Physiological noise modeling in fMRI based on the pulsatile component of photoplethysmograph
The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to loca...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 242; p. 118467 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2021.118467 |
Cover
Loading…
Abstract | The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS – defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies. |
---|---|
AbstractList | The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS – defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies. The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS - defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies.The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS - defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies. |
ArticleNumber | 118467 |
Author | Kassinopoulos, Michalis Mitsis, Georgios D. |
Author_xml | – sequence: 1 givenname: Michalis surname: Kassinopoulos fullname: Kassinopoulos, Michalis email: michalis.kassinopoulos@mail.mcgill.ca organization: Graduate Program in Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada – sequence: 2 givenname: Georgios D. surname: Mitsis fullname: Mitsis, Georgios D. organization: Department of Bioengineering, McGill University, Montreal, QC, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34390877$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuPFCEUhStmjPPQv2BI3LjpFqooHhujTpyxkzEaozsTQlG3umkpqAHKpP-9tD2jSa96A4Sc-3E5515WZz54qCpE8JJgwt5slx7mGOyo17CscU2WhAjK-JPqgmDZLmTL67P9uW0WghB5Xl2mtMUYS0LFs-q8oY3EgvOL6ufXzS7Z4MLaGu2QDzYBGkMPzvo1sh4Nn7-tUKcT9Ch4lDeAptklna0DZMI4lcZ8RmFA0ybkMDnIBTiGddTT5nn1dNAuwYuH_ar6cfPx-_Wnxd2X29X1-7uFYZTkBR-wwMBEpzkzZmhq2QHVklNd-mdQ99D2nLeN1KyuMfDaNG3XUOjrjgBtTHNVrQ7cPuitmmLxJe5U0Fb9vQhxrXTM1jhQrRhM1zHesFZSzEGLXlBaVgyS6kYX1usDa4rhfoaU1WiTAee0hzAnVbeseCglFUX66ki6DXP05ad7lcSUMUaK6uWDau5G6P-195hBEbw9CEwMKUUYlLG5GBx8jto6RbDah6626n_oah-6OoReAOII8PjGCaUfDqVQ4vltIapkLHgDvY1gcvHPngJ5dwQxZXr28_QLdqch_gDITuK4 |
CitedBy_id | crossref_primary_10_1002_jmri_28948 crossref_primary_10_1016_j_bspc_2024_107151 crossref_primary_10_1016_j_pneurobio_2023_102510 crossref_primary_10_3390_brainsci13010008 crossref_primary_10_1016_j_neuroimage_2022_119136 crossref_primary_10_1097_WCO_0000000000001284 crossref_primary_10_1016_j_mri_2021_10_028 crossref_primary_10_3389_fnins_2022_795683 crossref_primary_10_7554_eLife_62324 crossref_primary_10_1002_sim_10162 crossref_primary_10_1088_1741_2552_ac8bff |
Cites_doi | 10.1016/j.neuroimage.2007.07.037 10.1016/j.neuroimage.2019.116150 10.1016/j.neuroimage.2012.01.082 10.1016/j.neuroimage.2020.116874 10.1016/j.neuron.2017.07.030 10.1016/j.neuroimage.2016.11.052 10.1109/42.906424 10.1016/j.neuroimage.2009.05.030 10.1093/brain/awab144 10.1016/j.neuroimage.2019.07.018 10.1016/j.neuroimage.2018.10.084 10.1016/j.siny.2010.05.003 10.1016/j.neuroimage.2007.11.059 10.1016/j.neuroimage.2017.12.073 10.1002/mrm.1910340409 10.1016/S1361-8415(01)00036-6 10.1016/j.neuroimage.2006.08.006 10.1088/0031-9155/45/12/321 10.1016/j.neuroimage.2008.05.019 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1016/j.neuroimage.2016.09.008 10.1016/j.neuroimage.2018.04.045 10.1016/j.neuroimage.2008.09.007 10.1006/nimg.2000.0630 10.1016/j.neuroimage.2014.10.031 10.1016/j.neuroimage.2010.11.090 10.1016/j.neuroimage.2012.01.016 10.1016/j.jneumeth.2015.08.033 10.1088/0967-3334/28/3/R01 10.1038/s42003-019-0659-0 10.7554/eLife.34028 10.1093/sleep/22.8.1067 10.1016/j.neuroimage.2010.06.049 10.1089/brain.2011.0065 10.1002/mrm.1910390602 10.1002/jmri.21623 10.1098/rstb.1997.0046 10.1016/j.neuroimage.2013.04.001 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2020.116614 10.3389/fnins.2019.00433 10.1073/pnas.87.24.9868 10.1016/j.neuroimage.2009.04.048 10.1073/pnas.89.12.5675 10.1523/JNEUROSCI.16-13-04207.1996 10.1089/brain.2018.0645 10.1016/j.neuroimage.2018.04.076 10.1016/j.medengphy.2013.10.011 10.1016/j.neuroimage.2015.02.064 10.1186/s13054-015-0984-8 10.1109/TBME.2004.834272 10.1620/tjem.132.413 10.1016/j.neuroimage.2017.03.020 10.1101/2020.06.01.128306 10.1016/j.neuroimage.2003.11.025 10.1038/s41467-018-07318-3 10.1006/nimg.1998.0424 10.1126/science.aax5440 10.1016/j.neuroimage.2013.04.127 10.1016/S0730-725X(01)00460-X 10.1016/j.neuroimage.2013.11.046 10.1016/S0730-725X(03)00083-3 10.1016/j.jtbi.2005.07.005 10.1016/j.neuroimage.2018.09.024 10.1016/j.neuroimage.2016.09.038 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L 10.1016/j.neuroimage.2013.01.050 10.1109/RBME.2017.2763681 10.1016/j.jneumeth.2019.108519 10.1177/0271678X15622047 10.1002/mrm.26038 10.7554/eLife.62324 10.1016/j.neuroimage.2013.05.039 10.1016/j.neuroimage.2013.10.013 10.1088/0031-9155/46/12/318 10.1002/hbm.20866 10.3109/03091902.2011.638965 10.1016/j.jneumeth.2016.10.019 10.1016/j.neuroimage.2016.12.018 10.1080/00207176508905543 10.1038/nn.4361 10.1523/JNEUROSCI.1592-13.2013 10.1016/j.neuroimage.2009.05.012 10.1016/j.neuroimage.2019.116072 10.1016/j.neuroimage.2012.01.067 10.1007/s10877-012-9348-y 10.3389/fnins.2019.00787 10.1016/j.neuroimage.2008.09.029 10.1016/j.neuroimage.2007.04.042 10.1097/ALN.0b013e31816c89e1 10.1016/j.neuroimage.2012.11.038 10.1038/nrn.2017.48 10.1016/j.neuroimage.2006.02.048 10.1002/mrm.1910250220 10.1016/j.neuroimage.2013.05.041 10.1152/jn.00783.2009 10.1186/2045-8118-8-5 10.1016/j.neuroimage.2017.02.036 10.1016/j.neuroimage.2014.10.044 10.1016/j.neuroimage.2016.12.027 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Nov 15, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 15, 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2021.118467 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_58fcbb673659407ea8d844a8d0e94a3a 34390877 10_1016_j_neuroimage_2021_118467 S1053811921007400 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c641t-7f080e68ba76ccf329be4a974a0536e2de5d77539a6220e72c35b34ed2b1e43c3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:30:31 EDT 2025 Thu Jul 10 22:03:34 EDT 2025 Wed Aug 13 03:05:40 EDT 2025 Wed Feb 19 02:26:54 EST 2025 Tue Jul 01 03:02:20 EDT 2025 Thu Apr 24 23:44:18 EDT 2025 Fri Feb 23 02:42:23 EST 2024 Tue Aug 26 18:33:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cardiac pulsation CPM SLFOs noise correction techniques RETROICOR Global signal fMRI artifacts |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-7f080e68ba76ccf329be4a974a0536e2de5d77539a6220e72c35b34ed2b1e43c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/58fcbb673659407ea8d844a8d0e94a3a |
PMID | 34390877 |
PQID | 2569046661 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58fcbb673659407ea8d844a8d0e94a3a proquest_miscellaneous_2561489948 proquest_journals_2569046661 pubmed_primary_34390877 crossref_citationtrail_10_1016_j_neuroimage_2021_118467 crossref_primary_10_1016_j_neuroimage_2021_118467 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118467 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118467 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Hocke, Tong, Lindsey, de B. Frederick (bib0044) 2016; 1707 Mitsis, Ainslie, Poulin, Robbins, Marmarelis (bib0067) 2004; 51 Harvey, Pattinson, Brooks, Mayhew, Jenkinson, Wise (bib0043) 2008; 28 Iadecola (bib0045) 2017; 96 Biswal, Yetkin, Haughton, Hyde (bib0010) 1995; 34 Chang, Raven, Duyn (bib0022) 2016; 374 Nalci, Rao, Liu (bib0073) 2019; 184 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0089) 2014; 90 Cox, Hyde (bib0025) 1997; 10 Chang, Glover (bib0019) 2009; 47 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0047) 2012; 62 Murphy, Birn, Bandettini (bib0070) 2013; 80 Chang, Glover (bib0020) 2009; 47 Tong, Hocke, Frederick (bib0098) 2019; 13 Kassinopoulos, M., Mitsis, G.D., 2020b. Figures produced in Kassinopoulos & Mitsis (2020) - Physiological Noise Modeling in fMRI based on the pulsatile component of photoplethysmograph [WWW Document]. doi Kiviniemi, Wang, Korhonen, Keinänen, Tuovinen, Autio, Levan, Keilholz, Zang, Hennig, Nedergaard (bib0056) 2016; 36 Raj, Paley, Anderson, Kennan, Gore (bib0086) 2000; 45 Wagshul, Eide, Madsen (bib0103) 2011; 8 Kassinopoulos, Mitsis (bib0052) 2021 . Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms, Kelly, Laumann, Miller, Moeller, Petersen, Power, Salimi-Khorshidi, Snyder, Vu, Woolrich, Xu, Yacoub, Uǧurbil, Van Essen, Glasser (bib0095) 2013; 80 Liu, Nalci, Falahpour (bib0062) 2017; 150 Kasper, Bollmann, Diaconescu, Hutton, Heinzle, Iglesias, Hauser, Sebold, Manjaly, Pruessmann, Stephan (bib0051) 2017; 276 Glasser, Coalson, Bijsterbosch, Harrison, Harms, Anticevic, Van Essen, Smith (bib0035) 2018; 181 Bandettini, Wong, Hinks, Tikofsky, Hyde (bib0003) 1992; 25 Caballero-Gaudes, Reynolds (bib0015) 2017; 154 Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet, Kennedy, Hoppel, Cohen, Turner, Cheng -, Brady, Rosen (bib0058) 1992; 89 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0100) 2013; 80 Delpy, Cope (bib0028) 1997; 352 Birn, Smith, Jones, Bandettini (bib0009) 2008; 40 Fultz, Bonmassar, Setsompop, Stickgold, Rosen, Polimeni, Lewis (bib0034) 2019; 366 Lee, Schetzen (bib0059) 1965; 2 Golestani, Chang, Kwinta, Khatamian, Jean Chen (bib0039) 2015; 104 Kisler, Nelson, Montagne, Zlokovic (bib0055) 2017; 18 Özbay, Chang, Picchioni, Mandelkow, Chappel-Farley, van Gelderen, de Zwart, Duyn (bib0076) 2019; 2 Tong, Frederick (bib0097) 2010; 53 Scheeren, Schober, Schwarte (bib0092) 2012; 26 Van Houdt, Ossenblok, Boon, Leijten, Velis, Stam, De Munck (bib0101) 2010; 31 Pellicer, Bravo (bib0080) 2011; 16 Fine (bib0032) 2014; 9031 Tachtsidis, Scholkmann (bib0096) 2016; 3 Jenkinson, Smith (bib0048) 2001; 5 Marmarelis (bib0063) 2004 Wise, Ide, Poulin, Tracey (bib0106) 2004; 21 Whittaker, J.R., Driver, I.D., Venzi, M., Bright, M.G., Murphy, K., Chen, J., Whittaker, J.R., 2019. Cerebral autoregulation evidenced by synchronized low frequency oscillations in blood pressure and resting-state fMRI 13, 1–12. 10.3389/fnins.2019.00433 Zhang, Brady, Smith (bib0108) 2001; 20 Kassinopoulos, Mitsis (bib0054) 2019; 202 Parkes, Fulcher, Yücel, Fornito (bib0078) 2018; 171 Birn (bib0006) 2012; 62 Birn, Murphy, Handwerker, Bandettini (bib0008) 2009; 47 Levin, Frederick, Ross, Fox, Von Rosenberg, Kaufman, Lange, Mendelson, Cohen, Renshaw (bib0060) 2001; 19 Falahpour, Nalci, Liu (bib0030) 2018; 8 Raj, Anderson, Gore (bib0085) 2001; 46 Jones, Bandettini, Birn (bib0049) 2008; 42 Deckers, Gelderen, Ries, Barret, Duyn, Ikonomidou, Fukunaga, Glover, Zwart (bib0027) 2006; 33 Bianciardi, Toschi, Polimeni, Evans, Bhat, Keil, Rosen, Boas, Wald (bib0005) 2016; 374 Schley, Carare-Nnadi, Please, Perry, Weller (bib0093) 2006; 238 Dagli, Ingeholm, Haxby (bib0026) 1999; 9 Boynton, Engel, Glover, Heeger (bib0011) 1996; 16 Harrison, Siow, Akilo, Evans, Ismail, Ohene, Nahavandi, Thomas, Lythgoe, Wells (bib0042) 2018; 7 Power, Schlaggar, Petersen (bib0082) 2015; 105 Pattinson, Mitsis, Harvey, Jbabdi, Dirckx, Mayhew, Rogers, Tracey, Wise (bib0079) 2009; 44 Chang, Cunningham, Glover (bib0018) 2009; 44 Glover, Li, Ress (bib0038) 2000; 44 Carbonell, Bellec, Shmuel (bib0017) 2011; 1 Misaki, Barzigar, Zotev, Phillips, Cheng, Bodurka (bib0066) 2015; 256 Verstynen, Deshpande (bib0102) 2011; 55 Särkkä, Solin, Nummenmaa, Vehtari, Auranen, Vanni, Lin (bib0090) 2012; 60 Nalci, Luo, Liu (bib0072) 2019; 202 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0037) 2013; 80 Reisner, Shaltis, McCombie, Asada (bib0088) 2008; 108 Mulcahy, Larsson, Garfinkel, Critchley (bib0069) 2019; 202 Pruim, Mennes, van Rooij, Llera, Buitelaar, Beckmann (bib0084) 2015; 112 Ogawa, Lee, Kay, Tank (bib0075) 1990; 87 Rajna, Mattila, Huotari, Tuovinen, Krüger, Holst, Korhonen, Remes, Seppänen, Hennig, Nedergaard, Kiviniemi (bib0087) 2021 Shmueli, van Gelderen, de Zwart, Horovitz, Fukunaga, Jansma, Duyn (bib0094) 2007; 38 Birn, Diamond, Smith, Bandettini (bib0007) 2006; 31 Ochoa, Ohara (bib0074) 1980; 132 Carbonell, Bellec, Shmuel (bib0016) 2014; 86 Liu (bib0061) 2016; 143 Meredith, Clifton, Charlton, Brooks, Pugh, Tarassenko (bib0064) 2012; 36 Power, Plitt, Laumann, Martin (bib0081) 2017; 146 Whittaker, Fasano, Venzi, Liebig, Gallichan, Murphy (bib0105) 2021 Behzadi, Restom, Liau, Liu (bib0004) 2007; 37 Mestre, Tithof, Du, Song, Peng, Sweeney, Olveda, Thomas, Nedergaard, Kelley (bib0065) 2018; 9 Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller, Robinson, Sotiropoulos, Xu, Yacoub, Ugurbil, Van Essen (bib0036) 2016; 19 Chang, Metzger, Glover, Duyn, Heinze, Walter (bib0021) 2013; 68 Gustard, Williams, Hall, Pickard, Carpenter (bib0041) 2003; 21 Xifra-Porxas, Kassinopoulos, Mitsis (bib0107) 2021; 10 Murphy, Fox (bib0071) 2017; 154 Golestani, Chen (bib0040) 2020; 216 Ciric, Wolf, Power, Roalf, Baum, Ruparel, Shinohara, Elliott, Eickhoff, Davatzikos, Gur, Gur, Bassett, Satterthwaite (bib0024) 2017; 154 Allen (bib0001) 2007; 28 Prokopiou, Pattinson, Wise, Mitsis (bib0083) 2019; 186 Falahpour, Refai, Bodurka (bib0031) 2013; 72 Buxton, Wong, Frank (bib0014) 1998; 39 Kostoglou, Debert, Poulin, Mitsis (bib0057) 2014; 36 Özbay, Chang, Picchioni, Mandelkow, Moehlman, Chappel-Farley, van Gelderen, de Zwart, Duyn (bib0077) 2018; 176 Boynton, Engel, Heeger (bib0012) 2012; 62 Bright, Tench, Murphy (bib0013) 2017; 154 Elsenbruch, Harnish, Orr (bib0029) 1999; 22 Jubran (bib0050) 2015; 19 Charlton, Birrenkott, Bonnici, Pimentel, Johnson, Alastruey, Tarassenko, Watkinson, Beale, Clifton (bib0023) 2018; 11 Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib0099) 2010; 103 Friston, Mechelli, Turner, Price (bib0033) 2000; 12 Savva, Kassinopoulos, Smyrnis, Matsopoulos, Mitsis (bib0091) 2020; 330 Iliff, Wang, Zeppenfeld, Venkataraman, Plog, Liao, Deane, Nedergaard (bib0046) 2013; 33 Aquino, Fulcher, Parkes, Sabaroedin, Fornito (bib0002) 2020; 212 Tong (10.1016/j.neuroimage.2021.118467_bib0098) 2019; 13 Bandettini (10.1016/j.neuroimage.2021.118467_bib0003) 1992; 25 Nalci (10.1016/j.neuroimage.2021.118467_bib0073) 2019; 184 Levin (10.1016/j.neuroimage.2021.118467_bib0060) 2001; 19 Verstynen (10.1016/j.neuroimage.2021.118467_bib0102) 2011; 55 Raj (10.1016/j.neuroimage.2021.118467_bib0086) 2000; 45 Iadecola (10.1016/j.neuroimage.2021.118467_bib0045) 2017; 96 Carbonell (10.1016/j.neuroimage.2021.118467_bib0017) 2011; 1 Zhang (10.1016/j.neuroimage.2021.118467_bib0108) 2001; 20 Kassinopoulos (10.1016/j.neuroimage.2021.118467_bib0054) 2019; 202 Harrison (10.1016/j.neuroimage.2021.118467_bib0042) 2018; 7 Jenkinson (10.1016/j.neuroimage.2021.118467_bib0047) 2012; 62 Jenkinson (10.1016/j.neuroimage.2021.118467_bib0048) 2001; 5 Parkes (10.1016/j.neuroimage.2021.118467_bib0078) 2018; 171 Golestani (10.1016/j.neuroimage.2021.118467_bib0040) 2020; 216 Nalci (10.1016/j.neuroimage.2021.118467_bib0072) 2019; 202 Wagshul (10.1016/j.neuroimage.2021.118467_bib0103) 2011; 8 Murphy (10.1016/j.neuroimage.2021.118467_bib0071) 2017; 154 Ochoa (10.1016/j.neuroimage.2021.118467_bib0074) 1980; 132 Glasser (10.1016/j.neuroimage.2021.118467_bib0036) 2016; 19 Birn (10.1016/j.neuroimage.2021.118467_bib0008) 2009; 47 Elsenbruch (10.1016/j.neuroimage.2021.118467_bib0029) 1999; 22 Xifra-Porxas (10.1016/j.neuroimage.2021.118467_bib0107) 2021; 10 Falahpour (10.1016/j.neuroimage.2021.118467_bib0030) 2018; 8 Chang (10.1016/j.neuroimage.2021.118467_bib0018) 2009; 44 Smith (10.1016/j.neuroimage.2021.118467_bib0095) 2013; 80 Boynton (10.1016/j.neuroimage.2021.118467_bib0012) 2012; 62 Jubran (10.1016/j.neuroimage.2021.118467_bib0050) 2015; 19 Kasper (10.1016/j.neuroimage.2021.118467_bib0051) 2017; 276 Behzadi (10.1016/j.neuroimage.2021.118467_bib0004) 2007; 37 Scheeren (10.1016/j.neuroimage.2021.118467_bib0092) 2012; 26 Pattinson (10.1016/j.neuroimage.2021.118467_bib0079) 2009; 44 Birn (10.1016/j.neuroimage.2021.118467_bib0006) 2012; 62 Kassinopoulos (10.1016/j.neuroimage.2021.118467_bib0052) 2021 Charlton (10.1016/j.neuroimage.2021.118467_bib0023) 2018; 11 Murphy (10.1016/j.neuroimage.2021.118467_bib0070) 2013; 80 Chang (10.1016/j.neuroimage.2021.118467_bib0022) 2016; 374 Ciric (10.1016/j.neuroimage.2021.118467_bib0024) 2017; 154 Kostoglou (10.1016/j.neuroimage.2021.118467_bib0057) 2014; 36 Kisler (10.1016/j.neuroimage.2021.118467_bib0055) 2017; 18 Glover (10.1016/j.neuroimage.2021.118467_bib0038) 2000; 44 Chang (10.1016/j.neuroimage.2021.118467_bib0019) 2009; 47 Hocke (10.1016/j.neuroimage.2021.118467_bib0044) 2016; 1707 Van Dijk (10.1016/j.neuroimage.2021.118467_bib0099) 2010; 103 Pruim (10.1016/j.neuroimage.2021.118467_bib0084) 2015; 112 Fultz (10.1016/j.neuroimage.2021.118467_bib0034) 2019; 366 Iliff (10.1016/j.neuroimage.2021.118467_bib0046) 2013; 33 Dagli (10.1016/j.neuroimage.2021.118467_bib0026) 1999; 9 Buxton (10.1016/j.neuroimage.2021.118467_bib0014) 1998; 39 Van Houdt (10.1016/j.neuroimage.2021.118467_bib0101) 2010; 31 Rajna (10.1016/j.neuroimage.2021.118467_bib0087) 2021 10.1016/j.neuroimage.2021.118467_bib0104 Tong (10.1016/j.neuroimage.2021.118467_bib0097) 2010; 53 Chang (10.1016/j.neuroimage.2021.118467_bib0021) 2013; 68 Aquino (10.1016/j.neuroimage.2021.118467_bib0002) 2020; 212 Boynton (10.1016/j.neuroimage.2021.118467_bib0011) 1996; 16 Jones (10.1016/j.neuroimage.2021.118467_bib0049) 2008; 42 Lee (10.1016/j.neuroimage.2021.118467_bib0059) 1965; 2 Glasser (10.1016/j.neuroimage.2021.118467_bib0035) 2018; 181 Harvey (10.1016/j.neuroimage.2021.118467_bib0043) 2008; 28 Särkkä (10.1016/j.neuroimage.2021.118467_bib0090) 2012; 60 Özbay (10.1016/j.neuroimage.2021.118467_bib0076) 2019; 2 Tachtsidis (10.1016/j.neuroimage.2021.118467_bib0096) 2016; 3 Deckers (10.1016/j.neuroimage.2021.118467_bib0027) 2006; 33 Chang (10.1016/j.neuroimage.2021.118467_bib0020) 2009; 47 Prokopiou (10.1016/j.neuroimage.2021.118467_bib0083) 2019; 186 Reisner (10.1016/j.neuroimage.2021.118467_bib0088) 2008; 108 Carbonell (10.1016/j.neuroimage.2021.118467_bib0016) 2014; 86 Liu (10.1016/j.neuroimage.2021.118467_bib0061) 2016; 143 Mitsis (10.1016/j.neuroimage.2021.118467_bib0067) 2004; 51 Salimi-Khorshidi (10.1016/j.neuroimage.2021.118467_bib0089) 2014; 90 10.1016/j.neuroimage.2021.118467_bib0053 Power (10.1016/j.neuroimage.2021.118467_bib0081) 2017; 146 Bianciardi (10.1016/j.neuroimage.2021.118467_bib0005) 2016; 374 Birn (10.1016/j.neuroimage.2021.118467_bib0009) 2008; 40 Falahpour (10.1016/j.neuroimage.2021.118467_bib0031) 2013; 72 Ogawa (10.1016/j.neuroimage.2021.118467_bib0075) 1990; 87 Birn (10.1016/j.neuroimage.2021.118467_bib0007) 2006; 31 Caballero-Gaudes (10.1016/j.neuroimage.2021.118467_bib0015) 2017; 154 Kwong (10.1016/j.neuroimage.2021.118467_bib0058) 1992; 89 Marmarelis (10.1016/j.neuroimage.2021.118467_bib0063) 2004 Wise (10.1016/j.neuroimage.2021.118467_bib0106) 2004; 21 Fine (10.1016/j.neuroimage.2021.118467_bib0032) 2014; 9031 Shmueli (10.1016/j.neuroimage.2021.118467_bib0094) 2007; 38 Misaki (10.1016/j.neuroimage.2021.118467_bib0066) 2015; 256 Mestre (10.1016/j.neuroimage.2021.118467_bib0065) 2018; 9 Biswal (10.1016/j.neuroimage.2021.118467_bib0010) 1995; 34 Mulcahy (10.1016/j.neuroimage.2021.118467_bib0069) 2019; 202 Allen (10.1016/j.neuroimage.2021.118467_bib0001) 2007; 28 Savva (10.1016/j.neuroimage.2021.118467_bib0091) 2020; 330 Glasser (10.1016/j.neuroimage.2021.118467_bib0037) 2013; 80 Golestani (10.1016/j.neuroimage.2021.118467_bib0039) 2015; 104 Kiviniemi (10.1016/j.neuroimage.2021.118467_bib0056) 2016; 36 Liu (10.1016/j.neuroimage.2021.118467_bib0062) 2017; 150 Delpy (10.1016/j.neuroimage.2021.118467_bib0028) 1997; 352 Power (10.1016/j.neuroimage.2021.118467_bib0082) 2015; 105 Whittaker (10.1016/j.neuroimage.2021.118467_bib0105) 2021 Van Essen (10.1016/j.neuroimage.2021.118467_bib0100) 2013; 80 Friston (10.1016/j.neuroimage.2021.118467_bib0033) 2000; 12 Özbay (10.1016/j.neuroimage.2021.118467_bib0077) 2018; 176 Raj (10.1016/j.neuroimage.2021.118467_bib0085) 2001; 46 Schley (10.1016/j.neuroimage.2021.118467_bib0093) 2006; 238 Gustard (10.1016/j.neuroimage.2021.118467_bib0041) 2003; 21 Meredith (10.1016/j.neuroimage.2021.118467_bib0064) 2012; 36 Pellicer (10.1016/j.neuroimage.2021.118467_bib0080) 2011; 16 Bright (10.1016/j.neuroimage.2021.118467_bib0013) 2017; 154 Cox (10.1016/j.neuroimage.2021.118467_bib0025) 1997; 10 |
References_xml | – volume: 238 start-page: 962 year: 2006 end-page: 974 ident: bib0093 article-title: Mechanisms to explain the reverse perivascular transport of solutes out of the brain publication-title: J. Theor. Biol. – volume: 104 start-page: 266 year: 2015 end-page: 277 ident: bib0039 article-title: Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: Spatial specificity, test-retest reliability and effect of fMRI sampling rate publication-title: Neuroimage – volume: 2 start-page: 421 year: 2019 ident: bib0076 article-title: Sympathetic activity contributes to the fMRI signal publication-title: Commun. Biol. – reference: Kassinopoulos, M., Mitsis, G.D., 2020b. Figures produced in Kassinopoulos & Mitsis (2020) - Physiological Noise Modeling in fMRI based on the pulsatile component of photoplethysmograph [WWW Document]. doi: – volume: 60 start-page: 1517 year: 2012 end-page: 1527 ident: bib0090 article-title: Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER publication-title: Neuroimage – volume: 374 year: 2016 ident: bib0022 article-title: Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – reference: Whittaker, J.R., Driver, I.D., Venzi, M., Bright, M.G., Murphy, K., Chen, J., Whittaker, J.R., 2019. Cerebral autoregulation evidenced by synchronized low frequency oscillations in blood pressure and resting-state fMRI 13, 1–12. 10.3389/fnins.2019.00433 – volume: 25 start-page: 390 year: 1992 end-page: 397 ident: bib0003 article-title: Time course EPI during task activation publication-title: Magn. Res. Med. – volume: 2 start-page: 237 year: 1965 end-page: 254 ident: bib0059 article-title: Measurement of the wiener kernels of a non-linear system by cross-correlation publication-title: Int. J. Control – volume: 19 start-page: 1055 year: 2001 end-page: 1062 ident: bib0060 article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation publication-title: Magn. Reson. Imaging – volume: 132 start-page: 413 year: 1980 end-page: 419 ident: bib0074 article-title: The effect of hematocrit on photoelectric plethysmogram publication-title: Tohoku J. Exp. Med. – volume: 202 year: 2019 ident: bib0054 article-title: Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration publication-title: Neuroimage – volume: 44 start-page: 857 year: 2009 end-page: 869 ident: bib0018 article-title: Influence of heart rate on the BOLD signal: the cardiac response function publication-title: Neuroimage – volume: 108 start-page: 950 year: 2008 end-page: 958 ident: bib0088 article-title: Utility of the photoplethysmogram in circulatory monitoring publication-title: Anesthesiology – volume: 40 start-page: 644 year: 2008 end-page: 654 ident: bib0009 article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration publication-title: Neuroimage – volume: 202 year: 2019 ident: bib0069 article-title: Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies publication-title: Neuroimage – volume: 19 year: 2015 ident: bib0050 article-title: Pulse oximetry publication-title: Crit. Care – volume: 16 start-page: 4207 year: 1996 end-page: 4221 ident: bib0011 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J. Neurosci. – volume: 47 start-page: 1381 year: 2009 end-page: 1393 ident: bib0020 article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI publication-title: Neuroimage – volume: 154 start-page: 169 year: 2017 end-page: 173 ident: bib0071 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: Neuroimage – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: bib0095 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage – volume: 154 start-page: 159 year: 2017 end-page: 168 ident: bib0013 article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression publication-title: Neuroimage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0100 article-title: The WU-Minn Human Connectome Project: An overview publication-title: Neuroimage – volume: 46 start-page: 3331 year: 2001 end-page: 3340 ident: bib0085 article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes publication-title: Phys. Med. Biol. – volume: 154 start-page: 174 year: 2017 end-page: 187 ident: bib0024 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: Neuroimage – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0037 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 28 start-page: 1337 year: 2008 end-page: 1344 ident: bib0043 article-title: Brainstem functional magnetic resonance imaging: Disentangling signal from physiological noise publication-title: J. Magn. Reson. Imaging – volume: 276 start-page: 56 year: 2017 end-page: 72 ident: bib0051 article-title: The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data publication-title: J. Neurosci. Methods – year: 2021 ident: bib0087 article-title: Cardiovascular brain impulses in Alzheimer's disease publication-title: Brain – volume: 7 start-page: 1 year: 2018 end-page: 14 ident: bib0042 article-title: Non-1 invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI publication-title: Elife – volume: 96 start-page: 17 year: 2017 end-page: 42 ident: bib0045 article-title: The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease publication-title: Neuron – volume: 181 start-page: 692 year: 2018 end-page: 717 ident: bib0035 article-title: Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data publication-title: Neuroimage – volume: 9 year: 2018 ident: bib0065 article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension publication-title: Nat. Commun. – volume: 12 start-page: 466 year: 2000 end-page: 477 ident: bib0033 article-title: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics publication-title: Neuroimage – volume: 36 start-page: 592 year: 2014 end-page: 600 ident: bib0057 article-title: Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia publication-title: Med. Eng. Phys. – volume: 22 start-page: 1067 year: 1999 end-page: 1071 ident: bib0029 article-title: Heart rate variability during waking and sleep in healthy males and females publication-title: Sleep – volume: 19 start-page: 1175 year: 2016 end-page: 1187 ident: bib0036 article-title: The human connectome project's neuroimaging approach publication-title: Nat. Neurosci. – volume: 89 start-page: 5675 year: 1992 end-page: 5679 ident: bib0058 article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation publication-title: Proc. Natl. Acad. Sci. USA. – volume: 44 start-page: 162 year: 2000 end-page: 167 ident: bib0038 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn. Reson. Med. – volume: 72 start-page: 252 year: 2013 end-page: 264 ident: bib0031 article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal publication-title: Neuroimage – volume: 36 start-page: 1033 year: 2016 end-page: 1045 ident: bib0056 article-title: Ultra-fast magnetic resonance encephalography of physiological brain activity-Glymphatic pulsation mechanisms? publication-title: J. Cereb. Blood Flow Metab. – volume: 16 start-page: 42 year: 2011 end-page: 49 ident: bib0080 article-title: Near-infrared spectroscopy: a methodology-focused review publication-title: Semin. Fetal Neonatal Med. – volume: 86 start-page: 343 year: 2014 end-page: 353 ident: bib0016 article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state publication-title: Neuroimage – volume: 216 year: 2020 ident: bib0040 article-title: Controlling for the effect of arterial-CO2 fluctuations in resting-state fMRI: Comparing end-tidal CO2 clamping and retroactive CO2 correction publication-title: Neuroimage – volume: 154 start-page: 128 year: 2017 end-page: 149 ident: bib0015 article-title: Methods for cleaning the BOLD fMRI signal publication-title: Neuroimage – volume: 33 start-page: 1072 year: 2006 end-page: 1081 ident: bib0027 article-title: An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data publication-title: Neuoimage – volume: 184 start-page: 1005 year: 2019 end-page: 1031 ident: bib0073 article-title: Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI publication-title: Neuroimage – volume: 103 start-page: 297 year: 2010 end-page: 321 ident: bib0099 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. – volume: 330 year: 2020 ident: bib0091 article-title: Effects of motion related outliers in dynamic functional connectivity using the sliding window method publication-title: J. Neurosci. Methods – volume: 80 start-page: 349 year: 2013 end-page: 359 ident: bib0070 article-title: Resting-state fMRI confounds and cleanup publication-title: Neuroimage – year: 2021 ident: bib0105 article-title: Measuring arterial pulsatility with Dynamic Inflow MAgnitude Contrast (DIMAC) publication-title: bioRxiv – volume: 202 year: 2019 ident: bib0072 article-title: Nuisance effects in inter-scan functional connectivity estimates before and after nuisance regression publication-title: Neuroimage – volume: 150 start-page: 213 year: 2017 end-page: 229 ident: bib0062 article-title: The global signal in fMRI: Nuisance or Information? publication-title: Neuroimage – volume: 31 start-page: 311 year: 2010 end-page: 325 ident: bib0101 article-title: Correction for pulse height variability reduces physiological noise in functional MRI when studying spontaneous brain activity publication-title: Hum. Brain Mapp. – volume: 87 start-page: 9868 year: 1990 end-page: 9872 ident: bib0075 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc. Natl. Acad. Sci. – volume: 143 start-page: 141 year: 2016 end-page: 151 ident: bib0061 article-title: Noise contributions to the fMRI signal: An overview publication-title: Neuroimage – volume: 45 start-page: 3809 year: 2000 end-page: 3820 ident: bib0086 article-title: A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging publication-title: Phys. Med. Biol. – volume: 176 start-page: 541 year: 2018 end-page: 549 ident: bib0077 article-title: Contribution of systemic vascular effects to fMRI activity in white matter publication-title: Neuroimage – volume: 26 start-page: 279 year: 2012 end-page: 287 ident: bib0092 article-title: Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications publication-title: J. Clin. Monit. Comput. – volume: 31 start-page: 1536 year: 2006 end-page: 1548 ident: bib0007 article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI publication-title: Neuroimage – volume: 21 start-page: 1652 year: 2004 end-page: 1664 ident: bib0106 article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal publication-title: Neuroimage – volume: 11 start-page: 2 year: 2018 end-page: 20 ident: bib0023 article-title: Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review publication-title: IEEE Rev. Biomed. Eng. – volume: 146 start-page: 609 year: 2017 end-page: 625 ident: bib0081 article-title: Sources and implications of whole-brain fMRI signals in humans publication-title: Neuroimage – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib0089 article-title: Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 51 start-page: 259 year: 2004 end-page: 265 ident: bib0067 article-title: Nonlinear modeling of the dynamic effects of arterial pressure and blood gas variations on cerebral blood flow in healthy humans publication-title: IEEE Trans. Biomed. Eng. – volume: 171 start-page: 415 year: 2018 end-page: 436 ident: bib0078 article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI publication-title: Neuroimage – volume: 1707 start-page: 1697 year: 2016 end-page: 1707 ident: bib0044 article-title: Comparison of peripheral near-infrared spectroscopy low-frequency oscillations to other denoising methods in resting state functional MRI with ultrahigh temporal resolution publication-title: Magn. Reson. Med. – volume: 36 start-page: 1 year: 2012 end-page: 7 ident: bib0064 article-title: Photoplethysmographic derivation of respiratory rate: a review of relevant physiology publication-title: J. Med. Eng. Technol. – volume: 44 start-page: 295 year: 2009 end-page: 305 ident: bib0079 article-title: Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging publication-title: Neuroimage – volume: 47 start-page: 1448 year: 2009 end-page: 1459 ident: bib0019 article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations publication-title: Neuroimage – volume: 55 start-page: 1633 year: 2011 end-page: 1644 ident: bib0102 article-title: Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal publication-title: Neuroimage – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0047 publication-title: FSL. Neuroimage – volume: 8 start-page: 5 year: 2011 ident: bib0103 article-title: The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility publication-title: Fluids Barriers CNS – volume: 105 start-page: 536 year: 2015 end-page: 551 ident: bib0082 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage – volume: 1 start-page: 496 year: 2011 end-page: 510 ident: bib0017 article-title: Global and system-specific resting-state fmri fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks publication-title: Brain Connect. – volume: 10 year: 2021 ident: bib0107 article-title: Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability publication-title: eLife – volume: 212 year: 2020 ident: bib0002 article-title: Identifying and removing widespread signal deflections from fMRI data: rethinking the global signal regression problem publication-title: Neuroimage – volume: 5 start-page: 143 year: 2001 end-page: 156 ident: bib0048 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. – volume: 47 start-page: 1092 year: 2009 end-page: 1104 ident: bib0008 article-title: fMRI in the presence of task-correlated breathing variations publication-title: Neuroimage – volume: 13 year: 2019 ident: bib0098 article-title: Low frequency systemic hemodynamic “noise” in resting state BOLD fMRI: Characteristics, causes, implications, mitigation strategies, and applications publication-title: Front. Neurosci. – volume: 68 start-page: 93 year: 2013 end-page: 104 ident: bib0021 article-title: Association between heart rate variability and fluctuations in resting-state functional connectivity publication-title: Neuroimage – volume: 8 start-page: 618 year: 2018 end-page: 627 ident: bib0030 article-title: The effects of global signal regression on estimates of resting-state blood oxygen-level-dependent functional magnetic resonance imaging and electroencephalogram vigilance correlations publication-title: Brain Connect – volume: 38 start-page: 306 year: 2007 end-page: 320 ident: bib0094 article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal publication-title: Neuroimage – volume: 186 start-page: 533 year: 2019 end-page: 548 ident: bib0083 article-title: Modeling of dynamic cerebrovascular reactivity to spontaneous and externally induced CO2 fluctuations in the human brain using BOLD-fMRI publication-title: Neuroimage – volume: 112 start-page: 267 year: 2015 end-page: 277 ident: bib0084 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: Neuroimage – volume: 9 start-page: 407 year: 1999 end-page: 415 ident: bib0026 article-title: Localization of cardiac-induced signal change in fMRI publication-title: Neuroimage – volume: 21 start-page: 599 year: 2003 end-page: 607 ident: bib0041 article-title: Influence of baseline hematocrit on between-subject BOLD signal change using gradient echo and asymmetric spin echo EPI publication-title: Magn. Reson. Imaging – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib0108 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 37 start-page: 90 year: 2007 end-page: 101 ident: bib0004 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage – volume: 256 start-page: 117 year: 2015 end-page: 121 ident: bib0066 article-title: Real-time fMRI processing with physiological noise correction – Comparison with off-line analysis publication-title: J. Neurosci. Methods – volume: 53 start-page: 553 year: 2010 end-page: 564 ident: bib0097 article-title: Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain publication-title: Neuroimage – volume: 39 start-page: 855 year: 1998 end-page: 864 ident: bib0014 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn. Reson. Med. – volume: 33 start-page: 18190 year: 2013 end-page: 18199 ident: bib0046 article-title: Cerebral arterial pulsation drives paravascular CSF-Interstitial fluid exchange in the murine brain publication-title: J. Neurosci. – volume: 3 year: 2016 ident: bib0096 article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward publication-title: Neurophotonics – start-page: 1 year: 2021 end-page: 61 ident: bib0052 article-title: A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity publication-title: bioRxiv – volume: 374 year: 2016 ident: bib0005 article-title: The pulsatility volume index: An indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 10 start-page: 171 year: 1997 end-page: 178 ident: bib0025 article-title: Software tools for analysis and visualization of fMRI data publication-title: NMR Biomed. – volume: 366 start-page: 628 year: 2019 end-page: 631 ident: bib0034 article-title: Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep publication-title: Science – volume: 62 start-page: 864 year: 2012 end-page: 870 ident: bib0006 article-title: The role of physiological noise in resting-state functional connectivity publication-title: Neuroimage – volume: 42 start-page: 582 year: 2008 end-page: 590 ident: bib0049 article-title: Integration of motion correction and physiological noise regression in fMRI publication-title: Neuroimage – reference: . – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib0010 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. – volume: 28 year: 2007 ident: bib0001 article-title: Photoplethysmography and its application in clinical physiological measurement publication-title: Physiol. Meas. – volume: 62 start-page: 975 year: 2012 end-page: 984 ident: bib0012 article-title: Linear systems analysis of the fMRI signal publication-title: Neuroimage – year: 2004 ident: bib0063 article-title: Nonlinear Dynamic Modeling of Physiological Systems publication-title: IEEE Press Series on Biomedical Engineering – volume: 9031 year: 2014 ident: bib0032 article-title: The optical origin of the PPG signal. Saratov Fall Meet publication-title: Opt. Technol. Biophys. Med. XV; Laser Phys. Photonics XV – volume: 352 start-page: 649 year: 1997 end-page: 659 ident: bib0028 article-title: Quantification in tissue near–infrared spectroscopy publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci. – volume: 18 start-page: 419 year: 2017 end-page: 434 ident: bib0055 article-title: Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease publication-title: Nat. Rev. Neurosci. – volume: 38 start-page: 306 year: 2007 ident: 10.1016/j.neuroimage.2021.118467_bib0094 article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.037 – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0054 article-title: Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116150 – volume: 62 start-page: 975 year: 2012 ident: 10.1016/j.neuroimage.2021.118467_bib0012 article-title: Linear systems analysis of the fMRI signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.082 – year: 2004 ident: 10.1016/j.neuroimage.2021.118467_bib0063 article-title: Nonlinear Dynamic Modeling of Physiological Systems – volume: 216 year: 2020 ident: 10.1016/j.neuroimage.2021.118467_bib0040 article-title: Controlling for the effect of arterial-CO2 fluctuations in resting-state fMRI: Comparing end-tidal CO2 clamping and retroactive CO2 correction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116874 – volume: 96 start-page: 17 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0045 article-title: The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease publication-title: Neuron doi: 10.1016/j.neuron.2017.07.030 – volume: 154 start-page: 169 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0071 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.052 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.neuroimage.2021.118467_bib0108 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 47 start-page: 1092 year: 2009 ident: 10.1016/j.neuroimage.2021.118467_bib0008 article-title: fMRI in the presence of task-correlated breathing variations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.030 – year: 2021 ident: 10.1016/j.neuroimage.2021.118467_bib0087 article-title: Cardiovascular brain impulses in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awab144 – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0072 article-title: Nuisance effects in inter-scan functional connectivity estimates before and after nuisance regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.07.018 – volume: 186 start-page: 533 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0083 article-title: Modeling of dynamic cerebrovascular reactivity to spontaneous and externally induced CO2 fluctuations in the human brain using BOLD-fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.084 – volume: 16 start-page: 42 year: 2011 ident: 10.1016/j.neuroimage.2021.118467_bib0080 article-title: Near-infrared spectroscopy: a methodology-focused review publication-title: Semin. Fetal Neonatal Med. doi: 10.1016/j.siny.2010.05.003 – volume: 40 start-page: 644 year: 2008 ident: 10.1016/j.neuroimage.2021.118467_bib0009 article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.059 – volume: 171 start-page: 415 year: 2018 ident: 10.1016/j.neuroimage.2021.118467_bib0078 article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.073 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2021.118467_bib0010 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 5 start-page: 143 year: 2001 ident: 10.1016/j.neuroimage.2021.118467_bib0048 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)00036-6 – volume: 33 start-page: 1072 year: 2006 ident: 10.1016/j.neuroimage.2021.118467_bib0027 article-title: An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data publication-title: Neuoimage doi: 10.1016/j.neuroimage.2006.08.006 – volume: 45 start-page: 3809 year: 2000 ident: 10.1016/j.neuroimage.2021.118467_bib0086 article-title: A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/45/12/321 – volume: 42 start-page: 582 year: 2008 ident: 10.1016/j.neuroimage.2021.118467_bib0049 article-title: Integration of motion correction and physiological noise regression in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.019 – volume: 44 start-page: 162 year: 2000 ident: 10.1016/j.neuroimage.2021.118467_bib0038 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – volume: 143 start-page: 141 year: 2016 ident: 10.1016/j.neuroimage.2021.118467_bib0061 article-title: Noise contributions to the fMRI signal: An overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.008 – volume: 176 start-page: 541 year: 2018 ident: 10.1016/j.neuroimage.2021.118467_bib0077 article-title: Contribution of systemic vascular effects to fMRI activity in white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.04.045 – volume: 44 start-page: 295 year: 2009 ident: 10.1016/j.neuroimage.2021.118467_bib0079 article-title: Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.007 – volume: 12 start-page: 466 year: 2000 ident: 10.1016/j.neuroimage.2021.118467_bib0033 article-title: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics publication-title: Neuroimage doi: 10.1006/nimg.2000.0630 – volume: 104 start-page: 266 year: 2015 ident: 10.1016/j.neuroimage.2021.118467_bib0039 article-title: Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: Spatial specificity, test-retest reliability and effect of fMRI sampling rate publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.031 – volume: 55 start-page: 1633 year: 2011 ident: 10.1016/j.neuroimage.2021.118467_bib0102 article-title: Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.090 – volume: 62 start-page: 864 year: 2012 ident: 10.1016/j.neuroimage.2021.118467_bib0006 article-title: The role of physiological noise in resting-state functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.016 – volume: 256 start-page: 117 year: 2015 ident: 10.1016/j.neuroimage.2021.118467_bib0066 article-title: Real-time fMRI processing with physiological noise correction – Comparison with off-line analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.033 – volume: 28 year: 2007 ident: 10.1016/j.neuroimage.2021.118467_bib0001 article-title: Photoplethysmography and its application in clinical physiological measurement publication-title: Physiol. Meas. doi: 10.1088/0967-3334/28/3/R01 – volume: 2 start-page: 421 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0076 article-title: Sympathetic activity contributes to the fMRI signal publication-title: Commun. Biol. doi: 10.1038/s42003-019-0659-0 – volume: 7 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118467_bib0042 article-title: Non-1 invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI publication-title: Elife doi: 10.7554/eLife.34028 – volume: 22 start-page: 1067 year: 1999 ident: 10.1016/j.neuroimage.2021.118467_bib0029 article-title: Heart rate variability during waking and sleep in healthy males and females publication-title: Sleep doi: 10.1093/sleep/22.8.1067 – volume: 53 start-page: 553 year: 2010 ident: 10.1016/j.neuroimage.2021.118467_bib0097 article-title: Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.049 – volume: 1 start-page: 496 year: 2011 ident: 10.1016/j.neuroimage.2021.118467_bib0017 article-title: Global and system-specific resting-state fmri fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks publication-title: Brain Connect. doi: 10.1089/brain.2011.0065 – volume: 39 start-page: 855 year: 1998 ident: 10.1016/j.neuroimage.2021.118467_bib0014 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390602 – volume: 28 start-page: 1337 year: 2008 ident: 10.1016/j.neuroimage.2021.118467_bib0043 article-title: Brainstem functional magnetic resonance imaging: Disentangling signal from physiological noise publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21623 – volume: 9031 year: 2014 ident: 10.1016/j.neuroimage.2021.118467_bib0032 article-title: The optical origin of the PPG signal. Saratov Fall Meet publication-title: Opt. Technol. Biophys. Med. XV; Laser Phys. Photonics XV – volume: 352 start-page: 649 year: 1997 ident: 10.1016/j.neuroimage.2021.118467_bib0028 article-title: Quantification in tissue near–infrared spectroscopy publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci. doi: 10.1098/rstb.1997.0046 – volume: 80 start-page: 349 year: 2013 ident: 10.1016/j.neuroimage.2021.118467_bib0070 article-title: Resting-state fMRI confounds and cleanup publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.001 – volume: 62 start-page: 782 year: 2012 ident: 10.1016/j.neuroimage.2021.118467_bib0047 publication-title: FSL. Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 212 year: 2020 ident: 10.1016/j.neuroimage.2021.118467_bib0002 article-title: Identifying and removing widespread signal deflections from fMRI data: rethinking the global signal regression problem publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116614 – ident: 10.1016/j.neuroimage.2021.118467_bib0104 doi: 10.3389/fnins.2019.00433 – volume: 87 start-page: 9868 year: 1990 ident: 10.1016/j.neuroimage.2021.118467_bib0075 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.87.24.9868 – volume: 47 start-page: 1381 year: 2009 ident: 10.1016/j.neuroimage.2021.118467_bib0020 article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.048 – volume: 89 start-page: 5675 year: 1992 ident: 10.1016/j.neuroimage.2021.118467_bib0058 article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.89.12.5675 – volume: 16 start-page: 4207 year: 1996 ident: 10.1016/j.neuroimage.2021.118467_bib0011 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-13-04207.1996 – volume: 8 start-page: 618 year: 2018 ident: 10.1016/j.neuroimage.2021.118467_bib0030 article-title: The effects of global signal regression on estimates of resting-state blood oxygen-level-dependent functional magnetic resonance imaging and electroencephalogram vigilance correlations publication-title: Brain Connect doi: 10.1089/brain.2018.0645 – volume: 181 start-page: 692 year: 2018 ident: 10.1016/j.neuroimage.2021.118467_bib0035 article-title: Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.04.076 – volume: 36 start-page: 592 year: 2014 ident: 10.1016/j.neuroimage.2021.118467_bib0057 article-title: Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.10.011 – volume: 112 start-page: 267 year: 2015 ident: 10.1016/j.neuroimage.2021.118467_bib0084 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.064 – volume: 19 year: 2015 ident: 10.1016/j.neuroimage.2021.118467_bib0050 article-title: Pulse oximetry publication-title: Crit. Care doi: 10.1186/s13054-015-0984-8 – volume: 51 start-page: 259 year: 2004 ident: 10.1016/j.neuroimage.2021.118467_bib0067 article-title: Nonlinear modeling of the dynamic effects of arterial pressure and blood gas variations on cerebral blood flow in healthy humans publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.834272 – volume: 132 start-page: 413 year: 1980 ident: 10.1016/j.neuroimage.2021.118467_bib0074 article-title: The effect of hematocrit on photoelectric plethysmogram publication-title: Tohoku J. Exp. Med. doi: 10.1620/tjem.132.413 – volume: 154 start-page: 174 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0024 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.020 – ident: 10.1016/j.neuroimage.2021.118467_bib0053 doi: 10.1101/2020.06.01.128306 – volume: 21 start-page: 1652 year: 2004 ident: 10.1016/j.neuroimage.2021.118467_bib0106 article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.11.025 – volume: 9 year: 2018 ident: 10.1016/j.neuroimage.2021.118467_bib0065 article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension publication-title: Nat. Commun. doi: 10.1038/s41467-018-07318-3 – volume: 9 start-page: 407 year: 1999 ident: 10.1016/j.neuroimage.2021.118467_bib0026 article-title: Localization of cardiac-induced signal change in fMRI publication-title: Neuroimage doi: 10.1006/nimg.1998.0424 – volume: 366 start-page: 628 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0034 article-title: Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep publication-title: Science doi: 10.1126/science.aax5440 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2021.118467_bib0037 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 19 start-page: 1055 year: 2001 ident: 10.1016/j.neuroimage.2021.118467_bib0060 article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(01)00460-X – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.neuroimage.2021.118467_bib0089 article-title: Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 21 start-page: 599 year: 2003 ident: 10.1016/j.neuroimage.2021.118467_bib0041 article-title: Influence of baseline hematocrit on between-subject BOLD signal change using gradient echo and asymmetric spin echo EPI publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(03)00083-3 – volume: 238 start-page: 962 year: 2006 ident: 10.1016/j.neuroimage.2021.118467_bib0093 article-title: Mechanisms to explain the reverse perivascular transport of solutes out of the brain publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2005.07.005 – volume: 184 start-page: 1005 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0073 article-title: Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.024 – volume: 146 start-page: 609 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0081 article-title: Sources and implications of whole-brain fMRI signals in humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.038 – start-page: 1 year: 2021 ident: 10.1016/j.neuroimage.2021.118467_bib0052 article-title: A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity publication-title: bioRxiv – volume: 10 start-page: 171 year: 1997 ident: 10.1016/j.neuroimage.2021.118467_bib0025 article-title: Software tools for analysis and visualization of fMRI data publication-title: NMR Biomed. doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L – volume: 72 start-page: 252 year: 2013 ident: 10.1016/j.neuroimage.2021.118467_bib0031 article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.050 – volume: 11 start-page: 2 year: 2018 ident: 10.1016/j.neuroimage.2021.118467_bib0023 article-title: Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2017.2763681 – volume: 330 year: 2020 ident: 10.1016/j.neuroimage.2021.118467_bib0091 article-title: Effects of motion related outliers in dynamic functional connectivity using the sliding window method publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108519 – volume: 36 start-page: 1033 year: 2016 ident: 10.1016/j.neuroimage.2021.118467_bib0056 article-title: Ultra-fast magnetic resonance encephalography of physiological brain activity-Glymphatic pulsation mechanisms? publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X15622047 – volume: 1707 start-page: 1697 year: 2016 ident: 10.1016/j.neuroimage.2021.118467_bib0044 article-title: Comparison of peripheral near-infrared spectroscopy low-frequency oscillations to other denoising methods in resting state functional MRI with ultrahigh temporal resolution publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26038 – volume: 10 year: 2021 ident: 10.1016/j.neuroimage.2021.118467_bib0107 article-title: Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability publication-title: eLife doi: 10.7554/eLife.62324 – volume: 374 year: 2016 ident: 10.1016/j.neuroimage.2021.118467_bib0005 article-title: The pulsatility volume index: An indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 80 start-page: 144 year: 2013 ident: 10.1016/j.neuroimage.2021.118467_bib0095 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 86 start-page: 343 year: 2014 ident: 10.1016/j.neuroimage.2021.118467_bib0016 article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.013 – volume: 46 start-page: 3331 year: 2001 ident: 10.1016/j.neuroimage.2021.118467_bib0085 article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/46/12/318 – volume: 31 start-page: 311 year: 2010 ident: 10.1016/j.neuroimage.2021.118467_bib0101 article-title: Correction for pulse height variability reduces physiological noise in functional MRI when studying spontaneous brain activity publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20866 – volume: 36 start-page: 1 year: 2012 ident: 10.1016/j.neuroimage.2021.118467_bib0064 article-title: Photoplethysmographic derivation of respiratory rate: a review of relevant physiology publication-title: J. Med. Eng. Technol. doi: 10.3109/03091902.2011.638965 – volume: 276 start-page: 56 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0051 article-title: The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.10.019 – volume: 3 year: 2016 ident: 10.1016/j.neuroimage.2021.118467_bib0096 article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward publication-title: Neurophotonics – volume: 154 start-page: 128 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0015 article-title: Methods for cleaning the BOLD fMRI signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.018 – volume: 374 year: 2016 ident: 10.1016/j.neuroimage.2021.118467_bib0022 article-title: Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 2 start-page: 237 year: 1965 ident: 10.1016/j.neuroimage.2021.118467_bib0059 article-title: Measurement of the wiener kernels of a non-linear system by cross-correlation publication-title: Int. J. Control doi: 10.1080/00207176508905543 – volume: 19 start-page: 1175 year: 2016 ident: 10.1016/j.neuroimage.2021.118467_bib0036 article-title: The human connectome project's neuroimaging approach publication-title: Nat. Neurosci. doi: 10.1038/nn.4361 – volume: 33 start-page: 18190 year: 2013 ident: 10.1016/j.neuroimage.2021.118467_bib0046 article-title: Cerebral arterial pulsation drives paravascular CSF-Interstitial fluid exchange in the murine brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1592-13.2013 – volume: 47 start-page: 1448 year: 2009 ident: 10.1016/j.neuroimage.2021.118467_bib0019 article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.012 – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0069 article-title: Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116072 – volume: 60 start-page: 1517 year: 2012 ident: 10.1016/j.neuroimage.2021.118467_bib0090 article-title: Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.067 – volume: 26 start-page: 279 year: 2012 ident: 10.1016/j.neuroimage.2021.118467_bib0092 article-title: Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications publication-title: J. Clin. Monit. Comput. doi: 10.1007/s10877-012-9348-y – volume: 13 year: 2019 ident: 10.1016/j.neuroimage.2021.118467_bib0098 article-title: Low frequency systemic hemodynamic “noise” in resting state BOLD fMRI: Characteristics, causes, implications, mitigation strategies, and applications publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00787 – volume: 44 start-page: 857 year: 2009 ident: 10.1016/j.neuroimage.2021.118467_bib0018 article-title: Influence of heart rate on the BOLD signal: the cardiac response function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.029 – year: 2021 ident: 10.1016/j.neuroimage.2021.118467_bib0105 article-title: Measuring arterial pulsatility with Dynamic Inflow MAgnitude Contrast (DIMAC) publication-title: bioRxiv – volume: 37 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2021.118467_bib0004 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 108 start-page: 950 year: 2008 ident: 10.1016/j.neuroimage.2021.118467_bib0088 article-title: Utility of the photoplethysmogram in circulatory monitoring publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31816c89e1 – volume: 68 start-page: 93 year: 2013 ident: 10.1016/j.neuroimage.2021.118467_bib0021 article-title: Association between heart rate variability and fluctuations in resting-state functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.038 – volume: 18 start-page: 419 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0055 article-title: Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2017.48 – volume: 31 start-page: 1536 year: 2006 ident: 10.1016/j.neuroimage.2021.118467_bib0007 article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.048 – volume: 25 start-page: 390 year: 1992 ident: 10.1016/j.neuroimage.2021.118467_bib0003 article-title: Time course EPI during task activation publication-title: Magn. Res. Med. doi: 10.1002/mrm.1910250220 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2021.118467_bib0100 article-title: The WU-Minn Human Connectome Project: An overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 103 start-page: 297 year: 2010 ident: 10.1016/j.neuroimage.2021.118467_bib0099 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. doi: 10.1152/jn.00783.2009 – volume: 8 start-page: 5 year: 2011 ident: 10.1016/j.neuroimage.2021.118467_bib0103 article-title: The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility publication-title: Fluids Barriers CNS doi: 10.1186/2045-8118-8-5 – volume: 150 start-page: 213 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0062 article-title: The global signal in fMRI: Nuisance or Information? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.036 – volume: 105 start-page: 536 year: 2015 ident: 10.1016/j.neuroimage.2021.118467_bib0082 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 154 start-page: 159 year: 2017 ident: 10.1016/j.neuroimage.2021.118467_bib0013 article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.027 |
SSID | ssj0009148 |
Score | 2.4488983 |
Snippet | The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118467 |
SubjectTerms | Adult Blood pressure Brain - physiology Brain mapping Brain Mapping - methods Carbon dioxide Cardiac pulsation Connectome CPM Female fMRI artifacts Functional magnetic resonance imaging Global signal Heart rate Heart Rate - physiology Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Neuroimaging Noise noise correction techniques Oscillations Photoplethysmography - methods Physiology Power RETROICOR SLFOs Substantia grisea System theory Variation Young Adult |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhh5JLadO0dZoEFXI1XevDssgpLQ1pYXsICeRQEPoY0y0be0l2_39Gku20h5I99LIHr8cWo5HmDXp-Q8ipqgXIIGUZmGhLwbwqXTxCtAwjCsBqnvqnzH_Ulzfi-628_aPVV-SEZXng7LhPsmm9c5F9JDUWH2Cb0AiBvzPQwvIEjTDnjcXUKLeLKH_g7WQ2V1KHXNzhGsWakFW4UzS5t_xTMkqa_X_lpH9hzpR7Ll6RlwNopOd5sK_JDnT75MV8OBZ_Q34mHue4jdGuXzwATT1uMDHRRUfb-dU3GhNWoH1HEfPR1WYZeTxLoJFU3neYe2jf0tWvfh0p5XH67rKa9QG5ufh6_eWyHNomlL4W1bpULaJAqBtnVe19y5l2ICzWDRYXXA0s4OQorFK0rRmbgWKeS8cFBOYqENzzt2S3w_e-J3QmgFfCohFvhXNgXSWk4qGRwQfPVEHU6D_jB03x2NpiaUby2G_z5HkTPW-y5wtSTZarrKuxhc3nOEXT_VEZO13AeDFDvJjn4qUgepxgM358itslPmixxQDOJtsBoGTgsaX10RhPZtgoHgwiTj0TWENWBfk4_Y1LPJ7b2A76TboHw1lr0RTkXY7DyQccAWXUdDz8H775QPbieOOnlpU8Irvr-w0cI-Zau5O0vB4B-04rSQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh9JLafp0kwYVenXX1sO26KkNCWlhe2gbyKEgJFluXTb2kuxe-9s7I8lecigs9LKwXs1ajEbzQJ--IeRtXQkvWynzlokuF8zVucUjRMPAorw3iof-Kcsv1eWV-Hwtrw_I2XQXBmGVyfdHnx68dXqySNpcrPt-8Q0yAwg3yOeFcbDAuh3Z68Cm3_3ZwTxUKeJ1OMlzHJ3QPBHjFTgj-xvYuVApshL8RxM7zu9CVGDyvxep_pWJhoh08Zg8Sqkk_RBne0QO_PCEPFimw_Kn5EdAd07OjQ5jf-dp6HwD4Yr2A-2WXz9RDGMtHQcKmSBdb1eI7ll5ilDzcYCIRMeOrn-NGwSa46LeRI7rZ-Tq4vz72WWeminkrhLlJq87yA191VhTV851nCnrhYFqwoBmKs9aWLIaahdlKsYKXzPHpeXCt8yWXnDHn5PDAd77ktBCeF4KA0K8E9Z6Y0sha942snWtY3VG6kl_2iWmcWx4sdITpOy33mleo-Z11HxGyllyHdk29pD5iEs0j0e-7PBgvP2pk8Fo2XTOWsSwSQUlrDdN2wgBn4VXwnCTETUtsJ6upIIThT_q95jA-1n2nunuKX0y2ZNO7uNOQx6qCgGVZZmRN_PPsPHxNMcMftyGMWDaSokmIy-iHc464JBmItPjq_-a2jF5iN_w5mUpT8jh5nbrX0MKtrGnYY_9BZTjL6A priority: 102 providerName: Elsevier |
Title | Physiological noise modeling in fMRI based on the pulsatile component of photoplethysmograph |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921007400 https://dx.doi.org/10.1016/j.neuroimage.2021.118467 https://www.ncbi.nlm.nih.gov/pubmed/34390877 https://www.proquest.com/docview/2569046661 https://www.proquest.com/docview/2561489948 https://doaj.org/article/58fcbb673659407ea8d844a8d0e94a3a |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN9kjMpIvAYaf8SJeEAb2tSBWqGJSX1AsmzHgaIuKWv7ur-dO8dJxQOoL6mU-pLo7nwf9vl3hLxVufCykjKtmKhTwZxKLW4hGgYa5b0peeifMp3lk2vxeS7nccFtHcsqe5sYDHXVOlwjfw-uuYRcDtzJx9XvFLtG4e5qbKFxQI4QugyTLzVXO9DdTHRH4SRPCxgQK3m6-q6AF7m4gVkLWSLLwHYUXbf5nXsKKP5_eal_RaHBG108Ig9jGElPO7k_Jvd884Tcn8aN8qfke6js7A0bbdrF2tPQ9QZcFV00tJ5eXVJ0YRVtGwpRIF1tl1jZs_QUy8zbBrwRbWu6-tlusMgcBXrT4Vs_I9cX598-TdLYSCF1ucg2qaohLvR5YY3Knas5K60XBjIJA5zJPatAXAryltLkjI29Yo5Ly4WvmM284I4_J4cNvPcloWPheSYMEPFaWOuNzYRUvCpk5SrHVEJUzz_tIso4NrtY6r6c7JfecV4j53XH-YRkA-WqQ9rYg-YMRTSMR6zscKO9_aHj1NOyqJ21WL8mS0hfvSmqQgi4jn0pDDcJKXsB6_44KhhQeNBijw_4MNDGkKULRfakPun1SUfTsdY7RU_Im-FvmPS4k2Ma327DGFDtshRFQl50ejjwgEOIiSiPx_9_-CvyAL8Ej1Vm8oQcbm63_jXEVxs7Igfv7rJRmEojcnR6-WUyg9-z89nXq1FYs_gDNeIpkg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJHiMafySxEEIMNrVsrdC0SXtA8mzHYZ26pKytEP8UfyPnOGnFA6gve8lDknOs8_nu5_jnO4DXWcqdKISIC8rLmFObxcZvIWqKFuWclqypnzIap4MT_uVUnG7B7-4sjKdVdj6xcdRFbf0_8rcYmiWu5TCcfJj9iH3VKL-72pXQCGZx4H79xCXb_P3wM47vG0r3944_DeK2qkBsU54s4qxEkOTS3OgstbZkVBrHNcJqjfaYOlpg3zME8VKnlPZdRi0ThnFXUJM4zizDdm_ANmcIFXqwvbs3_nq0TvOb8HD4TrA4TxLZcocCo6zJUDm5RD-B61KaoLfKQ337dUBs6gb8FRf_hXub-Ld_F-60wJV8DJZ2D7ZcdR9ujtqt-QfwreGSdq6UVPVk7khTZweDI5lUpBwdDYkPmgWpK4K4k8yWU88lmjriie11hfGP1CWZndcLT2v3JnQZMmo_hJNrUfIj6FX43SdA-tyxhGsUYiU3xmmTcJGxIheFLSzNIsg6_Snb5jX35TWmqiOwXai15pXXvAqajyBZSc5Cbo8NZHb9EK3e99m5mxv11XfVTnYl8tIa4xlzQuKC2em8yDnHa99JrpmOQHYDrLoDsOiysaHJBh14t5JtQVIAPxtK73T2pFpnNVfrqRXBq9VjdDN-70hXrl4276BpS8nzCB4HO1zpgCGo9Xkln_6_8Zdwa3A8OlSHw_HBM7jte-UPdSZiB3qLq6V7juhuYV60U4rA2XXP4j-DdGJ2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEPcVBhgJHqM1vsSxEELAqFZGJ4SY1Ack41ugqEvK2grx1_h1HNtJKh5AfdlLH9IcJz0-l8_153MQeioK5rnjPHOEVRkjVmQmbCFqAhblvZY09k-ZnBbHZ-zdlE930O_uLEygVXYxMQZq19jwH_khpGYJazlIJ4dVS4v4cDR6ufiRhQ5SYae1a6eRTOTE__oJy7fli_ERzPUzQkZvP705ztoOA5ktWL7KRAWAyRel0aKwtqJEGs80QGwNtll44uB3CAD0UheEDL0glnJDmXfE5J5RS2HcK-iqoJA2wZfEVGwK_uYsHcPjNCvzXLYsosQti7UqZ-cQMWCFSnKIW2XqdL9JjbGDwF8Z8l8IOGbC0Q10vYWw-FWyuZtox9e30N6k3aS_jT5HVmkXVHHdzJYex447kCbxrMbV5OMYh_TpcFNjQKB4sZ4HVtHc40Bxb2rIhLip8OJbswoE92BM56m29h10dikqvot2a3juPsJD5mnONAjRihnjtckZF9SV3FlniRgg0elP2bbCeWi0MVcdle272mheBc2rpPkBynvJRarysYXM6zBF_f2hTne80Fx8Va3bK15W1pjAneMSls5el65kDD6HXjJN9QDJboJVdxQWgjcMNNviBZ73si1cSjBoS-mDzp5UG7aWauNkA_Sk_xoCTthF0rVv1vEeMG0pWTlA95Id9jqgAG9Dhcn7_x_8MdoD31Xvx6cnD9C18FLhdGfOD9Du6mLtHwLMW5lH0Z8w-nLZDvwHApVlRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiological+noise+modeling+in+fMRI+based+on+the+pulsatile+component+of+photoplethysmograph&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kassinopoulos%2C+Michalis&rft.au=Mitsis%2C+Georgios+D.&rft.date=2021-11-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=242&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118467&rft.externalDocID=S1053811921007400 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |