ADP‐ribosyltransferases, an update on function and nomenclature

ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 289; no. 23; pp. 7399 - 7410
Main Authors Lüscher, Bernhard, Ahel, Ivan, Altmeyer, Matthias, Ashworth, Alan, Bai, Peter, Chang, Paul, Cohen, Michael, Corda, Daniela, Dantzer, Françoise, Daugherty, Matthew D., Dawson, Ted M., Dawson, Valina L., Deindl, Sebastian, Fehr, Anthony R., Feijs, Karla L. H., Filippov, Dmitri V., Gagné, Jean‐Philippe, Grimaldi, Giovanna, Guettler, Sebastian, Hoch, Nicolas C., Hottiger, Michael O., Korn, Patricia, Kraus, W. Lee, Ladurner, Andreas, Lehtiö, Lari, Leung, Anthony K. L., Lord, Christopher J., Mangerich, Aswin, Matic, Ivan, Matthews, Jason, Moldovan, George‐Lucian, Moss, Joel, Natoli, Gioacchino, Nielsen, Michael L., Niepel, Mario, Nolte, Friedrich, Pascal, John, Paschal, Bryce M., Pawłowski, Krzysztof, Poirier, Guy G., Smith, Susan, Timinszky, Gyula, Wang, Zhao‐Qi, Yélamos, José, Yu, Xiaochun, Zaja, Roko, Ziegler, Mathias
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD+ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes. ADP‐ribosylation, the transfer of ADP‐ribose from NAD+ onto substrates, is catalyzed by proteins with an ADP‐ribosyltransferase (ART) domain. This fully reversible modification can occur as mono‐ or poly‐ADP‐ribosylation. Here, we propose an updated nomenclature for mammalian ARTs and provide a brief description of the main functions of these proteins to illustrate the increasing diversity of the cellular processes that are regulated by mono‐ and poly‐ADP‐ribosylation.
AbstractList ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.
ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD+ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes.
ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra-and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD + onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.
ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD⁺ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes.
ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.
ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP‐ribosylation is catalyzed by ADP‐ribosyltransferases (ARTs), which transfer ADP‐ribose from NAD+ onto substrates. The modification, which occurs as mono‐ or poly‐ADP‐ribosylation, is reversible due to the action of different ADP‐ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP‐ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP‐ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP‐ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP‐ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono‐ and poly‐ADP‐ribose mediated cellular processes. ADP‐ribosylation, the transfer of ADP‐ribose from NAD+ onto substrates, is catalyzed by proteins with an ADP‐ribosyltransferase (ART) domain. This fully reversible modification can occur as mono‐ or poly‐ADP‐ribosylation. Here, we propose an updated nomenclature for mammalian ARTs and provide a brief description of the main functions of these proteins to illustrate the increasing diversity of the cellular processes that are regulated by mono‐ and poly‐ADP‐ribosylation.
Author Timinszky, Gyula
Yélamos, José
Zaja, Roko
Lüscher, Bernhard
Dantzer, Françoise
Hottiger, Michael O.
Deindl, Sebastian
Paschal, Bryce M.
Daugherty, Matthew D.
Ladurner, Andreas
Lord, Christopher J.
Ziegler, Mathias
Matthews, Jason
Pawłowski, Krzysztof
Niepel, Mario
Ashworth, Alan
Gagné, Jean‐Philippe
Grimaldi, Giovanna
Mangerich, Aswin
Leung, Anthony K. L.
Guettler, Sebastian
Pascal, John
Dawson, Valina L.
Cohen, Michael
Hoch, Nicolas C.
Smith, Susan
Chang, Paul
Korn, Patricia
Natoli, Gioacchino
Wang, Zhao‐Qi
Moldovan, George‐Lucian
Moss, Joel
Yu, Xiaochun
Bai, Peter
Fehr, Anthony R.
Kraus, W. Lee
Dawson, Ted M.
Feijs, Karla L. H.
Filippov, Dmitri V.
Lehtiö, Lari
Matic, Ivan
Ahel, Ivan
Nolte, Friedrich
Corda, Daniela
Poirier, Guy G.
Altmeyer, Matthias
Nielsen, Michael L.
AuthorAffiliation 8 Department of Biomedical Sciences, National Research Council, Rome, Italy
26 Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Germany
3 Department of Molecular Mechanisms of Disease, University of Zurich, Switzerland
25 Max Planck Institute for Biology of Ageing, Cologne, Germany
15 Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
23 CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
21 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
22 Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
30 Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
13 Department of Molecular Biosciences, The University of Kansas, Lawrence, KS,
AuthorAffiliation_xml – name: 25 Max Planck Institute for Biology of Ageing, Cologne, Germany
– name: 23 CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
– name: 13 Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
– name: 31 Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
– name: 41 Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
– name: 6 ARase Therapeutics, Cambridge, MA, USA
– name: 17 Divisions of Structural Biology and Cancer Biology, The Institute of Cancer Research (ICR), London, UK
– name: 10 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
– name: 27 Institute of Basic Medical Sciences, University of Oslo, Norway
– name: 33 Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf, Germany
– name: 12 Department of Cell and Molecular Biology, Uppsala University, Sweden
– name: 22 Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
– name: 8 Department of Biomedical Sciences, National Research Council, Rome, Italy
– name: 4 UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
– name: 1 Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Germany
– name: 36 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
– name: 32 Ribon Therapeutics, Cambridge, MA, USA
– name: 28 Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
– name: 43 Department of Biomedicine, University of Bergen, Norway
– name: 3 Department of Molecular Mechanisms of Disease, University of Zurich, Switzerland
– name: 42 School of Life Sciences, Westlake University, Hangzhou, China
– name: 16 National Research Council, Naples, Italy
– name: 2 Sir William Dunn School of Pathology, University of Oxford, UK
– name: 5 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
– name: 11 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– name: 39 Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
– name: 7 Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
– name: 15 Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
– name: 37 Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, NY, USA
– name: 14 Leiden Institute of Chemistry, Leiden University, The Netherlands
– name: 9 CNRS, BSC-UMR7242, Illkirch, France
– name: 20 Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
– name: 29 National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
– name: 30 Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
– name: 26 Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Germany
– name: 38 Lendület Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Reserach Network (ELKH), Szeged, Hungary
– name: 40 Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Germany
– name: 19 Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
– name: 21 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
– name: 34 Biochemistry and Molecular Medicine, Université de Montréal, Canada
– name: 24 Department of Biology, University of Konstanz, Germany
– name: 18 Department of Biochemistry, University of São Paulo, Brazil
– name: 35 Department of Biochemistry and Molecular Genetics, University of Virgina, Charlottesville, VA, USA
Author_xml – sequence: 1
  givenname: Bernhard
  orcidid: 0000-0002-9622-8709
  surname: Lüscher
  fullname: Lüscher, Bernhard
  email: luescher@rwth-aachen.de
  organization: RWTH Aachen University
– sequence: 2
  givenname: Ivan
  orcidid: 0000-0002-9446-3756
  surname: Ahel
  fullname: Ahel, Ivan
  organization: University of Oxford
– sequence: 3
  givenname: Matthias
  surname: Altmeyer
  fullname: Altmeyer, Matthias
  organization: University of Zurich
– sequence: 4
  givenname: Alan
  surname: Ashworth
  fullname: Ashworth, Alan
  organization: UCSF Helen Diller Family Comprehensive Cancer Center
– sequence: 5
  givenname: Peter
  surname: Bai
  fullname: Bai, Peter
  organization: University of Debrecen
– sequence: 6
  givenname: Paul
  surname: Chang
  fullname: Chang, Paul
  organization: ARase Therapeutics
– sequence: 7
  givenname: Michael
  surname: Cohen
  fullname: Cohen, Michael
  organization: Oregon Health and Science University
– sequence: 8
  givenname: Daniela
  surname: Corda
  fullname: Corda, Daniela
  organization: National Research Council
– sequence: 9
  givenname: Françoise
  surname: Dantzer
  fullname: Dantzer, Françoise
  organization: CNRS, BSC‐UMR7242
– sequence: 10
  givenname: Matthew D.
  surname: Daugherty
  fullname: Daugherty, Matthew D.
  organization: University of California San Diego
– sequence: 11
  givenname: Ted M.
  surname: Dawson
  fullname: Dawson, Ted M.
  organization: Johns Hopkins University School of Medicine
– sequence: 12
  givenname: Valina L.
  surname: Dawson
  fullname: Dawson, Valina L.
  organization: Johns Hopkins University School of Medicine
– sequence: 13
  givenname: Sebastian
  surname: Deindl
  fullname: Deindl, Sebastian
  organization: Uppsala University
– sequence: 14
  givenname: Anthony R.
  surname: Fehr
  fullname: Fehr, Anthony R.
  organization: The University of Kansas
– sequence: 15
  givenname: Karla L. H.
  surname: Feijs
  fullname: Feijs, Karla L. H.
  organization: RWTH Aachen University
– sequence: 16
  givenname: Dmitri V.
  surname: Filippov
  fullname: Filippov, Dmitri V.
  organization: Leiden University
– sequence: 17
  givenname: Jean‐Philippe
  surname: Gagné
  fullname: Gagné, Jean‐Philippe
  organization: Laval University
– sequence: 18
  givenname: Giovanna
  surname: Grimaldi
  fullname: Grimaldi, Giovanna
  organization: National Research Council
– sequence: 19
  givenname: Sebastian
  surname: Guettler
  fullname: Guettler, Sebastian
  organization: The Institute of Cancer Research (ICR)
– sequence: 20
  givenname: Nicolas C.
  surname: Hoch
  fullname: Hoch, Nicolas C.
  organization: University of São Paulo
– sequence: 21
  givenname: Michael O.
  surname: Hottiger
  fullname: Hottiger, Michael O.
  organization: University of Zurich
– sequence: 22
  givenname: Patricia
  surname: Korn
  fullname: Korn, Patricia
  organization: RWTH Aachen University
– sequence: 23
  givenname: W. Lee
  surname: Kraus
  fullname: Kraus, W. Lee
  organization: University of Texas Southwestern Medical Center
– sequence: 24
  givenname: Andreas
  surname: Ladurner
  fullname: Ladurner, Andreas
  organization: Ludwig‐Maximilians‐University of Munich
– sequence: 25
  givenname: Lari
  surname: Lehtiö
  fullname: Lehtiö, Lari
  organization: University of Oulu
– sequence: 26
  givenname: Anthony K. L.
  surname: Leung
  fullname: Leung, Anthony K. L.
  organization: Johns Hopkins University
– sequence: 27
  givenname: Christopher J.
  surname: Lord
  fullname: Lord, Christopher J.
  organization: The Institute of Cancer Research
– sequence: 28
  givenname: Aswin
  surname: Mangerich
  fullname: Mangerich, Aswin
  organization: University of Konstanz
– sequence: 29
  givenname: Ivan
  surname: Matic
  fullname: Matic, Ivan
  organization: University of Cologne
– sequence: 30
  givenname: Jason
  surname: Matthews
  fullname: Matthews, Jason
  organization: University of Oslo
– sequence: 31
  givenname: George‐Lucian
  surname: Moldovan
  fullname: Moldovan, George‐Lucian
  organization: The Pennsylvania State University College of Medicine
– sequence: 32
  givenname: Joel
  surname: Moss
  fullname: Moss, Joel
  organization: National Institutes of Health
– sequence: 33
  givenname: Gioacchino
  surname: Natoli
  fullname: Natoli, Gioacchino
  organization: European Institute of Oncology (IEO)
– sequence: 34
  givenname: Michael L.
  surname: Nielsen
  fullname: Nielsen, Michael L.
  organization: University of Copenhagen
– sequence: 35
  givenname: Mario
  orcidid: 0000-0003-1415-6295
  surname: Niepel
  fullname: Niepel, Mario
  organization: Ribon Therapeutics
– sequence: 36
  givenname: Friedrich
  surname: Nolte
  fullname: Nolte, Friedrich
  organization: Universitätsklinikum Hamburg‐Eppendorf
– sequence: 37
  givenname: John
  surname: Pascal
  fullname: Pascal, John
  organization: Université de Montréal
– sequence: 38
  givenname: Bryce M.
  surname: Paschal
  fullname: Paschal, Bryce M.
  organization: University of Virginia
– sequence: 39
  givenname: Krzysztof
  surname: Pawłowski
  fullname: Pawłowski, Krzysztof
  organization: University of Texas Southwestern Medical Center
– sequence: 40
  givenname: Guy G.
  surname: Poirier
  fullname: Poirier, Guy G.
  organization: Laval University
– sequence: 41
  givenname: Susan
  surname: Smith
  fullname: Smith, Susan
  organization: New York University School of Medicine
– sequence: 42
  givenname: Gyula
  surname: Timinszky
  fullname: Timinszky, Gyula
  organization: Eötvös Loránd Research Network (ELKH)
– sequence: 43
  givenname: Zhao‐Qi
  surname: Wang
  fullname: Wang, Zhao‐Qi
  organization: Friedrich‐Schiller University of Jena
– sequence: 44
  givenname: José
  surname: Yélamos
  fullname: Yélamos, José
  organization: Hospital del Mar Medical Research Institute (IMIM)
– sequence: 45
  givenname: Xiaochun
  surname: Yu
  fullname: Yu, Xiaochun
  organization: Westlake University
– sequence: 46
  givenname: Roko
  surname: Zaja
  fullname: Zaja, Roko
  organization: RWTH Aachen University
– sequence: 47
  givenname: Mathias
  surname: Ziegler
  fullname: Ziegler, Mathias
  organization: University of Bergen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34323016$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03442510$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497477$$DView record from Swedish Publication Index
BookMark eNqNkstu1DAUhi1URC-w4QEgEhuKOsV2fN0gpTeKNBJIXMTOchyndZWxBztpNTsegWfkSXBIO6IjhPDGlv39v845_nfBlg_eAvAUwUOU1-vW1ukQMUTwA7CDOMEzwqjYWp_J122wm9IVhCUlUj4C2yUpcQkR2wFVdfLh5_cf0dUhrbo-ap9aG3Wy6aDQvhiWje5tEXzRDt70Lh-0bwofFtabTvdDtI_Bw1Z3yT653ffA57PTT8fns_n7t--Oq_nMMIJzGYI02CCJCeKYNUzAmui6JFa0ja05ZAw30tCaGNxS1DaQCSpxU5OSGSlbWu6Bg8k33djlUKtldAsdVypop07cl0qFeKGGQRHJCecZfzPhmV3Yxlifm-vuqe6_eHepLsK1khBzSXE22J8MLjdk59VcjXewJARTBK9RZp9PrIku9c4rH6JWCAqKs58ULBMvb8uJ4dtgU68WLhnbddrbMCSFBUKSQ8n-A6UcUyygEBl9sYFehSH6_A0K5ynAEnI4Vvfsz1Gsm7lLQQZe3ZUfUoq2XSMIqjFiaoyY-h2xDMMN2Lhej9HIY3Td3yVokty4zq7-Ya7OTo8-Tppfjdrgtw
CitedBy_id crossref_primary_10_1007_s00018_023_04717_8
crossref_primary_10_1073_pnas_2026494119
crossref_primary_10_1093_nar_gkad514
crossref_primary_10_1021_acs_jproteome_4c00890
crossref_primary_10_26508_lsa_202302505
crossref_primary_10_1016_j_heliyon_2024_e27865
crossref_primary_10_1016_j_jmb_2023_168434
crossref_primary_10_18632_oncotarget_28277
crossref_primary_10_1002_cbic_202400440
crossref_primary_10_1038_s42003_025_07901_7
crossref_primary_10_1515_hsz_2024_0057
crossref_primary_10_32604_biocell_2022_022713
crossref_primary_10_1002_bies_202100240
crossref_primary_10_1016_j_vaccine_2024_03_006
crossref_primary_10_1042_BST20220749
crossref_primary_10_1126_sciadv_adf7175
crossref_primary_10_1093_nar_gkae059
crossref_primary_10_1158_2767_9764_CRC_23_0086
crossref_primary_10_1016_j_celrep_2023_113113
crossref_primary_10_1021_acs_orglett_3c01554
crossref_primary_10_3390_ijms232113200
crossref_primary_10_1016_j_isci_2023_106444
crossref_primary_10_1093_nar_gkac711
crossref_primary_10_1016_j_pep_2024_106580
crossref_primary_10_3390_cells11081284
crossref_primary_10_3390_cancers14030687
crossref_primary_10_1038_s41467_024_45237_8
crossref_primary_10_3390_cancers14174162
crossref_primary_10_1016_j_tig_2024_08_009
crossref_primary_10_3390_toxins16110467
crossref_primary_10_1016_j_arr_2024_102646
crossref_primary_10_3390_cancers14215210
crossref_primary_10_1126_sciadv_abq0414
crossref_primary_10_1016_j_chembiol_2022_11_012
crossref_primary_10_1038_s41586_024_08102_8
crossref_primary_10_1021_acs_chemrev_2c00851
crossref_primary_10_1016_j_tibs_2024_08_006
crossref_primary_10_1172_JCI158630
crossref_primary_10_1017_erm_2024_14
crossref_primary_10_1002_ange_202313317
crossref_primary_10_1017_erm_2024_17
crossref_primary_10_3389_fcell_2022_831741
crossref_primary_10_3389_fcell_2022_941356
crossref_primary_10_1111_jipb_13714
crossref_primary_10_1038_s41467_023_42939_3
crossref_primary_10_3390_cancers14122894
crossref_primary_10_1016_j_virol_2023_109845
crossref_primary_10_1038_s41598_023_35076_w
crossref_primary_10_1016_j_molcel_2023_04_009
crossref_primary_10_1111_febs_16875
crossref_primary_10_3390_ijms23020920
crossref_primary_10_1007_s11262_024_02050_1
crossref_primary_10_1134_S1607672922700028
crossref_primary_10_1016_j_plipres_2021_101117
crossref_primary_10_1038_s44318_025_00391_7
crossref_primary_10_1021_jasms_3c00129
crossref_primary_10_1093_nar_gkad066
crossref_primary_10_3390_cancers15143689
crossref_primary_10_1038_s41586_024_07217_2
crossref_primary_10_1016_j_bmc_2021_116511
crossref_primary_10_1089_ars_2023_0349
crossref_primary_10_1002_anie_202411203
crossref_primary_10_1080_14756366_2023_2254012
crossref_primary_10_1016_j_semcancer_2023_11_009
crossref_primary_10_1038_s44321_025_00214_6
crossref_primary_10_3389_fmolb_2022_1073797
crossref_primary_10_1111_febs_16907
crossref_primary_10_3390_ijms241915028
crossref_primary_10_3390_biom12030443
crossref_primary_10_1128_jvi_00885_23
crossref_primary_10_1590_1678_4685_gmb_2023_0357
crossref_primary_10_1161_ATVBAHA_124_321522
crossref_primary_10_1007_s00018_022_04290_6
crossref_primary_10_3390_ijms24109042
crossref_primary_10_1073_pnas_2309047120
crossref_primary_10_3389_fragi_2023_1161814
crossref_primary_10_1002_cbic_202300797
crossref_primary_10_1017_erm_2024_13
crossref_primary_10_1042_BCJ20230230
crossref_primary_10_1126_sciadv_adi2687
crossref_primary_10_1186_s12967_024_05583_z
crossref_primary_10_1038_s41580_024_00752_w
crossref_primary_10_3390_ijms232214075
crossref_primary_10_1042_BCJ20210722
crossref_primary_10_1073_pnas_2213857120
crossref_primary_10_1128_jvi_01313_24
crossref_primary_10_1021_acs_jmedchem_2c01460
crossref_primary_10_1021_acs_orglett_2c01300
crossref_primary_10_1016_j_bbcan_2024_189221
crossref_primary_10_1038_s44318_024_00125_1
crossref_primary_10_1016_j_dnarep_2024_103690
crossref_primary_10_1073_pnas_2302083120
crossref_primary_10_3390_molecules28166061
crossref_primary_10_1093_nar_gkaf069
crossref_primary_10_1007_s12104_022_10110_6
crossref_primary_10_3390_cancers15215114
crossref_primary_10_1016_j_jbc_2023_105096
crossref_primary_10_1155_2022_6881322
crossref_primary_10_1002_anie_202313317
crossref_primary_10_1172_JCI181062
crossref_primary_10_1007_s00018_025_05586_z
crossref_primary_10_1093_nar_gkac1235
crossref_primary_10_3390_ijms252212445
crossref_primary_10_3389_fcell_2022_864101
crossref_primary_10_1083_jcb_202101021
crossref_primary_10_1002_ange_202411203
crossref_primary_10_1016_j_reth_2024_01_011
crossref_primary_10_3390_v14122744
crossref_primary_10_3389_fimmu_2025_1537615
crossref_primary_10_3390_ijms221910829
crossref_primary_10_1111_febs_70039
crossref_primary_10_1007_s00018_022_04235_z
crossref_primary_10_1038_s41467_024_51972_9
crossref_primary_10_1038_s41598_024_54123_8
crossref_primary_10_1111_febs_70035
crossref_primary_10_3390_ijms242316798
crossref_primary_10_1371_journal_pone_0316476
crossref_primary_10_1038_s41467_024_47222_7
crossref_primary_10_3390_biomedicines12071617
crossref_primary_10_1093_genetics_iyad208
crossref_primary_10_1021_jacs_3c03771
crossref_primary_10_7554_eLife_71420
crossref_primary_10_1007_s10565_022_09739_9
crossref_primary_10_1016_j_cell_2023_08_030
crossref_primary_10_3390_pathogens11010094
crossref_primary_10_3390_pathogens12020303
crossref_primary_10_1016_j_tibs_2024_12_013
crossref_primary_10_3390_cells10112927
crossref_primary_10_3390_pathogens12050674
crossref_primary_10_1038_s42003_024_06811_4
crossref_primary_10_1038_s44318_024_00126_0
crossref_primary_10_1111_bph_17305
crossref_primary_10_1002_cbic_202300865
crossref_primary_10_3390_cells12232728
crossref_primary_10_1002_bies_202400087
crossref_primary_10_3390_biom12111688
crossref_primary_10_1002_minf_202300183
crossref_primary_10_3390_biom14121556
crossref_primary_10_3390_pathogens12070964
crossref_primary_10_1093_nar_gkad1119
crossref_primary_10_1080_07391102_2023_2297821
crossref_primary_10_1038_s41467_024_50429_3
crossref_primary_10_1042_BST20220501
crossref_primary_10_1093_narcan_zcad043
crossref_primary_10_31857_S2686738922600959
crossref_primary_10_1002_bdr2_2089
crossref_primary_10_1016_j_jbc_2023_105397
crossref_primary_10_26508_lsa_202201455
crossref_primary_10_1186_s13321_024_00832_1
crossref_primary_10_1126_sciadv_adm6812
crossref_primary_10_1021_acs_jmedchem_2c00281
crossref_primary_10_1021_acs_jmedchem_3c02451
crossref_primary_10_1042_BCJ20210280
crossref_primary_10_1042_BSR20212489
crossref_primary_10_3390_cells11233932
crossref_primary_10_3390_toxins16050208
crossref_primary_10_1016_j_ejmech_2025_117397
crossref_primary_10_1016_j_celrep_2024_114234
crossref_primary_10_3390_pathogens12030457
crossref_primary_10_1021_acs_jmedchem_3c01764
crossref_primary_10_1038_s41467_024_55666_0
Cites_doi 10.1074/jbc.M114.630160
10.1038/nchembio.2568
10.1038/s41571-018-0055-6
10.1093/nar/gkv1383
10.1016/j.gde.2019.04.013
10.1146/annurev.bi.54.070185.000445
10.1016/j.chembiol.2021.02.010
10.1021/acsmedchemlett.8b00429
10.1093/nar/gkab136
10.1016/j.celrep.2020.108176
10.1016/j.tibs.2009.12.003
10.1074/jbc.M109.077834
10.1016/j.chembiol.2018.09.011
10.1111/febs.15518
10.7717/peerj.11051
10.3390/cells10020313
10.1111/imm.13332
10.1128/MMBR.00040-05
10.1038/s41598-017-14156-8
10.1074/jbc.270.7.3247
10.1016/j.tcb.2019.06.005
10.1038/s41467-019-08859-x
10.1016/j.bcp.2019.07.004
10.3390/cancers10120487
10.1158/0008-5472.CAN-13-1701
10.1101/gad.334284.119
10.1038/s41598-019-55240-5
10.1038/s41586-018-0750-6
10.1016/j.semcdb.2016.09.010
10.1016/j.molcel.2008.08.009
10.1016/j.bmcl.2017.04.089
10.1093/nar/gky995
10.1038/s41467-020-18761-6
10.1111/febs.12320
10.1038/s41589-019-0362-y
10.2174/0929867043455611
10.1038/s41598-020-69229-y
10.1007/s00726-010-0676-2
10.1146/annurev.bi.46.070177.000523
10.1146/annurev-biochem-060815-014935
10.1016/j.molcel.2015.06.012
10.1038/nrm3376
10.1016/j.semcdb.2016.09.009
10.1074/jbc.274.25.17860
10.1126/science.aaa7227
10.1016/j.molcel.2017.04.028
10.1111/bph.14038
10.1021/acs.chemrev.7b00122
10.1021/jasms.0c00040
10.1002/cbic.202100047
10.1126/science.282.5393.1484
10.1016/j.celrep.2018.07.048
10.7554/eLife.60480
10.1101/gad.334433.119
10.1101/gad.291518.116
10.3390/cells10030680
10.1126/sciadv.abc0418
10.1042/BST20180416
10.1371/journal.pone.0037352
10.1016/j.bmcl.2018.04.056
10.1038/ncomms5426
10.1007/s00018-019-03366-0
10.1074/mcp.TIR119.001315
10.1126/science.aam7344
10.1038/nbt.2121
10.1016/j.chembiol.2016.08.012
10.1101/gad.334631.119
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
3HK
1XC
VOOES
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1111/febs.16142
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NORA - Norwegian Open Research Archives
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts


AGRICOLA
MEDLINE
CrossRef



Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 7410
ExternalDocumentID oai_DiVA_org_uu_497477
PMC9027952
oai_HAL_hal_03442510v1
10852_90986
34323016
10_1111_febs_16142
FEBS16142
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Institute of Biochemistry and Molecular Biology of RWTH Aachen University
– fundername: Intramural Research Program, NIH/NHLBI
– fundername: German Research Foundation
  funderid: LU466/16‐2
– fundername: Wellcome Trust
  grantid: 210634/Z/18/Z
– fundername: Cancer Research UK
  grantid: 24439
– fundername: NIGMS NIH HHS
  grantid: R35 GM133633
– fundername: NIGMS NIH HHS
  grantid: R35 GM138029
– fundername: NIGMS NIH HHS
  grantid: P20 GM113117
– fundername: Cancer Research UK
  grantid: 28286
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
3HK
AAUGY
AAVGM
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
PQEST
1XC
VOOES
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c6422-484d2c19241726d680b4ab34e8fdeb70662d9c5b4c2f51fd068592db436c99f53
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Thu Aug 21 06:47:53 EDT 2025
Thu Aug 21 18:38:34 EDT 2025
Fri Jun 20 06:32:02 EDT 2025
Sat Apr 29 05:43:45 EDT 2023
Fri Jul 11 18:39:10 EDT 2025
Fri Jul 11 00:01:53 EDT 2025
Fri Jul 25 19:43:56 EDT 2025
Mon Jul 21 06:03:05 EDT 2025
Tue Jul 01 03:07:14 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Wed Jan 22 16:26:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords PARP
MARylation
posttranslational modification
ADP-ribosylation
PARylation
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6422-484d2c19241726d680b4ab34e8fdeb70662d9c5b4c2f51fd068592db436c99f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
BL wrote the first version of the manuscript and designed the figures. All authors commented on several version of the manuscript.
Author contributions
ORCID 0000-0003-1415-6295
0000-0002-9622-8709
0000-0002-9446-3756
0000-0002-3614-751X
0000-0002-4869-1424
0000-0003-1195-1496
0000-0002-8786-2986
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.16142
PMID 34323016
PQID 2747030701
PQPubID 28478
PageCount 7410
ParticipantIDs swepub_primary_oai_DiVA_org_uu_497477
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9027952
hal_primary_oai_HAL_hal_03442510v1
cristin_nora_10852_90986
proquest_miscellaneous_2811970966
proquest_miscellaneous_2572528088
proquest_journals_2747030701
pubmed_primary_34323016
crossref_primary_10_1111_febs_16142
crossref_citationtrail_10_1111_febs_16142
wiley_primary_10_1111_febs_16142_FEBS16142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2006; 70
2017; 7
2021; 22
2021; 288
2019; 55
2019; 10
2018; 564
2019; 15
2015; 384
2019; 18
2008; 32
2020; 11
2015; 348
2020; 10
2013; 280
2012; 13
2017; 355
2019; 167
2017; 31
2020; 6
2014; 5
2021; 32
2015; 290
2016; 85
2019; 29
1985; 54
1998; 282
2016; 44
2021; 9
2021; 49
2017; 63
2015; 58
2018; 28
2019; 9
2010; 35
2017; 27
2017; 66
2010; 285
2020; 34
2017; 174
1977; 46
2020; 77
2020; 32
1995; 270
2012; 30
2018; 25
2018; 24
2004; 11
2021; 10
2021
2018; 118
2020
2019; 47
1999; 274
2011; 41
2016; 63
2014; 74
2012; 7
2018; 10
2018; 15
2018; 14
2016; 23
e_1_2_11_70_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
Aravind L (e_1_2_11_20_1) 2015; 384
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
Cardamone MD (e_1_2_11_47_1) 2020
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 11
  start-page: 857
  year: 2004
  end-page: 872
  article-title: Ecto‐ADP‐ribosyltransferases (ARTs): emerging actors in cell communication and signaling
  publication-title: Curr Med Chem
– volume: 24
  start-page: 1916
  year: 2018
  end-page: 1929
  article-title: Proteomic characterization of the heart and skeletal muscle reveals widespread arginine ADP‐ribosylation by the ARTC1 ectoenzyme
  publication-title: Cell Rep
– volume: 13
  start-page: 411
  year: 2012
  end-page: 424
  article-title: New insights into the molecular and cellular functions of poly(ADP‐ribose) and PARPs
  publication-title: Nat Rev Mol Cell Biol
– volume: 18
  start-page: 1010
  year: 2019
  end-page: 1026
  article-title: An advanced strategy for comprehensive profiling of ADP‐ribosylation sites using mass spectrometry‐based proteomics
  publication-title: Mol Cell Proteomics
– volume: 118
  start-page: 1092
  year: 2018
  end-page: 1136
  article-title: ADP‐ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease
  publication-title: Chem Rev
– year: 2020
  article-title: ADP‐ribosylation of mitochondrial proteins is mediated by neuralized‐like protein 4 (NEURL4)
  publication-title: bioRxiv
– volume: 34
  start-page: 302
  year: 2020
  end-page: 320
  article-title: PARPs and ADP‐ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis
  publication-title: Genes Dev
– year: 2021
  article-title: ADP‐ribosylation in evasion, promotion and exacerbation of immune responses
  publication-title: Immunology
– volume: 70
  start-page: 789
  year: 2006
  end-page: 829
  article-title: Nuclear ADP‐ribosylation reactions in mammalian cells: where are we today and where are we going?
  publication-title: Microbiol Mol Biol Rev
– volume: 34
  start-page: 263
  year: 2020
  end-page: 284
  article-title: (ADP‐ribosyl)hydrolases: structure, function, and biology
  publication-title: Genes Dev
– volume: 23
  start-page: 1251
  year: 2016
  end-page: 1260
  article-title: Small‐molecule chemical probe rescues cells from mono‐ADP‐ribosyltransferase ARTD10/PARP10‐induced apoptosis and sensitizes cancer cells to DNA damage
  publication-title: Cell Chem Biol
– volume: 564
  start-page: 278
  year: 2018
  end-page: 282
  article-title: NP220 mediates silencing of unintegrated retroviral DNA
  publication-title: Nature
– volume: 9
  year: 2021
  article-title: A novel predicted ADP‐ribosyltransferase‐like family conserved in eukaryotic evolution
  publication-title: PeerJ
– volume: 54
  start-page: 73
  year: 1985
  end-page: 100
  article-title: ADP‐ribosylation
  publication-title: Annu Rev Biochem
– volume: 355
  start-page: 1152
  year: 2017
  end-page: 1158
  article-title: PARP inhibitors: synthetic lethality in the clinic
  publication-title: Science
– volume: 58
  start-page: 911
  year: 2015
  end-page: 924
  article-title: The promise of proteomics for the study of ADP‐ribosylation
  publication-title: Mol Cell
– volume: 6
  year: 2020
  article-title: Structural insights into ADP‐ribosylation of ubiquitin by Deltex family E3 ubiquitin ligases
  publication-title: Sci Adv
– volume: 85
  start-page: 431
  year: 2016
  end-page: 454
  article-title: Macrodomains: structure, function, evolution, and catalytic activities
  publication-title: Annu Rev Biochem
– volume: 270
  start-page: 3247
  year: 1995
  end-page: 3254
  article-title: Role of glutamic acid 988 of human poly‐ADP‐ribose polymerase in polymer formation. Evidence for active site similarities to the ADP‐ribosylating toxins
  publication-title: J Biol Chem
– volume: 15
  start-page: 564
  year: 2018
  end-page: 576
  article-title: Synthetic lethal therapies for cancer: what's next after PARP inhibitors?
  publication-title: Nat Rev Clin Oncol
– volume: 7
  year: 2012
  article-title: PARP16/ARTD15 is a novel endoplasmic‐reticulum‐associated mono‐ADP‐ribosyltransferase that interacts with, and modifies karyopherin‐ss1
  publication-title: PLoS One
– volume: 9
  start-page: 19130
  year: 2019
  article-title: Fragment‐based screening identifies molecules targeting the substrate‐binding ankyrin repeat domains of tankyrase
  publication-title: Sci Rep
– volume: 31
  start-page: 101
  year: 2017
  end-page: 126
  article-title: PARPs and ADP‐ribosylation: recent advances linking molecular functions to biological outcomes
  publication-title: Genes Dev
– year: 2021
  article-title: A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants
  publication-title: Cell Chem Biol
– volume: 47
  start-page: D427
  year: 2019
  end-page: D432
  article-title: The Pfam protein families database in 2019
  publication-title: Nucleic Acids Res
– volume: 41
  start-page: 257
  year: 2011
  end-page: 269
  article-title: ADP‐ribosylation of arginine
  publication-title: Amino Acids
– volume: 10
  start-page: 487
  year: 2018
  article-title: Role of BRCA mutations in cancer treatment with poly(ADP‐ribose) polymerase (PARP) inhibitors
  publication-title: Cancers (Basel)
– volume: 288
  start-page: 2131
  year: 2021
  end-page: 2142
  article-title: Progress and outlook in studying the substrate specificities of PARPs and related enzymes
  publication-title: FEBS J
– volume: 66
  start-page: 503
  year: 2017
  end-page: 516
  article-title: Ubiquitin modification by the E3 ligase/ADP‐ribosyltransferase Dtx3L/Parp9
  publication-title: Mol Cell
– volume: 30
  start-page: 283
  year: 2012
  end-page: 288
  article-title: Family‐wide chemical profiling and structural analysis of PARP and tankyrase inhibitors
  publication-title: Nat Biotechnol
– volume: 47
  start-page: 357
  year: 2019
  end-page: 370
  article-title: ADP‐ribosylation and intracellular traffic: an emerging role for PARP enzymes
  publication-title: Biochem Soc Trans
– volume: 280
  start-page: 3576
  year: 2013
  end-page: 3593
  article-title: Tankyrases as drug targets
  publication-title: FEBS J
– volume: 29
  start-page: 740
  year: 2019
  end-page: 751
  article-title: Defining and modulating ‘BRCAness’
  publication-title: Trends Cell Biol
– volume: 11
  start-page: 4940
  year: 2020
  article-title: TASOR is a pseudo‐PARP that directs HUSH complex assembly and epigenetic transposon control
  publication-title: Nat Commun
– volume: 46
  start-page: 95
  year: 1977
  end-page: 116
  article-title: Poly(ADP‐ribose) and ADP‐ribosylation of proteins
  publication-title: Annu Rev Biochem
– volume: 74
  start-page: 31
  year: 2014
  end-page: 37
  article-title: Targeting PARP‐1 allosteric regulation offers therapeutic potential against cancer
  publication-title: Cancer Res
– volume: 10
  year: 2021
  article-title: Chemical genetics and proteome‐wide site mapping reveal cysteine MARylation by PARP‐7 on immune‐relevant protein targets
  publication-title: Elife
– volume: 77
  start-page: 19
  year: 2020
  end-page: 33
  article-title: Poly(ADP‐ribose) polymerase enzymes and the maintenance of genome integrity
  publication-title: Cell Mol Life Sci
– volume: 167
  start-page: 86
  year: 2019
  end-page: 96
  article-title: Overview of the mammalian ADP‐ribosyl‐transferases clostridia toxin‐like (ARTCs) family
  publication-title: Biochem Pharmacol
– volume: 34
  start-page: 321
  year: 2020
  end-page: 340
  article-title: The role of ADP‐ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism
  publication-title: Genes Dev
– volume: 285
  start-page: 8054
  year: 2010
  end-page: 8060
  article-title: PARP‐3 is a mono‐ADP‐ribosylase that activates PARP‐1 in the absence of DNA
  publication-title: J Biol Chem
– volume: 274
  start-page: 17860
  year: 1999
  end-page: 17868
  article-title: PARP‐2, a novel mammalian DNA damage‐dependent poly(ADP‐ribose) polymerase
  publication-title: J Biol Chem
– volume: 10
  start-page: 313
  year: 2021
  article-title: MARTs and MARylation in the cytosol: biological functions, mechanisms of action, and therapeutic potential
  publication-title: Cells
– volume: 290
  start-page: 7336
  year: 2015
  end-page: 7344
  article-title: Structural basis for lack of ADP‐ribosyltransferase activity in poly(ADP‐ribose) polymerase‐13/zinc finger antiviral protein
  publication-title: J Biol Chem
– volume: 10
  start-page: 680
  year: 2021
  article-title: Uncovering the invisible: mono‐ADP‐ribosylation moved into the spotlight
  publication-title: Cells
– volume: 15
  start-page: 937
  year: 2019
  end-page: 944
  article-title: Development of targeted protein degradation therapeutics
  publication-title: Nat Chem Biol
– volume: 35
  start-page: 208
  year: 2010
  end-page: 219
  article-title: Toward a unified nomenclature for mammalian ADP‐ribosyltransferases
  publication-title: Trends Biochem Sci
– volume: 282
  start-page: 1484
  year: 1998
  end-page: 1487
  article-title: Tankyrase, a poly(ADP‐ribose) polymerase at human telomeres
  publication-title: Science
– volume: 32
  start-page: 57
  year: 2008
  end-page: 69
  article-title: Substrate‐assisted catalysis by PARP10 limits its activity to mono‐ADP‐ribosylation
  publication-title: Mol Cell
– volume: 55
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Role of H3K9me3 heterochromatin in cell identity establishment and maintenance
  publication-title: Curr Opin Genet Dev
– volume: 174
  start-page: 4611
  year: 2017
  end-page: 4636
  article-title: Regulation of Wnt/beta‐catenin signalling by tankyrase‐dependent poly(ADP‐ribosyl)ation and scaffolding
  publication-title: Br J Pharmacol
– volume: 14
  start-page: 236
  year: 2018
  end-page: 243
  article-title: Insights into the biogenesis, function, and regulation of ADP‐ribosylation
  publication-title: Nat Chem Biol
– volume: 63
  start-page: 114
  year: 2017
  end-page: 122
  article-title: Cell fate regulation by chromatin ADP‐ribosylation
  publication-title: Semin Cell Dev Biol
– volume: 10
  start-page: 1182
  year: 2019
  article-title: Emerging roles of eraser enzymes in the dynamic control of protein ADP‐ribosylation
  publication-title: Nat Commun
– volume: 25
  start-page: 1547
  year: 2018
  end-page: 1553
  article-title: A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity
  publication-title: Cell Chem Biol
– volume: 384
  start-page: 3
  year: 2015
  end-page: 32
  article-title: The natural history of ADP‐ribosyltransferases and the ADP‐ribosylation system
  publication-title: Curr Top Microbiol Immunol
– volume: 28
  start-page: 2050
  year: 2018
  end-page: 2054
  article-title: Design, synthesis and evaluation of potent and selective inhibitors of mono‐(ADP‐ribosyl)transferases PARP10 and PARP14
  publication-title: Bioorg Med Chem Lett
– volume: 32
  start-page: 157
  year: 2021
  end-page: 168
  article-title: Gas‐phase fragmentation of ADP‐ribosylated peptides: arginine‐specific side‐chain losses and their implication in database searches
  publication-title: J Am Soc Mass Spectrom
– volume: 348
  start-page: 1481
  year: 2015
  end-page: 1485
  article-title: GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position‐effect variegation in human cells
  publication-title: Science
– volume: 7
  start-page: 14035
  year: 2017
  article-title: PARP1‐produced poly‐ADP‐ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions
  publication-title: Sci Rep
– volume: 32
  year: 2020
  article-title: Mapping physiological ADP‐ribosylation using activated ion electron transfer dissociation
  publication-title: Cell Rep
– volume: 63
  start-page: 92
  year: 2016
  end-page: 101
  article-title: Expanding functions of ADP‐ribosylation in the maintenance of genome integrity
  publication-title: Semin Cell Dev Biol
– volume: 44
  start-page: 993
  year: 2016
  end-page: 1006
  article-title: Readers of poly(ADP‐ribose): designed to be fit for purpose
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 2907
  year: 2017
  end-page: 2911
  article-title: Design and synthesis of potent inhibitors of the mono(ADP‐ribosyl)transferase, PARP14
  publication-title: Bioorg Med Chem Lett
– volume: 49
  start-page: 3634
  year: 2021
  end-page: 3650
  article-title: ADP‐ribosylation of RNA and DNA: from in vitro characterization to in vivo function
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 12357
  year: 2020
  article-title: A FRET‐based high‐throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases
  publication-title: Sci Rep
– volume: 10
  start-page: 74
  year: 2019
  end-page: 79
  article-title: Rational design of cell‐active inhibitors of PARP10
  publication-title: ACS Med Chem Lett
– volume: 22
  start-page: 2107
  year: 2021
  end-page: 2110
  article-title: Targeted degradation of PARP14 using a heterobifunctional small molecule
  publication-title: ChemBioChem
– volume: 5
  start-page: 4426
  year: 2014
  article-title: Family‐wide analysis of poly(ADP‐ribose) polymerase activity
  publication-title: Nat Commun
– ident: e_1_2_11_39_1
  doi: 10.1074/jbc.M114.630160
– ident: e_1_2_11_4_1
  doi: 10.1038/nchembio.2568
– ident: e_1_2_11_55_1
  doi: 10.1038/s41571-018-0055-6
– ident: e_1_2_11_13_1
  doi: 10.1093/nar/gkv1383
– ident: e_1_2_11_46_1
  doi: 10.1016/j.gde.2019.04.013
– ident: e_1_2_11_28_1
  doi: 10.1146/annurev.bi.54.070185.000445
– ident: e_1_2_11_65_1
  doi: 10.1016/j.chembiol.2021.02.010
– ident: e_1_2_11_61_1
  doi: 10.1021/acsmedchemlett.8b00429
– ident: e_1_2_11_3_1
  doi: 10.1093/nar/gkab136
– ident: e_1_2_11_40_1
  doi: 10.1016/j.celrep.2020.108176
– ident: e_1_2_11_21_1
  doi: 10.1016/j.tibs.2009.12.003
– ident: e_1_2_11_38_1
  doi: 10.1074/jbc.M109.077834
– ident: e_1_2_11_63_1
  doi: 10.1016/j.chembiol.2018.09.011
– ident: e_1_2_11_10_1
  doi: 10.1111/febs.15518
– ident: e_1_2_11_19_1
  doi: 10.7717/peerj.11051
– ident: e_1_2_11_9_1
  doi: 10.3390/cells10020313
– ident: e_1_2_11_24_1
  doi: 10.1111/imm.13332
– ident: e_1_2_11_29_1
  doi: 10.1128/MMBR.00040-05
– ident: e_1_2_11_37_1
  doi: 10.1038/s41598-017-14156-8
– ident: e_1_2_11_33_1
  doi: 10.1074/jbc.270.7.3247
– ident: e_1_2_11_57_1
  doi: 10.1016/j.tcb.2019.06.005
– ident: e_1_2_11_12_1
  doi: 10.1038/s41467-019-08859-x
– ident: e_1_2_11_23_1
  doi: 10.1016/j.bcp.2019.07.004
– ident: e_1_2_11_54_1
  doi: 10.3390/cancers10120487
– ident: e_1_2_11_68_1
  doi: 10.1158/0008-5472.CAN-13-1701
– ident: e_1_2_11_6_1
  doi: 10.1101/gad.334284.119
– ident: e_1_2_11_69_1
  doi: 10.1038/s41598-019-55240-5
– ident: e_1_2_11_44_1
  doi: 10.1038/s41586-018-0750-6
– ident: e_1_2_11_7_1
  doi: 10.1016/j.semcdb.2016.09.010
– volume: 384
  start-page: 3
  year: 2015
  ident: e_1_2_11_20_1
  article-title: The natural history of ADP‐ribosyltransferases and the ADP‐ribosylation system
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_2_11_32_1
  doi: 10.1016/j.molcel.2008.08.009
– ident: e_1_2_11_64_1
  doi: 10.1016/j.bmcl.2017.04.089
– ident: e_1_2_11_18_1
  doi: 10.1093/nar/gky995
– ident: e_1_2_11_45_1
  doi: 10.1038/s41467-020-18761-6
– ident: e_1_2_11_58_1
  doi: 10.1111/febs.12320
– ident: e_1_2_11_66_1
  doi: 10.1038/s41589-019-0362-y
– ident: e_1_2_11_25_1
  doi: 10.2174/0929867043455611
– ident: e_1_2_11_70_1
  doi: 10.1038/s41598-020-69229-y
– ident: e_1_2_11_26_1
  doi: 10.1007/s00726-010-0676-2
– year: 2020
  ident: e_1_2_11_47_1
  article-title: ADP‐ribosylation of mitochondrial proteins is mediated by neuralized‐like protein 4 (NEURL4)
  publication-title: bioRxiv
– ident: e_1_2_11_27_1
  doi: 10.1146/annurev.bi.46.070177.000523
– ident: e_1_2_11_15_1
  doi: 10.1146/annurev-biochem-060815-014935
– ident: e_1_2_11_17_1
  doi: 10.1016/j.molcel.2015.06.012
– ident: e_1_2_11_22_1
  doi: 10.1038/nrm3376
– ident: e_1_2_11_42_1
  doi: 10.1016/j.semcdb.2016.09.009
– ident: e_1_2_11_31_1
  doi: 10.1074/jbc.274.25.17860
– ident: e_1_2_11_43_1
  doi: 10.1126/science.aaa7227
– ident: e_1_2_11_48_1
  doi: 10.1016/j.molcel.2017.04.028
– ident: e_1_2_11_59_1
  doi: 10.1111/bph.14038
– ident: e_1_2_11_5_1
  doi: 10.1021/acs.chemrev.7b00122
– ident: e_1_2_11_52_1
  doi: 10.1021/jasms.0c00040
– ident: e_1_2_11_67_1
  doi: 10.1002/cbic.202100047
– ident: e_1_2_11_30_1
  doi: 10.1126/science.282.5393.1484
– ident: e_1_2_11_50_1
  doi: 10.1016/j.celrep.2018.07.048
– ident: e_1_2_11_35_1
  doi: 10.7554/eLife.60480
– ident: e_1_2_11_2_1
  doi: 10.1101/gad.334433.119
– ident: e_1_2_11_14_1
  doi: 10.1101/gad.291518.116
– ident: e_1_2_11_8_1
  doi: 10.3390/cells10030680
– ident: e_1_2_11_49_1
  doi: 10.1126/sciadv.abc0418
– ident: e_1_2_11_16_1
  doi: 10.1042/BST20180416
– ident: e_1_2_11_36_1
  doi: 10.1371/journal.pone.0037352
– ident: e_1_2_11_62_1
  doi: 10.1016/j.bmcl.2018.04.056
– ident: e_1_2_11_34_1
  doi: 10.1038/ncomms5426
– ident: e_1_2_11_41_1
  doi: 10.1007/s00018-019-03366-0
– ident: e_1_2_11_51_1
  doi: 10.1074/mcp.TIR119.001315
– ident: e_1_2_11_56_1
  doi: 10.1126/science.aam7344
– ident: e_1_2_11_53_1
  doi: 10.1038/nbt.2121
– ident: e_1_2_11_60_1
  doi: 10.1016/j.chembiol.2016.08.012
– ident: e_1_2_11_11_1
  doi: 10.1101/gad.334631.119
SSID ssj0035499
Score 2.6937046
Snippet ADP‐ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for...
ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for...
SourceID swepub
pubmedcentral
hal
cristin
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7399
SubjectTerms Adenosine Diphosphate
Adenosine Diphosphate Ribose
ADP Ribose Transferases - genetics
ADP-ribosylation
Antiviral agents
Biosynthesis
Cell death
Cellular Biology
Chromatin
DNA damage
Drug development
Gene regulation
Life Sciences
Mammals
MARylation
Metabolites
Nucleic acids
PARP
PARylation
posttranslational modification
Protein Biosynthesis
protein synthesis
Proteins
Reagents
Ribose
Ribosylation
Structural analysis
Subcellular Processes
Substrates
Therapeutic targets
therapeutics
transcription (genetics)
Title ADP‐ribosyltransferases, an update on function and nomenclature
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.16142
https://www.ncbi.nlm.nih.gov/pubmed/34323016
https://www.proquest.com/docview/2747030701
https://www.proquest.com/docview/2572528088
https://www.proquest.com/docview/2811970966
http://hdl.handle.net/10852/90986
https://hal.science/hal-03442510
https://pubmed.ncbi.nlm.nih.gov/PMC9027952
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497477
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALjxboQlmFpwQiq9Sx85C4ZLtdrRBCFVC0F2TFjk1XLN5qd4NUTvwEfiO_hBnnAaGoEtyizETyY2b8jTP-TMgjxxIV8siPNaM-M2Ho54WWvgFwXAQmYNq4aovX0eSYvZzy6QZ50ZyFqfgh2g039AwXr9HBc7n6zcmNlqsB4BWGARiLtRARvWm5o0JMfKrTkNCGiE1rblIs4_n1KaBe5ZzJdtalzROsijwPOc9XTtb8ol1o69am8TXyoelVVZLyaVCu5UB9_YPw8X-7fZ1crUGrl1VWdoNsaLtNdjILCfvnM--J58pI3f78Nrl80Fwht0OybHT049v35UwuVmfztcPIegnr5uq5l1uvPMXtBm9hPVxd0ULgbeFZJIVQc8c4epMcjw_fHUz8-s4GX0EmAyOdsIIqzOoAGUVFlASS5TJkOjFgAjHyzRep4pIpavi-KYIo4SktJAsjlaaGh7fIll1YvUu8lIUQgBTjmocglmlEpUnDQiqIIUZGPbJbz52w4C5IdcqpSIM0AdHTZjKFqrnO8cqNuWhyHhxG4YaxRx62uqcVw8dftR6ATbQKSMo9yV4JfIekiYASgy_7PbLXmIyoQ8FKYNrvIiuI77dimAj8M5NbvShBh8eU0wQi_gU6Cf7xhYwTene7ssK2OXg6GCI1SOKOfXba25XY2YkjE08DGqcc-ve4suTOJ6PZ-0wslh9FWQqGmWfcI8-cdV4wVGJ8OHzrnu78i_JdcoXi0RJXKrRHttbLUt8DwLeWfbJJ2VGfXMqGo-G479z8J_g7Uks
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOZQLPy3QhQLhp0ggskodO4kPHEK3qy1dKgQt2puJE4euWJJqdwNaTjwCL8Kr8BA8CTPOD4SiShx64LbKTLR27Jn5xh5_JuSBYYlyuWf7mlGbpa5rR4lWdgrgOHFSh-nUVFvse4ND9nzER0vkW30WpuSHaBbc0DKMv0YDxwXp36w81WrWBcDCaFVTuacXnyBjmz3d7cHwblLa3znYHtjVpQJ2DFAbmhOwhMaYdkDo9hIvcBSLlMt0kEIbfSRET0TMFYtpyrfSxPECLmiimOvFQqR4SQR4_PN4hThS9fdeNWxVLqZa5flL-BuPjSo2VCwc-tVWwNmxMd-sFQnPHWEd5kmQe7JWs2I0bYNpEw37l8j3-juWRTDvu8VcdePPf1BM_jcf-jK5WOFyKywN6QpZ0tkqWQuzaJ5_WFgPLVMpa7YgVsnKdn1L3hoJw97LH1--Tscqny0mc5MG6ClAg9kTK8qs4hhXVKw8sxBAoBHA08TKkPcinhhS1avk8Ew6do0sZ3mm14klmAs-NmZccxfESnhUpcJNVAxuMlVeh6xXk0Vm4BGQzZVTKRwRgOhRPXtkXNG5460iE1mndThs0gxbh9xvdI9LEpO_at2DSdgoIO_4IBxKfIa8kACEnY9bHbJRz1FZebuZxJUNEzxAfLcRw0Dg5lOU6bwAHe5TTgMIaqfoBLipDUk19O56Oe2b5uABaAhGIPFbBtFqb1uSjY8MX7pwqC849G-zNJ3WK73xm1Dm03eyKCTD5NrvkMfGHE75VLK_8-y1-XXjX5TvkJXBwYuhHO7u790kFyiepDGVURtkeT4t9C3At3N123gVi7w9a-v6Cf5jrEk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGkIAbBBuwwoDwMyQQQZljJ_EFF2Fd1bFpqgSbemfqxGaVilu1Dah3PAIPwlPxJJzj_EA0NImL3VU5J6rj828ffybkuUOJCnnkx5pRn5kw9Ee5Vr6B5DgPTMC0cd0Wx1H_hL0f8uEa-VmfhSnxIZoFN7QM56_RwGe5-cvIjVaLN5CvMFq1VB7q1Tco2BZvD7og3R1Ke_sf9_p-daeAn0GmDaNJWE4zrDogckd5lASKjVTIdGJgiDHioeci44pl1PBdkwdRwgXNFQujTAiDd0SAw7-Ku4vYQEbZoPb7IVZa5fFL-JuIDSswVOwb-jNWSLMzZ722FQivnGEb5vkc93yrZgVo2s6lXTDs3SI3qyzWS0u1u03WtN0gm6mFCv7Lynvhub5St2C_Qa7v1XfKbZI07Q5-ff8xH6vpYjVZuqRZzyGQLl57I-sVM1x_8KbWw3CLKgNPc88iSkQ2cRCkd8jJpUz4XbJup1ZvEU-wEDxSxrjmIZCViKgyIsxVBk7FqKhDtqq5lRbsB7FPOZUiEAmQXtaTLbMK_Bzv4JjIughCEUknog551vDOSsiPf3I9BZk1DIjS3U-PJD5DFEVIG4Ovux2yXYtUVr5hIXEdwLlaID9pyCAI3KoZWT0tgIfHlNMEQsAFPAluAUMJCl93r9SSZjh4XBhcN1Dilv60xtum2PGZQxcXAY0Fh-_bKTWt9Up3fJrK6fyzLArJsBSNO-SVU8QLpkr29t99cL_u_w_zY3Jt0O3Jo4PjwwfkBsVjJ66NaJusL-eFfgjJ4FI9cjbokU-XbfS_AZ3HavA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADP%E2%80%90ribosyltransferases%2C+an+update+on+function+and+nomenclature&rft.jtitle=The+FEBS+journal&rft.au=L%C3%BCscher%2C+Bernhard&rft.au=Ahel%2C+Ivan&rft.au=Altmeyer%2C+Matthias&rft.au=Ashworth%2C+Alan&rft.date=2022-12-01&rft.pub=Wiley&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111%2Ffebs.16142&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03442510v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon