KgsJ5YBwQ018pqzq2NmTZ0Gk3nBX0DTkMppbF5lElO9MWYcZ7qSIY6YjLOtOGGxc9gt6or8wJ8TGCIV5roBH94WGRjmccJVzrLFa5x6MH7LXpCdbLi1N3iUmB5QVALB7VwUHtw0Bv_aNU0bjeb0jL0JiSB7f6olwvRRZSgysdq2pC4TkJlcxnGJlNKmUimxmYevKVFFCRyUdEpmkXRrFbi-Ou5mGDVhrSIhWMP3nVGtsanVkV3KQHfnXSxBpb7A0uMQjUc3vqK2DqxQLZK-jpZhCi96YdpJp1sq0zdkA0BnKLTevC8da3-veOIYXmcMA_4wOkGwAxHqvK70whnGUNqwvf-_1gv4T4SwNzdrWT7sLteNuYVkqy1fO0C6A8_NiYL priority: 102 providerName: Scholars Portal |
Title | Negative regulation of autophagy by UBA6-BIRC6–mediated ubiquitination of LC3 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31692446 https://www.proquest.com/docview/2320050810 https://www.proquest.com/docview/2312555417 https://pubmed.ncbi.nlm.nih.gov/PMC6863627 https://doaj.org/article/5613fd83227d40cf9b03e8ccce1b5ef8 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF6mdj6xGlIAixySXZ3TzJ3dHSSnvK6cG9LdmvMyBJe3d5uDf_B_9D_xJnNrnYoPiSQHYC2dmZnY_M_oaQE2YjcGJVHoTW2gD8Wx7kYaxA3YdRrI1V0uHMXk_pxTz5uEgXbcJt3ZZV7vZEt1HrSmGO_BQsP2KV8Cj8cHMbYNco_LvattC4T_YRugylmi1Yl2MB88jB4jXH8hgYzlNzVVjzPkVUlp4hcnj9f-_Kd8xSv2Tyjg06PyCPWufRHzWr_ZjcM-UT8qBpJ7l9Sj5NzdLhePurpsM88NyvrJ_XiB6QL7e-3Prz8YgG48vZhP768dOdGwGf069lcVsXm6LsXrqaxM_I_Pzs6-QiaBsmBArCiE2A_GVaWc2YtTHVBovQdJZj6jcNpZTGZhGXDL0WY4ZZqiMZ6ojKmGvDDI2fk72yKs0h8cFuAb_SRCdwY2HOhzKLE6Y0zxQsbeiRdzvuCdWiiWNTi-8CogpktXCsFo7VHjnpiG8aEI1_k41xGToSRL52D6rVUrSKJDDgsRr3IaaTUNlMhrHhSikTydRY7pE3uIgCsS1KLJ5Z5vV6LS6_zMQIgjXwhmg49MjblshW8NUqb88iwNwRDqtHedyjBOVT_eGdrIhW-dfij6h65HU3jG9iQVtpqhppkMFpEjGPvGhEq5t3HFGIihPqEdYTuh5j-iNl8c1Bg1NOwSNhL___WUfkIfh9mTtSSY_J3mZVm1fgW23kwCnQgOyPz6afZwOXoYDrdcJ_AzZ8JvI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIgQXxD-GAgYVISGZ-nfXPiCUBKqGpkEqjZTb1vsXIiG7TWKh3HgH3oOH4kmYWTumFohbT5Gy42g9O7PfzGb2G0J2mQkgiJW55xtjPIhvUy_3IwnuHgaR0kYKyzN7NKYHk_jjNJlukZ-buzBYVrnZE-1GrUqJZ-R7gPzIVZIG_ruzcw-7RuG_q5sWGrVZHOr1N0jZlm-H72F9X4bh_oeTwYHXdBXwJMTaKw8nwZQ0ijFjIqo0VmqpLMfz0cQXQmiTBalgCO1ah1miAuGrgIooVZppGsHvXiFXAXh9TPbYlLVnOgDHKSBsfQ2QAVDv6dHc6DcJssB0gM_2B_gbBS7AYLdE8wLm7d8iN5tg1e3V1nWbbOniDrlWt69c3yWfxnpmecPdRd3RHtbYLY2bV8hWkM_Wrli7k36Pev3h8YD--v7D3lOBGNetxPy8mq_mRfvQaBDdI5NLUeV9sl2UhX5IXMBJ0FcSqxg-mJ-nociimEmVZhJMyXfI6432uGzYy7GJxlcOWQyqmltVc6tqh-y2wmc1ace_xfq4DK0IMm3bL8rFjDeOyzHBMgr3PaZiX5pM-JFOpZQ6EIk2qUNe4CJy5NIosFhnllfLJR9-PuY9SA4h-qJ-6JBXjZApYdYyb-4-wLsj_VZHcqcjCc4uu8MbW-HNZrPkf1zDIc_bYXwSC-gKXVYogwpO4oA55EFtWu17RwGFLDymDmEdo-sopjtSzL9YKnKaUoiA2KP_T-sZuX5wcjTio-H48DG5ATFnZq9z0h2yvVpU-gnEdSvx1DqTS04v23t_AwthYJI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVCAuiH8MBQwqQkIy8e-ufUAoSRs1NIQqEKm3xfsXIiG7TWKh3HgH3obH4UmYsR1TC8Stp0jZcbSendlvZjP7DSH7zHgQxMrUcY0xDsS3sZO6gQR3971AaSNFyTP7fkKPZuG70-h0h_zc3oXBssrtnlhu1CqXeEbeBeRHrpLYc7umLos4ORi-PTt3sIMU_tO6badRmcix3nyD9G31ZnQAa_3C94eHnwZHTt1hwJEQd68dnBBT0ijGjAmo0li1pZIUz0ojVwihTeLFgiHMa-0nkfKEqzwqglhppmkAv3uF7DLMijpkt384OZk2JzwAzjHgbXUpkAFsd_V4YfTrCDlhWjBYdgv4GxMugGK7YPMCAg5vkht16Gr3Klu7RXZ0dptcrZpZbu6QDxM9L1nE7WXV3x5W3M6NnRbIXZDON7bY2LN-jzr90XRAf33_Ud5agYjXLsTivFisF1nz0HgQ3CWzS1HmPdLJ8kw_IDagJugrClUIH8xNY18kQcikihMJhuVa5NVWe1zWXObYUuMrh5wGVc1LVfNS1RbZb4TPKgqPf4v1cRkaEeTdLr_Il3NeuzHHdMso3AWZCl1pEuEGOpZSak9E2sQWeY6LyJFZI0MbnafFasVHH6e8B6kixGLU9S3yshYyOcxapvVNCHh3JONqSe61JMH1ZXt4ayu83npW_I-jWORZM4xPYjldpvMCZVDBUegxi9yvTKt578CjkJOH1CKsZXQtxbRHssWXkpicxhTiIfbw_9N6Sq6B5_LxaHL8iFyHADQp73bSPdJZLwv9GIK8tXhSe5NNPl-2A_8Gd1JmLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+regulation+of+autophagy+by+UBA6-BIRC6%E2%80%93mediated+ubiquitination+of+LC3&rft.jtitle=eLife&rft.au=Jia+Rui&rft.au=Bonifacino%2C+Juan+S&rft.date=2019-11-06&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.50034&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |