SGAT: Shuffle and graph attention based Siamese networks for visual tracking
Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channe...
Saved in:
Published in | PloS one Vol. 17; no. 11; p. e0277064 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
23.11.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance. |
---|---|
AbstractList | Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance. Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance. |
Audience | Academic |
Author | Deng, Chengzhi Zhang, Wenshuang Zhang, Limin Wang, Jun Wang, Yuanyun |
AuthorAffiliation | Hanyang University, KOREA, REPUBLIC OF 1 School of Information Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi, China 2 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, Nanchang, Jiangxi, China |
AuthorAffiliation_xml | – name: 2 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, Nanchang, Jiangxi, China – name: Hanyang University, KOREA, REPUBLIC OF – name: 1 School of Information Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi, China |
Author_xml | – sequence: 1 givenname: Jun surname: Wang fullname: Wang, Jun – sequence: 2 givenname: Limin surname: Zhang fullname: Zhang, Limin – sequence: 3 givenname: Wenshuang surname: Zhang fullname: Zhang, Wenshuang – sequence: 4 givenname: Yuanyun orcidid: 0000-0002-6446-5873 surname: Wang fullname: Wang, Yuanyun – sequence: 5 givenname: Chengzhi surname: Deng fullname: Deng, Chengzhi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36417392$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk11v0zAUhi00xLbCP0AQCQnBRYs_YifhAqmaYFSqNIkObi3HsRN3adzZzoB_j0OzqUG7QL6Idfz4PT5vzjkHJ53tFAAvEVwgkqEPW9u7TrSLfQwvIM4yyNIn4AwVBM8ZhuTkaH8Kzr3fQkhJztgzcEpYijJS4DOw3lwurz8mm6bXulWJ6KqkdmLfJCIE1QVju6QUXlXJxoid8irpVPhp3Y1PtHXJnfG9aJPghLwxXf0cPNWi9erF-J2B718-X198na-vLlcXy_VcxrxhTjJN8kLSvCw1YkJhJtJM5oxSylIZHwYJYiSL51KqEhUlJhAWqdSaVYzKgszA64PuvrWej0Z4jmNJKWSIppFYHYjKii3fO7MT7je3wvC_AetqLlwwslUc0kKTCgvKUJ6mJc1VVQmoIclKpCnUUevTmK0vd6qS0RYn2ono9KQzDa_tHS9YTmhBo8C7UcDZ2175wHfGS9W2olO2H99NMME4om_-QR-vbqRqEQswnbbDHxhE-TLDGYPFkHoGFo9QcVVqZ2TsGm1ifHLh_eRCZIL6FWrRe89Xm2__z179mLJvj9hGiTY03rb90F1-Cr46dvrB4vt2jUB6AKSz3julHxAE-TAV93bxYSr4OBXkD6ty_HY |
Cites_doi | 10.1007/978-3-031-20086-1_17 10.1109/CVPR42600.2020.00630 10.1109/CVPR.2016.158 10.1109/CVPR52688.2022.00854 10.1109/CVPR.2016.308 10.1109/ICCV.2017.89 10.1109/CVPR.2019.00479 10.1007/978-3-319-46454-1_29 10.1007/s10489-021-02651-5 10.1109/CVPR.2019.00953 10.1109/CVPR.2019.00441 10.1109/CVPR.2019.00376 10.1109/CVPR.2017.733 10.1109/CVPR.2016.465 10.1109/CVPR.2018.00937 10.1109/CVPR.2019.00472 10.1609/aaai.v34i07.6944 10.1109/ICCV.2019.00247 10.1145/3065386 10.1007/978-3-030-01240-3_22 10.1007/978-3-030-58607-2_33 10.1007/978-3-030-58589-1_46 10.1007/s10489-021-02234-4 10.1109/CVPR46437.2021.00942 10.1109/CVPR.2019.00814 10.1007/978-3-030-01240-3_7 10.1007/978-3-319-46448-0_27 10.1007/978-3-319-48881-3_56 10.1109/ICCV.2019.00628 10.1109/CVPR.2016.90 10.1007/s10846-008-9235-4 10.1016/j.knosys.2018.12.011 10.1109/CVPR.2019.00142 10.1007/978-3-030-58565-5_23 10.1007/978-3-030-01234-2_1 10.1109/CVPR46437.2021.00803 10.1109/CVPR.2017.243 10.1109/CVPR.2018.00935 10.1109/CVPR.2019.00552 10.1109/CVPR46437.2021.00162 10.1016/j.neunet.2021.04.004 10.1109/CVPR42600.2020.00670 |
ContentType | Journal Article |
Copyright | Copyright: © 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2022 Public Library of Science 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Wang et al 2022 Wang et al |
Copyright_xml | – notice: Copyright: © 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Wang et al 2022 Wang et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0277064 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | SGAT |
EISSN | 1932-6203 |
ExternalDocumentID | 2739406154 oai_doaj_org_article_059f3d2a561844b58edda0f037b1f50f PMC9683595 A727609968 36417392 10_1371_journal_pone_0277064 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 61861032 – fundername: ; grantid: 61865012 – fundername: ; grantid: GJJ190955 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK BBAFP N95 |
ID | FETCH-LOGICAL-c641t-37f389c58bbf16ae26a47c8655564c17303163758bcceb19b230094cff6d65c93 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Jan 01 07:45:40 EST 2023 Wed Aug 27 01:22:57 EDT 2025 Thu Aug 21 18:39:33 EDT 2025 Fri Jul 11 04:04:16 EDT 2025 Fri Jul 25 10:50:49 EDT 2025 Tue Jun 17 21:08:38 EDT 2025 Tue Jun 10 20:15:04 EDT 2025 Fri Jun 27 03:54:16 EDT 2025 Fri Jun 27 03:40:45 EDT 2025 Thu May 22 21:22:58 EDT 2025 Wed Feb 19 02:26:28 EST 2025 Tue Jul 01 03:43:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright: © 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-37f389c58bbf16ae26a47c8655564c17303163758bcceb19b230094cff6d65c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-6446-5873 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277064 |
PMID | 36417392 |
PQID | 2739406154 |
PQPubID | 1436336 |
PageCount | e0277064 |
ParticipantIDs | plos_journals_2739406154 doaj_primary_oai_doaj_org_article_059f3d2a561844b58edda0f037b1f50f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9683595 proquest_miscellaneous_2739432322 proquest_journals_2739406154 gale_infotracmisc_A727609968 gale_infotracacademiconefile_A727609968 gale_incontextgauss_ISR_A727609968 gale_incontextgauss_IOV_A727609968 gale_healthsolutions_A727609968 pubmed_primary_36417392 crossref_primary_10_1371_journal_pone_0277064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-23 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | pone.0277064.ref020 pone.0277064.ref021 L Chen (pone.0277064.ref040) 2017 pone.0277064.ref027 pone.0277064.ref028 X Hua (pone.0277064.ref044) 2021 pone.0277064.ref025 pone.0277064.ref026 Z Cui (pone.0277064.ref011) 2021 pone.0277064.ref030 X Li (pone.0277064.ref032) 2019 pone.0277064.ref033 pone.0277064.ref038 pone.0277064.ref039 Y Zeng (pone.0277064.ref010) 2022 pone.0277064.ref034 J Wang (pone.0277064.ref015) 2022 pone.0277064.ref035 Q Liu (pone.0277064.ref029) 2020 pone.0277064.ref036 pone.0277064.ref037 A Krizhevsky (pone.0277064.ref018) 2017 Q Liu (pone.0277064.ref003) 2022 pone.0277064.ref041 pone.0277064.ref042 A He (pone.0277064.ref002) 2018 pone.0277064.ref043 pone.0277064.ref049 pone.0277064.ref006 pone.0277064.ref007 pone.0277064.ref008 pone.0277064.ref001 pone.0277064.ref045 pone.0277064.ref046 pone.0277064.ref047 pone.0277064.ref004 pone.0277064.ref048 pone.0277064.ref052 pone.0277064.ref053 pone.0277064.ref054 pone.0277064.ref055 pone.0277064.ref050 pone.0277064.ref051 pone.0277064.ref016 pone.0277064.ref017 W Yuanyun (pone.0277064.ref022) 2022 Y Wu (pone.0277064.ref023) 2015 N Fan (pone.0277064.ref031) 2021 pone.0277064.ref019 S Ren (pone.0277064.ref012) 2015 pone.0277064.ref056 pone.0277064.ref013 L Huang (pone.0277064.ref024) 2019 pone.0277064.ref057 pone.0277064.ref014 F Bonin-Font (pone.0277064.ref005) 2008 pone.0277064.ref009 |
References_xml | – ident: pone.0277064.ref027 doi: 10.1007/978-3-031-20086-1_17 – year: 2015 ident: pone.0277064.ref023 article-title: Object Tracking Benchmark publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: pone.0277064.ref017 doi: 10.1109/CVPR42600.2020.00630 – ident: pone.0277064.ref030 doi: 10.1109/CVPR.2016.158 – ident: pone.0277064.ref028 doi: 10.1109/CVPR52688.2022.00854 – ident: pone.0277064.ref020 doi: 10.1109/CVPR.2016.308 – start-page: 1 year: 2022 ident: pone.0277064.ref015 article-title: Learning attention modules for visual tracking publication-title: Signal, Image and Video Processing – ident: pone.0277064.ref041 doi: 10.1109/ICCV.2017.89 – ident: pone.0277064.ref047 doi: 10.1109/CVPR.2019.00479 – ident: pone.0277064.ref051 doi: 10.1007/978-3-319-46454-1_29 – ident: pone.0277064.ref039 – start-page: 4973 year: 2022 ident: pone.0277064.ref010 article-title: SiamPCF: siamese point regression with coarse-fine classification network for visual tracking publication-title: Applied Intelligence doi: 10.1007/s10489-021-02651-5 – ident: pone.0277064.ref006 – ident: pone.0277064.ref042 doi: 10.1109/CVPR.2019.00953 – ident: pone.0277064.ref014 doi: 10.1109/CVPR.2019.00441 – ident: pone.0277064.ref048 doi: 10.1109/CVPR.2019.00376 – start-page: 4834 year: 2018 ident: pone.0277064.ref002 article-title: A twofold siamese network for real-time object tracking publication-title: IEEE conference on computer vision and pattern recognition – ident: pone.0277064.ref050 doi: 10.1109/CVPR.2017.733 – ident: pone.0277064.ref008 doi: 10.1109/CVPR.2016.465 – ident: pone.0277064.ref052 – ident: pone.0277064.ref055 doi: 10.1109/CVPR.2018.00937 – start-page: 1562 year: 2019 ident: pone.0277064.ref024 article-title: Got-10k: A large high-diversity benchmark for generic object tracking in the wild publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: pone.0277064.ref007 doi: 10.1109/CVPR.2019.00472 – ident: pone.0277064.ref016 doi: 10.1609/aaai.v34i07.6944 – ident: pone.0277064.ref056 doi: 10.1109/ICCV.2019.00247 – start-page: 84 year: 2017 ident: pone.0277064.ref018 article-title: Imagenet classification with deep convolutional neural networks publication-title: Communications of the ACM doi: 10.1145/3065386 – ident: pone.0277064.ref054 doi: 10.1007/978-3-030-01240-3_22 – start-page: 834 year: 2017 ident: pone.0277064.ref040 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE transactions on pattern analysis and machine intelligence – ident: pone.0277064.ref037 doi: 10.1007/978-3-030-58607-2_33 – start-page: 1 year: 2022 ident: pone.0277064.ref003 article-title: Learning dual-level deep representation for thermal infrared tracking publication-title: IEEE Transactions on Multimedia – ident: pone.0277064.ref035 doi: 10.1007/978-3-030-58589-1_46 – start-page: 2114 year: 2020 ident: pone.0277064.ref029 article-title: Learning deep multi-level similarity for thermal infrared object tracking publication-title: IEEE Transactions on Multimedia – start-page: 8230 year: 2021 ident: pone.0277064.ref011 article-title: Feature selection accelerated convolutional neural networks for visual tracking publication-title: Applied Intelligence doi: 10.1007/s10489-021-02234-4 – ident: pone.0277064.ref021 doi: 10.1109/CVPR46437.2021.00942 – ident: pone.0277064.ref034 doi: 10.1109/CVPR.2019.00814 – start-page: 1 year: 2021 ident: pone.0277064.ref044 article-title: Light-weight UAV object tracking network based on strategy gradient and attention mechanism publication-title: Knowledge-Based Systems – start-page: 1 year: 2022 ident: pone.0277064.ref022 article-title: Siamese network with a depthwise over-parameterized convolutional layer for visual tracking publication-title: PLOS ONE – ident: pone.0277064.ref033 doi: 10.1007/978-3-030-01240-3_7 – ident: pone.0277064.ref025 doi: 10.1007/978-3-319-46448-0_27 – ident: pone.0277064.ref001 doi: 10.1007/978-3-319-48881-3_56 – ident: pone.0277064.ref053 doi: 10.1109/ICCV.2019.00628 – ident: pone.0277064.ref019 doi: 10.1109/CVPR.2016.90 – start-page: 263 year: 2008 ident: pone.0277064.ref005 article-title: Visual navigation for mobile robots: A survey publication-title: Journal of intelligent and robotic systems doi: 10.1007/s10846-008-9235-4 – start-page: 71 year: 2019 ident: pone.0277064.ref032 article-title: Hierarchical Spatial-aware Siamese Network for Thermal Infrared Object Tracking publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.12.011 – ident: pone.0277064.ref057 doi: 10.1109/CVPR.2019.00142 – ident: pone.0277064.ref004 – ident: pone.0277064.ref049 doi: 10.1007/978-3-030-58565-5_23 – ident: pone.0277064.ref043 doi: 10.1007/978-3-030-01234-2_1 – ident: pone.0277064.ref045 doi: 10.1109/CVPR46437.2021.00803 – ident: pone.0277064.ref038 doi: 10.1109/CVPR.2017.243 – ident: pone.0277064.ref013 doi: 10.1109/CVPR.2018.00935 – ident: pone.0277064.ref026 doi: 10.1109/CVPR.2019.00552 – ident: pone.0277064.ref046 doi: 10.1109/CVPR46437.2021.00162 – ident: pone.0277064.ref009 – start-page: 344 year: 2021 ident: pone.0277064.ref031 article-title: Learning dual-margin model for visual tracking publication-title: Neural Networks doi: 10.1016/j.neunet.2021.04.004 – ident: pone.0277064.ref036 doi: 10.1109/CVPR42600.2020.00670 – start-page: 1 year: 2015 ident: pone.0277064.ref012 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems |
SSID | ssj0053866 |
Score | 2.4098654 |
Snippet | Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0277064 |
SubjectTerms | Accuracy Algorithms Analysis Artificial neural networks Benchmarks Biology and Life Sciences Computer and Information Sciences Correlation Cross correlation Engineering and Technology Exploitation Feature extraction Graph matching Learning Neural networks Neural Networks, Computer Occlusion Optical tracking Physical Sciences Research and Analysis Methods Searching Similarity Social Sciences |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhCxiEBBzSJnHiJNwWRCmIh8S2qDfLT7pSlV2RDb-fGdsbNagSHLjujLLZbzzjb9YzY0KeW13nrtYSjwYdJCjKpCoDv1KM19qZtpH--rbPX_jJWfnxvDq_ctUX1oSF8cABuCPY_h0zhazwZpJSVY01RmYuY7XKXZU5jL6w5-2SqRCDwYs5j41yrM6Pol0ON-vOHuKpZcbLyUbk5_WPUXm2uVz311HOPysnr2xFx7fJrcgh6SK8-x65Ybs7ZC96aU9fxlHSr-6ST8v3i9PXdHkxOHdpqewM9ROqKU7V9HWOFLcxQ5crrJa1tAtV4T0FLkt_rfoBvgdeQeMf6vfI2fG707cnabw_IdW8zLcQOxzQEV01SrmcS1twWdYaO1ErXuocfJsBG4OEQWkNIbtVkI5Atqed44ZXumX3yawDxPYJ1WUD1KuRDbO2bHXWGOaQq6kMHgRBMyHpDkyxCWMyhD8rqyG9CKgIBF9E8BPyBhEfdXHItf8ATC-i6cXfTJ-QJ2gvETpGR1cVC-BkHJgvbxLyzGvgoIsOK2l-yKHvxYev3_9BafltovQiKrk1wi5j9wL8JhygNdGcTzTBXfVEvI-ra4dKL4A_tsiqKgBlvltx14ufjmJ8KFbHdXY9RB0GBioS8iAs0BFZBksBxCCpJ0t3Av1U0q0u_JxxeFts2374P2x1QG4W2DiS52nB5mS2_TnYR0Dntuqx99zfnbxGmA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_geOEFMb5WGBAQEvDQrW3atOUFHYgxEB8St6F7i_K5nTS1x3rl78dOc4WiCfFa-9qcYzs_J7ZDyDOry9SVWuLRoIMARZlYJWBXivFSO1NX0l_f9vkLPzrJPy6LZdhw60Ja5dYnekdtWo175AewzNa4-BT56_WPGG-NwtPVcIXGVXINW5dhSle5HAMusGXOQ7kcK9ODMDv767ax-3h2mfB8shz5rv2jb56tz9vuMuD5d_7kHwvS4U1yIyBJOh-mfodcsc0tshNstaMvQkPpl7fJp8X7-fErujjrnTu3VDaG-j7VFHtr-mxHiouZoYsV5sxa2gy54R0FREt_rroevgND0LitfoecHL47fnsUh1sUYs3zdAMexAEo0UWllEu5tBmXeamxHrXguU7BwhlgMggblNbguGsFQQnEfNo5bniha3aXzBqQ2C6hOq8AgFWyYtbmtU4qwxwiNpXAi8B1RiTeClOsh2YZwp-YlRBkDFIRKHwRhB-RNyjxkRdbXfsH7cWpCJYjAP85ZjJZ4NU0uSoqa4xMXMJKlboicRF5jPMlhrrR0WDFHJAZB_zLq4g89RzY7qLBfJpT2Xed-PD1-38wLb5NmJ4HJtei2GWoYYD_hG20Jpx7E04wWj0h76J2baXSid_qDb_catzl5CcjGV-KOXKNbfvAw2CCsojcGxR0lCwDVQAyUMqJ6k5EP6U0qzPfbRxGi8Xb9_89rAfkeoaFIWkaZ2yPzDYXvX0IcG2jHnmb_AWxGT4P priority: 102 providerName: ProQuest |
Title | SGAT: Shuffle and graph attention based Siamese networks for visual tracking |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36417392 https://www.proquest.com/docview/2739406154 https://www.proquest.com/docview/2739432322 https://pubmed.ncbi.nlm.nih.gov/PMC9683595 https://doaj.org/article/059f3d2a561844b58edda0f037b1f50f http://dx.doi.org/10.1371/journal.pone.0277064 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaoRSDkICHVEmc2CkSQt3UbiA20LqivkWxY2-VqrQ0LYIX_nbuHDciqCBe_NC7uMnlzv5dfB-EvNBKBEaoDI8GDTgoMvekD3YlGRfK5P0ks-3bzi_42ST6MI2ne2Tbs9UJsNzp2mE_qclq3vv-9cc7MPi3tmuDCLYX9ZaLQvfwTBK22X1yAHuTQFM9j-pzBbBue3qJqMXjoc9cMt3fZmlsVramf71yt5bzRbkLlv4ZXfnbdjW6Q247nEkHlWIckj1d3CWHzpJL-sqVm359j3wcnw6u3tDxzcaYuaZZkVNbxZpi5U0bC0lxq8vpeIYRtZoWVeR4SQHv0m-zcgP_A7eg8KP7fTIZDa9OzjzXY8FTPArWsL4YgCwqTqQ0Ac90yLNIKMxWjXmkArB_BogNnAqpFCzrfQkuC3iEyhie81j12QPSKkBiR4SqKAF4lmQJ0zrqKz_JmUE8J32YCBbWNvG2wkyXVSmN1J6nCXBBKqmkKPzUCb9NjlHiNS8WwrY_LFbXqbOrFNChYXmYxdi4JpJxovM8843PhAxM7Js2eYrvK62ySmtzTgeA2zigY560yXPLgcUwCoy2uc42ZZm-__TlP5jGlw2ml47JLFDsmctwgGfCIlsNzk6DE0xaNchHqF1bqZQpYMw-Iq8YhNLZatxu8rOajJNiBF2hFxvHw-AFhW3ysFLQWrIMVAHIQBEN1W2IvkkpZje2FjncLaZ2P_r3Az0mt0JMGwkCL2Qd0lqvNvoJgLm17JJ9MRUwJicBjqPTLjk4Hl58vuzazyNda784_hz-AlXbS9k |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5V4QFeUMvV0EIXBAIe3PpcO0gIhaMkNC0SSau8Ld6rjVTZoY5B_Cl-IzP22mBUIV76mpk4m9k5vvXOQcgTLWPPxDLFq0EDBxShHOGCXYmAxdKoQZJW49sOj9joOPw4j-Zr5GdTC4NplY1PrBy1yiW-I9-DMDvA4BOFr5dfHZwahberzQiNWi0O9I_vcGQrXo3fwf4-9f3997O3I8dOFXAkC70VWJSBIC2jRAjjsVT7LA1jifWZEQulBxofAEYBGC2kBEc2EADS4QwkjWGKRRKbL4HLvwaB10WLiuftAQ98B2O2PC-IvT2rDbvLPNO7eFfqsrAT_qopAW0s6C3P8-IyoPt3vuYfAXB_ndy0yJUOa1XbIGs6u0U2rG8o6HPbwPrFbTKZfhjOXtLpWWnMuaZppmjVF5tiL88qu5Ji8FR0usAcXU2zOhe9oICg6bdFUcLvwBIkvsa_Q46vRL53SS8DiW0SKsMEAF-SJoHW4UC6iQoMIkThwoPAVfeJ0wiTL-vmHLy6oYvhUFNLhaPwuRV-n7xBibe82Fq7-iC_OOXWUjngTRMoP41wFE4ookQrlbrGDWLhmcg1fbKD-8XrOtXWQfAhIEEGeJslffK44sD2Ghnm75ymZVHw8aeT_2Cafu4wPbNMJkexp7ZmAv4Ttu3qcG53OMFJyA55E7WrkUrBf5sTfLPRuMvJj1oyPhRz8jKdl5YngA3y--ReraCtZANQBSADJe6obkf0XUq2OKu6m8NqsVj8_r-XtUOuj2aHEz4ZHx1skRs-FqV4nuMH26S3uij1A4CKK_Gwsk9Kvly1Q_gFY615rA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrgcEMAgEPWZM4cVIkhAqjrGwMRDfUNxM79lZpSsrSgPjX-Ou4S5xA0IR42Wvvmrrn-_g5vg9CHmkV-yZWKV4NGjigyMyVHtiVZDxWJhslaT2-7f0B3z0K382j-Rr52dbCYFpl6xNrR50VCt-RDyHMjjD4ROHQ2LSIjzuTl8uvLk6QwpvWdpxGoyJ7-sd3OL6VL6Y7sNePg2Dy5vD1rmsnDLiKh_4KrMtAwFZRIqXxeaoDnoaxwlrNiIfKB-1ngFcAUkulwKmNJAB2OA8pY3jGI4WNmMD9X4pZ5KONxfPusAd-hHNbqsdif2g1Y3tZ5Hob7009HvZCYT0xoIsLg-VpUZ4Hev_O3fwjGE6ukasWxdJxo3brZE3n18m69RMlfWqbWT-7QfZnb8eHz-nspDLmVNM0z2jdI5tiX88605JiIM3obIH5uprmTV56SQFN02-LsoLfgSUofKV_kxxdiHxvkUEOEtsgVIUJgL8kTZjW4Uh5ScYMokXpwYPAbTvEbYUplk2jDlHf1sVwwGmkIlD4wgrfIa9Q4h0vttmuPyjOjoW1WgHY07AsSCMcixPKKNFZlnrGY7H0TeQZh2zhfommZrVzFmIMqJAD9uaJQx7WHNhqI0elPU6rshTTD5__g2n2qcf0xDKZAsWe2voJ-E_YwqvHudnjBIeheuQN1K5WKqX4bVrwzVbjzic_6Mj4UMzPy3VRWR4GGxQ45HajoJ1kGagCkIES91S3J_o-JV-c1J3OYbVYOH7n38vaIpfBFYj96cHeXXIlwPoU33cDtkkGq7NK3wPUuJL3a_Ok5MtF-4NfM6J94g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGAT%3A+Shuffle+and+graph+attention+based+Siamese+networks+for+visual+tracking&rft.jtitle=PloS+one&rft.au=Wang%2C+Jun&rft.au=Zhang%2C+Limin&rft.au=Zhang%2C+Wenshuang&rft.au=Wang%2C+Yuanyun&rft.date=2022-11-23&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft.spage=e0277064&rft_id=info:doi/10.1371%2Fjournal.pone.0277064&rft.externalDocID=A727609968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |