The Potent Oxidant Anticancer Activity of Organoiridium Catalysts

Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] (1‐Cl), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergo...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 15; pp. 3941 - 3946
Main Authors Liu, Zhe, Romero-Canelón, Isolda, Qamar, Bushra, Hearn, Jessica M., Habtemariam, Abraha, Barry, Nicolas P. E., Pizarro, Ana M., Clarkson, Guy J., Sadler, Peter J.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 07.04.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] (1‐Cl), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5‐Cpxbiph)Ir(phpy)(py)]+ (1‐py) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Protective pyridine: A novel half‐sandwich organoiridium(III) complex with a pyridine ligand is more potent than both its chloride analogue and cisplatin towards a wide range of cancer cells. The pyridine ligand protects the iridium complex from rapid reactions with glutathione, and its potency correlates with a substantial increase in the amount of reactive oxygen species in the cancer cells.
AbstractList Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. [PUBLICATION ABSTRACT]
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [( eta super(5)-Cp super(xbiph))Ir(phpy)(Cl)] (1-Cl), which contains pi -bonded biphenyltetramethylcyclopentadienyl (Cp super(xbiph)) and C perpendicular -chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [( eta super(5)-Cp super(xbiph))Ir(phpy)(py)] super(+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H sub(2)O sub(2) by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Protective pyridine: A novel half-sandwich organoiridium(III) complex with a pyridine ligand is more potent than both its chloride analogue and cisplatin towards a wide range of cancer cells. The pyridine ligand protects the iridium complex from rapid reactions with glutathione, and its potency correlates with a substantial increase in the amount of reactive oxygen species in the cancer cells.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 -Cp xbiph )Ir(phpy)(Cl)] ( 1-Cl ), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp xbiph ) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η 5 -Cp xbiph )Ir(phpy)(py)] + ( 1-py ) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H 2 O 2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] (1‐Cl), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5‐Cpxbiph)Ir(phpy)(py)]+ (1‐py) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Protective pyridine: A novel half‐sandwich organoiridium(III) complex with a pyridine ligand is more potent than both its chloride analogue and cisplatin towards a wide range of cancer cells. The pyridine ligand protects the iridium complex from rapid reactions with glutathione, and its potency correlates with a substantial increase in the amount of reactive oxygen species in the cancer cells.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 ‐Cp xbiph )Ir(phpy)(Cl)] ( 1‐Cl ), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cp xbiph ) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η 5 ‐Cp xbiph )Ir(phpy)(py)] + ( 1‐py ) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H 2 O 2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.
Author Liu, Zhe
Pizarro, Ana M.
Sadler, Peter J.
Barry, Nicolas P. E.
Hearn, Jessica M.
Habtemariam, Abraha
Clarkson, Guy J.
Qamar, Bushra
Romero-Canelón, Isolda
Author_xml – sequence: 1
  givenname: Zhe
  surname: Liu
  fullname: Liu, Zhe
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
– sequence: 2
  givenname: Isolda
  surname: Romero-Canelón
  fullname: Romero-Canelón, Isolda
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
– sequence: 3
  givenname: Bushra
  surname: Qamar
  fullname: Qamar, Bushra
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
– sequence: 4
  givenname: Jessica M.
  surname: Hearn
  fullname: Hearn, Jessica M.
  organization: Warwick Systems Biology Centre, University of Warwick (UK)
– sequence: 5
  givenname: Abraha
  surname: Habtemariam
  fullname: Habtemariam, Abraha
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
– sequence: 6
  givenname: Nicolas P. E.
  surname: Barry
  fullname: Barry, Nicolas P. E.
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
– sequence: 7
  givenname: Ana M.
  surname: Pizarro
  fullname: Pizarro, Ana M.
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
– sequence: 8
  givenname: Guy J.
  surname: Clarkson
  fullname: Clarkson, Guy J.
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
– sequence: 9
  givenname: Peter J.
  surname: Sadler
  fullname: Sadler, Peter J.
  email: p.j.sadler@warwick.ac.uk
  organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24616129$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYNU7Ie--igDvvgy672TTDLzIgxLbQulK7Yq-BKymUybOpvUJFu7_32zbF1qQfp0A_mdc09y9smO884Q8hZhggDVR-WsmVSAFBE5viB7WFdYUiHoTj4zSkvR1LhL9mO8znzTAH9FdivGM121e6S7uDLFF5-MS8XszvYqz84lq5XTJhSdTvbWplXhh2IWLpXzNtjeLhfFVCU1rmKKr8nLQY3RvHmYB-Tb58OL6XF5Ojs6mXanpeYsRxqE0thSU9NK0aHXDNlca9Da8JozhTXnAK1ic4pDq1H1BhqGQKHtWwrznh6QTxvfm-V8YXqdEwc1yptgFyqspFdW_nvj7JW89LeSVZXIK7LBhweD4H8vTUxyYaM246ic8csoUQACcgH0ebRGCqzlDDL6_gl67ZfB5Z9YUxWKvL7J1LvH4bep_xaRgckG0MHHGMywRRDkumm5blpum84C9kSgbVLJ-vXj7fh_WbuR_bGjWT2zRHZnJ4ePteVGa2Myd1utCr8kF1TU8sfZkTz_fk5_Am_lV3oPtmnLbg
CODEN ACIEAY
CitedBy_id crossref_primary_10_1021_acs_inorgchem_3c01125
crossref_primary_10_1021_acs_inorgchem_8b01656
crossref_primary_10_1021_acs_biomac_9b01184
crossref_primary_10_1039_C9DT04656A
crossref_primary_10_1002_ejoc_202200118
crossref_primary_10_1039_C5DT03037D
crossref_primary_10_1021_acs_inorgchem_2c00984
crossref_primary_10_1002_chem_201504458
crossref_primary_10_1021_acs_jmedchem_1c01335
crossref_primary_10_1039_C7MT00242D
crossref_primary_10_3390_pharmaceutics13101540
crossref_primary_10_1039_C9CC04098F
crossref_primary_10_1016_j_bmcl_2020_127219
crossref_primary_10_1002_chem_201905448
crossref_primary_10_1016_j_cbpa_2015_01_024
crossref_primary_10_1021_acs_organomet_7b00760
crossref_primary_10_1039_C8NJ03360A
crossref_primary_10_1039_D3DT03700B
crossref_primary_10_1007_s00775_018_1578_0
crossref_primary_10_1002_chem_201801918
crossref_primary_10_1039_C4FD00098F
crossref_primary_10_4155_fmc_2016_0153
crossref_primary_10_1039_C8CY01190G
crossref_primary_10_1039_C8DT01858H
crossref_primary_10_1002_aoc_6152
crossref_primary_10_1002_zaac_202200382
crossref_primary_10_1039_C9DT04620H
crossref_primary_10_1039_D2DT02237K
crossref_primary_10_1016_j_jinorgbio_2024_112631
crossref_primary_10_1039_D0DT02408B
crossref_primary_10_1021_acs_chemrev_1c00381
crossref_primary_10_1016_j_ccr_2024_216139
crossref_primary_10_1039_D3BM01027A
crossref_primary_10_1021_acscatal_3c02487
crossref_primary_10_1021_acs_inorgchem_8b00346
crossref_primary_10_1002_chem_202301603
crossref_primary_10_1016_j_molstruc_2020_128058
crossref_primary_10_1021_acs_inorgchem_5b02697
crossref_primary_10_1021_acs_chemrev_8b00493
crossref_primary_10_1039_C7DT00575J
crossref_primary_10_1016_j_ica_2020_120066
crossref_primary_10_1039_C6DT02772E
crossref_primary_10_1016_j_dyepig_2020_108220
crossref_primary_10_1002_cmdc_202000672
crossref_primary_10_1039_C4CC05215C
crossref_primary_10_1002_asia_201800103
crossref_primary_10_3390_molecules25194540
crossref_primary_10_1039_D0SC04082G
crossref_primary_10_1021_acs_organomet_8b00402
crossref_primary_10_1039_C6DT00929H
crossref_primary_10_1039_C7DT01043E
crossref_primary_10_3390_cancers15010107
crossref_primary_10_1021_acsmacrolett_1c00336
crossref_primary_10_1016_j_ddtec_2019_06_001
crossref_primary_10_1016_j_inoche_2022_109609
crossref_primary_10_1038_nchem_2918
crossref_primary_10_1002_ejic_201601258
crossref_primary_10_1016_j_jorganchem_2019_120918
crossref_primary_10_1039_C7CS00195A
crossref_primary_10_1039_C8CC01326H
crossref_primary_10_1039_C9QI00081J
crossref_primary_10_1021_acsami_7b01735
crossref_primary_10_1002_asia_201801323
crossref_primary_10_1002_anie_201411346
crossref_primary_10_1016_j_jinorgbio_2018_08_009
crossref_primary_10_1021_jacs_1c07372
crossref_primary_10_1016_j_ccr_2023_215620
crossref_primary_10_3389_fchem_2022_967337
crossref_primary_10_1021_om500644f
crossref_primary_10_1021_jacs_3c09735
crossref_primary_10_1039_C8DT00438B
crossref_primary_10_1021_acs_inorgchem_6b02488
crossref_primary_10_1039_c9mt00134d
crossref_primary_10_1039_C7DT02072D
crossref_primary_10_1002_chem_201806341
crossref_primary_10_1002_ange_201411346
crossref_primary_10_1021_acs_jmedchem_3c02000
crossref_primary_10_1038_srep38954
crossref_primary_10_1002_chem_201701714
crossref_primary_10_3390_ph15070862
crossref_primary_10_1021_acs_jmedchem_3c01156
crossref_primary_10_1021_acs_jmedchem_3c01276
crossref_primary_10_1039_C9BM01495K
crossref_primary_10_1039_D1SC01939B
crossref_primary_10_1007_s11426_022_1496_0
crossref_primary_10_1021_acs_inorgchem_0c01613
crossref_primary_10_1002_cplu_202400621
crossref_primary_10_1016_j_ccr_2024_216306
crossref_primary_10_1002_anie_201915828
crossref_primary_10_1002_cctc_202401490
crossref_primary_10_1002_cmdc_201600638
crossref_primary_10_1016_j_trechm_2021_03_006
crossref_primary_10_1021_acs_inorgchem_2c03246
crossref_primary_10_1021_acs_inorgchem_3c03471
crossref_primary_10_1039_C4QI00098F
crossref_primary_10_1002_VIW_20200171
crossref_primary_10_1142_S1088424620500248
crossref_primary_10_1039_D0DT00627K
crossref_primary_10_1002_ange_202306645
crossref_primary_10_1002_anie_202000173
crossref_primary_10_1039_C8QI00620B
crossref_primary_10_1002_chem_201702917
crossref_primary_10_1016_j_jinorgbio_2024_112792
crossref_primary_10_1039_C6DT00601A
crossref_primary_10_1021_acs_inorgchem_7b02356
crossref_primary_10_1021_acs_inorgchem_3c02118
crossref_primary_10_1021_acs_inorgchem_3c00736
crossref_primary_10_1002_chem_201803521
crossref_primary_10_1080_00958972_2024_2343787
crossref_primary_10_1002_aoc_4746
crossref_primary_10_1002_ejic_201600908
crossref_primary_10_1016_j_inoche_2020_108364
crossref_primary_10_1016_j_jinorgbio_2017_05_013
crossref_primary_10_1039_D3RA05412H
crossref_primary_10_1021_acs_biomac_7b01491
crossref_primary_10_1021_acs_organomet_2c00379
crossref_primary_10_1016_j_jinorgbio_2017_12_019
crossref_primary_10_1021_acs_inorgchem_0c02287
crossref_primary_10_1039_C7DT01669G
crossref_primary_10_1016_j_jinorgbio_2021_111395
crossref_primary_10_1021_acs_organomet_8b00206
crossref_primary_10_1016_j_jorganchem_2016_10_018
crossref_primary_10_1002_ange_202000173
crossref_primary_10_1016_j_apsusc_2021_152206
crossref_primary_10_1039_C4MT00112E
crossref_primary_10_1002_ange_202312897
crossref_primary_10_1016_j_dyepig_2018_08_006
crossref_primary_10_1016_j_ccr_2020_213690
crossref_primary_10_1002_ejic_201901055
crossref_primary_10_1002_aoc_4633
crossref_primary_10_1002_cmdc_202100297
crossref_primary_10_1021_acs_inorgchem_5b01832
crossref_primary_10_3390_M999
crossref_primary_10_1002_chem_201806351
crossref_primary_10_1016_j_jinorgbio_2023_112393
crossref_primary_10_1039_C7CC01946G
crossref_primary_10_1002_cbic_202000511
crossref_primary_10_1038_srep19449
crossref_primary_10_1016_j_ejmech_2019_111599
crossref_primary_10_1016_j_biomaterials_2015_08_031
crossref_primary_10_1021_acs_jmedchem_3c00704
crossref_primary_10_1021_acs_organomet_7b00250
crossref_primary_10_1021_jacs_7b03872
crossref_primary_10_1134_S1070363222080242
crossref_primary_10_1002_asia_201801267
crossref_primary_10_1016_j_jinorgbio_2019_110817
crossref_primary_10_1002_ange_201915828
crossref_primary_10_1016_j_arabjc_2020_102930
crossref_primary_10_1002_aoc_4246
crossref_primary_10_1002_anie_202312897
crossref_primary_10_1021_jacs_4c09508
crossref_primary_10_1039_D2DT01055K
crossref_primary_10_1016_j_jorganchem_2015_05_011
crossref_primary_10_1021_acsabm_0c00581
crossref_primary_10_1186_s12951_021_01001_4
crossref_primary_10_3390_molecules25163661
crossref_primary_10_1016_j_ejmech_2015_12_035
crossref_primary_10_1016_j_ica_2015_12_035
crossref_primary_10_1016_j_inoche_2016_02_018
crossref_primary_10_1021_acs_inorgchem_7b01959
crossref_primary_10_1002_anie_202306645
crossref_primary_10_1016_j_jinorgbio_2024_112586
crossref_primary_10_1002_chem_201404448
crossref_primary_10_1039_C4DT02883J
crossref_primary_10_1039_D0CC04970K
crossref_primary_10_1039_C9DT00259F
crossref_primary_10_1007_s00343_019_8110_4
crossref_primary_10_1002_cbic_201900268
crossref_primary_10_1002_chem_201804901
crossref_primary_10_1039_C8DT02963F
crossref_primary_10_1007_s00775_020_01783_2
crossref_primary_10_1002_hlca_202300064
crossref_primary_10_1016_j_biochi_2016_03_013
crossref_primary_10_1002_ejic_201801339
crossref_primary_10_1038_s41557_019_0328_4
crossref_primary_10_3390_pharmaceutics15020356
crossref_primary_10_1016_j_jinorgbio_2018_12_012
crossref_primary_10_1007_s00775_016_1333_3
crossref_primary_10_1016_j_jphotochem_2019_04_030
crossref_primary_10_1021_acs_inorgchem_2c03279
crossref_primary_10_1039_C9DT00999J
crossref_primary_10_1039_C7SC01109A
crossref_primary_10_1039_D0DT03414B
crossref_primary_10_1002_cmdc_201600101
crossref_primary_10_1016_j_biomaterials_2014_10_070
crossref_primary_10_1021_acs_inorgchem_9b00282
crossref_primary_10_1039_C9DT02030F
crossref_primary_10_1039_D4QI01955E
crossref_primary_10_1021_acs_langmuir_8b00443
crossref_primary_10_1021_acs_inorgchem_8b01944
crossref_primary_10_1021_acs_organomet_8b00132
crossref_primary_10_1246_cl_190179
crossref_primary_10_1039_D0DT00451K
crossref_primary_10_1016_j_dyepig_2018_11_009
crossref_primary_10_1007_s00775_023_01997_0
crossref_primary_10_1021_acs_inorgchem_9b02227
crossref_primary_10_1039_D0SC00897D
crossref_primary_10_1016_j_ddtec_2015_08_002
crossref_primary_10_1039_D1CS00468A
crossref_primary_10_1021_acs_jmedchem_4c02089
crossref_primary_10_1039_C5QI00002E
crossref_primary_10_1021_acs_organomet_9b00080
crossref_primary_10_1021_jacsau_1c00262
crossref_primary_10_1002_ejic_201800225
crossref_primary_10_1016_j_biomaterials_2017_03_017
crossref_primary_10_3390_ijms22147422
crossref_primary_10_1016_j_jinorgbio_2017_09_020
crossref_primary_10_1002_adma_202100245
crossref_primary_10_1002_asia_201501048
crossref_primary_10_1021_acscatal_6b00395
crossref_primary_10_1021_acs_inorgchem_8b00529
crossref_primary_10_1002_chem_202004954
crossref_primary_10_1039_C6DT01264G
crossref_primary_10_1002_aoc_4685
crossref_primary_10_1002_smll_202001849
crossref_primary_10_1039_D4QI02472A
crossref_primary_10_1002_cplu_201800035
crossref_primary_10_1002_chem_201801963
crossref_primary_10_1039_C5SC01955A
crossref_primary_10_1039_D0CB00150C
crossref_primary_10_1039_C8SC04242J
crossref_primary_10_1002_anie_201407468
crossref_primary_10_1002_ejic_201700700
crossref_primary_10_1039_C5RA27350A
crossref_primary_10_1039_C6DT04339A
crossref_primary_10_1021_acs_biochem_7b00809
crossref_primary_10_1016_j_ica_2017_06_001
crossref_primary_10_1002_adma_202210363
crossref_primary_10_1016_j_jinorgbio_2021_111450
crossref_primary_10_1002_chem_201601542
crossref_primary_10_1039_C6SC02901A
crossref_primary_10_1039_D2CC00341D
crossref_primary_10_1039_C7CC08270C
crossref_primary_10_1016_j_ica_2020_119449
crossref_primary_10_1039_C9RA02726B
crossref_primary_10_1016_j_ica_2021_120735
crossref_primary_10_1016_j_jorganchem_2024_123168
crossref_primary_10_1039_D0SC03628E
crossref_primary_10_1002_ejoc_201800135
crossref_primary_10_1016_j_jinorgbio_2024_112704
crossref_primary_10_1016_j_redox_2025_103536
crossref_primary_10_1007_s00604_016_1775_x
crossref_primary_10_1016_j_cej_2018_04_193
crossref_primary_10_1039_C7DT02273E
crossref_primary_10_1002_chem_201800504
crossref_primary_10_1021_acsomega_9b01863
crossref_primary_10_1039_C4CP02255F
crossref_primary_10_1016_j_ejmech_2019_06_009
crossref_primary_10_1016_j_jorganchem_2017_03_038
crossref_primary_10_1039_C7SC03216A
crossref_primary_10_1016_j_phrs_2016_12_034
crossref_primary_10_2139_ssrn_4184524
crossref_primary_10_1021_acs_inorgchem_4c03975
crossref_primary_10_1002_anie_201911510
crossref_primary_10_1039_C7DT03265J
crossref_primary_10_1016_j_ccr_2018_01_010
crossref_primary_10_1016_j_ccr_2018_01_011
crossref_primary_10_1038_ncomms7582
crossref_primary_10_1039_C8DT00783G
crossref_primary_10_1039_C7DT02827J
crossref_primary_10_1002_ange_201407468
crossref_primary_10_1021_acs_inorgchem_3c03284
crossref_primary_10_1021_jacs_6b10451
crossref_primary_10_1002_cmdc_201900528
crossref_primary_10_1002_cbic_202200536
crossref_primary_10_1021_acs_jmedchem_5b01194
crossref_primary_10_1016_j_ccr_2014_08_002
crossref_primary_10_1039_D1DT03080A
crossref_primary_10_1016_j_ccr_2022_214506
crossref_primary_10_1016_j_jinorgbio_2015_10_008
crossref_primary_10_1002_ange_201911510
crossref_primary_10_1021_acs_biomac_7b00445
crossref_primary_10_1016_j_jinorgbio_2019_110885
crossref_primary_10_1016_j_canlet_2019_01_018
crossref_primary_10_1021_acs_chemrev_6b00400
crossref_primary_10_1002_chem_202300842
crossref_primary_10_1021_acs_jmedchem_9b02000
crossref_primary_10_1007_s11426_019_9577_3
crossref_primary_10_1021_acs_organomet_5b00097
crossref_primary_10_1039_D0NJ03421E
crossref_primary_10_1039_D1QI00856K
crossref_primary_10_1021_acs_inorgchem_9b03006
crossref_primary_10_1039_D2SC05672K
crossref_primary_10_1016_j_ejmech_2019_111751
crossref_primary_10_1021_acs_inorgchem_8b02161
crossref_primary_10_1021_acs_organomet_7b00742
crossref_primary_10_1016_j_jinorgbio_2022_112010
crossref_primary_10_1016_j_jinorgbio_2018_11_011
crossref_primary_10_1021_ja500613n
Cites_doi 10.1021/ja073774p
10.1016/j.jinorgbio.2009.08.003
10.1039/C2CC37832A
10.1089/ars.2010.3663
10.1002/anie.200705875
10.1039/C1CC15378A
10.1021/ja954071n
10.1002/ange.201000682
10.1021/ja908453k
10.1038/nrc2981
10.1021/om2005468
10.1039/c2cc17377h
10.1002/anie.201300747
10.1002/ange.200705875
10.1038/nrc1951
10.1002/ange.201108175
10.1002/1099-0682(200105)2001:5<1361::AID-EJIC1361>3.0.CO;2-M
10.1021/jm100020w
10.1039/c3cc41143e
10.1021/jm2000932
10.1021/cb400070a
10.1038/nrc2167
10.1038/nrd2803
10.1021/ic200607j
10.1111/j.1469-7793.2003.00335.x
10.1002/ange.201300747
10.1073/pnas.0505798102
10.1002/anie.201108175
10.1016/S0090-9556(25)06515-8
10.1098/rsob.120144
10.1016/j.jorganchem.2010.01.020
10.1002/anie.201000682
ContentType Journal Article
Copyright 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014
Copyright_xml – notice: 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
– notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
5PM
DOI 10.1002/anie.201311161
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
Materials Research Database

MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3946
ExternalDocumentID PMC4227564
3264037461
24616129
10_1002_anie_201311161
ANIE201311161
ark_67375_WNG_SVS3Z069_R
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BBSRC
– fundername: EPSRC
– fundername: Science City
– fundername: Funded Access
– fundername: IAS
– fundername: ERC
  funderid: 247450
– fundername: SNSF
  funderid: PA00P2_145308
– fundername: National Cancer Institute
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
5PM
ID FETCH-LOGICAL-c6421-f7ac193e532a3fdc414bcc0cce6564a1566009a4b31f9c1ade08410309d930bd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 18:32:45 EDT 2025
Fri Jul 11 05:47:09 EDT 2025
Fri Jul 11 15:22:18 EDT 2025
Fri Jul 25 10:39:39 EDT 2025
Mon Jul 21 05:50:33 EDT 2025
Tue Jul 01 05:07:07 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Wed Jan 22 16:26:03 EST 2025
Wed Oct 30 10:01:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords iridium
biocatalysts
hydride transfer
anticancer drugs
reactive oxygen species
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6421-f7ac193e532a3fdc414bcc0cce6564a1566009a4b31f9c1ade08410309d930bd3
Notes istex:93F06AA9C7B1E481D8D2103E7A4CF0553D95EDD6
Funded Access
ERC - No. 247450
ArticleID:ANIE201311161
BBSRC
Science City
EPSRC
National Cancer Institute
ark:/67375/WNG-SVS3Z069-R
IAS
We thank the ERC (247450), SNSF (PA00P2_145308 for N.P.E.B.), IAS (for I.R.C.), BBSRC (for J.M.H.), Science City (AWM and ERDF), and the EPSRC for support, and Prof. Timothy Bugg and members of EC COST Action CM1105 for stimulating discussions. We also thank Professor Pat Unwin, Mike Snowden, and Rob Lazenby for their help with the electrochemical experiments and the National Cancer Institute for NCI-60 human tumor cell panel screening.
SNSF - No. PA00P2_145308
We thank the ERC (247450), SNSF (PA00P2_145308 for N.P.E.B.), IAS (for I.R.C.), BBSRC (for J.M.H.), Science City (AWM and ERDF), and the EPSRC for support, and Prof. Timothy Bugg and members of EC COST Action CM1105 for stimulating discussions. We also thank Professor Pat Unwin, Mike Snowden, and Rob Lazenby for their help with the electrochemical experiments and the National Cancer Institute for NCI‐60 human tumor cell panel screening.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201311161.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201311161
PMID 24616129
PQID 1512174228
PQPubID 946352
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227564
proquest_miscellaneous_1701016703
proquest_miscellaneous_1513049640
proquest_journals_1512174228
pubmed_primary_24616129
crossref_primary_10_1002_anie_201311161
crossref_citationtrail_10_1002_anie_201311161
wiley_primary_10_1002_anie_201311161_ANIE201311161
istex_primary_ark_67375_WNG_SVS3Z069_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 7, 2014
PublicationDateYYYYMMDD 2014-04-07
PublicationDate_xml – month: 04
  year: 2014
  text: April 7, 2014
  day: 07
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Angew. Chem. Int. Ed. 2012, 51, 3897-3900
M. Gras, B. Therrien, G. Süss-Fink, A. Casini, F. Edafe, P. J. Dyson, J. Organomet. Chem. 2010, 695, 1119-1125
L. Kelland, Nat. Rev. Cancer 2007, 7, 573-584.
J. M. Hearn, I. Romero-Canelón, B. Qamar, Z. Liu, I. Hands-Portman, P. J. Sadler, ACS Chem. Biol. 2013, 8, 1335-1343.
G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 2011, 54, 3-25
Z. M. Heiden, T. B. Rauchfuss, J. Am. Chem. Soc. 2007, 129, 14303-14310
R. H. Shoemaker, Nat. Rev. Cancer 2006, 6, 813-823.
S. Bradford, J. A. Cowan, Chem. Commun. 2012, 48, 3118-3120.
F. Wang, A. Habtemariam, E. P. L. van der Geer, R. Fernández, M. Melchart, R. J. Deeth, R. Aird, S. Guichard, F. P. A. Fabbiani, P. Lozano-Casal, I. D. H. Oswald, D. I. Jodrell, S. Parsons, P. J. Sadler, Proc. Natl. Acad. Sci. USA 2005, 102, 18269-18274.
Z. Liu, R. J. Deeth, J. S. Butler, A. Habtemariam, M. E. Newton, P. J. Sadler, Angew. Chem. 2013, 125, 4288-4291
J. Watson, Open Biol. 2013, 3, 120144.
U. Jungwirth, C. R. Kowol, B. K. Keppler, C. G. Hartinger, W. Berger, P. Heffeter, Antioxid. Redox Signaling 2011, 15, 1085-1127.
P. K. Sasmal, C. N. Streu, E. Meggers, Chem. Commun. 2013, 49, 1581-1587
S. Betanzos-Lara, Z. Liu, A. Habtemariam, A. M. Pizarro, B. Qamar, P. J. Sadler, Angew. Chem. 2012, 124, 3963-3966
N. P. E. Barry, P. J. Sadler, Chem. Commun. 2013, 49, 5106-5131.
Z. Liu, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Organometallics 2011, 30, 4702-4710
Angew. Chem. Int. Ed. 2010, 49, 3839-3842.
K. Zhang, P. Mack, K. P. Wong, Int. J. Oncol. 1998, 12, 871-882.
D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8, 579-591
A. Wilbuer, D. H. Vlecken, D. J. Schmitz, K. Kräling, K. Harms, C. P. Bagowski, E. Meggers, Angew. Chem. 2010, 122, 3928-3932
R. A. Cairns, I. S. Harris, T. W. Mak, Nat. Rev. Cancer 2011, 11, 85-95.
S. Chowdhury, F. Himo, N. Russo, E. Sicilia, J. Am. Chem. Soc. 2010, 132, 4178-4190
M. Jennerwein, P. A. Andrews, Drug Metab. Dispos. 1995, 23, 178-184.
Angew. Chem. Int. Ed. 2013, 52, 4194-4197.
Z. Liu, A. Habtemariam, A. M. Pizarro, S. A. Fletcher, A. Kisova, O. Vrana, L. Salassa, P. C. A. Bruijnincx, G. J. Clarkson, V. Brabec, P. J. Sadler, J. Med. Chem. 2011, 54, 3011-3026
A. Cusanelli, U. Frey, D. T. Richens, A. E. Merbach, J. Am. Chem. Soc. 1996, 118, 5265-5271.
J. F. Turrens, J. Physiol. 2003, 552, 335-344.
Angew. Chem. Int. Ed. 2008, 47, 2447-2449.
M. Ali Nazif, J.-A. Bangert, I. Ott, R. Gust, R. Stoll, W. S. Sheldrick, J. Inorg. Biochem. 2009, 103, 1405-1414
T. Poth, H. Paulus, H. Elias, C. Dücker-Benfer, R. van Eldik, Eur. J. Inorg. Chem. 2001, 1361-1369.
S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. 2008, 120, 2481-2483
D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC, Boca Raton, 1991.
A. Kastl, A. Wilbuer, A. L. Merkel, L. Feng, P. Di Fazio, M. Ocker, E. Meggers, Chem. Commun. 2012, 48, 1863-1865
Z. Liu, L. Salassa, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Inorg. Chem. 2011, 50, 5777-5783
2013; 3
2007; 129
2013; 49
2010 2010; 122 49
2013 2013; 125 52
2011; 30
2011; 11
2011; 54
2006; 6
2011; 15
1991
2013; 8
2003; 552
2001
2005; 102
1995; 23
2010; 695
2011; 50
2010; 132
2007; 7
2009; 8
2012 2012; 124 51
2012; 48
2008 2008; 120 47
2009; 103
1998; 12
1996; 118
e_1_2_2_3_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
Lide D. R. (e_1_2_2_28_2) 1991
e_1_2_2_20_2
e_1_2_2_1_2
Zhang K. (e_1_2_2_33_2) 1998; 12
e_1_2_2_2_2
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_27_3
e_1_2_2_26_3
e_1_2_2_27_2
e_1_2_2_26_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_10_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_17_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_17_2
Jennerwein M. (e_1_2_2_24_2) 1995; 23
e_1_2_2_32_2
e_1_2_2_16_2
e_1_2_2_32_3
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_14_2
e_1_2_2_35_2
17958423 - J Am Chem Soc. 2007 Nov 21;129(46):14303-10
18297662 - Angew Chem Int Ed Engl. 2008;47(13):2447-9
17625587 - Nat Rev Cancer. 2007 Aug;7(8):573-84
23303309 - Open Biol. 2013 Jan;3(1):120144
20437440 - Angew Chem Int Ed Engl. 2010 May 17;49(22):3839-42
21275772 - Antioxid Redox Signal. 2011 Aug 15;15(4):1085-127
23636600 - Chem Commun (Camb). 2013 Jun 7;49(45):5106-31
23471835 - Angew Chem Int Ed Engl. 2013 Apr 8;52(15):4194-7
16990858 - Nat Rev Cancer. 2006 Oct;6(10):813-23
21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95
21443199 - J Med Chem. 2011 Apr 28;54(8):3011-26
23618382 - ACS Chem Biol. 2013;8(6):1335-43
22057186 - Chem Commun (Camb). 2012 Feb 11;48(13):1863-5
16352726 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18269-74
21077686 - J Med Chem. 2011 Jan 13;54(1):3-25
9499449 - Int J Oncol. 1998 Apr;12(4):871-82
7736908 - Drug Metab Dispos. 1995 Feb;23(2):178-84
19478820 - Nat Rev Drug Discov. 2009 Jul;8(7):579-91
22415924 - Angew Chem Int Ed Engl. 2012 Apr 16;51(16):3897-900
20218699 - J Am Chem Soc. 2010 Mar 31;132(12):4178-90
21618978 - Inorg Chem. 2011 Jun 20;50(12):5777-83
22343977 - Chem Commun (Camb). 2012 Mar 25;48(25):3118-20
14561818 - J Physiol. 2003 Oct 15;552(Pt 2):335-44
23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7
19744736 - J Inorg Biochem. 2009 Oct;103(10):1405-14
References_xml – reference: Z. Liu, R. J. Deeth, J. S. Butler, A. Habtemariam, M. E. Newton, P. J. Sadler, Angew. Chem. 2013, 125, 4288-4291;
– reference: Angew. Chem. Int. Ed. 2012, 51, 3897-3900;
– reference: A. Cusanelli, U. Frey, D. T. Richens, A. E. Merbach, J. Am. Chem. Soc. 1996, 118, 5265-5271.
– reference: A. Wilbuer, D. H. Vlecken, D. J. Schmitz, K. Kräling, K. Harms, C. P. Bagowski, E. Meggers, Angew. Chem. 2010, 122, 3928-3932;
– reference: S. Chowdhury, F. Himo, N. Russo, E. Sicilia, J. Am. Chem. Soc. 2010, 132, 4178-4190;
– reference: Z. Liu, A. Habtemariam, A. M. Pizarro, S. A. Fletcher, A. Kisova, O. Vrana, L. Salassa, P. C. A. Bruijnincx, G. J. Clarkson, V. Brabec, P. J. Sadler, J. Med. Chem. 2011, 54, 3011-3026;
– reference: Z. M. Heiden, T. B. Rauchfuss, J. Am. Chem. Soc. 2007, 129, 14303-14310;
– reference: J. M. Hearn, I. Romero-Canelón, B. Qamar, Z. Liu, I. Hands-Portman, P. J. Sadler, ACS Chem. Biol. 2013, 8, 1335-1343.
– reference: D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC, Boca Raton, 1991.
– reference: J. Watson, Open Biol. 2013, 3, 120144.
– reference: M. Gras, B. Therrien, G. Süss-Fink, A. Casini, F. Edafe, P. J. Dyson, J. Organomet. Chem. 2010, 695, 1119-1125;
– reference: G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 2011, 54, 3-25;
– reference: M. Ali Nazif, J.-A. Bangert, I. Ott, R. Gust, R. Stoll, W. S. Sheldrick, J. Inorg. Biochem. 2009, 103, 1405-1414;
– reference: F. Wang, A. Habtemariam, E. P. L. van der Geer, R. Fernández, M. Melchart, R. J. Deeth, R. Aird, S. Guichard, F. P. A. Fabbiani, P. Lozano-Casal, I. D. H. Oswald, D. I. Jodrell, S. Parsons, P. J. Sadler, Proc. Natl. Acad. Sci. USA 2005, 102, 18269-18274.
– reference: A. Kastl, A. Wilbuer, A. L. Merkel, L. Feng, P. Di Fazio, M. Ocker, E. Meggers, Chem. Commun. 2012, 48, 1863-1865;
– reference: T. Poth, H. Paulus, H. Elias, C. Dücker-Benfer, R. van Eldik, Eur. J. Inorg. Chem. 2001, 1361-1369.
– reference: Angew. Chem. Int. Ed. 2013, 52, 4194-4197.
– reference: K. Zhang, P. Mack, K. P. Wong, Int. J. Oncol. 1998, 12, 871-882.
– reference: Angew. Chem. Int. Ed. 2010, 49, 3839-3842.
– reference: R. H. Shoemaker, Nat. Rev. Cancer 2006, 6, 813-823.
– reference: R. A. Cairns, I. S. Harris, T. W. Mak, Nat. Rev. Cancer 2011, 11, 85-95.
– reference: N. P. E. Barry, P. J. Sadler, Chem. Commun. 2013, 49, 5106-5131.
– reference: L. Kelland, Nat. Rev. Cancer 2007, 7, 573-584.
– reference: Z. Liu, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Organometallics 2011, 30, 4702-4710;
– reference: J. F. Turrens, J. Physiol. 2003, 552, 335-344.
– reference: P. K. Sasmal, C. N. Streu, E. Meggers, Chem. Commun. 2013, 49, 1581-1587;
– reference: Z. Liu, L. Salassa, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Inorg. Chem. 2011, 50, 5777-5783;
– reference: S. Betanzos-Lara, Z. Liu, A. Habtemariam, A. M. Pizarro, B. Qamar, P. J. Sadler, Angew. Chem. 2012, 124, 3963-3966;
– reference: M. Jennerwein, P. A. Andrews, Drug Metab. Dispos. 1995, 23, 178-184.
– reference: S. Bradford, J. A. Cowan, Chem. Commun. 2012, 48, 3118-3120.
– reference: U. Jungwirth, C. R. Kowol, B. K. Keppler, C. G. Hartinger, W. Berger, P. Heffeter, Antioxid. Redox Signaling 2011, 15, 1085-1127.
– reference: D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8, 579-591;
– reference: S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. 2008, 120, 2481-2483;
– reference: Angew. Chem. Int. Ed. 2008, 47, 2447-2449.
– volume: 48
  start-page: 3118
  year: 2012
  end-page: 3120
  publication-title: Chem. Commun.
– volume: 50
  start-page: 5777
  year: 2011
  end-page: 5783
  publication-title: Inorg. Chem.
– volume: 124 51
  start-page: 3963 3897
  year: 2012 2012
  end-page: 3966 3900
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1335
  year: 2013
  end-page: 1343
  publication-title: ACS Chem. Biol.
– volume: 49
  start-page: 5106
  year: 2013
  end-page: 5131
  publication-title: Chem. Commun.
– volume: 122 49
  start-page: 3928 3839
  year: 2010 2010
  end-page: 3932 3842
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 48
  start-page: 1863
  year: 2012
  end-page: 1865
  publication-title: Chem. Commun.
– volume: 102
  start-page: 18269
  year: 2005
  end-page: 18274
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 132
  start-page: 4178
  year: 2010
  end-page: 4190
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 3011
  year: 2011
  end-page: 3026
  publication-title: J. Med. Chem.
– volume: 129
  start-page: 14303
  year: 2007
  end-page: 14310
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 178
  year: 1995
  end-page: 184
  publication-title: Drug Metab. Dispos.
– volume: 7
  start-page: 573
  year: 2007
  end-page: 584
  publication-title: Nat. Rev. Cancer
– volume: 54
  start-page: 3
  year: 2011
  end-page: 25
  publication-title: J. Med. Chem.
– volume: 695
  start-page: 1119
  year: 2010
  end-page: 1125
  publication-title: J. Organomet. Chem.
– volume: 49
  start-page: 1581
  year: 2013
  end-page: 1587
  publication-title: Chem. Commun.
– volume: 30
  start-page: 4702
  year: 2011
  end-page: 4710
  publication-title: Organometallics
– start-page: 1361
  year: 2001
  end-page: 1369
  publication-title: Eur. J. Inorg. Chem.
– volume: 103
  start-page: 1405
  year: 2009
  end-page: 1414
  publication-title: J. Inorg. Biochem.
– volume: 3
  start-page: 120144
  year: 2013
  publication-title: Open Biol.
– volume: 8
  start-page: 579
  year: 2009
  end-page: 591
  publication-title: Nat. Rev. Drug Discovery
– volume: 118
  start-page: 5265
  year: 1996
  end-page: 5271
  publication-title: J. Am. Chem. Soc.
– volume: 120 47
  start-page: 2481 2447
  year: 2008 2008
  end-page: 2483 2449
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 12
  start-page: 871
  year: 1998
  end-page: 882
  publication-title: Int. J. Oncol.
– volume: 6
  start-page: 813
  year: 2006
  end-page: 823
  publication-title: Nat. Rev. Cancer
– volume: 11
  start-page: 85
  year: 2011
  end-page: 95
  publication-title: Nat. Rev. Cancer
– year: 1991
– volume: 15
  start-page: 1085
  year: 2011
  end-page: 1127
  publication-title: Antioxid. Redox Signaling
– volume: 552
  start-page: 335
  year: 2003
  end-page: 344
  publication-title: J. Physiol.
– volume: 125 52
  start-page: 4288 4194
  year: 2013 2013
  end-page: 4291 4197
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– ident: e_1_2_2_25_2
– volume-title: CRC Handbook of Chemistry and Physics
  year: 1991
  ident: e_1_2_2_28_2
– ident: e_1_2_2_30_2
  doi: 10.1021/ja073774p
– ident: e_1_2_2_14_2
  doi: 10.1016/j.jinorgbio.2009.08.003
– ident: e_1_2_2_35_2
  doi: 10.1039/C2CC37832A
– ident: e_1_2_2_21_2
  doi: 10.1089/ars.2010.3663
– ident: e_1_2_2_32_3
  doi: 10.1002/anie.200705875
– ident: e_1_2_2_5_2
– ident: e_1_2_2_16_2
  doi: 10.1039/C1CC15378A
– ident: e_1_2_2_8_2
  doi: 10.1021/ja954071n
– ident: e_1_2_2_17_2
  doi: 10.1002/ange.201000682
– ident: e_1_2_2_31_2
  doi: 10.1021/ja908453k
– ident: e_1_2_2_23_2
  doi: 10.1038/nrc2981
– ident: e_1_2_2_2_2
– ident: e_1_2_2_13_2
  doi: 10.1021/om2005468
– ident: e_1_2_2_36_2
  doi: 10.1039/c2cc17377h
– ident: e_1_2_2_27_3
  doi: 10.1002/anie.201300747
– ident: e_1_2_2_32_2
  doi: 10.1002/ange.200705875
– ident: e_1_2_2_10_2
– ident: e_1_2_2_19_2
  doi: 10.1038/nrc1951
– ident: e_1_2_2_26_2
  doi: 10.1002/ange.201108175
– ident: e_1_2_2_9_2
  doi: 10.1002/1099-0682(200105)2001:5<1361::AID-EJIC1361>3.0.CO;2-M
– ident: e_1_2_2_3_2
  doi: 10.1021/jm100020w
– ident: e_1_2_2_4_2
  doi: 10.1039/c3cc41143e
– ident: e_1_2_2_11_2
  doi: 10.1021/jm2000932
– ident: e_1_2_2_18_2
  doi: 10.1021/cb400070a
– ident: e_1_2_2_1_2
  doi: 10.1038/nrc2167
– ident: e_1_2_2_6_2
  doi: 10.1038/nrd2803
– ident: e_1_2_2_12_2
  doi: 10.1021/ic200607j
– ident: e_1_2_2_22_2
  doi: 10.1111/j.1469-7793.2003.00335.x
– ident: e_1_2_2_27_2
  doi: 10.1002/ange.201300747
– ident: e_1_2_2_20_2
  doi: 10.1073/pnas.0505798102
– ident: e_1_2_2_26_3
  doi: 10.1002/anie.201108175
– volume: 23
  start-page: 178
  year: 1995
  ident: e_1_2_2_24_2
  publication-title: Drug Metab. Dispos.
  doi: 10.1016/S0090-9556(25)06515-8
– ident: e_1_2_2_34_2
– ident: e_1_2_2_7_2
  doi: 10.1098/rsob.120144
– ident: e_1_2_2_29_2
– volume: 12
  start-page: 871
  year: 1998
  ident: e_1_2_2_33_2
  publication-title: Int. J. Oncol.
– ident: e_1_2_2_15_2
  doi: 10.1016/j.jorganchem.2010.01.020
– ident: e_1_2_2_17_3
  doi: 10.1002/anie.201000682
– reference: 17625587 - Nat Rev Cancer. 2007 Aug;7(8):573-84
– reference: 14561818 - J Physiol. 2003 Oct 15;552(Pt 2):335-44
– reference: 7736908 - Drug Metab Dispos. 1995 Feb;23(2):178-84
– reference: 18297662 - Angew Chem Int Ed Engl. 2008;47(13):2447-9
– reference: 20218699 - J Am Chem Soc. 2010 Mar 31;132(12):4178-90
– reference: 21618978 - Inorg Chem. 2011 Jun 20;50(12):5777-83
– reference: 23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7
– reference: 23471835 - Angew Chem Int Ed Engl. 2013 Apr 8;52(15):4194-7
– reference: 22415924 - Angew Chem Int Ed Engl. 2012 Apr 16;51(16):3897-900
– reference: 23303309 - Open Biol. 2013 Jan;3(1):120144
– reference: 16990858 - Nat Rev Cancer. 2006 Oct;6(10):813-23
– reference: 21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95
– reference: 23636600 - Chem Commun (Camb). 2013 Jun 7;49(45):5106-31
– reference: 22343977 - Chem Commun (Camb). 2012 Mar 25;48(25):3118-20
– reference: 21443199 - J Med Chem. 2011 Apr 28;54(8):3011-26
– reference: 21275772 - Antioxid Redox Signal. 2011 Aug 15;15(4):1085-127
– reference: 20437440 - Angew Chem Int Ed Engl. 2010 May 17;49(22):3839-42
– reference: 17958423 - J Am Chem Soc. 2007 Nov 21;129(46):14303-10
– reference: 19478820 - Nat Rev Drug Discov. 2009 Jul;8(7):579-91
– reference: 22057186 - Chem Commun (Camb). 2012 Feb 11;48(13):1863-5
– reference: 9499449 - Int J Oncol. 1998 Apr;12(4):871-82
– reference: 21077686 - J Med Chem. 2011 Jan 13;54(1):3-25
– reference: 16352726 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18269-74
– reference: 19744736 - J Inorg Biochem. 2009 Oct;103(10):1405-14
– reference: 23618382 - ACS Chem Biol. 2013;8(6):1335-43
SSID ssj0028806
Score 2.5749805
Snippet Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex...
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 ‐Cp xbiph...
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph)...
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [( eta super(5)-Cp...
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 -Cp xbiph...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3941
SubjectTerms anticancer drugs
Antineoplastic Agents - chemistry
biocatalysts
Cancer
Catalysis
Catalysts
Chemotherapy
Cisplatin - chemistry
Communications
Correlation
Drugs
Glutathione
Humans
hydride transfer
Hydrogen peroxide
Iridium
Iridium - chemistry
Ligands
Medical research
Models, Molecular
Organometallic Compounds - chemistry
Oxidants
Oxidizing agents
Pyridines
Reactive Oxygen Species
Structure-Activity Relationship
Title The Potent Oxidant Anticancer Activity of Organoiridium Catalysts
URI https://api.istex.fr/ark:/67375/WNG-SVS3Z069-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201311161
https://www.ncbi.nlm.nih.gov/pubmed/24616129
https://www.proquest.com/docview/1512174228
https://www.proquest.com/docview/1513049640
https://www.proquest.com/docview/1701016703
https://pubmed.ncbi.nlm.nih.gov/PMC4227564
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOcAFyqsE2ipICE5pnTgbb47Rqg-QWKqWQsXFchxbRIUE7Walwq9nxtmYbnlJcEvkiWSPZ-zPzsw3AM8ov9pkJo9KLnSUqiyO8grPPEYwYRXuLyNG2civp9nhafrqbHR2KYu_54fwF27kGW69JgdX5Xz3B2koZWBTaBZHb3XnHwrYIlR07PmjEjTOPr2I84iq0A-sjSzZXf18ZVe6QQq--BXk_Dly8jKidVvS_h1Qw2D6SJTznUVX7uhvV3ge_2e063B7iVfDojewu3DNNPfg5mQoE3cfCjS08KhF6N2Fby7qCmcqLBq6IUdzmoWF7stThK0NXd5nW8_qql58Did0cfR13s0fwOn-3tvJYbSsyxBpSouNrFAacZ8Z8URxW-k0TkutmdYGwWGq6ESIyE2lJY9trmNVGTZOqZxZXuWclRV_CGtN25hHEGZ2rBJjEZZUlBGbKxFbphQrc8QdNhYBRMO8SL0kLafaGZ9kT7ecSFKM9IoJ4IWX_9LTdfxW8rmbZi-mZucU5CZG8v30QJ68O-EfWJbL4wA2BzuQS_-eS8JJeJZLknEAT30zap5-t6jGtAsnQ_8ws5T9QUY4jj9cdgPY6E3Ld4iY_hB_5gGIFaPzAsQMvtrS1B8dQzh2TOBUBJA4m_qLKmQxfbnn3x7_y0dP4BY-9yFNYhPWutnCbCFa68ptuJ6kR9vOL78DzlA1ww
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lAuvB8pBYyE4JTWibPx5hgtLVtoF9QHIC6W4zgiaptUu1mp7a9nJt4ElqcExyRjKRnPxJ_HM98APKf6ahvbxM-ENH6k48BPctzzWMlloXF9GXCqRt6fxOPj6M2nQZdNSLUwjh-iD7iRZ7T_a3JwCkhvfWMNpRJsys0S6K60AVqltt5En__qoGeQCtE8XYGRED71oe94G3m4tTx-aV1aJRVf_Ap0_pw7-T2mbRelnZuQdZ_jclFONudNtmmufmB6_K_vvQU3FpCVpc7GbsM1W92BtVHXKe4upGhr7H2N6Lth7y7KHCeLpRUFydGipiw1rkMFqwvWln7W5bTMy_kZG1Hs6HLWzO7B8c720WjsL1oz-IYqY_1CaoPQzw5EqEWRmyiIMmO4MRbxYaRpU4jgTUeZCIrEBDq3fBhRR7MkTwTPcnEfVqq6sg-BxcVQh7ZAZJJTUWyiZVBwrXmWIPQoAumB302MMgvecmqfcaoc43KoSDGqV4wHL3v5c8fY8VvJF-0892J6ekJ5bnKgPk5eq8MPh-IzjxN14MFGZwhq4eIzRVAJt3NhOPTgWf8YNU8nLrqy9byVoWPMOOJ_kJEtzR_-eT144GyrfyEi-0MImnggl6yuFyBy8OUnVfmlJQnHF5M4FR6ErVH9RRUqnexu91fr_zLoKayNj_b31N7u5O0juI73XYaT3ICVZjq3jxG8NdmT1j2_As0IOQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hVgIuiHdTChgJwSmqE2fj9TFaurQ8lhWlUHGxHMcWETSp9iGVf8-Msxu64iVxTDyRrBlP_I098w3AU6qvdrlTcSmkjTOTJ7GqMOZxkktvcH8ZcKpGfjvJD0-yV6eD00tV_B0_RH_gRp4R_tfk4OeV3_9JGkoV2JSaJdBbKf7Zphs_SupKs2kfcuHq7OqLhIipDf2atpGn-5vfb2xL26Thi99hzl9TJy9D2rAnjW_CjRWYZEVn_VtwxTW34dpo3cPtDhS4Cti0RVy8YO8u6grVyIqGjq_R1jNW2K53BGs9C0WZbT2rq3p5xkZ0qvN9vpjfhZPxwYfRYbxqmhBbqlmNvTQWQZkbiNQIX9ksyUprubUOkVtmKFxDWGWyUiRe2cRUjg8z6jWmKiV4WYl7sNW0jdsBlvuhSZ1HzFBRuaoyMvHcGF4qBAU-kRHEa51pu2IUp8YW33THhZxq0rHudRzB817-vOPS-KPks2CCXszMvlIGmhzoT5OX-vjjsfjMc6XfR7C3tpFeOd9cE4jBQCtNhxE86YdR83QXYhrXLoMMXTDmGf-LjAwEfPhPjOB-Z_Z-QkTDh-BQRSA3FkQvQLTdmyNN_SXQd-PEJJoigjQsnX-oQheTo4P-afd_PnoMV6cvxvrN0eT1A7iOr7vUI7kHW4vZ0j1EVLUoHwXH-QGhJBZk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Potent+Oxidant+Anticancer+Activity+of+Organoiridium+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Zhe&rft.au=Romero%E2%80%90Canel%C3%B3n%2C+Isolda&rft.au=Qamar%2C+Bushra&rft.au=Hearn%2C+Jessica+M.&rft.date=2014-04-07&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=15&rft.spage=3941&rft.epage=3946&rft_id=info:doi/10.1002%2Fanie.201311161&rft.externalDBID=10.1002%252Fanie.201311161&rft.externalDocID=ANIE201311161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon