Intrahost evolution of the HIV-2 capsid correlates with progression to AIDS

Abstract HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-...

Full description

Saved in:
Bibliographic Details
Published inVirus evolution Vol. 8; no. 2; p. veac075
Main Authors Boswell, M T, Nazziwa, J, Kuroki, K, Palm, A, Karlson, S, Månsson, F, Biague, A, da Silva, Z J, Onyango, C O, de Silva, T I, Jaye, A, Norrgren, H, Medstrand, P, Jansson, M, Maenaka, K, Rowland-Jones, S L, Esbjörnsson, J
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors – synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
AbstractList HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors – synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be anattractive therapeutic target.
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10 versus 1.4x10 base substitutions per site, P<0.001). evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10 vs. 2.3x10 ; and nonsynonymous rates: 6.9x10 vs. 2.7x10 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, =0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
Abstract HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors – synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors – synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
Author Jaye, A
Jansson, M
Medstrand, P
Maenaka, K
Palm, A
da Silva, Z J
Esbjörnsson, J
Kuroki, K
Nazziwa, J
Onyango, C O
Norrgren, H
Biague, A
Månsson, F
Karlson, S
Rowland-Jones, S L
Boswell, M T
de Silva, T I
Author_xml – sequence: 1
  givenname: M T
  surname: Boswell
  fullname: Boswell, M T
  email: boswell.michaelt@gmail.com
– sequence: 2
  givenname: J
  surname: Nazziwa
  fullname: Nazziwa, J
– sequence: 3
  givenname: K
  surname: Kuroki
  fullname: Kuroki, K
– sequence: 4
  givenname: A
  surname: Palm
  fullname: Palm, A
– sequence: 5
  givenname: S
  surname: Karlson
  fullname: Karlson, S
– sequence: 6
  givenname: F
  surname: Månsson
  fullname: Månsson, F
– sequence: 7
  givenname: A
  surname: Biague
  fullname: Biague, A
– sequence: 8
  givenname: Z J
  surname: da Silva
  fullname: da Silva, Z J
– sequence: 9
  givenname: C O
  surname: Onyango
  fullname: Onyango, C O
– sequence: 10
  givenname: T I
  surname: de Silva
  fullname: de Silva, T I
– sequence: 11
  givenname: A
  surname: Jaye
  fullname: Jaye, A
– sequence: 12
  givenname: H
  surname: Norrgren
  fullname: Norrgren, H
– sequence: 13
  givenname: P
  surname: Medstrand
  fullname: Medstrand, P
– sequence: 14
  givenname: M
  surname: Jansson
  fullname: Jansson, M
– sequence: 15
  givenname: K
  surname: Maenaka
  fullname: Maenaka, K
– sequence: 16
  givenname: S L
  surname: Rowland-Jones
  fullname: Rowland-Jones, S L
– sequence: 17
  givenname: J
  surname: Esbjörnsson
  fullname: Esbjörnsson, J
  email: joakim.esbjornsson@med.lu.se
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36533148$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/ea84106b-d74a-4f31-b147-4b0eea21e5d1$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/ea84106b-d74a-4f31-b147-4b0eea21e5d1$$DView record from Swedish Publication Index
BookMark eNqNkl1rFDEUhoNUbK298QfIgAhFGD35muxcllrt4oIXftyGJHPGnZKdjElmi__erLsWKSpCQnLxnPe8eXMek6MxjEjIUwqvKLT89RbLMg6UfEBOGEhVU6nU0W_3Y3KW0g0AUMmVoPwROeaN5JyKxQl5vxxzNOuQcoXb4Oc8hLEKfZXXWF0vv9SscmZKQ1e5ECN6kzFVt0NeV1MMXyOmtONzqC6Wbz4-IQ974xOeHc5T8vnt1afL63r14d3y8mJVu0bQXPdt1_TAhcTiSSrR0x6x66xlSrEGWxCLVgA6ZhlAi50Soukdw7a1rjHC8lNi9rrpFqfZ6ikOGxO_62AGPYWYjdfFGZro1trPOqEulB-c2T0uaTQLQaGxuigbLXpOtaVCaWEB0TCKsqOlx-qvPfw8lW0P2v8pd76XK7F9mzFlvRmSQ-_NiGFOmikpF8CYhII-v4fehDmOJVDNqaIlIxCyUM8O1Gw32N35-_WzBXi5B1wMKUXs7xAKejc5eov6MDkFhnuwG_LPuMpwDP7PJS_2JaGk8Q_pHwIt01o
CitedBy_id crossref_primary_10_3390_v15112236
Cites_doi 10.1093/bioinformatics/bts199
10.1016/S2352-3018(18)30254-6
10.1093/sysbio/syy032
10.1016/j.chom.2018.12.002
10.1038/s41591-019-0560-x
10.1080/00365540310000210
10.1126/sciadv.aaw3631
10.1097/QAD.0000000000001753
10.1097/QAD.0b013e32834c4adb
10.1007/s00239-001-0034-9
10.4049/jimmunol.169.6.3400
10.1371/journal.pone.0135903
10.1128/JVI.79.14.9006-9018.2005
10.1089/aid.2005.21.98
10.1093/bioinformatics/16.6.562
10.1371/journal.pone.0022779
10.1073/pnas.241370698
10.1371/journal.ppat.1003461
10.1016/j.meegid.2016.08.010
10.1093/molbev/msg144
10.1016/j.tim.2011.03.006
10.1080/10635150390238879
10.1016/S0140-6736(94)90065-5
10.1371/journal.ppat.1002439
10.1016/j.vaccine.2009.08.060
10.1038/srep45214
10.1101/cshperspect.a006841
10.1097/00042560-199704010-00009
10.1172/jci.insight.146162
10.1089/aid.2007.0074
10.1038/nature12162
10.1038/nsmb.1667
10.1371/journal.pcbi.1004492
10.4049/jimmunol.1302253
10.1371/journal.pcbi.0030029
10.1006/viro.1999.0056
10.1128/JVI.00406-07
10.1016/j.coviro.2017.12.001
10.1186/1742-4690-7-46
10.1016/j.meegid.2009.05.003
10.1172/JCI32380
10.1093/ve/vev003
10.1128/JVI.00655-11
10.1128/mBio.01245-18
10.1038/srep29536
10.1056/NEJMoa1113244
10.1038/nature19098
10.1128/JVI.00325-11
10.1007/BF00182389
10.1093/molbev/mss075
10.1111/tmi.12646
10.1093/sysbio/syr100
10.1371/journal.pcbi.1003830
10.1089/aid.1992.8.1549
10.1371/journal.ppat.1007167
10.1016/j.meegid.2013.05.004
10.1097/QAD.0b013e32835ab12c
10.1002/eji.201545451
10.1016/j.cell.2018.08.062
10.1186/1742-4690-10-50
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
The Author(s) 2022. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
– notice: The Author(s) 2022. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor SWEGUB CORE group
HIV-1 och HIV-2 värd interaktioner
Systems Virology
Department of Clinical Sciences, Lund
Strategiska forskningsområden (SFO)
Clinical Virology, Malmö
Systemvirologi
Section III
Infection Medicine (BMC)
Klinisk virologi, Malmö
Medicinska fakulteten
Klinisk infektionsmedicin
HIV-1 and HIV-2 host interactions
Clinical infection medicine
Institutionen för translationell medicin
Institutionen för kliniska vetenskaper, Lund
Infektionsmedicin
Department of Translational Medicine
Lunds universitet
Profile areas and other strong research environments
Department of Laboratory Medicine
Lund University
Sektion III
Institutionen för laboratoriemedicin
Division of Medical Microbiology
EpiHealth: Epidemiology for Health
Faculty of Medicine
Strategic research areas (SRA)
Avdelningen för medicinsk mikrobiologi
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: SWEGUB CORE group
– name: Strategiska forskningsområden (SFO)
– name: Division of Medical Microbiology
– name: Sektion III
– name: Department of Laboratory Medicine
– name: EpiHealth: Epidemiology for Health
– name: HIV-1 och HIV-2 värd interaktioner
– name: Strategic research areas (SRA)
– name: Department of Clinical Sciences, Lund
– name: Lund University
– name: Klinisk infektionsmedicin
– name: Institutionen för laboratoriemedicin
– name: Profile areas and other strong research environments
– name: Infektionsmedicin
– name: Institutionen för translationell medicin
– name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Clinical infection medicine
– name: Institutionen för kliniska vetenskaper, Lund
– name: HIV-1 and HIV-2 host interactions
– name: Klinisk virologi, Malmö
– name: Systems Virology
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Clinical Virology, Malmö
– name: Systemvirologi
– name: Section III
– name: Department of Translational Medicine
– name: Infection Medicine (BMC)
– name: Avdelningen för medicinsk mikrobiologi
DBID TOX
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1093/ve/veac075
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2057-1577
ExternalDocumentID oai_portal_research_lu_se_publications_ea84106b_d74a_4f31_b147_4b0eea21e5d1
oai_lup_lub_lu_se_ea84106b_d74a_4f31_b147_4b0eea21e5d1
36533148
10_1093_ve_veac075
10.1093/ve/veac075
Genre Journal Article
GroupedDBID 0R~
53G
5VS
7X7
8FI
8FJ
AAFWJ
AAMVS
AAOGV
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABQLI
ABUWG
ABXVV
ACGFS
ADBBV
AENZO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
AVWKF
BAYMD
BCNDV
BENPR
CCPQU
CIDKT
EBS
ECGQY
EJD
FYUFA
GROUPED_DOAJ
H13
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ISR
ITC
KQ8
KSI
ML0
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PIMPY
RPM
RXO
TOX
UKHRP
AAYXX
CITATION
PHGZM
PHGZT
AAPPN
AFULF
BTTYL
NPM
ROX
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
PUEGO
ID FETCH-LOGICAL-c641t-f9d6f0345e000574f1feeddbb27726e9048940ec2b2009ed7446fc2e99bc6a4b3
IEDL.DBID 7X7
ISSN 2057-1577
IngestDate Mon Aug 25 03:39:33 EDT 2025
Thu Jul 03 05:13:25 EDT 2025
Fri Jul 11 04:04:57 EDT 2025
Mon Jun 30 12:20:29 EDT 2025
Wed Feb 19 02:26:04 EST 2025
Tue Jul 01 01:25:20 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Wed Apr 02 07:05:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords HIV-2
evolution
p26
capsid
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-f9d6f0345e000574f1feeddbb27726e9048940ec2b2009ed7446fc2e99bc6a4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3171772045?pq-origsite=%requestingapplication%
PMID 36533148
PQID 3171772045
PQPubID 7089184
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_ea84106b_d74a_4f31_b147_4b0eea21e5d1
swepub_primary_oai_lup_lub_lu_se_ea84106b_d74a_4f31_b147_4b0eea21e5d1
proquest_miscellaneous_2755802250
proquest_journals_3171772045
pubmed_primary_36533148
crossref_primary_10_1093_ve_veac075
crossref_citationtrail_10_1093_ve_veac075
oup_primary_10_1093_ve_veac075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221201
  day: 01
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
– name: Oxford
PublicationTitle Virus evolution
PublicationTitleAlternate Virus Evol
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kassambara (2023042407413449800_R23) 2018
Palm (2023042407413449800_R45) 2019; 10
Drummond (2023042407413449800_R12) 2012; 29
Theys (2023042407413449800_R64) 2018; 28
Jespersen (2023042407413449800_R21) 2016; 21
Song (2023042407413449800_R60) 2007; 81
Yu (2023042407413449800_R70) 2020; 11
(2023042407413449800_R10) 2013; 27
Raghwani (2023042407413449800_R50) 2018; 14
Jacques (2023042407413449800_R19) 2016; 536
Matreyek (2023042407413449800_R35) 2011; 85
Zhao (2023042407413449800_R71) 2013; 497
Leviyang (2023042407413449800_R30) 2015; 11
Sousa (2023042407413449800_R61) 2002; 169
Kearse (2023042407413449800_R24) 2012; 28
Sauter (2023042407413449800_R54) 2019; 25
Korber (2023042407413449800_R25) 1992; 8
Norrgren (2023042407413449800_R40) 2003; 35
(2023042407413449800_R48) 2002; 54
Bello (2023042407413449800_R4) 2007; 23
Organization WH (2023042407413449800_R43) 2007
Schrödinger (2023042407413449800_R56) 2015
(2023042407413449800_R9) 2018; 32
Claiborne (2023042407413449800_R7) 2015; 112
Mild (2023042407413449800_R37) 2013; 19
Price (2023042407413449800_R49) 2009; 16
Sharp (2023042407413449800_R57) 2011; 1
RStudio Team (2023042407413449800_R53) 2021
Garcia-Knight (2023042407413449800_R16) 2016; 6
Ganusov (2023042407413449800_R15) 2011; 85
(2023042407413449800_R14) 2019; 6
(2023042407413449800_R29) 2012; 28
Williamson (2023042407413449800_R68) 2003; 20
Kanki (2023042407413449800_R22) 1994; 343
Yant (2023042407413449800_R69) 2019; 25
Lahaye (2023042407413449800_R26) 2018; 175
Ayres (2023042407413449800_R3) 2012; 61
Esbjörnsson (2023042407413449800_R13) 2012; 367
Leligdowicz (2023042407413449800_R27) 2007; 117
(2023042407413449800_R34) 2005; 21
(2023042407413449800_R38) 2010; 10
Suchard (2023042407413449800_R62) 2003; 52
Skorupka (2023042407413449800_R58) 2019; 5
HIV-2 Infection | NIH (2023042407413449800_R17)
Norström (2023042407413449800_R41) 2014; 10
Asowata (2023042407413449800_R2) 2021; 6
Padidam (2023042407413449800_R44) 1999; 265
van der Loeff (2023042407413449800_R66) 2010; 7
Miyamoto (2023042407413449800_R39) 2011; 6
Rihn (2023042407413449800_R52) 2013; 9
Rambaut (2023042407413449800_R51) 2018; 67
de Silva (2023042407413449800_R8) 2018; 32
Martin (2023042407413449800_R32) 2000; 16
Iyer (2023042407413449800_R18) 2015; 10
Posada (2023042407413449800_R47) 2001; 98
Visseaux (2023042407413449800_R67) 2016; 46
Meyerson (2023042407413449800_R36) 2011; 19
Martin (2023042407413449800_R33) 2015; 1
Takeuchi (2023042407413449800_R63) 2013; 10
Schaller (2023042407413449800_R55) 2011; 7
Onyango (2023042407413449800_R42) 2010; 28
(2023042407413449800_R11) 2013; 27
Buggert (2023042407413449800_R6) 2014; 192
Peterson (2023042407413449800_R46) 2011; 25
Mamede (2023042407413449800_R31) 2017; 7
Lemey (2023042407413449800_R28) 2007; 3
Anglaret (2023042407413449800_R1) 1997; 14
Jallow (2023042407413449800_R20) 2015; 45
Biomatters (2023042407413449800_R5)
Smith (2023042407413449800_R59) 1992; 34
Troyer (2023042407413449800_R65) 2005; 79
References_xml – volume: 28
  start-page: 1647
  year: 2012
  ident: 2023042407413449800_R24
  article-title: Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts199
– volume: 6
  start-page: e25
  year: 2019
  ident: 2023042407413449800_R14
  article-title: Long-term Follow-up of HIV-2-related AIDS and Mortality in Guinea-Bissau: A Prospective Open Cohort Study
  publication-title: The Lancet HIV
  doi: 10.1016/S2352-3018(18)30254-6
– volume: 67
  start-page: 901
  year: 2018
  ident: 2023042407413449800_R51
  article-title: Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Susko E (Ed.)
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/syy032
– volume: 25
  start-page: 27
  year: 2019
  ident: 2023042407413449800_R54
  article-title: Key Viral Adaptations Preceding the AIDS Pandemic
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2018.12.002
– volume: 25
  start-page: 1377
  year: 2019
  ident: 2023042407413449800_R69
  article-title: A Highly Potent Long-acting Small-molecule HIV-1 Capsid Inhibitor with Efficacy in A Humanized Mouse Model
  publication-title: Nature Medicine
  doi: 10.1038/s41591-019-0560-x
– volume: 35
  start-page: 265
  year: 2003
  ident: 2023042407413449800_R40
  article-title: Clinical Progression in Early and Late Stages of Disease in a Cohort of Individuals Infected with Human Immunodeficiency Virus-2 in Guinea-Bissau
  publication-title: Scandinavian Journal of Infectious Diseases
  doi: 10.1080/00365540310000210
– volume: 5
  year: 2019
  ident: 2023042407413449800_R58
  article-title: Hierarchical Assembly Governs TRIM5α Recognition of HIV-1 and Retroviral Capsids
  publication-title: Science Advances
  doi: 10.1126/sciadv.aaw3631
– volume: 32
  start-page: 709
  year: 2018
  ident: 2023042407413449800_R9
  article-title: HLA-associated Polymorphisms in the HIV-2 Capsid Highlight Key Differences between HIV-1 and HIV-2 Immune Adaptation
  publication-title: AIDS (London, England)
  doi: 10.1097/QAD.0000000000001753
– volume: 25
  start-page: 2167
  year: 2011
  ident: 2023042407413449800_R46
  article-title: Mortality and Immunovirological Outcomes on Antiretroviral Therapy in HIV-1 and HIV-2-infected Individuals in the Gambia
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e32834c4adb
– volume: 54
  start-page: 396
  year: 2002
  ident: 2023042407413449800_R48
  article-title: The Effect of Recombination on the Accuracy of Phylogeny Estimation
  publication-title: Journal of Molecular Evolution
  doi: 10.1007/s00239-001-0034-9
– volume: 27
  start-page: 4330
  year: 2013
  ident: 2023042407413449800_R10
  article-title: Correlates of T-cell-mediated Viral Control and Phenotype of CD8+ T Cells in HIV-2, a Naturally Contained Human Retroviral Infection
  publication-title: Blood
– volume: 169
  start-page: 3400
  year: 2002
  ident: 2023042407413449800_R61
  article-title: CD4 T Cell Depletion Is Linked Directly to Immune Activation in the Pathogenesis of HIV-1 and HIV-2 but Only Indirectly to the Viral Load
  publication-title: The Journal of Immunology
  doi: 10.4049/jimmunol.169.6.3400
– volume: 11
  year: 2020
  ident: 2023042407413449800_R70
  article-title: TRIM5α Self-assembly and Compartmentalization of the HIV-1 Viral Capsid
  publication-title: Nature Communications
– ident: 2023042407413449800_R5
  article-title: Geneious Prime User Manual
– volume: 10
  year: 2015
  ident: 2023042407413449800_R18
  article-title: Comparison of Major and Minor Viral SNPs Identified through Single Template Sequencing and Pyrosequencing in Acute HIV-1 Infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0135903
– volume: 79
  start-page: 9006
  year: 2005
  ident: 2023042407413449800_R65
  article-title: Changes in Human Immunodeficiency Virus Type 1 Fitness and Genetic Diversity during Disease Progression
  publication-title: Journal of Virology
  doi: 10.1128/JVI.79.14.9006-9018.2005
– volume: 21
  start-page: 98
  year: 2005
  ident: 2023042407413449800_R34
  article-title: A Modified Bootscan Algorithm for Automated Identification of Recombinant Sequences and Recombination Breakpoints
  publication-title: AIDS Research and Human Retroviruses
  doi: 10.1089/aid.2005.21.98
– volume: 16
  start-page: 562
  year: 2000
  ident: 2023042407413449800_R32
  article-title: RDP: Detection of Recombination Amongst Aligned Sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.6.562
– volume: 6
  year: 2011
  ident: 2023042407413449800_R39
  article-title: A Single Amino Acid of Human Immunodeficiency Virus Type 2 Capsid Protein Affects Conformation of Two External Loops and Viral Sensitivity to TRIM5α. Lee Y-M (Ed.)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022779
– volume: 98
  start-page: 13757
  year: 2001
  ident: 2023042407413449800_R47
  article-title: Evaluation of Methods for Detecting Recombination from DNA Sequences: Computer Simulations
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.241370698
– volume: 9
  year: 2013
  ident: 2023042407413449800_R52
  article-title: Extreme Genetic Fragility of the HIV-1 Capsid
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1003461
– volume: 46
  start-page: 233
  year: 2016
  ident: 2023042407413449800_R67
  article-title: Hiv-2 Molecular Epidemiology
  publication-title: Infection, Genetics and Evolution
  doi: 10.1016/j.meegid.2016.08.010
– volume: 20
  start-page: 1318
  year: 2003
  ident: 2023042407413449800_R68
  article-title: Adaptation in the Env Gene of HIV-1 and Evolutionary Theories of Disease Progression
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msg144
– volume: 19
  start-page: 286
  year: 2011
  ident: 2023042407413449800_R36
  article-title: Two-stepping through Time: Mammals and Viruses
  publication-title: Trends in Microbiology
  doi: 10.1016/j.tim.2011.03.006
– volume: 52
  start-page: 649
  year: 2003
  ident: 2023042407413449800_R62
  article-title: Hierarchical Phylogenetic Models for Analyzing Multipartite Sequence Data
  publication-title: Systematic Biology
  doi: 10.1080/10635150390238879
– volume: 343
  start-page: 943
  year: 1994
  ident: 2023042407413449800_R22
  article-title: Slower Heterosexual Spread of HIV-2 than HIV-1
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(94)90065-5
– volume: 7
  year: 2011
  ident: 2023042407413449800_R55
  article-title: HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1002439
– volume: 28
  start-page: B60
  year: 2010
  ident: 2023042407413449800_R42
  article-title: HIV-2 Capsids Distinguish High and Low Virus Load Patients in a West African Community Cohort
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.08.060
– volume: 7
  year: 2017
  ident: 2023042407413449800_R31
  article-title: Cyclophilins and Nucleoporins are Required for Infection Mediated by Capsids from Circulating HIV-2 Primary Isolates
  publication-title: Scientific Reports
  doi: 10.1038/srep45214
– volume: 1
  year: 2011
  ident: 2023042407413449800_R57
  article-title: Origins of HIV and the AIDS Pandemic
  publication-title: Cold Spring Harbor Perspectives in Medicine
  doi: 10.1101/cshperspect.a006841
– volume: 14
  start-page: 361
  year: 1997
  ident: 2023042407413449800_R1
  article-title: CD4+ T-lymphocyte Counts in HIV Infection: Are European Standards Applicable to African Patients?
  publication-title: Journal of Acquired Immune Deficiency Syndromes & Human Retrovirology
  doi: 10.1097/00042560-199704010-00009
– volume: 6
  year: 2021
  ident: 2023042407413449800_R2
  article-title: Irreversible Depletion of Intestinal CD4+ T-cells Is Associated with T-cell Activation during Chronic HIV Infection
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.146162
– volume: 23
  start-page: 1242
  year: 2007
  ident: 2023042407413449800_R4
  article-title: Plasma Viral Load Threshold for Sustaining Intrahost HIV Type 1 Evolution
  publication-title: AIDS Research and Human Retroviruses
  doi: 10.1089/aid.2007.0074
– volume: 497
  start-page: 643
  year: 2013
  ident: 2023042407413449800_R71
  article-title: Mature HIV-1 Capsid Structure by Cryo-electron Microscopy and All-atom Molecular Dynamics
  publication-title: Nature
  doi: 10.1038/nature12162
– volume: 16
  start-page: 1036
  year: 2009
  ident: 2023042407413449800_R49
  article-title: Active Site Remodeling Switches HIV Specificity of Antiretroviral TRIMCyp
  publication-title: Nature Structural & Molecular Biology
  doi: 10.1038/nsmb.1667
– volume: 32
  start-page: 709
  year: 2018
  ident: 2023042407413449800_R8
  article-title: HLA-associated Polymorphisms in the HIV-2 Capsid Highlight Key Differences between HIV-1 and HIV-2 Immune Adaptation
  publication-title: AIDS
  doi: 10.1097/QAD.0000000000001753
– volume: 11
  year: 2015
  ident: 2023042407413449800_R30
  article-title: Broad CTL Response in Early HIV Infection Drives Multiple Concurrent CTL Escapes
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1004492
– volume: 192
  start-page: 4685
  year: 2014
  ident: 2023042407413449800_R6
  article-title: Functional Avidity and IL-2/perforin Production Is Linked to the Emergence of Mutations within HLA-B*5701-restricted Epitopes and HIV-1 Disease Progression
  publication-title: The Journal of Immunology
  doi: 10.4049/jimmunol.1302253
– volume: 3
  year: 2007
  ident: 2023042407413449800_R28
  article-title: Synonymous Substitution Rates Predict HIV Disease Progression as a Result of Underlying Replication Dynamics
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.0030029
– volume: 265
  start-page: 218
  year: 1999
  ident: 2023042407413449800_R44
  article-title: Possible Emergence of New Geminiviruses by Frequent Recombination
  publication-title: Virology
  doi: 10.1006/viro.1999.0056
– volume: 81
  start-page: 7280
  year: 2007
  ident: 2023042407413449800_R60
  article-title: A Single Amino Acid of the Human Immunodeficiency Virus Type 2 Capsid Affects Its Replication in the Presence of Cynomolgus Monkey and Human TRIM5 S
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00406-07
– year: 2015
  ident: 2023042407413449800_R56
  article-title: The PyMOL Molecular Graphics System, Version 1.8
– volume: 28
  start-page: 92
  year: 2018
  ident: 2023042407413449800_R64
  article-title: The Impact of HIV-1 Within-host Evolution on Transmission Dynamics
  publication-title: Current Opinion in Virology
  doi: 10.1016/j.coviro.2017.12.001
– volume-title: R Package
  year: 2018
  ident: 2023042407413449800_R23
  article-title: Ggpubr: “Ggplot2” Based Publication Ready Plots
– volume: 7
  start-page: 1742
  year: 2010
  ident: 2023042407413449800_R66
  article-title: Undetectable Plasma Viral Load Predicts Normal Survival in HIV-2-infected People in a West African Village
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-7-46
– volume: 10
  start-page: 356
  year: 2010
  ident: 2023042407413449800_R38
  article-title: Differences in Molecular Evolution between Switch (R5 to R5X4/X4-tropic) and Non-switch (R5-tropic Only) HIV-1 Populations during Infection
  publication-title: Infection, Genetics and Evolution
  doi: 10.1016/j.meegid.2009.05.003
– volume-title: WHO Case Definitions of HIV for Surveillance and Revised Clinical Staging and Immunological Classification of HIV-Related Disease in Adults and Children
  year: 2007
  ident: 2023042407413449800_R43
– volume: 117
  start-page: 3067
  year: 2007
  ident: 2023042407413449800_R27
  article-title: Robust Gag-specific T Cell Responses Characterize Viremia Control in HIV-2 Infection
  publication-title: The Journal of Clinical Investigation
  doi: 10.1172/JCI32380
– volume: 1
  year: 2015
  ident: 2023042407413449800_R33
  article-title: RDP4: Detection and Analysis of Recombination Patterns in Virus Genomes
  publication-title: Virus Evolution
  doi: 10.1093/ve/vev003
– volume: 85
  start-page: 10518
  year: 2011
  ident: 2023042407413449800_R15
  article-title: Fitness Costs and Diversity of the Cytotoxic T Lymphocyte (CTL) Response Determine the Rate of CTL Escape during Acute and Chronic Phases of HIV Infection
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00655-11
– volume: 10
  year: 2019
  ident: 2023042407413449800_R45
  article-title: Low Postseroconversion CD4+ T-cell Level Is Associated with Faster Disease Progression and Higher Viral Evolutionary Rate in HIV-2 Infection
  publication-title: mBio
  doi: 10.1128/mBio.01245-18
– volume: 6
  year: 2016
  ident: 2023042407413449800_R16
  article-title: Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection
  publication-title: Scientific Reports
  doi: 10.1038/srep29536
– volume: 28
  start-page: 3248
  year: 2012
  ident: 2023042407413449800_R29
  article-title: A Counting Renaissance: Combining Stochastic Mapping and Empirical Bayes to Quickly Detect Amino Acid Sites under Positive Selection
  publication-title: Bioinformatics (Oxford, England)
– volume: 367
  start-page: 224
  year: 2012
  ident: 2023042407413449800_R13
  article-title: Inhibition of HIV-1 Disease Progression by Contemporaneous HIV-2 Infection
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa1113244
– volume: 536
  start-page: 349
  year: 2016
  ident: 2023042407413449800_R19
  article-title: HIV-1 Uses Dynamic Capsid Pores to Import Nucleotides and Fuel Encapsidated DNA Synthesis
  publication-title: Nature
  doi: 10.1038/nature19098
– volume: 85
  start-page: 7818
  year: 2011
  ident: 2023042407413449800_R35
  article-title: The Requirement for Nucleoporin NUP153 during Human Immunodeficiency Virus Type 1 Infection Is Determined by the Viral Capsid
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00325-11
– volume-title: RStudio: Integrated Development Environment for R
  year: 2021
  ident: 2023042407413449800_R53
– volume: 34
  start-page: 126
  year: 1992
  ident: 2023042407413449800_R59
  article-title: Analyzing the Mosaic Structure of Genes
  publication-title: Journal of Molecular Evolution
  doi: 10.1007/BF00182389
– volume: 29
  start-page: 1969
  year: 2012
  ident: 2023042407413449800_R12
  article-title: Bayesian Phylogenetics with BEAUti and the BEAST 1.7
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/mss075
– volume: 21
  start-page: 253
  year: 2016
  ident: 2023042407413449800_R21
  article-title: Differential Effects of Sex in a West African Cohort of HIV-1, HIV-2 and HIV-1/2 Dually Infected Patients: Men are Worse Off
  publication-title: Tropical Medicine & International Health
  doi: 10.1111/tmi.12646
– volume: 61
  start-page: 170
  year: 2012
  ident: 2023042407413449800_R3
  article-title: BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/syr100
– volume: 10
  year: 2014
  ident: 2023042407413449800_R41
  article-title: Baseline CD4+ T Cell Counts Correlates with HIV-1 Synonymous Rate in HLA-B*5701 Subjects with Different Risk of Disease Progression
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1003830
– volume: 8
  start-page: 1549
  year: 1992
  ident: 2023042407413449800_R25
  article-title: Signature Pattern Analysis: A Method for Assessing Viral Sequence Relatedness
  publication-title: AIDS Research and Human Retroviruses
  doi: 10.1089/aid.1992.8.1549
– volume: 14
  year: 2018
  ident: 2023042407413449800_R50
  article-title: Evolution of HIV-1 within Untreated Individuals and at the Population Scale in Uganda
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1007167
– ident: 2023042407413449800_R17
– volume: 19
  start-page: 369
  year: 2013
  ident: 2023042407413449800_R37
  article-title: High Intrapatient HIV-1 Evolutionary Rate Is Associated with CCR5-to-CXCR4 Coreceptor Switch
  publication-title: Infection, Genetics and Evolution
  doi: 10.1016/j.meegid.2013.05.004
– volume: 112
  start-page: E1480
  year: 2015
  ident: 2023042407413449800_R7
  article-title: Replicative Fitness of Transmitted HIV-1 Drives Acute Immune Activation, Proviral Load in Memory CD4+ T Cells, and Disease Progression
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 27
  start-page: 125
  year: 2013
  ident: 2023042407413449800_R11
  article-title: Population Dynamics of HIV-2 in Rural West Africa: Comparison with HIV-1 and Ongoing Transmission at the Heart of the Epidemic
  publication-title: AIDS (London, England)
  doi: 10.1097/QAD.0b013e32835ab12c
– volume: 45
  start-page: 2232
  year: 2015
  ident: 2023042407413449800_R20
  article-title: The Presence of Prolines in the Flanking Region of an Immunodominant HIV-2 Gag Epitope Influences the Quality and Quantity of the Epitope Generated
  publication-title: European Journal of Immunology
  doi: 10.1002/eji.201545451
– volume: 175
  start-page: 488
  year: 2018
  ident: 2023042407413449800_R26
  article-title: NONO Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate Immune Activation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.062
– volume: 10
  start-page: 1742
  year: 2013
  ident: 2023042407413449800_R63
  article-title: High Level of Susceptibility to Human TRIM5α Conferred by HIV-2 Capsid Sequences
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-10-50
SSID ssj0001537413
Score 2.2107265
Snippet Abstract HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26)...
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino...
SourceID swepub
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage veac075
SubjectTerms Acquired immune deficiency syndrome
AIDS
Amino acids
capsid
Clinical Medicine
evolution
HIV
HIV-2
Human immunodeficiency virus
Infectious Medicine
Infektionsmedicin
Klinisk medicin
Medical and Health Sciences
Medicin och hälsovetenskap
p26
Title Intrahost evolution of the HIV-2 capsid correlates with progression to AIDS
URI https://www.ncbi.nlm.nih.gov/pubmed/36533148
https://www.proquest.com/docview/3171772045
https://www.proquest.com/docview/2755802250
https://lup.lub.lu.se/record/ea84106b-d74a-4f31-b147-4b0eea21e5d1
oai:portal.research.lu.se:publications/ea84106b-d74a-4f31-b147-4b0eea21e5d1
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJiReJr4JjMoIXniIVsd2TJ7QNjq1IAaCDVW8WLZji4eo6Wg7if-eu8TtCpomoigPseVEZ5_vw3e_A3jNNa-dFjIXeOXS4sNFSuOyQhGaOYogShT-dFqOz-WHqZomh9sihVWu98Ruo65bTz7yA5RzXFNFFfVufpFT1Sg6XU0lNG7DLkGXUUiXnuorH4sSKDDFGpW0EgeXAW_rhxRWuCWH_spt21Ix_8EP7WTOyT3YS8oiO-xn9z7cCrMHcKcvH_n7IXyckGeW0jRYuExLiLWRoU7HxpPvecG8neNqY55KcDSkVTLyu7IuKKsH5GDLlh1O3n97BOcno7PjcZ6KI-S-lHyZx6oukahSBVK7tIw8orirnSuQSmWokDMrOQy-cHT-EWqNdl_0Ragq50srnXgMO7N2Fp4CUxGbsIO3zklR-irGiGajDKi9of1oM3izJpXxCTmcClg0pj_BFsh1JpE1g1ebvvMeL-PaXgOk-I0d9teTYRJTLczVEsjg5aYZ2YHOOOwstKuFKbRSlD2shhk86Sdx8xlRom6L5l8Go35WNy2Esd3gDzX4rlmZRTDBvpVoLTuDdLFGRsGN41Ib6YYh2IIHVfMMflwzTm82mYTV9DONN99ywv7X4M9upsBzuFtQIkYXWLMPO8tfq_AC1aOlG3Q8MIDdo9Hpl6-DzsmAz7PP0z9TFxTO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6IXhB4zuwDSPggYdoTWwn5GGaBuvU0K1CsKFpL8Z2bPEQNYW2Q_tT-427a5KuoGniZVGUh9i6WOe73JfvDuBtlEaFSbkIOV6h0PgwntK4NJdUzRxFECUKHw6T_rH4fCJPVuCizYWhY5XtP3H-oy4qSz7yLZRzUUodVeTO-FdIXaMoutq20KjJYuDO_6DJNtnO93B_38Xxfu_oUz9sugqENhHRNPRZkeBqhHSkr6TCRx7lRGFMjOATlyFJZ6LrbGwocOCKFA0mb2OXZcYmWhiOcO_AquBoynRg9WNv-OXrlVdHchTRvK2DmvGtM4e3tl06yLgk-f7KpltSav-pWDqXcvtr8KBRT9luTU8PYcWNHsHdumHl-WMY5OQLpsQQ5s4aomWVZ6hFsn7-PYyZ1WOkb2ap6UdJeiwjTy-bHwOrS4CwacV2871vT-D4VhD3FDqjauSeA5Meh3CC1cYgIm3mvUdDVTjUF9Fi1QG8b1GlbFOrnFpmlKqOmXPkc9WgNYA3i7njukLHtbM2EeM3TlhvN0M1bDxRV0QXwOvFMDIgRVX0yFWziYpTKSlfWXYDeFZv4uIzPEFtGg3OAHr1ri5GqKp3iQsq8V05UxOnnP4g0D43CvGilfA8UiYSqRKm65yOIyeLKIDTa-DUhppqqkP9bOCNl9y-_wX8xc0YeAX3-keHB-ogHw5ewv2Y0kDmx3rWoTP9PXMbqJxNzWbDEQx-3DYTXgIVA0-S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrahost+evolution+of+the+HIV-2+capsid+correlates+with+progression+to+AIDS&rft.jtitle=Virus+evolution&rft.au=Boswell%2C+M+T&rft.au=Nazziwa%2C+J&rft.au=Kuroki%2C+K&rft.au=Palm%2C+A&rft.date=2022-12-01&rft.pub=Oxford+University+Press&rft.eissn=2057-1577&rft.volume=8&rft.issue=2&rft_id=info:doi/10.1093%2Fve%2Fveac075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-1577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-1577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-1577&client=summon