ADP‐ribosyltransferases, an update on function and nomenclature
ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein...
Saved in:
Published in | The FEBS journal Vol. 289; no. 23; pp. 7399 - 7410 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD+ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes.
ADP‐ribosylation, the transfer of ADP‐ribose from NAD+ onto substrates, is catalyzed by proteins with an ADP‐ribosyltransferase (ART) domain. This fully reversible modification can occur as mono‐ or poly‐ADP‐ribosylation. Here, we propose an updated nomenclature for mammalian ARTs and provide a brief description of the main functions of these proteins to illustrate the increasing diversity of the cellular processes that are regulated by mono‐ and poly‐ADP‐ribosylation. |
---|---|
AbstractList | ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes. ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD+ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes. ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra-and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD + onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes. ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD⁺ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes. ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes. ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD+ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes. ADP‐ribosylation, the transfer of ADP‐ribose from NAD+ onto substrates, is catalyzed by proteins with an ADP‐ribosyltransferase (ART) domain. This fully reversible modification can occur as mono‐ or poly‐ADP‐ribosylation. Here, we propose an updated nomenclature for mammalian ARTs and provide a brief description of the main functions of these proteins to illustrate the increasing diversity of the cellular processes that are regulated by mono‐ and poly‐ADP‐ribosylation. |
Author | Timinszky, Gyula Yélamos, José Zaja, Roko Lüscher, Bernhard Dantzer, Françoise Hottiger, Michael O. Deindl, Sebastian Paschal, Bryce M. Daugherty, Matthew D. Ladurner, Andreas Lord, Christopher J. Ziegler, Mathias Matthews, Jason Pawłowski, Krzysztof Niepel, Mario Ashworth, Alan Gagné, Jean‐Philippe Grimaldi, Giovanna Mangerich, Aswin Leung, Anthony K. L. Guettler, Sebastian Pascal, John Dawson, Valina L. Cohen, Michael Hoch, Nicolas C. Smith, Susan Chang, Paul Korn, Patricia Natoli, Gioacchino Wang, Zhao‐Qi Moldovan, George‐Lucian Moss, Joel Yu, Xiaochun Bai, Peter Fehr, Anthony R. Kraus, W. Lee Dawson, Ted M. Feijs, Karla L. H. Filippov, Dmitri V. Lehtiö, Lari Matic, Ivan Ahel, Ivan Nolte, Friedrich Corda, Daniela Poirier, Guy G. Altmeyer, Matthias Nielsen, Michael L. |
AuthorAffiliation | 8 Department of Biomedical Sciences, National Research Council, Rome, Italy 26 Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Germany 3 Department of Molecular Mechanisms of Disease, University of Zurich, Switzerland 25 Max Planck Institute for Biology of Ageing, Cologne, Germany 15 Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada 23 CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK 21 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland 22 Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA 30 Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy 13 Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, |
AuthorAffiliation_xml | – name: 25 Max Planck Institute for Biology of Ageing, Cologne, Germany – name: 23 CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK – name: 13 Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA – name: 31 Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark – name: 41 Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain – name: 6 ARase Therapeutics, Cambridge, MA, USA – name: 17 Divisions of Structural Biology and Cancer Biology, The Institute of Cancer Research (ICR), London, UK – name: 10 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA – name: 27 Institute of Basic Medical Sciences, University of Oslo, Norway – name: 33 Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf, Germany – name: 12 Department of Cell and Molecular Biology, Uppsala University, Sweden – name: 22 Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA – name: 8 Department of Biomedical Sciences, National Research Council, Rome, Italy – name: 4 UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA – name: 1 Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Germany – name: 36 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA – name: 32 Ribon Therapeutics, Cambridge, MA, USA – name: 28 Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA – name: 43 Department of Biomedicine, University of Bergen, Norway – name: 3 Department of Molecular Mechanisms of Disease, University of Zurich, Switzerland – name: 42 School of Life Sciences, Westlake University, Hangzhou, China – name: 16 National Research Council, Naples, Italy – name: 2 Sir William Dunn School of Pathology, University of Oxford, UK – name: 5 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary – name: 11 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA – name: 39 Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany – name: 7 Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA – name: 15 Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada – name: 37 Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, NY, USA – name: 14 Leiden Institute of Chemistry, Leiden University, The Netherlands – name: 9 CNRS, BSC-UMR7242, Illkirch, France – name: 20 Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany – name: 29 National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA – name: 30 Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy – name: 26 Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Germany – name: 38 Lendület Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Reserach Network (ELKH), Szeged, Hungary – name: 40 Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Germany – name: 19 Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA – name: 21 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland – name: 34 Biochemistry and Molecular Medicine, Université de Montréal, Canada – name: 24 Department of Biology, University of Konstanz, Germany – name: 18 Department of Biochemistry, University of São Paulo, Brazil – name: 35 Department of Biochemistry and Molecular Genetics, University of Virgina, Charlottesville, VA, USA |
Author_xml | – sequence: 1 givenname: Bernhard orcidid: 0000-0002-9622-8709 surname: Lüscher fullname: Lüscher, Bernhard email: luescher@rwth-aachen.de organization: RWTH Aachen University – sequence: 2 givenname: Ivan orcidid: 0000-0002-9446-3756 surname: Ahel fullname: Ahel, Ivan organization: University of Oxford – sequence: 3 givenname: Matthias surname: Altmeyer fullname: Altmeyer, Matthias organization: University of Zurich – sequence: 4 givenname: Alan surname: Ashworth fullname: Ashworth, Alan organization: UCSF Helen Diller Family Comprehensive Cancer Center – sequence: 5 givenname: Peter surname: Bai fullname: Bai, Peter organization: University of Debrecen – sequence: 6 givenname: Paul surname: Chang fullname: Chang, Paul organization: ARase Therapeutics – sequence: 7 givenname: Michael surname: Cohen fullname: Cohen, Michael organization: Oregon Health and Science University – sequence: 8 givenname: Daniela surname: Corda fullname: Corda, Daniela organization: National Research Council – sequence: 9 givenname: Françoise surname: Dantzer fullname: Dantzer, Françoise organization: CNRS, BSC‐UMR7242 – sequence: 10 givenname: Matthew D. surname: Daugherty fullname: Daugherty, Matthew D. organization: University of California San Diego – sequence: 11 givenname: Ted M. surname: Dawson fullname: Dawson, Ted M. organization: Johns Hopkins University School of Medicine – sequence: 12 givenname: Valina L. surname: Dawson fullname: Dawson, Valina L. organization: Johns Hopkins University School of Medicine – sequence: 13 givenname: Sebastian surname: Deindl fullname: Deindl, Sebastian organization: Uppsala University – sequence: 14 givenname: Anthony R. surname: Fehr fullname: Fehr, Anthony R. organization: The University of Kansas – sequence: 15 givenname: Karla L. H. surname: Feijs fullname: Feijs, Karla L. H. organization: RWTH Aachen University – sequence: 16 givenname: Dmitri V. surname: Filippov fullname: Filippov, Dmitri V. organization: Leiden University – sequence: 17 givenname: Jean‐Philippe surname: Gagné fullname: Gagné, Jean‐Philippe organization: Laval University – sequence: 18 givenname: Giovanna surname: Grimaldi fullname: Grimaldi, Giovanna organization: National Research Council – sequence: 19 givenname: Sebastian surname: Guettler fullname: Guettler, Sebastian organization: The Institute of Cancer Research (ICR) – sequence: 20 givenname: Nicolas C. surname: Hoch fullname: Hoch, Nicolas C. organization: University of São Paulo – sequence: 21 givenname: Michael O. surname: Hottiger fullname: Hottiger, Michael O. organization: University of Zurich – sequence: 22 givenname: Patricia surname: Korn fullname: Korn, Patricia organization: RWTH Aachen University – sequence: 23 givenname: W. Lee surname: Kraus fullname: Kraus, W. Lee organization: University of Texas Southwestern Medical Center – sequence: 24 givenname: Andreas surname: Ladurner fullname: Ladurner, Andreas organization: Ludwig‐Maximilians‐University of Munich – sequence: 25 givenname: Lari surname: Lehtiö fullname: Lehtiö, Lari organization: University of Oulu – sequence: 26 givenname: Anthony K. L. surname: Leung fullname: Leung, Anthony K. L. organization: Johns Hopkins University – sequence: 27 givenname: Christopher J. surname: Lord fullname: Lord, Christopher J. organization: The Institute of Cancer Research – sequence: 28 givenname: Aswin surname: Mangerich fullname: Mangerich, Aswin organization: University of Konstanz – sequence: 29 givenname: Ivan surname: Matic fullname: Matic, Ivan organization: University of Cologne – sequence: 30 givenname: Jason surname: Matthews fullname: Matthews, Jason organization: University of Oslo – sequence: 31 givenname: George‐Lucian surname: Moldovan fullname: Moldovan, George‐Lucian organization: The Pennsylvania State University College of Medicine – sequence: 32 givenname: Joel surname: Moss fullname: Moss, Joel organization: National Institutes of Health – sequence: 33 givenname: Gioacchino surname: Natoli fullname: Natoli, Gioacchino organization: European Institute of Oncology (IEO) – sequence: 34 givenname: Michael L. surname: Nielsen fullname: Nielsen, Michael L. organization: University of Copenhagen – sequence: 35 givenname: Mario orcidid: 0000-0003-1415-6295 surname: Niepel fullname: Niepel, Mario organization: Ribon Therapeutics – sequence: 36 givenname: Friedrich surname: Nolte fullname: Nolte, Friedrich organization: Universitätsklinikum Hamburg‐Eppendorf – sequence: 37 givenname: John surname: Pascal fullname: Pascal, John organization: Université de Montréal – sequence: 38 givenname: Bryce M. surname: Paschal fullname: Paschal, Bryce M. organization: University of Virginia – sequence: 39 givenname: Krzysztof surname: Pawłowski fullname: Pawłowski, Krzysztof organization: University of Texas Southwestern Medical Center – sequence: 40 givenname: Guy G. surname: Poirier fullname: Poirier, Guy G. organization: Laval University – sequence: 41 givenname: Susan surname: Smith fullname: Smith, Susan organization: New York University School of Medicine – sequence: 42 givenname: Gyula surname: Timinszky fullname: Timinszky, Gyula organization: Eötvös Loránd Research Network (ELKH) – sequence: 43 givenname: Zhao‐Qi surname: Wang fullname: Wang, Zhao‐Qi organization: Friedrich‐Schiller University of Jena – sequence: 44 givenname: José surname: Yélamos fullname: Yélamos, José organization: Hospital del Mar Medical Research Institute (IMIM) – sequence: 45 givenname: Xiaochun surname: Yu fullname: Yu, Xiaochun organization: Westlake University – sequence: 46 givenname: Roko surname: Zaja fullname: Zaja, Roko organization: RWTH Aachen University – sequence: 47 givenname: Mathias surname: Ziegler fullname: Ziegler, Mathias organization: University of Bergen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34323016$$D View this record in MEDLINE/PubMed https://hal.science/hal-03442510$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497477$$DView record from Swedish Publication Index |
BookMark | eNqNkstu1DAUhi1URC-w4QEgEhuKOsV2fN0gpTeKNBJIXMTOchyndZWxBztpNTsegWfkSXBIO6IjhPDGlv39v845_nfBlg_eAvAUwUOU1-vW1ukQMUTwA7CDOMEzwqjYWp_J122wm9IVhCUlUj4C2yUpcQkR2wFVdfLh5_cf0dUhrbo-ap9aG3Wy6aDQvhiWje5tEXzRDt70Lh-0bwofFtabTvdDtI_Bw1Z3yT653ffA57PTT8fns_n7t--Oq_nMMIJzGYI02CCJCeKYNUzAmui6JFa0ja05ZAw30tCaGNxS1DaQCSpxU5OSGSlbWu6Bg8k33djlUKtldAsdVypop07cl0qFeKGGQRHJCecZfzPhmV3Yxlifm-vuqe6_eHepLsK1khBzSXE22J8MLjdk59VcjXewJARTBK9RZp9PrIku9c4rH6JWCAqKs58ULBMvb8uJ4dtgU68WLhnbddrbMCSFBUKSQ8n-A6UcUyygEBl9sYFehSH6_A0K5ynAEnI4Vvfsz1Gsm7lLQQZe3ZUfUoq2XSMIqjFiaoyY-h2xDMMN2Lhej9HIY3Td3yVokty4zq7-Ya7OTo8-Tppfjdrgtw |
CitedBy_id | crossref_primary_10_1007_s00018_023_04717_8 crossref_primary_10_1073_pnas_2026494119 crossref_primary_10_1093_nar_gkad514 crossref_primary_10_1021_acs_jproteome_4c00890 crossref_primary_10_26508_lsa_202302505 crossref_primary_10_1016_j_heliyon_2024_e27865 crossref_primary_10_1016_j_jmb_2023_168434 crossref_primary_10_18632_oncotarget_28277 crossref_primary_10_1002_cbic_202400440 crossref_primary_10_1038_s42003_025_07901_7 crossref_primary_10_1515_hsz_2024_0057 crossref_primary_10_32604_biocell_2022_022713 crossref_primary_10_1002_bies_202100240 crossref_primary_10_1016_j_vaccine_2024_03_006 crossref_primary_10_1042_BST20220749 crossref_primary_10_1126_sciadv_adf7175 crossref_primary_10_1093_nar_gkae059 crossref_primary_10_1158_2767_9764_CRC_23_0086 crossref_primary_10_1016_j_celrep_2023_113113 crossref_primary_10_1021_acs_orglett_3c01554 crossref_primary_10_3390_ijms232113200 crossref_primary_10_1016_j_isci_2023_106444 crossref_primary_10_1093_nar_gkac711 crossref_primary_10_1016_j_pep_2024_106580 crossref_primary_10_3390_cells11081284 crossref_primary_10_3390_cancers14030687 crossref_primary_10_1038_s41467_024_45237_8 crossref_primary_10_3390_cancers14174162 crossref_primary_10_1016_j_tig_2024_08_009 crossref_primary_10_3390_toxins16110467 crossref_primary_10_1016_j_arr_2024_102646 crossref_primary_10_3390_cancers14215210 crossref_primary_10_1126_sciadv_abq0414 crossref_primary_10_1016_j_chembiol_2022_11_012 crossref_primary_10_1038_s41586_024_08102_8 crossref_primary_10_1021_acs_chemrev_2c00851 crossref_primary_10_1016_j_tibs_2024_08_006 crossref_primary_10_1172_JCI158630 crossref_primary_10_1017_erm_2024_14 crossref_primary_10_1002_ange_202313317 crossref_primary_10_1017_erm_2024_17 crossref_primary_10_3389_fcell_2022_831741 crossref_primary_10_3389_fcell_2022_941356 crossref_primary_10_1111_jipb_13714 crossref_primary_10_1038_s41467_023_42939_3 crossref_primary_10_3390_cancers14122894 crossref_primary_10_1016_j_virol_2023_109845 crossref_primary_10_1038_s41598_023_35076_w crossref_primary_10_1016_j_molcel_2023_04_009 crossref_primary_10_1111_febs_16875 crossref_primary_10_3390_ijms23020920 crossref_primary_10_1007_s11262_024_02050_1 crossref_primary_10_1134_S1607672922700028 crossref_primary_10_1016_j_plipres_2021_101117 crossref_primary_10_1038_s44318_025_00391_7 crossref_primary_10_1021_jasms_3c00129 crossref_primary_10_1093_nar_gkad066 crossref_primary_10_3390_cancers15143689 crossref_primary_10_1038_s41586_024_07217_2 crossref_primary_10_1016_j_bmc_2021_116511 crossref_primary_10_1089_ars_2023_0349 crossref_primary_10_1002_anie_202411203 crossref_primary_10_1080_14756366_2023_2254012 crossref_primary_10_1016_j_semcancer_2023_11_009 crossref_primary_10_1038_s44321_025_00214_6 crossref_primary_10_3389_fmolb_2022_1073797 crossref_primary_10_1111_febs_16907 crossref_primary_10_3390_ijms241915028 crossref_primary_10_3390_biom12030443 crossref_primary_10_1128_jvi_00885_23 crossref_primary_10_1590_1678_4685_gmb_2023_0357 crossref_primary_10_1161_ATVBAHA_124_321522 crossref_primary_10_1007_s00018_022_04290_6 crossref_primary_10_3390_ijms24109042 crossref_primary_10_1073_pnas_2309047120 crossref_primary_10_3389_fragi_2023_1161814 crossref_primary_10_1002_cbic_202300797 crossref_primary_10_1017_erm_2024_13 crossref_primary_10_1042_BCJ20230230 crossref_primary_10_1126_sciadv_adi2687 crossref_primary_10_1186_s12967_024_05583_z crossref_primary_10_1038_s41580_024_00752_w crossref_primary_10_3390_ijms232214075 crossref_primary_10_1042_BCJ20210722 crossref_primary_10_1073_pnas_2213857120 crossref_primary_10_1128_jvi_01313_24 crossref_primary_10_1021_acs_jmedchem_2c01460 crossref_primary_10_1021_acs_orglett_2c01300 crossref_primary_10_1016_j_bbcan_2024_189221 crossref_primary_10_1038_s44318_024_00125_1 crossref_primary_10_1016_j_dnarep_2024_103690 crossref_primary_10_1073_pnas_2302083120 crossref_primary_10_3390_molecules28166061 crossref_primary_10_1093_nar_gkaf069 crossref_primary_10_1007_s12104_022_10110_6 crossref_primary_10_3390_cancers15215114 crossref_primary_10_1016_j_jbc_2023_105096 crossref_primary_10_1155_2022_6881322 crossref_primary_10_1002_anie_202313317 crossref_primary_10_1172_JCI181062 crossref_primary_10_1007_s00018_025_05586_z crossref_primary_10_1093_nar_gkac1235 crossref_primary_10_3390_ijms252212445 crossref_primary_10_3389_fcell_2022_864101 crossref_primary_10_1083_jcb_202101021 crossref_primary_10_1002_ange_202411203 crossref_primary_10_1016_j_reth_2024_01_011 crossref_primary_10_3390_v14122744 crossref_primary_10_3389_fimmu_2025_1537615 crossref_primary_10_3390_ijms221910829 crossref_primary_10_1111_febs_70039 crossref_primary_10_1007_s00018_022_04235_z crossref_primary_10_1038_s41467_024_51972_9 crossref_primary_10_1038_s41598_024_54123_8 crossref_primary_10_1111_febs_70035 crossref_primary_10_3390_ijms242316798 crossref_primary_10_1371_journal_pone_0316476 crossref_primary_10_1038_s41467_024_47222_7 crossref_primary_10_3390_biomedicines12071617 crossref_primary_10_1093_genetics_iyad208 crossref_primary_10_1021_jacs_3c03771 crossref_primary_10_7554_eLife_71420 crossref_primary_10_1007_s10565_022_09739_9 crossref_primary_10_1016_j_cell_2023_08_030 crossref_primary_10_3390_pathogens11010094 crossref_primary_10_3390_pathogens12020303 crossref_primary_10_1016_j_tibs_2024_12_013 crossref_primary_10_3390_cells10112927 crossref_primary_10_3390_pathogens12050674 crossref_primary_10_1038_s42003_024_06811_4 crossref_primary_10_1038_s44318_024_00126_0 crossref_primary_10_1111_bph_17305 crossref_primary_10_1002_cbic_202300865 crossref_primary_10_3390_cells12232728 crossref_primary_10_1002_bies_202400087 crossref_primary_10_3390_biom12111688 crossref_primary_10_1002_minf_202300183 crossref_primary_10_3390_biom14121556 crossref_primary_10_3390_pathogens12070964 crossref_primary_10_1093_nar_gkad1119 crossref_primary_10_1080_07391102_2023_2297821 crossref_primary_10_1038_s41467_024_50429_3 crossref_primary_10_1042_BST20220501 crossref_primary_10_1093_narcan_zcad043 crossref_primary_10_31857_S2686738922600959 crossref_primary_10_1002_bdr2_2089 crossref_primary_10_1016_j_jbc_2023_105397 crossref_primary_10_26508_lsa_202201455 crossref_primary_10_1186_s13321_024_00832_1 crossref_primary_10_1126_sciadv_adm6812 crossref_primary_10_1021_acs_jmedchem_2c00281 crossref_primary_10_1021_acs_jmedchem_3c02451 crossref_primary_10_1042_BCJ20210280 crossref_primary_10_1042_BSR20212489 crossref_primary_10_3390_cells11233932 crossref_primary_10_3390_toxins16050208 crossref_primary_10_1016_j_ejmech_2025_117397 crossref_primary_10_1016_j_celrep_2024_114234 crossref_primary_10_3390_pathogens12030457 crossref_primary_10_1021_acs_jmedchem_3c01764 crossref_primary_10_1038_s41467_024_55666_0 |
Cites_doi | 10.1074/jbc.M114.630160 10.1038/nchembio.2568 10.1038/s41571-018-0055-6 10.1093/nar/gkv1383 10.1016/j.gde.2019.04.013 10.1146/annurev.bi.54.070185.000445 10.1016/j.chembiol.2021.02.010 10.1021/acsmedchemlett.8b00429 10.1093/nar/gkab136 10.1016/j.celrep.2020.108176 10.1016/j.tibs.2009.12.003 10.1074/jbc.M109.077834 10.1016/j.chembiol.2018.09.011 10.1111/febs.15518 10.7717/peerj.11051 10.3390/cells10020313 10.1111/imm.13332 10.1128/MMBR.00040-05 10.1038/s41598-017-14156-8 10.1074/jbc.270.7.3247 10.1016/j.tcb.2019.06.005 10.1038/s41467-019-08859-x 10.1016/j.bcp.2019.07.004 10.3390/cancers10120487 10.1158/0008-5472.CAN-13-1701 10.1101/gad.334284.119 10.1038/s41598-019-55240-5 10.1038/s41586-018-0750-6 10.1016/j.semcdb.2016.09.010 10.1016/j.molcel.2008.08.009 10.1016/j.bmcl.2017.04.089 10.1093/nar/gky995 10.1038/s41467-020-18761-6 10.1111/febs.12320 10.1038/s41589-019-0362-y 10.2174/0929867043455611 10.1038/s41598-020-69229-y 10.1007/s00726-010-0676-2 10.1146/annurev.bi.46.070177.000523 10.1146/annurev-biochem-060815-014935 10.1016/j.molcel.2015.06.012 10.1038/nrm3376 10.1016/j.semcdb.2016.09.009 10.1074/jbc.274.25.17860 10.1126/science.aaa7227 10.1016/j.molcel.2017.04.028 10.1111/bph.14038 10.1021/acs.chemrev.7b00122 10.1021/jasms.0c00040 10.1002/cbic.202100047 10.1126/science.282.5393.1484 10.1016/j.celrep.2018.07.048 10.7554/eLife.60480 10.1101/gad.334433.119 10.1101/gad.291518.116 10.3390/cells10030680 10.1126/sciadv.abc0418 10.1042/BST20180416 10.1371/journal.pone.0037352 10.1016/j.bmcl.2018.04.056 10.1038/ncomms5426 10.1007/s00018-019-03366-0 10.1074/mcp.TIR119.001315 10.1126/science.aam7344 10.1038/nbt.2121 10.1016/j.chembiol.2016.08.012 10.1101/gad.334631.119 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 3HK 1XC VOOES 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1111/febs.16142 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic NORA - Norwegian Open Research Archives Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts AGRICOLA MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 7410 |
ExternalDocumentID | oai_DiVA_org_uu_497477 PMC9027952 oai_HAL_hal_03442510v1 10852_90986 34323016 10_1111_febs_16142 FEBS16142 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Institute of Biochemistry and Molecular Biology of RWTH Aachen University – fundername: Intramural Research Program, NIH/NHLBI – fundername: German Research Foundation funderid: LU466/16‐2 – fundername: Wellcome Trust grantid: 210634/Z/18/Z – fundername: Cancer Research UK grantid: 24439 – fundername: NIGMS NIH HHS grantid: R35 GM133633 – fundername: NIGMS NIH HHS grantid: R35 GM138029 – fundername: NIGMS NIH HHS grantid: P20 GM113117 – fundername: Cancer Research UK grantid: 28286 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 3HK AAUGY AAVGM ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS AKALU PQEST 1XC VOOES 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c6422-484d2c19241726d680b4ab34e8fdeb70662d9c5b4c2f51fd068592db436c99f53 |
IEDL.DBID | DR2 |
ISSN | 1742-464X 1742-4658 |
IngestDate | Thu Aug 21 06:47:53 EDT 2025 Thu Aug 21 18:38:34 EDT 2025 Fri Jun 20 06:32:02 EDT 2025 Sat Apr 29 05:43:45 EDT 2023 Fri Jul 11 18:39:10 EDT 2025 Fri Jul 11 00:01:53 EDT 2025 Fri Jul 25 19:43:56 EDT 2025 Mon Jul 21 06:03:05 EDT 2025 Tue Jul 01 03:07:14 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Wed Jan 22 16:26:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | PARP MARylation posttranslational modification ADP-ribosylation PARylation |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6422-484d2c19241726d680b4ab34e8fdeb70662d9c5b4c2f51fd068592db436c99f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 BL wrote the first version of the manuscript and designed the figures. All authors commented on several version of the manuscript. Author contributions |
ORCID | 0000-0003-1415-6295 0000-0002-9622-8709 0000-0002-9446-3756 0000-0002-3614-751X 0000-0002-4869-1424 0000-0003-1195-1496 0000-0002-8786-2986 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.16142 |
PMID | 34323016 |
PQID | 2747030701 |
PQPubID | 28478 |
PageCount | 7410 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_497477 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9027952 hal_primary_oai_HAL_hal_03442510v1 cristin_nora_10852_90986 proquest_miscellaneous_2811970966 proquest_miscellaneous_2572528088 proquest_journals_2747030701 pubmed_primary_34323016 crossref_primary_10_1111_febs_16142 crossref_citationtrail_10_1111_febs_16142 wiley_primary_10_1111_febs_16142_FEBS16142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | 2006; 70 2017; 7 2021; 22 2021; 288 2019; 55 2019; 10 2018; 564 2019; 15 2015; 384 2019; 18 2008; 32 2020; 11 2015; 348 2020; 10 2013; 280 2012; 13 2017; 355 2019; 167 2017; 31 2020; 6 2014; 5 2021; 32 2015; 290 2016; 85 2019; 29 1985; 54 1998; 282 2016; 44 2021; 9 2021; 49 2017; 63 2015; 58 2018; 28 2019; 9 2010; 35 2017; 27 2017; 66 2010; 285 2020; 34 2017; 174 1977; 46 2020; 77 2020; 32 1995; 270 2012; 30 2018; 25 2018; 24 2004; 11 2021; 10 2021 2018; 118 2020 2019; 47 1999; 274 2011; 41 2016; 63 2014; 74 2012; 7 2018; 10 2018; 15 2018; 14 2016; 23 e_1_2_11_70_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 Aravind L (e_1_2_11_20_1) 2015; 384 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 Cardamone MD (e_1_2_11_47_1) 2020 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 11 start-page: 857 year: 2004 end-page: 872 article-title: Ecto‐ADP‐ribosyltransferases (ARTs): emerging actors in cell communication and signaling publication-title: Curr Med Chem – volume: 24 start-page: 1916 year: 2018 end-page: 1929 article-title: Proteomic characterization of the heart and skeletal muscle reveals widespread arginine ADP‐ribosylation by the ARTC1 ectoenzyme publication-title: Cell Rep – volume: 13 start-page: 411 year: 2012 end-page: 424 article-title: New insights into the molecular and cellular functions of poly(ADP‐ribose) and PARPs publication-title: Nat Rev Mol Cell Biol – volume: 18 start-page: 1010 year: 2019 end-page: 1026 article-title: An advanced strategy for comprehensive profiling of ADP‐ribosylation sites using mass spectrometry‐based proteomics publication-title: Mol Cell Proteomics – volume: 118 start-page: 1092 year: 2018 end-page: 1136 article-title: ADP‐ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease publication-title: Chem Rev – year: 2020 article-title: ADP‐ribosylation of mitochondrial proteins is mediated by neuralized‐like protein 4 (NEURL4) publication-title: bioRxiv – volume: 34 start-page: 302 year: 2020 end-page: 320 article-title: PARPs and ADP‐ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis publication-title: Genes Dev – year: 2021 article-title: ADP‐ribosylation in evasion, promotion and exacerbation of immune responses publication-title: Immunology – volume: 70 start-page: 789 year: 2006 end-page: 829 article-title: Nuclear ADP‐ribosylation reactions in mammalian cells: where are we today and where are we going? publication-title: Microbiol Mol Biol Rev – volume: 34 start-page: 263 year: 2020 end-page: 284 article-title: (ADP‐ribosyl)hydrolases: structure, function, and biology publication-title: Genes Dev – volume: 23 start-page: 1251 year: 2016 end-page: 1260 article-title: Small‐molecule chemical probe rescues cells from mono‐ADP‐ribosyltransferase ARTD10/PARP10‐induced apoptosis and sensitizes cancer cells to DNA damage publication-title: Cell Chem Biol – volume: 564 start-page: 278 year: 2018 end-page: 282 article-title: NP220 mediates silencing of unintegrated retroviral DNA publication-title: Nature – volume: 9 year: 2021 article-title: A novel predicted ADP‐ribosyltransferase‐like family conserved in eukaryotic evolution publication-title: PeerJ – volume: 54 start-page: 73 year: 1985 end-page: 100 article-title: ADP‐ribosylation publication-title: Annu Rev Biochem – volume: 355 start-page: 1152 year: 2017 end-page: 1158 article-title: PARP inhibitors: synthetic lethality in the clinic publication-title: Science – volume: 58 start-page: 911 year: 2015 end-page: 924 article-title: The promise of proteomics for the study of ADP‐ribosylation publication-title: Mol Cell – volume: 6 year: 2020 article-title: Structural insights into ADP‐ribosylation of ubiquitin by Deltex family E3 ubiquitin ligases publication-title: Sci Adv – volume: 85 start-page: 431 year: 2016 end-page: 454 article-title: Macrodomains: structure, function, evolution, and catalytic activities publication-title: Annu Rev Biochem – volume: 270 start-page: 3247 year: 1995 end-page: 3254 article-title: Role of glutamic acid 988 of human poly‐ADP‐ribose polymerase in polymer formation. Evidence for active site similarities to the ADP‐ribosylating toxins publication-title: J Biol Chem – volume: 15 start-page: 564 year: 2018 end-page: 576 article-title: Synthetic lethal therapies for cancer: what's next after PARP inhibitors? publication-title: Nat Rev Clin Oncol – volume: 7 year: 2012 article-title: PARP16/ARTD15 is a novel endoplasmic‐reticulum‐associated mono‐ADP‐ribosyltransferase that interacts with, and modifies karyopherin‐ss1 publication-title: PLoS One – volume: 9 start-page: 19130 year: 2019 article-title: Fragment‐based screening identifies molecules targeting the substrate‐binding ankyrin repeat domains of tankyrase publication-title: Sci Rep – volume: 31 start-page: 101 year: 2017 end-page: 126 article-title: PARPs and ADP‐ribosylation: recent advances linking molecular functions to biological outcomes publication-title: Genes Dev – year: 2021 article-title: A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants publication-title: Cell Chem Biol – volume: 47 start-page: D427 year: 2019 end-page: D432 article-title: The Pfam protein families database in 2019 publication-title: Nucleic Acids Res – volume: 41 start-page: 257 year: 2011 end-page: 269 article-title: ADP‐ribosylation of arginine publication-title: Amino Acids – volume: 10 start-page: 487 year: 2018 article-title: Role of BRCA mutations in cancer treatment with poly(ADP‐ribose) polymerase (PARP) inhibitors publication-title: Cancers (Basel) – volume: 288 start-page: 2131 year: 2021 end-page: 2142 article-title: Progress and outlook in studying the substrate specificities of PARPs and related enzymes publication-title: FEBS J – volume: 66 start-page: 503 year: 2017 end-page: 516 article-title: Ubiquitin modification by the E3 ligase/ADP‐ribosyltransferase Dtx3L/Parp9 publication-title: Mol Cell – volume: 30 start-page: 283 year: 2012 end-page: 288 article-title: Family‐wide chemical profiling and structural analysis of PARP and tankyrase inhibitors publication-title: Nat Biotechnol – volume: 47 start-page: 357 year: 2019 end-page: 370 article-title: ADP‐ribosylation and intracellular traffic: an emerging role for PARP enzymes publication-title: Biochem Soc Trans – volume: 280 start-page: 3576 year: 2013 end-page: 3593 article-title: Tankyrases as drug targets publication-title: FEBS J – volume: 29 start-page: 740 year: 2019 end-page: 751 article-title: Defining and modulating ‘BRCAness’ publication-title: Trends Cell Biol – volume: 11 start-page: 4940 year: 2020 article-title: TASOR is a pseudo‐PARP that directs HUSH complex assembly and epigenetic transposon control publication-title: Nat Commun – volume: 46 start-page: 95 year: 1977 end-page: 116 article-title: Poly(ADP‐ribose) and ADP‐ribosylation of proteins publication-title: Annu Rev Biochem – volume: 74 start-page: 31 year: 2014 end-page: 37 article-title: Targeting PARP‐1 allosteric regulation offers therapeutic potential against cancer publication-title: Cancer Res – volume: 10 year: 2021 article-title: Chemical genetics and proteome‐wide site mapping reveal cysteine MARylation by PARP‐7 on immune‐relevant protein targets publication-title: Elife – volume: 77 start-page: 19 year: 2020 end-page: 33 article-title: Poly(ADP‐ribose) polymerase enzymes and the maintenance of genome integrity publication-title: Cell Mol Life Sci – volume: 167 start-page: 86 year: 2019 end-page: 96 article-title: Overview of the mammalian ADP‐ribosyl‐transferases clostridia toxin‐like (ARTCs) family publication-title: Biochem Pharmacol – volume: 34 start-page: 321 year: 2020 end-page: 340 article-title: The role of ADP‐ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism publication-title: Genes Dev – volume: 285 start-page: 8054 year: 2010 end-page: 8060 article-title: PARP‐3 is a mono‐ADP‐ribosylase that activates PARP‐1 in the absence of DNA publication-title: J Biol Chem – volume: 274 start-page: 17860 year: 1999 end-page: 17868 article-title: PARP‐2, a novel mammalian DNA damage‐dependent poly(ADP‐ribose) polymerase publication-title: J Biol Chem – volume: 10 start-page: 313 year: 2021 article-title: MARTs and MARylation in the cytosol: biological functions, mechanisms of action, and therapeutic potential publication-title: Cells – volume: 290 start-page: 7336 year: 2015 end-page: 7344 article-title: Structural basis for lack of ADP‐ribosyltransferase activity in poly(ADP‐ribose) polymerase‐13/zinc finger antiviral protein publication-title: J Biol Chem – volume: 10 start-page: 680 year: 2021 article-title: Uncovering the invisible: mono‐ADP‐ribosylation moved into the spotlight publication-title: Cells – volume: 15 start-page: 937 year: 2019 end-page: 944 article-title: Development of targeted protein degradation therapeutics publication-title: Nat Chem Biol – volume: 35 start-page: 208 year: 2010 end-page: 219 article-title: Toward a unified nomenclature for mammalian ADP‐ribosyltransferases publication-title: Trends Biochem Sci – volume: 282 start-page: 1484 year: 1998 end-page: 1487 article-title: Tankyrase, a poly(ADP‐ribose) polymerase at human telomeres publication-title: Science – volume: 32 start-page: 57 year: 2008 end-page: 69 article-title: Substrate‐assisted catalysis by PARP10 limits its activity to mono‐ADP‐ribosylation publication-title: Mol Cell – volume: 55 start-page: 1 year: 2019 end-page: 10 article-title: Role of H3K9me3 heterochromatin in cell identity establishment and maintenance publication-title: Curr Opin Genet Dev – volume: 174 start-page: 4611 year: 2017 end-page: 4636 article-title: Regulation of Wnt/beta‐catenin signalling by tankyrase‐dependent poly(ADP‐ribosyl)ation and scaffolding publication-title: Br J Pharmacol – volume: 14 start-page: 236 year: 2018 end-page: 243 article-title: Insights into the biogenesis, function, and regulation of ADP‐ribosylation publication-title: Nat Chem Biol – volume: 63 start-page: 114 year: 2017 end-page: 122 article-title: Cell fate regulation by chromatin ADP‐ribosylation publication-title: Semin Cell Dev Biol – volume: 10 start-page: 1182 year: 2019 article-title: Emerging roles of eraser enzymes in the dynamic control of protein ADP‐ribosylation publication-title: Nat Commun – volume: 25 start-page: 1547 year: 2018 end-page: 1553 article-title: A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity publication-title: Cell Chem Biol – volume: 384 start-page: 3 year: 2015 end-page: 32 article-title: The natural history of ADP‐ribosyltransferases and the ADP‐ribosylation system publication-title: Curr Top Microbiol Immunol – volume: 28 start-page: 2050 year: 2018 end-page: 2054 article-title: Design, synthesis and evaluation of potent and selective inhibitors of mono‐(ADP‐ribosyl)transferases PARP10 and PARP14 publication-title: Bioorg Med Chem Lett – volume: 32 start-page: 157 year: 2021 end-page: 168 article-title: Gas‐phase fragmentation of ADP‐ribosylated peptides: arginine‐specific side‐chain losses and their implication in database searches publication-title: J Am Soc Mass Spectrom – volume: 348 start-page: 1481 year: 2015 end-page: 1485 article-title: GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position‐effect variegation in human cells publication-title: Science – volume: 7 start-page: 14035 year: 2017 article-title: PARP1‐produced poly‐ADP‐ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions publication-title: Sci Rep – volume: 32 year: 2020 article-title: Mapping physiological ADP‐ribosylation using activated ion electron transfer dissociation publication-title: Cell Rep – volume: 63 start-page: 92 year: 2016 end-page: 101 article-title: Expanding functions of ADP‐ribosylation in the maintenance of genome integrity publication-title: Semin Cell Dev Biol – volume: 44 start-page: 993 year: 2016 end-page: 1006 article-title: Readers of poly(ADP‐ribose): designed to be fit for purpose publication-title: Nucleic Acids Res – volume: 27 start-page: 2907 year: 2017 end-page: 2911 article-title: Design and synthesis of potent inhibitors of the mono(ADP‐ribosyl)transferase, PARP14 publication-title: Bioorg Med Chem Lett – volume: 49 start-page: 3634 year: 2021 end-page: 3650 article-title: ADP‐ribosylation of RNA and DNA: from in vitro characterization to in vivo function publication-title: Nucleic Acids Res – volume: 10 start-page: 12357 year: 2020 article-title: A FRET‐based high‐throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases publication-title: Sci Rep – volume: 10 start-page: 74 year: 2019 end-page: 79 article-title: Rational design of cell‐active inhibitors of PARP10 publication-title: ACS Med Chem Lett – volume: 22 start-page: 2107 year: 2021 end-page: 2110 article-title: Targeted degradation of PARP14 using a heterobifunctional small molecule publication-title: ChemBioChem – volume: 5 start-page: 4426 year: 2014 article-title: Family‐wide analysis of poly(ADP‐ribose) polymerase activity publication-title: Nat Commun – ident: e_1_2_11_39_1 doi: 10.1074/jbc.M114.630160 – ident: e_1_2_11_4_1 doi: 10.1038/nchembio.2568 – ident: e_1_2_11_55_1 doi: 10.1038/s41571-018-0055-6 – ident: e_1_2_11_13_1 doi: 10.1093/nar/gkv1383 – ident: e_1_2_11_46_1 doi: 10.1016/j.gde.2019.04.013 – ident: e_1_2_11_28_1 doi: 10.1146/annurev.bi.54.070185.000445 – ident: e_1_2_11_65_1 doi: 10.1016/j.chembiol.2021.02.010 – ident: e_1_2_11_61_1 doi: 10.1021/acsmedchemlett.8b00429 – ident: e_1_2_11_3_1 doi: 10.1093/nar/gkab136 – ident: e_1_2_11_40_1 doi: 10.1016/j.celrep.2020.108176 – ident: e_1_2_11_21_1 doi: 10.1016/j.tibs.2009.12.003 – ident: e_1_2_11_38_1 doi: 10.1074/jbc.M109.077834 – ident: e_1_2_11_63_1 doi: 10.1016/j.chembiol.2018.09.011 – ident: e_1_2_11_10_1 doi: 10.1111/febs.15518 – ident: e_1_2_11_19_1 doi: 10.7717/peerj.11051 – ident: e_1_2_11_9_1 doi: 10.3390/cells10020313 – ident: e_1_2_11_24_1 doi: 10.1111/imm.13332 – ident: e_1_2_11_29_1 doi: 10.1128/MMBR.00040-05 – ident: e_1_2_11_37_1 doi: 10.1038/s41598-017-14156-8 – ident: e_1_2_11_33_1 doi: 10.1074/jbc.270.7.3247 – ident: e_1_2_11_57_1 doi: 10.1016/j.tcb.2019.06.005 – ident: e_1_2_11_12_1 doi: 10.1038/s41467-019-08859-x – ident: e_1_2_11_23_1 doi: 10.1016/j.bcp.2019.07.004 – ident: e_1_2_11_54_1 doi: 10.3390/cancers10120487 – ident: e_1_2_11_68_1 doi: 10.1158/0008-5472.CAN-13-1701 – ident: e_1_2_11_6_1 doi: 10.1101/gad.334284.119 – ident: e_1_2_11_69_1 doi: 10.1038/s41598-019-55240-5 – ident: e_1_2_11_44_1 doi: 10.1038/s41586-018-0750-6 – ident: e_1_2_11_7_1 doi: 10.1016/j.semcdb.2016.09.010 – volume: 384 start-page: 3 year: 2015 ident: e_1_2_11_20_1 article-title: The natural history of ADP‐ribosyltransferases and the ADP‐ribosylation system publication-title: Curr Top Microbiol Immunol – ident: e_1_2_11_32_1 doi: 10.1016/j.molcel.2008.08.009 – ident: e_1_2_11_64_1 doi: 10.1016/j.bmcl.2017.04.089 – ident: e_1_2_11_18_1 doi: 10.1093/nar/gky995 – ident: e_1_2_11_45_1 doi: 10.1038/s41467-020-18761-6 – ident: e_1_2_11_58_1 doi: 10.1111/febs.12320 – ident: e_1_2_11_66_1 doi: 10.1038/s41589-019-0362-y – ident: e_1_2_11_25_1 doi: 10.2174/0929867043455611 – ident: e_1_2_11_70_1 doi: 10.1038/s41598-020-69229-y – ident: e_1_2_11_26_1 doi: 10.1007/s00726-010-0676-2 – year: 2020 ident: e_1_2_11_47_1 article-title: ADP‐ribosylation of mitochondrial proteins is mediated by neuralized‐like protein 4 (NEURL4) publication-title: bioRxiv – ident: e_1_2_11_27_1 doi: 10.1146/annurev.bi.46.070177.000523 – ident: e_1_2_11_15_1 doi: 10.1146/annurev-biochem-060815-014935 – ident: e_1_2_11_17_1 doi: 10.1016/j.molcel.2015.06.012 – ident: e_1_2_11_22_1 doi: 10.1038/nrm3376 – ident: e_1_2_11_42_1 doi: 10.1016/j.semcdb.2016.09.009 – ident: e_1_2_11_31_1 doi: 10.1074/jbc.274.25.17860 – ident: e_1_2_11_43_1 doi: 10.1126/science.aaa7227 – ident: e_1_2_11_48_1 doi: 10.1016/j.molcel.2017.04.028 – ident: e_1_2_11_59_1 doi: 10.1111/bph.14038 – ident: e_1_2_11_5_1 doi: 10.1021/acs.chemrev.7b00122 – ident: e_1_2_11_52_1 doi: 10.1021/jasms.0c00040 – ident: e_1_2_11_67_1 doi: 10.1002/cbic.202100047 – ident: e_1_2_11_30_1 doi: 10.1126/science.282.5393.1484 – ident: e_1_2_11_50_1 doi: 10.1016/j.celrep.2018.07.048 – ident: e_1_2_11_35_1 doi: 10.7554/eLife.60480 – ident: e_1_2_11_2_1 doi: 10.1101/gad.334433.119 – ident: e_1_2_11_14_1 doi: 10.1101/gad.291518.116 – ident: e_1_2_11_8_1 doi: 10.3390/cells10030680 – ident: e_1_2_11_49_1 doi: 10.1126/sciadv.abc0418 – ident: e_1_2_11_16_1 doi: 10.1042/BST20180416 – ident: e_1_2_11_36_1 doi: 10.1371/journal.pone.0037352 – ident: e_1_2_11_62_1 doi: 10.1016/j.bmcl.2018.04.056 – ident: e_1_2_11_34_1 doi: 10.1038/ncomms5426 – ident: e_1_2_11_41_1 doi: 10.1007/s00018-019-03366-0 – ident: e_1_2_11_51_1 doi: 10.1074/mcp.TIR119.001315 – ident: e_1_2_11_56_1 doi: 10.1126/science.aam7344 – ident: e_1_2_11_53_1 doi: 10.1038/nbt.2121 – ident: e_1_2_11_60_1 doi: 10.1016/j.chembiol.2016.08.012 – ident: e_1_2_11_11_1 doi: 10.1101/gad.334631.119 |
SSID | ssj0035499 |
Score | 2.6937046 |
Snippet | ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for... ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for... |
SourceID | swepub pubmedcentral hal cristin proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7399 |
SubjectTerms | Adenosine Diphosphate Adenosine Diphosphate Ribose ADP Ribose Transferases - genetics ADP-ribosylation Antiviral agents Biosynthesis Cell death Cellular Biology Chromatin DNA damage Drug development Gene regulation Life Sciences Mammals MARylation Metabolites Nucleic acids PARP PARylation posttranslational modification Protein Biosynthesis protein synthesis Proteins Reagents Ribose Ribosylation Structural analysis Subcellular Processes Substrates Therapeutic targets therapeutics transcription (genetics) |
Title | ADP‐ribosyltransferases, an update on function and nomenclature |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.16142 https://www.ncbi.nlm.nih.gov/pubmed/34323016 https://www.proquest.com/docview/2747030701 https://www.proquest.com/docview/2572528088 https://www.proquest.com/docview/2811970966 http://hdl.handle.net/10852/90986 https://hal.science/hal-03442510 https://pubmed.ncbi.nlm.nih.gov/PMC9027952 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497477 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALjxboQlmFpwQiq9Sx85C4ZLtdrRBCFVC0F2TFjk1XLN5qd4NUTvwEfiO_hBnnAaGoEtyizETyY2b8jTP-TMgjxxIV8siPNaM-M2Ho54WWvgFwXAQmYNq4aovX0eSYvZzy6QZ50ZyFqfgh2g039AwXr9HBc7n6zcmNlqsB4BWGARiLtRARvWm5o0JMfKrTkNCGiE1rblIs4_n1KaBe5ZzJdtalzROsijwPOc9XTtb8ol1o69am8TXyoelVVZLyaVCu5UB9_YPw8X-7fZ1crUGrl1VWdoNsaLtNdjILCfvnM--J58pI3f78Nrl80Fwht0OybHT049v35UwuVmfztcPIegnr5uq5l1uvPMXtBm9hPVxd0ULgbeFZJIVQc8c4epMcjw_fHUz8-s4GX0EmAyOdsIIqzOoAGUVFlASS5TJkOjFgAjHyzRep4pIpavi-KYIo4SktJAsjlaaGh7fIll1YvUu8lIUQgBTjmocglmlEpUnDQiqIIUZGPbJbz52w4C5IdcqpSIM0AdHTZjKFqrnO8cqNuWhyHhxG4YaxRx62uqcVw8dftR6ATbQKSMo9yV4JfIekiYASgy_7PbLXmIyoQ8FKYNrvIiuI77dimAj8M5NbvShBh8eU0wQi_gU6Cf7xhYwTene7ssK2OXg6GCI1SOKOfXba25XY2YkjE08DGqcc-ve4suTOJ6PZ-0wslh9FWQqGmWfcI8-cdV4wVGJ8OHzrnu78i_JdcoXi0RJXKrRHttbLUt8DwLeWfbJJ2VGfXMqGo-G479z8J_g7Uks |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOZQLPy3QhQLhp0ggskodO4kPHEK3qy1dKgQt2puJE4euWJJqdwNaTjwCL8Kr8BA8CTPOD4SiShx64LbKTLR27Jn5xh5_JuSBYYlyuWf7mlGbpa5rR4lWdgrgOHFSh-nUVFvse4ND9nzER0vkW30WpuSHaBbc0DKMv0YDxwXp36w81WrWBcDCaFVTuacXnyBjmz3d7cHwblLa3znYHtjVpQJ2DFAbmhOwhMaYdkDo9hIvcBSLlMt0kEIbfSRET0TMFYtpyrfSxPECLmiimOvFQqR4SQR4_PN4hThS9fdeNWxVLqZa5flL-BuPjSo2VCwc-tVWwNmxMd-sFQnPHWEd5kmQe7JWs2I0bYNpEw37l8j3-juWRTDvu8VcdePPf1BM_jcf-jK5WOFyKywN6QpZ0tkqWQuzaJ5_WFgPLVMpa7YgVsnKdn1L3hoJw97LH1--Tscqny0mc5MG6ClAg9kTK8qs4hhXVKw8sxBAoBHA08TKkPcinhhS1avk8Ew6do0sZ3mm14klmAs-NmZccxfESnhUpcJNVAxuMlVeh6xXk0Vm4BGQzZVTKRwRgOhRPXtkXNG5460iE1mndThs0gxbh9xvdI9LEpO_at2DSdgoIO_4IBxKfIa8kACEnY9bHbJRz1FZebuZxJUNEzxAfLcRw0Dg5lOU6bwAHe5TTgMIaqfoBLipDUk19O56Oe2b5uABaAhGIPFbBtFqb1uSjY8MX7pwqC849G-zNJ3WK73xm1Dm03eyKCTD5NrvkMfGHE75VLK_8-y1-XXjX5TvkJXBwYuhHO7u790kFyiepDGVURtkeT4t9C3At3N123gVi7w9a-v6Cf5jrEk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGkIAbBBuwwoDwMyQQQZljJ_EFF2Fd1bFpqgSbemfqxGaVilu1Dah3PAIPwlPxJJzj_EA0NImL3VU5J6rj828ffybkuUOJCnnkx5pRn5kw9Ee5Vr6B5DgPTMC0cd0Wx1H_hL0f8uEa-VmfhSnxIZoFN7QM56_RwGe5-cvIjVaLN5CvMFq1VB7q1Tco2BZvD7og3R1Ke_sf9_p-daeAn0GmDaNJWE4zrDogckd5lASKjVTIdGJgiDHioeci44pl1PBdkwdRwgXNFQujTAiDd0SAw7-Ku4vYQEbZoPb7IVZa5fFL-JuIDSswVOwb-jNWSLMzZ722FQivnGEb5vkc93yrZgVo2s6lXTDs3SI3qyzWS0u1u03WtN0gm6mFCv7Lynvhub5St2C_Qa7v1XfKbZI07Q5-ff8xH6vpYjVZuqRZzyGQLl57I-sVM1x_8KbWw3CLKgNPc88iSkQ2cRCkd8jJpUz4XbJup1ZvEU-wEDxSxrjmIZCViKgyIsxVBk7FqKhDtqq5lRbsB7FPOZUiEAmQXtaTLbMK_Bzv4JjIughCEUknog551vDOSsiPf3I9BZk1DIjS3U-PJD5DFEVIG4Ovux2yXYtUVr5hIXEdwLlaID9pyCAI3KoZWT0tgIfHlNMEQsAFPAluAUMJCl93r9SSZjh4XBhcN1Dilv60xtum2PGZQxcXAY0Fh-_bKTWt9Up3fJrK6fyzLArJsBSNO-SVU8QLpkr29t99cL_u_w_zY3Jt0O3Jo4PjwwfkBsVjJ66NaJusL-eFfgjJ4FI9cjbokU-XbfS_AZ3HavA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADP%E2%80%90ribosyltransferases%2C+an+update+on+function+and+nomenclature&rft.jtitle=The+FEBS+journal&rft.au=L%C3%BCscher%2C+Bernhard&rft.au=Ahel%2C+Ivan&rft.au=Altmeyer%2C+Matthias&rft.au=Ashworth%2C+Alan&rft.date=2022-12-01&rft.pub=Wiley&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111%2Ffebs.16142&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03442510v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |