The Potent Oxidant Anticancer Activity of Organoiridium Catalysts
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] (1‐Cl), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergo...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 15; pp. 3941 - 3946 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
07.04.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] (1‐Cl), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5‐Cpxbiph)Ir(phpy)(py)]+ (1‐py) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.
Protective pyridine: A novel half‐sandwich organoiridium(III) complex with a pyridine ligand is more potent than both its chloride analogue and cisplatin towards a wide range of cancer cells. The pyridine ligand protects the iridium complex from rapid reactions with glutathione, and its potency correlates with a substantial increase in the amount of reactive oxygen species in the cancer cells. |
---|---|
AbstractList | Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. [PUBLICATION ABSTRACT] Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [( eta super(5)-Cp super(xbiph))Ir(phpy)(Cl)] (1-Cl), which contains pi -bonded biphenyltetramethylcyclopentadienyl (Cp super(xbiph)) and C perpendicular -chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [( eta super(5)-Cp super(xbiph))Ir(phpy)(py)] super(+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H sub(2)O sub(2) by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Protective pyridine: A novel half-sandwich organoiridium(III) complex with a pyridine ligand is more potent than both its chloride analogue and cisplatin towards a wide range of cancer cells. The pyridine ligand protects the iridium complex from rapid reactions with glutathione, and its potency correlates with a substantial increase in the amount of reactive oxygen species in the cancer cells. Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 -Cp xbiph )Ir(phpy)(Cl)] ( 1-Cl ), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp xbiph ) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η 5 -Cp xbiph )Ir(phpy)(py)] + ( 1-py ) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H 2 O 2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] (1‐Cl), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5‐Cpxbiph)Ir(phpy)(py)]+ (1‐py) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. Protective pyridine: A novel half‐sandwich organoiridium(III) complex with a pyridine ligand is more potent than both its chloride analogue and cisplatin towards a wide range of cancer cells. The pyridine ligand protects the iridium complex from rapid reactions with glutathione, and its potency correlates with a substantial increase in the amount of reactive oxygen species in the cancer cells. Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 ‐Cp xbiph )Ir(phpy)(Cl)] ( 1‐Cl ), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cp xbiph ) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η 5 ‐Cp xbiph )Ir(phpy)(py)] + ( 1‐py ) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H 2 O 2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. |
Author | Liu, Zhe Pizarro, Ana M. Sadler, Peter J. Barry, Nicolas P. E. Hearn, Jessica M. Habtemariam, Abraha Clarkson, Guy J. Qamar, Bushra Romero-Canelón, Isolda |
Author_xml | – sequence: 1 givenname: Zhe surname: Liu fullname: Liu, Zhe organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) – sequence: 2 givenname: Isolda surname: Romero-Canelón fullname: Romero-Canelón, Isolda organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) – sequence: 3 givenname: Bushra surname: Qamar fullname: Qamar, Bushra organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) – sequence: 4 givenname: Jessica M. surname: Hearn fullname: Hearn, Jessica M. organization: Warwick Systems Biology Centre, University of Warwick (UK) – sequence: 5 givenname: Abraha surname: Habtemariam fullname: Habtemariam, Abraha organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) – sequence: 6 givenname: Nicolas P. E. surname: Barry fullname: Barry, Nicolas P. E. organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) – sequence: 7 givenname: Ana M. surname: Pizarro fullname: Pizarro, Ana M. organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) – sequence: 8 givenname: Guy J. surname: Clarkson fullname: Clarkson, Guy J. organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) – sequence: 9 givenname: Peter J. surname: Sadler fullname: Sadler, Peter J. email: p.j.sadler@warwick.ac.uk organization: Department of Chemistry, University of Warwick, Coventry, CV4 7AL (UK) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24616129$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYNU7Ie--igDvvgy672TTDLzIgxLbQulK7Yq-BKymUybOpvUJFu7_32zbF1qQfp0A_mdc09y9smO884Q8hZhggDVR-WsmVSAFBE5viB7WFdYUiHoTj4zSkvR1LhL9mO8znzTAH9FdivGM121e6S7uDLFF5-MS8XszvYqz84lq5XTJhSdTvbWplXhh2IWLpXzNtjeLhfFVCU1rmKKr8nLQY3RvHmYB-Tb58OL6XF5Ojs6mXanpeYsRxqE0thSU9NK0aHXDNlca9Da8JozhTXnAK1ic4pDq1H1BhqGQKHtWwrznh6QTxvfm-V8YXqdEwc1yptgFyqspFdW_nvj7JW89LeSVZXIK7LBhweD4H8vTUxyYaM246ic8csoUQACcgH0ebRGCqzlDDL6_gl67ZfB5Z9YUxWKvL7J1LvH4bep_xaRgckG0MHHGMywRRDkumm5blpum84C9kSgbVLJ-vXj7fh_WbuR_bGjWT2zRHZnJ4ePteVGa2Myd1utCr8kF1TU8sfZkTz_fk5_Am_lV3oPtmnLbg |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_3c01125 crossref_primary_10_1021_acs_inorgchem_8b01656 crossref_primary_10_1021_acs_biomac_9b01184 crossref_primary_10_1039_C9DT04656A crossref_primary_10_1002_ejoc_202200118 crossref_primary_10_1039_C5DT03037D crossref_primary_10_1021_acs_inorgchem_2c00984 crossref_primary_10_1002_chem_201504458 crossref_primary_10_1021_acs_jmedchem_1c01335 crossref_primary_10_1039_C7MT00242D crossref_primary_10_3390_pharmaceutics13101540 crossref_primary_10_1039_C9CC04098F crossref_primary_10_1016_j_bmcl_2020_127219 crossref_primary_10_1002_chem_201905448 crossref_primary_10_1016_j_cbpa_2015_01_024 crossref_primary_10_1021_acs_organomet_7b00760 crossref_primary_10_1039_C8NJ03360A crossref_primary_10_1039_D3DT03700B crossref_primary_10_1007_s00775_018_1578_0 crossref_primary_10_1002_chem_201801918 crossref_primary_10_1039_C4FD00098F crossref_primary_10_4155_fmc_2016_0153 crossref_primary_10_1039_C8CY01190G crossref_primary_10_1039_C8DT01858H crossref_primary_10_1002_aoc_6152 crossref_primary_10_1002_zaac_202200382 crossref_primary_10_1039_C9DT04620H crossref_primary_10_1039_D2DT02237K crossref_primary_10_1016_j_jinorgbio_2024_112631 crossref_primary_10_1039_D0DT02408B crossref_primary_10_1021_acs_chemrev_1c00381 crossref_primary_10_1016_j_ccr_2024_216139 crossref_primary_10_1039_D3BM01027A crossref_primary_10_1021_acscatal_3c02487 crossref_primary_10_1021_acs_inorgchem_8b00346 crossref_primary_10_1002_chem_202301603 crossref_primary_10_1016_j_molstruc_2020_128058 crossref_primary_10_1021_acs_inorgchem_5b02697 crossref_primary_10_1021_acs_chemrev_8b00493 crossref_primary_10_1039_C7DT00575J crossref_primary_10_1016_j_ica_2020_120066 crossref_primary_10_1039_C6DT02772E crossref_primary_10_1016_j_dyepig_2020_108220 crossref_primary_10_1002_cmdc_202000672 crossref_primary_10_1039_C4CC05215C crossref_primary_10_1002_asia_201800103 crossref_primary_10_3390_molecules25194540 crossref_primary_10_1039_D0SC04082G crossref_primary_10_1021_acs_organomet_8b00402 crossref_primary_10_1039_C6DT00929H crossref_primary_10_1039_C7DT01043E crossref_primary_10_3390_cancers15010107 crossref_primary_10_1021_acsmacrolett_1c00336 crossref_primary_10_1016_j_ddtec_2019_06_001 crossref_primary_10_1016_j_inoche_2022_109609 crossref_primary_10_1038_nchem_2918 crossref_primary_10_1002_ejic_201601258 crossref_primary_10_1016_j_jorganchem_2019_120918 crossref_primary_10_1039_C7CS00195A crossref_primary_10_1039_C8CC01326H crossref_primary_10_1039_C9QI00081J crossref_primary_10_1021_acsami_7b01735 crossref_primary_10_1002_asia_201801323 crossref_primary_10_1002_anie_201411346 crossref_primary_10_1016_j_jinorgbio_2018_08_009 crossref_primary_10_1021_jacs_1c07372 crossref_primary_10_1016_j_ccr_2023_215620 crossref_primary_10_3389_fchem_2022_967337 crossref_primary_10_1021_om500644f crossref_primary_10_1021_jacs_3c09735 crossref_primary_10_1039_C8DT00438B crossref_primary_10_1021_acs_inorgchem_6b02488 crossref_primary_10_1039_c9mt00134d crossref_primary_10_1039_C7DT02072D crossref_primary_10_1002_chem_201806341 crossref_primary_10_1002_ange_201411346 crossref_primary_10_1021_acs_jmedchem_3c02000 crossref_primary_10_1038_srep38954 crossref_primary_10_1002_chem_201701714 crossref_primary_10_3390_ph15070862 crossref_primary_10_1021_acs_jmedchem_3c01156 crossref_primary_10_1021_acs_jmedchem_3c01276 crossref_primary_10_1039_C9BM01495K crossref_primary_10_1039_D1SC01939B crossref_primary_10_1007_s11426_022_1496_0 crossref_primary_10_1021_acs_inorgchem_0c01613 crossref_primary_10_1002_cplu_202400621 crossref_primary_10_1016_j_ccr_2024_216306 crossref_primary_10_1002_anie_201915828 crossref_primary_10_1002_cctc_202401490 crossref_primary_10_1002_cmdc_201600638 crossref_primary_10_1016_j_trechm_2021_03_006 crossref_primary_10_1021_acs_inorgchem_2c03246 crossref_primary_10_1021_acs_inorgchem_3c03471 crossref_primary_10_1039_C4QI00098F crossref_primary_10_1002_VIW_20200171 crossref_primary_10_1142_S1088424620500248 crossref_primary_10_1039_D0DT00627K crossref_primary_10_1002_ange_202306645 crossref_primary_10_1002_anie_202000173 crossref_primary_10_1039_C8QI00620B crossref_primary_10_1002_chem_201702917 crossref_primary_10_1016_j_jinorgbio_2024_112792 crossref_primary_10_1039_C6DT00601A crossref_primary_10_1021_acs_inorgchem_7b02356 crossref_primary_10_1021_acs_inorgchem_3c02118 crossref_primary_10_1021_acs_inorgchem_3c00736 crossref_primary_10_1002_chem_201803521 crossref_primary_10_1080_00958972_2024_2343787 crossref_primary_10_1002_aoc_4746 crossref_primary_10_1002_ejic_201600908 crossref_primary_10_1016_j_inoche_2020_108364 crossref_primary_10_1016_j_jinorgbio_2017_05_013 crossref_primary_10_1039_D3RA05412H crossref_primary_10_1021_acs_biomac_7b01491 crossref_primary_10_1021_acs_organomet_2c00379 crossref_primary_10_1016_j_jinorgbio_2017_12_019 crossref_primary_10_1021_acs_inorgchem_0c02287 crossref_primary_10_1039_C7DT01669G crossref_primary_10_1016_j_jinorgbio_2021_111395 crossref_primary_10_1021_acs_organomet_8b00206 crossref_primary_10_1016_j_jorganchem_2016_10_018 crossref_primary_10_1002_ange_202000173 crossref_primary_10_1016_j_apsusc_2021_152206 crossref_primary_10_1039_C4MT00112E crossref_primary_10_1002_ange_202312897 crossref_primary_10_1016_j_dyepig_2018_08_006 crossref_primary_10_1016_j_ccr_2020_213690 crossref_primary_10_1002_ejic_201901055 crossref_primary_10_1002_aoc_4633 crossref_primary_10_1002_cmdc_202100297 crossref_primary_10_1021_acs_inorgchem_5b01832 crossref_primary_10_3390_M999 crossref_primary_10_1002_chem_201806351 crossref_primary_10_1016_j_jinorgbio_2023_112393 crossref_primary_10_1039_C7CC01946G crossref_primary_10_1002_cbic_202000511 crossref_primary_10_1038_srep19449 crossref_primary_10_1016_j_ejmech_2019_111599 crossref_primary_10_1016_j_biomaterials_2015_08_031 crossref_primary_10_1021_acs_jmedchem_3c00704 crossref_primary_10_1021_acs_organomet_7b00250 crossref_primary_10_1021_jacs_7b03872 crossref_primary_10_1134_S1070363222080242 crossref_primary_10_1002_asia_201801267 crossref_primary_10_1016_j_jinorgbio_2019_110817 crossref_primary_10_1002_ange_201915828 crossref_primary_10_1016_j_arabjc_2020_102930 crossref_primary_10_1002_aoc_4246 crossref_primary_10_1002_anie_202312897 crossref_primary_10_1021_jacs_4c09508 crossref_primary_10_1039_D2DT01055K crossref_primary_10_1016_j_jorganchem_2015_05_011 crossref_primary_10_1021_acsabm_0c00581 crossref_primary_10_1186_s12951_021_01001_4 crossref_primary_10_3390_molecules25163661 crossref_primary_10_1016_j_ejmech_2015_12_035 crossref_primary_10_1016_j_ica_2015_12_035 crossref_primary_10_1016_j_inoche_2016_02_018 crossref_primary_10_1021_acs_inorgchem_7b01959 crossref_primary_10_1002_anie_202306645 crossref_primary_10_1016_j_jinorgbio_2024_112586 crossref_primary_10_1002_chem_201404448 crossref_primary_10_1039_C4DT02883J crossref_primary_10_1039_D0CC04970K crossref_primary_10_1039_C9DT00259F crossref_primary_10_1007_s00343_019_8110_4 crossref_primary_10_1002_cbic_201900268 crossref_primary_10_1002_chem_201804901 crossref_primary_10_1039_C8DT02963F crossref_primary_10_1007_s00775_020_01783_2 crossref_primary_10_1002_hlca_202300064 crossref_primary_10_1016_j_biochi_2016_03_013 crossref_primary_10_1002_ejic_201801339 crossref_primary_10_1038_s41557_019_0328_4 crossref_primary_10_3390_pharmaceutics15020356 crossref_primary_10_1016_j_jinorgbio_2018_12_012 crossref_primary_10_1007_s00775_016_1333_3 crossref_primary_10_1016_j_jphotochem_2019_04_030 crossref_primary_10_1021_acs_inorgchem_2c03279 crossref_primary_10_1039_C9DT00999J crossref_primary_10_1039_C7SC01109A crossref_primary_10_1039_D0DT03414B crossref_primary_10_1002_cmdc_201600101 crossref_primary_10_1016_j_biomaterials_2014_10_070 crossref_primary_10_1021_acs_inorgchem_9b00282 crossref_primary_10_1039_C9DT02030F crossref_primary_10_1039_D4QI01955E crossref_primary_10_1021_acs_langmuir_8b00443 crossref_primary_10_1021_acs_inorgchem_8b01944 crossref_primary_10_1021_acs_organomet_8b00132 crossref_primary_10_1246_cl_190179 crossref_primary_10_1039_D0DT00451K crossref_primary_10_1016_j_dyepig_2018_11_009 crossref_primary_10_1007_s00775_023_01997_0 crossref_primary_10_1021_acs_inorgchem_9b02227 crossref_primary_10_1039_D0SC00897D crossref_primary_10_1016_j_ddtec_2015_08_002 crossref_primary_10_1039_D1CS00468A crossref_primary_10_1021_acs_jmedchem_4c02089 crossref_primary_10_1039_C5QI00002E crossref_primary_10_1021_acs_organomet_9b00080 crossref_primary_10_1021_jacsau_1c00262 crossref_primary_10_1002_ejic_201800225 crossref_primary_10_1016_j_biomaterials_2017_03_017 crossref_primary_10_3390_ijms22147422 crossref_primary_10_1016_j_jinorgbio_2017_09_020 crossref_primary_10_1002_adma_202100245 crossref_primary_10_1002_asia_201501048 crossref_primary_10_1021_acscatal_6b00395 crossref_primary_10_1021_acs_inorgchem_8b00529 crossref_primary_10_1002_chem_202004954 crossref_primary_10_1039_C6DT01264G crossref_primary_10_1002_aoc_4685 crossref_primary_10_1002_smll_202001849 crossref_primary_10_1039_D4QI02472A crossref_primary_10_1002_cplu_201800035 crossref_primary_10_1002_chem_201801963 crossref_primary_10_1039_C5SC01955A crossref_primary_10_1039_D0CB00150C crossref_primary_10_1039_C8SC04242J crossref_primary_10_1002_anie_201407468 crossref_primary_10_1002_ejic_201700700 crossref_primary_10_1039_C5RA27350A crossref_primary_10_1039_C6DT04339A crossref_primary_10_1021_acs_biochem_7b00809 crossref_primary_10_1016_j_ica_2017_06_001 crossref_primary_10_1002_adma_202210363 crossref_primary_10_1016_j_jinorgbio_2021_111450 crossref_primary_10_1002_chem_201601542 crossref_primary_10_1039_C6SC02901A crossref_primary_10_1039_D2CC00341D crossref_primary_10_1039_C7CC08270C crossref_primary_10_1016_j_ica_2020_119449 crossref_primary_10_1039_C9RA02726B crossref_primary_10_1016_j_ica_2021_120735 crossref_primary_10_1016_j_jorganchem_2024_123168 crossref_primary_10_1039_D0SC03628E crossref_primary_10_1002_ejoc_201800135 crossref_primary_10_1016_j_jinorgbio_2024_112704 crossref_primary_10_1016_j_redox_2025_103536 crossref_primary_10_1007_s00604_016_1775_x crossref_primary_10_1016_j_cej_2018_04_193 crossref_primary_10_1039_C7DT02273E crossref_primary_10_1002_chem_201800504 crossref_primary_10_1021_acsomega_9b01863 crossref_primary_10_1039_C4CP02255F crossref_primary_10_1016_j_ejmech_2019_06_009 crossref_primary_10_1016_j_jorganchem_2017_03_038 crossref_primary_10_1039_C7SC03216A crossref_primary_10_1016_j_phrs_2016_12_034 crossref_primary_10_2139_ssrn_4184524 crossref_primary_10_1021_acs_inorgchem_4c03975 crossref_primary_10_1002_anie_201911510 crossref_primary_10_1039_C7DT03265J crossref_primary_10_1016_j_ccr_2018_01_010 crossref_primary_10_1016_j_ccr_2018_01_011 crossref_primary_10_1038_ncomms7582 crossref_primary_10_1039_C8DT00783G crossref_primary_10_1039_C7DT02827J crossref_primary_10_1002_ange_201407468 crossref_primary_10_1021_acs_inorgchem_3c03284 crossref_primary_10_1021_jacs_6b10451 crossref_primary_10_1002_cmdc_201900528 crossref_primary_10_1002_cbic_202200536 crossref_primary_10_1021_acs_jmedchem_5b01194 crossref_primary_10_1016_j_ccr_2014_08_002 crossref_primary_10_1039_D1DT03080A crossref_primary_10_1016_j_ccr_2022_214506 crossref_primary_10_1016_j_jinorgbio_2015_10_008 crossref_primary_10_1002_ange_201911510 crossref_primary_10_1021_acs_biomac_7b00445 crossref_primary_10_1016_j_jinorgbio_2019_110885 crossref_primary_10_1016_j_canlet_2019_01_018 crossref_primary_10_1021_acs_chemrev_6b00400 crossref_primary_10_1002_chem_202300842 crossref_primary_10_1021_acs_jmedchem_9b02000 crossref_primary_10_1007_s11426_019_9577_3 crossref_primary_10_1021_acs_organomet_5b00097 crossref_primary_10_1039_D0NJ03421E crossref_primary_10_1039_D1QI00856K crossref_primary_10_1021_acs_inorgchem_9b03006 crossref_primary_10_1039_D2SC05672K crossref_primary_10_1016_j_ejmech_2019_111751 crossref_primary_10_1021_acs_inorgchem_8b02161 crossref_primary_10_1021_acs_organomet_7b00742 crossref_primary_10_1016_j_jinorgbio_2022_112010 crossref_primary_10_1016_j_jinorgbio_2018_11_011 crossref_primary_10_1021_ja500613n |
Cites_doi | 10.1021/ja073774p 10.1016/j.jinorgbio.2009.08.003 10.1039/C2CC37832A 10.1089/ars.2010.3663 10.1002/anie.200705875 10.1039/C1CC15378A 10.1021/ja954071n 10.1002/ange.201000682 10.1021/ja908453k 10.1038/nrc2981 10.1021/om2005468 10.1039/c2cc17377h 10.1002/anie.201300747 10.1002/ange.200705875 10.1038/nrc1951 10.1002/ange.201108175 10.1002/1099-0682(200105)2001:5<1361::AID-EJIC1361>3.0.CO;2-M 10.1021/jm100020w 10.1039/c3cc41143e 10.1021/jm2000932 10.1021/cb400070a 10.1038/nrc2167 10.1038/nrd2803 10.1021/ic200607j 10.1111/j.1469-7793.2003.00335.x 10.1002/ange.201300747 10.1073/pnas.0505798102 10.1002/anie.201108175 10.1016/S0090-9556(25)06515-8 10.1098/rsob.120144 10.1016/j.jorganchem.2010.01.020 10.1002/anie.201000682 |
ContentType | Journal Article |
Copyright | 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014 |
Copyright_xml | – notice: 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. – notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014 |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 5PM |
DOI | 10.1002/anie.201311161 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) Materials Research Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3946 |
ExternalDocumentID | PMC4227564 3264037461 24616129 10_1002_anie_201311161 ANIE201311161 ark_67375_WNG_SVS3Z069_R |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: BBSRC – fundername: EPSRC – fundername: Science City – fundername: Funded Access – fundername: IAS – fundername: ERC funderid: 247450 – fundername: SNSF funderid: PA00P2_145308 – fundername: National Cancer Institute |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 5PM |
ID | FETCH-LOGICAL-c6421-f7ac193e532a3fdc414bcc0cce6564a1566009a4b31f9c1ade08410309d930bd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:32:45 EDT 2025 Fri Jul 11 05:47:09 EDT 2025 Fri Jul 11 15:22:18 EDT 2025 Fri Jul 25 10:39:39 EDT 2025 Mon Jul 21 05:50:33 EDT 2025 Tue Jul 01 05:07:07 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Wed Jan 22 16:26:03 EST 2025 Wed Oct 30 10:01:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | iridium biocatalysts hydride transfer anticancer drugs reactive oxygen species |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6421-f7ac193e532a3fdc414bcc0cce6564a1566009a4b31f9c1ade08410309d930bd3 |
Notes | istex:93F06AA9C7B1E481D8D2103E7A4CF0553D95EDD6 Funded Access ERC - No. 247450 ArticleID:ANIE201311161 BBSRC Science City EPSRC National Cancer Institute ark:/67375/WNG-SVS3Z069-R IAS We thank the ERC (247450), SNSF (PA00P2_145308 for N.P.E.B.), IAS (for I.R.C.), BBSRC (for J.M.H.), Science City (AWM and ERDF), and the EPSRC for support, and Prof. Timothy Bugg and members of EC COST Action CM1105 for stimulating discussions. We also thank Professor Pat Unwin, Mike Snowden, and Rob Lazenby for their help with the electrochemical experiments and the National Cancer Institute for NCI-60 human tumor cell panel screening. SNSF - No. PA00P2_145308 We thank the ERC (247450), SNSF (PA00P2_145308 for N.P.E.B.), IAS (for I.R.C.), BBSRC (for J.M.H.), Science City (AWM and ERDF), and the EPSRC for support, and Prof. Timothy Bugg and members of EC COST Action CM1105 for stimulating discussions. We also thank Professor Pat Unwin, Mike Snowden, and Rob Lazenby for their help with the electrochemical experiments and the National Cancer Institute for NCI‐60 human tumor cell panel screening. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201311161. |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201311161 |
PMID | 24616129 |
PQID | 1512174228 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227564 proquest_miscellaneous_1701016703 proquest_miscellaneous_1513049640 proquest_journals_1512174228 pubmed_primary_24616129 crossref_primary_10_1002_anie_201311161 crossref_citationtrail_10_1002_anie_201311161 wiley_primary_10_1002_anie_201311161_ANIE201311161 istex_primary_ark_67375_WNG_SVS3Z069_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 7, 2014 |
PublicationDateYYYYMMDD | 2014-04-07 |
PublicationDate_xml | – month: 04 year: 2014 text: April 7, 2014 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Angew. Chem. Int. Ed. 2012, 51, 3897-3900 M. Gras, B. Therrien, G. Süss-Fink, A. Casini, F. Edafe, P. J. Dyson, J. Organomet. Chem. 2010, 695, 1119-1125 L. Kelland, Nat. Rev. Cancer 2007, 7, 573-584. J. M. Hearn, I. Romero-Canelón, B. Qamar, Z. Liu, I. Hands-Portman, P. J. Sadler, ACS Chem. Biol. 2013, 8, 1335-1343. G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 2011, 54, 3-25 Z. M. Heiden, T. B. Rauchfuss, J. Am. Chem. Soc. 2007, 129, 14303-14310 R. H. Shoemaker, Nat. Rev. Cancer 2006, 6, 813-823. S. Bradford, J. A. Cowan, Chem. Commun. 2012, 48, 3118-3120. F. Wang, A. Habtemariam, E. P. L. van der Geer, R. Fernández, M. Melchart, R. J. Deeth, R. Aird, S. Guichard, F. P. A. Fabbiani, P. Lozano-Casal, I. D. H. Oswald, D. I. Jodrell, S. Parsons, P. J. Sadler, Proc. Natl. Acad. Sci. USA 2005, 102, 18269-18274. Z. Liu, R. J. Deeth, J. S. Butler, A. Habtemariam, M. E. Newton, P. J. Sadler, Angew. Chem. 2013, 125, 4288-4291 J. Watson, Open Biol. 2013, 3, 120144. U. Jungwirth, C. R. Kowol, B. K. Keppler, C. G. Hartinger, W. Berger, P. Heffeter, Antioxid. Redox Signaling 2011, 15, 1085-1127. P. K. Sasmal, C. N. Streu, E. Meggers, Chem. Commun. 2013, 49, 1581-1587 S. Betanzos-Lara, Z. Liu, A. Habtemariam, A. M. Pizarro, B. Qamar, P. J. Sadler, Angew. Chem. 2012, 124, 3963-3966 N. P. E. Barry, P. J. Sadler, Chem. Commun. 2013, 49, 5106-5131. Z. Liu, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Organometallics 2011, 30, 4702-4710 Angew. Chem. Int. Ed. 2010, 49, 3839-3842. K. Zhang, P. Mack, K. P. Wong, Int. J. Oncol. 1998, 12, 871-882. D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8, 579-591 A. Wilbuer, D. H. Vlecken, D. J. Schmitz, K. Kräling, K. Harms, C. P. Bagowski, E. Meggers, Angew. Chem. 2010, 122, 3928-3932 R. A. Cairns, I. S. Harris, T. W. Mak, Nat. Rev. Cancer 2011, 11, 85-95. S. Chowdhury, F. Himo, N. Russo, E. Sicilia, J. Am. Chem. Soc. 2010, 132, 4178-4190 M. Jennerwein, P. A. Andrews, Drug Metab. Dispos. 1995, 23, 178-184. Angew. Chem. Int. Ed. 2013, 52, 4194-4197. Z. Liu, A. Habtemariam, A. M. Pizarro, S. A. Fletcher, A. Kisova, O. Vrana, L. Salassa, P. C. A. Bruijnincx, G. J. Clarkson, V. Brabec, P. J. Sadler, J. Med. Chem. 2011, 54, 3011-3026 A. Cusanelli, U. Frey, D. T. Richens, A. E. Merbach, J. Am. Chem. Soc. 1996, 118, 5265-5271. J. F. Turrens, J. Physiol. 2003, 552, 335-344. Angew. Chem. Int. Ed. 2008, 47, 2447-2449. M. Ali Nazif, J.-A. Bangert, I. Ott, R. Gust, R. Stoll, W. S. Sheldrick, J. Inorg. Biochem. 2009, 103, 1405-1414 T. Poth, H. Paulus, H. Elias, C. Dücker-Benfer, R. van Eldik, Eur. J. Inorg. Chem. 2001, 1361-1369. S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. 2008, 120, 2481-2483 D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC, Boca Raton, 1991. A. Kastl, A. Wilbuer, A. L. Merkel, L. Feng, P. Di Fazio, M. Ocker, E. Meggers, Chem. Commun. 2012, 48, 1863-1865 Z. Liu, L. Salassa, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Inorg. Chem. 2011, 50, 5777-5783 2013; 3 2007; 129 2013; 49 2010 2010; 122 49 2013 2013; 125 52 2011; 30 2011; 11 2011; 54 2006; 6 2011; 15 1991 2013; 8 2003; 552 2001 2005; 102 1995; 23 2010; 695 2011; 50 2010; 132 2007; 7 2009; 8 2012 2012; 124 51 2012; 48 2008 2008; 120 47 2009; 103 1998; 12 1996; 118 e_1_2_2_3_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 Lide D. R. (e_1_2_2_28_2) 1991 e_1_2_2_20_2 e_1_2_2_1_2 Zhang K. (e_1_2_2_33_2) 1998; 12 e_1_2_2_2_2 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_27_3 e_1_2_2_26_3 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_17_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 Jennerwein M. (e_1_2_2_24_2) 1995; 23 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_32_3 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_14_2 e_1_2_2_35_2 17958423 - J Am Chem Soc. 2007 Nov 21;129(46):14303-10 18297662 - Angew Chem Int Ed Engl. 2008;47(13):2447-9 17625587 - Nat Rev Cancer. 2007 Aug;7(8):573-84 23303309 - Open Biol. 2013 Jan;3(1):120144 20437440 - Angew Chem Int Ed Engl. 2010 May 17;49(22):3839-42 21275772 - Antioxid Redox Signal. 2011 Aug 15;15(4):1085-127 23636600 - Chem Commun (Camb). 2013 Jun 7;49(45):5106-31 23471835 - Angew Chem Int Ed Engl. 2013 Apr 8;52(15):4194-7 16990858 - Nat Rev Cancer. 2006 Oct;6(10):813-23 21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95 21443199 - J Med Chem. 2011 Apr 28;54(8):3011-26 23618382 - ACS Chem Biol. 2013;8(6):1335-43 22057186 - Chem Commun (Camb). 2012 Feb 11;48(13):1863-5 16352726 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18269-74 21077686 - J Med Chem. 2011 Jan 13;54(1):3-25 9499449 - Int J Oncol. 1998 Apr;12(4):871-82 7736908 - Drug Metab Dispos. 1995 Feb;23(2):178-84 19478820 - Nat Rev Drug Discov. 2009 Jul;8(7):579-91 22415924 - Angew Chem Int Ed Engl. 2012 Apr 16;51(16):3897-900 20218699 - J Am Chem Soc. 2010 Mar 31;132(12):4178-90 21618978 - Inorg Chem. 2011 Jun 20;50(12):5777-83 22343977 - Chem Commun (Camb). 2012 Mar 25;48(25):3118-20 14561818 - J Physiol. 2003 Oct 15;552(Pt 2):335-44 23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7 19744736 - J Inorg Biochem. 2009 Oct;103(10):1405-14 |
References_xml | – reference: Z. Liu, R. J. Deeth, J. S. Butler, A. Habtemariam, M. E. Newton, P. J. Sadler, Angew. Chem. 2013, 125, 4288-4291; – reference: Angew. Chem. Int. Ed. 2012, 51, 3897-3900; – reference: A. Cusanelli, U. Frey, D. T. Richens, A. E. Merbach, J. Am. Chem. Soc. 1996, 118, 5265-5271. – reference: A. Wilbuer, D. H. Vlecken, D. J. Schmitz, K. Kräling, K. Harms, C. P. Bagowski, E. Meggers, Angew. Chem. 2010, 122, 3928-3932; – reference: S. Chowdhury, F. Himo, N. Russo, E. Sicilia, J. Am. Chem. Soc. 2010, 132, 4178-4190; – reference: Z. Liu, A. Habtemariam, A. M. Pizarro, S. A. Fletcher, A. Kisova, O. Vrana, L. Salassa, P. C. A. Bruijnincx, G. J. Clarkson, V. Brabec, P. J. Sadler, J. Med. Chem. 2011, 54, 3011-3026; – reference: Z. M. Heiden, T. B. Rauchfuss, J. Am. Chem. Soc. 2007, 129, 14303-14310; – reference: J. M. Hearn, I. Romero-Canelón, B. Qamar, Z. Liu, I. Hands-Portman, P. J. Sadler, ACS Chem. Biol. 2013, 8, 1335-1343. – reference: D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC, Boca Raton, 1991. – reference: J. Watson, Open Biol. 2013, 3, 120144. – reference: M. Gras, B. Therrien, G. Süss-Fink, A. Casini, F. Edafe, P. J. Dyson, J. Organomet. Chem. 2010, 695, 1119-1125; – reference: G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 2011, 54, 3-25; – reference: M. Ali Nazif, J.-A. Bangert, I. Ott, R. Gust, R. Stoll, W. S. Sheldrick, J. Inorg. Biochem. 2009, 103, 1405-1414; – reference: F. Wang, A. Habtemariam, E. P. L. van der Geer, R. Fernández, M. Melchart, R. J. Deeth, R. Aird, S. Guichard, F. P. A. Fabbiani, P. Lozano-Casal, I. D. H. Oswald, D. I. Jodrell, S. Parsons, P. J. Sadler, Proc. Natl. Acad. Sci. USA 2005, 102, 18269-18274. – reference: A. Kastl, A. Wilbuer, A. L. Merkel, L. Feng, P. Di Fazio, M. Ocker, E. Meggers, Chem. Commun. 2012, 48, 1863-1865; – reference: T. Poth, H. Paulus, H. Elias, C. Dücker-Benfer, R. van Eldik, Eur. J. Inorg. Chem. 2001, 1361-1369. – reference: Angew. Chem. Int. Ed. 2013, 52, 4194-4197. – reference: K. Zhang, P. Mack, K. P. Wong, Int. J. Oncol. 1998, 12, 871-882. – reference: Angew. Chem. Int. Ed. 2010, 49, 3839-3842. – reference: R. H. Shoemaker, Nat. Rev. Cancer 2006, 6, 813-823. – reference: R. A. Cairns, I. S. Harris, T. W. Mak, Nat. Rev. Cancer 2011, 11, 85-95. – reference: N. P. E. Barry, P. J. Sadler, Chem. Commun. 2013, 49, 5106-5131. – reference: L. Kelland, Nat. Rev. Cancer 2007, 7, 573-584. – reference: Z. Liu, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Organometallics 2011, 30, 4702-4710; – reference: J. F. Turrens, J. Physiol. 2003, 552, 335-344. – reference: P. K. Sasmal, C. N. Streu, E. Meggers, Chem. Commun. 2013, 49, 1581-1587; – reference: Z. Liu, L. Salassa, A. Habtemariam, A. M. Pizarro, G. J. Clarkson, P. J. Sadler, Inorg. Chem. 2011, 50, 5777-5783; – reference: S. Betanzos-Lara, Z. Liu, A. Habtemariam, A. M. Pizarro, B. Qamar, P. J. Sadler, Angew. Chem. 2012, 124, 3963-3966; – reference: M. Jennerwein, P. A. Andrews, Drug Metab. Dispos. 1995, 23, 178-184. – reference: S. Bradford, J. A. Cowan, Chem. Commun. 2012, 48, 3118-3120. – reference: U. Jungwirth, C. R. Kowol, B. K. Keppler, C. G. Hartinger, W. Berger, P. Heffeter, Antioxid. Redox Signaling 2011, 15, 1085-1127. – reference: D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8, 579-591; – reference: S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. 2008, 120, 2481-2483; – reference: Angew. Chem. Int. Ed. 2008, 47, 2447-2449. – volume: 48 start-page: 3118 year: 2012 end-page: 3120 publication-title: Chem. Commun. – volume: 50 start-page: 5777 year: 2011 end-page: 5783 publication-title: Inorg. Chem. – volume: 124 51 start-page: 3963 3897 year: 2012 2012 end-page: 3966 3900 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 8 start-page: 1335 year: 2013 end-page: 1343 publication-title: ACS Chem. Biol. – volume: 49 start-page: 5106 year: 2013 end-page: 5131 publication-title: Chem. Commun. – volume: 122 49 start-page: 3928 3839 year: 2010 2010 end-page: 3932 3842 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 48 start-page: 1863 year: 2012 end-page: 1865 publication-title: Chem. Commun. – volume: 102 start-page: 18269 year: 2005 end-page: 18274 publication-title: Proc. Natl. Acad. Sci. USA – volume: 132 start-page: 4178 year: 2010 end-page: 4190 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 3011 year: 2011 end-page: 3026 publication-title: J. Med. Chem. – volume: 129 start-page: 14303 year: 2007 end-page: 14310 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 178 year: 1995 end-page: 184 publication-title: Drug Metab. Dispos. – volume: 7 start-page: 573 year: 2007 end-page: 584 publication-title: Nat. Rev. Cancer – volume: 54 start-page: 3 year: 2011 end-page: 25 publication-title: J. Med. Chem. – volume: 695 start-page: 1119 year: 2010 end-page: 1125 publication-title: J. Organomet. Chem. – volume: 49 start-page: 1581 year: 2013 end-page: 1587 publication-title: Chem. Commun. – volume: 30 start-page: 4702 year: 2011 end-page: 4710 publication-title: Organometallics – start-page: 1361 year: 2001 end-page: 1369 publication-title: Eur. J. Inorg. Chem. – volume: 103 start-page: 1405 year: 2009 end-page: 1414 publication-title: J. Inorg. Biochem. – volume: 3 start-page: 120144 year: 2013 publication-title: Open Biol. – volume: 8 start-page: 579 year: 2009 end-page: 591 publication-title: Nat. Rev. Drug Discovery – volume: 118 start-page: 5265 year: 1996 end-page: 5271 publication-title: J. Am. Chem. Soc. – volume: 120 47 start-page: 2481 2447 year: 2008 2008 end-page: 2483 2449 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 12 start-page: 871 year: 1998 end-page: 882 publication-title: Int. J. Oncol. – volume: 6 start-page: 813 year: 2006 end-page: 823 publication-title: Nat. Rev. Cancer – volume: 11 start-page: 85 year: 2011 end-page: 95 publication-title: Nat. Rev. Cancer – year: 1991 – volume: 15 start-page: 1085 year: 2011 end-page: 1127 publication-title: Antioxid. Redox Signaling – volume: 552 start-page: 335 year: 2003 end-page: 344 publication-title: J. Physiol. – volume: 125 52 start-page: 4288 4194 year: 2013 2013 end-page: 4291 4197 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – ident: e_1_2_2_25_2 – volume-title: CRC Handbook of Chemistry and Physics year: 1991 ident: e_1_2_2_28_2 – ident: e_1_2_2_30_2 doi: 10.1021/ja073774p – ident: e_1_2_2_14_2 doi: 10.1016/j.jinorgbio.2009.08.003 – ident: e_1_2_2_35_2 doi: 10.1039/C2CC37832A – ident: e_1_2_2_21_2 doi: 10.1089/ars.2010.3663 – ident: e_1_2_2_32_3 doi: 10.1002/anie.200705875 – ident: e_1_2_2_5_2 – ident: e_1_2_2_16_2 doi: 10.1039/C1CC15378A – ident: e_1_2_2_8_2 doi: 10.1021/ja954071n – ident: e_1_2_2_17_2 doi: 10.1002/ange.201000682 – ident: e_1_2_2_31_2 doi: 10.1021/ja908453k – ident: e_1_2_2_23_2 doi: 10.1038/nrc2981 – ident: e_1_2_2_2_2 – ident: e_1_2_2_13_2 doi: 10.1021/om2005468 – ident: e_1_2_2_36_2 doi: 10.1039/c2cc17377h – ident: e_1_2_2_27_3 doi: 10.1002/anie.201300747 – ident: e_1_2_2_32_2 doi: 10.1002/ange.200705875 – ident: e_1_2_2_10_2 – ident: e_1_2_2_19_2 doi: 10.1038/nrc1951 – ident: e_1_2_2_26_2 doi: 10.1002/ange.201108175 – ident: e_1_2_2_9_2 doi: 10.1002/1099-0682(200105)2001:5<1361::AID-EJIC1361>3.0.CO;2-M – ident: e_1_2_2_3_2 doi: 10.1021/jm100020w – ident: e_1_2_2_4_2 doi: 10.1039/c3cc41143e – ident: e_1_2_2_11_2 doi: 10.1021/jm2000932 – ident: e_1_2_2_18_2 doi: 10.1021/cb400070a – ident: e_1_2_2_1_2 doi: 10.1038/nrc2167 – ident: e_1_2_2_6_2 doi: 10.1038/nrd2803 – ident: e_1_2_2_12_2 doi: 10.1021/ic200607j – ident: e_1_2_2_22_2 doi: 10.1111/j.1469-7793.2003.00335.x – ident: e_1_2_2_27_2 doi: 10.1002/ange.201300747 – ident: e_1_2_2_20_2 doi: 10.1073/pnas.0505798102 – ident: e_1_2_2_26_3 doi: 10.1002/anie.201108175 – volume: 23 start-page: 178 year: 1995 ident: e_1_2_2_24_2 publication-title: Drug Metab. Dispos. doi: 10.1016/S0090-9556(25)06515-8 – ident: e_1_2_2_34_2 – ident: e_1_2_2_7_2 doi: 10.1098/rsob.120144 – ident: e_1_2_2_29_2 – volume: 12 start-page: 871 year: 1998 ident: e_1_2_2_33_2 publication-title: Int. J. Oncol. – ident: e_1_2_2_15_2 doi: 10.1016/j.jorganchem.2010.01.020 – ident: e_1_2_2_17_3 doi: 10.1002/anie.201000682 – reference: 17625587 - Nat Rev Cancer. 2007 Aug;7(8):573-84 – reference: 14561818 - J Physiol. 2003 Oct 15;552(Pt 2):335-44 – reference: 7736908 - Drug Metab Dispos. 1995 Feb;23(2):178-84 – reference: 18297662 - Angew Chem Int Ed Engl. 2008;47(13):2447-9 – reference: 20218699 - J Am Chem Soc. 2010 Mar 31;132(12):4178-90 – reference: 21618978 - Inorg Chem. 2011 Jun 20;50(12):5777-83 – reference: 23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7 – reference: 23471835 - Angew Chem Int Ed Engl. 2013 Apr 8;52(15):4194-7 – reference: 22415924 - Angew Chem Int Ed Engl. 2012 Apr 16;51(16):3897-900 – reference: 23303309 - Open Biol. 2013 Jan;3(1):120144 – reference: 16990858 - Nat Rev Cancer. 2006 Oct;6(10):813-23 – reference: 21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95 – reference: 23636600 - Chem Commun (Camb). 2013 Jun 7;49(45):5106-31 – reference: 22343977 - Chem Commun (Camb). 2012 Mar 25;48(25):3118-20 – reference: 21443199 - J Med Chem. 2011 Apr 28;54(8):3011-26 – reference: 21275772 - Antioxid Redox Signal. 2011 Aug 15;15(4):1085-127 – reference: 20437440 - Angew Chem Int Ed Engl. 2010 May 17;49(22):3839-42 – reference: 17958423 - J Am Chem Soc. 2007 Nov 21;129(46):14303-10 – reference: 19478820 - Nat Rev Drug Discov. 2009 Jul;8(7):579-91 – reference: 22057186 - Chem Commun (Camb). 2012 Feb 11;48(13):1863-5 – reference: 9499449 - Int J Oncol. 1998 Apr;12(4):871-82 – reference: 21077686 - J Med Chem. 2011 Jan 13;54(1):3-25 – reference: 16352726 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18269-74 – reference: 19744736 - J Inorg Biochem. 2009 Oct;103(10):1405-14 – reference: 23618382 - ACS Chem Biol. 2013;8(6):1335-43 |
SSID | ssj0028806 |
Score | 2.5749805 |
Snippet | Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex... Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 ‐Cp xbiph... Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph)... Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [( eta super(5)-Cp... Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η 5 -Cp xbiph... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3941 |
SubjectTerms | anticancer drugs Antineoplastic Agents - chemistry biocatalysts Cancer Catalysis Catalysts Chemotherapy Cisplatin - chemistry Communications Correlation Drugs Glutathione Humans hydride transfer Hydrogen peroxide Iridium Iridium - chemistry Ligands Medical research Models, Molecular Organometallic Compounds - chemistry Oxidants Oxidizing agents Pyridines Reactive Oxygen Species Structure-Activity Relationship |
Title | The Potent Oxidant Anticancer Activity of Organoiridium Catalysts |
URI | https://api.istex.fr/ark:/67375/WNG-SVS3Z069-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201311161 https://www.ncbi.nlm.nih.gov/pubmed/24616129 https://www.proquest.com/docview/1512174228 https://www.proquest.com/docview/1513049640 https://www.proquest.com/docview/1701016703 https://pubmed.ncbi.nlm.nih.gov/PMC4227564 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOcAFyqsE2ipICE5pnTgbb47Rqg-QWKqWQsXFchxbRIUE7Walwq9nxtmYbnlJcEvkiWSPZ-zPzsw3AM8ov9pkJo9KLnSUqiyO8grPPEYwYRXuLyNG2civp9nhafrqbHR2KYu_54fwF27kGW69JgdX5Xz3B2koZWBTaBZHb3XnHwrYIlR07PmjEjTOPr2I84iq0A-sjSzZXf18ZVe6QQq--BXk_Dly8jKidVvS_h1Qw2D6SJTznUVX7uhvV3ge_2e063B7iVfDojewu3DNNPfg5mQoE3cfCjS08KhF6N2Fby7qCmcqLBq6IUdzmoWF7stThK0NXd5nW8_qql58Did0cfR13s0fwOn-3tvJYbSsyxBpSouNrFAacZ8Z8URxW-k0TkutmdYGwWGq6ESIyE2lJY9trmNVGTZOqZxZXuWclRV_CGtN25hHEGZ2rBJjEZZUlBGbKxFbphQrc8QdNhYBRMO8SL0kLafaGZ9kT7ecSFKM9IoJ4IWX_9LTdfxW8rmbZi-mZucU5CZG8v30QJ68O-EfWJbL4wA2BzuQS_-eS8JJeJZLknEAT30zap5-t6jGtAsnQ_8ws5T9QUY4jj9cdgPY6E3Ld4iY_hB_5gGIFaPzAsQMvtrS1B8dQzh2TOBUBJA4m_qLKmQxfbnn3x7_y0dP4BY-9yFNYhPWutnCbCFa68ptuJ6kR9vOL78DzlA1ww |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lAuvB8pBYyE4JTWibPx5hgtLVtoF9QHIC6W4zgiaptUu1mp7a9nJt4ElqcExyRjKRnPxJ_HM98APKf6ahvbxM-ENH6k48BPctzzWMlloXF9GXCqRt6fxOPj6M2nQZdNSLUwjh-iD7iRZ7T_a3JwCkhvfWMNpRJsys0S6K60AVqltt5En__qoGeQCtE8XYGRED71oe94G3m4tTx-aV1aJRVf_Ap0_pw7-T2mbRelnZuQdZ_jclFONudNtmmufmB6_K_vvQU3FpCVpc7GbsM1W92BtVHXKe4upGhr7H2N6Lth7y7KHCeLpRUFydGipiw1rkMFqwvWln7W5bTMy_kZG1Hs6HLWzO7B8c720WjsL1oz-IYqY_1CaoPQzw5EqEWRmyiIMmO4MRbxYaRpU4jgTUeZCIrEBDq3fBhRR7MkTwTPcnEfVqq6sg-BxcVQh7ZAZJJTUWyiZVBwrXmWIPQoAumB302MMgvecmqfcaoc43KoSDGqV4wHL3v5c8fY8VvJF-0892J6ekJ5bnKgPk5eq8MPh-IzjxN14MFGZwhq4eIzRVAJt3NhOPTgWf8YNU8nLrqy9byVoWPMOOJ_kJEtzR_-eT144GyrfyEi-0MImnggl6yuFyBy8OUnVfmlJQnHF5M4FR6ErVH9RRUqnexu91fr_zLoKayNj_b31N7u5O0juI73XYaT3ICVZjq3jxG8NdmT1j2_As0IOQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hVgIuiHdTChgJwSmqE2fj9TFaurQ8lhWlUHGxHMcWETSp9iGVf8-Msxu64iVxTDyRrBlP_I098w3AU6qvdrlTcSmkjTOTJ7GqMOZxkktvcH8ZcKpGfjvJD0-yV6eD00tV_B0_RH_gRp4R_tfk4OeV3_9JGkoV2JSaJdBbKf7Zphs_SupKs2kfcuHq7OqLhIipDf2atpGn-5vfb2xL26Thi99hzl9TJy9D2rAnjW_CjRWYZEVn_VtwxTW34dpo3cPtDhS4Cti0RVy8YO8u6grVyIqGjq_R1jNW2K53BGs9C0WZbT2rq3p5xkZ0qvN9vpjfhZPxwYfRYbxqmhBbqlmNvTQWQZkbiNQIX9ksyUprubUOkVtmKFxDWGWyUiRe2cRUjg8z6jWmKiV4WYl7sNW0jdsBlvuhSZ1HzFBRuaoyMvHcGF4qBAU-kRHEa51pu2IUp8YW33THhZxq0rHudRzB817-vOPS-KPks2CCXszMvlIGmhzoT5OX-vjjsfjMc6XfR7C3tpFeOd9cE4jBQCtNhxE86YdR83QXYhrXLoMMXTDmGf-LjAwEfPhPjOB-Z_Z-QkTDh-BQRSA3FkQvQLTdmyNN_SXQd-PEJJoigjQsnX-oQheTo4P-afd_PnoMV6cvxvrN0eT1A7iOr7vUI7kHW4vZ0j1EVLUoHwXH-QGhJBZk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Potent+Oxidant+Anticancer+Activity+of+Organoiridium+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Zhe&rft.au=Romero%E2%80%90Canel%C3%B3n%2C+Isolda&rft.au=Qamar%2C+Bushra&rft.au=Hearn%2C+Jessica+M.&rft.date=2014-04-07&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=15&rft.spage=3941&rft.epage=3946&rft_id=info:doi/10.1002%2Fanie.201311161&rft.externalDBID=10.1002%252Fanie.201311161&rft.externalDocID=ANIE201311161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |