Sensory–motor networks involved in speech production and motor control: An fMRI study
Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory–motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we a...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 109; pp. 418 - 428 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory–motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.
•Auditory feedback plays a key role in speech production and motor control.•Humans vocally compensate for pitch perturbations in their voice auditory feedback.•Vocal pitch motor control involves a complex sensory–motor network in the brain.•Functional networks of speech motor control are not affected in patients with epilepsy. |
---|---|
AbstractList | Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory–motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. •Auditory feedback plays a key role in speech production and motor control.•Humans vocally compensate for pitch perturbations in their voice auditory feedback.•Vocal pitch motor control involves a complex sensory–motor network in the brain.•Functional networks of speech motor control are not affected in patients with epilepsy. |
Author | Shebek, Rachel Hansen, Daniel R. Howard, Matthew A. Behroozmand, Roozbeh Oya, Hiroyuki Greenlee, Jeremy D.W. Robin, Donald A. |
AuthorAffiliation | 1 Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States 3 Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States 2 Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States |
AuthorAffiliation_xml | – name: 2 Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States – name: 1 Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States – name: 3 Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States |
Author_xml | – sequence: 1 givenname: Roozbeh surname: Behroozmand fullname: Behroozmand, Roozbeh email: r-behroozmand@sc.edu organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States – sequence: 2 givenname: Rachel surname: Shebek fullname: Shebek, Rachel organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States – sequence: 3 givenname: Daniel R. surname: Hansen fullname: Hansen, Daniel R. organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States – sequence: 4 givenname: Hiroyuki surname: Oya fullname: Oya, Hiroyuki organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States – sequence: 5 givenname: Donald A. surname: Robin fullname: Robin, Donald A. organization: Research Imaging Institute, Departments of Neurology, Radiology and Biomedical Engineering, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States – sequence: 6 givenname: Matthew A. surname: Howard fullname: Howard, Matthew A. organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States – sequence: 7 givenname: Jeremy D.W. surname: Greenlee fullname: Greenlee, Jeremy D.W. organization: Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25623499$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsluFDEQtVAQWeAXkCUuXLpxuVdzQEQRS6QgJBZxtNx2deJJjz3Y3YPmln_IH_IluJmEQC6MLy6pXr2qV_UOyZ7zDgmhwHJgUL9Y5A6n4O1SnWPOGVQ5g5yV7AE5ACaqTFQN35vjqshaALFPDmNcMMYElO0jss-rmhelEAfk22d00YfNz6vrpR99oA7HHz5cRmrd2g9rNCmgcYWoL-gqeDPp0XpHlTN0W6C9G4MfXtJjR_sPn05pHCezeUwe9mqI-OTmPyJf3775cvI-O_v47vTk-CzTdQljpqHiqu5F0YAGVF3XtAVWXY-6bQ3vFPC-rpumrbRG6KBTFQde9MYURhuhVHFEXm15V1O3RKMxDaMGuQppN2EjvbLy34yzF_Lcr2VZFKIQTSJ4fkMQ_PcJ4yiXNmocBuXQT1FCai8gPbYDNGkSgpe7QKu25BzaeYBn96ALPwWXljaj6pK3nImEevq3zj8Cby95twgdfIwBe6ntqOZbJdl2kMDkbB25kHfWkbN1JAPJfo_c3iO47bFD6ettKaZLry0GqQfrrFbDJW6k8fb_FL8ABRnmJw |
CitedBy_id | crossref_primary_10_1038_s41746_023_00983_9 crossref_primary_10_1093_cercor_bhae075 crossref_primary_10_1111_cdev_14134 crossref_primary_10_1523_JNEUROSCI_1646_16_2016 crossref_primary_10_3389_fnhum_2024_1305058 crossref_primary_10_1016_j_neurobiolaging_2016_12_020 crossref_primary_10_1016_j_neuroimage_2022_119767 crossref_primary_10_1016_j_brainres_2016_01_040 crossref_primary_10_1142_S0129065723500284 crossref_primary_10_3389_fnagi_2022_948696 crossref_primary_10_1016_j_nicl_2023_103358 crossref_primary_10_3389_fnins_2019_00815 crossref_primary_10_1016_j_neuroimage_2018_04_023 crossref_primary_10_1177_00238309231202503 crossref_primary_10_3389_fnint_2024_1437585 crossref_primary_10_1016_j_jneuroling_2020_100978 crossref_primary_10_1016_j_neuropsychologia_2024_108842 crossref_primary_10_1016_j_ynirp_2023_100166 crossref_primary_10_3389_fnins_2021_794151 crossref_primary_10_1002_hbm_24734 crossref_primary_10_1523_JNEUROSCI_1329_17_2017 crossref_primary_10_1016_j_cortex_2024_10_010 crossref_primary_10_1016_j_neuroimage_2017_10_014 crossref_primary_10_1186_s12868_021_00671_y crossref_primary_10_1016_j_cell_2018_05_016 crossref_primary_10_1093_cercor_bhab251 crossref_primary_10_3934_Neuroscience_2016_1_22 crossref_primary_10_3389_fnhum_2020_00018 crossref_primary_10_3758_s13415_015_0376_1 crossref_primary_10_1038_srep16562 crossref_primary_10_1044_2019_JSLHR_S_18_0425 crossref_primary_10_1371_journal_pbio_3001493 crossref_primary_10_1038_srep31182 crossref_primary_10_1007_s12311_021_01230_1 crossref_primary_10_1111_cns_14251 crossref_primary_10_2147_CIA_S416992 crossref_primary_10_1016_j_neuropsychologia_2021_107865 crossref_primary_10_1044_2023_JSLHR_23_00038 crossref_primary_10_1007_s00221_020_05832_9 crossref_primary_10_1093_cercor_bhaa054 crossref_primary_10_1093_cercor_bhz138 crossref_primary_10_1002_hbm_24004 crossref_primary_10_1162_jocn_a_01661 crossref_primary_10_1016_j_jcomdis_2021_106163 crossref_primary_10_1016_j_neuroimage_2020_117319 crossref_primary_10_3389_fnins_2018_00749 crossref_primary_10_3389_fnhum_2024_1461505 crossref_primary_10_1016_j_neuropsychologia_2017_04_035 crossref_primary_10_1016_j_jvoice_2019_01_002 crossref_primary_10_1016_j_neuropsychologia_2022_108388 crossref_primary_10_1097_WNR_0000000000002011 crossref_primary_10_1016_j_bpsc_2020_10_018 crossref_primary_10_1038_s41583_019_0160_2 crossref_primary_10_1044_2022_JSLHR_22_00091 crossref_primary_10_1002_hbm_23306 crossref_primary_10_1016_j_neuroimage_2019_116306 crossref_primary_10_3389_fnins_2021_665687 crossref_primary_10_1016_j_nicl_2024_103691 crossref_primary_10_1016_j_biopsych_2021_08_024 crossref_primary_10_3389_fphys_2017_00633 crossref_primary_10_1016_j_neuroimage_2022_119812 crossref_primary_10_1017_S0033291724002368 crossref_primary_10_1109_TNSRE_2024_3497893 crossref_primary_10_1016_j_heliyon_2023_e20389 crossref_primary_10_1002_jnr_24723 crossref_primary_10_1016_j_jcomdis_2020_106034 crossref_primary_10_1038_srep28909 crossref_primary_10_1080_09638288_2024_2390053 crossref_primary_10_1523_JNEUROSCI_1960_15_2016 crossref_primary_10_1016_j_neuroimage_2020_117710 crossref_primary_10_3389_fnagi_2021_676899 crossref_primary_10_1016_j_neuropsychologia_2020_107386 crossref_primary_10_1121_1_5134449 crossref_primary_10_3389_fnagi_2016_00064 crossref_primary_10_1002_jcv2_12049 crossref_primary_10_3389_fnhum_2018_00041 crossref_primary_10_1002_hbm_26008 crossref_primary_10_1152_jn_00502_2022 crossref_primary_10_1016_j_neubiorev_2022_104730 crossref_primary_10_1002_brb3_1073 crossref_primary_10_3389_fpsyt_2022_956895 crossref_primary_10_1007_s00221_023_06743_1 crossref_primary_10_3389_fneur_2022_891789 crossref_primary_10_3389_fpsyt_2017_00205 crossref_primary_10_1007_s11571_023_09945_z crossref_primary_10_1038_s41467_020_16743_2 crossref_primary_10_1016_j_ijpsycho_2018_08_007 crossref_primary_10_7554_eLife_94198_3 crossref_primary_10_1097_WNR_0000000000001142 crossref_primary_10_1017_S0033291717000101 crossref_primary_10_1016_j_neuroimage_2016_08_005 crossref_primary_10_3389_fnagi_2023_1236971 crossref_primary_10_1002_aur_2290 crossref_primary_10_1097_WNR_0000000000001410 crossref_primary_10_7554_eLife_94198 crossref_primary_10_1016_j_neuroimage_2023_120282 crossref_primary_10_3389_fnins_2023_1208581 crossref_primary_10_1111_ejn_15162 crossref_primary_10_1007_s00221_017_5104_3 crossref_primary_10_1017_S0142716420000223 crossref_primary_10_1093_cercor_bhad514 crossref_primary_10_1093_cercor_bhaa401 crossref_primary_10_1016_j_bandl_2020_104840 crossref_primary_10_1002_hbm_24681 crossref_primary_10_1007_s00429_017_1484_1 crossref_primary_10_1093_cercor_bhx151 crossref_primary_10_1177_15459683241245410 crossref_primary_10_3389_fnins_2016_00600 crossref_primary_10_1002_hbm_24684 crossref_primary_10_1007_s10339_016_0786_1 crossref_primary_10_1016_j_neuroimage_2021_118736 crossref_primary_10_1016_j_neuroimage_2021_118735 crossref_primary_10_1016_j_ijpsycho_2024_112357 crossref_primary_10_1093_cercor_bhac439 crossref_primary_10_3390_app13137512 crossref_primary_10_3389_fnhum_2022_803163 crossref_primary_10_3389_fnins_2015_00109 crossref_primary_10_1073_pnas_2404121121 crossref_primary_10_3389_fneur_2020_00568 crossref_primary_10_3389_fnins_2016_00175 crossref_primary_10_3389_fnins_2018_00666 crossref_primary_10_1016_j_neuroimage_2018_06_061 crossref_primary_10_1044_2019_JSLHR_S_18_0408 crossref_primary_10_1016_j_neuroimage_2019_116184 crossref_primary_10_1093_cercor_bhac447 crossref_primary_10_1152_jn_00964_2014 crossref_primary_10_1038_s41467_022_31230_6 crossref_primary_10_1002_hbm_23855 crossref_primary_10_1093_cercor_bhac049 |
Cites_doi | 10.1073/pnas.1216827110 10.1162/089892902760807140 10.1038/16056 10.1016/j.bandc.2013.11.007 10.1016/j.neuron.2011.01.019 10.1126/science.279.5354.1213 10.1523/JNEUROSCI.6319-11.2013 10.1152/jn.00675.2004 10.1016/j.clinph.2009.04.022 10.1121/1.4746984 10.1186/1471-2202-10-58 10.1016/j.bandl.2005.06.001 10.1038/nn781 10.1121/1.2404624 10.1371/journal.pone.0014744 10.1152/jn.00343.2011 10.1016/j.neuroimage.2010.11.026 10.1523/JNEUROSCI.1809-10.2010 10.1523/JNEUROSCI.0404-12.2012 10.1523/JNEUROSCI.3653-11.2011 10.1097/01.wnr.0000233102.43526.e9 10.1371/journal.pone.0060783 10.1016/j.neuroimage.2007.09.054 10.1162/jocn.2010.21447 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V 10.1016/j.neuroimage.2012.02.068 10.1097/WNR.0b013e3283393a44 10.1016/j.neuroimage.2009.10.023 10.1038/nature06910 10.1038/nn.2331 10.1121/1.2773966 10.1371/journal.pone.0082925 10.1186/1471-2202-12-54 10.1111/j.1469-8986.2005.00272.x 10.1038/nrn3112 10.1016/S0021-9924(98)00021-5 10.1162/jocn.2009.21324 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Apr 1, 2015 2015 Elsevier Inc. All rights reserved. 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Apr 1, 2015 – notice: 2015 Elsevier Inc. All rights reserved. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 7SC 7U5 JQ2 L7M L~C L~D 5PM |
DOI | 10.1016/j.neuroimage.2015.01.040 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE ProQuest One Psychology Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 428 |
ExternalDocumentID | PMC4339397 3597967701 25623499 10_1016_j_neuroimage_2015_01_040 S1053811915000567 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC004290 – fundername: NIDCD NIH HHS grantid: R01DC04290 – fundername: NIDCD NIH HHS grantid: K23 DC009589 – fundername: NIDCD NIH HHS grantid: K23DC009589 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HMQ HVGLF HZ~ OK1 R2- RIG SEW SNS WUQ XPP ZMT 0SF 3V. AACTN AFKWA AJOXV AMFUW C45 CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 7SC 7U5 JQ2 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c641t-c152a6f9371c1eabb783e5bfec88d2ba12f667785cce1b1ba52123fdd3dcd9aa3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:03:48 EDT 2025 Fri Jul 11 10:08:37 EDT 2025 Fri Jul 11 09:56:22 EDT 2025 Fri Jul 11 05:57:02 EDT 2025 Wed Aug 13 07:44:24 EDT 2025 Wed Feb 19 01:53:40 EST 2025 Tue Jul 01 03:01:41 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Tue Aug 26 16:31:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | fMRI Auditory feedback Sensory–motor integration Pitch perturbation Speech motor control |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-c152a6f9371c1eabb783e5bfec88d2ba12f667785cce1b1ba52123fdd3dcd9aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4339397 |
PMID | 25623499 |
PQID | 1656428209 |
PQPubID | 2031077 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339397 proquest_miscellaneous_1677911110 proquest_miscellaneous_1664199240 proquest_miscellaneous_1658422187 proquest_journals_1656428209 pubmed_primary_25623499 crossref_citationtrail_10_1016_j_neuroimage_2015_01_040 crossref_primary_10_1016_j_neuroimage_2015_01_040 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_01_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Burnett, Freedland, Larson, Hain (bb0040) 1998; 103 Behroozmand, Karvelis, Liu, Larson (bb0015) 2009; 120 Houde, Nagarajan, Sekihara, Merzenich (bb0110) 2002; 14 Heinks-Maldonado, Nagarajan, Houde (bb0095) 2006; 17 Flinker, Chang, Kirsch, Barbaro, Crone, Knight (bb0065) 2010; 30 Romanski, Averbeck, Diltz (bb0140) 2005; 93 Houde (bb0105) 1998; 279 Tourville, Reilly, Guenther (bb0170) 2008; 39 Wolpert, Diedrichsen, Flanagan (bb0185) 2011; 12 Behroozmand, Liu, Larson (bb0030) 2011; 23 Boersma, Weenink (bb0035) 2001; 5 Romanski, Bates, Goldman-Rakic (bb0145) 1999; 403 Romanski, Tian, Fritz, Mishkin, Goldman-Rakic, Rauschecker (bb0155) 1999; 2 Greenlee, Behroozmand, Larson, Jackson, Chen, Hansen, Oya, Kawasaki, Howard (bb0075) 2013; 8 Zheng, Vicente-Grabovetsky, MacDonald, Munhall, Cusack, Johnsrude (bb0195) 2013; 33 Larson (bb0120) 1998; 31 Guenther, Ghosh, Tourville (bb0085) 2006; 96 Cai, Ghosh, Guenther, Perkell (bb0045) 2011; 31 Rauschecker, Scott (bb0135) 2009; 12 Romanski, Goldman-Rakic (bb0150) 2002; 5 Beal, Quraan, Cheyne, Taylor, Gracco, De Nil (bb0005) 2011; 54 Chen, Liu, Xu, Larson (bb0055) 2007; 121 Liu, Behroozmand, Larson (bb0125) 2010; 21 Sitek, Mathalon, Roach, Houde, Niziolek, Ford (bb0165) 2013; 8 Simmonds, Wise, Dhanjal, Leech (bb0160) 2011; 106 Villacorta, Perkell, Guenther (bb0180) 2007; 122 Behroozmand, Ibrahim, Korzyukov, Robin, Larson (bb0010) 2014; 84 Zheng, Munhall, Johnsrude (bb0190) 2010; 22 Lametti, Nasir, Ostry (bb0115) 2012; 32 Ventura, Nagarajan, Houde (bb0175) 2009; 10 Hickok, Houde, Rong (bb0100) 2011; 69 Behroozmand, Larson (bb0025) 2011; 12 Eliades, Wang (bb0060) 2008; 453 Heinks-Maldonado, Mathalon, Gray, Ford (bb0090) 2005; 42 Greenlee, Jackson, Chen, Larson, Oya, Kawasaki, Chen, Howard (bb0080) 2011; 6 Chang, Niziolek, Knight, Nagarajan, Houde (bb0050) 2013; 110 Parkinson, Flagmeier, Manes, Larson, Rogers, Robin (bb0130) 2012; 61 Behroozmand, Korzyukov, Sattler, Larson (bb0020) 2012; 132 Golfinopoulos, Tourville, Guenther (bb0070) 2010; 52 Greenlee (10.1016/j.neuroimage.2015.01.040_bb0080) 2011; 6 Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0025) 2011; 12 Zheng (10.1016/j.neuroimage.2015.01.040_bb0195) 2013; 33 Rauschecker (10.1016/j.neuroimage.2015.01.040_bb0135) 2009; 12 Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0030) 2011; 23 Guenther (10.1016/j.neuroimage.2015.01.040_bb0085) 2006; 96 Cai (10.1016/j.neuroimage.2015.01.040_bb0045) 2011; 31 Chen (10.1016/j.neuroimage.2015.01.040_bb0055) 2007; 121 Romanski (10.1016/j.neuroimage.2015.01.040_bb0145) 1999; 403 Houde (10.1016/j.neuroimage.2015.01.040_bb0110) 2002; 14 Golfinopoulos (10.1016/j.neuroimage.2015.01.040_bb0070) 2010; 52 Tourville (10.1016/j.neuroimage.2015.01.040_bb0170) 2008; 39 Sitek (10.1016/j.neuroimage.2015.01.040_bb0165) 2013; 8 Heinks-Maldonado (10.1016/j.neuroimage.2015.01.040_bb0090) 2005; 42 Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0015) 2009; 120 Burnett (10.1016/j.neuroimage.2015.01.040_bb0040) 1998; 103 Chang (10.1016/j.neuroimage.2015.01.040_bb0050) 2013; 110 Beal (10.1016/j.neuroimage.2015.01.040_bb0005) 2011; 54 Lametti (10.1016/j.neuroimage.2015.01.040_bb0115) 2012; 32 Parkinson (10.1016/j.neuroimage.2015.01.040_bb0130) 2012; 61 Houde (10.1016/j.neuroimage.2015.01.040_bb0105) 1998; 279 Simmonds (10.1016/j.neuroimage.2015.01.040_bb0160) 2011; 106 Romanski (10.1016/j.neuroimage.2015.01.040_bb0150) 2002; 5 Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0020) 2012; 132 Hickok (10.1016/j.neuroimage.2015.01.040_bb0100) 2011; 69 Boersma (10.1016/j.neuroimage.2015.01.040_bb0035) 2001; 5 Eliades (10.1016/j.neuroimage.2015.01.040_bb0060) 2008; 453 Greenlee (10.1016/j.neuroimage.2015.01.040_bb0075) 2013; 8 Heinks-Maldonado (10.1016/j.neuroimage.2015.01.040_bb0095) 2006; 17 Wolpert (10.1016/j.neuroimage.2015.01.040_bb0185) 2011; 12 Romanski (10.1016/j.neuroimage.2015.01.040_bb0140) 2005; 93 Liu (10.1016/j.neuroimage.2015.01.040_bb0125) 2010; 21 Romanski (10.1016/j.neuroimage.2015.01.040_bb0155) 1999; 2 Flinker (10.1016/j.neuroimage.2015.01.040_bb0065) 2010; 30 Villacorta (10.1016/j.neuroimage.2015.01.040_bb0180) 2007; 122 Ventura (10.1016/j.neuroimage.2015.01.040_bb0175) 2009; 10 Zheng (10.1016/j.neuroimage.2015.01.040_bb0190) 2010; 22 Behroozmand (10.1016/j.neuroimage.2015.01.040_bb0010) 2014; 84 Larson (10.1016/j.neuroimage.2015.01.040_bb0120) 1998; 31 12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38 23467350 - J Neurosci. 2013 Mar 6;33(10):4339-48 15371495 - J Neurophysiol. 2005 Feb;93(2):734-47 21562201 - J Neurophysiol. 2011 Jul;106(1):470-8 19837177 - Neuroimage. 2010 Sep;52(3):862-74 16040108 - Brain Lang. 2006 Mar;96(3):280-301 10570492 - Nat Neurosci. 1999 Dec;2(12):1131-6 9836138 - J Commun Disord. 1998 Nov-Dec;31(6):489-502; quiz 502-3; 553 24355545 - Brain Cogn. 2014 Feb;84(1):97-108 18454135 - Nature. 2008 Jun 19;453(7198):1102-6 21148003 - J Neurosci. 2010 Dec 8;30(49):16643-50 17902866 - J Acoust Soc Am. 2007 Oct;122(4):2306-19 22072698 - J Neurosci. 2011 Nov 9;31(45):16483-90 23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77 22406500 - Neuroimage. 2012 May 15;61(1):314-22 22764242 - J Neurosci. 2012 Jul 4;32(27):9351-8 23345447 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2653-8 9886040 - J Comp Neurol. 1999 Jan 11;403(2):141-57 18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43 24349399 - PLoS One. 2013;8(12):e82925 9637026 - J Acoust Soc Am. 1998 Jun;103(6):3153-61 19471271 - Nat Neurosci. 2009 Jun;12(6):718-24 21315253 - Neuron. 2011 Feb 10;69(3):407-22 23577157 - PLoS One. 2013;8(4):e60783 9469813 - Science. 1998 Feb 20;279(5354):1213-6 19523234 - BMC Neurosci. 2009;10:58 16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9 21390228 - PLoS One. 2011;6(3):e14744 11753413 - Nat Neurosci. 2002 Jan;5(1):15-6 17348536 - J Acoust Soc Am. 2007 Feb;121(2):1157-63 20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17 15787855 - Psychophysiology. 2005 Mar;42(2):180-90 19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81 21645406 - BMC Neurosci. 2011;12:54 20386347 - Neuroreport. 2010 May 12;21(7):527-31 19520602 - Clin Neurophysiol. 2009 Jul;120(7):1303-12 22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51 21095231 - Neuroimage. 2011 Feb 14;54(4):2994-3003 |
References_xml | – volume: 33 start-page: 4339 year: 2013 end-page: 4348 ident: bb0195 article-title: Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech publication-title: J. Neurosci. – volume: 23 start-page: 1205 year: 2011 end-page: 1217 ident: bb0030 article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection publication-title: J. Cogn. Neurosci. – volume: 21 start-page: 527 year: 2010 end-page: 531 ident: bb0125 article-title: Enhanced neural responses to self-triggered voice pitch feedback perturbations publication-title: Neuroreport – volume: 42 start-page: 180 year: 2005 end-page: 190 ident: bb0090 article-title: Fine-tuning of auditory cortex during speech production publication-title: Psychophysiology – volume: 61 start-page: 314 year: 2012 end-page: 322 ident: bb0130 article-title: Understanding the neural mechanisms involved in sensory control of voice production publication-title: Neuroimage – volume: 110 start-page: 2653 year: 2013 end-page: 2658 ident: bb0050 article-title: Human cortical sensorimotor network underlying feedback control of vocal pitch publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: e14744 year: 2011 ident: bb0080 article-title: Human auditory cortical activation during self-vocalization publication-title: PLoS One – volume: 120 start-page: 1303 year: 2009 end-page: 1312 ident: bb0015 article-title: Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation publication-title: Clin. Neurophysiol. – volume: 12 start-page: 718 year: 2009 end-page: 724 ident: bb0135 article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing publication-title: Nat. Neurosci. – volume: 5 start-page: 341 year: 2001 end-page: 345 ident: bb0035 article-title: Praat, a system for doing phonetics by computer publication-title: Glot Int. – volume: 54 start-page: 2994 year: 2011 end-page: 3003 ident: bb0005 article-title: Speech-induced suppression of evoked auditory fields in children who stutter publication-title: Neuroimage – volume: 30 start-page: 16643 year: 2010 end-page: 16650 ident: bb0065 article-title: Single-trial speech suppression of auditory cortex activity in humans publication-title: J. Neurosci. – volume: 96 start-page: 280 year: 2006 end-page: 301 ident: bb0085 article-title: Neural modeling and imaging of the cortical interactions underlying syllable production publication-title: Brain Lang. – volume: 8 start-page: e82925 year: 2013 ident: bb0165 article-title: Auditory cortex processes variation in our own speech publication-title: PLoS One – volume: 31 start-page: 489 year: 1998 end-page: 502 ident: bb0120 article-title: Cross-modality influences in speech motor control: the use of pitch shifting for the study of F0 control publication-title: J. Commun. Disord. – volume: 103 start-page: 3153 year: 1998 end-page: 3161 ident: bb0040 article-title: Voice F0 responses to manipulations in pitch feedback – volume: 5 start-page: 15 year: 2002 end-page: 16 ident: bb0150 article-title: An auditory domain in primate prefrontal cortex publication-title: Nat. Neurosci. – volume: 121 start-page: 1157 year: 2007 ident: bb0055 article-title: Voice F[sub 0] responses to pitch-shifted voice feedback during English speech publication-title: J. Acoust. Soc. Am. – volume: 8 start-page: e60783 year: 2013 ident: bb0075 article-title: Sensory–motor interactions for vocal pitch monitoring in non-primary human auditory cortex publication-title: PLoS One – volume: 32 start-page: 9351 year: 2012 end-page: 9358 ident: bb0115 article-title: Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback publication-title: J. Neurosci. – volume: 12 start-page: 54 year: 2011 ident: bb0025 article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback publication-title: BMC Neurosci. – volume: 122 start-page: 2306 year: 2007 end-page: 2319 ident: bb0180 article-title: Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception publication-title: J. Acoust. Soc. Am. – volume: 403 start-page: 141 year: 1999 end-page: 157 ident: bb0145 article-title: Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey publication-title: J. Comp. Neurol. – volume: 12 start-page: 739 year: 2011 end-page: 751 ident: bb0185 article-title: Principles of sensorimotor learning publication-title: Nat. Rev. Neurosci. – volume: 84 start-page: 97 year: 2014 end-page: 108 ident: bb0010 article-title: Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch publication-title: Brain Cogn. – volume: 39 start-page: 1429 year: 2008 end-page: 1443 ident: bb0170 article-title: Neural mechanisms underlying auditory feedback control of speech publication-title: Neuroimage – volume: 453 start-page: 1102 year: 2008 end-page: 1106 ident: bb0060 article-title: Neural substrates of vocalization feedback monitoring in primate auditory cortex publication-title: Nature – volume: 106 start-page: 470 year: 2011 end-page: 478 ident: bb0160 article-title: A comparison of sensory–motor activity during speech in first and second languages publication-title: J. Neurophysiol. – volume: 132 start-page: 2468 year: 2012 end-page: 2477 ident: bb0020 article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control publication-title: J. Acoust. Soc. Am. – volume: 17 start-page: 1375 year: 2006 end-page: 1379 ident: bb0095 article-title: Magnetoencephalographic evidence for a precise forward model in speech production publication-title: Neuroreport – volume: 279 start-page: 1213 year: 1998 end-page: 1216 ident: bb0105 article-title: Sensorimotor adaptation in speech production publication-title: Science – volume: 69 start-page: 407 year: 2011 end-page: 422 ident: bb0100 article-title: Sensorimotor integration in speech processing: computational basis and neural organization publication-title: Neuron – volume: 31 start-page: 16483 year: 2011 end-page: 16490 ident: bb0045 article-title: Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within-syllable and between-syllable speech timing publication-title: J. Neurosci. – volume: 52 start-page: 862 year: 2010 end-page: 874 ident: bb0070 article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control publication-title: Neuroimage – volume: 2 start-page: 1131 year: 1999 end-page: 1136 ident: bb0155 article-title: Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex publication-title: Nat. Neurosci. – volume: 10 start-page: 58 year: 2009 ident: bb0175 article-title: Speech target modulates speaking induced suppression in auditory cortex publication-title: BMC Neurosci. – volume: 14 start-page: 1125 year: 2002 end-page: 1138 ident: bb0110 article-title: Modulation of the auditory cortex during speech: an MEG study publication-title: J. Cogn. Neurosci. – volume: 93 start-page: 734 year: 2005 end-page: 747 ident: bb0140 article-title: Neural representation of vocalizations in the primate ventrolateral prefrontal cortex publication-title: J. Neurophysiol. – volume: 22 start-page: 1770 year: 2010 end-page: 1781 ident: bb0190 article-title: Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production publication-title: J. Cogn. Neurosci. – volume: 110 start-page: 2653 year: 2013 ident: 10.1016/j.neuroimage.2015.01.040_bb0050 article-title: Human cortical sensorimotor network underlying feedback control of vocal pitch publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1216827110 – volume: 14 start-page: 1125 year: 2002 ident: 10.1016/j.neuroimage.2015.01.040_bb0110 article-title: Modulation of the auditory cortex during speech: an MEG study publication-title: J. Cogn. Neurosci. doi: 10.1162/089892902760807140 – volume: 2 start-page: 1131 year: 1999 ident: 10.1016/j.neuroimage.2015.01.040_bb0155 article-title: Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex publication-title: Nat. Neurosci. doi: 10.1038/16056 – volume: 5 start-page: 341 year: 2001 ident: 10.1016/j.neuroimage.2015.01.040_bb0035 article-title: Praat, a system for doing phonetics by computer publication-title: Glot Int. – volume: 84 start-page: 97 year: 2014 ident: 10.1016/j.neuroimage.2015.01.040_bb0010 article-title: Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch publication-title: Brain Cogn. doi: 10.1016/j.bandc.2013.11.007 – volume: 69 start-page: 407 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0100 article-title: Sensorimotor integration in speech processing: computational basis and neural organization publication-title: Neuron doi: 10.1016/j.neuron.2011.01.019 – volume: 279 start-page: 1213 year: 1998 ident: 10.1016/j.neuroimage.2015.01.040_bb0105 article-title: Sensorimotor adaptation in speech production publication-title: Science doi: 10.1126/science.279.5354.1213 – volume: 33 start-page: 4339 year: 2013 ident: 10.1016/j.neuroimage.2015.01.040_bb0195 article-title: Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6319-11.2013 – volume: 93 start-page: 734 year: 2005 ident: 10.1016/j.neuroimage.2015.01.040_bb0140 article-title: Neural representation of vocalizations in the primate ventrolateral prefrontal cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00675.2004 – volume: 120 start-page: 1303 year: 2009 ident: 10.1016/j.neuroimage.2015.01.040_bb0015 article-title: Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.04.022 – volume: 132 start-page: 2468 year: 2012 ident: 10.1016/j.neuroimage.2015.01.040_bb0020 article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4746984 – volume: 10 start-page: 58 year: 2009 ident: 10.1016/j.neuroimage.2015.01.040_bb0175 article-title: Speech target modulates speaking induced suppression in auditory cortex publication-title: BMC Neurosci. doi: 10.1186/1471-2202-10-58 – volume: 96 start-page: 280 year: 2006 ident: 10.1016/j.neuroimage.2015.01.040_bb0085 article-title: Neural modeling and imaging of the cortical interactions underlying syllable production publication-title: Brain Lang. doi: 10.1016/j.bandl.2005.06.001 – volume: 5 start-page: 15 year: 2002 ident: 10.1016/j.neuroimage.2015.01.040_bb0150 article-title: An auditory domain in primate prefrontal cortex publication-title: Nat. Neurosci. doi: 10.1038/nn781 – volume: 121 start-page: 1157 year: 2007 ident: 10.1016/j.neuroimage.2015.01.040_bb0055 article-title: Voice F[sub 0] responses to pitch-shifted voice feedback during English speech publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2404624 – volume: 6 start-page: e14744 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0080 article-title: Human auditory cortical activation during self-vocalization publication-title: PLoS One doi: 10.1371/journal.pone.0014744 – volume: 106 start-page: 470 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0160 article-title: A comparison of sensory–motor activity during speech in first and second languages publication-title: J. Neurophysiol. doi: 10.1152/jn.00343.2011 – volume: 54 start-page: 2994 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0005 article-title: Speech-induced suppression of evoked auditory fields in children who stutter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.026 – volume: 30 start-page: 16643 year: 2010 ident: 10.1016/j.neuroimage.2015.01.040_bb0065 article-title: Single-trial speech suppression of auditory cortex activity in humans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1809-10.2010 – volume: 32 start-page: 9351 year: 2012 ident: 10.1016/j.neuroimage.2015.01.040_bb0115 article-title: Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0404-12.2012 – volume: 31 start-page: 16483 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0045 article-title: Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within-syllable and between-syllable speech timing publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3653-11.2011 – volume: 17 start-page: 1375 year: 2006 ident: 10.1016/j.neuroimage.2015.01.040_bb0095 article-title: Magnetoencephalographic evidence for a precise forward model in speech production publication-title: Neuroreport doi: 10.1097/01.wnr.0000233102.43526.e9 – volume: 8 start-page: e60783 year: 2013 ident: 10.1016/j.neuroimage.2015.01.040_bb0075 article-title: Sensory–motor interactions for vocal pitch monitoring in non-primary human auditory cortex publication-title: PLoS One doi: 10.1371/journal.pone.0060783 – volume: 39 start-page: 1429 year: 2008 ident: 10.1016/j.neuroimage.2015.01.040_bb0170 article-title: Neural mechanisms underlying auditory feedback control of speech publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.054 – volume: 23 start-page: 1205 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0030 article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2010.21447 – volume: 403 start-page: 141 year: 1999 ident: 10.1016/j.neuroimage.2015.01.040_bb0145 article-title: Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V – volume: 61 start-page: 314 year: 2012 ident: 10.1016/j.neuroimage.2015.01.040_bb0130 article-title: Understanding the neural mechanisms involved in sensory control of voice production publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.068 – volume: 103 start-page: 3153 year: 1998 ident: 10.1016/j.neuroimage.2015.01.040_bb0040 article-title: Voice F0 responses to manipulations in pitch feedback – volume: 21 start-page: 527 year: 2010 ident: 10.1016/j.neuroimage.2015.01.040_bb0125 article-title: Enhanced neural responses to self-triggered voice pitch feedback perturbations publication-title: Neuroreport doi: 10.1097/WNR.0b013e3283393a44 – volume: 52 start-page: 862 year: 2010 ident: 10.1016/j.neuroimage.2015.01.040_bb0070 article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.023 – volume: 453 start-page: 1102 year: 2008 ident: 10.1016/j.neuroimage.2015.01.040_bb0060 article-title: Neural substrates of vocalization feedback monitoring in primate auditory cortex publication-title: Nature doi: 10.1038/nature06910 – volume: 12 start-page: 718 year: 2009 ident: 10.1016/j.neuroimage.2015.01.040_bb0135 article-title: Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing publication-title: Nat. Neurosci. doi: 10.1038/nn.2331 – volume: 122 start-page: 2306 year: 2007 ident: 10.1016/j.neuroimage.2015.01.040_bb0180 article-title: Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2773966 – volume: 8 start-page: e82925 year: 2013 ident: 10.1016/j.neuroimage.2015.01.040_bb0165 article-title: Auditory cortex processes variation in our own speech publication-title: PLoS One doi: 10.1371/journal.pone.0082925 – volume: 12 start-page: 54 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0025 article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback publication-title: BMC Neurosci. doi: 10.1186/1471-2202-12-54 – volume: 42 start-page: 180 year: 2005 ident: 10.1016/j.neuroimage.2015.01.040_bb0090 article-title: Fine-tuning of auditory cortex during speech production publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2005.00272.x – volume: 12 start-page: 739 year: 2011 ident: 10.1016/j.neuroimage.2015.01.040_bb0185 article-title: Principles of sensorimotor learning publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3112 – volume: 31 start-page: 489 year: 1998 ident: 10.1016/j.neuroimage.2015.01.040_bb0120 article-title: Cross-modality influences in speech motor control: the use of pitch shifting for the study of F0 control publication-title: J. Commun. Disord. doi: 10.1016/S0021-9924(98)00021-5 – volume: 22 start-page: 1770 year: 2010 ident: 10.1016/j.neuroimage.2015.01.040_bb0190 article-title: Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2009.21324 – reference: 17348536 - J Acoust Soc Am. 2007 Feb;121(2):1157-63 – reference: 21315253 - Neuron. 2011 Feb 10;69(3):407-22 – reference: 23577157 - PLoS One. 2013;8(4):e60783 – reference: 21645406 - BMC Neurosci. 2011;12:54 – reference: 15787855 - Psychophysiology. 2005 Mar;42(2):180-90 – reference: 21562201 - J Neurophysiol. 2011 Jul;106(1):470-8 – reference: 21390228 - PLoS One. 2011;6(3):e14744 – reference: 22072698 - J Neurosci. 2011 Nov 9;31(45):16483-90 – reference: 19471271 - Nat Neurosci. 2009 Jun;12(6):718-24 – reference: 22406500 - Neuroimage. 2012 May 15;61(1):314-22 – reference: 18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43 – reference: 19837177 - Neuroimage. 2010 Sep;52(3):862-74 – reference: 16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9 – reference: 9836138 - J Commun Disord. 1998 Nov-Dec;31(6):489-502; quiz 502-3; 553 – reference: 20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17 – reference: 18454135 - Nature. 2008 Jun 19;453(7198):1102-6 – reference: 21148003 - J Neurosci. 2010 Dec 8;30(49):16643-50 – reference: 22764242 - J Neurosci. 2012 Jul 4;32(27):9351-8 – reference: 24349399 - PLoS One. 2013;8(12):e82925 – reference: 24355545 - Brain Cogn. 2014 Feb;84(1):97-108 – reference: 10570492 - Nat Neurosci. 1999 Dec;2(12):1131-6 – reference: 19520602 - Clin Neurophysiol. 2009 Jul;120(7):1303-12 – reference: 22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51 – reference: 23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77 – reference: 19523234 - BMC Neurosci. 2009;10:58 – reference: 9469813 - Science. 1998 Feb 20;279(5354):1213-6 – reference: 15371495 - J Neurophysiol. 2005 Feb;93(2):734-47 – reference: 23345447 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2653-8 – reference: 9886040 - J Comp Neurol. 1999 Jan 11;403(2):141-57 – reference: 20386347 - Neuroreport. 2010 May 12;21(7):527-31 – reference: 23467350 - J Neurosci. 2013 Mar 6;33(10):4339-48 – reference: 9637026 - J Acoust Soc Am. 1998 Jun;103(6):3153-61 – reference: 21095231 - Neuroimage. 2011 Feb 14;54(4):2994-3003 – reference: 12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38 – reference: 16040108 - Brain Lang. 2006 Mar;96(3):280-301 – reference: 19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81 – reference: 11753413 - Nat Neurosci. 2002 Jan;5(1):15-6 – reference: 17902866 - J Acoust Soc Am. 2007 Oct;122(4):2306-19 |
SSID | ssj0009148 |
Score | 2.5189116 |
Snippet | Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 418 |
SubjectTerms | Acoustic Stimulation Adult Auditory feedback Auditory Perception - physiology Behavior Brain - physiology Brain Mapping Control systems Control theory Feedback Feedback, Sensory Female fMRI Humans Magnetic Resonance Imaging Male Motor Activity Motors Nerve Net Networks Phonetics Pitch Perception - physiology Pitch perturbation Playbacks Sensorimotor Cortex - physiology Sensory–motor integration Speech Speech - physiology Speech motor control Speech Perception - physiology Studies Vowels |
Title | Sensory–motor networks involved in speech production and motor control: An fMRI study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915000567 https://www.ncbi.nlm.nih.gov/pubmed/25623499 https://www.proquest.com/docview/1656428209 https://www.proquest.com/docview/1658422187 https://www.proquest.com/docview/1664199240 https://www.proquest.com/docview/1677911110 https://pubmed.ncbi.nlm.nih.gov/PMC4339397 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdbC2MvZd_L1hYN9mpmyR-y-zLS0tKNpZRsgbwJfZlmbHKapIP-97uz5GTdRuiTDToZfLrTnaTf_UTIe2uqEsJSmejG4NZNqhNVpQY8vtHKGZcXAgucRxfl-ST_PC2mccNtGWGV_ZzYTdS2NbhH_gFZYiBV5mn9cX6d4K1ReLoar9B4SHaRugwhXWIqNqS7LA-lcEWWVCAQkTwB39XxRc5-gtciwCuQd-IWyP_D07_p598oyj_C0tkTshfzSToMBvCUPHD-GXk0iifmz8nkK6xT28VtAkPSLqgPqO8lnXmYl345Cy90OXfOXNF5IH-FgaLKWxo6RCj7ER162ozGn2jHR_uCTM5Ov52cJ_EqhcSUOVslBsK0KhskvzPMKa1FlblCN85UleVaMd6USCVXGOOYZlp1Jb2NtZk1tlYqe0l2fOvda0KFqnjDuDU1t7kpXW1YBh8sUsU1knsNiOg1KE3kGcfrLn7IHlD2XW50L1H3MmUSdD8gbN1zHrg27tGn7gdJ9rWkMPtJCAj36Lvfj6qMnruUGzsbkHfrZvA5PEhR3rU3nUyVc0iOxDYZUHwNq9t0m4wQGGwYyLwKxrT-cY6JKSxHQZ13zGwtgLzgd1v87KrjB8-zrIY0883233tLHqMuAgppn-ysFjfuABKslT7svOiQ7A5Pxl8u4Xl8enE5_g2-iCwf |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeBAosERwvv-o2EUIFWCW0iVBqpt2VfVlMVJyQpqH-K38iM104ooKiX3ix51pJnZ-ex-823AC-tyVMMS2mgS0NbN6EOVB4aXPGlVs64OMmowXkwTHuj-NNRcrQBv9peGIJVtj6xdtR2YmiP_DWxxGCqLMLi3fR7QLdG0elqe4WGN4s9d_4TS7b52_5HnN9XQuzuHH7oBc2tAoFJY74IDEYslZbEA2e4U1pneeQSXTqT51ZoxUWZEqtaYozjmmtVd7eW1kbW2EKpCL97DTbjCEuZDmy-3xl-PljR_PLYN98lUZBzXjTYIY8oqxkqx9_QTxCkzNOF0qbL_wPivwnv37jNPwLh7m241WSwbNub3B3YcNVduD5ozujvwegLVsaT2XmARjCZscrjzOdsXKEn_OEsPrD51DlzzKaebhZNg6nKMj-gAc-_YdsVKwcHfVYz4N6H0ZWo-QF0qknlHgHLVC5KLqwphI1N6grDI_xgEiqhiU6sC1mrQWkaZnO6YONUthC2E7nSvSTdy5BL1H0X-HLk1LN7XGJM0U6SbLtX0d9KDEGXGLvVzqpsfMVcriy7Cy-Wr3GV09GNqtzkrJbJY4HpWLZOBhVfYD0drpPJMgpvHGUeemNa_rigVBgLYFTnBTNbChAT-cU31fi4ZiSPo6jAxPbx-t97Djd6h4N9ud8f7j2Bm6QXj4Hags5iduaeYnq30M-aNcXg61Uv498szmlz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEONa2MBI8Bgtdi5OkCY0MaqV0QkBlfpmfItWBE5pO9D-2n4d58RJywBVe9lbpBxHyvG52f7OZ0JeWFPkkJbySFcGt25iHakiNuDxlVbOuDQT2OA8PMmPRum7cTbeIBddLwzCKruY2ARqWxvcI99DlhgolXlc7lUtLOLDYf_19EeEN0jhSWt3nUYwkWN3_guWb_P9wSHM9UvO-28_vzmK2hsGIpOnbBEZyF4qr5ATzjCntBZF4jJdOVMUlmvFeJUjw1pmjGOaadV0ulbWJtbYUqkEvnuD3BRJxtDHxFisCH9ZGtrwsiQqGCtbFFHAljVclZPvEDEQXBaIQ3H75f-p8d_S928E5x8psX-H3G5rWXoQjG-bbDh_l2wN29P6e2T0CdbI9ew8AnOoZ9QHxPmcTjzExJ_OwgOdT50zp3QaiGfBSKjyloYBLYz-FT3wtBp-HNCGC_c-GV2Lkh-QTV9794hQoQpeMW5NyW1qclcalsAHs1hxjcRiPSI6DUrTcpzjVRvfZAdm-ypXupeoexkzCbrvEbYcOQ08H1cYU3aTJLs-Voi8EpLRFcbudLMq26gxlysb75Hny9fg73iIo7yrzxqZIuVQmIl1MqD4ElbW8ToZITDRMZB5GIxp-eMci2JYCoM6L5nZUgA5yS-_8ZPThps8TZISStzH63_vGdkC55XvByfHT8gtVEsAQ-2QzcXszO1CnbfQTxuHouTLdXvwb6V8bEM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory-Motor+Networks+Involved+in+Speech+Production+and+Motor+Control%3A+An+fMRI+Study&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Behroozmand%2C+Roozbeh&rft.au=Shebek%2C+Rachel&rft.au=Hansen%2C+Daniel+R.&rft.au=Oya%2C+Hiroyuki&rft.date=2015-04-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=109&rft.spage=418&rft.epage=428&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.01.040&rft_id=info%3Apmid%2F25623499&rft.externalDocID=PMC4339397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |