Sensory–motor networks involved in speech production and motor control: An fMRI study

Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory–motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we a...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 109; pp. 418 - 428
Main Authors Behroozmand, Roozbeh, Shebek, Rachel, Hansen, Daniel R., Oya, Hiroyuki, Robin, Donald A., Howard, Matthew A., Greenlee, Jeremy D.W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2015
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory–motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. •Auditory feedback plays a key role in speech production and motor control.•Humans vocally compensate for pitch perturbations in their voice auditory feedback.•Vocal pitch motor control involves a complex sensory–motor network in the brain.•Functional networks of speech motor control are not affected in patients with epilepsy.
AbstractList Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.
Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.
Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory–motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. •Auditory feedback plays a key role in speech production and motor control.•Humans vocally compensate for pitch perturbations in their voice auditory feedback.•Vocal pitch motor control involves a complex sensory–motor network in the brain.•Functional networks of speech motor control are not affected in patients with epilepsy.
Author Shebek, Rachel
Hansen, Daniel R.
Howard, Matthew A.
Behroozmand, Roozbeh
Oya, Hiroyuki
Greenlee, Jeremy D.W.
Robin, Donald A.
AuthorAffiliation 1 Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
3 Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States
2 Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
AuthorAffiliation_xml – name: 2 Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
– name: 1 Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
– name: 3 Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States
Author_xml – sequence: 1
  givenname: Roozbeh
  surname: Behroozmand
  fullname: Behroozmand, Roozbeh
  email: r-behroozmand@sc.edu
  organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
– sequence: 2
  givenname: Rachel
  surname: Shebek
  fullname: Shebek, Rachel
  organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
– sequence: 3
  givenname: Daniel R.
  surname: Hansen
  fullname: Hansen, Daniel R.
  organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
– sequence: 4
  givenname: Hiroyuki
  surname: Oya
  fullname: Oya, Hiroyuki
  organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
– sequence: 5
  givenname: Donald A.
  surname: Robin
  fullname: Robin, Donald A.
  organization: Research Imaging Institute, Departments of Neurology, Radiology and Biomedical Engineering, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States
– sequence: 6
  givenname: Matthew A.
  surname: Howard
  fullname: Howard, Matthew A.
  organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
– sequence: 7
  givenname: Jeremy D.W.
  surname: Greenlee
  fullname: Greenlee, Jeremy D.W.
  organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25623499$$D View this record in MEDLINE/PubMed
BookMark eNqNUsluFDEQtVAQWeAXkCUuXLpxuVdzQEQRS6QgJBZxtNx2deJJjz3Y3YPmln_IH_IluJmEQC6MLy6pXr2qV_UOyZ7zDgmhwHJgUL9Y5A6n4O1SnWPOGVQ5g5yV7AE5ACaqTFQN35vjqshaALFPDmNcMMYElO0jss-rmhelEAfk22d00YfNz6vrpR99oA7HHz5cRmrd2g9rNCmgcYWoL-gqeDPp0XpHlTN0W6C9G4MfXtJjR_sPn05pHCezeUwe9mqI-OTmPyJf3775cvI-O_v47vTk-CzTdQljpqHiqu5F0YAGVF3XtAVWXY-6bQ3vFPC-rpumrbRG6KBTFQde9MYURhuhVHFEXm15V1O3RKMxDaMGuQppN2EjvbLy34yzF_Lcr2VZFKIQTSJ4fkMQ_PcJ4yiXNmocBuXQT1FCai8gPbYDNGkSgpe7QKu25BzaeYBn96ALPwWXljaj6pK3nImEevq3zj8Cby95twgdfIwBe6ntqOZbJdl2kMDkbB25kHfWkbN1JAPJfo_c3iO47bFD6ettKaZLry0GqQfrrFbDJW6k8fb_FL8ABRnmJw
CitedBy_id crossref_primary_10_1038_s41746_023_00983_9
crossref_primary_10_1093_cercor_bhae075
crossref_primary_10_1111_cdev_14134
crossref_primary_10_1523_JNEUROSCI_1646_16_2016
crossref_primary_10_3389_fnhum_2024_1305058
crossref_primary_10_1016_j_neurobiolaging_2016_12_020
crossref_primary_10_1016_j_neuroimage_2022_119767
crossref_primary_10_1016_j_brainres_2016_01_040
crossref_primary_10_1142_S0129065723500284
crossref_primary_10_3389_fnagi_2022_948696
crossref_primary_10_1016_j_nicl_2023_103358
crossref_primary_10_3389_fnins_2019_00815
crossref_primary_10_1016_j_neuroimage_2018_04_023
crossref_primary_10_1177_00238309231202503
crossref_primary_10_3389_fnint_2024_1437585
crossref_primary_10_1016_j_jneuroling_2020_100978
crossref_primary_10_1016_j_neuropsychologia_2024_108842
crossref_primary_10_1016_j_ynirp_2023_100166
crossref_primary_10_3389_fnins_2021_794151
crossref_primary_10_1002_hbm_24734
crossref_primary_10_1523_JNEUROSCI_1329_17_2017
crossref_primary_10_1016_j_cortex_2024_10_010
crossref_primary_10_1016_j_neuroimage_2017_10_014
crossref_primary_10_1186_s12868_021_00671_y
crossref_primary_10_1016_j_cell_2018_05_016
crossref_primary_10_1093_cercor_bhab251
crossref_primary_10_3934_Neuroscience_2016_1_22
crossref_primary_10_3389_fnhum_2020_00018
crossref_primary_10_3758_s13415_015_0376_1
crossref_primary_10_1038_srep16562
crossref_primary_10_1044_2019_JSLHR_S_18_0425
crossref_primary_10_1371_journal_pbio_3001493
crossref_primary_10_1038_srep31182
crossref_primary_10_1007_s12311_021_01230_1
crossref_primary_10_1111_cns_14251
crossref_primary_10_2147_CIA_S416992
crossref_primary_10_1016_j_neuropsychologia_2021_107865
crossref_primary_10_1044_2023_JSLHR_23_00038
crossref_primary_10_1007_s00221_020_05832_9
crossref_primary_10_1093_cercor_bhaa054
crossref_primary_10_1093_cercor_bhz138
crossref_primary_10_1002_hbm_24004
crossref_primary_10_1162_jocn_a_01661
crossref_primary_10_1016_j_jcomdis_2021_106163
crossref_primary_10_1016_j_neuroimage_2020_117319
crossref_primary_10_3389_fnins_2018_00749
crossref_primary_10_3389_fnhum_2024_1461505
crossref_primary_10_1016_j_neuropsychologia_2017_04_035
crossref_primary_10_1016_j_jvoice_2019_01_002
crossref_primary_10_1016_j_neuropsychologia_2022_108388
crossref_primary_10_1097_WNR_0000000000002011
crossref_primary_10_1016_j_bpsc_2020_10_018
crossref_primary_10_1038_s41583_019_0160_2
crossref_primary_10_1044_2022_JSLHR_22_00091
crossref_primary_10_1002_hbm_23306
crossref_primary_10_1016_j_neuroimage_2019_116306
crossref_primary_10_3389_fnins_2021_665687
crossref_primary_10_1016_j_nicl_2024_103691
crossref_primary_10_1016_j_biopsych_2021_08_024
crossref_primary_10_3389_fphys_2017_00633
crossref_primary_10_1016_j_neuroimage_2022_119812
crossref_primary_10_1017_S0033291724002368
crossref_primary_10_1109_TNSRE_2024_3497893
crossref_primary_10_1016_j_heliyon_2023_e20389
crossref_primary_10_1002_jnr_24723
crossref_primary_10_1016_j_jcomdis_2020_106034
crossref_primary_10_1038_srep28909
crossref_primary_10_1080_09638288_2024_2390053
crossref_primary_10_1523_JNEUROSCI_1960_15_2016
crossref_primary_10_1016_j_neuroimage_2020_117710
crossref_primary_10_3389_fnagi_2021_676899
crossref_primary_10_1016_j_neuropsychologia_2020_107386
crossref_primary_10_1121_1_5134449
crossref_primary_10_3389_fnagi_2016_00064
crossref_primary_10_1002_jcv2_12049
crossref_primary_10_3389_fnhum_2018_00041
crossref_primary_10_1002_hbm_26008
crossref_primary_10_1152_jn_00502_2022
crossref_primary_10_1016_j_neubiorev_2022_104730
crossref_primary_10_1002_brb3_1073
crossref_primary_10_3389_fpsyt_2022_956895
crossref_primary_10_1007_s00221_023_06743_1
crossref_primary_10_3389_fneur_2022_891789
crossref_primary_10_3389_fpsyt_2017_00205
crossref_primary_10_1007_s11571_023_09945_z
crossref_primary_10_1038_s41467_020_16743_2
crossref_primary_10_1016_j_ijpsycho_2018_08_007
crossref_primary_10_7554_eLife_94198_3
crossref_primary_10_1097_WNR_0000000000001142
crossref_primary_10_1017_S0033291717000101
crossref_primary_10_1016_j_neuroimage_2016_08_005
crossref_primary_10_3389_fnagi_2023_1236971
crossref_primary_10_1002_aur_2290
crossref_primary_10_1097_WNR_0000000000001410
crossref_primary_10_7554_eLife_94198
crossref_primary_10_1016_j_neuroimage_2023_120282
crossref_primary_10_3389_fnins_2023_1208581
crossref_primary_10_1111_ejn_15162
crossref_primary_10_1007_s00221_017_5104_3
crossref_primary_10_1017_S0142716420000223
crossref_primary_10_1093_cercor_bhad514
crossref_primary_10_1093_cercor_bhaa401
crossref_primary_10_1016_j_bandl_2020_104840
crossref_primary_10_1002_hbm_24681
crossref_primary_10_1007_s00429_017_1484_1
crossref_primary_10_1093_cercor_bhx151
crossref_primary_10_1177_15459683241245410
crossref_primary_10_3389_fnins_2016_00600
crossref_primary_10_1002_hbm_24684
crossref_primary_10_1007_s10339_016_0786_1
crossref_primary_10_1016_j_neuroimage_2021_118736
crossref_primary_10_1016_j_neuroimage_2021_118735
crossref_primary_10_1016_j_ijpsycho_2024_112357
crossref_primary_10_1093_cercor_bhac439
crossref_primary_10_3390_app13137512
crossref_primary_10_3389_fnhum_2022_803163
crossref_primary_10_3389_fnins_2015_00109
crossref_primary_10_1073_pnas_2404121121
crossref_primary_10_3389_fneur_2020_00568
crossref_primary_10_3389_fnins_2016_00175
crossref_primary_10_3389_fnins_2018_00666
crossref_primary_10_1016_j_neuroimage_2018_06_061
crossref_primary_10_1044_2019_JSLHR_S_18_0408
crossref_primary_10_1016_j_neuroimage_2019_116184
crossref_primary_10_1093_cercor_bhac447
crossref_primary_10_1152_jn_00964_2014
crossref_primary_10_1038_s41467_022_31230_6
crossref_primary_10_1002_hbm_23855
crossref_primary_10_1093_cercor_bhac049
Cites_doi 10.1073/pnas.1216827110
10.1162/089892902760807140
10.1038/16056
10.1016/j.bandc.2013.11.007
10.1016/j.neuron.2011.01.019
10.1126/science.279.5354.1213
10.1523/JNEUROSCI.6319-11.2013
10.1152/jn.00675.2004
10.1016/j.clinph.2009.04.022
10.1121/1.4746984
10.1186/1471-2202-10-58
10.1016/j.bandl.2005.06.001
10.1038/nn781
10.1121/1.2404624
10.1371/journal.pone.0014744
10.1152/jn.00343.2011
10.1016/j.neuroimage.2010.11.026
10.1523/JNEUROSCI.1809-10.2010
10.1523/JNEUROSCI.0404-12.2012
10.1523/JNEUROSCI.3653-11.2011
10.1097/01.wnr.0000233102.43526.e9
10.1371/journal.pone.0060783
10.1016/j.neuroimage.2007.09.054
10.1162/jocn.2010.21447
10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V
10.1016/j.neuroimage.2012.02.068
10.1097/WNR.0b013e3283393a44
10.1016/j.neuroimage.2009.10.023
10.1038/nature06910
10.1038/nn.2331
10.1121/1.2773966
10.1371/journal.pone.0082925
10.1186/1471-2202-12-54
10.1111/j.1469-8986.2005.00272.x
10.1038/nrn3112
10.1016/S0021-9924(98)00021-5
10.1162/jocn.2009.21324
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Apr 1, 2015
2015 Elsevier Inc. All rights reserved. 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Apr 1, 2015
– notice: 2015 Elsevier Inc. All rights reserved. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
7SC
7U5
JQ2
L7M
L~C
L~D
5PM
DOI 10.1016/j.neuroimage.2015.01.040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

MEDLINE
ProQuest One Psychology

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 428
ExternalDocumentID PMC4339397
3597967701
25623499
10_1016_j_neuroimage_2015_01_040
S1053811915000567
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC004290
– fundername: NIDCD NIH HHS
  grantid: R01DC04290
– fundername: NIDCD NIH HHS
  grantid: K23 DC009589
– fundername: NIDCD NIH HHS
  grantid: K23DC009589
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HMQ
HVGLF
HZ~
OK1
R2-
RIG
SEW
SNS
WUQ
XPP
ZMT
0SF
3V.
AACTN
AFKWA
AJOXV
AMFUW
C45
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
7SC
7U5
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c641t-c152a6f9371c1eabb783e5bfec88d2ba12f667785cce1b1ba52123fdd3dcd9aa3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:03:48 EDT 2025
Fri Jul 11 10:08:37 EDT 2025
Fri Jul 11 09:56:22 EDT 2025
Fri Jul 11 05:57:02 EDT 2025
Wed Aug 13 07:44:24 EDT 2025
Wed Feb 19 01:53:40 EST 2025
Tue Jul 01 03:01:41 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Tue Aug 26 16:31:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
Auditory feedback
Sensory–motor integration
Pitch perturbation
Speech motor control
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-c152a6f9371c1eabb783e5bfec88d2ba12f667785cce1b1ba52123fdd3dcd9aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4339397
PMID 25623499
PQID 1656428209
PQPubID 2031077
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339397
proquest_miscellaneous_1677911110
proquest_miscellaneous_1664199240
proquest_miscellaneous_1658422187
proquest_journals_1656428209
pubmed_primary_25623499
crossref_citationtrail_10_1016_j_neuroimage_2015_01_040
crossref_primary_10_1016_j_neuroimage_2015_01_040
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_01_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Burnett, Freedland, Larson, Hain (bb0040) 1998; 103
Behroozmand, Karvelis, Liu, Larson (bb0015) 2009; 120
Houde, Nagarajan, Sekihara, Merzenich (bb0110) 2002; 14
Heinks-Maldonado, Nagarajan, Houde (bb0095) 2006; 17
Flinker, Chang, Kirsch, Barbaro, Crone, Knight (bb0065) 2010; 30
Romanski, Averbeck, Diltz (bb0140) 2005; 93
Houde (bb0105) 1998; 279
Tourville, Reilly, Guenther (bb0170) 2008; 39
Wolpert, Diedrichsen, Flanagan (bb0185) 2011; 12
Behroozmand, Liu, Larson (bb0030) 2011; 23
Boersma, Weenink (bb0035) 2001; 5
Romanski, Bates, Goldman-Rakic (bb0145) 1999; 403
Romanski, Tian, Fritz, Mishkin, Goldman-Rakic, Rauschecker (bb0155) 1999; 2
Greenlee, Behroozmand, Larson, Jackson, Chen, Hansen, Oya, Kawasaki, Howard (bb0075) 2013; 8
Zheng, Vicente-Grabovetsky, MacDonald, Munhall, Cusack, Johnsrude (bb0195) 2013; 33
Larson (bb0120) 1998; 31
Guenther, Ghosh, Tourville (bb0085) 2006; 96
Cai, Ghosh, Guenther, Perkell (bb0045) 2011; 31
Rauschecker, Scott (bb0135) 2009; 12
Romanski, Goldman-Rakic (bb0150) 2002; 5
Beal, Quraan, Cheyne, Taylor, Gracco, De Nil (bb0005) 2011; 54
Chen, Liu, Xu, Larson (bb0055) 2007; 121
Liu, Behroozmand, Larson (bb0125) 2010; 21
Sitek, Mathalon, Roach, Houde, Niziolek, Ford (bb0165) 2013; 8
Simmonds, Wise, Dhanjal, Leech (bb0160) 2011; 106
Villacorta, Perkell, Guenther (bb0180) 2007; 122
Behroozmand, Ibrahim, Korzyukov, Robin, Larson (bb0010) 2014; 84
Zheng, Munhall, Johnsrude (bb0190) 2010; 22
Lametti, Nasir, Ostry (bb0115) 2012; 32
Ventura, Nagarajan, Houde (bb0175) 2009; 10
Hickok, Houde, Rong (bb0100) 2011; 69
Behroozmand, Larson (bb0025) 2011; 12
Eliades, Wang (bb0060) 2008; 453
Heinks-Maldonado, Mathalon, Gray, Ford (bb0090) 2005; 42
Greenlee, Jackson, Chen, Larson, Oya, Kawasaki, Chen, Howard (bb0080) 2011; 6
Chang, Niziolek, Knight, Nagarajan, Houde (bb0050) 2013; 110
Parkinson, Flagmeier, Manes, Larson, Rogers, Robin (bb0130) 2012; 61
Behroozmand, Korzyukov, Sattler, Larson (bb0020) 2012; 132
Golfinopoulos, Tourville, Guenther (bb0070) 2010; 52
Greenlee (10.1016/j.neuroimage.2015.01.040_bb0080) 2011; 6
Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0025) 2011; 12
Zheng (10.1016/j.neuroimage.2015.01.040_bb0195) 2013; 33
Rauschecker (10.1016/j.neuroimage.2015.01.040_bb0135) 2009; 12
Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0030) 2011; 23
Guenther (10.1016/j.neuroimage.2015.01.040_bb0085) 2006; 96
Cai (10.1016/j.neuroimage.2015.01.040_bb0045) 2011; 31
Chen (10.1016/j.neuroimage.2015.01.040_bb0055) 2007; 121
Romanski (10.1016/j.neuroimage.2015.01.040_bb0145) 1999; 403
Houde (10.1016/j.neuroimage.2015.01.040_bb0110) 2002; 14
Golfinopoulos (10.1016/j.neuroimage.2015.01.040_bb0070) 2010; 52
Tourville (10.1016/j.neuroimage.2015.01.040_bb0170) 2008; 39
Sitek (10.1016/j.neuroimage.2015.01.040_bb0165) 2013; 8
Heinks-Maldonado (10.1016/j.neuroimage.2015.01.040_bb0090) 2005; 42
Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0015) 2009; 120
Burnett (10.1016/j.neuroimage.2015.01.040_bb0040) 1998; 103
Chang (10.1016/j.neuroimage.2015.01.040_bb0050) 2013; 110
Beal (10.1016/j.neuroimage.2015.01.040_bb0005) 2011; 54
Lametti (10.1016/j.neuroimage.2015.01.040_bb0115) 2012; 32
Parkinson (10.1016/j.neuroimage.2015.01.040_bb0130) 2012; 61
Houde (10.1016/j.neuroimage.2015.01.040_bb0105) 1998; 279
Simmonds (10.1016/j.neuroimage.2015.01.040_bb0160) 2011; 106
Romanski (10.1016/j.neuroimage.2015.01.040_bb0150) 2002; 5
Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0020) 2012; 132
Hickok (10.1016/j.neuroimage.2015.01.040_bb0100) 2011; 69
Boersma (10.1016/j.neuroimage.2015.01.040_bb0035) 2001; 5
Eliades (10.1016/j.neuroimage.2015.01.040_bb0060) 2008; 453
Greenlee (10.1016/j.neuroimage.2015.01.040_bb0075) 2013; 8
Heinks-Maldonado (10.1016/j.neuroimage.2015.01.040_bb0095) 2006; 17
Wolpert (10.1016/j.neuroimage.2015.01.040_bb0185) 2011; 12
Romanski (10.1016/j.neuroimage.2015.01.040_bb0140) 2005; 93
Liu (10.1016/j.neuroimage.2015.01.040_bb0125) 2010; 21
Romanski (10.1016/j.neuroimage.2015.01.040_bb0155) 1999; 2
Flinker (10.1016/j.neuroimage.2015.01.040_bb0065) 2010; 30
Villacorta (10.1016/j.neuroimage.2015.01.040_bb0180) 2007; 122
Ventura (10.1016/j.neuroimage.2015.01.040_bb0175) 2009; 10
Zheng (10.1016/j.neuroimage.2015.01.040_bb0190) 2010; 22
Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0010) 2014; 84
Larson (10.1016/j.neuroimage.2015.01.040_bb0120) 1998; 31
12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38
23467350 - J Neurosci. 2013 Mar 6;33(10):4339-48
15371495 - J Neurophysiol. 2005 Feb;93(2):734-47
21562201 - J Neurophysiol. 2011 Jul;106(1):470-8
19837177 - Neuroimage. 2010 Sep;52(3):862-74
16040108 - Brain Lang. 2006 Mar;96(3):280-301
10570492 - Nat Neurosci. 1999 Dec;2(12):1131-6
9836138 - J Commun Disord. 1998 Nov-Dec;31(6):489-502; quiz 502-3; 553
24355545 - Brain Cogn. 2014 Feb;84(1):97-108
18454135 - Nature. 2008 Jun 19;453(7198):1102-6
21148003 - J Neurosci. 2010 Dec 8;30(49):16643-50
17902866 - J Acoust Soc Am. 2007 Oct;122(4):2306-19
22072698 - J Neurosci. 2011 Nov 9;31(45):16483-90
23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77
22406500 - Neuroimage. 2012 May 15;61(1):314-22
22764242 - J Neurosci. 2012 Jul 4;32(27):9351-8
23345447 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2653-8
9886040 - J Comp Neurol. 1999 Jan 11;403(2):141-57
18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43
24349399 - PLoS One. 2013;8(12):e82925
9637026 - J Acoust Soc Am. 1998 Jun;103(6):3153-61
19471271 - Nat Neurosci. 2009 Jun;12(6):718-24
21315253 - Neuron. 2011 Feb 10;69(3):407-22
23577157 - PLoS One. 2013;8(4):e60783
9469813 - Science. 1998 Feb 20;279(5354):1213-6
19523234 - BMC Neurosci. 2009;10:58
16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9
21390228 - PLoS One. 2011;6(3):e14744
11753413 - Nat Neurosci. 2002 Jan;5(1):15-6
17348536 - J Acoust Soc Am. 2007 Feb;121(2):1157-63
20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17
15787855 - Psychophysiology. 2005 Mar;42(2):180-90
19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81
21645406 - BMC Neurosci. 2011;12:54
20386347 - Neuroreport. 2010 May 12;21(7):527-31
19520602 - Clin Neurophysiol. 2009 Jul;120(7):1303-12
22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51
21095231 - Neuroimage. 2011 Feb 14;54(4):2994-3003
References_xml – volume: 33
  start-page: 4339
  year: 2013
  end-page: 4348
  ident: bb0195
  article-title: Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech
  publication-title: J. Neurosci.
– volume: 23
  start-page: 1205
  year: 2011
  end-page: 1217
  ident: bb0030
  article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection
  publication-title: J. Cogn. Neurosci.
– volume: 21
  start-page: 527
  year: 2010
  end-page: 531
  ident: bb0125
  article-title: Enhanced neural responses to self-triggered voice pitch feedback perturbations
  publication-title: Neuroreport
– volume: 42
  start-page: 180
  year: 2005
  end-page: 190
  ident: bb0090
  article-title: Fine-tuning of auditory cortex during speech production
  publication-title: Psychophysiology
– volume: 61
  start-page: 314
  year: 2012
  end-page: 322
  ident: bb0130
  article-title: Understanding the neural mechanisms involved in sensory control of voice production
  publication-title: Neuroimage
– volume: 110
  start-page: 2653
  year: 2013
  end-page: 2658
  ident: bb0050
  article-title: Human cortical sensorimotor network underlying feedback control of vocal pitch
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: e14744
  year: 2011
  ident: bb0080
  article-title: Human auditory cortical activation during self-vocalization
  publication-title: PLoS One
– volume: 120
  start-page: 1303
  year: 2009
  end-page: 1312
  ident: bb0015
  article-title: Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation
  publication-title: Clin. Neurophysiol.
– volume: 12
  start-page: 718
  year: 2009
  end-page: 724
  ident: bb0135
  article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing
  publication-title: Nat. Neurosci.
– volume: 5
  start-page: 341
  year: 2001
  end-page: 345
  ident: bb0035
  article-title: Praat, a system for doing phonetics by computer
  publication-title: Glot Int.
– volume: 54
  start-page: 2994
  year: 2011
  end-page: 3003
  ident: bb0005
  article-title: Speech-induced suppression of evoked auditory fields in children who stutter
  publication-title: Neuroimage
– volume: 30
  start-page: 16643
  year: 2010
  end-page: 16650
  ident: bb0065
  article-title: Single-trial speech suppression of auditory cortex activity in humans
  publication-title: J. Neurosci.
– volume: 96
  start-page: 280
  year: 2006
  end-page: 301
  ident: bb0085
  article-title: Neural modeling and imaging of the cortical interactions underlying syllable production
  publication-title: Brain Lang.
– volume: 8
  start-page: e82925
  year: 2013
  ident: bb0165
  article-title: Auditory cortex processes variation in our own speech
  publication-title: PLoS One
– volume: 31
  start-page: 489
  year: 1998
  end-page: 502
  ident: bb0120
  article-title: Cross-modality influences in speech motor control: the use of pitch shifting for the study of F0 control
  publication-title: J. Commun. Disord.
– volume: 103
  start-page: 3153
  year: 1998
  end-page: 3161
  ident: bb0040
  article-title: Voice F0 responses to manipulations in pitch feedback
– volume: 5
  start-page: 15
  year: 2002
  end-page: 16
  ident: bb0150
  article-title: An auditory domain in primate prefrontal cortex
  publication-title: Nat. Neurosci.
– volume: 121
  start-page: 1157
  year: 2007
  ident: bb0055
  article-title: Voice F[sub 0] responses to pitch-shifted voice feedback during English speech
  publication-title: J. Acoust. Soc. Am.
– volume: 8
  start-page: e60783
  year: 2013
  ident: bb0075
  article-title: Sensory–motor interactions for vocal pitch monitoring in non-primary human auditory cortex
  publication-title: PLoS One
– volume: 32
  start-page: 9351
  year: 2012
  end-page: 9358
  ident: bb0115
  article-title: Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback
  publication-title: J. Neurosci.
– volume: 12
  start-page: 54
  year: 2011
  ident: bb0025
  article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback
  publication-title: BMC Neurosci.
– volume: 122
  start-page: 2306
  year: 2007
  end-page: 2319
  ident: bb0180
  article-title: Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception
  publication-title: J. Acoust. Soc. Am.
– volume: 403
  start-page: 141
  year: 1999
  end-page: 157
  ident: bb0145
  article-title: Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey
  publication-title: J. Comp. Neurol.
– volume: 12
  start-page: 739
  year: 2011
  end-page: 751
  ident: bb0185
  article-title: Principles of sensorimotor learning
  publication-title: Nat. Rev. Neurosci.
– volume: 84
  start-page: 97
  year: 2014
  end-page: 108
  ident: bb0010
  article-title: Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch
  publication-title: Brain Cogn.
– volume: 39
  start-page: 1429
  year: 2008
  end-page: 1443
  ident: bb0170
  article-title: Neural mechanisms underlying auditory feedback control of speech
  publication-title: Neuroimage
– volume: 453
  start-page: 1102
  year: 2008
  end-page: 1106
  ident: bb0060
  article-title: Neural substrates of vocalization feedback monitoring in primate auditory cortex
  publication-title: Nature
– volume: 106
  start-page: 470
  year: 2011
  end-page: 478
  ident: bb0160
  article-title: A comparison of sensory–motor activity during speech in first and second languages
  publication-title: J. Neurophysiol.
– volume: 132
  start-page: 2468
  year: 2012
  end-page: 2477
  ident: bb0020
  article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control
  publication-title: J. Acoust. Soc. Am.
– volume: 17
  start-page: 1375
  year: 2006
  end-page: 1379
  ident: bb0095
  article-title: Magnetoencephalographic evidence for a precise forward model in speech production
  publication-title: Neuroreport
– volume: 279
  start-page: 1213
  year: 1998
  end-page: 1216
  ident: bb0105
  article-title: Sensorimotor adaptation in speech production
  publication-title: Science
– volume: 69
  start-page: 407
  year: 2011
  end-page: 422
  ident: bb0100
  article-title: Sensorimotor integration in speech processing: computational basis and neural organization
  publication-title: Neuron
– volume: 31
  start-page: 16483
  year: 2011
  end-page: 16490
  ident: bb0045
  article-title: Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within-syllable and between-syllable speech timing
  publication-title: J. Neurosci.
– volume: 52
  start-page: 862
  year: 2010
  end-page: 874
  ident: bb0070
  article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control
  publication-title: Neuroimage
– volume: 2
  start-page: 1131
  year: 1999
  end-page: 1136
  ident: bb0155
  article-title: Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 58
  year: 2009
  ident: bb0175
  article-title: Speech target modulates speaking induced suppression in auditory cortex
  publication-title: BMC Neurosci.
– volume: 14
  start-page: 1125
  year: 2002
  end-page: 1138
  ident: bb0110
  article-title: Modulation of the auditory cortex during speech: an MEG study
  publication-title: J. Cogn. Neurosci.
– volume: 93
  start-page: 734
  year: 2005
  end-page: 747
  ident: bb0140
  article-title: Neural representation of vocalizations in the primate ventrolateral prefrontal cortex
  publication-title: J. Neurophysiol.
– volume: 22
  start-page: 1770
  year: 2010
  end-page: 1781
  ident: bb0190
  article-title: Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production
  publication-title: J. Cogn. Neurosci.
– volume: 110
  start-page: 2653
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.040_bb0050
  article-title: Human cortical sensorimotor network underlying feedback control of vocal pitch
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1216827110
– volume: 14
  start-page: 1125
  year: 2002
  ident: 10.1016/j.neuroimage.2015.01.040_bb0110
  article-title: Modulation of the auditory cortex during speech: an MEG study
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/089892902760807140
– volume: 2
  start-page: 1131
  year: 1999
  ident: 10.1016/j.neuroimage.2015.01.040_bb0155
  article-title: Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/16056
– volume: 5
  start-page: 341
  year: 2001
  ident: 10.1016/j.neuroimage.2015.01.040_bb0035
  article-title: Praat, a system for doing phonetics by computer
  publication-title: Glot Int.
– volume: 84
  start-page: 97
  year: 2014
  ident: 10.1016/j.neuroimage.2015.01.040_bb0010
  article-title: Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2013.11.007
– volume: 69
  start-page: 407
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0100
  article-title: Sensorimotor integration in speech processing: computational basis and neural organization
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.01.019
– volume: 279
  start-page: 1213
  year: 1998
  ident: 10.1016/j.neuroimage.2015.01.040_bb0105
  article-title: Sensorimotor adaptation in speech production
  publication-title: Science
  doi: 10.1126/science.279.5354.1213
– volume: 33
  start-page: 4339
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.040_bb0195
  article-title: Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6319-11.2013
– volume: 93
  start-page: 734
  year: 2005
  ident: 10.1016/j.neuroimage.2015.01.040_bb0140
  article-title: Neural representation of vocalizations in the primate ventrolateral prefrontal cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00675.2004
– volume: 120
  start-page: 1303
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.040_bb0015
  article-title: Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.04.022
– volume: 132
  start-page: 2468
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.040_bb0020
  article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4746984
– volume: 10
  start-page: 58
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.040_bb0175
  article-title: Speech target modulates speaking induced suppression in auditory cortex
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-10-58
– volume: 96
  start-page: 280
  year: 2006
  ident: 10.1016/j.neuroimage.2015.01.040_bb0085
  article-title: Neural modeling and imaging of the cortical interactions underlying syllable production
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2005.06.001
– volume: 5
  start-page: 15
  year: 2002
  ident: 10.1016/j.neuroimage.2015.01.040_bb0150
  article-title: An auditory domain in primate prefrontal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn781
– volume: 121
  start-page: 1157
  year: 2007
  ident: 10.1016/j.neuroimage.2015.01.040_bb0055
  article-title: Voice F[sub 0] responses to pitch-shifted voice feedback during English speech
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2404624
– volume: 6
  start-page: e14744
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0080
  article-title: Human auditory cortical activation during self-vocalization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014744
– volume: 106
  start-page: 470
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0160
  article-title: A comparison of sensory–motor activity during speech in first and second languages
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00343.2011
– volume: 54
  start-page: 2994
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0005
  article-title: Speech-induced suppression of evoked auditory fields in children who stutter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.026
– volume: 30
  start-page: 16643
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.040_bb0065
  article-title: Single-trial speech suppression of auditory cortex activity in humans
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1809-10.2010
– volume: 32
  start-page: 9351
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.040_bb0115
  article-title: Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0404-12.2012
– volume: 31
  start-page: 16483
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0045
  article-title: Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within-syllable and between-syllable speech timing
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3653-11.2011
– volume: 17
  start-page: 1375
  year: 2006
  ident: 10.1016/j.neuroimage.2015.01.040_bb0095
  article-title: Magnetoencephalographic evidence for a precise forward model in speech production
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000233102.43526.e9
– volume: 8
  start-page: e60783
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.040_bb0075
  article-title: Sensory–motor interactions for vocal pitch monitoring in non-primary human auditory cortex
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060783
– volume: 39
  start-page: 1429
  year: 2008
  ident: 10.1016/j.neuroimage.2015.01.040_bb0170
  article-title: Neural mechanisms underlying auditory feedback control of speech
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.054
– volume: 23
  start-page: 1205
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0030
  article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2010.21447
– volume: 403
  start-page: 141
  year: 1999
  ident: 10.1016/j.neuroimage.2015.01.040_bb0145
  article-title: Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V
– volume: 61
  start-page: 314
  year: 2012
  ident: 10.1016/j.neuroimage.2015.01.040_bb0130
  article-title: Understanding the neural mechanisms involved in sensory control of voice production
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.068
– volume: 103
  start-page: 3153
  year: 1998
  ident: 10.1016/j.neuroimage.2015.01.040_bb0040
  article-title: Voice F0 responses to manipulations in pitch feedback
– volume: 21
  start-page: 527
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.040_bb0125
  article-title: Enhanced neural responses to self-triggered voice pitch feedback perturbations
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e3283393a44
– volume: 52
  start-page: 862
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.040_bb0070
  article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.023
– volume: 453
  start-page: 1102
  year: 2008
  ident: 10.1016/j.neuroimage.2015.01.040_bb0060
  article-title: Neural substrates of vocalization feedback monitoring in primate auditory cortex
  publication-title: Nature
  doi: 10.1038/nature06910
– volume: 12
  start-page: 718
  year: 2009
  ident: 10.1016/j.neuroimage.2015.01.040_bb0135
  article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2331
– volume: 122
  start-page: 2306
  year: 2007
  ident: 10.1016/j.neuroimage.2015.01.040_bb0180
  article-title: Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2773966
– volume: 8
  start-page: e82925
  year: 2013
  ident: 10.1016/j.neuroimage.2015.01.040_bb0165
  article-title: Auditory cortex processes variation in our own speech
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082925
– volume: 12
  start-page: 54
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0025
  article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-12-54
– volume: 42
  start-page: 180
  year: 2005
  ident: 10.1016/j.neuroimage.2015.01.040_bb0090
  article-title: Fine-tuning of auditory cortex during speech production
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2005.00272.x
– volume: 12
  start-page: 739
  year: 2011
  ident: 10.1016/j.neuroimage.2015.01.040_bb0185
  article-title: Principles of sensorimotor learning
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3112
– volume: 31
  start-page: 489
  year: 1998
  ident: 10.1016/j.neuroimage.2015.01.040_bb0120
  article-title: Cross-modality influences in speech motor control: the use of pitch shifting for the study of F0 control
  publication-title: J. Commun. Disord.
  doi: 10.1016/S0021-9924(98)00021-5
– volume: 22
  start-page: 1770
  year: 2010
  ident: 10.1016/j.neuroimage.2015.01.040_bb0190
  article-title: Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2009.21324
– reference: 17348536 - J Acoust Soc Am. 2007 Feb;121(2):1157-63
– reference: 21315253 - Neuron. 2011 Feb 10;69(3):407-22
– reference: 23577157 - PLoS One. 2013;8(4):e60783
– reference: 21645406 - BMC Neurosci. 2011;12:54
– reference: 15787855 - Psychophysiology. 2005 Mar;42(2):180-90
– reference: 21562201 - J Neurophysiol. 2011 Jul;106(1):470-8
– reference: 21390228 - PLoS One. 2011;6(3):e14744
– reference: 22072698 - J Neurosci. 2011 Nov 9;31(45):16483-90
– reference: 19471271 - Nat Neurosci. 2009 Jun;12(6):718-24
– reference: 22406500 - Neuroimage. 2012 May 15;61(1):314-22
– reference: 18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43
– reference: 19837177 - Neuroimage. 2010 Sep;52(3):862-74
– reference: 16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9
– reference: 9836138 - J Commun Disord. 1998 Nov-Dec;31(6):489-502; quiz 502-3; 553
– reference: 20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17
– reference: 18454135 - Nature. 2008 Jun 19;453(7198):1102-6
– reference: 21148003 - J Neurosci. 2010 Dec 8;30(49):16643-50
– reference: 22764242 - J Neurosci. 2012 Jul 4;32(27):9351-8
– reference: 24349399 - PLoS One. 2013;8(12):e82925
– reference: 24355545 - Brain Cogn. 2014 Feb;84(1):97-108
– reference: 10570492 - Nat Neurosci. 1999 Dec;2(12):1131-6
– reference: 19520602 - Clin Neurophysiol. 2009 Jul;120(7):1303-12
– reference: 22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51
– reference: 23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77
– reference: 19523234 - BMC Neurosci. 2009;10:58
– reference: 9469813 - Science. 1998 Feb 20;279(5354):1213-6
– reference: 15371495 - J Neurophysiol. 2005 Feb;93(2):734-47
– reference: 23345447 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2653-8
– reference: 9886040 - J Comp Neurol. 1999 Jan 11;403(2):141-57
– reference: 20386347 - Neuroreport. 2010 May 12;21(7):527-31
– reference: 23467350 - J Neurosci. 2013 Mar 6;33(10):4339-48
– reference: 9637026 - J Acoust Soc Am. 1998 Jun;103(6):3153-61
– reference: 21095231 - Neuroimage. 2011 Feb 14;54(4):2994-3003
– reference: 12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38
– reference: 16040108 - Brain Lang. 2006 Mar;96(3):280-301
– reference: 19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81
– reference: 11753413 - Nat Neurosci. 2002 Jan;5(1):15-6
– reference: 17902866 - J Acoust Soc Am. 2007 Oct;122(4):2306-19
SSID ssj0009148
Score 2.5189116
Snippet Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 418
SubjectTerms Acoustic Stimulation
Adult
Auditory feedback
Auditory Perception - physiology
Behavior
Brain - physiology
Brain Mapping
Control systems
Control theory
Feedback
Feedback, Sensory
Female
fMRI
Humans
Magnetic Resonance Imaging
Male
Motor Activity
Motors
Nerve Net
Networks
Phonetics
Pitch Perception - physiology
Pitch perturbation
Playbacks
Sensorimotor Cortex - physiology
Sensory–motor integration
Speech
Speech - physiology
Speech motor control
Speech Perception - physiology
Studies
Vowels
Title Sensory–motor networks involved in speech production and motor control: An fMRI study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915000567
https://www.ncbi.nlm.nih.gov/pubmed/25623499
https://www.proquest.com/docview/1656428209
https://www.proquest.com/docview/1658422187
https://www.proquest.com/docview/1664199240
https://www.proquest.com/docview/1677911110
https://pubmed.ncbi.nlm.nih.gov/PMC4339397
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdbC2MvZd_L1hYN9mpmyR-y-zLS0tKNpZRsgbwJfZlmbHKapIP-97uz5GTdRuiTDToZfLrTnaTf_UTIe2uqEsJSmejG4NZNqhNVpQY8vtHKGZcXAgucRxfl-ST_PC2mccNtGWGV_ZzYTdS2NbhH_gFZYiBV5mn9cX6d4K1ReLoar9B4SHaRugwhXWIqNqS7LA-lcEWWVCAQkTwB39XxRc5-gtciwCuQd-IWyP_D07_p598oyj_C0tkTshfzSToMBvCUPHD-GXk0iifmz8nkK6xT28VtAkPSLqgPqO8lnXmYl345Cy90OXfOXNF5IH-FgaLKWxo6RCj7ER162ozGn2jHR_uCTM5Ov52cJ_EqhcSUOVslBsK0KhskvzPMKa1FlblCN85UleVaMd6USCVXGOOYZlp1Jb2NtZk1tlYqe0l2fOvda0KFqnjDuDU1t7kpXW1YBh8sUsU1knsNiOg1KE3kGcfrLn7IHlD2XW50L1H3MmUSdD8gbN1zHrg27tGn7gdJ9rWkMPtJCAj36Lvfj6qMnruUGzsbkHfrZvA5PEhR3rU3nUyVc0iOxDYZUHwNq9t0m4wQGGwYyLwKxrT-cY6JKSxHQZ13zGwtgLzgd1v87KrjB8-zrIY0883233tLHqMuAgppn-ysFjfuABKslT7svOiQ7A5Pxl8u4Xl8enE5_g2-iCwf
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeBAosERwvv-o2EUIFWCW0iVBqpt2VfVlMVJyQpqH-K38iM104ooKiX3ix51pJnZ-ex-823AC-tyVMMS2mgS0NbN6EOVB4aXPGlVs64OMmowXkwTHuj-NNRcrQBv9peGIJVtj6xdtR2YmiP_DWxxGCqLMLi3fR7QLdG0elqe4WGN4s9d_4TS7b52_5HnN9XQuzuHH7oBc2tAoFJY74IDEYslZbEA2e4U1pneeQSXTqT51ZoxUWZEqtaYozjmmtVd7eW1kbW2EKpCL97DTbjCEuZDmy-3xl-PljR_PLYN98lUZBzXjTYIY8oqxkqx9_QTxCkzNOF0qbL_wPivwnv37jNPwLh7m241WSwbNub3B3YcNVduD5ozujvwegLVsaT2XmARjCZscrjzOdsXKEn_OEsPrD51DlzzKaebhZNg6nKMj-gAc-_YdsVKwcHfVYz4N6H0ZWo-QF0qknlHgHLVC5KLqwphI1N6grDI_xgEiqhiU6sC1mrQWkaZnO6YONUthC2E7nSvSTdy5BL1H0X-HLk1LN7XGJM0U6SbLtX0d9KDEGXGLvVzqpsfMVcriy7Cy-Wr3GV09GNqtzkrJbJY4HpWLZOBhVfYD0drpPJMgpvHGUeemNa_rigVBgLYFTnBTNbChAT-cU31fi4ZiSPo6jAxPbx-t97Djd6h4N9ud8f7j2Bm6QXj4Hags5iduaeYnq30M-aNcXg61Uv498szmlz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEONa2MBI8Bgtdi5OkCY0MaqV0QkBlfpmfItWBE5pO9D-2n4d58RJywBVe9lbpBxHyvG52f7OZ0JeWFPkkJbySFcGt25iHakiNuDxlVbOuDQT2OA8PMmPRum7cTbeIBddLwzCKruY2ARqWxvcI99DlhgolXlc7lUtLOLDYf_19EeEN0jhSWt3nUYwkWN3_guWb_P9wSHM9UvO-28_vzmK2hsGIpOnbBEZyF4qr5ATzjCntBZF4jJdOVMUlmvFeJUjw1pmjGOaadV0ulbWJtbYUqkEvnuD3BRJxtDHxFisCH9ZGtrwsiQqGCtbFFHAljVclZPvEDEQXBaIQ3H75f-p8d_S928E5x8psX-H3G5rWXoQjG-bbDh_l2wN29P6e2T0CdbI9ew8AnOoZ9QHxPmcTjzExJ_OwgOdT50zp3QaiGfBSKjyloYBLYz-FT3wtBp-HNCGC_c-GV2Lkh-QTV9794hQoQpeMW5NyW1qclcalsAHs1hxjcRiPSI6DUrTcpzjVRvfZAdm-ypXupeoexkzCbrvEbYcOQ08H1cYU3aTJLs-Voi8EpLRFcbudLMq26gxlysb75Hny9fg73iIo7yrzxqZIuVQmIl1MqD4ElbW8ToZITDRMZB5GIxp-eMci2JYCoM6L5nZUgA5yS-_8ZPThps8TZISStzH63_vGdkC55XvByfHT8gtVEsAQ-2QzcXszO1CnbfQTxuHouTLdXvwb6V8bEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory-Motor+Networks+Involved+in+Speech+Production+and+Motor+Control%3A+An+fMRI+Study&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Behroozmand%2C+Roozbeh&rft.au=Shebek%2C+Rachel&rft.au=Hansen%2C+Daniel+R.&rft.au=Oya%2C+Hiroyuki&rft.date=2015-04-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=109&rft.spage=418&rft.epage=428&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.01.040&rft_id=info%3Apmid%2F25623499&rft.externalDocID=PMC4339397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon