Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome
Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led...
Saved in:
Published in | Intensive care medicine Vol. 43; no. 11; pp. 1648 - 1659 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2017
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV).
Methods
A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (
n
= 71) or LTV (
n
= 67). The settings for APRV were: high airway pressure (P
high
) set at the last plateau airway pressure (P
plat
), not to exceed 30 cmH
2
O) and low airway pressure ( P
low
) set at 5 cmH
2
O; the release phase (T
low
) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10–14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P
plat
not exceeding 30 cmH
2
O; positive end-expiratory pressure (PEEP) guided by the PEEP–FiO
2
table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P
plat
, respiratory system compliance, and patient outcomes.
Results
Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8–22] vs. 2 (IQR 0–15);
P
< 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (
P
= 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (
P
= 0.053) and was associated with better oxygenation and respiratory system compliance, lower P
plat
, and less sedation requirement during the first week following enrollment (
P
< 0.05, repeated-measures analysis of variance).
Conclusions
Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P
plat
and reduced the duration of both mechanical ventilation and ICU stay. |
---|---|
AbstractList | Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). Methods A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P.sub.high) set at the last plateau airway pressure (P.sub.plat), not to exceed 30 cmH.sub.2O) and low airway pressure ( P.sub.low) set at 5 cmH.sub.2O; the release phase (T.sub.low) setting adjusted to terminate the peak expiratory flow rate to [greater than or equal to] 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P.sub.plat not exceeding 30 cmH.sub.2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO.sub.2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P.sub.plat, respiratory system compliance, and patient outcomes. Results Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P.sub.plat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Conclusions Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P.sub.plat and reduced the duration of both mechanical ventilation and ICU stay. Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P ) set at the last plateau airway pressure (P ), not to exceed 30 cmH O) and low airway pressure ( P ) set at 5 cmH O; the release phase (T ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P not exceeding 30 cmH O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P , and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P and reduced the duration of both mechanical ventilation and ICU stay. Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P.sub.high) set at the last plateau airway pressure (P.sub.plat), not to exceed 30 cmH.sub.2O) and low airway pressure ( P.sub.low) set at 5 cmH.sub.2O; the release phase (T.sub.low) setting adjusted to terminate the peak expiratory flow rate to [greater than or equal to] 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P.sub.plat not exceeding 30 cmH.sub.2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO.sub.2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P.sub.plat, respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P.sub.plat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P.sub.plat and reduced the duration of both mechanical ventilation and ICU stay. Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (Phigh) set at the last plateau airway pressure (Pplat), not to exceed 30 cmH2O) and low airway pressure ( Plow) set at 5 cmH2O; the release phase (Tlow) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10–14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; Pplat not exceeding 30 cmH2O; positive end-expiratory pressure (PEEP) guided by the PEEP–FiO2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, Pplat, respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8–22] vs. 2 (IQR 0–15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower Pplat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased Pplat and reduced the duration of both mechanical ventilation and ICU stay. Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV).PURPOSEExperimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV).A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (Phigh) set at the last plateau airway pressure (Pplat), not to exceed 30 cmH2O) and low airway pressure ( Plow) set at 5 cmH2O; the release phase (Tlow) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; Pplat not exceeding 30 cmH2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, Pplat, respiratory system compliance, and patient outcomes.METHODSA total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (Phigh) set at the last plateau airway pressure (Pplat), not to exceed 30 cmH2O) and low airway pressure ( Plow) set at 5 cmH2O; the release phase (Tlow) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; Pplat not exceeding 30 cmH2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, Pplat, respiratory system compliance, and patient outcomes.Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower Pplat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance).RESULTSCompared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower Pplat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance).Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased Pplat and reduced the duration of both mechanical ventilation and ICU stay.CONCLUSIONSCompared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased Pplat and reduced the duration of both mechanical ventilation and ICU stay. Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). Methods A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV ( n = 71) or LTV ( n = 67). The settings for APRV were: high airway pressure (P high ) set at the last plateau airway pressure (P plat ), not to exceed 30 cmH 2 O) and low airway pressure ( P low ) set at 5 cmH 2 O; the release phase (T low ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10–14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P plat not exceeding 30 cmH 2 O; positive end-expiratory pressure (PEEP) guided by the PEEP–FiO 2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Results Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8–22] vs. 2 (IQR 0–15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU ( P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group ( P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P plat , and less sedation requirement during the first week following enrollment ( P < 0.05, repeated-measures analysis of variance). Conclusions Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P plat and reduced the duration of both mechanical ventilation and ICU stay. |
Audience | Academic |
Author | Wang, Peng Zhou, Yongfang Jin, Xiaodong Wang, Bo Yang, Yunqing Kang, Yan Lv, Yinxia Liang, Guopeng |
Author_xml | – sequence: 1 givenname: Yongfang surname: Zhou fullname: Zhou, Yongfang organization: Department of Critical Care Medicine, West China Hospital of Sichuan University – sequence: 2 givenname: Xiaodong surname: Jin fullname: Jin, Xiaodong organization: Department of Critical Care Medicine, West China Hospital of Sichuan University – sequence: 3 givenname: Yinxia surname: Lv fullname: Lv, Yinxia organization: Department of Critical Care Medicine, West China Hospital of Sichuan University – sequence: 4 givenname: Peng surname: Wang fullname: Wang, Peng organization: Department of Critical Care Medicine, West China Hospital of Sichuan University – sequence: 5 givenname: Yunqing surname: Yang fullname: Yang, Yunqing organization: Department of Critical Care Medicine, West China Hospital of Sichuan University – sequence: 6 givenname: Guopeng surname: Liang fullname: Liang, Guopeng organization: Department of Critical Care Medicine, West China Hospital of Sichuan University – sequence: 7 givenname: Bo surname: Wang fullname: Wang, Bo organization: Department of Critical Care Medicine, West China Hospital of Sichuan University – sequence: 8 givenname: Yan orcidid: 0000-0001-8357-9561 surname: Kang fullname: Kang, Yan email: Kangyan_5626@hotmail.com organization: Department of Critical Care Medicine, West China Hospital of Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28936695$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhS1URKeFB2CDLLFhk-K_OMkGqarKj1SJDawtx7mZceXYwU6Kpm_BG-MwbelUA_bCkv2d4-vrc4KOfPCA0GtKzigh1ftECOWiILQqRENZcfsMrajgrKCM10doRbhghZCCHaOTlK4zXcmSvkDHrG64lE25Qr8udXRbrMfRWaMnGzwOPdY2_tRbPEZIaY6AIzjQCfAN-Mm6HTZkIEI3G8DTBnA3xwf5AGajffZzewrrsTbztNil0WY8xC3ubJqWa3Da-i6GAV6i5712CV7drafo-8fLbxefi6uvn75cnF8VRgo6FRLKujUNbQToVlNuauggj47ptq45b5quZ4aIuq37pu27UlbaQEMlIT0nJfBT9GHnO87tAJ3JhUbt1BjtoONWBW3V_om3G7UON6qUnEtWZoN3dwYx_JghTWqwyYBz2kOYk8qlMVmJumQZffsEvQ5z9Pl5C1U3THBO_lJr7UBZ34d8r1lM1XnFBKsEpzRTxQFqDR5ykTkfvc3be_zZAT7PDgZrDgrePG7MQ0fuQ5OBageYGFKK0Ctjpz9fnJ2tU5SoJZ5qF0-VU6eWeKrbrKRPlPfm_9OwnSZl1q8hPurdP0W_AU-N-0E |
CitedBy_id | crossref_primary_10_1007_s12055_020_01021_z crossref_primary_10_1055_s_0040_1716800 crossref_primary_10_3389_fvets_2023_1157026 crossref_primary_10_1016_j_chest_2024_08_050 crossref_primary_10_7196_AJTCCM_2022_v28i3_241 crossref_primary_10_1016_j_amj_2023_07_011 crossref_primary_10_1186_s13287_022_02956_3 crossref_primary_10_1186_s13613_019_0540_9 crossref_primary_10_1007_s00101_024_01407_3 crossref_primary_10_1016_j_ajem_2020_06_082 crossref_primary_10_1007_s10877_021_00789_8 crossref_primary_10_1177_08850666221109779 crossref_primary_10_17116_anaesthesiology201906152 crossref_primary_10_1186_s13054_023_04469_8 crossref_primary_10_1097_CCM_0000000000003972 crossref_primary_10_1016_j_accpm_2018_09_009 crossref_primary_10_1186_s40635_020_00314_2 crossref_primary_10_3934_medsci_2018_2_145 crossref_primary_10_1097_EA9_0000000000000030 crossref_primary_10_1007_s00101_020_00844_0 crossref_primary_10_1164_rccm_201807_1274LE crossref_primary_10_3389_fphys_2022_928562 crossref_primary_10_1016_j_jointm_2022_02_003 crossref_primary_10_1186_s12890_024_03065_y crossref_primary_10_1186_s13613_019_0619_3 crossref_primary_10_4103_SBVJ_SBVJ_43_24 crossref_primary_10_1016_j_asjsur_2024_02_066 crossref_primary_10_1007_s00134_017_4983_x crossref_primary_10_3389_fmed_2022_883950 crossref_primary_10_1097_CCM_0000000000003437 crossref_primary_10_1186_s13613_019_0518_7 crossref_primary_10_3390_jcm11020319 crossref_primary_10_1016_j_ajem_2021_04_083 crossref_primary_10_1016_j_bja_2021_02_027 crossref_primary_10_1097_MCC_0000000000000477 crossref_primary_10_1177_0885066619855021 crossref_primary_10_1097_TA_0000000000002050 crossref_primary_10_1097_CCM_0000000000005616 crossref_primary_10_1007_s40138_022_00245_0 crossref_primary_10_1097_MD_0000000000018586 crossref_primary_10_1016_j_mpaic_2019_09_006 crossref_primary_10_53097_JMV_10010 crossref_primary_10_4103_ija_ija_189_24 crossref_primary_10_1186_s12912_024_01763_w crossref_primary_10_1016_j_bjae_2019_12_001 crossref_primary_10_1186_s12871_025_02904_7 crossref_primary_10_1097_CCM_0000000000003106 crossref_primary_10_1016_j_chest_2022_05_018 crossref_primary_10_1007_s12098_020_03492_9 crossref_primary_10_1097_CCM_0000000000005923 crossref_primary_10_1177_2324709620925978 crossref_primary_10_7759_cureus_33193 crossref_primary_10_1097_CCM_0000000000003078 crossref_primary_10_1097_CCM_0000000000003594 crossref_primary_10_4187_respcare_07605 crossref_primary_10_1097_CCM_0000000000005776 crossref_primary_10_35366_93428 crossref_primary_10_1177_08850666211030899 crossref_primary_10_1177_08850666231207303 crossref_primary_10_1155_2022_4579030 crossref_primary_10_1007_s00134_020_06299_6 crossref_primary_10_1016_j_rmclc_2024_07_006 crossref_primary_10_1136_tsaco_2019_000322 crossref_primary_10_1089_jamp_2018_1457 crossref_primary_10_1177_20503121241312941 crossref_primary_10_3390_jcm13092690 crossref_primary_10_1111_vec_13231 crossref_primary_10_4266_acc_2021_00017 crossref_primary_10_1097_MCC_0000000000000575 crossref_primary_10_1213_XAA_0000000000001231 crossref_primary_10_1164_rccm_201903_0616LE crossref_primary_10_4103_jmedsci_jmedsci_53_23 crossref_primary_10_1097_CCM_0000000000004675 crossref_primary_10_1097_CCM_0000000000005403 crossref_primary_10_1007_s40140_021_00443_8 crossref_primary_10_2169_internalmedicine_2883_19 crossref_primary_10_1016_j_resinv_2022_05_003 crossref_primary_10_1097_DCC_0000000000000463 crossref_primary_10_1053_j_sempedsurg_2019_01_004 crossref_primary_10_1186_s13054_019_2365_1 crossref_primary_10_1007_s00134_018_5337_z crossref_primary_10_17116_anaesthesiology20200215 crossref_primary_10_1016_j_ccc_2024_01_003 crossref_primary_10_14423_SMJ_0000000000001245 crossref_primary_10_1055_a_2229_3854 crossref_primary_10_1097_CCM_0000000000005312 crossref_primary_10_1186_s40560_022_00615_6 crossref_primary_10_4103_atm_ATM_475_20 crossref_primary_10_4266_acc_002520 crossref_primary_10_1007_s00063_020_00685_0 crossref_primary_10_1186_s12931_022_01985_z crossref_primary_10_1007_s40124_020_00210_z crossref_primary_10_1016_j_tacc_2018_05_007 crossref_primary_10_1186_s13256_021_02984_2 crossref_primary_10_1016_j_bjane_2021_03_022 crossref_primary_10_1097_JTN_0000000000000756 crossref_primary_10_4103_ejcdt_ejcdt_82_20 crossref_primary_10_1080_17476348_2018_1457954 crossref_primary_10_36401_ISIM_20_03 crossref_primary_10_1097_CCM_0000000000005670 crossref_primary_10_5005_jp_journals_10071_23242 crossref_primary_10_1007_s00134_017_5012_9 crossref_primary_10_1016_j_cpsurg_2020_100777 crossref_primary_10_1016_j_cpsurg_2020_100778 crossref_primary_10_1007_s10405_024_00597_2 crossref_primary_10_1016_j_emc_2022_05_002 crossref_primary_10_1016_j_emc_2022_05_004 crossref_primary_10_1016_j_emc_2019_04_005 crossref_primary_10_1097_CCM_0000000000004054 crossref_primary_10_1002_14651858_CD015077 crossref_primary_10_1186_s12890_021_01545_z crossref_primary_10_51847_3SKsqBIIPC crossref_primary_10_1164_rccm_201804_0778ED crossref_primary_10_1097_CCE_0000000000000299 crossref_primary_10_4187_respcare_08461 crossref_primary_10_1007_s00134_018_5250_5 crossref_primary_10_1007_s00101_020_00859_7 crossref_primary_10_1186_s12890_022_02238_x crossref_primary_10_3389_fphys_2022_787231 crossref_primary_10_1164_rccm_201807_1375LE crossref_primary_10_1097_CCM_0000000000003666 crossref_primary_10_12688_f1000research_15493_1 crossref_primary_10_53730_ijhs_v4nS1_15219 crossref_primary_10_1007_s00134_021_06370_w crossref_primary_10_1186_s13054_018_2051_8 crossref_primary_10_1016_j_amj_2020_11_014 crossref_primary_10_1097_CCM_0000000000005458 crossref_primary_10_3390_jpm14080779 crossref_primary_10_2478_jccm_2024_0035 crossref_primary_10_1186_s13054_023_04562_y crossref_primary_10_1186_s12890_024_02894_1 crossref_primary_10_1016_j_cps_2023_11_001 crossref_primary_10_1089_sur_2017_297 crossref_primary_10_1016_j_ccc_2021_05_008 crossref_primary_10_1186_s13054_024_04967_3 crossref_primary_10_48107_CMJ_2020_12_005 crossref_primary_10_1055_s_0042_1758836 crossref_primary_10_1177_08850666251320550 crossref_primary_10_3389_fphys_2022_927507 crossref_primary_10_1186_s41038_018_0126_z crossref_primary_10_1080_17476348_2020_1708719 crossref_primary_10_1183_16000617_0126_2018 crossref_primary_10_1186_s13256_022_03658_3 crossref_primary_10_1186_s13256_024_04665_2 crossref_primary_10_3389_fphys_2020_00227 crossref_primary_10_1186_s43168_023_00188_4 crossref_primary_10_1080_17434440_2023_2255521 crossref_primary_10_3389_fphys_2023_1308252 crossref_primary_10_1152_japplphysiol_00689_2021 |
Cites_doi | 10.1056/NEJMoa0708638 10.1164/ajrccm.164.1.2007010 10.1097/TA.0b013e3181e75961 10.1097/CCM.0000000000001649 10.1097/SHK.0b013e31829efb06 10.1213/ANE.0b013e3181bbd918 10.1007/s00134-016-4325-4 10.1097/01.CCM.0000155920.11893.37 10.1177/0885066608324293 10.1186/s40635-016-0085-2 10.1164/ajrccm.164.1.2001078 10.1056/NEJMra1203367 10.1097/ALN.0000000000000124 10.1007/s00134-017-4754-8 10.1097/00003246-198701000-00018 10.1001/jama.299.6.637 10.1097/TA.0b013e31825c7a82 10.1186/s40635-015-0071-0 10.1097/01.CCM.0000163226.34868.0A 10.1152/japplphysiol.01274.2001 10.1007/s00134-016-4423-3 10.1056/NEJMoa032193 10.1097/TA.0b013e31825ff653 10.1186/cc1027 10.1164/rccm.200607-915OC 10.1378/chest.116.suppl_1.9S-a 10.1007/s00134-015-3692-6 10.1056/NEJM200005043421801 10.1001/jama.2016.0291 10.1183/09031936.93.02090893 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 COPYRIGHT 2017 Springer Intensive Care Medicine is a copyright of Springer, 2017. |
Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 Springer – notice: Intensive Care Medicine is a copyright of Springer, 2017. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FR3 FYUFA GHDGH K9. M0S M1P M7Z NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00134-017-4912-z |
DatabaseName | Open Access Journals from Springer Nature CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database (NC LIVE) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1238 |
EndPage | 1659 |
ExternalDocumentID | PMC5633625 A724274311 28936695 10_1007_s00134_017_4912_z |
Genre | Journal Article Comparative Study |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAQQT AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHFT ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEA IHE IHR IJ- IKXTQ IMOTQ INH IOF ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J5H JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM LMP M1P M4Y MA- MJL N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW X7M YCJ YLTOR Z45 Z5O Z7U Z7X Z82 Z83 Z86 Z87 Z8O Z8V Z8W Z8Z Z91 ZGI ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7XB 8FD 8FK ABRTQ FR3 K9. M7Z P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c641t-6e58bc9194eaba13c8edeeeed2ab883399df2c048b8f9bfd567ace91600f305e3 |
IEDL.DBID | C6C |
ISSN | 0342-4642 1432-1238 |
IngestDate | Thu Aug 21 18:02:25 EDT 2025 Tue Aug 05 10:42:34 EDT 2025 Sat Aug 23 14:10:23 EDT 2025 Tue Jun 17 21:34:42 EDT 2025 Thu Jun 12 23:46:36 EDT 2025 Tue Jun 10 20:49:23 EDT 2025 Thu Apr 03 06:56:36 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Tue Jul 01 03:51:13 EDT 2025 Fri Feb 21 02:35:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Acute respiratory distress syndrome Spontaneous breathing Low tidal volume Airway pressure release ventilation |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-6e58bc9194eaba13c8edeeeed2ab883399df2c048b8f9bfd567ace91600f305e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0001-8357-9561 |
OpenAccessLink | https://doi.org/10.1007/s00134-017-4912-z |
PMID | 28936695 |
PQID | 1948924330 |
PQPubID | 48752 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5633625 proquest_miscellaneous_1942674852 proquest_journals_1948924330 gale_infotracmisc_A724274311 gale_infotracgeneralonefile_A724274311 gale_infotracacademiconefile_A724274311 pubmed_primary_28936695 crossref_citationtrail_10_1007_s00134_017_4912_z crossref_primary_10_1007_s00134_017_4912_z springer_journals_10_1007_s00134_017_4912_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Intensive care medicine |
PublicationTitleAbbrev | Intensive Care Med |
PublicationTitleAlternate | Intensive Care Med |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Putensen, Zech, Wrigge, Zinserling, Stuber, Von Spiegel, Mutz (CR11) 2001; 164 Brower, Lanken, MacIntyre (CR22) 2004; 351 Terragni, Rosboch, Tealdi, Corno, Menaldo, Davini, Gandini, Herrmann, Mascia, Quintel, Slutsky, Gattinoni, Ranieri (CR5) 2007; 175 Bein, Grasso, Moerer, Quintel, Guerin, Deja, Brondani, Mehta (CR14) 2016; 42 Bellani, Laffey, Pham, Fan, Brochard, Esteban, Gattinoni, van Haren, Larsson, McAuley, Ranieri, Rubenfeld, Thompson, Wrigge, Slutsky, Pesenti (CR6) 2016; 315 Bates, Irvin (CR25) 2002; 93 Roy, Sadowitz, Andrews, Gatto, Marx, Ge, Wang, Lin, Dean, Kuhn, Ghosh, Satalin, Snyder, Vodovotz, Nieman, Habashi (CR21) 2012; 73 Definition Task Force, Ranieri, Rubenfeld, Thompson, Ferguson, Caldwell, Fan, Camporota, Slutsky (CR16) 2012; 307 Maung, Schuster, Kaplan, Ditillo, Piper, Maerz, Lui, Johnson, Davis (CR13) 2012; 73 Blanch, Villagra, Sales, Montanya, Lucangelo, Luján, García-Esquirol, Chacón, Estruga, Oliva, Hernández-Abadia, Albaiceta, Fernández-Mondejar, Fernández, Lopez-Aguilar, Villar, Murias, Kacmarek (CR31) 2015; 41 Yoshida, Roldan, Beraldo, Torsani, Gomes, De Santis, Costa, Tucci, Lima, Kavanagh, Amato (CR28) 2016; 44 Downs, Stock (CR7) 1987; 15 (CR4) 2000; 342 Delaunois (CR24) 1989; 2 Yoshida, Rinka, Kaji, Yoshimoto, Arimoto, Miyaichi, Kan (CR12) 2009; 109 Slutsky (CR1) 1999; 116 Kollisch-Singule, Emr, Jain, Andrews, Satalin, Liu, Porcellio, Kenyon, Wang, Marx, Gatto, Nieman, Habashi (CR23) 2015; 3 Pelosi, Goldner, McKibben, Adams, Eccher, Caironi, Losappio, Gattinoni, Marini (CR2) 2001; 164 Roy, Emr, Sadowitz, Gatto, Ghosh, Satalin, Snyder, Ge, Wang, Marx, Dean, Andrews, Singh, Scalea, Habashi, Nieman (CR9) 2013; 40 Kaplan, Bailey, Formosa (CR29) 2001; 5 Kollisch-Singule, Jain, Andrews, Smith, Hamlington-Smith, Roy, DiStefano, Nuss, Satalin, Meng, Marx, Bates, Gatto, Nieman, Habashi (CR10) 2016; 151 Talmor, Sarge, Malhotra, O’Donnell, Ritz, Lisbon, Novack, Loring (CR18) 2008; 359 Neumann, Wrigge, Zinserling, Hinz, Maripuu, Andersson, Putensen, Hedenstierna (CR27) 2005; 33 Cressoni, Chiumello, Algieri, Brioni, Chiurazzi, Colombo, Colombo, Crimella, Guanziroli, Tomic, Tonetti, Luca Vergani, Carlesso, Gasparovic, Gattinoni (CR3) 2017; 43 Guldner, Braune, Carvalho, Beda, Zeidler, Wiedemann, Wunderlich, Andreeff, Uhlig, Spieth, Koch, Pelosi, Kotzerke, de Abreu (CR26) 2014; 120 Fan, Khatri, Mendez-Tellez, Shanholtz, Needham (CR30) 2008; 23 Habashi (CR20) 2005; 33 Jain, Kollisch-Singule, Sadowitz, Dombert, Satalin, Andrews, Gatto, Nieman, Habashi (CR8) 2016; 4 McConville, Kress (CR32) 2012; 367 Meade, Cook, Guyatt, Slutsky, Arabi, Cooper, Davies, Hand, Zhou, Thabane, Austin, Lapinsky, Baxter, RussellJ, TE RoncoJJ (CR17) 2008; 299 Maxwell, Green, Waldrop, Dart, Smith, Brooks, Lewis, Barker (CR15) 2010; 69 Beitler, Sands, Loring, Owens, Malhotra, Spragg, Matthay, Thompson, Talmor (CR19) 2016; 42 G Bellani (4912_CR6) 2016; 315 SV Jain (4912_CR8) 2016; 4 The Acute Respiratory Distress Syndrome Network (4912_CR4) 2000; 342 JB Downs (4912_CR7) 1987; 15 ARDS Definition Task Force (4912_CR16) 2012; 307 MO Meade (4912_CR17) 2008; 299 JH Bates (4912_CR25) 2002; 93 T Yoshida (4912_CR12) 2009; 109 E Fan (4912_CR30) 2008; 23 P Pelosi (4912_CR2) 2001; 164 T Bein (4912_CR14) 2016; 42 RA Maxwell (4912_CR15) 2010; 69 JF McConville (4912_CR32) 2012; 367 C Putensen (4912_CR11) 2001; 164 L Delaunois (4912_CR24) 1989; 2 S Roy (4912_CR21) 2012; 73 P Neumann (4912_CR27) 2005; 33 T Yoshida (4912_CR28) 2016; 44 AS Slutsky (4912_CR1) 1999; 116 AA Maung (4912_CR13) 2012; 73 SK Roy (4912_CR9) 2013; 40 RG Brower (4912_CR22) 2004; 351 D Talmor (4912_CR18) 2008; 359 NM Habashi (4912_CR20) 2005; 33 L Blanch (4912_CR31) 2015; 41 M Cressoni (4912_CR3) 2017; 43 JR Beitler (4912_CR19) 2016; 42 PP Terragni (4912_CR5) 2007; 175 A Guldner (4912_CR26) 2014; 120 M Kollisch-Singule (4912_CR10) 2016; 151 M Kollisch-Singule (4912_CR23) 2015; 3 LJ Kaplan (4912_CR29) 2001; 5 26903337 - JAMA. 2016 Feb 23;315(8):788-800 27342819 - Intensive Care Med. 2016 Sep;42(9):1427-36 29124317 - Intensive Care Med. 2018 Jan;44(1):135-136 3568710 - Crit Care Med. 1987 May;15(5):459-61 18805857 - J Intensive Care Med. 2008 Nov-Dec;23(6):376-83 27207149 - Intensive Care Med Exp. 2016 Dec;4(1):11 23799354 - Shock. 2013 Sep;40(3):210-6 23215559 - N Engl J Med. 2012 Dec 6;367(23):2233-9 29947887 - Intensive Care Med. 2018 Aug;44(8):1364-1365 29230522 - Intensive Care Med. 2018 Feb;44(2):272 17038660 - Am J Respir Crit Care Med. 2007 Jan 15;175(2):160-6 11435250 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):122-30 10793162 - N Engl J Med. 2000 May 4;342(18):1301-8 18270352 - JAMA. 2008 Feb 13;299(6):637-45 15753733 - Crit Care Med. 2005 Mar;33(3 Suppl):S228-40 24406799 - Anesthesiology. 2014 Mar;120(3):673-82 11511336 - Crit Care. 2001 Aug;5(4):221-6 10424561 - Chest. 1999 Jul;116(1 Suppl):9S-15S 29850185 - J Thorac Dis. 2018 Apr;10(Suppl 9):S1058-S1063 22797452 - JAMA. 2012 Jun 20;307(23):2526-33 11435237 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):43-9 20838119 - J Trauma. 2010 Sep;69(3):501-10; discussion 511 29607131 - J Thorac Dis. 2018 Feb;10 (2):667-669 15891341 - Crit Care Med. 2005 May;33(5):1090-5 29607132 - J Thorac Dis. 2018 Feb;10 (2):670-673 26694915 - Intensive Care Med Exp. 2015 Dec;3(1):35 26444302 - JAMA Surg. 2016 Jan;151(1):64-72 12133882 - J Appl Physiol (1985). 2002 Aug;93(2):705-13 19923518 - Anesth Analg. 2009 Dec;109 (6):1892-900 27040102 - Intensive Care Med. 2016 May;42(5):699-711 15269312 - N Engl J Med. 2004 Jul 22;351(4):327-36 27002273 - Crit Care Med. 2016 Aug;44(8):e678-88 23019679 - J Trauma Acute Care Surg. 2012 Aug;73(2):507-10 22846945 - J Trauma Acute Care Surg. 2012 Aug;73(2):391-400 25693449 - Intensive Care Med. 2015 Apr;41(4):633-41 2680588 - Eur Respir J. 1989 Oct;2(9):893-904 28283699 - Intensive Care Med. 2017 May;43(5):603-611 19001507 - N Engl J Med. 2008 Nov 13;359(20):2095-104 |
References_xml | – volume: 359 start-page: 2095 issue: 20 year: 2008 end-page: 2104 ident: CR18 article-title: Mechanical ventilation guided by esophageal pressure in acute lung injury publication-title: N Engl J Med doi: 10.1056/NEJMoa0708638 – volume: 164 start-page: 122 issue: 1 year: 2001 end-page: 130 ident: CR2 article-title: Recruitment and derecruitment during acute respiratory failure: an experimental study publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.164.1.2007010 – volume: 69 start-page: 501 year: 2010 end-page: 510 ident: CR15 article-title: A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure publication-title: J Trauma doi: 10.1097/TA.0b013e3181e75961 – volume: 44 start-page: e678 issue: 8 year: 2016 end-page: e688 ident: CR28 article-title: Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure publication-title: Crit Care Med doi: 10.1097/CCM.0000000000001649 – volume: 40 start-page: 210 year: 2013 end-page: 216 ident: CR9 article-title: Preemptive application of airway pressure release ventilation prevents development of acute respiratory distress syndrome in a rat traumatic hemorrhagic shock model publication-title: Shock doi: 10.1097/SHK.0b013e31829efb06 – volume: 109 start-page: 1892 year: 2009 end-page: 1900 ident: CR12 article-title: The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation publication-title: Anesth Analg doi: 10.1213/ANE.0b013e3181bbd918 – volume: 42 start-page: 699 issue: 5 year: 2016 end-page: 711 ident: CR14 article-title: The standard of care of patients with ARDS: ventilatory settings and rescue therapies forrefractory hypoxemia publication-title: Intensive Care Med doi: 10.1007/s00134-016-4325-4 – volume: 33 start-page: S228 issue: 3 Suppl year: 2005 end-page: S240 ident: CR20 article-title: Other approaches to open-lung ventilation: airway pressure release ventilation publication-title: Crit Care Med doi: 10.1097/01.CCM.0000155920.11893.37 – volume: 23 start-page: 376 issue: 6 year: 2008 end-page: 383 ident: CR30 article-title: Review of a large clinical series: sedation and analgesia usage with airway pressure release and assist-control ventilation for acute lung injury publication-title: J Intensive Care Med doi: 10.1177/0885066608324293 – volume: 4 start-page: 11 issue: 1 year: 2016 ident: CR8 article-title: The 30-year evolution of airway pressure release ventilation (APRV) publication-title: Intensive Care Med Exp doi: 10.1186/s40635-016-0085-2 – volume: 164 start-page: 43 year: 2001 end-page: 49 ident: CR11 article-title: Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.164.1.2001078 – volume: 367 start-page: 2233 year: 2012 end-page: 2239 ident: CR32 article-title: Weaning patients from the ventilator publication-title: N Engl J Med doi: 10.1056/NEJMra1203367 – volume: 120 start-page: 673 year: 2014 end-page: 682 ident: CR26 article-title: Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury publication-title: Anesthesiology doi: 10.1097/ALN.0000000000000124 – volume: 43 start-page: 603 issue: 5 year: 2017 end-page: 611 ident: CR3 article-title: Opening pressures and atelectrauma in acute respiratory distress syndrome publication-title: Intensive Care Med doi: 10.1007/s00134-017-4754-8 – volume: 2 start-page: 893 year: 1989 end-page: 904 ident: CR24 article-title: Anatomy and physiology of collateral respiratory pathways publication-title: Eur Respir J – volume: 15 start-page: 459 year: 1987 end-page: 461 ident: CR7 article-title: Airway pressure release ventilation: a new concept in ventilatory support publication-title: Crit Care Med doi: 10.1097/00003246-198701000-00018 – volume: 299 start-page: 637 year: 2008 end-page: 645 ident: CR17 article-title: Ventilation strategy using low tidal volume, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial publication-title: JAMA doi: 10.1001/jama.299.6.637 – volume: 73 start-page: 391 year: 2012 end-page: 400 ident: CR21 article-title: Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e31825c7a82 – volume: 3 start-page: 35 issue: 1 year: 2015 ident: CR23 article-title: The effects of airway pressure release ventilation on respiratory mechanics in extrapulmonary lung injury publication-title: Intensive Care Med Exp doi: 10.1186/s40635-015-0071-0 – volume: 33 start-page: 1090 year: 2005 end-page: 1095 ident: CR27 article-title: Spontaneous breathing affects the spatial ventilation and perfusion publication-title: Crit Care Med doi: 10.1097/01.CCM.0000163226.34868.0A – volume: 93 start-page: 705 year: 2002 end-page: 713 ident: CR25 article-title: Time dependence of recruitment and derecruitment in the lung: a theoretical model publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01274.2001 – volume: 42 start-page: 1427 issue: 9 year: 2016 end-page: 1436 ident: CR19 article-title: Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria publication-title: Intensive Care Med doi: 10.1007/s00134-016-4423-3 – volume: 351 start-page: 327 year: 2004 end-page: 336 ident: CR22 article-title: Higher versus lower positive end expiratory pressures in patients with the acute respiratory distress syndrome publication-title: N Engl J Med doi: 10.1056/NEJMoa032193 – volume: 151 start-page: 64 issue: 1 year: 2016 end-page: 72 ident: CR10 article-title: Effect of airway pressure release ventilation on dynamic alveolar heterogeneity publication-title: JAMA – volume: 73 start-page: 507 issue: 2 year: 2012 end-page: 510 ident: CR13 article-title: Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e31825ff653 – volume: 5 start-page: 221 year: 2001 end-page: 226 ident: CR29 article-title: Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome publication-title: Crit Care doi: 10.1186/cc1027 – volume: 175 start-page: 160 issue: 2 year: 2007 end-page: 166 ident: CR5 article-title: Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200607-915OC – volume: 307 start-page: 2526 issue: 23 year: 2012 end-page: 2533 ident: CR16 article-title: Acute respiratory distress syndrome: the Berlin definition publication-title: JAMA – volume: 116 start-page: 9S issue: 1 suppl year: 1999 end-page: 15S ident: CR1 article-title: Lung injury caused by mechanical ventilation publication-title: Chest doi: 10.1378/chest.116.suppl_1.9S-a – volume: 41 start-page: 633 issue: 4 year: 2015 end-page: 641 ident: CR31 article-title: Asynchronies during mechanical ventilation are associated with mortality publication-title: Intensive Care Med doi: 10.1007/s00134-015-3692-6 – volume: 342 start-page: 1301 year: 2000 end-page: 1308 ident: CR4 article-title: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome publication-title: N Engl J Med doi: 10.1056/NEJM200005043421801 – volume: 315 start-page: 788 issue: 8 year: 2016 end-page: 800 ident: CR6 article-title: Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries publication-title: JAMA doi: 10.1001/jama.2016.0291 – volume: 73 start-page: 391 year: 2012 ident: 4912_CR21 publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e31825c7a82 – volume: 315 start-page: 788 issue: 8 year: 2016 ident: 4912_CR6 publication-title: JAMA doi: 10.1001/jama.2016.0291 – volume: 164 start-page: 122 issue: 1 year: 2001 ident: 4912_CR2 publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.164.1.2007010 – volume: 4 start-page: 11 issue: 1 year: 2016 ident: 4912_CR8 publication-title: Intensive Care Med Exp doi: 10.1186/s40635-016-0085-2 – volume: 367 start-page: 2233 year: 2012 ident: 4912_CR32 publication-title: N Engl J Med doi: 10.1056/NEJMra1203367 – volume: 69 start-page: 501 year: 2010 ident: 4912_CR15 publication-title: J Trauma doi: 10.1097/TA.0b013e3181e75961 – volume: 116 start-page: 9S issue: 1 suppl year: 1999 ident: 4912_CR1 publication-title: Chest doi: 10.1378/chest.116.suppl_1.9S-a – volume: 73 start-page: 507 issue: 2 year: 2012 ident: 4912_CR13 publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e31825ff653 – volume: 120 start-page: 673 year: 2014 ident: 4912_CR26 publication-title: Anesthesiology doi: 10.1097/ALN.0000000000000124 – volume: 5 start-page: 221 year: 2001 ident: 4912_CR29 publication-title: Crit Care doi: 10.1186/cc1027 – volume: 93 start-page: 705 year: 2002 ident: 4912_CR25 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01274.2001 – volume: 44 start-page: e678 issue: 8 year: 2016 ident: 4912_CR28 publication-title: Crit Care Med doi: 10.1097/CCM.0000000000001649 – volume: 42 start-page: 699 issue: 5 year: 2016 ident: 4912_CR14 publication-title: Intensive Care Med doi: 10.1007/s00134-016-4325-4 – volume: 33 start-page: S228 issue: 3 Suppl year: 2005 ident: 4912_CR20 publication-title: Crit Care Med doi: 10.1097/01.CCM.0000155920.11893.37 – volume: 3 start-page: 35 issue: 1 year: 2015 ident: 4912_CR23 publication-title: Intensive Care Med Exp doi: 10.1186/s40635-015-0071-0 – volume: 2 start-page: 893 year: 1989 ident: 4912_CR24 publication-title: Eur Respir J doi: 10.1183/09031936.93.02090893 – volume: 351 start-page: 327 year: 2004 ident: 4912_CR22 publication-title: N Engl J Med doi: 10.1056/NEJMoa032193 – volume: 109 start-page: 1892 year: 2009 ident: 4912_CR12 publication-title: Anesth Analg doi: 10.1213/ANE.0b013e3181bbd918 – volume: 359 start-page: 2095 issue: 20 year: 2008 ident: 4912_CR18 publication-title: N Engl J Med doi: 10.1056/NEJMoa0708638 – volume: 23 start-page: 376 issue: 6 year: 2008 ident: 4912_CR30 publication-title: J Intensive Care Med doi: 10.1177/0885066608324293 – volume: 164 start-page: 43 year: 2001 ident: 4912_CR11 publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.164.1.2001078 – volume: 33 start-page: 1090 year: 2005 ident: 4912_CR27 publication-title: Crit Care Med doi: 10.1097/01.CCM.0000163226.34868.0A – volume: 299 start-page: 637 year: 2008 ident: 4912_CR17 publication-title: JAMA doi: 10.1001/jama.299.6.637 – volume: 42 start-page: 1427 issue: 9 year: 2016 ident: 4912_CR19 publication-title: Intensive Care Med doi: 10.1007/s00134-016-4423-3 – volume: 151 start-page: 64 issue: 1 year: 2016 ident: 4912_CR10 publication-title: JAMA – volume: 15 start-page: 459 year: 1987 ident: 4912_CR7 publication-title: Crit Care Med doi: 10.1097/00003246-198701000-00018 – volume: 175 start-page: 160 issue: 2 year: 2007 ident: 4912_CR5 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200607-915OC – volume: 43 start-page: 603 issue: 5 year: 2017 ident: 4912_CR3 publication-title: Intensive Care Med doi: 10.1007/s00134-017-4754-8 – volume: 40 start-page: 210 year: 2013 ident: 4912_CR9 publication-title: Shock doi: 10.1097/SHK.0b013e31829efb06 – volume: 41 start-page: 633 issue: 4 year: 2015 ident: 4912_CR31 publication-title: Intensive Care Med doi: 10.1007/s00134-015-3692-6 – volume: 307 start-page: 2526 issue: 23 year: 2012 ident: 4912_CR16 publication-title: JAMA – volume: 342 start-page: 1301 year: 2000 ident: 4912_CR4 publication-title: N Engl J Med doi: 10.1056/NEJM200005043421801 – reference: 29124317 - Intensive Care Med. 2018 Jan;44(1):135-136 – reference: 10793162 - N Engl J Med. 2000 May 4;342(18):1301-8 – reference: 11435237 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):43-9 – reference: 26444302 - JAMA Surg. 2016 Jan;151(1):64-72 – reference: 15269312 - N Engl J Med. 2004 Jul 22;351(4):327-36 – reference: 17038660 - Am J Respir Crit Care Med. 2007 Jan 15;175(2):160-6 – reference: 25693449 - Intensive Care Med. 2015 Apr;41(4):633-41 – reference: 15891341 - Crit Care Med. 2005 May;33(5):1090-5 – reference: 27002273 - Crit Care Med. 2016 Aug;44(8):e678-88 – reference: 26903337 - JAMA. 2016 Feb 23;315(8):788-800 – reference: 23215559 - N Engl J Med. 2012 Dec 6;367(23):2233-9 – reference: 3568710 - Crit Care Med. 1987 May;15(5):459-61 – reference: 11511336 - Crit Care. 2001 Aug;5(4):221-6 – reference: 23799354 - Shock. 2013 Sep;40(3):210-6 – reference: 27342819 - Intensive Care Med. 2016 Sep;42(9):1427-36 – reference: 29850185 - J Thorac Dis. 2018 Apr;10(Suppl 9):S1058-S1063 – reference: 22846945 - J Trauma Acute Care Surg. 2012 Aug;73(2):391-400 – reference: 29947887 - Intensive Care Med. 2018 Aug;44(8):1364-1365 – reference: 12133882 - J Appl Physiol (1985). 2002 Aug;93(2):705-13 – reference: 27040102 - Intensive Care Med. 2016 May;42(5):699-711 – reference: 2680588 - Eur Respir J. 1989 Oct;2(9):893-904 – reference: 11435250 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):122-30 – reference: 28283699 - Intensive Care Med. 2017 May;43(5):603-611 – reference: 19001507 - N Engl J Med. 2008 Nov 13;359(20):2095-104 – reference: 19923518 - Anesth Analg. 2009 Dec;109 (6):1892-900 – reference: 27207149 - Intensive Care Med Exp. 2016 Dec;4(1):11 – reference: 15753733 - Crit Care Med. 2005 Mar;33(3 Suppl):S228-40 – reference: 22797452 - JAMA. 2012 Jun 20;307(23):2526-33 – reference: 29230522 - Intensive Care Med. 2018 Feb;44(2):272 – reference: 24406799 - Anesthesiology. 2014 Mar;120(3):673-82 – reference: 26694915 - Intensive Care Med Exp. 2015 Dec;3(1):35 – reference: 23019679 - J Trauma Acute Care Surg. 2012 Aug;73(2):507-10 – reference: 18805857 - J Intensive Care Med. 2008 Nov-Dec;23(6):376-83 – reference: 29607131 - J Thorac Dis. 2018 Feb;10 (2):667-669 – reference: 10424561 - Chest. 1999 Jul;116(1 Suppl):9S-15S – reference: 20838119 - J Trauma. 2010 Sep;69(3):501-10; discussion 511 – reference: 18270352 - JAMA. 2008 Feb 13;299(6):637-45 – reference: 29607132 - J Thorac Dis. 2018 Feb;10 (2):670-673 |
SSID | ssj0017651 |
Score | 2.6011922 |
Snippet | Purpose
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV)... Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies... Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV)... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1648 |
SubjectTerms | Acute respiratory distress syndrome Adult Aged Anesthesiology Animal models Body weight Chronic illnesses Comparative analysis Continuous positive airway pressure Continuous Positive Airway Pressure - methods Continuous Positive Airway Pressure - utilization Critical Care Medicine Depression, Mental Emergency Medicine Female Flow velocity Humans Intensive Intensive care Intensive Care Units - statistics & numerical data Length of Stay Lung - physiopathology Lung Compliance - physiology Lungs Male Mechanical ventilation Medical research Medicine Medicine & Public Health Medicine, Experimental Mental depression Middle Aged Original Oxygen - blood Oxygenation Pain Medicine Patients Pediatrics Pneumology/Respiratory System Pressure Pulmonary functions Respiratory distress syndrome Respiratory Distress Syndrome, Adult - mortality Respiratory Distress Syndrome, Adult - physiopathology Respiratory Distress Syndrome, Adult - therapy Respiratory function Respiratory system Respiratory therapy Respiratory tract Tidal Volume Time Factors Variance analysis Ventilation Ventilators |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwEA86QXwZmz-rUyKIghJs0jRtnsYYjiHMJwfft5KmiX7B9bt13yLuv_A_9i5N67dfdH3oS-5K27tc7nKXzxHyJtfYHk1bxkUtmRSCs1p6uAlvXOlFVoStgbMv6vRcfl7ki7jhdh3LKkebGAx1s7K4R_4Rgu0SYgUIvw8vrxh2jcLsamyhcZfcQ-gy1OpiMQVcvFCh_SKi3DEJjvaY1UwDiCjPsP6iYFJzwW5m69K2dd5YnrZLJ7fyp2FZOtkju9GfpEeDAuyTO659SO6fxYz5I_I7IBjTjTw1XXlqlt1P84uGIti-cxQ7p8ByRkPx41AdRy-AoENgV0fBSaRN303sFw7PC6N4ZxzLlhrbr_FxU_6eNsvhOAodsREek_OTT1-PT1lsw8CsknzNlMvL2moQgDO14ZktXePgaoSpsVWx1o0XFixBXXpd-yZXhbEO3M409WBNXPaE7LSr1j0jFBbCRlqulFSpdNrX3PpMpw1YOZFqqxKSjkKobMQox1YZP6oJXTnIrQK5VSi36iYh7yeWywGg4zbidyjZCicvPNeaeAYB3g5hsKqjAjwW9Kl4Qt7OKL8NIOD_IjyYEcLstPPhUYmqaB2uq7-6nJDX0zByYsVb61Z9oBHYCCYXCXk66Nz0fRAkZ0rpPCHFTBsnAsQMn4-0y-8BOzxXGbgswPlh1NuN1_rfb3t--0e8IA8ETqRwQvOA7Ky73r0EV21dvwrz8Q8gSj3u priority: 102 providerName: ProQuest |
Title | Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome |
URI | https://link.springer.com/article/10.1007/s00134-017-4912-z https://www.ncbi.nlm.nih.gov/pubmed/28936695 https://www.proquest.com/docview/1948924330 https://www.proquest.com/docview/1942674852 https://pubmed.ncbi.nlm.nih.gov/PMC5633625 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEB9sC-KL-N9oPVYQBSWQ3Ww22cezXC1Ki4gH51NINrv1wOZKekHst_AbO7PJhctRBfOQPOzMkmR2diaZmd8AvEo0tUfTJuSilKEUgoeldHgSrrCZE3Hqfw2cnqmTufy4SBY9WDTVwuzE7wnsk8eUJ5GGUnMRXu_BQcJxBorLqqMhYJAq32mRAO1CiT71JoB50xQjE7S7EW9Zot0syZ1QqbdAx_fgbu86smkn6_twy9YP4PZpHxx_CL89WDHbCkmzlWPFsvlZ_GI-37VtLKMmKWi5mM9z7BLh2AUSNIThahn6g6xqm4H9wlJpMElyxLGsWWHaNU03hOpZtewqT9gGBuERzI9nX49Owr7jQmiU5OtQ2SQrjeZa2qIseGwyW1k8KlGU1JVY68oJg0pfZk6XrkpUWhiLHmYUOdw4bPwY9utVbZ8CQ5tXScOVkiqSVruSGxfrqMINTUTaqACijRBy08ORU1eMH_kApOzllqPccpJbfh3A24HlssPi-BfxG5JsTnqK85qiLzfAuyPEq3yaonNC7hMP4PWI8rzD-76J8HBEiIpoxsObRZT3G8FVjq8yw0_cOI4CeDkMEyclt9V21XoaQT1fEhHAk27NDc-H38OxUjoJIB2txoGA4MHHI_Xyu4cJT1SM3glyvtus263b-ttre_Zf1M_hjiC98rWZh7C_blr7Ap20dTmBvXSRTuBg-uHbpxle38_OPn-ZeKXF81xM_wDefTvF |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVN6BAkbiIYEiYsdx4gNCFVBtabenVtpbSBwHVqLZst2oav8Ff4Tf2BnnwWYFvTWHXDy2ksx4HpnxNwAvI03t0bTxucilL4Xgfi5LvIkys0kpwtj9Ghjvq9Gh_DqJJmvwpzsLQ2WVnU50irqYGfpH_h6D7QRjBQy_Px7_8qlrFGVXuxYajVjs2rNTDNlOPux8Rv6-EmL7y8Gnkd92FfCNknzhKxsludG4ns3yjIcmsYXFqxBZTp13tS5KYVCw86TUeVlEKs6MRS8qCErcHDbEda_BdTS8AQV78aQP8HisXLtHQtXzJTr2XRY1cKClPKR6j9iXmgv_fGAHV63BkjlcLdVcydc6M7i9Abdb_5VtNQJ3B9ZsdRdujNsM_T347RCT2VJenM1Klk3np9kZc0W39dwy6tSC5pO5YsumGo8dIcGcgGQtQ6eUFfW8n35k6XwyidNgxrRimakXtFxfL8CKaXP8hXVYDPfh8EoY9ADWq1llHwFDw1tIw5WSKpBWlzk3ZaiDArWqCLRRHgQdE1LTYqJTa46faY_m7PiWIt9S4lt67sHbfspxAwhyGfEb4mxKygLXNVl75gGfjmC30q0YPSTy4bgHrweU3xvQ8X8Rbg4IURuY4XAnRGmrjU7Sv3vHgxf9MM2kCrvKzmpHI6jxTCQ8eNjIXP9-GJSHSunIg3ggjT0BYZQPR6rpD4dVHqkQXSSc-a6T26XH-t9ne3z5SzyHm6OD8V66t7O_-wRuCdpU7nToJqwv5rV9im7iIn_m9iaDb1etDC4AU_p88Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFDASDwkUNXESJz4gVGhXLaWrClGpt5A4NqxEsyXdqGr_BX-HX8eM82Czgt6aQy4eW0lmPI_M-BuA55Gk9mhSuT7PQzfk3Hfz0OCNm0wnhgex_TWwPxE7h-HHo-hoBX53Z2GorLLTiVZRFzNF_8g3MNhOMFbA8HvDtGURB1vjdyc_XeogRZnWrp1GIyJ7-vwMw7fTt7tbyOsXnI-3v3zYcdsOA64SoT93hY6SXElcW2d55gcq0YXGq-BZTl14pSwMVyjkeWJkbopIxJnS6FF5nsGNogNc9xqsxhQVjWD1_fbk4HOfw4iFbf5IGHtuiG5-l1P1LISpH1D1R-yG0ufuxcAqLtuGBeO4XLi5lL21RnF8E2603izbbMTvFqzo8jas7bf5-jvwy-Ins4UsOZsZlk2rs-yc2RLcutKM-ragMWW29LKpzWPHSFARrKxm6KKyoq766ceaTiuTcA1mTEuWqXpOy_XVA6yYNodhWIfMcBcOr4RF92BUzkr9ABia4SJUvhCh8EItTe4rE0ivQB3LPamEA17HhFS1COnUqONH2mM7W76lyLeU-JZeOPC6n3LSwINcRvyKOJuS6sB1VdaegMCnIxCudDNGf4k8Ot-BlwPKbw0E-b8I1weEqBvUcLgTorTVTafp353kwLN-mGZSvV2pZ7Wl4dSGJuIO3G9krn8_DNEDIWTkQDyQxp6AEMuHI-X0u0Uuj0SADhPOfNPJ7cJj_e-zPbz8JZ7CGiqC9NPuZO8RXOe0p-xR0XUYzataP0afcZ4_aTcng69XrQ_-AHNYgow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+application+of+airway+pressure+release+ventilation+may+reduce+the+duration+of+mechanical+ventilation+in+acute+respiratory+distress+syndrome&rft.jtitle=Intensive+care+medicine&rft.au=Zhou%2C+Yongfang&rft.au=Jin%2C+Xiaodong&rft.au=Lv%2C+Yinxia&rft.au=Wang%2C+Peng&rft.date=2017-11-01&rft.eissn=1432-1238&rft.volume=43&rft.issue=11&rft.spage=1648&rft_id=info:doi/10.1007%2Fs00134-017-4912-z&rft_id=info%3Apmid%2F28936695&rft.externalDocID=28936695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0342-4642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0342-4642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0342-4642&client=summon |