Two‐Stage Designs for Gene–Disease Association Studies with Sample Size Constraints
Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternat...
Saved in:
Published in | Biometrics Vol. 60; no. 3; pp. 589 - 597 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
Blackwell Publishing
01.09.2004
International Biometric Society Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 |
DOI | 10.1111/j.0006-341X.2004.00207.x |
Cover
Loading…
Abstract | Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations. |
---|---|
AbstractList | Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations. Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two-stage method to identify disease-susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two-stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two-stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease-susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near-optimal power while resulting in a 45% decrease in the total number of marker evaluations.Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two-stage method to identify disease-susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two-stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two-stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease-susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near-optimal power while resulting in a 45% decrease in the total number of marker evaluations. Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations. Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two‐stage method to identify disease‐susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two‐stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two‐stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease‐susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near‐optimal power while resulting in a 45% decrease in the total number of marker evaluations. Summary Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two-stage method to identify disease-susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two-stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two-stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease-susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near-optimal power while resulting in a 45% decrease in the total number of marker evaluations. [PUBLICATION ABSTRACT] |
Author | Begg, Colin B. Satagopan, Jaya M. Venkatraman, E. S. |
Author_xml | – sequence: 1 givenname: Jaya M. surname: Satagopan fullname: Satagopan, Jaya M. – sequence: 2 givenname: E. S. surname: Venkatraman fullname: Venkatraman, E. S. – sequence: 3 givenname: Colin B. surname: Begg fullname: Begg, Colin B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15339280$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsFuEzEQtVARTQN_gGDFAXHZYK-9a-8BpJLQ0BKoUFqV28hxZlOHzTqsNyTl1E9A4g_7JThNCdADYB_s0bz3PJ43e2SnchUSEjHaYWE9n3YopVnMBfvYSSgVIUyo7KzukBZLBYupSOgOaW1Bu2TP-2kI85Qm98guSznPE0Vb5Oxk6a4uvw0bPcGoh95OKh8Vro76WOHV5fee9ag9RvveO2N1Y10VDZvF2KKPlrY5j4Z6Ni8xGtqvGHVd5Zta26rx98ndQpceH9ycbXJ68Pqk-yYeHPcPu_uD2GQikXHChODMFFhILAxnBYpRXhgqxpSJZMyERjRSqpTSMdNIBdMjlps8RclHPNG8TV5udOeL0QzHBqtQQAnz2s50fQFOW_gzU9lzmLgvoPIgGtrQJk9vBGr3eYG-gZn1BstSV-gWHrJMccmFCsBnfwWyLJSZ5WEH6JNb0Klb1FXoAyilmEhVmgbQo98r35b805tfXzO1877GAoxtrh1Y97gERmE9DDCFtc-w9hnWwwDXwwCrIKBuCWzf-Df1xYa6tCVe_DcPXh0evwu3wH-44U994-otn2d5ymUe0vEmbX2Dq21a158gk1ymcPa-D0eDg7c99eEIugH_eIMvtAM9qa2H02FCWRgLJpTMFf8BGnbv9Q |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1093_jhered_esz059 crossref_primary_10_1111_j_0006_341X_2005_454_8_x crossref_primary_10_1038_ng1582 crossref_primary_10_1146_annurev_genom_8_080706_092357 crossref_primary_10_1038_ajh_2011_21 crossref_primary_10_1038_oby_2009_71 crossref_primary_10_1002_sim_4259 crossref_primary_10_1534_genetics_111_130542 crossref_primary_10_1101_sqb_2005_70_029 crossref_primary_10_1586_17512433_1_1_137 crossref_primary_10_1186_1471_2105_12_9 crossref_primary_10_3724_SP_J_1005_2008_00400 crossref_primary_10_1016_S0263_8762_07_73181_7 crossref_primary_10_1111_j_1541_0420_2008_01187_x crossref_primary_10_1007_s00439_005_1256_5 crossref_primary_10_1080_03610918_2014_901360 crossref_primary_10_1111_j_1469_1809_2008_00467_x crossref_primary_10_1007_s10038_006_0057_6 crossref_primary_10_1086_432962 crossref_primary_10_1186_1753_6561_1_S1_S139 crossref_primary_10_1002_gepi_20394 crossref_primary_10_1038_clpt_2009_291 crossref_primary_10_1214_09_STS288 crossref_primary_10_1016_j_psc_2009_12_005 crossref_primary_10_1038_ng1790 crossref_primary_10_1002_gepi_20467 crossref_primary_10_1007_s10038_006_0393_6 crossref_primary_10_1002_jor_21494 crossref_primary_10_1371_journal_pone_0001872 crossref_primary_10_1093_biostatistics_kxj020 crossref_primary_10_1038_gene_2008_24 crossref_primary_10_1086_500812 crossref_primary_10_1038_ng1706 crossref_primary_10_1111_rssb_12171 crossref_primary_10_1002_sim_8144 crossref_primary_10_1155_2022_3617775 crossref_primary_10_5808_GI_2012_10_2_117 crossref_primary_10_1007_s00109_006_0151_4 crossref_primary_10_1101_pdb_top069559 crossref_primary_10_1021_pr400132j crossref_primary_10_1111_j_0006_341X_2005_454_1_x crossref_primary_10_1186_ar3232 crossref_primary_10_1111_odi_12570 crossref_primary_10_1534_genetics_105_042648 crossref_primary_10_2217_epi_14_3 crossref_primary_10_1002_bimj_200710398 crossref_primary_10_1016_j_gene_2012_01_080 crossref_primary_10_1007_s12561_023_09416_3 crossref_primary_10_1186_1479_7364_2_5_310 crossref_primary_10_1093_biostatistics_kxw012 crossref_primary_10_1111_j_1442_9071_2011_02744_x crossref_primary_10_1214_10_AOAS438 crossref_primary_10_3389_fnhum_2016_00236 crossref_primary_10_1093_bioinformatics_btm140 crossref_primary_10_1007_s10038_007_0177_7 crossref_primary_10_1016_j_cll_2010_07_002 crossref_primary_10_1086_504527 crossref_primary_10_1093_gerona_gln021 crossref_primary_10_1016_j_ajhg_2012_03_007 crossref_primary_10_1016_j_fct_2013_10_030 crossref_primary_10_1186_s13148_016_0239_9 crossref_primary_10_1093_bioinformatics_btm386 crossref_primary_10_1051_e3sconf_202018503014 crossref_primary_10_1007_s11357_012_9416_8 crossref_primary_10_1111_j_1469_1809_2007_00419_x crossref_primary_10_1002_gepi_20047 crossref_primary_10_1002_gepi_20245 crossref_primary_10_1111_j_1469_1809_2008_00435_x crossref_primary_10_1155_2017_7847531 crossref_primary_10_1038_jhg_2012_33 crossref_primary_10_1002_ijc_29299 crossref_primary_10_1093_biostatistics_kxn002 crossref_primary_10_1111_j_1469_1809_2009_00544_x crossref_primary_10_1016_j_csda_2008_03_032 crossref_primary_10_1002_gepi_20209 crossref_primary_10_1016_j_ijrobp_2011_02_036 crossref_primary_10_1515_sagmb_2016_0039 crossref_primary_10_1007_s13721_020_00257_4 crossref_primary_10_1016_j_imu_2022_100881 crossref_primary_10_1158_1055_9965_EPI_05_0679 crossref_primary_10_1007_s00439_010_0880_x crossref_primary_10_3389_fgene_2016_00015 crossref_primary_10_1086_520678 crossref_primary_10_1007_s00592_008_0049_4 crossref_primary_10_1007_s10038_007_0159_9 crossref_primary_10_1111_j_1541_0420_2006_00583_x crossref_primary_10_1155_2013_843563 crossref_primary_10_1016_j_ajhg_2007_09_005 crossref_primary_10_1016_j_jacc_2006_06_046 crossref_primary_10_1007_s10038_008_0258_2 crossref_primary_10_1002_gepi_20240 crossref_primary_10_1111_j_1541_0420_2008_01174_x |
Cites_doi | 10.2307/2533494 10.1093/biostatistics/2.2.147 10.1006/geno.1995.9003 10.1038/nrg796 10.1002/gepi.10195 10.1101/gr.8.2.111 10.1002/gepi.10260 10.1038/35015718 10.2307/3001775 10.1101/gr.144500 10.1038/nrg777 10.1016/S0168-9525(02)02557-X 10.1111/j.0006-341X.2002.00163.x 10.1086/316944 |
ContentType | Journal Article |
Copyright | Copyright 2004 The International Biometric Society Copyright Blackwell Publishing Ltd. Sep 2004 |
Copyright_xml | – notice: Copyright 2004 The International Biometric Society – notice: Copyright Blackwell Publishing Ltd. Sep 2004 |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7S9 L.6 7X8 5PM |
DOI | 10.1111/j.0006-341X.2004.00207.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Computer Science Collection AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 597 |
ExternalDocumentID | PMC8985053 2446776151 15339280 10_1111_j_0006_341X_2004_00207_x BIOM207 3695379 ark_67375_WNG_JLFKD8QJ_C US201500148798 |
Genre | article Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA137420 – fundername: NCI NIH HHS grantid: R01 CA098438 – fundername: NCI NIH HHS grantid: CA098438 – fundername: NCI NIH HHS grantid: CA73848 – fundername: NIGMS NIH HHS grantid: GM60457 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAPXW AAUAY AAZSN ABEJV ABMNT ABXSQ ABXVV ADACV AJAOE ALIPV BSCLL IPSME KOP OIG OJZSN ROX AAMMB AANHP AAWIL AAYCA ABAWQ ABDFA ABGNP ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGORE AGQPQ AGXDD AIDQK AIDYY AIHAF AJNCP ALRMG NU- AAYXX AHGBF AJBYB CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PKN JQ2 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c6427-214431cfef7efc31fe4b9fc04d0142d14aeec778500d1ae041ab19c95e73b32a3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X |
IngestDate | Thu Aug 21 13:52:53 EDT 2025 Fri Jul 11 08:07:34 EDT 2025 Fri Jul 11 18:27:30 EDT 2025 Fri Jul 25 19:46:10 EDT 2025 Wed Feb 19 02:27:19 EST 2025 Tue Jul 01 02:39:17 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Wed Jan 22 16:26:52 EST 2025 Thu Jul 03 21:22:35 EDT 2025 Wed Oct 30 09:56:31 EDT 2024 Wed Dec 27 19:15:08 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6427-214431cfef7efc31fe4b9fc04d0142d14aeec778500d1ae041ab19c95e73b32a3 |
Notes | http://dx.doi.org/10.1111/j.0006-341X.2004.00207.x ark:/67375/WNG-JLFKD8QJ-C ArticleID:BIOM207 istex:060779B95FDD2FB89388B8B97054E1019D46F3C1 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8985053 |
PMID | 15339280 |
PQID | 888145855 |
PQPubID | 35366 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8985053 proquest_miscellaneous_66837348 proquest_miscellaneous_1678569696 proquest_journals_888145855 pubmed_primary_15339280 crossref_citationtrail_10_1111_j_0006_341X_2004_00207_x crossref_primary_10_1111_j_0006_341X_2004_00207_x wiley_primary_10_1111_j_0006_341X_2004_00207_x_BIOM207 jstor_primary_3695379 istex_primary_ark_67375_WNG_JLFKD8QJ_C fao_agris_US201500148798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2004 |
PublicationDateYYYYMMDD | 2004-09-01 |
PublicationDate_xml | – month: 09 year: 2004 text: September 2004 |
PublicationDecade | 2000 |
PublicationPlace | 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K |
PublicationPlace_xml | – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2004 |
Publisher | Blackwell Publishing International Biometric Society Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing – name: International Biometric Society – name: Blackwell Publishing Ltd |
References | Devlin, B. and Risch, N. (1995). A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311-322.DOI: 10.1006/geno.1995.9003 Sasieni, P. (1997). From genotypes to genes: Doubling the sample size. Biometrics 53, 1253-1261. Boehnke, M. (1994). Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases. American Journal of Human Genetics 55, 379-390. Jorde, L. B. (2000). Linkage disequilibrium and the search for complex disease genes. Genome Research 10, 1435-1444.DOI: 10.1101/gr.144500 Ott, J. (1991). Analysis of Human Genetic Linkage. Baltimore , Maryland : The Johns Hopkins University Press. Satagopan, J. M. and Elston, R. C. (2003). Optimal two-stage genotyping in population-based association studies. Genetic Epidemiology 25, 149-157.DOI: 10.1002/gepi.10260 Weir, B. S. (1996). Genetic Data Analysis II, 2nd edition. Sunderland , Massachusetts : Sinauer Associates. Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics 11, 375-386. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous univariate distributions, Volume 2. New York : John Wiley and Sons. Nordborg, M. and Tavare, S. (2002). Linkage disequilibrium: What history has to tell us. Trends in Genetics 18, 83-90.DOI: 10.1016/S0168-9525(02)02557-X Risch, N. (2000). Searching for genetic determinants in the new millennium. Nature 405, 847-856.DOI: 10.1038/35015718 Tang, H. and Siegmund, D. O. (2001). Mapping quantitative trait loci in oligogenic models. Biostatistics 2, 147-162. Shaw, S. H., Carrasquillo, M. M., Kashuk, C., et al. (1998). Allele frequency distributions in pooled DNA samples: Applications to mapping complex disease genes. Genome Research 8, 111-123. Tabor, H. K., Risch, N. J., and Myers, R. M. (2002). Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nature Reviews Genetics 3, 1-7. Wang, S., Kidd, K. K., and Zhao, H. (2003). On the use of DNA pooling to estimate haplotype frequencies. Genetic Epidemiology 24, 74-82.DOI: 10.1002/gepi.10195 Satagopan, J. M., Verbel, D. A., Venkatraman, E. S., Offit, K. E., and Begg, C. B. (2002). Two-stage designs for gene-disease association studies. Biometrics 58, 163-170. Abecasis, G. R., Noguchi, E., Heinzmann, A., et al. (2001). Extent and distribution of linkage disequilibrium in three genomic regions. American Journal of Human Genetics 68, 191-197.DOI: 10.1086/316944 Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics 3, 299-309.DOI: 10.1038/nrg777 2002; 58 2002; 18 1997; 53 2000; 10 2000; 405 2003; 24 1994; 55 2003; 25 2002; 3 1996 2001; 2 1995; 29 1991 1995; 2 2001; 68 1955; 11 1998; 8 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Ott J. (e_1_2_8_10_1) 1991 Weir B. S. (e_1_2_8_19_1) 1996 e_1_2_8_3_1 e_1_2_8_2_1 Johnson N. L. (e_1_2_8_7_1) 1995 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_11_1 e_1_2_8_12_1 Boehnke M. (e_1_2_8_5_1) 1994; 55 |
References_xml | – reference: Wang, S., Kidd, K. K., and Zhao, H. (2003). On the use of DNA pooling to estimate haplotype frequencies. Genetic Epidemiology 24, 74-82.DOI: 10.1002/gepi.10195 – reference: Sasieni, P. (1997). From genotypes to genes: Doubling the sample size. Biometrics 53, 1253-1261. – reference: Satagopan, J. M., Verbel, D. A., Venkatraman, E. S., Offit, K. E., and Begg, C. B. (2002). Two-stage designs for gene-disease association studies. Biometrics 58, 163-170. – reference: Weir, B. S. (1996). Genetic Data Analysis II, 2nd edition. Sunderland , Massachusetts : Sinauer Associates. – reference: Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics 3, 299-309.DOI: 10.1038/nrg777 – reference: Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous univariate distributions, Volume 2. New York : John Wiley and Sons. – reference: Satagopan, J. M. and Elston, R. C. (2003). Optimal two-stage genotyping in population-based association studies. Genetic Epidemiology 25, 149-157.DOI: 10.1002/gepi.10260 – reference: Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics 11, 375-386. – reference: Abecasis, G. R., Noguchi, E., Heinzmann, A., et al. (2001). Extent and distribution of linkage disequilibrium in three genomic regions. American Journal of Human Genetics 68, 191-197.DOI: 10.1086/316944 – reference: Ott, J. (1991). Analysis of Human Genetic Linkage. Baltimore , Maryland : The Johns Hopkins University Press. – reference: Boehnke, M. (1994). Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases. American Journal of Human Genetics 55, 379-390. – reference: Devlin, B. and Risch, N. (1995). A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311-322.DOI: 10.1006/geno.1995.9003 – reference: Tang, H. and Siegmund, D. O. (2001). Mapping quantitative trait loci in oligogenic models. Biostatistics 2, 147-162. – reference: Tabor, H. K., Risch, N. J., and Myers, R. M. (2002). Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nature Reviews Genetics 3, 1-7. – reference: Nordborg, M. and Tavare, S. (2002). Linkage disequilibrium: What history has to tell us. Trends in Genetics 18, 83-90.DOI: 10.1016/S0168-9525(02)02557-X – reference: Risch, N. (2000). Searching for genetic determinants in the new millennium. Nature 405, 847-856.DOI: 10.1038/35015718 – reference: Jorde, L. B. (2000). Linkage disequilibrium and the search for complex disease genes. Genome Research 10, 1435-1444.DOI: 10.1101/gr.144500 – reference: Shaw, S. H., Carrasquillo, M. M., Kashuk, C., et al. (1998). Allele frequency distributions in pooled DNA samples: Applications to mapping complex disease genes. Genome Research 8, 111-123. – volume: 10 start-page: 1435 year: 2000 end-page: 1444 article-title: Linkage disequilibrium and the search for complex disease genes publication-title: Genome Research – volume: 24 start-page: 74 year: 2003 end-page: 82 article-title: On the use of DNA pooling to estimate haplotype frequencies publication-title: Genetic Epidemiology – volume: 2 year: 1995 – volume: 405 start-page: 847 year: 2000 end-page: 856 article-title: Searching for genetic determinants in the new millennium publication-title: Nature – volume: 3 start-page: 1 year: 2002 end-page: 7 article-title: Candidate‐gene approaches for studying complex genetic traits: Practical considerations publication-title: Nature Reviews Genetics – volume: 3 start-page: 299 year: 2002 end-page: 309 article-title: Patterns of linkage disequilibrium in the human genome publication-title: Nature Reviews Genetics – volume: 25 start-page: 149 year: 2003 end-page: 157 article-title: Optimal two‐stage genotyping in population‐based association studies publication-title: Genetic Epidemiology – volume: 11 start-page: 375 year: 1955 end-page: 386 article-title: Tests for linear trends in proportions and frequencies publication-title: Biometrics – volume: 29 start-page: 311 year: 1995 end-page: 322 article-title: A comparison of linkage disequilibrium measures for fine‐scale mapping publication-title: Genomics – volume: 18 start-page: 83 year: 2002 end-page: 90 article-title: Linkage disequilibrium: What history has to tell us publication-title: Trends in Genetics – volume: 68 start-page: 191 year: 2001 end-page: 197 article-title: Extent and distribution of linkage disequilibrium in three genomic regions publication-title: American Journal of Human Genetics – year: 1996 – volume: 58 start-page: 163 year: 2002 end-page: 170 article-title: Two‐stage designs for gene‐disease association studies publication-title: Biometrics – volume: 53 start-page: 1253 year: 1997 end-page: 1261 article-title: From genotypes to genes: Doubling the sample size publication-title: Biometrics – volume: 2 start-page: 147 year: 2001 end-page: 162 article-title: Mapping quantitative trait loci in oligogenic models publication-title: Biostatistics – volume: 55 start-page: 379 year: 1994 end-page: 390 article-title: Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases publication-title: American Journal of Human Genetics – year: 1991 – volume: 8 start-page: 111 year: 1998 end-page: 123 article-title: Allele frequency distributions in pooled DNA samples: Applications to mapping complex disease genes publication-title: Genome Research – ident: e_1_2_8_12_1 doi: 10.2307/2533494 – ident: e_1_2_8_17_1 doi: 10.1093/biostatistics/2.2.147 – ident: e_1_2_8_6_1 doi: 10.1006/geno.1995.9003 – volume-title: Genetic Data Analysis II year: 1996 ident: e_1_2_8_19_1 – ident: e_1_2_8_16_1 doi: 10.1038/nrg796 – ident: e_1_2_8_18_1 doi: 10.1002/gepi.10195 – ident: e_1_2_8_15_1 doi: 10.1101/gr.8.2.111 – volume-title: Continuous univariate distributions year: 1995 ident: e_1_2_8_7_1 – ident: e_1_2_8_13_1 doi: 10.1002/gepi.10260 – volume-title: Analysis of Human Genetic Linkage year: 1991 ident: e_1_2_8_10_1 – ident: e_1_2_8_11_1 doi: 10.1038/35015718 – ident: e_1_2_8_4_1 doi: 10.2307/3001775 – ident: e_1_2_8_8_1 doi: 10.1101/gr.144500 – ident: e_1_2_8_3_1 doi: 10.1038/nrg777 – ident: e_1_2_8_9_1 doi: 10.1016/S0168-9525(02)02557-X – ident: e_1_2_8_14_1 doi: 10.1111/j.0006-341X.2002.00163.x – ident: e_1_2_8_2_1 doi: 10.1086/316944 – volume: 55 start-page: 379 year: 1994 ident: e_1_2_8_5_1 article-title: Limits of resolution of genetic linkage studies: Implications for the positional cloning of human genetic diseases publication-title: American Journal of Human Genetics |
SSID | ssj0009502 |
Score | 2.1092422 |
Snippet | Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a... Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a... Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk.... Summary Gene–disease association studies based on case–control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk.... Summary Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk.... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 589 |
SubjectTerms | Biometrics Biometry Case-Control Studies cost effectiveness Design evaluation Epidemiology Genetic diseases Genetic Diseases, Inborn - etiology Genetic Diseases, Inborn - genetics Genetic disorders Genetic loci Genetic Markers genotyping guidelines Haplotypes Human genetics Humans Linkage Disequilibrium Medical genetics Optimal design Order statistic Power Probabilities risk Risk Factors Sample Size Simulation |
Title | Two‐Stage Designs for Gene–Disease Association Studies with Sample Size Constraints |
URI | https://api.istex.fr/ark:/67375/WNG-JLFKD8QJ-C/fulltext.pdf https://www.jstor.org/stable/3695379 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2004.00207.x https://www.ncbi.nlm.nih.gov/pubmed/15339280 https://www.proquest.com/docview/888145855 https://www.proquest.com/docview/1678569696 https://www.proquest.com/docview/66837348 https://pubmed.ncbi.nlm.nih.gov/PMC8985053 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFL2CSUjjgY8yWDY-jIR4S2XHTpw8wkoZhQ5BV61vlp04Yypqp6UVY0_7CUj8w_0SfJM0a2FIE-Itauwoub6-Pvf69BjgRRCnWjtg7puACV-YKPN1znEP3q2mbgWkIseCfn8v2h2K3igc1fwn_C9MpQ_RFNxwZpTxGie4NsXKJMdQ67soPCrTPCyNUNlGPInULcRHn4Ml_V1aCYfXXVZIPVc_aGWlupnrqcOvaPrTBXXxKlD6J7dyGfOWi1b3LowXn1txVcbt-cy007PflCD_jz3uwZ0a25JXlTPehxt20oJb1WmX31twu99IxBYtWEeYW6lEP4CD_W_Ti_Mf7qdDSzolqaQgDk4TVMW-OP_ZqbaRyJIzkZoBSbCSTAYaVY7J4OjMEjyDtDz5YlZswLD7Zn9n16-PfPBTlwhJHwXcOEtzm0ubp5zlVpgkT6nIXCoXZExoa1Mp45DSjGlLBdOGJWkSWskNDzR_CGuT6cRuArEhN1mQUpZHkUh0ZjSVQeaWpogmJjPcA7kYXpXWeuj4cl_VZV6EFlVoUTytU6jSourUA9b0PK40Qa7RZ9N5kNKHLnSr4SDAQhMWc2USe_CydKvmWfpkjHQ7GaqDvbeq96H7vhN_6qkdDzZKv2sa8igJuUw82F74oaojUKHiOGbC5YKhB8-buy504H6QntjpvFDMAZUwQnkkD579pU0UxRwFkDx4VPn15Re7RCEJYursuOLxTQMULl-9Mzn6UgqYx4kbwNCNQFQ69LWNqF6_-9h3V1v_2nEb1ivmFXIEH8Pa7GRunzhQOTNPy3DxC1DDZqY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BEaIc-AktNQW6SIibo_Xv2kdoCGmaBEESNbfV2l6XqlWCmkSUnvoISLxhn4SZteMmUKQKcbPiXcuenZ35ZnbyDcBrN0qVQmBuJ67j234SZrbKPTqDR2-KHpD7OSX0u72wNfTbo2BUtgOi_8IU_BBVwo12hrHXtMEpIb2yy8nW2miGRybOo9wIF3UElHeowbeJrz67Swy8vKAOL-eslPVc_6QVX3U7VxNEsCT8s0Xx4nWw9M_qymXUa9xW8yGcLD64qFY5rs9nST09_40L8j9J5BE8KOEte1vo42O4pcc1uFs0vPxeg_vdiiV2WoN1QroFUfQTOBh8m1xe_MCfDjVrmLqSKUNEzYgY-_LiZ6M4SWJL-sTKIkhGyWTWV0R0zPpH55pRG1LT_GI23YBh8_1gt2WXXR_sFGMhYROHm-ekuc6FzlPPybWfxHnK_QyjOTdzfKV1KkQUcJ45SnPfUYkTp3GghZd4rvI2YW08GestYDrwksxNuZOHoR-rLFFcuBl6p5DHSZZ4FojF-sq0pESnlzuRV6ERSVSSRKlhpy-NROWZBU4182tBC3KDOVuoQlIdovWWw75LuSbK54o4suCN0avqWer0mCruRCAPeh9ku9Pcb0Sf2nLXgg2jeNVAL4wDT8QWbC8UUZZGaCqjKHJ8DAcDC15Vd9F60JGQGuvJfCodxCpBSAxJFuz8ZUwYRh5xIFnwtFDsqy_GWCF2I45yXFH5agBxl6_eGR99MRzmUYwLGOAKhEajbyxE-W7vYxevnv3rxB241xp0O7Kz19vfhvWiEItKBp_D2ux0rl8gxpwlL43t-AWcR2rB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CIdB44FIGCwNmJMRbKidxnOQRVsrWreXSVeubZSfOmIraaW3F2NN-AhL_cL8EHyfNGhjShHiLGjtKjj-fm0-_A_DKj1MpjWPuKt9jLlM8c2Ue4Bm8sabGAlKWY0K_2-PbA9YZhsOy_gn_C1PwQ1QJN9wZVl_jBj_O8tomR1XrGi08tGEepkZo1DT-5C3GaYwIb332lwh4acEcXs6pVfVc_aSaqbqZy4lxYFH2p4vaxau80j-LK5edXmu12vdhtPjeolhl1JzPVDM9-40K8v8I5AHcK51b8qZA40O4occNuF20u_zegLvdiiN22oBV9HMLmuhHcLD_bXJx_sP8dKhJy1aVTInxpwnSYl-c_2wV50hkCU2kLIEkmEomfYk0x6R_dKYJNiG1rS9m0zUYtN_tb227Zc8HNzWRUOQig1vgpbnOI52ngZdrppI8pSwzsZyfeUxqnUZRHFKaeVJT5knlJWkS6ihQgS-Dx7Aynoz1OhAdBirzU-rlnLNEZkrSyM-MbeI0UZkKHIgWyyvSkhAdX-6ruAyMUKICJYrtOpmwEhWnDnjVzOOCFOQac9YNgoQ8NLpbDPo-ZpowmxslsQOvLayqZ8mTEdbbRaE46L0Xnb32biv-1BFbDqxZ3FUDA56EQZQ4sLHAoShV0FTEcewxEwyGDrys7hrdgQdCcqwn86nwjKcScuRHcmDzL2M4jwNkQHLgSYHryy82kULix9TIsYb4agAyl9fvjI--WAbzODELGJoV4BbQ1xaieLvzoWuunv7rxE2487HVFns7vd0NWC2qsLBe8BmszE7m-rlxMGfqhdUcvwAZnWl5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90Stage+Designs+for+Gene%E2%80%93Disease+Association+Studies+with+Sample+Size+Constraints&rft.jtitle=Biometrics&rft.au=Satagopan%2C+Jaya+M&rft.au=Venkatraman%2C+E.+S&rft.au=Begg%2C+Colin+B&rft.date=2004-09-01&rft.pub=Blackwell+Publishing&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=60&rft.issue=3&rft.spage=589&rft.epage=597&rft_id=info:doi/10.1111%2Fj.0006-341X.2004.00207.x&rft.externalDocID=US201500148798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |