Physiological noise modeling in fMRI based on the pulsatile component of photoplethysmograph

The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to loca...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 242; p. 118467
Main Authors Kassinopoulos, Michalis, Mitsis, Georgios D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.118467

Cover

Loading…
Abstract The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS – defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies.
AbstractList The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS – defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies.
The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS - defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies.The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction techniques have been developed to correct for the associated confounds. The present study focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed cardiac pulsatility model (CPM) and compare its performance with the cardiac-related RETROICOR (Card-RETROICOR), which is a technique commonly used to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS - defined as the mean signal across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to explain a significantly larger fraction of the fMRI signal variance compared to Card-RETROICOR, particularly for subjects with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based techniques commonly employed in fMRI studies.
ArticleNumber 118467
Author Kassinopoulos, Michalis
Mitsis, Georgios D.
Author_xml – sequence: 1
  givenname: Michalis
  surname: Kassinopoulos
  fullname: Kassinopoulos, Michalis
  email: michalis.kassinopoulos@mail.mcgill.ca
  organization: Graduate Program in Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
– sequence: 2
  givenname: Georgios D.
  surname: Mitsis
  fullname: Mitsis, Georgios D.
  organization: Department of Bioengineering, McGill University, Montreal, QC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34390877$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuPFCEUhStmjPPQv2BI3LjpFqooHhujTpyxkzEaozsTQlG3umkpqAHKpP-9tD2jSa96A4Sc-3E5515WZz54qCpE8JJgwt5slx7mGOyo17CscU2WhAjK-JPqgmDZLmTL67P9uW0WghB5Xl2mtMUYS0LFs-q8oY3EgvOL6ufXzS7Z4MLaGu2QDzYBGkMPzvo1sh4Nn7-tUKcT9Ch4lDeAptklna0DZMI4lcZ8RmFA0ybkMDnIBTiGddTT5nn1dNAuwYuH_ar6cfPx-_Wnxd2X29X1-7uFYZTkBR-wwMBEpzkzZmhq2QHVklNd-mdQ99D2nLeN1KyuMfDaNG3XUOjrjgBtTHNVrQ7cPuitmmLxJe5U0Fb9vQhxrXTM1jhQrRhM1zHesFZSzEGLXlBaVgyS6kYX1usDa4rhfoaU1WiTAee0hzAnVbeseCglFUX66ki6DXP05ad7lcSUMUaK6uWDau5G6P-195hBEbw9CEwMKUUYlLG5GBx8jto6RbDah6626n_oah-6OoReAOII8PjGCaUfDqVQ4vltIapkLHgDvY1gcvHPngJ5dwQxZXr28_QLdqch_gDITuK4
CitedBy_id crossref_primary_10_1002_jmri_28948
crossref_primary_10_1016_j_bspc_2024_107151
crossref_primary_10_1016_j_pneurobio_2023_102510
crossref_primary_10_3390_brainsci13010008
crossref_primary_10_1016_j_neuroimage_2022_119136
crossref_primary_10_1097_WCO_0000000000001284
crossref_primary_10_1016_j_mri_2021_10_028
crossref_primary_10_3389_fnins_2022_795683
crossref_primary_10_7554_eLife_62324
crossref_primary_10_1002_sim_10162
crossref_primary_10_1088_1741_2552_ac8bff
Cites_doi 10.1016/j.neuroimage.2007.07.037
10.1016/j.neuroimage.2019.116150
10.1016/j.neuroimage.2012.01.082
10.1016/j.neuroimage.2020.116874
10.1016/j.neuron.2017.07.030
10.1016/j.neuroimage.2016.11.052
10.1109/42.906424
10.1016/j.neuroimage.2009.05.030
10.1093/brain/awab144
10.1016/j.neuroimage.2019.07.018
10.1016/j.neuroimage.2018.10.084
10.1016/j.siny.2010.05.003
10.1016/j.neuroimage.2007.11.059
10.1016/j.neuroimage.2017.12.073
10.1002/mrm.1910340409
10.1016/S1361-8415(01)00036-6
10.1016/j.neuroimage.2006.08.006
10.1088/0031-9155/45/12/321
10.1016/j.neuroimage.2008.05.019
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1016/j.neuroimage.2016.09.008
10.1016/j.neuroimage.2018.04.045
10.1016/j.neuroimage.2008.09.007
10.1006/nimg.2000.0630
10.1016/j.neuroimage.2014.10.031
10.1016/j.neuroimage.2010.11.090
10.1016/j.neuroimage.2012.01.016
10.1016/j.jneumeth.2015.08.033
10.1088/0967-3334/28/3/R01
10.1038/s42003-019-0659-0
10.7554/eLife.34028
10.1093/sleep/22.8.1067
10.1016/j.neuroimage.2010.06.049
10.1089/brain.2011.0065
10.1002/mrm.1910390602
10.1002/jmri.21623
10.1098/rstb.1997.0046
10.1016/j.neuroimage.2013.04.001
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2020.116614
10.3389/fnins.2019.00433
10.1073/pnas.87.24.9868
10.1016/j.neuroimage.2009.04.048
10.1073/pnas.89.12.5675
10.1523/JNEUROSCI.16-13-04207.1996
10.1089/brain.2018.0645
10.1016/j.neuroimage.2018.04.076
10.1016/j.medengphy.2013.10.011
10.1016/j.neuroimage.2015.02.064
10.1186/s13054-015-0984-8
10.1109/TBME.2004.834272
10.1620/tjem.132.413
10.1016/j.neuroimage.2017.03.020
10.1101/2020.06.01.128306
10.1016/j.neuroimage.2003.11.025
10.1038/s41467-018-07318-3
10.1006/nimg.1998.0424
10.1126/science.aax5440
10.1016/j.neuroimage.2013.04.127
10.1016/S0730-725X(01)00460-X
10.1016/j.neuroimage.2013.11.046
10.1016/S0730-725X(03)00083-3
10.1016/j.jtbi.2005.07.005
10.1016/j.neuroimage.2018.09.024
10.1016/j.neuroimage.2016.09.038
10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
10.1016/j.neuroimage.2013.01.050
10.1109/RBME.2017.2763681
10.1016/j.jneumeth.2019.108519
10.1177/0271678X15622047
10.1002/mrm.26038
10.7554/eLife.62324
10.1016/j.neuroimage.2013.05.039
10.1016/j.neuroimage.2013.10.013
10.1088/0031-9155/46/12/318
10.1002/hbm.20866
10.3109/03091902.2011.638965
10.1016/j.jneumeth.2016.10.019
10.1016/j.neuroimage.2016.12.018
10.1080/00207176508905543
10.1038/nn.4361
10.1523/JNEUROSCI.1592-13.2013
10.1016/j.neuroimage.2009.05.012
10.1016/j.neuroimage.2019.116072
10.1016/j.neuroimage.2012.01.067
10.1007/s10877-012-9348-y
10.3389/fnins.2019.00787
10.1016/j.neuroimage.2008.09.029
10.1016/j.neuroimage.2007.04.042
10.1097/ALN.0b013e31816c89e1
10.1016/j.neuroimage.2012.11.038
10.1038/nrn.2017.48
10.1016/j.neuroimage.2006.02.048
10.1002/mrm.1910250220
10.1016/j.neuroimage.2013.05.041
10.1152/jn.00783.2009
10.1186/2045-8118-8-5
10.1016/j.neuroimage.2017.02.036
10.1016/j.neuroimage.2014.10.044
10.1016/j.neuroimage.2016.12.027
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Nov 15, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Nov 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2021.118467
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest One Psychology
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_58fcbb673659407ea8d844a8d0e94a3a
34390877
10_1016_j_neuroimage_2021_118467
S1053811921007400
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c641t-7f080e68ba76ccf329be4a974a0536e2de5d77539a6220e72c35b34ed2b1e43c3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:30:31 EDT 2025
Thu Jul 10 22:03:34 EDT 2025
Wed Aug 13 03:05:40 EDT 2025
Wed Feb 19 02:26:54 EST 2025
Tue Jul 01 03:02:20 EDT 2025
Thu Apr 24 23:44:18 EDT 2025
Fri Feb 23 02:42:23 EST 2024
Tue Aug 26 18:33:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cardiac pulsation
CPM
SLFOs
noise correction techniques
RETROICOR
Global signal
fMRI artifacts
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-7f080e68ba76ccf329be4a974a0536e2de5d77539a6220e72c35b34ed2b1e43c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/58fcbb673659407ea8d844a8d0e94a3a
PMID 34390877
PQID 2569046661
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_58fcbb673659407ea8d844a8d0e94a3a
proquest_miscellaneous_2561489948
proquest_journals_2569046661
pubmed_primary_34390877
crossref_citationtrail_10_1016_j_neuroimage_2021_118467
crossref_primary_10_1016_j_neuroimage_2021_118467
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118467
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118467
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Hocke, Tong, Lindsey, de B. Frederick (bib0044) 2016; 1707
Mitsis, Ainslie, Poulin, Robbins, Marmarelis (bib0067) 2004; 51
Harvey, Pattinson, Brooks, Mayhew, Jenkinson, Wise (bib0043) 2008; 28
Iadecola (bib0045) 2017; 96
Biswal, Yetkin, Haughton, Hyde (bib0010) 1995; 34
Chang, Raven, Duyn (bib0022) 2016; 374
Nalci, Rao, Liu (bib0073) 2019; 184
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0089) 2014; 90
Cox, Hyde (bib0025) 1997; 10
Chang, Glover (bib0019) 2009; 47
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0047) 2012; 62
Murphy, Birn, Bandettini (bib0070) 2013; 80
Chang, Glover (bib0020) 2009; 47
Tong, Hocke, Frederick (bib0098) 2019; 13
Kassinopoulos, M., Mitsis, G.D., 2020b. Figures produced in Kassinopoulos & Mitsis (2020) - Physiological Noise Modeling in fMRI based on the pulsatile component of photoplethysmograph [WWW Document]. doi
Kiviniemi, Wang, Korhonen, Keinänen, Tuovinen, Autio, Levan, Keilholz, Zang, Hennig, Nedergaard (bib0056) 2016; 36
Raj, Paley, Anderson, Kennan, Gore (bib0086) 2000; 45
Wagshul, Eide, Madsen (bib0103) 2011; 8
Kassinopoulos, Mitsis (bib0052) 2021
.
Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms, Kelly, Laumann, Miller, Moeller, Petersen, Power, Salimi-Khorshidi, Snyder, Vu, Woolrich, Xu, Yacoub, Uǧurbil, Van Essen, Glasser (bib0095) 2013; 80
Liu, Nalci, Falahpour (bib0062) 2017; 150
Kasper, Bollmann, Diaconescu, Hutton, Heinzle, Iglesias, Hauser, Sebold, Manjaly, Pruessmann, Stephan (bib0051) 2017; 276
Glasser, Coalson, Bijsterbosch, Harrison, Harms, Anticevic, Van Essen, Smith (bib0035) 2018; 181
Bandettini, Wong, Hinks, Tikofsky, Hyde (bib0003) 1992; 25
Caballero-Gaudes, Reynolds (bib0015) 2017; 154
Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet, Kennedy, Hoppel, Cohen, Turner, Cheng -, Brady, Rosen (bib0058) 1992; 89
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0100) 2013; 80
Delpy, Cope (bib0028) 1997; 352
Birn, Smith, Jones, Bandettini (bib0009) 2008; 40
Fultz, Bonmassar, Setsompop, Stickgold, Rosen, Polimeni, Lewis (bib0034) 2019; 366
Lee, Schetzen (bib0059) 1965; 2
Golestani, Chang, Kwinta, Khatamian, Jean Chen (bib0039) 2015; 104
Kisler, Nelson, Montagne, Zlokovic (bib0055) 2017; 18
Özbay, Chang, Picchioni, Mandelkow, Chappel-Farley, van Gelderen, de Zwart, Duyn (bib0076) 2019; 2
Tong, Frederick (bib0097) 2010; 53
Scheeren, Schober, Schwarte (bib0092) 2012; 26
Van Houdt, Ossenblok, Boon, Leijten, Velis, Stam, De Munck (bib0101) 2010; 31
Pellicer, Bravo (bib0080) 2011; 16
Fine (bib0032) 2014; 9031
Tachtsidis, Scholkmann (bib0096) 2016; 3
Jenkinson, Smith (bib0048) 2001; 5
Marmarelis (bib0063) 2004
Wise, Ide, Poulin, Tracey (bib0106) 2004; 21
Whittaker, J.R., Driver, I.D., Venzi, M., Bright, M.G., Murphy, K., Chen, J., Whittaker, J.R., 2019. Cerebral autoregulation evidenced by synchronized low frequency oscillations in blood pressure and resting-state fMRI 13, 1–12. 10.3389/fnins.2019.00433
Zhang, Brady, Smith (bib0108) 2001; 20
Kassinopoulos, Mitsis (bib0054) 2019; 202
Parkes, Fulcher, Yücel, Fornito (bib0078) 2018; 171
Birn (bib0006) 2012; 62
Birn, Murphy, Handwerker, Bandettini (bib0008) 2009; 47
Levin, Frederick, Ross, Fox, Von Rosenberg, Kaufman, Lange, Mendelson, Cohen, Renshaw (bib0060) 2001; 19
Falahpour, Nalci, Liu (bib0030) 2018; 8
Raj, Anderson, Gore (bib0085) 2001; 46
Jones, Bandettini, Birn (bib0049) 2008; 42
Deckers, Gelderen, Ries, Barret, Duyn, Ikonomidou, Fukunaga, Glover, Zwart (bib0027) 2006; 33
Bianciardi, Toschi, Polimeni, Evans, Bhat, Keil, Rosen, Boas, Wald (bib0005) 2016; 374
Schley, Carare-Nnadi, Please, Perry, Weller (bib0093) 2006; 238
Dagli, Ingeholm, Haxby (bib0026) 1999; 9
Boynton, Engel, Glover, Heeger (bib0011) 1996; 16
Harrison, Siow, Akilo, Evans, Ismail, Ohene, Nahavandi, Thomas, Lythgoe, Wells (bib0042) 2018; 7
Power, Schlaggar, Petersen (bib0082) 2015; 105
Pattinson, Mitsis, Harvey, Jbabdi, Dirckx, Mayhew, Rogers, Tracey, Wise (bib0079) 2009; 44
Chang, Cunningham, Glover (bib0018) 2009; 44
Glover, Li, Ress (bib0038) 2000; 44
Carbonell, Bellec, Shmuel (bib0017) 2011; 1
Misaki, Barzigar, Zotev, Phillips, Cheng, Bodurka (bib0066) 2015; 256
Verstynen, Deshpande (bib0102) 2011; 55
Särkkä, Solin, Nummenmaa, Vehtari, Auranen, Vanni, Lin (bib0090) 2012; 60
Nalci, Luo, Liu (bib0072) 2019; 202
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0037) 2013; 80
Reisner, Shaltis, McCombie, Asada (bib0088) 2008; 108
Mulcahy, Larsson, Garfinkel, Critchley (bib0069) 2019; 202
Pruim, Mennes, van Rooij, Llera, Buitelaar, Beckmann (bib0084) 2015; 112
Ogawa, Lee, Kay, Tank (bib0075) 1990; 87
Rajna, Mattila, Huotari, Tuovinen, Krüger, Holst, Korhonen, Remes, Seppänen, Hennig, Nedergaard, Kiviniemi (bib0087) 2021
Shmueli, van Gelderen, de Zwart, Horovitz, Fukunaga, Jansma, Duyn (bib0094) 2007; 38
Birn, Diamond, Smith, Bandettini (bib0007) 2006; 31
Ochoa, Ohara (bib0074) 1980; 132
Carbonell, Bellec, Shmuel (bib0016) 2014; 86
Liu (bib0061) 2016; 143
Meredith, Clifton, Charlton, Brooks, Pugh, Tarassenko (bib0064) 2012; 36
Power, Plitt, Laumann, Martin (bib0081) 2017; 146
Whittaker, Fasano, Venzi, Liebig, Gallichan, Murphy (bib0105) 2021
Behzadi, Restom, Liau, Liu (bib0004) 2007; 37
Mestre, Tithof, Du, Song, Peng, Sweeney, Olveda, Thomas, Nedergaard, Kelley (bib0065) 2018; 9
Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller, Robinson, Sotiropoulos, Xu, Yacoub, Ugurbil, Van Essen (bib0036) 2016; 19
Chang, Metzger, Glover, Duyn, Heinze, Walter (bib0021) 2013; 68
Gustard, Williams, Hall, Pickard, Carpenter (bib0041) 2003; 21
Xifra-Porxas, Kassinopoulos, Mitsis (bib0107) 2021; 10
Murphy, Fox (bib0071) 2017; 154
Golestani, Chen (bib0040) 2020; 216
Ciric, Wolf, Power, Roalf, Baum, Ruparel, Shinohara, Elliott, Eickhoff, Davatzikos, Gur, Gur, Bassett, Satterthwaite (bib0024) 2017; 154
Allen (bib0001) 2007; 28
Prokopiou, Pattinson, Wise, Mitsis (bib0083) 2019; 186
Falahpour, Refai, Bodurka (bib0031) 2013; 72
Buxton, Wong, Frank (bib0014) 1998; 39
Kostoglou, Debert, Poulin, Mitsis (bib0057) 2014; 36
Özbay, Chang, Picchioni, Mandelkow, Moehlman, Chappel-Farley, van Gelderen, de Zwart, Duyn (bib0077) 2018; 176
Boynton, Engel, Heeger (bib0012) 2012; 62
Bright, Tench, Murphy (bib0013) 2017; 154
Elsenbruch, Harnish, Orr (bib0029) 1999; 22
Jubran (bib0050) 2015; 19
Charlton, Birrenkott, Bonnici, Pimentel, Johnson, Alastruey, Tarassenko, Watkinson, Beale, Clifton (bib0023) 2018; 11
Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib0099) 2010; 103
Friston, Mechelli, Turner, Price (bib0033) 2000; 12
Savva, Kassinopoulos, Smyrnis, Matsopoulos, Mitsis (bib0091) 2020; 330
Iliff, Wang, Zeppenfeld, Venkataraman, Plog, Liao, Deane, Nedergaard (bib0046) 2013; 33
Aquino, Fulcher, Parkes, Sabaroedin, Fornito (bib0002) 2020; 212
Tong (10.1016/j.neuroimage.2021.118467_bib0098) 2019; 13
Bandettini (10.1016/j.neuroimage.2021.118467_bib0003) 1992; 25
Nalci (10.1016/j.neuroimage.2021.118467_bib0073) 2019; 184
Levin (10.1016/j.neuroimage.2021.118467_bib0060) 2001; 19
Verstynen (10.1016/j.neuroimage.2021.118467_bib0102) 2011; 55
Raj (10.1016/j.neuroimage.2021.118467_bib0086) 2000; 45
Iadecola (10.1016/j.neuroimage.2021.118467_bib0045) 2017; 96
Carbonell (10.1016/j.neuroimage.2021.118467_bib0017) 2011; 1
Zhang (10.1016/j.neuroimage.2021.118467_bib0108) 2001; 20
Kassinopoulos (10.1016/j.neuroimage.2021.118467_bib0054) 2019; 202
Harrison (10.1016/j.neuroimage.2021.118467_bib0042) 2018; 7
Jenkinson (10.1016/j.neuroimage.2021.118467_bib0047) 2012; 62
Jenkinson (10.1016/j.neuroimage.2021.118467_bib0048) 2001; 5
Parkes (10.1016/j.neuroimage.2021.118467_bib0078) 2018; 171
Golestani (10.1016/j.neuroimage.2021.118467_bib0040) 2020; 216
Nalci (10.1016/j.neuroimage.2021.118467_bib0072) 2019; 202
Wagshul (10.1016/j.neuroimage.2021.118467_bib0103) 2011; 8
Murphy (10.1016/j.neuroimage.2021.118467_bib0071) 2017; 154
Ochoa (10.1016/j.neuroimage.2021.118467_bib0074) 1980; 132
Glasser (10.1016/j.neuroimage.2021.118467_bib0036) 2016; 19
Birn (10.1016/j.neuroimage.2021.118467_bib0008) 2009; 47
Elsenbruch (10.1016/j.neuroimage.2021.118467_bib0029) 1999; 22
Xifra-Porxas (10.1016/j.neuroimage.2021.118467_bib0107) 2021; 10
Falahpour (10.1016/j.neuroimage.2021.118467_bib0030) 2018; 8
Chang (10.1016/j.neuroimage.2021.118467_bib0018) 2009; 44
Smith (10.1016/j.neuroimage.2021.118467_bib0095) 2013; 80
Boynton (10.1016/j.neuroimage.2021.118467_bib0012) 2012; 62
Jubran (10.1016/j.neuroimage.2021.118467_bib0050) 2015; 19
Kasper (10.1016/j.neuroimage.2021.118467_bib0051) 2017; 276
Behzadi (10.1016/j.neuroimage.2021.118467_bib0004) 2007; 37
Scheeren (10.1016/j.neuroimage.2021.118467_bib0092) 2012; 26
Pattinson (10.1016/j.neuroimage.2021.118467_bib0079) 2009; 44
Birn (10.1016/j.neuroimage.2021.118467_bib0006) 2012; 62
Kassinopoulos (10.1016/j.neuroimage.2021.118467_bib0052) 2021
Charlton (10.1016/j.neuroimage.2021.118467_bib0023) 2018; 11
Murphy (10.1016/j.neuroimage.2021.118467_bib0070) 2013; 80
Chang (10.1016/j.neuroimage.2021.118467_bib0022) 2016; 374
Ciric (10.1016/j.neuroimage.2021.118467_bib0024) 2017; 154
Kostoglou (10.1016/j.neuroimage.2021.118467_bib0057) 2014; 36
Kisler (10.1016/j.neuroimage.2021.118467_bib0055) 2017; 18
Glover (10.1016/j.neuroimage.2021.118467_bib0038) 2000; 44
Chang (10.1016/j.neuroimage.2021.118467_bib0019) 2009; 47
Hocke (10.1016/j.neuroimage.2021.118467_bib0044) 2016; 1707
Van Dijk (10.1016/j.neuroimage.2021.118467_bib0099) 2010; 103
Pruim (10.1016/j.neuroimage.2021.118467_bib0084) 2015; 112
Fultz (10.1016/j.neuroimage.2021.118467_bib0034) 2019; 366
Iliff (10.1016/j.neuroimage.2021.118467_bib0046) 2013; 33
Dagli (10.1016/j.neuroimage.2021.118467_bib0026) 1999; 9
Buxton (10.1016/j.neuroimage.2021.118467_bib0014) 1998; 39
Van Houdt (10.1016/j.neuroimage.2021.118467_bib0101) 2010; 31
Rajna (10.1016/j.neuroimage.2021.118467_bib0087) 2021
10.1016/j.neuroimage.2021.118467_bib0104
Tong (10.1016/j.neuroimage.2021.118467_bib0097) 2010; 53
Chang (10.1016/j.neuroimage.2021.118467_bib0021) 2013; 68
Aquino (10.1016/j.neuroimage.2021.118467_bib0002) 2020; 212
Boynton (10.1016/j.neuroimage.2021.118467_bib0011) 1996; 16
Jones (10.1016/j.neuroimage.2021.118467_bib0049) 2008; 42
Lee (10.1016/j.neuroimage.2021.118467_bib0059) 1965; 2
Glasser (10.1016/j.neuroimage.2021.118467_bib0035) 2018; 181
Harvey (10.1016/j.neuroimage.2021.118467_bib0043) 2008; 28
Särkkä (10.1016/j.neuroimage.2021.118467_bib0090) 2012; 60
Özbay (10.1016/j.neuroimage.2021.118467_bib0076) 2019; 2
Tachtsidis (10.1016/j.neuroimage.2021.118467_bib0096) 2016; 3
Deckers (10.1016/j.neuroimage.2021.118467_bib0027) 2006; 33
Chang (10.1016/j.neuroimage.2021.118467_bib0020) 2009; 47
Prokopiou (10.1016/j.neuroimage.2021.118467_bib0083) 2019; 186
Reisner (10.1016/j.neuroimage.2021.118467_bib0088) 2008; 108
Carbonell (10.1016/j.neuroimage.2021.118467_bib0016) 2014; 86
Liu (10.1016/j.neuroimage.2021.118467_bib0061) 2016; 143
Mitsis (10.1016/j.neuroimage.2021.118467_bib0067) 2004; 51
Salimi-Khorshidi (10.1016/j.neuroimage.2021.118467_bib0089) 2014; 90
10.1016/j.neuroimage.2021.118467_bib0053
Power (10.1016/j.neuroimage.2021.118467_bib0081) 2017; 146
Bianciardi (10.1016/j.neuroimage.2021.118467_bib0005) 2016; 374
Birn (10.1016/j.neuroimage.2021.118467_bib0009) 2008; 40
Falahpour (10.1016/j.neuroimage.2021.118467_bib0031) 2013; 72
Ogawa (10.1016/j.neuroimage.2021.118467_bib0075) 1990; 87
Birn (10.1016/j.neuroimage.2021.118467_bib0007) 2006; 31
Caballero-Gaudes (10.1016/j.neuroimage.2021.118467_bib0015) 2017; 154
Kwong (10.1016/j.neuroimage.2021.118467_bib0058) 1992; 89
Marmarelis (10.1016/j.neuroimage.2021.118467_bib0063) 2004
Wise (10.1016/j.neuroimage.2021.118467_bib0106) 2004; 21
Fine (10.1016/j.neuroimage.2021.118467_bib0032) 2014; 9031
Shmueli (10.1016/j.neuroimage.2021.118467_bib0094) 2007; 38
Misaki (10.1016/j.neuroimage.2021.118467_bib0066) 2015; 256
Mestre (10.1016/j.neuroimage.2021.118467_bib0065) 2018; 9
Biswal (10.1016/j.neuroimage.2021.118467_bib0010) 1995; 34
Mulcahy (10.1016/j.neuroimage.2021.118467_bib0069) 2019; 202
Allen (10.1016/j.neuroimage.2021.118467_bib0001) 2007; 28
Savva (10.1016/j.neuroimage.2021.118467_bib0091) 2020; 330
Glasser (10.1016/j.neuroimage.2021.118467_bib0037) 2013; 80
Golestani (10.1016/j.neuroimage.2021.118467_bib0039) 2015; 104
Kiviniemi (10.1016/j.neuroimage.2021.118467_bib0056) 2016; 36
Liu (10.1016/j.neuroimage.2021.118467_bib0062) 2017; 150
Delpy (10.1016/j.neuroimage.2021.118467_bib0028) 1997; 352
Power (10.1016/j.neuroimage.2021.118467_bib0082) 2015; 105
Whittaker (10.1016/j.neuroimage.2021.118467_bib0105) 2021
Van Essen (10.1016/j.neuroimage.2021.118467_bib0100) 2013; 80
Friston (10.1016/j.neuroimage.2021.118467_bib0033) 2000; 12
Özbay (10.1016/j.neuroimage.2021.118467_bib0077) 2018; 176
Raj (10.1016/j.neuroimage.2021.118467_bib0085) 2001; 46
Schley (10.1016/j.neuroimage.2021.118467_bib0093) 2006; 238
Gustard (10.1016/j.neuroimage.2021.118467_bib0041) 2003; 21
Meredith (10.1016/j.neuroimage.2021.118467_bib0064) 2012; 36
Pellicer (10.1016/j.neuroimage.2021.118467_bib0080) 2011; 16
Bright (10.1016/j.neuroimage.2021.118467_bib0013) 2017; 154
Cox (10.1016/j.neuroimage.2021.118467_bib0025) 1997; 10
References_xml – volume: 238
  start-page: 962
  year: 2006
  end-page: 974
  ident: bib0093
  article-title: Mechanisms to explain the reverse perivascular transport of solutes out of the brain
  publication-title: J. Theor. Biol.
– volume: 104
  start-page: 266
  year: 2015
  end-page: 277
  ident: bib0039
  article-title: Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: Spatial specificity, test-retest reliability and effect of fMRI sampling rate
  publication-title: Neuroimage
– volume: 2
  start-page: 421
  year: 2019
  ident: bib0076
  article-title: Sympathetic activity contributes to the fMRI signal
  publication-title: Commun. Biol.
– reference: Kassinopoulos, M., Mitsis, G.D., 2020b. Figures produced in Kassinopoulos & Mitsis (2020) - Physiological Noise Modeling in fMRI based on the pulsatile component of photoplethysmograph [WWW Document]. doi:
– volume: 60
  start-page: 1517
  year: 2012
  end-page: 1527
  ident: bib0090
  article-title: Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER
  publication-title: Neuroimage
– volume: 374
  year: 2016
  ident: bib0022
  article-title: Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– reference: Whittaker, J.R., Driver, I.D., Venzi, M., Bright, M.G., Murphy, K., Chen, J., Whittaker, J.R., 2019. Cerebral autoregulation evidenced by synchronized low frequency oscillations in blood pressure and resting-state fMRI 13, 1–12. 10.3389/fnins.2019.00433
– volume: 25
  start-page: 390
  year: 1992
  end-page: 397
  ident: bib0003
  article-title: Time course EPI during task activation
  publication-title: Magn. Res. Med.
– volume: 2
  start-page: 237
  year: 1965
  end-page: 254
  ident: bib0059
  article-title: Measurement of the wiener kernels of a non-linear system by cross-correlation
  publication-title: Int. J. Control
– volume: 19
  start-page: 1055
  year: 2001
  end-page: 1062
  ident: bib0060
  article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation
  publication-title: Magn. Reson. Imaging
– volume: 132
  start-page: 413
  year: 1980
  end-page: 419
  ident: bib0074
  article-title: The effect of hematocrit on photoelectric plethysmogram
  publication-title: Tohoku J. Exp. Med.
– volume: 202
  year: 2019
  ident: bib0054
  article-title: Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration
  publication-title: Neuroimage
– volume: 44
  start-page: 857
  year: 2009
  end-page: 869
  ident: bib0018
  article-title: Influence of heart rate on the BOLD signal: the cardiac response function
  publication-title: Neuroimage
– volume: 108
  start-page: 950
  year: 2008
  end-page: 958
  ident: bib0088
  article-title: Utility of the photoplethysmogram in circulatory monitoring
  publication-title: Anesthesiology
– volume: 40
  start-page: 644
  year: 2008
  end-page: 654
  ident: bib0009
  article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration
  publication-title: Neuroimage
– volume: 202
  year: 2019
  ident: bib0069
  article-title: Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies
  publication-title: Neuroimage
– volume: 19
  year: 2015
  ident: bib0050
  article-title: Pulse oximetry
  publication-title: Crit. Care
– volume: 16
  start-page: 4207
  year: 1996
  end-page: 4221
  ident: bib0011
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J. Neurosci.
– volume: 47
  start-page: 1381
  year: 2009
  end-page: 1393
  ident: bib0020
  article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI
  publication-title: Neuroimage
– volume: 154
  start-page: 169
  year: 2017
  end-page: 173
  ident: bib0071
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: Neuroimage
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bib0095
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
– volume: 154
  start-page: 159
  year: 2017
  end-page: 168
  ident: bib0013
  article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0100
  article-title: The WU-Minn Human Connectome Project: An overview
  publication-title: Neuroimage
– volume: 46
  start-page: 3331
  year: 2001
  end-page: 3340
  ident: bib0085
  article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes
  publication-title: Phys. Med. Biol.
– volume: 154
  start-page: 174
  year: 2017
  end-page: 187
  ident: bib0024
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: Neuroimage
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0037
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 28
  start-page: 1337
  year: 2008
  end-page: 1344
  ident: bib0043
  article-title: Brainstem functional magnetic resonance imaging: Disentangling signal from physiological noise
  publication-title: J. Magn. Reson. Imaging
– volume: 276
  start-page: 56
  year: 2017
  end-page: 72
  ident: bib0051
  article-title: The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data
  publication-title: J. Neurosci. Methods
– year: 2021
  ident: bib0087
  article-title: Cardiovascular brain impulses in Alzheimer's disease
  publication-title: Brain
– volume: 7
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib0042
  article-title: Non-1 invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI
  publication-title: Elife
– volume: 96
  start-page: 17
  year: 2017
  end-page: 42
  ident: bib0045
  article-title: The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease
  publication-title: Neuron
– volume: 181
  start-page: 692
  year: 2018
  end-page: 717
  ident: bib0035
  article-title: Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data
  publication-title: Neuroimage
– volume: 9
  year: 2018
  ident: bib0065
  article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension
  publication-title: Nat. Commun.
– volume: 12
  start-page: 466
  year: 2000
  end-page: 477
  ident: bib0033
  article-title: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics
  publication-title: Neuroimage
– volume: 36
  start-page: 592
  year: 2014
  end-page: 600
  ident: bib0057
  article-title: Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia
  publication-title: Med. Eng. Phys.
– volume: 22
  start-page: 1067
  year: 1999
  end-page: 1071
  ident: bib0029
  article-title: Heart rate variability during waking and sleep in healthy males and females
  publication-title: Sleep
– volume: 19
  start-page: 1175
  year: 2016
  end-page: 1187
  ident: bib0036
  article-title: The human connectome project's neuroimaging approach
  publication-title: Nat. Neurosci.
– volume: 89
  start-page: 5675
  year: 1992
  end-page: 5679
  ident: bib0058
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 44
  start-page: 162
  year: 2000
  end-page: 167
  ident: bib0038
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn. Reson. Med.
– volume: 72
  start-page: 252
  year: 2013
  end-page: 264
  ident: bib0031
  article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal
  publication-title: Neuroimage
– volume: 36
  start-page: 1033
  year: 2016
  end-page: 1045
  ident: bib0056
  article-title: Ultra-fast magnetic resonance encephalography of physiological brain activity-Glymphatic pulsation mechanisms?
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 16
  start-page: 42
  year: 2011
  end-page: 49
  ident: bib0080
  article-title: Near-infrared spectroscopy: a methodology-focused review
  publication-title: Semin. Fetal Neonatal Med.
– volume: 86
  start-page: 343
  year: 2014
  end-page: 353
  ident: bib0016
  article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state
  publication-title: Neuroimage
– volume: 216
  year: 2020
  ident: bib0040
  article-title: Controlling for the effect of arterial-CO2 fluctuations in resting-state fMRI: Comparing end-tidal CO2 clamping and retroactive CO2 correction
  publication-title: Neuroimage
– volume: 154
  start-page: 128
  year: 2017
  end-page: 149
  ident: bib0015
  article-title: Methods for cleaning the BOLD fMRI signal
  publication-title: Neuroimage
– volume: 33
  start-page: 1072
  year: 2006
  end-page: 1081
  ident: bib0027
  article-title: An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data
  publication-title: Neuoimage
– volume: 184
  start-page: 1005
  year: 2019
  end-page: 1031
  ident: bib0073
  article-title: Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI
  publication-title: Neuroimage
– volume: 103
  start-page: 297
  year: 2010
  end-page: 321
  ident: bib0099
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
– volume: 330
  year: 2020
  ident: bib0091
  article-title: Effects of motion related outliers in dynamic functional connectivity using the sliding window method
  publication-title: J. Neurosci. Methods
– volume: 80
  start-page: 349
  year: 2013
  end-page: 359
  ident: bib0070
  article-title: Resting-state fMRI confounds and cleanup
  publication-title: Neuroimage
– year: 2021
  ident: bib0105
  article-title: Measuring arterial pulsatility with Dynamic Inflow MAgnitude Contrast (DIMAC)
  publication-title: bioRxiv
– volume: 202
  year: 2019
  ident: bib0072
  article-title: Nuisance effects in inter-scan functional connectivity estimates before and after nuisance regression
  publication-title: Neuroimage
– volume: 150
  start-page: 213
  year: 2017
  end-page: 229
  ident: bib0062
  article-title: The global signal in fMRI: Nuisance or Information?
  publication-title: Neuroimage
– volume: 31
  start-page: 311
  year: 2010
  end-page: 325
  ident: bib0101
  article-title: Correction for pulse height variability reduces physiological noise in functional MRI when studying spontaneous brain activity
  publication-title: Hum. Brain Mapp.
– volume: 87
  start-page: 9868
  year: 1990
  end-page: 9872
  ident: bib0075
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc. Natl. Acad. Sci.
– volume: 143
  start-page: 141
  year: 2016
  end-page: 151
  ident: bib0061
  article-title: Noise contributions to the fMRI signal: An overview
  publication-title: Neuroimage
– volume: 45
  start-page: 3809
  year: 2000
  end-page: 3820
  ident: bib0086
  article-title: A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging
  publication-title: Phys. Med. Biol.
– volume: 176
  start-page: 541
  year: 2018
  end-page: 549
  ident: bib0077
  article-title: Contribution of systemic vascular effects to fMRI activity in white matter
  publication-title: Neuroimage
– volume: 26
  start-page: 279
  year: 2012
  end-page: 287
  ident: bib0092
  article-title: Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications
  publication-title: J. Clin. Monit. Comput.
– volume: 31
  start-page: 1536
  year: 2006
  end-page: 1548
  ident: bib0007
  article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI
  publication-title: Neuroimage
– volume: 21
  start-page: 1652
  year: 2004
  end-page: 1664
  ident: bib0106
  article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal
  publication-title: Neuroimage
– volume: 11
  start-page: 2
  year: 2018
  end-page: 20
  ident: bib0023
  article-title: Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 146
  start-page: 609
  year: 2017
  end-page: 625
  ident: bib0081
  article-title: Sources and implications of whole-brain fMRI signals in humans
  publication-title: Neuroimage
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0089
  article-title: Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 51
  start-page: 259
  year: 2004
  end-page: 265
  ident: bib0067
  article-title: Nonlinear modeling of the dynamic effects of arterial pressure and blood gas variations on cerebral blood flow in healthy humans
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 171
  start-page: 415
  year: 2018
  end-page: 436
  ident: bib0078
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI
  publication-title: Neuroimage
– volume: 1707
  start-page: 1697
  year: 2016
  end-page: 1707
  ident: bib0044
  article-title: Comparison of peripheral near-infrared spectroscopy low-frequency oscillations to other denoising methods in resting state functional MRI with ultrahigh temporal resolution
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 1
  year: 2012
  end-page: 7
  ident: bib0064
  article-title: Photoplethysmographic derivation of respiratory rate: a review of relevant physiology
  publication-title: J. Med. Eng. Technol.
– volume: 44
  start-page: 295
  year: 2009
  end-page: 305
  ident: bib0079
  article-title: Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging
  publication-title: Neuroimage
– volume: 47
  start-page: 1448
  year: 2009
  end-page: 1459
  ident: bib0019
  article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
  publication-title: Neuroimage
– volume: 55
  start-page: 1633
  year: 2011
  end-page: 1644
  ident: bib0102
  article-title: Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal
  publication-title: Neuroimage
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0047
  publication-title: FSL. Neuroimage
– volume: 8
  start-page: 5
  year: 2011
  ident: bib0103
  article-title: The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility
  publication-title: Fluids Barriers CNS
– volume: 105
  start-page: 536
  year: 2015
  end-page: 551
  ident: bib0082
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
– volume: 1
  start-page: 496
  year: 2011
  end-page: 510
  ident: bib0017
  article-title: Global and system-specific resting-state fmri fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks
  publication-title: Brain Connect.
– volume: 10
  year: 2021
  ident: bib0107
  article-title: Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability
  publication-title: eLife
– volume: 212
  year: 2020
  ident: bib0002
  article-title: Identifying and removing widespread signal deflections from fMRI data: rethinking the global signal regression problem
  publication-title: Neuroimage
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: bib0048
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 47
  start-page: 1092
  year: 2009
  end-page: 1104
  ident: bib0008
  article-title: fMRI in the presence of task-correlated breathing variations
  publication-title: Neuroimage
– volume: 13
  year: 2019
  ident: bib0098
  article-title: Low frequency systemic hemodynamic “noise” in resting state BOLD fMRI: Characteristics, causes, implications, mitigation strategies, and applications
  publication-title: Front. Neurosci.
– volume: 68
  start-page: 93
  year: 2013
  end-page: 104
  ident: bib0021
  article-title: Association between heart rate variability and fluctuations in resting-state functional connectivity
  publication-title: Neuroimage
– volume: 8
  start-page: 618
  year: 2018
  end-page: 627
  ident: bib0030
  article-title: The effects of global signal regression on estimates of resting-state blood oxygen-level-dependent functional magnetic resonance imaging and electroencephalogram vigilance correlations
  publication-title: Brain Connect
– volume: 38
  start-page: 306
  year: 2007
  end-page: 320
  ident: bib0094
  article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal
  publication-title: Neuroimage
– volume: 186
  start-page: 533
  year: 2019
  end-page: 548
  ident: bib0083
  article-title: Modeling of dynamic cerebrovascular reactivity to spontaneous and externally induced CO2 fluctuations in the human brain using BOLD-fMRI
  publication-title: Neuroimage
– volume: 112
  start-page: 267
  year: 2015
  end-page: 277
  ident: bib0084
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: Neuroimage
– volume: 9
  start-page: 407
  year: 1999
  end-page: 415
  ident: bib0026
  article-title: Localization of cardiac-induced signal change in fMRI
  publication-title: Neuroimage
– volume: 21
  start-page: 599
  year: 2003
  end-page: 607
  ident: bib0041
  article-title: Influence of baseline hematocrit on between-subject BOLD signal change using gradient echo and asymmetric spin echo EPI
  publication-title: Magn. Reson. Imaging
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0108
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  ident: bib0004
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
– volume: 256
  start-page: 117
  year: 2015
  end-page: 121
  ident: bib0066
  article-title: Real-time fMRI processing with physiological noise correction – Comparison with off-line analysis
  publication-title: J. Neurosci. Methods
– volume: 53
  start-page: 553
  year: 2010
  end-page: 564
  ident: bib0097
  article-title: Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain
  publication-title: Neuroimage
– volume: 39
  start-page: 855
  year: 1998
  end-page: 864
  ident: bib0014
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn. Reson. Med.
– volume: 33
  start-page: 18190
  year: 2013
  end-page: 18199
  ident: bib0046
  article-title: Cerebral arterial pulsation drives paravascular CSF-Interstitial fluid exchange in the murine brain
  publication-title: J. Neurosci.
– volume: 3
  year: 2016
  ident: bib0096
  article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward
  publication-title: Neurophotonics
– start-page: 1
  year: 2021
  end-page: 61
  ident: bib0052
  article-title: A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity
  publication-title: bioRxiv
– volume: 374
  year: 2016
  ident: bib0005
  article-title: The pulsatility volume index: An indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 10
  start-page: 171
  year: 1997
  end-page: 178
  ident: bib0025
  article-title: Software tools for analysis and visualization of fMRI data
  publication-title: NMR Biomed.
– volume: 366
  start-page: 628
  year: 2019
  end-page: 631
  ident: bib0034
  article-title: Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep
  publication-title: Science
– volume: 62
  start-page: 864
  year: 2012
  end-page: 870
  ident: bib0006
  article-title: The role of physiological noise in resting-state functional connectivity
  publication-title: Neuroimage
– volume: 42
  start-page: 582
  year: 2008
  end-page: 590
  ident: bib0049
  article-title: Integration of motion correction and physiological noise regression in fMRI
  publication-title: Neuroimage
– reference: .
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib0010
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– volume: 28
  year: 2007
  ident: bib0001
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
– volume: 62
  start-page: 975
  year: 2012
  end-page: 984
  ident: bib0012
  article-title: Linear systems analysis of the fMRI signal
  publication-title: Neuroimage
– year: 2004
  ident: bib0063
  article-title: Nonlinear Dynamic Modeling of Physiological Systems
  publication-title: IEEE Press Series on Biomedical Engineering
– volume: 9031
  year: 2014
  ident: bib0032
  article-title: The optical origin of the PPG signal. Saratov Fall Meet
  publication-title: Opt. Technol. Biophys. Med. XV; Laser Phys. Photonics XV
– volume: 352
  start-page: 649
  year: 1997
  end-page: 659
  ident: bib0028
  article-title: Quantification in tissue near–infrared spectroscopy
  publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci.
– volume: 18
  start-page: 419
  year: 2017
  end-page: 434
  ident: bib0055
  article-title: Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
– volume: 38
  start-page: 306
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118467_bib0094
  article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.037
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0054
  article-title: Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116150
– volume: 62
  start-page: 975
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118467_bib0012
  article-title: Linear systems analysis of the fMRI signal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.082
– year: 2004
  ident: 10.1016/j.neuroimage.2021.118467_bib0063
  article-title: Nonlinear Dynamic Modeling of Physiological Systems
– volume: 216
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118467_bib0040
  article-title: Controlling for the effect of arterial-CO2 fluctuations in resting-state fMRI: Comparing end-tidal CO2 clamping and retroactive CO2 correction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116874
– volume: 96
  start-page: 17
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0045
  article-title: The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.030
– volume: 154
  start-page: 169
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0071
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.052
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118467_bib0108
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 47
  start-page: 1092
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118467_bib0008
  article-title: fMRI in the presence of task-correlated breathing variations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.030
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118467_bib0087
  article-title: Cardiovascular brain impulses in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awab144
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0072
  article-title: Nuisance effects in inter-scan functional connectivity estimates before and after nuisance regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.07.018
– volume: 186
  start-page: 533
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0083
  article-title: Modeling of dynamic cerebrovascular reactivity to spontaneous and externally induced CO2 fluctuations in the human brain using BOLD-fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.084
– volume: 16
  start-page: 42
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118467_bib0080
  article-title: Near-infrared spectroscopy: a methodology-focused review
  publication-title: Semin. Fetal Neonatal Med.
  doi: 10.1016/j.siny.2010.05.003
– volume: 40
  start-page: 644
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118467_bib0009
  article-title: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.059
– volume: 171
  start-page: 415
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118467_bib0078
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.073
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118467_bib0010
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 5
  start-page: 143
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118467_bib0048
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 33
  start-page: 1072
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118467_bib0027
  article-title: An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data
  publication-title: Neuoimage
  doi: 10.1016/j.neuroimage.2006.08.006
– volume: 45
  start-page: 3809
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118467_bib0086
  article-title: A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/12/321
– volume: 42
  start-page: 582
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118467_bib0049
  article-title: Integration of motion correction and physiological noise regression in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.019
– volume: 44
  start-page: 162
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118467_bib0038
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– volume: 143
  start-page: 141
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118467_bib0061
  article-title: Noise contributions to the fMRI signal: An overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.008
– volume: 176
  start-page: 541
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118467_bib0077
  article-title: Contribution of systemic vascular effects to fMRI activity in white matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.04.045
– volume: 44
  start-page: 295
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118467_bib0079
  article-title: Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.007
– volume: 12
  start-page: 466
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118467_bib0033
  article-title: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0630
– volume: 104
  start-page: 266
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118467_bib0039
  article-title: Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: Spatial specificity, test-retest reliability and effect of fMRI sampling rate
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.031
– volume: 55
  start-page: 1633
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118467_bib0102
  article-title: Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.090
– volume: 62
  start-page: 864
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118467_bib0006
  article-title: The role of physiological noise in resting-state functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.016
– volume: 256
  start-page: 117
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118467_bib0066
  article-title: Real-time fMRI processing with physiological noise correction – Comparison with off-line analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.033
– volume: 28
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118467_bib0001
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– volume: 2
  start-page: 421
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0076
  article-title: Sympathetic activity contributes to the fMRI signal
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0659-0
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118467_bib0042
  article-title: Non-1 invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI
  publication-title: Elife
  doi: 10.7554/eLife.34028
– volume: 22
  start-page: 1067
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118467_bib0029
  article-title: Heart rate variability during waking and sleep in healthy males and females
  publication-title: Sleep
  doi: 10.1093/sleep/22.8.1067
– volume: 53
  start-page: 553
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118467_bib0097
  article-title: Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.049
– volume: 1
  start-page: 496
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118467_bib0017
  article-title: Global and system-specific resting-state fmri fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0065
– volume: 39
  start-page: 855
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118467_bib0014
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390602
– volume: 28
  start-page: 1337
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118467_bib0043
  article-title: Brainstem functional magnetic resonance imaging: Disentangling signal from physiological noise
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21623
– volume: 9031
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118467_bib0032
  article-title: The optical origin of the PPG signal. Saratov Fall Meet
  publication-title: Opt. Technol. Biophys. Med. XV; Laser Phys. Photonics XV
– volume: 352
  start-page: 649
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118467_bib0028
  article-title: Quantification in tissue near–infrared spectroscopy
  publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci.
  doi: 10.1098/rstb.1997.0046
– volume: 80
  start-page: 349
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118467_bib0070
  article-title: Resting-state fMRI confounds and cleanup
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.001
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118467_bib0047
  publication-title: FSL. Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 212
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118467_bib0002
  article-title: Identifying and removing widespread signal deflections from fMRI data: rethinking the global signal regression problem
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116614
– ident: 10.1016/j.neuroimage.2021.118467_bib0104
  doi: 10.3389/fnins.2019.00433
– volume: 87
  start-page: 9868
  year: 1990
  ident: 10.1016/j.neuroimage.2021.118467_bib0075
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.87.24.9868
– volume: 47
  start-page: 1381
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118467_bib0020
  article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.048
– volume: 89
  start-page: 5675
  year: 1992
  ident: 10.1016/j.neuroimage.2021.118467_bib0058
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.89.12.5675
– volume: 16
  start-page: 4207
  year: 1996
  ident: 10.1016/j.neuroimage.2021.118467_bib0011
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– volume: 8
  start-page: 618
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118467_bib0030
  article-title: The effects of global signal regression on estimates of resting-state blood oxygen-level-dependent functional magnetic resonance imaging and electroencephalogram vigilance correlations
  publication-title: Brain Connect
  doi: 10.1089/brain.2018.0645
– volume: 181
  start-page: 692
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118467_bib0035
  article-title: Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.04.076
– volume: 36
  start-page: 592
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118467_bib0057
  article-title: Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.10.011
– volume: 112
  start-page: 267
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118467_bib0084
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.064
– volume: 19
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118467_bib0050
  article-title: Pulse oximetry
  publication-title: Crit. Care
  doi: 10.1186/s13054-015-0984-8
– volume: 51
  start-page: 259
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118467_bib0067
  article-title: Nonlinear modeling of the dynamic effects of arterial pressure and blood gas variations on cerebral blood flow in healthy humans
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.834272
– volume: 132
  start-page: 413
  year: 1980
  ident: 10.1016/j.neuroimage.2021.118467_bib0074
  article-title: The effect of hematocrit on photoelectric plethysmogram
  publication-title: Tohoku J. Exp. Med.
  doi: 10.1620/tjem.132.413
– volume: 154
  start-page: 174
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0024
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.020
– ident: 10.1016/j.neuroimage.2021.118467_bib0053
  doi: 10.1101/2020.06.01.128306
– volume: 21
  start-page: 1652
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118467_bib0106
  article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.025
– volume: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118467_bib0065
  article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07318-3
– volume: 9
  start-page: 407
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118467_bib0026
  article-title: Localization of cardiac-induced signal change in fMRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0424
– volume: 366
  start-page: 628
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0034
  article-title: Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep
  publication-title: Science
  doi: 10.1126/science.aax5440
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118467_bib0037
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 19
  start-page: 1055
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118467_bib0060
  article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(01)00460-X
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118467_bib0089
  article-title: Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 21
  start-page: 599
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118467_bib0041
  article-title: Influence of baseline hematocrit on between-subject BOLD signal change using gradient echo and asymmetric spin echo EPI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(03)00083-3
– volume: 238
  start-page: 962
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118467_bib0093
  article-title: Mechanisms to explain the reverse perivascular transport of solutes out of the brain
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.07.005
– volume: 184
  start-page: 1005
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0073
  article-title: Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.024
– volume: 146
  start-page: 609
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0081
  article-title: Sources and implications of whole-brain fMRI signals in humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.038
– start-page: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118467_bib0052
  article-title: A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity
  publication-title: bioRxiv
– volume: 10
  start-page: 171
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118467_bib0025
  article-title: Software tools for analysis and visualization of fMRI data
  publication-title: NMR Biomed.
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
– volume: 72
  start-page: 252
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118467_bib0031
  article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.050
– volume: 11
  start-page: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118467_bib0023
  article-title: Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2017.2763681
– volume: 330
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118467_bib0091
  article-title: Effects of motion related outliers in dynamic functional connectivity using the sliding window method
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108519
– volume: 36
  start-page: 1033
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118467_bib0056
  article-title: Ultra-fast magnetic resonance encephalography of physiological brain activity-Glymphatic pulsation mechanisms?
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X15622047
– volume: 1707
  start-page: 1697
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118467_bib0044
  article-title: Comparison of peripheral near-infrared spectroscopy low-frequency oscillations to other denoising methods in resting state functional MRI with ultrahigh temporal resolution
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26038
– volume: 10
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118467_bib0107
  article-title: Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability
  publication-title: eLife
  doi: 10.7554/eLife.62324
– volume: 374
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118467_bib0005
  article-title: The pulsatility volume index: An indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118467_bib0095
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 86
  start-page: 343
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118467_bib0016
  article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.013
– volume: 46
  start-page: 3331
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118467_bib0085
  article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/12/318
– volume: 31
  start-page: 311
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118467_bib0101
  article-title: Correction for pulse height variability reduces physiological noise in functional MRI when studying spontaneous brain activity
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20866
– volume: 36
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118467_bib0064
  article-title: Photoplethysmographic derivation of respiratory rate: a review of relevant physiology
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091902.2011.638965
– volume: 276
  start-page: 56
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0051
  article-title: The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.10.019
– volume: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118467_bib0096
  article-title: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward
  publication-title: Neurophotonics
– volume: 154
  start-page: 128
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0015
  article-title: Methods for cleaning the BOLD fMRI signal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.018
– volume: 374
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118467_bib0022
  article-title: Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 2
  start-page: 237
  year: 1965
  ident: 10.1016/j.neuroimage.2021.118467_bib0059
  article-title: Measurement of the wiener kernels of a non-linear system by cross-correlation
  publication-title: Int. J. Control
  doi: 10.1080/00207176508905543
– volume: 19
  start-page: 1175
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118467_bib0036
  article-title: The human connectome project's neuroimaging approach
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4361
– volume: 33
  start-page: 18190
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118467_bib0046
  article-title: Cerebral arterial pulsation drives paravascular CSF-Interstitial fluid exchange in the murine brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1592-13.2013
– volume: 47
  start-page: 1448
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118467_bib0019
  article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.012
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0069
  article-title: Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116072
– volume: 60
  start-page: 1517
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118467_bib0090
  article-title: Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.067
– volume: 26
  start-page: 279
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118467_bib0092
  article-title: Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-012-9348-y
– volume: 13
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118467_bib0098
  article-title: Low frequency systemic hemodynamic “noise” in resting state BOLD fMRI: Characteristics, causes, implications, mitigation strategies, and applications
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00787
– volume: 44
  start-page: 857
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118467_bib0018
  article-title: Influence of heart rate on the BOLD signal: the cardiac response function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.029
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118467_bib0105
  article-title: Measuring arterial pulsatility with Dynamic Inflow MAgnitude Contrast (DIMAC)
  publication-title: bioRxiv
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118467_bib0004
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 108
  start-page: 950
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118467_bib0088
  article-title: Utility of the photoplethysmogram in circulatory monitoring
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31816c89e1
– volume: 68
  start-page: 93
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118467_bib0021
  article-title: Association between heart rate variability and fluctuations in resting-state functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.038
– volume: 18
  start-page: 419
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0055
  article-title: Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2017.48
– volume: 31
  start-page: 1536
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118467_bib0007
  article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.048
– volume: 25
  start-page: 390
  year: 1992
  ident: 10.1016/j.neuroimage.2021.118467_bib0003
  article-title: Time course EPI during task activation
  publication-title: Magn. Res. Med.
  doi: 10.1002/mrm.1910250220
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118467_bib0100
  article-title: The WU-Minn Human Connectome Project: An overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 103
  start-page: 297
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118467_bib0099
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00783.2009
– volume: 8
  start-page: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118467_bib0103
  article-title: The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility
  publication-title: Fluids Barriers CNS
  doi: 10.1186/2045-8118-8-5
– volume: 150
  start-page: 213
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0062
  article-title: The global signal in fMRI: Nuisance or Information?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.036
– volume: 105
  start-page: 536
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118467_bib0082
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 154
  start-page: 159
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118467_bib0013
  article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.027
SSID ssj0009148
Score 2.4488983
Snippet The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in deoxyhemoglobin content. As such, it is...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118467
SubjectTerms Adult
Blood pressure
Brain - physiology
Brain mapping
Brain Mapping - methods
Carbon dioxide
Cardiac pulsation
Connectome
CPM
Female
fMRI artifacts
Functional magnetic resonance imaging
Global signal
Heart rate
Heart Rate - physiology
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Neuroimaging
Noise
noise correction techniques
Oscillations
Photoplethysmography - methods
Physiology
Power
RETROICOR
SLFOs
Substantia grisea
System theory
Variation
Young Adult
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhh5JLadO0dZoEFXI1XevDssgpLQ1pYXsICeRQEPoY0y0be0l2_39Gku20h5I99LIHr8cWo5HmDXp-Q8ipqgXIIGUZmGhLwbwqXTxCtAwjCsBqnvqnzH_Ulzfi-628_aPVV-SEZXng7LhPsmm9c5F9JDUWH2Cb0AiBvzPQwvIEjTDnjcXUKLeLKH_g7WQ2V1KHXNzhGsWakFW4UzS5t_xTMkqa_X_lpH9hzpR7Ll6RlwNopOd5sK_JDnT75MV8OBZ_Q34mHue4jdGuXzwATT1uMDHRRUfb-dU3GhNWoH1HEfPR1WYZeTxLoJFU3neYe2jf0tWvfh0p5XH67rKa9QG5ufh6_eWyHNomlL4W1bpULaJAqBtnVe19y5l2ICzWDRYXXA0s4OQorFK0rRmbgWKeS8cFBOYqENzzt2S3w_e-J3QmgFfCohFvhXNgXSWk4qGRwQfPVEHU6D_jB03x2NpiaUby2G_z5HkTPW-y5wtSTZarrKuxhc3nOEXT_VEZO13AeDFDvJjn4qUgepxgM358itslPmixxQDOJtsBoGTgsaX10RhPZtgoHgwiTj0TWENWBfk4_Y1LPJ7b2A76TboHw1lr0RTkXY7DyQccAWXUdDz8H775QPbieOOnlpU8Irvr-w0cI-Zau5O0vB4B-04rSQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh9JLafp0kwYVenXX1sO26KkNCWlhe2gbyKEgJFluXTb2kuxe-9s7I8lecigs9LKwXs1ajEbzQJ--IeRtXQkvWynzlokuF8zVucUjRMPAorw3iof-Kcsv1eWV-Hwtrw_I2XQXBmGVyfdHnx68dXqySNpcrPt-8Q0yAwg3yOeFcbDAuh3Z68Cm3_3ZwTxUKeJ1OMlzHJ3QPBHjFTgj-xvYuVApshL8RxM7zu9CVGDyvxep_pWJhoh08Zg8Sqkk_RBne0QO_PCEPFimw_Kn5EdAd07OjQ5jf-dp6HwD4Yr2A-2WXz9RDGMtHQcKmSBdb1eI7ll5ilDzcYCIRMeOrn-NGwSa46LeRI7rZ-Tq4vz72WWeminkrhLlJq87yA191VhTV851nCnrhYFqwoBmKs9aWLIaahdlKsYKXzPHpeXCt8yWXnDHn5PDAd77ktBCeF4KA0K8E9Z6Y0sha942snWtY3VG6kl_2iWmcWx4sdITpOy33mleo-Z11HxGyllyHdk29pD5iEs0j0e-7PBgvP2pk8Fo2XTOWsSwSQUlrDdN2wgBn4VXwnCTETUtsJ6upIIThT_q95jA-1n2nunuKX0y2ZNO7uNOQx6qCgGVZZmRN_PPsPHxNMcMftyGMWDaSokmIy-iHc464JBmItPjq_-a2jF5iN_w5mUpT8jh5nbrX0MKtrGnYY_9BZTjL6A
  priority: 102
  providerName: Elsevier
Title Physiological noise modeling in fMRI based on the pulsatile component of photoplethysmograph
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921007400
https://dx.doi.org/10.1016/j.neuroimage.2021.118467
https://www.ncbi.nlm.nih.gov/pubmed/34390877
https://www.proquest.com/docview/2569046661
https://www.proquest.com/docview/2561489948
https://doaj.org/article/58fcbb673659407ea8d844a8d0e94a3a
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN9kjMpIvAYaf8SJeEAb2tSBWqGJSX1AsmzHgaIuKWv7ur-dO8dJxQOoL6mU-pLo7nwf9vl3hLxVufCykjKtmKhTwZxKLW4hGgYa5b0peeifMp3lk2vxeS7nccFtHcsqe5sYDHXVOlwjfw-uuYRcDtzJx9XvFLtG4e5qbKFxQI4QugyTLzVXO9DdTHRH4SRPCxgQK3m6-q6AF7m4gVkLWSLLwHYUXbf5nXsKKP5_eal_RaHBG108Ig9jGElPO7k_Jvd884Tcn8aN8qfke6js7A0bbdrF2tPQ9QZcFV00tJ5eXVJ0YRVtGwpRIF1tl1jZs_QUy8zbBrwRbWu6-tlusMgcBXrT4Vs_I9cX598-TdLYSCF1ucg2qaohLvR5YY3Knas5K60XBjIJA5zJPatAXAryltLkjI29Yo5Ly4WvmM284I4_J4cNvPcloWPheSYMEPFaWOuNzYRUvCpk5SrHVEJUzz_tIso4NrtY6r6c7JfecV4j53XH-YRkA-WqQ9rYg-YMRTSMR6zscKO9_aHj1NOyqJ21WL8mS0hfvSmqQgi4jn0pDDcJKXsB6_44KhhQeNBijw_4MNDGkKULRfakPun1SUfTsdY7RU_Im-FvmPS4k2Ma327DGFDtshRFQl50ejjwgEOIiSiPx_9_-CvyAL8Ej1Vm8oQcbm63_jXEVxs7Igfv7rJRmEojcnR6-WUyg9-z89nXq1FYs_gDNeIpkg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJHiMafySxEEIMNrVsrdC0SXtA8mzHYZ26pKytEP8UfyPnOGnFA6gve8lDknOs8_nu5_jnO4DXWcqdKISIC8rLmFObxcZvIWqKFuWclqypnzIap4MT_uVUnG7B7-4sjKdVdj6xcdRFbf0_8rcYmiWu5TCcfJj9iH3VKL-72pXQCGZx4H79xCXb_P3wM47vG0r3944_DeK2qkBsU54s4qxEkOTS3OgstbZkVBrHNcJqjfaYOlpg3zME8VKnlPZdRi0ThnFXUJM4zizDdm_ANmcIFXqwvbs3_nq0TvOb8HD4TrA4TxLZcocCo6zJUDm5RD-B61KaoLfKQ337dUBs6gb8FRf_hXub-Ld_F-60wJV8DJZ2D7ZcdR9ujtqt-QfwreGSdq6UVPVk7khTZweDI5lUpBwdDYkPmgWpK4K4k8yWU88lmjriie11hfGP1CWZndcLT2v3JnQZMmo_hJNrUfIj6FX43SdA-tyxhGsUYiU3xmmTcJGxIheFLSzNIsg6_Snb5jX35TWmqiOwXai15pXXvAqajyBZSc5Cbo8NZHb9EK3e99m5mxv11XfVTnYl8tIa4xlzQuKC2em8yDnHa99JrpmOQHYDrLoDsOiysaHJBh14t5JtQVIAPxtK73T2pFpnNVfrqRXBq9VjdDN-70hXrl4276BpS8nzCB4HO1zpgCGo9Xkln_6_8Zdwa3A8OlSHw_HBM7jte-UPdSZiB3qLq6V7juhuYV60U4rA2XXP4j-DdGJ2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEPcVBhgJHqM1vsSxEELAqFZGJ4SY1Ack41ugqEvK2grx1_h1HNtJKh5AfdlLH9IcJz0-l8_153MQeioK5rnjPHOEVRkjVmQmbCFqAhblvZY09k-ZnBbHZ-zdlE930O_uLEygVXYxMQZq19jwH_khpGYJazlIJ4dVS4v4cDR6ufiRhQ5SYae1a6eRTOTE__oJy7fli_ERzPUzQkZvP705ztoOA5ktWL7KRAWAyRel0aKwtqJEGs80QGwNtll44uB3CAD0UheEDL0glnJDmXfE5J5RS2HcK-iqoJA2wZfEVGwK_uYsHcPjNCvzXLYsosQti7UqZ-cQMWCFSnKIW2XqdL9JjbGDwF8Z8l8IOGbC0Q10vYWw-FWyuZtox9e30N6k3aS_jT5HVmkXVHHdzJYex447kCbxrMbV5OMYh_TpcFNjQKB4sZ4HVtHc40Bxb2rIhLip8OJbswoE92BM56m29h10dikqvot2a3juPsJD5mnONAjRihnjtckZF9SV3FlniRgg0elP2bbCeWi0MVcdle272mheBc2rpPkBynvJRarysYXM6zBF_f2hTne80Fx8Va3bK15W1pjAneMSls5el65kDD6HXjJN9QDJboJVdxQWgjcMNNviBZ73si1cSjBoS-mDzp5UG7aWauNkA_Sk_xoCTthF0rVv1vEeMG0pWTlA95Id9jqgAG9Dhcn7_x_8MdoD31Xvx6cnD9C18FLhdGfOD9Du6mLtHwLMW5lH0Z8w-nLZDvwHApVlRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiological+noise+modeling+in+fMRI+based+on+the+pulsatile+component+of+photoplethysmograph&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kassinopoulos%2C+Michalis&rft.au=Mitsis%2C+Georgios+D.&rft.date=2021-11-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=242&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118467&rft.externalDocID=S1053811921007400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon