Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome

Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led...

Full description

Saved in:
Bibliographic Details
Published inIntensive care medicine Vol. 43; no. 11; pp. 1648 - 1659
Main Authors Zhou, Yongfang, Jin, Xiaodong, Lv, Yinxia, Wang, Peng, Yang, Yunqing, Liang, Guopeng, Wang, Bo, Kang, Yan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2017
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). Methods A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV ( n  = 71) or LTV ( n  = 67). The settings for APRV were: high airway pressure (P high ) set at the last plateau airway pressure (P plat ), not to exceed 30 cmH 2 O) and low airway pressure ( P low ) set at 5 cmH 2 O; the release phase (T low ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10–14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P plat not exceeding 30 cmH 2 O; positive end-expiratory pressure (PEEP) guided by the PEEP–FiO 2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Results Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8–22] vs. 2 (IQR 0–15); P  < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU ( P  = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group ( P  = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P plat , and less sedation requirement during the first week following enrollment ( P  < 0.05, repeated-measures analysis of variance). Conclusions Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P plat and reduced the duration of both mechanical ventilation and ICU stay.
AbstractList Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). Methods A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P.sub.high) set at the last plateau airway pressure (P.sub.plat), not to exceed 30 cmH.sub.2O) and low airway pressure ( P.sub.low) set at 5 cmH.sub.2O; the release phase (T.sub.low) setting adjusted to terminate the peak expiratory flow rate to [greater than or equal to] 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P.sub.plat not exceeding 30 cmH.sub.2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO.sub.2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P.sub.plat, respiratory system compliance, and patient outcomes. Results Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P.sub.plat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Conclusions Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P.sub.plat and reduced the duration of both mechanical ventilation and ICU stay.
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P ) set at the last plateau airway pressure (P ), not to exceed 30 cmH O) and low airway pressure ( P ) set at 5 cmH O; the release phase (T ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P not exceeding 30 cmH O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P , and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P and reduced the duration of both mechanical ventilation and ICU stay.
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P.sub.high) set at the last plateau airway pressure (P.sub.plat), not to exceed 30 cmH.sub.2O) and low airway pressure ( P.sub.low) set at 5 cmH.sub.2O; the release phase (T.sub.low) setting adjusted to terminate the peak expiratory flow rate to [greater than or equal to] 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P.sub.plat not exceeding 30 cmH.sub.2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO.sub.2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P.sub.plat, respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P.sub.plat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P.sub.plat and reduced the duration of both mechanical ventilation and ICU stay.
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (Phigh) set at the last plateau airway pressure (Pplat), not to exceed 30 cmH2O) and low airway pressure ( Plow) set at 5 cmH2O; the release phase (Tlow) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10–14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; Pplat not exceeding 30 cmH2O; positive end-expiratory pressure (PEEP) guided by the PEEP–FiO2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, Pplat, respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8–22] vs. 2 (IQR 0–15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower Pplat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased Pplat and reduced the duration of both mechanical ventilation and ICU stay.
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV).PURPOSEExperimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV).A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (Phigh) set at the last plateau airway pressure (Pplat), not to exceed 30 cmH2O) and low airway pressure ( Plow) set at 5 cmH2O; the release phase (Tlow) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; Pplat not exceeding 30 cmH2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, Pplat, respiratory system compliance, and patient outcomes.METHODSA total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (Phigh) set at the last plateau airway pressure (Pplat), not to exceed 30 cmH2O) and low airway pressure ( Plow) set at 5 cmH2O; the release phase (Tlow) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; Pplat not exceeding 30 cmH2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, Pplat, respiratory system compliance, and patient outcomes.Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower Pplat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance).RESULTSCompared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower Pplat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance).Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased Pplat and reduced the duration of both mechanical ventilation and ICU stay.CONCLUSIONSCompared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased Pplat and reduced the duration of both mechanical ventilation and ICU stay.
Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). Methods A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV ( n  = 71) or LTV ( n  = 67). The settings for APRV were: high airway pressure (P high ) set at the last plateau airway pressure (P plat ), not to exceed 30 cmH 2 O) and low airway pressure ( P low ) set at 5 cmH 2 O; the release phase (T low ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10–14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P plat not exceeding 30 cmH 2 O; positive end-expiratory pressure (PEEP) guided by the PEEP–FiO 2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Results Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8–22] vs. 2 (IQR 0–15); P  < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU ( P  = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group ( P  = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P plat , and less sedation requirement during the first week following enrollment ( P  < 0.05, repeated-measures analysis of variance). Conclusions Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P plat and reduced the duration of both mechanical ventilation and ICU stay.
Audience Academic
Author Wang, Peng
Zhou, Yongfang
Jin, Xiaodong
Wang, Bo
Yang, Yunqing
Kang, Yan
Lv, Yinxia
Liang, Guopeng
Author_xml – sequence: 1
  givenname: Yongfang
  surname: Zhou
  fullname: Zhou, Yongfang
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
– sequence: 2
  givenname: Xiaodong
  surname: Jin
  fullname: Jin, Xiaodong
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
– sequence: 3
  givenname: Yinxia
  surname: Lv
  fullname: Lv, Yinxia
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
– sequence: 4
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
– sequence: 5
  givenname: Yunqing
  surname: Yang
  fullname: Yang, Yunqing
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
– sequence: 6
  givenname: Guopeng
  surname: Liang
  fullname: Liang, Guopeng
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
– sequence: 7
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
– sequence: 8
  givenname: Yan
  orcidid: 0000-0001-8357-9561
  surname: Kang
  fullname: Kang, Yan
  email: Kangyan_5626@hotmail.com
  organization: Department of Critical Care Medicine, West China Hospital of Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28936695$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URKeFB2CDLLFhk-K_OMkGqarKj1SJDawtx7mZceXYwU6Kpm_BG-MwbelUA_bCkv2d4-vrc4KOfPCA0GtKzigh1ftECOWiILQqRENZcfsMrajgrKCM10doRbhghZCCHaOTlK4zXcmSvkDHrG64lE25Qr8udXRbrMfRWaMnGzwOPdY2_tRbPEZIaY6AIzjQCfAN-Mm6HTZkIEI3G8DTBnA3xwf5AGajffZzewrrsTbztNil0WY8xC3ubJqWa3Da-i6GAV6i5712CV7drafo-8fLbxefi6uvn75cnF8VRgo6FRLKujUNbQToVlNuauggj47ptq45b5quZ4aIuq37pu27UlbaQEMlIT0nJfBT9GHnO87tAJ3JhUbt1BjtoONWBW3V_om3G7UON6qUnEtWZoN3dwYx_JghTWqwyYBz2kOYk8qlMVmJumQZffsEvQ5z9Pl5C1U3THBO_lJr7UBZ34d8r1lM1XnFBKsEpzRTxQFqDR5ykTkfvc3be_zZAT7PDgZrDgrePG7MQ0fuQ5OBageYGFKK0Ctjpz9fnJ2tU5SoJZ5qF0-VU6eWeKrbrKRPlPfm_9OwnSZl1q8hPurdP0W_AU-N-0E
CitedBy_id crossref_primary_10_1007_s12055_020_01021_z
crossref_primary_10_1055_s_0040_1716800
crossref_primary_10_3389_fvets_2023_1157026
crossref_primary_10_1016_j_chest_2024_08_050
crossref_primary_10_7196_AJTCCM_2022_v28i3_241
crossref_primary_10_1016_j_amj_2023_07_011
crossref_primary_10_1186_s13287_022_02956_3
crossref_primary_10_1186_s13613_019_0540_9
crossref_primary_10_1007_s00101_024_01407_3
crossref_primary_10_1016_j_ajem_2020_06_082
crossref_primary_10_1007_s10877_021_00789_8
crossref_primary_10_1177_08850666221109779
crossref_primary_10_17116_anaesthesiology201906152
crossref_primary_10_1186_s13054_023_04469_8
crossref_primary_10_1097_CCM_0000000000003972
crossref_primary_10_1016_j_accpm_2018_09_009
crossref_primary_10_1186_s40635_020_00314_2
crossref_primary_10_3934_medsci_2018_2_145
crossref_primary_10_1097_EA9_0000000000000030
crossref_primary_10_1007_s00101_020_00844_0
crossref_primary_10_1164_rccm_201807_1274LE
crossref_primary_10_3389_fphys_2022_928562
crossref_primary_10_1016_j_jointm_2022_02_003
crossref_primary_10_1186_s12890_024_03065_y
crossref_primary_10_1186_s13613_019_0619_3
crossref_primary_10_4103_SBVJ_SBVJ_43_24
crossref_primary_10_1016_j_asjsur_2024_02_066
crossref_primary_10_1007_s00134_017_4983_x
crossref_primary_10_3389_fmed_2022_883950
crossref_primary_10_1097_CCM_0000000000003437
crossref_primary_10_1186_s13613_019_0518_7
crossref_primary_10_3390_jcm11020319
crossref_primary_10_1016_j_ajem_2021_04_083
crossref_primary_10_1016_j_bja_2021_02_027
crossref_primary_10_1097_MCC_0000000000000477
crossref_primary_10_1177_0885066619855021
crossref_primary_10_1097_TA_0000000000002050
crossref_primary_10_1097_CCM_0000000000005616
crossref_primary_10_1007_s40138_022_00245_0
crossref_primary_10_1097_MD_0000000000018586
crossref_primary_10_1016_j_mpaic_2019_09_006
crossref_primary_10_53097_JMV_10010
crossref_primary_10_4103_ija_ija_189_24
crossref_primary_10_1186_s12912_024_01763_w
crossref_primary_10_1016_j_bjae_2019_12_001
crossref_primary_10_1186_s12871_025_02904_7
crossref_primary_10_1097_CCM_0000000000003106
crossref_primary_10_1016_j_chest_2022_05_018
crossref_primary_10_1007_s12098_020_03492_9
crossref_primary_10_1097_CCM_0000000000005923
crossref_primary_10_1177_2324709620925978
crossref_primary_10_7759_cureus_33193
crossref_primary_10_1097_CCM_0000000000003078
crossref_primary_10_1097_CCM_0000000000003594
crossref_primary_10_4187_respcare_07605
crossref_primary_10_1097_CCM_0000000000005776
crossref_primary_10_35366_93428
crossref_primary_10_1177_08850666211030899
crossref_primary_10_1177_08850666231207303
crossref_primary_10_1155_2022_4579030
crossref_primary_10_1007_s00134_020_06299_6
crossref_primary_10_1016_j_rmclc_2024_07_006
crossref_primary_10_1136_tsaco_2019_000322
crossref_primary_10_1089_jamp_2018_1457
crossref_primary_10_1177_20503121241312941
crossref_primary_10_3390_jcm13092690
crossref_primary_10_1111_vec_13231
crossref_primary_10_4266_acc_2021_00017
crossref_primary_10_1097_MCC_0000000000000575
crossref_primary_10_1213_XAA_0000000000001231
crossref_primary_10_1164_rccm_201903_0616LE
crossref_primary_10_4103_jmedsci_jmedsci_53_23
crossref_primary_10_1097_CCM_0000000000004675
crossref_primary_10_1097_CCM_0000000000005403
crossref_primary_10_1007_s40140_021_00443_8
crossref_primary_10_2169_internalmedicine_2883_19
crossref_primary_10_1016_j_resinv_2022_05_003
crossref_primary_10_1097_DCC_0000000000000463
crossref_primary_10_1053_j_sempedsurg_2019_01_004
crossref_primary_10_1186_s13054_019_2365_1
crossref_primary_10_1007_s00134_018_5337_z
crossref_primary_10_17116_anaesthesiology20200215
crossref_primary_10_1016_j_ccc_2024_01_003
crossref_primary_10_14423_SMJ_0000000000001245
crossref_primary_10_1055_a_2229_3854
crossref_primary_10_1097_CCM_0000000000005312
crossref_primary_10_1186_s40560_022_00615_6
crossref_primary_10_4103_atm_ATM_475_20
crossref_primary_10_4266_acc_002520
crossref_primary_10_1007_s00063_020_00685_0
crossref_primary_10_1186_s12931_022_01985_z
crossref_primary_10_1007_s40124_020_00210_z
crossref_primary_10_1016_j_tacc_2018_05_007
crossref_primary_10_1186_s13256_021_02984_2
crossref_primary_10_1016_j_bjane_2021_03_022
crossref_primary_10_1097_JTN_0000000000000756
crossref_primary_10_4103_ejcdt_ejcdt_82_20
crossref_primary_10_1080_17476348_2018_1457954
crossref_primary_10_36401_ISIM_20_03
crossref_primary_10_1097_CCM_0000000000005670
crossref_primary_10_5005_jp_journals_10071_23242
crossref_primary_10_1007_s00134_017_5012_9
crossref_primary_10_1016_j_cpsurg_2020_100777
crossref_primary_10_1016_j_cpsurg_2020_100778
crossref_primary_10_1007_s10405_024_00597_2
crossref_primary_10_1016_j_emc_2022_05_002
crossref_primary_10_1016_j_emc_2022_05_004
crossref_primary_10_1016_j_emc_2019_04_005
crossref_primary_10_1097_CCM_0000000000004054
crossref_primary_10_1002_14651858_CD015077
crossref_primary_10_1186_s12890_021_01545_z
crossref_primary_10_51847_3SKsqBIIPC
crossref_primary_10_1164_rccm_201804_0778ED
crossref_primary_10_1097_CCE_0000000000000299
crossref_primary_10_4187_respcare_08461
crossref_primary_10_1007_s00134_018_5250_5
crossref_primary_10_1007_s00101_020_00859_7
crossref_primary_10_1186_s12890_022_02238_x
crossref_primary_10_3389_fphys_2022_787231
crossref_primary_10_1164_rccm_201807_1375LE
crossref_primary_10_1097_CCM_0000000000003666
crossref_primary_10_12688_f1000research_15493_1
crossref_primary_10_53730_ijhs_v4nS1_15219
crossref_primary_10_1007_s00134_021_06370_w
crossref_primary_10_1186_s13054_018_2051_8
crossref_primary_10_1016_j_amj_2020_11_014
crossref_primary_10_1097_CCM_0000000000005458
crossref_primary_10_3390_jpm14080779
crossref_primary_10_2478_jccm_2024_0035
crossref_primary_10_1186_s13054_023_04562_y
crossref_primary_10_1186_s12890_024_02894_1
crossref_primary_10_1016_j_cps_2023_11_001
crossref_primary_10_1089_sur_2017_297
crossref_primary_10_1016_j_ccc_2021_05_008
crossref_primary_10_1186_s13054_024_04967_3
crossref_primary_10_48107_CMJ_2020_12_005
crossref_primary_10_1055_s_0042_1758836
crossref_primary_10_1177_08850666251320550
crossref_primary_10_3389_fphys_2022_927507
crossref_primary_10_1186_s41038_018_0126_z
crossref_primary_10_1080_17476348_2020_1708719
crossref_primary_10_1183_16000617_0126_2018
crossref_primary_10_1186_s13256_022_03658_3
crossref_primary_10_1186_s13256_024_04665_2
crossref_primary_10_3389_fphys_2020_00227
crossref_primary_10_1186_s43168_023_00188_4
crossref_primary_10_1080_17434440_2023_2255521
crossref_primary_10_3389_fphys_2023_1308252
crossref_primary_10_1152_japplphysiol_00689_2021
Cites_doi 10.1056/NEJMoa0708638
10.1164/ajrccm.164.1.2007010
10.1097/TA.0b013e3181e75961
10.1097/CCM.0000000000001649
10.1097/SHK.0b013e31829efb06
10.1213/ANE.0b013e3181bbd918
10.1007/s00134-016-4325-4
10.1097/01.CCM.0000155920.11893.37
10.1177/0885066608324293
10.1186/s40635-016-0085-2
10.1164/ajrccm.164.1.2001078
10.1056/NEJMra1203367
10.1097/ALN.0000000000000124
10.1007/s00134-017-4754-8
10.1097/00003246-198701000-00018
10.1001/jama.299.6.637
10.1097/TA.0b013e31825c7a82
10.1186/s40635-015-0071-0
10.1097/01.CCM.0000163226.34868.0A
10.1152/japplphysiol.01274.2001
10.1007/s00134-016-4423-3
10.1056/NEJMoa032193
10.1097/TA.0b013e31825ff653
10.1186/cc1027
10.1164/rccm.200607-915OC
10.1378/chest.116.suppl_1.9S-a
10.1007/s00134-015-3692-6
10.1056/NEJM200005043421801
10.1001/jama.2016.0291
10.1183/09031936.93.02090893
ContentType Journal Article
Copyright The Author(s) 2017
COPYRIGHT 2017 Springer
Intensive Care Medicine is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2017
– notice: COPYRIGHT 2017 Springer
– notice: Intensive Care Medicine is a copyright of Springer, 2017.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
K9.
M0S
M1P
M7Z
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00134-017-4912-z
DatabaseName Open Access Journals from Springer Nature
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing & Allied Health Database (NC LIVE)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1238
EndPage 1659
ExternalDocumentID PMC5633625
A724274311
28936695
10_1007_s00134_017_4912_z
Genre Journal Article
Comparative Study
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAQQT
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEA
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
LMP
M1P
M4Y
MA-
MJL
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
X7M
YCJ
YLTOR
Z45
Z5O
Z7U
Z7X
Z82
Z83
Z86
Z87
Z8O
Z8V
Z8W
Z8Z
Z91
ZGI
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7XB
8FD
8FK
ABRTQ
FR3
K9.
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c641t-6e58bc9194eaba13c8edeeeed2ab883399df2c048b8f9bfd567ace91600f305e3
IEDL.DBID C6C
ISSN 0342-4642
1432-1238
IngestDate Thu Aug 21 18:02:25 EDT 2025
Tue Aug 05 10:42:34 EDT 2025
Sat Aug 23 14:10:23 EDT 2025
Tue Jun 17 21:34:42 EDT 2025
Thu Jun 12 23:46:36 EDT 2025
Tue Jun 10 20:49:23 EDT 2025
Thu Apr 03 06:56:36 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Tue Jul 01 03:51:13 EDT 2025
Fri Feb 21 02:35:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Acute respiratory distress syndrome
Spontaneous breathing
Low tidal volume
Airway pressure release ventilation
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-6e58bc9194eaba13c8edeeeed2ab883399df2c048b8f9bfd567ace91600f305e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-8357-9561
OpenAccessLink https://doi.org/10.1007/s00134-017-4912-z
PMID 28936695
PQID 1948924330
PQPubID 48752
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5633625
proquest_miscellaneous_1942674852
proquest_journals_1948924330
gale_infotracmisc_A724274311
gale_infotracgeneralonefile_A724274311
gale_infotracacademiconefile_A724274311
pubmed_primary_28936695
crossref_citationtrail_10_1007_s00134_017_4912_z
crossref_primary_10_1007_s00134_017_4912_z
springer_journals_10_1007_s00134_017_4912_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Intensive care medicine
PublicationTitleAbbrev Intensive Care Med
PublicationTitleAlternate Intensive Care Med
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Putensen, Zech, Wrigge, Zinserling, Stuber, Von Spiegel, Mutz (CR11) 2001; 164
Brower, Lanken, MacIntyre (CR22) 2004; 351
Terragni, Rosboch, Tealdi, Corno, Menaldo, Davini, Gandini, Herrmann, Mascia, Quintel, Slutsky, Gattinoni, Ranieri (CR5) 2007; 175
Bein, Grasso, Moerer, Quintel, Guerin, Deja, Brondani, Mehta (CR14) 2016; 42
Bellani, Laffey, Pham, Fan, Brochard, Esteban, Gattinoni, van Haren, Larsson, McAuley, Ranieri, Rubenfeld, Thompson, Wrigge, Slutsky, Pesenti (CR6) 2016; 315
Bates, Irvin (CR25) 2002; 93
Roy, Sadowitz, Andrews, Gatto, Marx, Ge, Wang, Lin, Dean, Kuhn, Ghosh, Satalin, Snyder, Vodovotz, Nieman, Habashi (CR21) 2012; 73
Definition Task Force, Ranieri, Rubenfeld, Thompson, Ferguson, Caldwell, Fan, Camporota, Slutsky (CR16) 2012; 307
Maung, Schuster, Kaplan, Ditillo, Piper, Maerz, Lui, Johnson, Davis (CR13) 2012; 73
Blanch, Villagra, Sales, Montanya, Lucangelo, Luján, García-Esquirol, Chacón, Estruga, Oliva, Hernández-Abadia, Albaiceta, Fernández-Mondejar, Fernández, Lopez-Aguilar, Villar, Murias, Kacmarek (CR31) 2015; 41
Yoshida, Roldan, Beraldo, Torsani, Gomes, De Santis, Costa, Tucci, Lima, Kavanagh, Amato (CR28) 2016; 44
Downs, Stock (CR7) 1987; 15
(CR4) 2000; 342
Delaunois (CR24) 1989; 2
Yoshida, Rinka, Kaji, Yoshimoto, Arimoto, Miyaichi, Kan (CR12) 2009; 109
Slutsky (CR1) 1999; 116
Kollisch-Singule, Emr, Jain, Andrews, Satalin, Liu, Porcellio, Kenyon, Wang, Marx, Gatto, Nieman, Habashi (CR23) 2015; 3
Pelosi, Goldner, McKibben, Adams, Eccher, Caironi, Losappio, Gattinoni, Marini (CR2) 2001; 164
Roy, Emr, Sadowitz, Gatto, Ghosh, Satalin, Snyder, Ge, Wang, Marx, Dean, Andrews, Singh, Scalea, Habashi, Nieman (CR9) 2013; 40
Kaplan, Bailey, Formosa (CR29) 2001; 5
Kollisch-Singule, Jain, Andrews, Smith, Hamlington-Smith, Roy, DiStefano, Nuss, Satalin, Meng, Marx, Bates, Gatto, Nieman, Habashi (CR10) 2016; 151
Talmor, Sarge, Malhotra, O’Donnell, Ritz, Lisbon, Novack, Loring (CR18) 2008; 359
Neumann, Wrigge, Zinserling, Hinz, Maripuu, Andersson, Putensen, Hedenstierna (CR27) 2005; 33
Cressoni, Chiumello, Algieri, Brioni, Chiurazzi, Colombo, Colombo, Crimella, Guanziroli, Tomic, Tonetti, Luca Vergani, Carlesso, Gasparovic, Gattinoni (CR3) 2017; 43
Guldner, Braune, Carvalho, Beda, Zeidler, Wiedemann, Wunderlich, Andreeff, Uhlig, Spieth, Koch, Pelosi, Kotzerke, de Abreu (CR26) 2014; 120
Fan, Khatri, Mendez-Tellez, Shanholtz, Needham (CR30) 2008; 23
Habashi (CR20) 2005; 33
Jain, Kollisch-Singule, Sadowitz, Dombert, Satalin, Andrews, Gatto, Nieman, Habashi (CR8) 2016; 4
McConville, Kress (CR32) 2012; 367
Meade, Cook, Guyatt, Slutsky, Arabi, Cooper, Davies, Hand, Zhou, Thabane, Austin, Lapinsky, Baxter, RussellJ, TE RoncoJJ (CR17) 2008; 299
Maxwell, Green, Waldrop, Dart, Smith, Brooks, Lewis, Barker (CR15) 2010; 69
Beitler, Sands, Loring, Owens, Malhotra, Spragg, Matthay, Thompson, Talmor (CR19) 2016; 42
G Bellani (4912_CR6) 2016; 315
SV Jain (4912_CR8) 2016; 4
The Acute Respiratory Distress Syndrome Network (4912_CR4) 2000; 342
JB Downs (4912_CR7) 1987; 15
ARDS Definition Task Force (4912_CR16) 2012; 307
MO Meade (4912_CR17) 2008; 299
JH Bates (4912_CR25) 2002; 93
T Yoshida (4912_CR12) 2009; 109
E Fan (4912_CR30) 2008; 23
P Pelosi (4912_CR2) 2001; 164
T Bein (4912_CR14) 2016; 42
RA Maxwell (4912_CR15) 2010; 69
JF McConville (4912_CR32) 2012; 367
C Putensen (4912_CR11) 2001; 164
L Delaunois (4912_CR24) 1989; 2
S Roy (4912_CR21) 2012; 73
P Neumann (4912_CR27) 2005; 33
T Yoshida (4912_CR28) 2016; 44
AS Slutsky (4912_CR1) 1999; 116
AA Maung (4912_CR13) 2012; 73
SK Roy (4912_CR9) 2013; 40
RG Brower (4912_CR22) 2004; 351
D Talmor (4912_CR18) 2008; 359
NM Habashi (4912_CR20) 2005; 33
L Blanch (4912_CR31) 2015; 41
M Cressoni (4912_CR3) 2017; 43
JR Beitler (4912_CR19) 2016; 42
PP Terragni (4912_CR5) 2007; 175
A Guldner (4912_CR26) 2014; 120
M Kollisch-Singule (4912_CR10) 2016; 151
M Kollisch-Singule (4912_CR23) 2015; 3
LJ Kaplan (4912_CR29) 2001; 5
26903337 - JAMA. 2016 Feb 23;315(8):788-800
27342819 - Intensive Care Med. 2016 Sep;42(9):1427-36
29124317 - Intensive Care Med. 2018 Jan;44(1):135-136
3568710 - Crit Care Med. 1987 May;15(5):459-61
18805857 - J Intensive Care Med. 2008 Nov-Dec;23(6):376-83
27207149 - Intensive Care Med Exp. 2016 Dec;4(1):11
23799354 - Shock. 2013 Sep;40(3):210-6
23215559 - N Engl J Med. 2012 Dec 6;367(23):2233-9
29947887 - Intensive Care Med. 2018 Aug;44(8):1364-1365
29230522 - Intensive Care Med. 2018 Feb;44(2):272
17038660 - Am J Respir Crit Care Med. 2007 Jan 15;175(2):160-6
11435250 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):122-30
10793162 - N Engl J Med. 2000 May 4;342(18):1301-8
18270352 - JAMA. 2008 Feb 13;299(6):637-45
15753733 - Crit Care Med. 2005 Mar;33(3 Suppl):S228-40
24406799 - Anesthesiology. 2014 Mar;120(3):673-82
11511336 - Crit Care. 2001 Aug;5(4):221-6
10424561 - Chest. 1999 Jul;116(1 Suppl):9S-15S
29850185 - J Thorac Dis. 2018 Apr;10(Suppl 9):S1058-S1063
22797452 - JAMA. 2012 Jun 20;307(23):2526-33
11435237 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):43-9
20838119 - J Trauma. 2010 Sep;69(3):501-10; discussion 511
29607131 - J Thorac Dis. 2018 Feb;10 (2):667-669
15891341 - Crit Care Med. 2005 May;33(5):1090-5
29607132 - J Thorac Dis. 2018 Feb;10 (2):670-673
26694915 - Intensive Care Med Exp. 2015 Dec;3(1):35
26444302 - JAMA Surg. 2016 Jan;151(1):64-72
12133882 - J Appl Physiol (1985). 2002 Aug;93(2):705-13
19923518 - Anesth Analg. 2009 Dec;109 (6):1892-900
27040102 - Intensive Care Med. 2016 May;42(5):699-711
15269312 - N Engl J Med. 2004 Jul 22;351(4):327-36
27002273 - Crit Care Med. 2016 Aug;44(8):e678-88
23019679 - J Trauma Acute Care Surg. 2012 Aug;73(2):507-10
22846945 - J Trauma Acute Care Surg. 2012 Aug;73(2):391-400
25693449 - Intensive Care Med. 2015 Apr;41(4):633-41
2680588 - Eur Respir J. 1989 Oct;2(9):893-904
28283699 - Intensive Care Med. 2017 May;43(5):603-611
19001507 - N Engl J Med. 2008 Nov 13;359(20):2095-104
References_xml – volume: 359
  start-page: 2095
  issue: 20
  year: 2008
  end-page: 2104
  ident: CR18
  article-title: Mechanical ventilation guided by esophageal pressure in acute lung injury
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0708638
– volume: 164
  start-page: 122
  issue: 1
  year: 2001
  end-page: 130
  ident: CR2
  article-title: Recruitment and derecruitment during acute respiratory failure: an experimental study
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.164.1.2007010
– volume: 69
  start-page: 501
  year: 2010
  end-page: 510
  ident: CR15
  article-title: A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure
  publication-title: J Trauma
  doi: 10.1097/TA.0b013e3181e75961
– volume: 44
  start-page: e678
  issue: 8
  year: 2016
  end-page: e688
  ident: CR28
  article-title: Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001649
– volume: 40
  start-page: 210
  year: 2013
  end-page: 216
  ident: CR9
  article-title: Preemptive application of airway pressure release ventilation prevents development of acute respiratory distress syndrome in a rat traumatic hemorrhagic shock model
  publication-title: Shock
  doi: 10.1097/SHK.0b013e31829efb06
– volume: 109
  start-page: 1892
  year: 2009
  end-page: 1900
  ident: CR12
  article-title: The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0b013e3181bbd918
– volume: 42
  start-page: 699
  issue: 5
  year: 2016
  end-page: 711
  ident: CR14
  article-title: The standard of care of patients with ARDS: ventilatory settings and rescue therapies forrefractory hypoxemia
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-016-4325-4
– volume: 33
  start-page: S228
  issue: 3 Suppl
  year: 2005
  end-page: S240
  ident: CR20
  article-title: Other approaches to open-lung ventilation: airway pressure release ventilation
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000155920.11893.37
– volume: 23
  start-page: 376
  issue: 6
  year: 2008
  end-page: 383
  ident: CR30
  article-title: Review of a large clinical series: sedation and analgesia usage with airway pressure release and assist-control ventilation for acute lung injury
  publication-title: J Intensive Care Med
  doi: 10.1177/0885066608324293
– volume: 4
  start-page: 11
  issue: 1
  year: 2016
  ident: CR8
  article-title: The 30-year evolution of airway pressure release ventilation (APRV)
  publication-title: Intensive Care Med Exp
  doi: 10.1186/s40635-016-0085-2
– volume: 164
  start-page: 43
  year: 2001
  end-page: 49
  ident: CR11
  article-title: Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.164.1.2001078
– volume: 367
  start-page: 2233
  year: 2012
  end-page: 2239
  ident: CR32
  article-title: Weaning patients from the ventilator
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1203367
– volume: 120
  start-page: 673
  year: 2014
  end-page: 682
  ident: CR26
  article-title: Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000124
– volume: 43
  start-page: 603
  issue: 5
  year: 2017
  end-page: 611
  ident: CR3
  article-title: Opening pressures and atelectrauma in acute respiratory distress syndrome
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-017-4754-8
– volume: 2
  start-page: 893
  year: 1989
  end-page: 904
  ident: CR24
  article-title: Anatomy and physiology of collateral respiratory pathways
  publication-title: Eur Respir J
– volume: 15
  start-page: 459
  year: 1987
  end-page: 461
  ident: CR7
  article-title: Airway pressure release ventilation: a new concept in ventilatory support
  publication-title: Crit Care Med
  doi: 10.1097/00003246-198701000-00018
– volume: 299
  start-page: 637
  year: 2008
  end-page: 645
  ident: CR17
  article-title: Ventilation strategy using low tidal volume, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial
  publication-title: JAMA
  doi: 10.1001/jama.299.6.637
– volume: 73
  start-page: 391
  year: 2012
  end-page: 400
  ident: CR21
  article-title: Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e31825c7a82
– volume: 3
  start-page: 35
  issue: 1
  year: 2015
  ident: CR23
  article-title: The effects of airway pressure release ventilation on respiratory mechanics in extrapulmonary lung injury
  publication-title: Intensive Care Med Exp
  doi: 10.1186/s40635-015-0071-0
– volume: 33
  start-page: 1090
  year: 2005
  end-page: 1095
  ident: CR27
  article-title: Spontaneous breathing affects the spatial ventilation and perfusion
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000163226.34868.0A
– volume: 93
  start-page: 705
  year: 2002
  end-page: 713
  ident: CR25
  article-title: Time dependence of recruitment and derecruitment in the lung: a theoretical model
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01274.2001
– volume: 42
  start-page: 1427
  issue: 9
  year: 2016
  end-page: 1436
  ident: CR19
  article-title: Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-016-4423-3
– volume: 351
  start-page: 327
  year: 2004
  end-page: 336
  ident: CR22
  article-title: Higher versus lower positive end expiratory pressures in patients with the acute respiratory distress syndrome
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa032193
– volume: 151
  start-page: 64
  issue: 1
  year: 2016
  end-page: 72
  ident: CR10
  article-title: Effect of airway pressure release ventilation on dynamic alveolar heterogeneity
  publication-title: JAMA
– volume: 73
  start-page: 507
  issue: 2
  year: 2012
  end-page: 510
  ident: CR13
  article-title: Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e31825ff653
– volume: 5
  start-page: 221
  year: 2001
  end-page: 226
  ident: CR29
  article-title: Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome
  publication-title: Crit Care
  doi: 10.1186/cc1027
– volume: 175
  start-page: 160
  issue: 2
  year: 2007
  end-page: 166
  ident: CR5
  article-title: Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200607-915OC
– volume: 307
  start-page: 2526
  issue: 23
  year: 2012
  end-page: 2533
  ident: CR16
  article-title: Acute respiratory distress syndrome: the Berlin definition
  publication-title: JAMA
– volume: 116
  start-page: 9S
  issue: 1 suppl
  year: 1999
  end-page: 15S
  ident: CR1
  article-title: Lung injury caused by mechanical ventilation
  publication-title: Chest
  doi: 10.1378/chest.116.suppl_1.9S-a
– volume: 41
  start-page: 633
  issue: 4
  year: 2015
  end-page: 641
  ident: CR31
  article-title: Asynchronies during mechanical ventilation are associated with mortality
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-015-3692-6
– volume: 342
  start-page: 1301
  year: 2000
  end-page: 1308
  ident: CR4
  article-title: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200005043421801
– volume: 315
  start-page: 788
  issue: 8
  year: 2016
  end-page: 800
  ident: CR6
  article-title: Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries
  publication-title: JAMA
  doi: 10.1001/jama.2016.0291
– volume: 73
  start-page: 391
  year: 2012
  ident: 4912_CR21
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e31825c7a82
– volume: 315
  start-page: 788
  issue: 8
  year: 2016
  ident: 4912_CR6
  publication-title: JAMA
  doi: 10.1001/jama.2016.0291
– volume: 164
  start-page: 122
  issue: 1
  year: 2001
  ident: 4912_CR2
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.164.1.2007010
– volume: 4
  start-page: 11
  issue: 1
  year: 2016
  ident: 4912_CR8
  publication-title: Intensive Care Med Exp
  doi: 10.1186/s40635-016-0085-2
– volume: 367
  start-page: 2233
  year: 2012
  ident: 4912_CR32
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1203367
– volume: 69
  start-page: 501
  year: 2010
  ident: 4912_CR15
  publication-title: J Trauma
  doi: 10.1097/TA.0b013e3181e75961
– volume: 116
  start-page: 9S
  issue: 1 suppl
  year: 1999
  ident: 4912_CR1
  publication-title: Chest
  doi: 10.1378/chest.116.suppl_1.9S-a
– volume: 73
  start-page: 507
  issue: 2
  year: 2012
  ident: 4912_CR13
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e31825ff653
– volume: 120
  start-page: 673
  year: 2014
  ident: 4912_CR26
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000124
– volume: 5
  start-page: 221
  year: 2001
  ident: 4912_CR29
  publication-title: Crit Care
  doi: 10.1186/cc1027
– volume: 93
  start-page: 705
  year: 2002
  ident: 4912_CR25
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01274.2001
– volume: 44
  start-page: e678
  issue: 8
  year: 2016
  ident: 4912_CR28
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001649
– volume: 42
  start-page: 699
  issue: 5
  year: 2016
  ident: 4912_CR14
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-016-4325-4
– volume: 33
  start-page: S228
  issue: 3 Suppl
  year: 2005
  ident: 4912_CR20
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000155920.11893.37
– volume: 3
  start-page: 35
  issue: 1
  year: 2015
  ident: 4912_CR23
  publication-title: Intensive Care Med Exp
  doi: 10.1186/s40635-015-0071-0
– volume: 2
  start-page: 893
  year: 1989
  ident: 4912_CR24
  publication-title: Eur Respir J
  doi: 10.1183/09031936.93.02090893
– volume: 351
  start-page: 327
  year: 2004
  ident: 4912_CR22
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa032193
– volume: 109
  start-page: 1892
  year: 2009
  ident: 4912_CR12
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0b013e3181bbd918
– volume: 359
  start-page: 2095
  issue: 20
  year: 2008
  ident: 4912_CR18
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0708638
– volume: 23
  start-page: 376
  issue: 6
  year: 2008
  ident: 4912_CR30
  publication-title: J Intensive Care Med
  doi: 10.1177/0885066608324293
– volume: 164
  start-page: 43
  year: 2001
  ident: 4912_CR11
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.164.1.2001078
– volume: 33
  start-page: 1090
  year: 2005
  ident: 4912_CR27
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000163226.34868.0A
– volume: 299
  start-page: 637
  year: 2008
  ident: 4912_CR17
  publication-title: JAMA
  doi: 10.1001/jama.299.6.637
– volume: 42
  start-page: 1427
  issue: 9
  year: 2016
  ident: 4912_CR19
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-016-4423-3
– volume: 151
  start-page: 64
  issue: 1
  year: 2016
  ident: 4912_CR10
  publication-title: JAMA
– volume: 15
  start-page: 459
  year: 1987
  ident: 4912_CR7
  publication-title: Crit Care Med
  doi: 10.1097/00003246-198701000-00018
– volume: 175
  start-page: 160
  issue: 2
  year: 2007
  ident: 4912_CR5
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200607-915OC
– volume: 43
  start-page: 603
  issue: 5
  year: 2017
  ident: 4912_CR3
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-017-4754-8
– volume: 40
  start-page: 210
  year: 2013
  ident: 4912_CR9
  publication-title: Shock
  doi: 10.1097/SHK.0b013e31829efb06
– volume: 41
  start-page: 633
  issue: 4
  year: 2015
  ident: 4912_CR31
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-015-3692-6
– volume: 307
  start-page: 2526
  issue: 23
  year: 2012
  ident: 4912_CR16
  publication-title: JAMA
– volume: 342
  start-page: 1301
  year: 2000
  ident: 4912_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200005043421801
– reference: 29124317 - Intensive Care Med. 2018 Jan;44(1):135-136
– reference: 10793162 - N Engl J Med. 2000 May 4;342(18):1301-8
– reference: 11435237 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):43-9
– reference: 26444302 - JAMA Surg. 2016 Jan;151(1):64-72
– reference: 15269312 - N Engl J Med. 2004 Jul 22;351(4):327-36
– reference: 17038660 - Am J Respir Crit Care Med. 2007 Jan 15;175(2):160-6
– reference: 25693449 - Intensive Care Med. 2015 Apr;41(4):633-41
– reference: 15891341 - Crit Care Med. 2005 May;33(5):1090-5
– reference: 27002273 - Crit Care Med. 2016 Aug;44(8):e678-88
– reference: 26903337 - JAMA. 2016 Feb 23;315(8):788-800
– reference: 23215559 - N Engl J Med. 2012 Dec 6;367(23):2233-9
– reference: 3568710 - Crit Care Med. 1987 May;15(5):459-61
– reference: 11511336 - Crit Care. 2001 Aug;5(4):221-6
– reference: 23799354 - Shock. 2013 Sep;40(3):210-6
– reference: 27342819 - Intensive Care Med. 2016 Sep;42(9):1427-36
– reference: 29850185 - J Thorac Dis. 2018 Apr;10(Suppl 9):S1058-S1063
– reference: 22846945 - J Trauma Acute Care Surg. 2012 Aug;73(2):391-400
– reference: 29947887 - Intensive Care Med. 2018 Aug;44(8):1364-1365
– reference: 12133882 - J Appl Physiol (1985). 2002 Aug;93(2):705-13
– reference: 27040102 - Intensive Care Med. 2016 May;42(5):699-711
– reference: 2680588 - Eur Respir J. 1989 Oct;2(9):893-904
– reference: 11435250 - Am J Respir Crit Care Med. 2001 Jul 1;164(1):122-30
– reference: 28283699 - Intensive Care Med. 2017 May;43(5):603-611
– reference: 19001507 - N Engl J Med. 2008 Nov 13;359(20):2095-104
– reference: 19923518 - Anesth Analg. 2009 Dec;109 (6):1892-900
– reference: 27207149 - Intensive Care Med Exp. 2016 Dec;4(1):11
– reference: 15753733 - Crit Care Med. 2005 Mar;33(3 Suppl):S228-40
– reference: 22797452 - JAMA. 2012 Jun 20;307(23):2526-33
– reference: 29230522 - Intensive Care Med. 2018 Feb;44(2):272
– reference: 24406799 - Anesthesiology. 2014 Mar;120(3):673-82
– reference: 26694915 - Intensive Care Med Exp. 2015 Dec;3(1):35
– reference: 23019679 - J Trauma Acute Care Surg. 2012 Aug;73(2):507-10
– reference: 18805857 - J Intensive Care Med. 2008 Nov-Dec;23(6):376-83
– reference: 29607131 - J Thorac Dis. 2018 Feb;10 (2):667-669
– reference: 10424561 - Chest. 1999 Jul;116(1 Suppl):9S-15S
– reference: 20838119 - J Trauma. 2010 Sep;69(3):501-10; discussion 511
– reference: 18270352 - JAMA. 2008 Feb 13;299(6):637-45
– reference: 29607132 - J Thorac Dis. 2018 Feb;10 (2):670-673
SSID ssj0017651
Score 2.6011922
Snippet Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV)...
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies...
Purpose Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV)...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1648
SubjectTerms Acute respiratory distress syndrome
Adult
Aged
Anesthesiology
Animal models
Body weight
Chronic illnesses
Comparative analysis
Continuous positive airway pressure
Continuous Positive Airway Pressure - methods
Continuous Positive Airway Pressure - utilization
Critical Care Medicine
Depression, Mental
Emergency Medicine
Female
Flow velocity
Humans
Intensive
Intensive care
Intensive Care Units - statistics & numerical data
Length of Stay
Lung - physiopathology
Lung Compliance - physiology
Lungs
Male
Mechanical ventilation
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Mental depression
Middle Aged
Original
Oxygen - blood
Oxygenation
Pain Medicine
Patients
Pediatrics
Pneumology/Respiratory System
Pressure
Pulmonary functions
Respiratory distress syndrome
Respiratory Distress Syndrome, Adult - mortality
Respiratory Distress Syndrome, Adult - physiopathology
Respiratory Distress Syndrome, Adult - therapy
Respiratory function
Respiratory system
Respiratory therapy
Respiratory tract
Tidal Volume
Time Factors
Variance analysis
Ventilation
Ventilators
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwEA86QXwZmz-rUyKIghJs0jRtnsYYjiHMJwfft5KmiX7B9bt13yLuv_A_9i5N67dfdH3oS-5K27tc7nKXzxHyJtfYHk1bxkUtmRSCs1p6uAlvXOlFVoStgbMv6vRcfl7ki7jhdh3LKkebGAx1s7K4R_4Rgu0SYgUIvw8vrxh2jcLsamyhcZfcQ-gy1OpiMQVcvFCh_SKi3DEJjvaY1UwDiCjPsP6iYFJzwW5m69K2dd5YnrZLJ7fyp2FZOtkju9GfpEeDAuyTO659SO6fxYz5I_I7IBjTjTw1XXlqlt1P84uGIti-cxQ7p8ByRkPx41AdRy-AoENgV0fBSaRN303sFw7PC6N4ZxzLlhrbr_FxU_6eNsvhOAodsREek_OTT1-PT1lsw8CsknzNlMvL2moQgDO14ZktXePgaoSpsVWx1o0XFixBXXpd-yZXhbEO3M409WBNXPaE7LSr1j0jFBbCRlqulFSpdNrX3PpMpw1YOZFqqxKSjkKobMQox1YZP6oJXTnIrQK5VSi36iYh7yeWywGg4zbidyjZCicvPNeaeAYB3g5hsKqjAjwW9Kl4Qt7OKL8NIOD_IjyYEcLstPPhUYmqaB2uq7-6nJDX0zByYsVb61Z9oBHYCCYXCXk66Nz0fRAkZ0rpPCHFTBsnAsQMn4-0y-8BOzxXGbgswPlh1NuN1_rfb3t--0e8IA8ETqRwQvOA7Ky73r0EV21dvwrz8Q8gSj3u
  priority: 102
  providerName: ProQuest
Title Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome
URI https://link.springer.com/article/10.1007/s00134-017-4912-z
https://www.ncbi.nlm.nih.gov/pubmed/28936695
https://www.proquest.com/docview/1948924330
https://www.proquest.com/docview/1942674852
https://pubmed.ncbi.nlm.nih.gov/PMC5633625
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEB9sC-KL-N9oPVYQBSWQ3Ww22cezXC1Ki4gH51NINrv1wOZKekHst_AbO7PJhctRBfOQPOzMkmR2diaZmd8AvEo0tUfTJuSilKEUgoeldHgSrrCZE3Hqfw2cnqmTufy4SBY9WDTVwuzE7wnsk8eUJ5GGUnMRXu_BQcJxBorLqqMhYJAq32mRAO1CiT71JoB50xQjE7S7EW9Zot0syZ1QqbdAx_fgbu86smkn6_twy9YP4PZpHxx_CL89WDHbCkmzlWPFsvlZ_GI-37VtLKMmKWi5mM9z7BLh2AUSNIThahn6g6xqm4H9wlJpMElyxLGsWWHaNU03hOpZtewqT9gGBuERzI9nX49Owr7jQmiU5OtQ2SQrjeZa2qIseGwyW1k8KlGU1JVY68oJg0pfZk6XrkpUWhiLHmYUOdw4bPwY9utVbZ8CQ5tXScOVkiqSVruSGxfrqMINTUTaqACijRBy08ORU1eMH_kApOzllqPccpJbfh3A24HlssPi-BfxG5JsTnqK85qiLzfAuyPEq3yaonNC7hMP4PWI8rzD-76J8HBEiIpoxsObRZT3G8FVjq8yw0_cOI4CeDkMEyclt9V21XoaQT1fEhHAk27NDc-H38OxUjoJIB2txoGA4MHHI_Xyu4cJT1SM3glyvtus263b-ttre_Zf1M_hjiC98rWZh7C_blr7Ap20dTmBvXSRTuBg-uHbpxle38_OPn-ZeKXF81xM_wDefTvF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVN6BAkbiIYEiYsdx4gNCFVBtabenVtpbSBwHVqLZst2oav8Ff4Tf2BnnwWYFvTWHXDy2ksx4HpnxNwAvI03t0bTxucilL4Xgfi5LvIkys0kpwtj9Ghjvq9Gh_DqJJmvwpzsLQ2WVnU50irqYGfpH_h6D7QRjBQy_Px7_8qlrFGVXuxYajVjs2rNTDNlOPux8Rv6-EmL7y8Gnkd92FfCNknzhKxsludG4ns3yjIcmsYXFqxBZTp13tS5KYVCw86TUeVlEKs6MRS8qCErcHDbEda_BdTS8AQV78aQP8HisXLtHQtXzJTr2XRY1cKClPKR6j9iXmgv_fGAHV63BkjlcLdVcydc6M7i9Abdb_5VtNQJ3B9ZsdRdujNsM_T347RCT2VJenM1Klk3np9kZc0W39dwy6tSC5pO5YsumGo8dIcGcgGQtQ6eUFfW8n35k6XwyidNgxrRimakXtFxfL8CKaXP8hXVYDPfh8EoY9ADWq1llHwFDw1tIw5WSKpBWlzk3ZaiDArWqCLRRHgQdE1LTYqJTa46faY_m7PiWIt9S4lt67sHbfspxAwhyGfEb4mxKygLXNVl75gGfjmC30q0YPSTy4bgHrweU3xvQ8X8Rbg4IURuY4XAnRGmrjU7Sv3vHgxf9MM2kCrvKzmpHI6jxTCQ8eNjIXP9-GJSHSunIg3ggjT0BYZQPR6rpD4dVHqkQXSSc-a6T26XH-t9ne3z5SzyHm6OD8V66t7O_-wRuCdpU7nToJqwv5rV9im7iIn_m9iaDb1etDC4AU_p88Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFDASDwkUNXESJz4gVGhXLaWrClGpt5A4NqxEsyXdqGr_BX-HX8eM82Czgt6aQy4eW0lmPI_M-BuA55Gk9mhSuT7PQzfk3Hfz0OCNm0wnhgex_TWwPxE7h-HHo-hoBX53Z2GorLLTiVZRFzNF_8g3MNhOMFbA8HvDtGURB1vjdyc_XeogRZnWrp1GIyJ7-vwMw7fTt7tbyOsXnI-3v3zYcdsOA64SoT93hY6SXElcW2d55gcq0YXGq-BZTl14pSwMVyjkeWJkbopIxJnS6FF5nsGNogNc9xqsxhQVjWD1_fbk4HOfw4iFbf5IGHtuiG5-l1P1LISpH1D1R-yG0ufuxcAqLtuGBeO4XLi5lL21RnF8E2603izbbMTvFqzo8jas7bf5-jvwy-Ins4UsOZsZlk2rs-yc2RLcutKM-ragMWW29LKpzWPHSFARrKxm6KKyoq766ceaTiuTcA1mTEuWqXpOy_XVA6yYNodhWIfMcBcOr4RF92BUzkr9ABia4SJUvhCh8EItTe4rE0ivQB3LPamEA17HhFS1COnUqONH2mM7W76lyLeU-JZeOPC6n3LSwINcRvyKOJuS6sB1VdaegMCnIxCudDNGf4k8Ot-BlwPKbw0E-b8I1weEqBvUcLgTorTVTafp353kwLN-mGZSvV2pZ7Wl4dSGJuIO3G9krn8_DNEDIWTkQDyQxp6AEMuHI-X0u0Uuj0SADhPOfNPJ7cJj_e-zPbz8JZ7CGiqC9NPuZO8RXOe0p-xR0XUYzataP0afcZ4_aTcng69XrQ_-AHNYgow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+application+of+airway+pressure+release+ventilation+may+reduce+the+duration+of+mechanical+ventilation+in+acute+respiratory+distress+syndrome&rft.jtitle=Intensive+care+medicine&rft.au=Zhou%2C+Yongfang&rft.au=Jin%2C+Xiaodong&rft.au=Lv%2C+Yinxia&rft.au=Wang%2C+Peng&rft.date=2017-11-01&rft.eissn=1432-1238&rft.volume=43&rft.issue=11&rft.spage=1648&rft_id=info:doi/10.1007%2Fs00134-017-4912-z&rft_id=info%3Apmid%2F28936695&rft.externalDocID=28936695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0342-4642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0342-4642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0342-4642&client=summon