SGAT: Shuffle and graph attention based Siamese networks for visual tracking

Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channe...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 11; p. e0277064
Main Authors Wang, Jun, Zhang, Limin, Zhang, Wenshuang, Wang, Yuanyun, Deng, Chengzhi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.11.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.
AbstractList Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.
Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.
Audience Academic
Author Deng, Chengzhi
Zhang, Wenshuang
Zhang, Limin
Wang, Jun
Wang, Yuanyun
AuthorAffiliation Hanyang University, KOREA, REPUBLIC OF
1 School of Information Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi, China
2 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, Nanchang, Jiangxi, China
AuthorAffiliation_xml – name: 2 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, Nanchang, Jiangxi, China
– name: Hanyang University, KOREA, REPUBLIC OF
– name: 1 School of Information Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi, China
Author_xml – sequence: 1
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
– sequence: 2
  givenname: Limin
  surname: Zhang
  fullname: Zhang, Limin
– sequence: 3
  givenname: Wenshuang
  surname: Zhang
  fullname: Zhang, Wenshuang
– sequence: 4
  givenname: Yuanyun
  orcidid: 0000-0002-6446-5873
  surname: Wang
  fullname: Wang, Yuanyun
– sequence: 5
  givenname: Chengzhi
  surname: Deng
  fullname: Deng, Chengzhi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36417392$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhi00xLbCP0AQCQnBRYs_YifhAqmaYFSqNIkObi3HsRN3adzZzoB_j0OzqUG7QL6Idfz4PT5vzjkHJ53tFAAvEVwgkqEPW9u7TrSLfQwvIM4yyNIn4AwVBM8ZhuTkaH8Kzr3fQkhJztgzcEpYijJS4DOw3lwurz8mm6bXulWJ6KqkdmLfJCIE1QVju6QUXlXJxoid8irpVPhp3Y1PtHXJnfG9aJPghLwxXf0cPNWi9erF-J2B718-X198na-vLlcXy_VcxrxhTjJN8kLSvCw1YkJhJtJM5oxSylIZHwYJYiSL51KqEhUlJhAWqdSaVYzKgszA64PuvrWej0Z4jmNJKWSIppFYHYjKii3fO7MT7je3wvC_AetqLlwwslUc0kKTCgvKUJ6mJc1VVQmoIclKpCnUUevTmK0vd6qS0RYn2ono9KQzDa_tHS9YTmhBo8C7UcDZ2175wHfGS9W2olO2H99NMME4om_-QR-vbqRqEQswnbbDHxhE-TLDGYPFkHoGFo9QcVVqZ2TsGm1ifHLh_eRCZIL6FWrRe89Xm2__z179mLJvj9hGiTY03rb90F1-Cr46dvrB4vt2jUB6AKSz3julHxAE-TAV93bxYSr4OBXkD6ty_HY
Cites_doi 10.1007/978-3-031-20086-1_17
10.1109/CVPR42600.2020.00630
10.1109/CVPR.2016.158
10.1109/CVPR52688.2022.00854
10.1109/CVPR.2016.308
10.1109/ICCV.2017.89
10.1109/CVPR.2019.00479
10.1007/978-3-319-46454-1_29
10.1007/s10489-021-02651-5
10.1109/CVPR.2019.00953
10.1109/CVPR.2019.00441
10.1109/CVPR.2019.00376
10.1109/CVPR.2017.733
10.1109/CVPR.2016.465
10.1109/CVPR.2018.00937
10.1109/CVPR.2019.00472
10.1609/aaai.v34i07.6944
10.1109/ICCV.2019.00247
10.1145/3065386
10.1007/978-3-030-01240-3_22
10.1007/978-3-030-58607-2_33
10.1007/978-3-030-58589-1_46
10.1007/s10489-021-02234-4
10.1109/CVPR46437.2021.00942
10.1109/CVPR.2019.00814
10.1007/978-3-030-01240-3_7
10.1007/978-3-319-46448-0_27
10.1007/978-3-319-48881-3_56
10.1109/ICCV.2019.00628
10.1109/CVPR.2016.90
10.1007/s10846-008-9235-4
10.1016/j.knosys.2018.12.011
10.1109/CVPR.2019.00142
10.1007/978-3-030-58565-5_23
10.1007/978-3-030-01234-2_1
10.1109/CVPR46437.2021.00803
10.1109/CVPR.2017.243
10.1109/CVPR.2018.00935
10.1109/CVPR.2019.00552
10.1109/CVPR46437.2021.00162
10.1016/j.neunet.2021.04.004
10.1109/CVPR42600.2020.00670
ContentType Journal Article
Copyright Copyright: © 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2022 Public Library of Science
2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Wang et al 2022 Wang et al
Copyright_xml – notice: Copyright: © 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Wang et al 2022 Wang et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0277064
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Agricultural Science Database
MEDLINE - Academic
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate SGAT
EISSN 1932-6203
ExternalDocumentID 2739406154
oai_doaj_org_article_059f3d2a561844b58edda0f037b1f50f
PMC9683595
A727609968
36417392
10_1371_journal_pone_0277064
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 61861032
– fundername: ;
  grantid: 61865012
– fundername: ;
  grantid: GJJ190955
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
BBAFP
N95
ID FETCH-LOGICAL-c641t-37f389c58bbf16ae26a47c8655564c17303163758bcceb19b230094cff6d65c93
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jan 01 07:45:40 EST 2023
Wed Aug 27 01:22:57 EDT 2025
Thu Aug 21 18:39:33 EDT 2025
Fri Jul 11 04:04:16 EDT 2025
Fri Jul 25 10:50:49 EDT 2025
Tue Jun 17 21:08:38 EDT 2025
Tue Jun 10 20:15:04 EDT 2025
Fri Jun 27 03:54:16 EDT 2025
Fri Jun 27 03:40:45 EDT 2025
Thu May 22 21:22:58 EDT 2025
Wed Feb 19 02:26:28 EST 2025
Tue Jul 01 03:43:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-37f389c58bbf16ae26a47c8655564c17303163758bcceb19b230094cff6d65c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-6446-5873
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277064
PMID 36417392
PQID 2739406154
PQPubID 1436336
PageCount e0277064
ParticipantIDs plos_journals_2739406154
doaj_primary_oai_doaj_org_article_059f3d2a561844b58edda0f037b1f50f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9683595
proquest_miscellaneous_2739432322
proquest_journals_2739406154
gale_infotracmisc_A727609968
gale_infotracacademiconefile_A727609968
gale_incontextgauss_ISR_A727609968
gale_incontextgauss_IOV_A727609968
gale_healthsolutions_A727609968
pubmed_primary_36417392
crossref_primary_10_1371_journal_pone_0277064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-23
PublicationDateYYYYMMDD 2022-11-23
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0277064.ref020
pone.0277064.ref021
L Chen (pone.0277064.ref040) 2017
pone.0277064.ref027
pone.0277064.ref028
X Hua (pone.0277064.ref044) 2021
pone.0277064.ref025
pone.0277064.ref026
Z Cui (pone.0277064.ref011) 2021
pone.0277064.ref030
X Li (pone.0277064.ref032) 2019
pone.0277064.ref033
pone.0277064.ref038
pone.0277064.ref039
Y Zeng (pone.0277064.ref010) 2022
pone.0277064.ref034
J Wang (pone.0277064.ref015) 2022
pone.0277064.ref035
Q Liu (pone.0277064.ref029) 2020
pone.0277064.ref036
pone.0277064.ref037
A Krizhevsky (pone.0277064.ref018) 2017
Q Liu (pone.0277064.ref003) 2022
pone.0277064.ref041
pone.0277064.ref042
A He (pone.0277064.ref002) 2018
pone.0277064.ref043
pone.0277064.ref049
pone.0277064.ref006
pone.0277064.ref007
pone.0277064.ref008
pone.0277064.ref001
pone.0277064.ref045
pone.0277064.ref046
pone.0277064.ref047
pone.0277064.ref004
pone.0277064.ref048
pone.0277064.ref052
pone.0277064.ref053
pone.0277064.ref054
pone.0277064.ref055
pone.0277064.ref050
pone.0277064.ref051
pone.0277064.ref016
pone.0277064.ref017
W Yuanyun (pone.0277064.ref022) 2022
Y Wu (pone.0277064.ref023) 2015
N Fan (pone.0277064.ref031) 2021
pone.0277064.ref019
S Ren (pone.0277064.ref012) 2015
pone.0277064.ref056
pone.0277064.ref013
L Huang (pone.0277064.ref024) 2019
pone.0277064.ref057
pone.0277064.ref014
F Bonin-Font (pone.0277064.ref005) 2008
pone.0277064.ref009
References_xml – ident: pone.0277064.ref027
  doi: 10.1007/978-3-031-20086-1_17
– year: 2015
  ident: pone.0277064.ref023
  article-title: Object Tracking Benchmark
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: pone.0277064.ref017
  doi: 10.1109/CVPR42600.2020.00630
– ident: pone.0277064.ref030
  doi: 10.1109/CVPR.2016.158
– ident: pone.0277064.ref028
  doi: 10.1109/CVPR52688.2022.00854
– ident: pone.0277064.ref020
  doi: 10.1109/CVPR.2016.308
– start-page: 1
  year: 2022
  ident: pone.0277064.ref015
  article-title: Learning attention modules for visual tracking
  publication-title: Signal, Image and Video Processing
– ident: pone.0277064.ref041
  doi: 10.1109/ICCV.2017.89
– ident: pone.0277064.ref047
  doi: 10.1109/CVPR.2019.00479
– ident: pone.0277064.ref051
  doi: 10.1007/978-3-319-46454-1_29
– ident: pone.0277064.ref039
– start-page: 4973
  year: 2022
  ident: pone.0277064.ref010
  article-title: SiamPCF: siamese point regression with coarse-fine classification network for visual tracking
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02651-5
– ident: pone.0277064.ref006
– ident: pone.0277064.ref042
  doi: 10.1109/CVPR.2019.00953
– ident: pone.0277064.ref014
  doi: 10.1109/CVPR.2019.00441
– ident: pone.0277064.ref048
  doi: 10.1109/CVPR.2019.00376
– start-page: 4834
  year: 2018
  ident: pone.0277064.ref002
  article-title: A twofold siamese network for real-time object tracking
  publication-title: IEEE conference on computer vision and pattern recognition
– ident: pone.0277064.ref050
  doi: 10.1109/CVPR.2017.733
– ident: pone.0277064.ref008
  doi: 10.1109/CVPR.2016.465
– ident: pone.0277064.ref052
– ident: pone.0277064.ref055
  doi: 10.1109/CVPR.2018.00937
– start-page: 1562
  year: 2019
  ident: pone.0277064.ref024
  article-title: Got-10k: A large high-diversity benchmark for generic object tracking in the wild
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: pone.0277064.ref007
  doi: 10.1109/CVPR.2019.00472
– ident: pone.0277064.ref016
  doi: 10.1609/aaai.v34i07.6944
– ident: pone.0277064.ref056
  doi: 10.1109/ICCV.2019.00247
– start-page: 84
  year: 2017
  ident: pone.0277064.ref018
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– ident: pone.0277064.ref054
  doi: 10.1007/978-3-030-01240-3_22
– start-page: 834
  year: 2017
  ident: pone.0277064.ref040
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– ident: pone.0277064.ref037
  doi: 10.1007/978-3-030-58607-2_33
– start-page: 1
  year: 2022
  ident: pone.0277064.ref003
  article-title: Learning dual-level deep representation for thermal infrared tracking
  publication-title: IEEE Transactions on Multimedia
– ident: pone.0277064.ref035
  doi: 10.1007/978-3-030-58589-1_46
– start-page: 2114
  year: 2020
  ident: pone.0277064.ref029
  article-title: Learning deep multi-level similarity for thermal infrared object tracking
  publication-title: IEEE Transactions on Multimedia
– start-page: 8230
  year: 2021
  ident: pone.0277064.ref011
  article-title: Feature selection accelerated convolutional neural networks for visual tracking
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02234-4
– ident: pone.0277064.ref021
  doi: 10.1109/CVPR46437.2021.00942
– ident: pone.0277064.ref034
  doi: 10.1109/CVPR.2019.00814
– start-page: 1
  year: 2021
  ident: pone.0277064.ref044
  article-title: Light-weight UAV object tracking network based on strategy gradient and attention mechanism
  publication-title: Knowledge-Based Systems
– start-page: 1
  year: 2022
  ident: pone.0277064.ref022
  article-title: Siamese network with a depthwise over-parameterized convolutional layer for visual tracking
  publication-title: PLOS ONE
– ident: pone.0277064.ref033
  doi: 10.1007/978-3-030-01240-3_7
– ident: pone.0277064.ref025
  doi: 10.1007/978-3-319-46448-0_27
– ident: pone.0277064.ref001
  doi: 10.1007/978-3-319-48881-3_56
– ident: pone.0277064.ref053
  doi: 10.1109/ICCV.2019.00628
– ident: pone.0277064.ref019
  doi: 10.1109/CVPR.2016.90
– start-page: 263
  year: 2008
  ident: pone.0277064.ref005
  article-title: Visual navigation for mobile robots: A survey
  publication-title: Journal of intelligent and robotic systems
  doi: 10.1007/s10846-008-9235-4
– start-page: 71
  year: 2019
  ident: pone.0277064.ref032
  article-title: Hierarchical Spatial-aware Siamese Network for Thermal Infrared Object Tracking
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.12.011
– ident: pone.0277064.ref057
  doi: 10.1109/CVPR.2019.00142
– ident: pone.0277064.ref004
– ident: pone.0277064.ref049
  doi: 10.1007/978-3-030-58565-5_23
– ident: pone.0277064.ref043
  doi: 10.1007/978-3-030-01234-2_1
– ident: pone.0277064.ref045
  doi: 10.1109/CVPR46437.2021.00803
– ident: pone.0277064.ref038
  doi: 10.1109/CVPR.2017.243
– ident: pone.0277064.ref013
  doi: 10.1109/CVPR.2018.00935
– ident: pone.0277064.ref026
  doi: 10.1109/CVPR.2019.00552
– ident: pone.0277064.ref046
  doi: 10.1109/CVPR46437.2021.00162
– ident: pone.0277064.ref009
– start-page: 344
  year: 2021
  ident: pone.0277064.ref031
  article-title: Learning dual-margin model for visual tracking
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.04.004
– ident: pone.0277064.ref036
  doi: 10.1109/CVPR42600.2020.00670
– start-page: 1
  year: 2015
  ident: pone.0277064.ref012
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
SSID ssj0053866
Score 2.4098654
Snippet Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0277064
SubjectTerms Accuracy
Algorithms
Analysis
Artificial neural networks
Benchmarks
Biology and Life Sciences
Computer and Information Sciences
Correlation
Cross correlation
Engineering and Technology
Exploitation
Feature extraction
Graph matching
Learning
Neural networks
Neural Networks, Computer
Occlusion
Optical tracking
Physical Sciences
Research and Analysis Methods
Searching
Similarity
Social Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhCxiEBBzSJnHiJNwWRCmIh8S2qDfLT7pSlV2RDb-fGdsbNagSHLjujLLZbzzjb9YzY0KeW13nrtYSjwYdJCjKpCoDv1KM19qZtpH--rbPX_jJWfnxvDq_ctUX1oSF8cABuCPY_h0zhazwZpJSVY01RmYuY7XKXZU5jL6w5-2SqRCDwYs5j41yrM6Pol0ON-vOHuKpZcbLyUbk5_WPUXm2uVz311HOPysnr2xFx7fJrcgh6SK8-x65Ybs7ZC96aU9fxlHSr-6ST8v3i9PXdHkxOHdpqewM9ROqKU7V9HWOFLcxQ5crrJa1tAtV4T0FLkt_rfoBvgdeQeMf6vfI2fG707cnabw_IdW8zLcQOxzQEV01SrmcS1twWdYaO1ErXuocfJsBG4OEQWkNIbtVkI5Atqed44ZXumX3yawDxPYJ1WUD1KuRDbO2bHXWGOaQq6kMHgRBMyHpDkyxCWMyhD8rqyG9CKgIBF9E8BPyBhEfdXHItf8ATC-i6cXfTJ-QJ2gvETpGR1cVC-BkHJgvbxLyzGvgoIsOK2l-yKHvxYev3_9BafltovQiKrk1wi5j9wL8JhygNdGcTzTBXfVEvI-ra4dKL4A_tsiqKgBlvltx14ufjmJ8KFbHdXY9RB0GBioS8iAs0BFZBksBxCCpJ0t3Av1U0q0u_JxxeFts2374P2x1QG4W2DiS52nB5mS2_TnYR0Dntuqx99zfnbxGmA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_geOEFMb5WGBAQEvDQrW3atOUFHYgxEB8St6F7i_K5nTS1x3rl78dOc4WiCfFa-9qcYzs_J7ZDyDOry9SVWuLRoIMARZlYJWBXivFSO1NX0l_f9vkLPzrJPy6LZdhw60Ja5dYnekdtWo175AewzNa4-BT56_WPGG-NwtPVcIXGVXINW5dhSle5HAMusGXOQ7kcK9ODMDv767ax-3h2mfB8shz5rv2jb56tz9vuMuD5d_7kHwvS4U1yIyBJOh-mfodcsc0tshNstaMvQkPpl7fJp8X7-fErujjrnTu3VDaG-j7VFHtr-mxHiouZoYsV5sxa2gy54R0FREt_rroevgND0LitfoecHL47fnsUh1sUYs3zdAMexAEo0UWllEu5tBmXeamxHrXguU7BwhlgMggblNbguGsFQQnEfNo5bniha3aXzBqQ2C6hOq8AgFWyYtbmtU4qwxwiNpXAi8B1RiTeClOsh2YZwp-YlRBkDFIRKHwRhB-RNyjxkRdbXfsH7cWpCJYjAP85ZjJZ4NU0uSoqa4xMXMJKlboicRF5jPMlhrrR0WDFHJAZB_zLq4g89RzY7qLBfJpT2Xed-PD1-38wLb5NmJ4HJtei2GWoYYD_hG20Jpx7E04wWj0h76J2baXSid_qDb_catzl5CcjGV-KOXKNbfvAw2CCsojcGxR0lCwDVQAyUMqJ6k5EP6U0qzPfbRxGi8Xb9_89rAfkeoaFIWkaZ2yPzDYXvX0IcG2jHnmb_AWxGT4P
  priority: 102
  providerName: ProQuest
Title SGAT: Shuffle and graph attention based Siamese networks for visual tracking
URI https://www.ncbi.nlm.nih.gov/pubmed/36417392
https://www.proquest.com/docview/2739406154
https://www.proquest.com/docview/2739432322
https://pubmed.ncbi.nlm.nih.gov/PMC9683595
https://doaj.org/article/059f3d2a561844b58edda0f037b1f50f
http://dx.doi.org/10.1371/journal.pone.0277064
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaoRSDkICHVEmc2CkSQt3UbiA20LqivkWxY2-VqrQ0LYIX_nbuHDciqCBe_NC7uMnlzv5dfB-EvNBKBEaoDI8GDTgoMvekD3YlGRfK5P0ks-3bzi_42ST6MI2ne2Tbs9UJsNzp2mE_qclq3vv-9cc7MPi3tmuDCLYX9ZaLQvfwTBK22X1yAHuTQFM9j-pzBbBue3qJqMXjoc9cMt3fZmlsVramf71yt5bzRbkLlv4ZXfnbdjW6Q247nEkHlWIckj1d3CWHzpJL-sqVm359j3wcnw6u3tDxzcaYuaZZkVNbxZpi5U0bC0lxq8vpeIYRtZoWVeR4SQHv0m-zcgP_A7eg8KP7fTIZDa9OzjzXY8FTPArWsL4YgCwqTqQ0Ac90yLNIKMxWjXmkArB_BogNnAqpFCzrfQkuC3iEyhie81j12QPSKkBiR4SqKAF4lmQJ0zrqKz_JmUE8J32YCBbWNvG2wkyXVSmN1J6nCXBBKqmkKPzUCb9NjlHiNS8WwrY_LFbXqbOrFNChYXmYxdi4JpJxovM8843PhAxM7Js2eYrvK62ySmtzTgeA2zigY560yXPLgcUwCoy2uc42ZZm-__TlP5jGlw2ml47JLFDsmctwgGfCIlsNzk6DE0xaNchHqF1bqZQpYMw-Iq8YhNLZatxu8rOajJNiBF2hFxvHw-AFhW3ysFLQWrIMVAHIQBEN1W2IvkkpZje2FjncLaZ2P_r3Az0mt0JMGwkCL2Qd0lqvNvoJgLm17JJ9MRUwJicBjqPTLjk4Hl58vuzazyNda784_hz-AlXbS9k
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5V4QFeUMvV0EIXBAIe3PpcO0gIhaMkNC0SSau8Ld6rjVTZoY5B_Cl-IzP22mBUIV76mpk4m9k5vvXOQcgTLWPPxDLFq0EDBxShHOGCXYmAxdKoQZJW49sOj9joOPw4j-Zr5GdTC4NplY1PrBy1yiW-I9-DMDvA4BOFr5dfHZwahberzQiNWi0O9I_vcGQrXo3fwf4-9f3997O3I8dOFXAkC70VWJSBIC2jRAjjsVT7LA1jifWZEQulBxofAEYBGC2kBEc2EADS4QwkjWGKRRKbL4HLvwaB10WLiuftAQ98B2O2PC-IvT2rDbvLPNO7eFfqsrAT_qopAW0s6C3P8-IyoPt3vuYfAXB_ndy0yJUOa1XbIGs6u0U2rG8o6HPbwPrFbTKZfhjOXtLpWWnMuaZppmjVF5tiL88qu5Ji8FR0usAcXU2zOhe9oICg6bdFUcLvwBIkvsa_Q46vRL53SS8DiW0SKsMEAF-SJoHW4UC6iQoMIkThwoPAVfeJ0wiTL-vmHLy6oYvhUFNLhaPwuRV-n7xBibe82Fq7-iC_OOXWUjngTRMoP41wFE4ookQrlbrGDWLhmcg1fbKD-8XrOtXWQfAhIEEGeJslffK44sD2Ghnm75ymZVHw8aeT_2Cafu4wPbNMJkexp7ZmAv4Ttu3qcG53OMFJyA55E7WrkUrBf5sTfLPRuMvJj1oyPhRz8jKdl5YngA3y--ReraCtZANQBSADJe6obkf0XUq2OKu6m8NqsVj8_r-XtUOuj2aHEz4ZHx1skRs-FqV4nuMH26S3uij1A4CKK_Gwsk9Kvly1Q_gFY615rA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrgcEMAgEPWZM4cVIkhAqjrGwMRDfUNxM79lZpSsrSgPjX-Ou4S5xA0IR42Wvvmrrn-_g5vg9CHmkV-yZWKV4NGjigyMyVHtiVZDxWJhslaT2-7f0B3z0K382j-Rr52dbCYFpl6xNrR50VCt-RDyHMjjD4ROHQ2LSIjzuTl8uvLk6QwpvWdpxGoyJ7-sd3OL6VL6Y7sNePg2Dy5vD1rmsnDLiKh_4KrMtAwFZRIqXxeaoDnoaxwlrNiIfKB-1ngFcAUkulwKmNJAB2OA8pY3jGI4WNmMD9X4pZ5KONxfPusAd-hHNbqsdif2g1Y3tZ5Hob7009HvZCYT0xoIsLg-VpUZ4Hev_O3fwjGE6ukasWxdJxo3brZE3n18m69RMlfWqbWT-7QfZnb8eHz-nspDLmVNM0z2jdI5tiX88605JiIM3obIH5uprmTV56SQFN02-LsoLfgSUofKV_kxxdiHxvkUEOEtsgVIUJgL8kTZjW4Uh5ScYMokXpwYPAbTvEbYUplk2jDlHf1sVwwGmkIlD4wgrfIa9Q4h0vttmuPyjOjoW1WgHY07AsSCMcixPKKNFZlnrGY7H0TeQZh2zhfommZrVzFmIMqJAD9uaJQx7WHNhqI0elPU6rshTTD5__g2n2qcf0xDKZAsWe2voJ-E_YwqvHudnjBIeheuQN1K5WKqX4bVrwzVbjzic_6Mj4UMzPy3VRWR4GGxQ45HajoJ1kGagCkIES91S3J_o-JV-c1J3OYbVYOH7n38vaIpfBFYj96cHeXXIlwPoU33cDtkkGq7NK3wPUuJL3a_Ok5MtF-4NfM6J94g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGAT%3A+Shuffle+and+graph+attention+based+Siamese+networks+for+visual+tracking&rft.jtitle=PloS+one&rft.au=Wang%2C+Jun&rft.au=Zhang%2C+Limin&rft.au=Zhang%2C+Wenshuang&rft.au=Wang%2C+Yuanyun&rft.date=2022-11-23&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft.spage=e0277064&rft_id=info:doi/10.1371%2Fjournal.pone.0277064&rft.externalDocID=A727609968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon