Two‐Stage Designs for Gene–Disease Association Studies with Sample Size Constraints

Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternat...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 60; no. 3; pp. 589 - 597
Main Authors Satagopan, Jaya M., Venkatraman, E. S., Begg, Colin B.
Format Journal Article
LanguageEnglish
Published 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K Blackwell Publishing 01.09.2004
International Biometric Society
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
DOI10.1111/j.0006-341X.2004.00207.x

Cover

Loading…
Abstract Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations.
AbstractList Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations.
Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two-stage method to identify disease-susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two-stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two-stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease-susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near-optimal power while resulting in a 45% decrease in the total number of marker evaluations.Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two-stage method to identify disease-susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two-stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two-stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease-susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near-optimal power while resulting in a 45% decrease in the total number of marker evaluations.
Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations.
Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations.
Summary Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two-stage method to identify disease-susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two-stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two-stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease-susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near-optimal power while resulting in a 45% decrease in the total number of marker evaluations. [PUBLICATION ABSTRACT]
Author Begg, Colin B.
Satagopan, Jaya M.
Venkatraman, E. S.
Author_xml – sequence: 1
  givenname: Jaya M.
  surname: Satagopan
  fullname: Satagopan, Jaya M.
– sequence: 2
  givenname: E. S.
  surname: Venkatraman
  fullname: Venkatraman, E. S.
– sequence: 3
  givenname: Colin B.
  surname: Begg
  fullname: Begg, Colin B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15339280$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFuEzEQtVARTQN_gGDFAXHZYK-9a-8BpJLQ0BKoUFqV28hxZlOHzTqsNyTl1E9A4g_7JThNCdADYB_s0bz3PJ43e2SnchUSEjHaYWE9n3YopVnMBfvYSSgVIUyo7KzukBZLBYupSOgOaW1Bu2TP-2kI85Qm98guSznPE0Vb5Oxk6a4uvw0bPcGoh95OKh8Vro76WOHV5fee9ag9RvveO2N1Y10VDZvF2KKPlrY5j4Z6Ni8xGtqvGHVd5Zta26rx98ndQpceH9ycbXJ68Pqk-yYeHPcPu_uD2GQikXHChODMFFhILAxnBYpRXhgqxpSJZMyERjRSqpTSMdNIBdMjlps8RclHPNG8TV5udOeL0QzHBqtQQAnz2s50fQFOW_gzU9lzmLgvoPIgGtrQJk9vBGr3eYG-gZn1BstSV-gWHrJMccmFCsBnfwWyLJSZ5WEH6JNb0Klb1FXoAyilmEhVmgbQo98r35b805tfXzO1877GAoxtrh1Y97gERmE9DDCFtc-w9hnWwwDXwwCrIKBuCWzf-Df1xYa6tCVe_DcPXh0evwu3wH-44U994-otn2d5ymUe0vEmbX2Dq21a158gk1ymcPa-D0eDg7c99eEIugH_eIMvtAM9qa2H02FCWRgLJpTMFf8BGnbv9Q
CODEN BIOMA5
CitedBy_id crossref_primary_10_1093_jhered_esz059
crossref_primary_10_1111_j_0006_341X_2005_454_8_x
crossref_primary_10_1038_ng1582
crossref_primary_10_1146_annurev_genom_8_080706_092357
crossref_primary_10_1038_ajh_2011_21
crossref_primary_10_1038_oby_2009_71
crossref_primary_10_1002_sim_4259
crossref_primary_10_1534_genetics_111_130542
crossref_primary_10_1101_sqb_2005_70_029
crossref_primary_10_1586_17512433_1_1_137
crossref_primary_10_1186_1471_2105_12_9
crossref_primary_10_3724_SP_J_1005_2008_00400
crossref_primary_10_1016_S0263_8762_07_73181_7
crossref_primary_10_1111_j_1541_0420_2008_01187_x
crossref_primary_10_1007_s00439_005_1256_5
crossref_primary_10_1080_03610918_2014_901360
crossref_primary_10_1111_j_1469_1809_2008_00467_x
crossref_primary_10_1007_s10038_006_0057_6
crossref_primary_10_1086_432962
crossref_primary_10_1186_1753_6561_1_S1_S139
crossref_primary_10_1002_gepi_20394
crossref_primary_10_1038_clpt_2009_291
crossref_primary_10_1214_09_STS288
crossref_primary_10_1016_j_psc_2009_12_005
crossref_primary_10_1038_ng1790
crossref_primary_10_1002_gepi_20467
crossref_primary_10_1007_s10038_006_0393_6
crossref_primary_10_1002_jor_21494
crossref_primary_10_1371_journal_pone_0001872
crossref_primary_10_1093_biostatistics_kxj020
crossref_primary_10_1038_gene_2008_24
crossref_primary_10_1086_500812
crossref_primary_10_1038_ng1706
crossref_primary_10_1111_rssb_12171
crossref_primary_10_1002_sim_8144
crossref_primary_10_1155_2022_3617775
crossref_primary_10_5808_GI_2012_10_2_117
crossref_primary_10_1007_s00109_006_0151_4
crossref_primary_10_1101_pdb_top069559
crossref_primary_10_1021_pr400132j
crossref_primary_10_1111_j_0006_341X_2005_454_1_x
crossref_primary_10_1186_ar3232
crossref_primary_10_1111_odi_12570
crossref_primary_10_1534_genetics_105_042648
crossref_primary_10_2217_epi_14_3
crossref_primary_10_1002_bimj_200710398
crossref_primary_10_1016_j_gene_2012_01_080
crossref_primary_10_1007_s12561_023_09416_3
crossref_primary_10_1186_1479_7364_2_5_310
crossref_primary_10_1093_biostatistics_kxw012
crossref_primary_10_1111_j_1442_9071_2011_02744_x
crossref_primary_10_1214_10_AOAS438
crossref_primary_10_3389_fnhum_2016_00236
crossref_primary_10_1093_bioinformatics_btm140
crossref_primary_10_1007_s10038_007_0177_7
crossref_primary_10_1016_j_cll_2010_07_002
crossref_primary_10_1086_504527
crossref_primary_10_1093_gerona_gln021
crossref_primary_10_1016_j_ajhg_2012_03_007
crossref_primary_10_1016_j_fct_2013_10_030
crossref_primary_10_1186_s13148_016_0239_9
crossref_primary_10_1093_bioinformatics_btm386
crossref_primary_10_1051_e3sconf_202018503014
crossref_primary_10_1007_s11357_012_9416_8
crossref_primary_10_1111_j_1469_1809_2007_00419_x
crossref_primary_10_1002_gepi_20047
crossref_primary_10_1002_gepi_20245
crossref_primary_10_1111_j_1469_1809_2008_00435_x
crossref_primary_10_1155_2017_7847531
crossref_primary_10_1038_jhg_2012_33
crossref_primary_10_1002_ijc_29299
crossref_primary_10_1093_biostatistics_kxn002
crossref_primary_10_1111_j_1469_1809_2009_00544_x
crossref_primary_10_1016_j_csda_2008_03_032
crossref_primary_10_1002_gepi_20209
crossref_primary_10_1016_j_ijrobp_2011_02_036
crossref_primary_10_1515_sagmb_2016_0039
crossref_primary_10_1007_s13721_020_00257_4
crossref_primary_10_1016_j_imu_2022_100881
crossref_primary_10_1158_1055_9965_EPI_05_0679
crossref_primary_10_1007_s00439_010_0880_x
crossref_primary_10_3389_fgene_2016_00015
crossref_primary_10_1086_520678
crossref_primary_10_1007_s00592_008_0049_4
crossref_primary_10_1007_s10038_007_0159_9
crossref_primary_10_1111_j_1541_0420_2006_00583_x
crossref_primary_10_1155_2013_843563
crossref_primary_10_1016_j_ajhg_2007_09_005
crossref_primary_10_1016_j_jacc_2006_06_046
crossref_primary_10_1007_s10038_008_0258_2
crossref_primary_10_1002_gepi_20240
crossref_primary_10_1111_j_1541_0420_2008_01174_x
Cites_doi 10.2307/2533494
10.1093/biostatistics/2.2.147
10.1006/geno.1995.9003
10.1038/nrg796
10.1002/gepi.10195
10.1101/gr.8.2.111
10.1002/gepi.10260
10.1038/35015718
10.2307/3001775
10.1101/gr.144500
10.1038/nrg777
10.1016/S0168-9525(02)02557-X
10.1111/j.0006-341X.2002.00163.x
10.1086/316944
ContentType Journal Article
Copyright Copyright 2004 The International Biometric Society
Copyright Blackwell Publishing Ltd. Sep 2004
Copyright_xml – notice: Copyright 2004 The International Biometric Society
– notice: Copyright Blackwell Publishing Ltd. Sep 2004
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7S9
L.6
7X8
5PM
DOI 10.1111/j.0006-341X.2004.00207.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef


ProQuest Computer Science Collection
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 597
ExternalDocumentID PMC8985053
2446776151
15339280
10_1111_j_0006_341X_2004_00207_x
BIOM207
3695379
ark_67375_WNG_JLFKD8QJ_C
US201500148798
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA137420
– fundername: NCI NIH HHS
  grantid: R01 CA098438
– fundername: NCI NIH HHS
  grantid: CA098438
– fundername: NCI NIH HHS
  grantid: CA73848
– fundername: NIGMS NIH HHS
  grantid: GM60457
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAPXW
AAUAY
AAZSN
ABEJV
ABMNT
ABXSQ
ABXVV
ADACV
AJAOE
ALIPV
BSCLL
IPSME
KOP
OIG
OJZSN
ROX
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PKN
JQ2
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c6427-214431cfef7efc31fe4b9fc04d0142d14aeec778500d1ae041ab19c95e73b32a3
IEDL.DBID DR2
ISSN 0006-341X
IngestDate Thu Aug 21 13:52:53 EDT 2025
Fri Jul 11 08:07:34 EDT 2025
Fri Jul 11 18:27:30 EDT 2025
Fri Jul 25 19:46:10 EDT 2025
Wed Feb 19 02:27:19 EST 2025
Tue Jul 01 02:39:17 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Wed Jan 22 16:26:52 EST 2025
Thu Jul 03 21:22:35 EDT 2025
Wed Oct 30 09:56:31 EDT 2024
Wed Dec 27 19:15:08 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6427-214431cfef7efc31fe4b9fc04d0142d14aeec778500d1ae041ab19c95e73b32a3
Notes http://dx.doi.org/10.1111/j.0006-341X.2004.00207.x
ark:/67375/WNG-JLFKD8QJ-C
ArticleID:BIOM207
istex:060779B95FDD2FB89388B8B97054E1019D46F3C1
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8985053
PMID 15339280
PQID 888145855
PQPubID 35366
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8985053
proquest_miscellaneous_66837348
proquest_miscellaneous_1678569696
proquest_journals_888145855
pubmed_primary_15339280
crossref_citationtrail_10_1111_j_0006_341X_2004_00207_x
crossref_primary_10_1111_j_0006_341X_2004_00207_x
wiley_primary_10_1111_j_0006_341X_2004_00207_x_BIOM207
jstor_primary_3695379
istex_primary_ark_67375_WNG_JLFKD8QJ_C
fao_agris_US201500148798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2004
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: September 2004
PublicationDecade 2000
PublicationPlace 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
PublicationPlace_xml – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2004
Publisher Blackwell Publishing
International Biometric Society
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing
– name: International Biometric Society
– name: Blackwell Publishing Ltd
References Devlin, B. and Risch, N. (1995). A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311-322.DOI: 10.1006/geno.1995.9003
Sasieni, P. (1997). From genotypes to genes: Doubling the sample size. Biometrics 53, 1253-1261.
Boehnke, M. (1994). Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases. American Journal of Human Genetics 55, 379-390.
Jorde, L. B. (2000). Linkage disequilibrium and the search for complex disease genes. Genome Research 10, 1435-1444.DOI: 10.1101/gr.144500
Ott, J. (1991). Analysis of Human Genetic Linkage. Baltimore , Maryland : The Johns Hopkins University Press.
Satagopan, J. M. and Elston, R. C. (2003). Optimal two-stage genotyping in population-based association studies. Genetic Epidemiology 25, 149-157.DOI: 10.1002/gepi.10260
Weir, B. S. (1996). Genetic Data Analysis II, 2nd edition. Sunderland , Massachusetts : Sinauer Associates.
Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics 11, 375-386.
Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous univariate distributions, Volume 2. New York : John Wiley and Sons.
Nordborg, M. and Tavare, S. (2002). Linkage disequilibrium: What history has to tell us. Trends in Genetics 18, 83-90.DOI: 10.1016/S0168-9525(02)02557-X
Risch, N. (2000). Searching for genetic determinants in the new millennium. Nature 405, 847-856.DOI: 10.1038/35015718
Tang, H. and Siegmund, D. O. (2001). Mapping quantitative trait loci in oligogenic models. Biostatistics 2, 147-162.
Shaw, S. H., Carrasquillo, M. M., Kashuk, C., et al. (1998). Allele frequency distributions in pooled DNA samples: Applications to mapping complex disease genes. Genome Research 8, 111-123.
Tabor, H. K., Risch, N. J., and Myers, R. M. (2002). Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nature Reviews Genetics 3, 1-7.
Wang, S., Kidd, K. K., and Zhao, H. (2003). On the use of DNA pooling to estimate haplotype frequencies. Genetic Epidemiology 24, 74-82.DOI: 10.1002/gepi.10195
Satagopan, J. M., Verbel, D. A., Venkatraman, E. S., Offit, K. E., and Begg, C. B. (2002). Two-stage designs for gene-disease association studies. Biometrics 58, 163-170.
Abecasis, G. R., Noguchi, E., Heinzmann, A., et al. (2001). Extent and distribution of linkage disequilibrium in three genomic regions. American Journal of Human Genetics 68, 191-197.DOI: 10.1086/316944
Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics 3, 299-309.DOI: 10.1038/nrg777
2002; 58
2002; 18
1997; 53
2000; 10
2000; 405
2003; 24
1994; 55
2003; 25
2002; 3
1996
2001; 2
1995; 29
1991
1995; 2
2001; 68
1955; 11
1998; 8
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Ott J. (e_1_2_8_10_1) 1991
Weir B. S. (e_1_2_8_19_1) 1996
e_1_2_8_3_1
e_1_2_8_2_1
Johnson N. L. (e_1_2_8_7_1) 1995
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_11_1
e_1_2_8_12_1
Boehnke M. (e_1_2_8_5_1) 1994; 55
References_xml – reference: Wang, S., Kidd, K. K., and Zhao, H. (2003). On the use of DNA pooling to estimate haplotype frequencies. Genetic Epidemiology 24, 74-82.DOI: 10.1002/gepi.10195
– reference: Sasieni, P. (1997). From genotypes to genes: Doubling the sample size. Biometrics 53, 1253-1261.
– reference: Satagopan, J. M., Verbel, D. A., Venkatraman, E. S., Offit, K. E., and Begg, C. B. (2002). Two-stage designs for gene-disease association studies. Biometrics 58, 163-170.
– reference: Weir, B. S. (1996). Genetic Data Analysis II, 2nd edition. Sunderland , Massachusetts : Sinauer Associates.
– reference: Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics 3, 299-309.DOI: 10.1038/nrg777
– reference: Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous univariate distributions, Volume 2. New York : John Wiley and Sons.
– reference: Satagopan, J. M. and Elston, R. C. (2003). Optimal two-stage genotyping in population-based association studies. Genetic Epidemiology 25, 149-157.DOI: 10.1002/gepi.10260
– reference: Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics 11, 375-386.
– reference: Abecasis, G. R., Noguchi, E., Heinzmann, A., et al. (2001). Extent and distribution of linkage disequilibrium in three genomic regions. American Journal of Human Genetics 68, 191-197.DOI: 10.1086/316944
– reference: Ott, J. (1991). Analysis of Human Genetic Linkage. Baltimore , Maryland : The Johns Hopkins University Press.
– reference: Boehnke, M. (1994). Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases. American Journal of Human Genetics 55, 379-390.
– reference: Devlin, B. and Risch, N. (1995). A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311-322.DOI: 10.1006/geno.1995.9003
– reference: Tang, H. and Siegmund, D. O. (2001). Mapping quantitative trait loci in oligogenic models. Biostatistics 2, 147-162.
– reference: Tabor, H. K., Risch, N. J., and Myers, R. M. (2002). Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nature Reviews Genetics 3, 1-7.
– reference: Nordborg, M. and Tavare, S. (2002). Linkage disequilibrium: What history has to tell us. Trends in Genetics 18, 83-90.DOI: 10.1016/S0168-9525(02)02557-X
– reference: Risch, N. (2000). Searching for genetic determinants in the new millennium. Nature 405, 847-856.DOI: 10.1038/35015718
– reference: Jorde, L. B. (2000). Linkage disequilibrium and the search for complex disease genes. Genome Research 10, 1435-1444.DOI: 10.1101/gr.144500
– reference: Shaw, S. H., Carrasquillo, M. M., Kashuk, C., et al. (1998). Allele frequency distributions in pooled DNA samples: Applications to mapping complex disease genes. Genome Research 8, 111-123.
– volume: 10
  start-page: 1435
  year: 2000
  end-page: 1444
  article-title: Linkage disequilibrium and the search for complex disease genes
  publication-title: Genome Research
– volume: 24
  start-page: 74
  year: 2003
  end-page: 82
  article-title: On the use of DNA pooling to estimate haplotype frequencies
  publication-title: Genetic Epidemiology
– volume: 2
  year: 1995
– volume: 405
  start-page: 847
  year: 2000
  end-page: 856
  article-title: Searching for genetic determinants in the new millennium
  publication-title: Nature
– volume: 3
  start-page: 1
  year: 2002
  end-page: 7
  article-title: Candidate‐gene approaches for studying complex genetic traits: Practical considerations
  publication-title: Nature Reviews Genetics
– volume: 3
  start-page: 299
  year: 2002
  end-page: 309
  article-title: Patterns of linkage disequilibrium in the human genome
  publication-title: Nature Reviews Genetics
– volume: 25
  start-page: 149
  year: 2003
  end-page: 157
  article-title: Optimal two‐stage genotyping in population‐based association studies
  publication-title: Genetic Epidemiology
– volume: 11
  start-page: 375
  year: 1955
  end-page: 386
  article-title: Tests for linear trends in proportions and frequencies
  publication-title: Biometrics
– volume: 29
  start-page: 311
  year: 1995
  end-page: 322
  article-title: A comparison of linkage disequilibrium measures for fine‐scale mapping
  publication-title: Genomics
– volume: 18
  start-page: 83
  year: 2002
  end-page: 90
  article-title: Linkage disequilibrium: What history has to tell us
  publication-title: Trends in Genetics
– volume: 68
  start-page: 191
  year: 2001
  end-page: 197
  article-title: Extent and distribution of linkage disequilibrium in three genomic regions
  publication-title: American Journal of Human Genetics
– year: 1996
– volume: 58
  start-page: 163
  year: 2002
  end-page: 170
  article-title: Two‐stage designs for gene‐disease association studies
  publication-title: Biometrics
– volume: 53
  start-page: 1253
  year: 1997
  end-page: 1261
  article-title: From genotypes to genes: Doubling the sample size
  publication-title: Biometrics
– volume: 2
  start-page: 147
  year: 2001
  end-page: 162
  article-title: Mapping quantitative trait loci in oligogenic models
  publication-title: Biostatistics
– volume: 55
  start-page: 379
  year: 1994
  end-page: 390
  article-title: Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases
  publication-title: American Journal of Human Genetics
– year: 1991
– volume: 8
  start-page: 111
  year: 1998
  end-page: 123
  article-title: Allele frequency distributions in pooled DNA samples: Applications to mapping complex disease genes
  publication-title: Genome Research
– ident: e_1_2_8_12_1
  doi: 10.2307/2533494
– ident: e_1_2_8_17_1
  doi: 10.1093/biostatistics/2.2.147
– ident: e_1_2_8_6_1
  doi: 10.1006/geno.1995.9003
– volume-title: Genetic Data Analysis II
  year: 1996
  ident: e_1_2_8_19_1
– ident: e_1_2_8_16_1
  doi: 10.1038/nrg796
– ident: e_1_2_8_18_1
  doi: 10.1002/gepi.10195
– ident: e_1_2_8_15_1
  doi: 10.1101/gr.8.2.111
– volume-title: Continuous univariate distributions
  year: 1995
  ident: e_1_2_8_7_1
– ident: e_1_2_8_13_1
  doi: 10.1002/gepi.10260
– volume-title: Analysis of Human Genetic Linkage
  year: 1991
  ident: e_1_2_8_10_1
– ident: e_1_2_8_11_1
  doi: 10.1038/35015718
– ident: e_1_2_8_4_1
  doi: 10.2307/3001775
– ident: e_1_2_8_8_1
  doi: 10.1101/gr.144500
– ident: e_1_2_8_3_1
  doi: 10.1038/nrg777
– ident: e_1_2_8_9_1
  doi: 10.1016/S0168-9525(02)02557-X
– ident: e_1_2_8_14_1
  doi: 10.1111/j.0006-341X.2002.00163.x
– ident: e_1_2_8_2_1
  doi: 10.1086/316944
– volume: 55
  start-page: 379
  year: 1994
  ident: e_1_2_8_5_1
  article-title: Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases
  publication-title: American Journal of Human Genetics
SSID ssj0009502
Score 2.1092422
Snippet Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a...
Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a...
Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk....
Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk....
Summary Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 589
SubjectTerms Biometrics
Biometry
Case-Control Studies
cost effectiveness
Design evaluation
Epidemiology
Genetic diseases
Genetic Diseases, Inborn - etiology
Genetic Diseases, Inborn - genetics
Genetic disorders
Genetic loci
Genetic Markers
genotyping
guidelines
Haplotypes
Human genetics
Humans
Linkage Disequilibrium
Medical genetics
Optimal design
Order statistic
Power
Probabilities
risk
Risk Factors
Sample Size
Simulation
Title Two‐Stage Designs for Gene–Disease Association Studies with Sample Size Constraints
URI https://api.istex.fr/ark:/67375/WNG-JLFKD8QJ-C/fulltext.pdf
https://www.jstor.org/stable/3695379
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2004.00207.x
https://www.ncbi.nlm.nih.gov/pubmed/15339280
https://www.proquest.com/docview/888145855
https://www.proquest.com/docview/1678569696
https://www.proquest.com/docview/66837348
https://pubmed.ncbi.nlm.nih.gov/PMC8985053
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFL2CSUjjgY8yWDY-jIR4S2XHTpw8wkoZhQ5BV61vlp04Yypqp6UVY0_7CUj8w_0SfJM0a2FIE-Itauwoub6-Pvf69BjgRRCnWjtg7puACV-YKPN1znEP3q2mbgWkIseCfn8v2h2K3igc1fwn_C9MpQ_RFNxwZpTxGie4NsXKJMdQ67soPCrTPCyNUNlGPInULcRHn4Ml_V1aCYfXXVZIPVc_aGWlupnrqcOvaPrTBXXxKlD6J7dyGfOWi1b3LowXn1txVcbt-cy007PflCD_jz3uwZ0a25JXlTPehxt20oJb1WmX31twu99IxBYtWEeYW6lEP4CD_W_Ti_Mf7qdDSzolqaQgDk4TVMW-OP_ZqbaRyJIzkZoBSbCSTAYaVY7J4OjMEjyDtDz5YlZswLD7Zn9n16-PfPBTlwhJHwXcOEtzm0ubp5zlVpgkT6nIXCoXZExoa1Mp45DSjGlLBdOGJWkSWskNDzR_CGuT6cRuArEhN1mQUpZHkUh0ZjSVQeaWpogmJjPcA7kYXpXWeuj4cl_VZV6EFlVoUTytU6jSourUA9b0PK40Qa7RZ9N5kNKHLnSr4SDAQhMWc2USe_CydKvmWfpkjHQ7GaqDvbeq96H7vhN_6qkdDzZKv2sa8igJuUw82F74oaojUKHiOGbC5YKhB8-buy504H6QntjpvFDMAZUwQnkkD579pU0UxRwFkDx4VPn15Re7RCEJYursuOLxTQMULl-9Mzn6UgqYx4kbwNCNQFQ69LWNqF6_-9h3V1v_2nEb1ivmFXIEH8Pa7GRunzhQOTNPy3DxC1DDZqY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BEaIc-AktNQW6SIibo_Xv2kdoCGmaBEESNbfV2l6XqlWCmkSUnvoISLxhn4SZteMmUKQKcbPiXcuenZ35ZnbyDcBrN0qVQmBuJ67j234SZrbKPTqDR2-KHpD7OSX0u72wNfTbo2BUtgOi_8IU_BBVwo12hrHXtMEpIb2yy8nW2miGRybOo9wIF3UElHeowbeJrz67Swy8vKAOL-eslPVc_6QVX3U7VxNEsCT8s0Xx4nWw9M_qymXUa9xW8yGcLD64qFY5rs9nST09_40L8j9J5BE8KOEte1vo42O4pcc1uFs0vPxeg_vdiiV2WoN1QroFUfQTOBh8m1xe_MCfDjVrmLqSKUNEzYgY-_LiZ6M4SWJL-sTKIkhGyWTWV0R0zPpH55pRG1LT_GI23YBh8_1gt2WXXR_sFGMhYROHm-ekuc6FzlPPybWfxHnK_QyjOTdzfKV1KkQUcJ45SnPfUYkTp3GghZd4rvI2YW08GestYDrwksxNuZOHoR-rLFFcuBl6p5DHSZZ4FojF-sq0pESnlzuRV6ERSVSSRKlhpy-NROWZBU4182tBC3KDOVuoQlIdovWWw75LuSbK54o4suCN0avqWer0mCruRCAPeh9ku9Pcb0Sf2nLXgg2jeNVAL4wDT8QWbC8UUZZGaCqjKHJ8DAcDC15Vd9F60JGQGuvJfCodxCpBSAxJFuz8ZUwYRh5xIFnwtFDsqy_GWCF2I45yXFH5agBxl6_eGR99MRzmUYwLGOAKhEajbyxE-W7vYxevnv3rxB241xp0O7Kz19vfhvWiEItKBp_D2ux0rl8gxpwlL43t-AWcR2rB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CIdB44FIGCwNmJMRbKidxnOQRVsrWreXSVeubZSfOmIraaW3F2NN-AhL_cL8EHyfNGhjShHiLGjtKjj-fm0-_A_DKj1MpjWPuKt9jLlM8c2Ue4Bm8sabGAlKWY0K_2-PbA9YZhsOy_gn_C1PwQ1QJN9wZVl_jBj_O8tomR1XrGi08tGEepkZo1DT-5C3GaYwIb332lwh4acEcXs6pVfVc_aSaqbqZy4lxYFH2p4vaxau80j-LK5edXmu12vdhtPjeolhl1JzPVDM9-40K8v8I5AHcK51b8qZA40O4occNuF20u_zegLvdiiN22oBV9HMLmuhHcLD_bXJx_sP8dKhJy1aVTInxpwnSYl-c_2wV50hkCU2kLIEkmEomfYk0x6R_dKYJNiG1rS9m0zUYtN_tb227Zc8HNzWRUOQig1vgpbnOI52ngZdrppI8pSwzsZyfeUxqnUZRHFKaeVJT5knlJWkS6ihQgS-Dx7Aynoz1OhAdBirzU-rlnLNEZkrSyM-MbeI0UZkKHIgWyyvSkhAdX-6ruAyMUKICJYrtOpmwEhWnDnjVzOOCFOQac9YNgoQ8NLpbDPo-ZpowmxslsQOvLayqZ8mTEdbbRaE46L0Xnb32biv-1BFbDqxZ3FUDA56EQZQ4sLHAoShV0FTEcewxEwyGDrys7hrdgQdCcqwn86nwjKcScuRHcmDzL2M4jwNkQHLgSYHryy82kULix9TIsYb4agAyl9fvjI--WAbzODELGJoV4BbQ1xaieLvzoWuunv7rxE2487HVFns7vd0NWC2qsLBe8BmszE7m-rlxMGfqhdUcvwAZnWl5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90Stage+Designs+for+Gene%E2%80%93Disease+Association+Studies+with+Sample+Size+Constraints&rft.jtitle=Biometrics&rft.au=Satagopan%2C+Jaya+M&rft.au=Venkatraman%2C+E.+S&rft.au=Begg%2C+Colin+B&rft.date=2004-09-01&rft.pub=Blackwell+Publishing&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=60&rft.issue=3&rft.spage=589&rft.epage=597&rft_id=info:doi/10.1111%2Fj.0006-341X.2004.00207.x&rft.externalDocID=US201500148798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon