BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of hum...
Saved in:
Published in | Nature (London) Vol. 527; no. 7577; pp. 192 - 197 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.11.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human
BCL11A
, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform
in situ
saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the
BCL11A
erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.
A CRISPR-Cas9 approach is used to perform saturating mutagenesis of the human and mouse
BCL11A
enhancers, producing a map that reveals critical regions and specific vulnerabilities;
BCL11A
enhancer disruption is validated by CRISPR-Cas9 as a therapeutic strategy for inducing fetal haemoglobin by applying it in both mice and primary human erythroblast cells.
BCL11A
enhancer disruption analysed
BCL11A is a transcriptional repressor that inhibits expression of fetal globin genes in adults, and is a potential therapeutic target for the treatment of β-globinopathies such as β-thalassemia and sickle cell disease. The enhancer of
BCL11A
is subject to common genetic variation associated with fetal hemoglobin level. Here, Daniel Bauer and colleagues use a CRISPR–Cas9 approach to perform saturation mutagenesis of the human and mouse
BCL11A
enhancers, producing a map that reveals critical regions and specific vulnerabilities. They validate
BCL11A
enhancer disruption by CRISPR–Cas9 as a therapeutic strategy for inducing fetal haemoglobin by applying it in both mice and primary human erythroblast cells. |
---|---|
AbstractList | Enhancers, critical determinants of cellular identity, are commonly identified by correlative chromatin marks and gain-of-function potential, though only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously we identified an erythroid enhancer of
BCL11A
, subject to common genetic variation associated with fetal hemoglobin (HbF) level, whose mouse ortholog is necessary for erythroid BCL11A expression. Here we develop pooled CRISPR-Cas9 guide RNA libraries to perform
in situ
saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for HbF reinduction. The detailed enhancer map will inform therapeutic genome editing. The screening approach described here is generally applicable to functional interrogation of noncoding genomic elements. Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements. Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements. Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A , subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements. A CRISPR-Cas9 approach is used to perform saturating mutagenesis of the human and mouse BCL11A enhancers, producing a map that reveals critical regions and specific vulnerabilities; BCL11A enhancer disruption is validated by CRISPR-Cas9 as a therapeutic strategy for inducing fetal haemoglobin by applying it in both mice and primary human erythroblast cells. BCL11A enhancer disruption analysed BCL11A is a transcriptional repressor that inhibits expression of fetal globin genes in adults, and is a potential therapeutic target for the treatment of β-globinopathies such as β-thalassemia and sickle cell disease. The enhancer of BCL11A is subject to common genetic variation associated with fetal hemoglobin level. Here, Daniel Bauer and colleagues use a CRISPR–Cas9 approach to perform saturation mutagenesis of the human and mouse BCL11A enhancers, producing a map that reveals critical regions and specific vulnerabilities. They validate BCL11A enhancer disruption by CRISPR–Cas9 as a therapeutic strategy for inducing fetal haemoglobin by applying it in both mice and primary human erythroblast cells. |
Audience | Academic |
Author | Pinello, Luca Fujiwara, Yuko Vinjamur, Divya S. Luc, Sidinh Sanjana, Neville E. Yuan, Guo-Cheng Shalem, Ophir Sher, Falak Maeda, Takahiro Bauer, Daniel E. Smith, Elenoe C. Chen, Diane D. Schupp, Patrick G. Orkin, Stuart H. Kurita, Ryo Nakamura, Yukio Canver, Matthew C. Garcia, Sara P. Zhang, Feng |
Author_xml | – sequence: 1 givenname: Matthew C. surname: Canver fullname: Canver, Matthew C. organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School – sequence: 2 givenname: Elenoe C. surname: Smith fullname: Smith, Elenoe C. organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School – sequence: 3 givenname: Falak surname: Sher fullname: Sher, Falak organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School – sequence: 4 givenname: Luca surname: Pinello fullname: Pinello, Luca organization: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health – sequence: 5 givenname: Neville E. surname: Sanjana fullname: Sanjana, Neville E. organization: Department of Brain and Cognitive Sciences and Department of Biological Engineering, Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, MIT – sequence: 6 givenname: Ophir surname: Shalem fullname: Shalem, Ophir organization: Department of Brain and Cognitive Sciences and Department of Biological Engineering, Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, MIT – sequence: 7 givenname: Diane D. surname: Chen fullname: Chen, Diane D. organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School – sequence: 8 givenname: Patrick G. surname: Schupp fullname: Schupp, Patrick G. organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School – sequence: 9 givenname: Divya S. surname: Vinjamur fullname: Vinjamur, Divya S. organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School – sequence: 10 givenname: Sara P. surname: Garcia fullname: Garcia, Sara P. organization: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health – sequence: 11 givenname: Sidinh surname: Luc fullname: Luc, Sidinh organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School – sequence: 12 givenname: Ryo surname: Kurita fullname: Kurita, Ryo organization: Cell Engineering Division, RIKEN BioResource Center – sequence: 13 givenname: Yukio surname: Nakamura fullname: Nakamura, Yukio organization: Cell Engineering Division, RIKEN BioResource Center, Comprehensive Human Sciences, University of Tsukuba – sequence: 14 givenname: Yuko surname: Fujiwara fullname: Fujiwara, Yuko organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Howard Hughes Medical Institute – sequence: 15 givenname: Takahiro surname: Maeda fullname: Maeda, Takahiro organization: Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 16 givenname: Guo-Cheng surname: Yuan fullname: Yuan, Guo-Cheng organization: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health – sequence: 17 givenname: Feng surname: Zhang fullname: Zhang, Feng email: zhang@broadinstitute.org organization: Department of Brain and Cognitive Sciences and Department of Biological Engineering, Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, MIT – sequence: 18 givenname: Stuart H. surname: Orkin fullname: Orkin, Stuart H. email: stuart_orkin@dfci.harvard.edu organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Howard Hughes Medical Institute – sequence: 19 givenname: Daniel E. surname: Bauer fullname: Bauer, Daniel E. email: daniel.bauer@childrens.harvard.edu organization: Division of Hematology/Oncology, Department of Pediatric Oncology, Department of Pediatrics, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26375006$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ktv1DAQAGALFdFt4cQdRfQCghQ7cWzngrSseBSthMTjbDn2JHWVdba2g-i_x2FL2a2CcogUfzOezMwJOnKDA4SeEnxOcCneOBVHD6SqCvIALQjlLKdM8CO0wLgQORYlO0YnIVxhjCvC6SN0XLCSVxizBfr8brUmZJmBu1ROg8-MDQF0tIPLmptspUKdb8BYFcFk1mXBxjEL040qWtdlmzGqDhwEGx6jh63qAzy5fZ-iHx_ef199ytdfPl6slutcM0piXiiqhRKmrQy0Wte6YNSUuFa0xYJw1dC6UIIZVkJjiFCtMIZXtEmiNpzX5Sl6u8u7HZtUmgYXverl1tuN8jdyUFYenjh7Kbvhp6SMUoJJSvDiNoEfrkcIUW5s0ND3ysEwBkl4WRJRs0IkenaPXg2jd-n3_ihRcyHIP9WpHqR17ZDu1VNSuaQlrdJsWJFUPqOm5qUi00hbmz4f-OczXm_ttdxH5zMoPQY2Vs9mfXkQkEyEX7FTYwjy4tvXQ_tsv9N3Lf67Pgm82gHthxA8tHeEYDktp9xbzqTJPa1tVNOqpZpt_5-Y17uYkDK7DvzeAGb4bwDX89k |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_tips_2021_10_012 crossref_primary_10_1016_j_jgg_2024_07_004 crossref_primary_10_1101_gr_201574_115 crossref_primary_10_1681_ASN_2018030309 crossref_primary_10_1146_annurev_immunol_042718_041522 crossref_primary_10_7554_eLife_91596_3 crossref_primary_10_1186_s13059_016_0915_2 crossref_primary_10_1182_blood_2018_07_863951 crossref_primary_10_1093_stcltm_szac007 crossref_primary_10_2217_pgs_2017_0019 crossref_primary_10_1016_j_gene_2023_147480 crossref_primary_10_1016_j_bbcan_2022_188697 crossref_primary_10_1038_s41467_020_16106_x crossref_primary_10_1126_science_adp3025 crossref_primary_10_1016_j_omtm_2018_08_003 crossref_primary_10_1038_s41598_019_48204_2 crossref_primary_10_1016_j_cell_2016_03_011 crossref_primary_10_1038_s41556_020_00620_7 crossref_primary_10_1038_s41588_021_00812_3 crossref_primary_10_1126_sciadv_abi4360 crossref_primary_10_1111_pcmr_12951 crossref_primary_10_1038_s41588_019_0538_0 crossref_primary_10_1093_plcell_koab099 crossref_primary_10_1038_s41467_024_49353_3 crossref_primary_10_1038_s41467_023_39527_w crossref_primary_10_1038_s41467_020_14362_5 crossref_primary_10_1038_s41592_024_02216_7 crossref_primary_10_1038_nrd_2016_238 crossref_primary_10_3390_cells11091404 crossref_primary_10_1038_s41573_019_0020_9 crossref_primary_10_1089_hum_2018_122 crossref_primary_10_1007_s00395_020_00839_3 crossref_primary_10_1016_j_devcel_2015_12_014 crossref_primary_10_1111_cge_13794 crossref_primary_10_1038_s41386_020_0763_3 crossref_primary_10_1016_j_celrep_2018_05_043 crossref_primary_10_1038_mt_2016_5 crossref_primary_10_3389_fgeed_2021_752278 crossref_primary_10_1093_bfgp_elx011 crossref_primary_10_1038_nbt_3863 crossref_primary_10_1177_1535370216636726 crossref_primary_10_1016_S0140_6736_15_01341_0 crossref_primary_10_1182_blood_2016_01_678151 crossref_primary_10_3390_ijms23115948 crossref_primary_10_1126_science_aae0491 crossref_primary_10_1038_s41586_024_07891_2 crossref_primary_10_1152_physiolgenomics_00028_2018 crossref_primary_10_1038_s41587_022_01533_6 crossref_primary_10_1002_ajmg_c_31529 crossref_primary_10_1038_s41586_021_03191_1 crossref_primary_10_1038_s41591_022_01906_z crossref_primary_10_1007_s00277_023_05508_8 crossref_primary_10_21769_BioProtoc_2373 crossref_primary_10_1016_j_hoc_2017_11_007 crossref_primary_10_1182_blood_2020009376 crossref_primary_10_3390_ijms22073327 crossref_primary_10_1038_s41375_022_01772_1 crossref_primary_10_1126_sciadv_abj5293 crossref_primary_10_1172_JCI146394 crossref_primary_10_1186_s13027_019_0246_5 crossref_primary_10_1534_genetics_115_180596 crossref_primary_10_1080_14712598_2018_1536119 crossref_primary_10_1002_acg2_10 crossref_primary_10_1093_hmg_ddac194 crossref_primary_10_1016_j_cis_2025_103497 crossref_primary_10_1080_17474086_2024_2429605 crossref_primary_10_1002_1873_3468_13668 crossref_primary_10_3390_biom14121595 crossref_primary_10_3390_ijms24119527 crossref_primary_10_1016_j_joca_2017_05_003 crossref_primary_10_1089_hum_2020_156 crossref_primary_10_1016_j_molmed_2017_08_002 crossref_primary_10_1182_blood_2017_10_811505 crossref_primary_10_1093_bib_bbaa053 crossref_primary_10_1007_s12185_016_2017_z crossref_primary_10_1134_S0026893317040033 crossref_primary_10_1038_nbt_3404 crossref_primary_10_1111_imr_12950 crossref_primary_10_1016_j_it_2023_05_009 crossref_primary_10_1097_MOH_0000000000000385 crossref_primary_10_1016_j_cell_2024_05_053 crossref_primary_10_1038_s41588_021_00900_4 crossref_primary_10_1016_j_jcyt_2023_07_007 crossref_primary_10_3389_frnar_2023_1194526 crossref_primary_10_3390_jcm10030482 crossref_primary_10_1182_blood_2016_01_678128 crossref_primary_10_1021_acs_biochem_4c00651 crossref_primary_10_1007_s00335_017_9727_2 crossref_primary_10_1038_s41593_019_0538_5 crossref_primary_10_1182_blood_2021011044 crossref_primary_10_1016_j_tplants_2016_01_014 crossref_primary_10_1016_j_molcel_2018_10_037 crossref_primary_10_1007_s11262_017_1489_0 crossref_primary_10_1089_hum_2021_196 crossref_primary_10_1172_JCI94378 crossref_primary_10_1101_gr_265736_120 crossref_primary_10_1038_nbt_3715 crossref_primary_10_1016_j_molcel_2017_09_029 crossref_primary_10_1042_BSR20190604 crossref_primary_10_1038_ncomms11178 crossref_primary_10_1038_s41438_020_0258_8 crossref_primary_10_1089_hgtb_2017_190 crossref_primary_10_1007_s40291_019_00392_3 crossref_primary_10_1016_j_cell_2016_09_006 crossref_primary_10_1182_blood_2020010020 crossref_primary_10_2144_btn_2019_0100 crossref_primary_10_3389_fgeed_2021_604371 crossref_primary_10_3389_fgeed_2023_1141618 crossref_primary_10_1182_blood_2023022014 crossref_primary_10_1016_j_copbio_2018_02_004 crossref_primary_10_1126_scitranslmed_aaw3768 crossref_primary_10_1016_j_biomaterials_2020_120580 crossref_primary_10_1182_blood_2017_02_767400 crossref_primary_10_1016_j_ymthe_2021_12_001 crossref_primary_10_2174_1389201023666220307104501 crossref_primary_10_1126_science_adk6129 crossref_primary_10_1016_j_molcel_2017_09_017 crossref_primary_10_1007_s43657_020_00006_7 crossref_primary_10_1038_s41588_020_0686_2 crossref_primary_10_1016_j_molcel_2023_06_009 crossref_primary_10_1016_j_omtn_2023_03_012 crossref_primary_10_3390_mps1030028 crossref_primary_10_1093_hmg_ddaa088 crossref_primary_10_7554_eLife_44080 crossref_primary_10_1186_s13059_015_0859_y crossref_primary_10_1016_j_bcmd_2016_09_003 crossref_primary_10_1016_j_ymthe_2022_08_008 crossref_primary_10_1038_s41576_020_00311_x crossref_primary_10_1038_s41582_020_0373_z crossref_primary_10_1093_bfgp_elz031 crossref_primary_10_1186_s13059_018_1610_2 crossref_primary_10_1186_s13059_024_03176_z crossref_primary_10_1007_s40778_016_0032_x crossref_primary_10_3390_ijms23169290 crossref_primary_10_1161_CIRCGEN_118_002178 crossref_primary_10_1093_hmg_ddw170 crossref_primary_10_1016_j_ymthe_2020_09_001 crossref_primary_10_1007_s00125_019_4823_3 crossref_primary_10_1038_nbt_3853 crossref_primary_10_1038_s41467_019_10525_1 crossref_primary_10_1126_scitranslmed_aaf9336 crossref_primary_10_1021_acs_analchem_1c05315 crossref_primary_10_1016_j_omtm_2019_10_010 crossref_primary_10_1007_s40259_020_00439_6 crossref_primary_10_1016_j_omtn_2020_07_003 crossref_primary_10_1038_s41591_021_01284_y crossref_primary_10_1016_j_tig_2020_05_006 crossref_primary_10_1242_dev_182667 crossref_primary_10_1016_j_molcel_2019_04_011 crossref_primary_10_1038_s41590_022_01224_z crossref_primary_10_1126_science_aaf7613 crossref_primary_10_1016_j_jcyt_2022_11_014 crossref_primary_10_3390_cells10030523 crossref_primary_10_1016_j_ccell_2022_09_007 crossref_primary_10_1016_j_ymthe_2019_08_006 crossref_primary_10_1016_j_omtn_2023_04_024 crossref_primary_10_1093_bib_bbz030 crossref_primary_10_1126_science_aan4672 crossref_primary_10_1038_s41467_020_17552_3 crossref_primary_10_1093_nar_gkae1323 crossref_primary_10_3389_fcell_2023_1220376 crossref_primary_10_1038_s41580_022_00549_9 crossref_primary_10_1016_j_ymeth_2017_03_008 crossref_primary_10_1016_j_stem_2020_12_015 crossref_primary_10_1039_c5ib00321k crossref_primary_10_1182_bloodadvances_2019000706 crossref_primary_10_1038_s41467_021_24324_0 crossref_primary_10_1097_MOH_0000000000000640 crossref_primary_10_1007_s00281_021_00887_4 crossref_primary_10_1101_cshperspect_a041384 crossref_primary_10_1038_s41467_025_56144_x crossref_primary_10_1038_s41568_022_00441_w crossref_primary_10_1016_j_celrep_2019_10_073 crossref_primary_10_1016_j_omtm_2020_04_013 crossref_primary_10_2217_pgs_2016_0007 crossref_primary_10_1371_journal_pone_0208237 crossref_primary_10_1242_dmm_049790 crossref_primary_10_3389_fgeed_2023_1204536 crossref_primary_10_1093_lifemedi_lnad043 crossref_primary_10_1126_science_aad3312 crossref_primary_10_1089_crispr_2018_29017_vat crossref_primary_10_1093_lifemedi_lnad042 crossref_primary_10_1073_pnas_1612075113 crossref_primary_10_1182_bloodadvances_2019000820 crossref_primary_10_1089_omi_2016_0105 crossref_primary_10_1016_j_bcmd_2017_08_014 crossref_primary_10_1182_blood_2023021120 crossref_primary_10_2217_epi_2017_0157 crossref_primary_10_1038_nm_4313 crossref_primary_10_1038_s41467_022_30465_7 crossref_primary_10_1146_annurev_chembioeng_080615_034711 crossref_primary_10_1038_nrg_2016_138 crossref_primary_10_3889_oamjms_2023_11435 crossref_primary_10_1016_j_stem_2024_11_001 crossref_primary_10_1038_s41588_022_01152_6 crossref_primary_10_1038_s41467_018_03279_9 crossref_primary_10_1093_nsr_nwy138 crossref_primary_10_1016_j_nantod_2022_101659 crossref_primary_10_1080_17460441_2017_1317244 crossref_primary_10_1093_nar_gkz184 crossref_primary_10_1182_blood_2018_03_839787 crossref_primary_10_1056_NEJMoa2309673 crossref_primary_10_1016_j_stem_2021_01_001 crossref_primary_10_1016_j_celrep_2021_108988 crossref_primary_10_1016_j_celrep_2020_108426 crossref_primary_10_1021_acschembio_7b00657 crossref_primary_10_1021_acschembio_7b00778 crossref_primary_10_1038_s41467_023_40616_z crossref_primary_10_1089_crispr_2021_29120_fur crossref_primary_10_1038_s41588_021_00838_7 crossref_primary_10_1002_ajh_24449 crossref_primary_10_1002_bies_202300047 crossref_primary_10_3389_fgeed_2024_1509924 crossref_primary_10_1146_annurev_med_041817_125507 crossref_primary_10_1186_s13023_021_01757_w crossref_primary_10_1016_j_jcyt_2018_04_003 crossref_primary_10_1186_s13059_018_1563_5 crossref_primary_10_1038_s41409_019_0510_8 crossref_primary_10_1038_s41592_018_0225_6 crossref_primary_10_1093_bioinformatics_bty450 crossref_primary_10_1172_JCI87885 crossref_primary_10_1016_j_gde_2017_02_007 crossref_primary_10_1186_s12864_016_3268_z crossref_primary_10_1038_nbt_3804 crossref_primary_10_1097_HS9_0000000000000479 crossref_primary_10_1371_journal_pcbi_1008194 crossref_primary_10_1016_j_jcyt_2023_05_006 crossref_primary_10_1038_s41598_019_45939_w crossref_primary_10_1007_s00439_016_1688_0 crossref_primary_10_1016_j_jmb_2018_06_034 crossref_primary_10_1053_j_seminhematol_2018_04_014 crossref_primary_10_1093_bib_bbac508 crossref_primary_10_1007_s11886_016_0777_y crossref_primary_10_1177_14777509211057255 crossref_primary_10_1158_2159_8290_CD_21_1661 crossref_primary_10_1186_s12864_020_07109_5 crossref_primary_10_1016_j_vph_2019_02_004 crossref_primary_10_1038_s41434_020_0153_9 crossref_primary_10_1089_gen_40_07_07 crossref_primary_10_3103_S0891416818010081 crossref_primary_10_1016_j_ymthe_2021_10_002 crossref_primary_10_1080_13543784_2017_1335709 crossref_primary_10_1126_science_aao0932 crossref_primary_10_1016_j_cels_2017_07_004 crossref_primary_10_1093_nar_gkaa177 crossref_primary_10_1093_nar_gkae651 crossref_primary_10_1126_science_aba8853 crossref_primary_10_1038_s41598_024_74716_7 crossref_primary_10_1097_MOT_0000000000000347 crossref_primary_10_1146_annurev_genom_091416_035537 crossref_primary_10_1038_s41580_019_0131_5 crossref_primary_10_1182_blood_2021012761 crossref_primary_10_3389_fendo_2020_576632 crossref_primary_10_1038_s41422_019_0267_z crossref_primary_10_1038_s41467_023_41961_9 crossref_primary_10_2174_1871529X23666230123140926 crossref_primary_10_1016_j_dnarep_2016_07_004 crossref_primary_10_3389_fncel_2019_00352 crossref_primary_10_1038_s41591_019_0401_y crossref_primary_10_1161_CIRCGEN_117_001946 crossref_primary_10_1016_j_transci_2021_103060 crossref_primary_10_1093_nar_gkad456 crossref_primary_10_33611_trs_2020_007 crossref_primary_10_1016_j_xgen_2024_100583 crossref_primary_10_1038_s41598_021_89546_0 crossref_primary_10_1182_blood_2019000949 crossref_primary_10_1038_s43586_021_00093_4 crossref_primary_10_1182_asheducation_2018_1_353 crossref_primary_10_1016_j_xgen_2025_100770 crossref_primary_10_1097_MOH_0000000000000581 crossref_primary_10_1042_CS20160718 crossref_primary_10_1038_nprot_2016_135 crossref_primary_10_1038_s41588_023_01434_7 crossref_primary_10_1007_s12033_023_00932_7 crossref_primary_10_25259_JHAS_6_2022 crossref_primary_10_1016_j_ajhg_2025_01_018 crossref_primary_10_1016_j_cll_2020_02_008 crossref_primary_10_1016_j_tig_2018_05_004 crossref_primary_10_1016_j_ajhg_2017_06_010 crossref_primary_10_1038_s41598_022_06774_8 crossref_primary_10_1371_journal_pone_0166928 crossref_primary_10_3389_fgeed_2020_617780 crossref_primary_10_1016_j_molcel_2016_06_037 crossref_primary_10_1177_2040620716653729 crossref_primary_10_1016_j_omtm_2016_12_009 crossref_primary_10_1038_528S10a crossref_primary_10_1016_j_omtn_2023_01_016 crossref_primary_10_1016_j_ymthe_2024_01_023 crossref_primary_10_1097_MOH_0000000000000333 crossref_primary_10_1016_j_medj_2020_12_011 crossref_primary_10_1080_23808993_2019_1688658 crossref_primary_10_1038_s41467_022_35508_7 crossref_primary_10_1093_genetics_iyae139 crossref_primary_10_1016_j_tibtech_2018_08_002 crossref_primary_10_1017_S0033583519000052 crossref_primary_10_3904_kjim_2016_198 crossref_primary_10_1038_nrc_2017_82 crossref_primary_10_1111_sji_12753 crossref_primary_10_3390_biotech10030014 crossref_primary_10_1242_dmm_049857 crossref_primary_10_1002_advs_202206584 crossref_primary_10_1177_87551225241268742 crossref_primary_10_1038_s41467_018_03081_7 crossref_primary_10_1186_s13059_019_1897_7 crossref_primary_10_1074_jbc_RA120_015534 crossref_primary_10_1016_j_semcdb_2018_07_009 crossref_primary_10_1051_jbio_2018015 crossref_primary_10_1038_s41375_021_01378_z crossref_primary_10_1016_j_stem_2023_10_007 crossref_primary_10_1016_j_str_2024_09_022 crossref_primary_10_3389_fgeed_2024_1481443 crossref_primary_10_7554_eLife_12677 crossref_primary_10_61186_ibj_27_5_219 crossref_primary_10_1016_j_exphem_2018_10_005 crossref_primary_10_1016_j_stem_2017_10_010 crossref_primary_10_1101_gr_216747_116 crossref_primary_10_1186_s13059_025_03474_0 crossref_primary_10_1007_s00438_017_1377_2 crossref_primary_10_1016_j_surg_2019_01_030 crossref_primary_10_1038_s41556_024_01435_6 crossref_primary_10_1016_j_stem_2017_09_006 crossref_primary_10_1080_03630269_2018_1515774 crossref_primary_10_1016_j_ajhg_2023_03_008 crossref_primary_10_1002_sctm_17_0066 crossref_primary_10_1016_j_coisb_2018_09_002 crossref_primary_10_1016_j_hoc_2017_06_006 crossref_primary_10_1002_prca_201500133 crossref_primary_10_1002_med_21549 crossref_primary_10_1016_j_cell_2018_03_016 crossref_primary_10_1097_HS9_0000000000000969 crossref_primary_10_1126_science_aau0629 crossref_primary_10_1007_s00439_016_1696_0 crossref_primary_10_1371_journal_pgen_1010680 crossref_primary_10_3389_fgene_2023_1273994 crossref_primary_10_1016_j_bcmd_2017_06_001 crossref_primary_10_1038_s41568_021_00371_z crossref_primary_10_1002_humu_23185 crossref_primary_10_1016_j_ymthe_2024_07_015 crossref_primary_10_4103_jpdtsm_jpdtsm_56_24 crossref_primary_10_1101_gr_255414_119 crossref_primary_10_1186_s13059_020_02046_8 crossref_primary_10_1038_s41591_019_0467_6 crossref_primary_10_1016_j_ymthe_2024_07_022 crossref_primary_10_1038_nrm_2016_79 crossref_primary_10_1007_s12272_018_1029_z crossref_primary_10_1038_nrg_2017_97 crossref_primary_10_1038_s41588_021_00861_8 crossref_primary_10_1002_sctm_17_0192 crossref_primary_10_1016_j_hoc_2017_06_010 crossref_primary_10_1038_nmeth_4264 crossref_primary_10_1038_s41598_018_22667_1 crossref_primary_10_1051_medsci_2024191 crossref_primary_10_1038_nprot_2017_016 crossref_primary_10_1182_blood_2019_01_895094 crossref_primary_10_1182_bloodadvances_2019032243 crossref_primary_10_1016_j_csbj_2020_08_031 crossref_primary_10_3390_genes13101727 crossref_primary_10_1038_mt_2016_10 crossref_primary_10_1093_nar_gkab1100 crossref_primary_10_3389_fcell_2021_699597 crossref_primary_10_3390_ncrna7040079 crossref_primary_10_3389_fped_2019_00443 crossref_primary_10_7554_eLife_91596 crossref_primary_10_1038_s41598_018_34601_6 crossref_primary_10_1038_s41588_021_00798_y crossref_primary_10_1073_pnas_1714640114 crossref_primary_10_1016_j_omtm_2018_12_004 crossref_primary_10_1038_s41417_023_00597_z crossref_primary_10_1038_s41586_020_2093_3 crossref_primary_10_1016_j_ymthe_2021_08_019 crossref_primary_10_1097_MS9_0000000000002146 crossref_primary_10_1073_pnas_1908155116 crossref_primary_10_12688_f1000research_7087_1 crossref_primary_10_1002_bies_202300210 crossref_primary_10_1007_s11427_021_2057_0 crossref_primary_10_1111_cas_13832 crossref_primary_10_1111_cts_12440 crossref_primary_10_1007_s40656_017_0162_1 crossref_primary_10_1146_annurev_cancerbio_030617_050455 crossref_primary_10_1371_journal_pone_0239468 crossref_primary_10_1016_j_disamonth_2024_101689 crossref_primary_10_1111_febs_13750 crossref_primary_10_1002_cti2_1001 crossref_primary_10_1038_s41467_017_00479_7 crossref_primary_10_1016_j_molcel_2023_11_021 crossref_primary_10_2217_pme_2016_0043 crossref_primary_10_1016_j_fsigen_2024_103163 crossref_primary_10_1038_s41576_020_00298_5 crossref_primary_10_7554_eLife_88187 crossref_primary_10_1042_ETLS20180147 crossref_primary_10_1016_j_ejphar_2019_04_042 crossref_primary_10_1038_s41598_020_66309_x crossref_primary_10_1172_JCI140189 crossref_primary_10_1016_j_jbc_2024_108077 crossref_primary_10_1038_s41467_024_51695_x crossref_primary_10_1016_j_ejphar_2022_174788 crossref_primary_10_1093_oncolo_oyae103 crossref_primary_10_18821_0208_0613_2018_36_1_3_8 crossref_primary_10_3389_frhem_2024_1468952 crossref_primary_10_1038_s41467_019_11955_7 crossref_primary_10_1016_j_bbrc_2020_04_145 crossref_primary_10_1242_dev_134809 crossref_primary_10_1074_jbc_RA120_013772 crossref_primary_10_1007_s12185_018_2411_9 crossref_primary_10_1016_j_jgg_2016_03_006 crossref_primary_10_1038_s41573_022_00476_6 crossref_primary_10_1098_rstb_2020_0517 crossref_primary_10_1016_j_bbcan_2020_188378 crossref_primary_10_3389_fphys_2022_848261 crossref_primary_10_1016_j_ymthe_2025_01_031 crossref_primary_10_1080_23294515_2020_1818876 crossref_primary_10_1007_s10565_017_9396_7 crossref_primary_10_1146_annurev_genet_120215_034902 crossref_primary_10_1016_j_wneu_2024_06_142 crossref_primary_10_1021_acscentsci_2c00998 crossref_primary_10_1007_s00439_023_02610_9 crossref_primary_10_1016_j_exphem_2024_104286 crossref_primary_10_1038_s41588_019_0453_4 crossref_primary_10_3389_fcell_2021_640060 crossref_primary_10_1016_j_prp_2024_155717 crossref_primary_10_1038_nrg_2017_59 crossref_primary_10_1089_crispr_2017_0016 crossref_primary_10_1093_synbio_ysaa024 crossref_primary_10_1089_hum_2023_138 crossref_primary_10_1146_annurev_bioeng_071516_044649 crossref_primary_10_1007_s12033_024_01155_0 crossref_primary_10_1016_j_heliyon_2024_e38020 crossref_primary_10_1002_cpmb_51 crossref_primary_10_1111_trf_15126 crossref_primary_10_1186_s13073_021_00857_3 crossref_primary_10_1016_j_omtm_2017_11_005 crossref_primary_10_3389_fped_2023_1249275 crossref_primary_10_3390_jcm8111959 crossref_primary_10_1038_nmeth_4038 crossref_primary_10_1158_2159_8290_CD_19_0471 crossref_primary_10_1515_mr_2022_0029 crossref_primary_10_1007_s00412_023_00796_5 crossref_primary_10_3390_biology14010026 crossref_primary_10_1371_journal_pone_0184281 crossref_primary_10_1016_j_cell_2024_01_042 crossref_primary_10_1016_j_stem_2024_10_014 crossref_primary_10_1016_j_cell_2018_11_029 crossref_primary_10_1186_s13045_024_01526_9 crossref_primary_10_1016_j_gde_2018_05_005 crossref_primary_10_1182_bloodadvances_2020003702 crossref_primary_10_1111_bjh_15038 crossref_primary_10_1146_annurev_genet_072920_032107 crossref_primary_10_1186_s13072_015_0050_4 crossref_primary_10_3390_ijms23095002 crossref_primary_10_1073_pnas_2218959120 crossref_primary_10_1038_nature23875 crossref_primary_10_1038_s41576_019_0128_0 crossref_primary_10_1371_journal_pcbi_1008789 crossref_primary_10_1038_s41586_024_07510_0 crossref_primary_10_1038_s41375_021_01369_0 crossref_primary_10_1038_s41587_020_0453_z crossref_primary_10_1182_bloodadvances_2019032318 crossref_primary_10_3390_thalassrep13010006 crossref_primary_10_1016_j_semcancer_2023_10_002 crossref_primary_10_1038_nprot_2018_005 crossref_primary_10_1016_j_bcmd_2020_102456 crossref_primary_10_3389_fphar_2024_1364135 crossref_primary_10_1007_s11033_021_06476_w crossref_primary_10_3390_cancers13071591 crossref_primary_10_2174_1566524022666220624111311 crossref_primary_10_1089_crispr_2018_29007_fyu crossref_primary_10_1101_cshperspect_a035386 crossref_primary_10_3390_biology11060862 crossref_primary_10_1182_bloodadvances_2021005709 crossref_primary_10_1101_sqb_2016_81_031070 crossref_primary_10_1038_s41587_020_0535_y crossref_primary_10_1111_bjh_15021 crossref_primary_10_1093_nar_gkaa809 crossref_primary_10_1111_bjh_14297 crossref_primary_10_1371_journal_pone_0198463 crossref_primary_10_1016_j_tibs_2018_03_004 crossref_primary_10_1016_j_omtn_2018_06_008 crossref_primary_10_1101_gad_339333_120 crossref_primary_10_1016_j_celrep_2019_08_017 crossref_primary_10_1016_j_xgen_2023_100318 crossref_primary_10_1093_nar_gkx675 crossref_primary_10_1128_MCB_00253_20 crossref_primary_10_1016_j_bcmd_2021_102626 crossref_primary_10_1038_nbt_3477 crossref_primary_10_1101_gad_310367_117 crossref_primary_10_1007_s10120_022_01307_8 crossref_primary_10_1002_jcp_26292 crossref_primary_10_1038_s41588_018_0094_z crossref_primary_10_2217_rme_2016_0012 crossref_primary_10_1016_j_omtn_2024_102205 crossref_primary_10_1126_science_abi8207 crossref_primary_10_3390_cells8020113 crossref_primary_10_3892_ol_2018_8638 crossref_primary_10_1371_journal_pone_0254815 crossref_primary_10_1016_j_coisb_2016_12_016 crossref_primary_10_1016_j_ccell_2018_01_012 crossref_primary_10_3390_ijms25010343 crossref_primary_10_1371_journal_pcbi_1005341 crossref_primary_10_1093_hmg_ddz172 crossref_primary_10_1093_bfgp_elz035 crossref_primary_10_1038_s41588_021_00843_w crossref_primary_10_1136_archdischild_2016_310459 crossref_primary_10_2139_ssrn_3188378 crossref_primary_10_1016_j_bcmd_2017_12_001 crossref_primary_10_7554_eLife_65421 crossref_primary_10_1016_j_jbiotec_2017_02_024 crossref_primary_10_1002_wsbm_1467 crossref_primary_10_1016_j_hoc_2022_12_002 crossref_primary_10_1038_s41467_022_31982_1 crossref_primary_10_1016_j_hoc_2022_12_001 crossref_primary_10_1016_j_jbiosc_2022_03_005 crossref_primary_10_1016_j_jbiotec_2020_05_008 crossref_primary_10_1136_jmedgenet_2015_103409 crossref_primary_10_1016_S2352_3026_23_00096_0 crossref_primary_10_1128_MCB_00180_20 crossref_primary_10_1016_j_blre_2018_06_001 crossref_primary_10_1007_s00439_016_1713_3 crossref_primary_10_1093_hmg_ddab372 crossref_primary_10_1093_nar_gkae029 crossref_primary_10_3389_fgene_2019_01078 crossref_primary_10_1021_acs_jafc_2c01754 crossref_primary_10_1093_bjd_ljad321 crossref_primary_10_12688_f1000research_11581_1 crossref_primary_10_1016_j_bcp_2023_115555 crossref_primary_10_1016_j_molcel_2020_06_012 crossref_primary_10_1371_journal_pgen_1009835 crossref_primary_10_1172_JCI153514 crossref_primary_10_1002_wsbm_1374 crossref_primary_10_1016_j_celrep_2024_113693 crossref_primary_10_1038_s41576_019_0209_0 crossref_primary_10_1016_j_ab_2016_05_014 crossref_primary_10_3389_fphys_2024_1474569 crossref_primary_10_1016_S0140_6736_22_00536_0 crossref_primary_10_1056_NEJMoa2031054 crossref_primary_10_1111_nyas_13001 crossref_primary_10_1111_nyas_13002 crossref_primary_10_1016_j_gde_2018_06_001 crossref_primary_10_1016_j_omtn_2017_04_009 crossref_primary_10_1089_hum_2016_037 crossref_primary_10_34172_apb_2023_074 crossref_primary_10_7554_eLife_42549 crossref_primary_10_1126_sciadv_abf5733 crossref_primary_10_1126_science_aag2445 crossref_primary_10_1182_blood_2016_08_736249 crossref_primary_10_1186_s12864_020_6497_0 crossref_primary_10_1371_journal_pgen_1007644 crossref_primary_10_1016_j_bios_2020_112068 crossref_primary_10_1038_s41588_021_00842_x crossref_primary_10_1016_j_jgg_2020_10_007 crossref_primary_10_1038_s41576_021_00424_x crossref_primary_10_1002_pbc_27643 crossref_primary_10_1038_s41584_021_00637_8 crossref_primary_10_1093_nar_gkad198 crossref_primary_10_1038_ng_3793 crossref_primary_10_1016_j_cell_2022_03_020 crossref_primary_10_1038_mtna_2016_52 crossref_primary_10_1038_s41591_020_0790_y crossref_primary_10_3389_fimmu_2023_1111777 crossref_primary_10_1007_s13238_016_0368_0 crossref_primary_10_1182_bloodadvances_2020003753 crossref_primary_10_15252_msb_20188371 crossref_primary_10_1038_s41576_019_0173_8 crossref_primary_10_1038_s43586_021_00056_9 crossref_primary_10_1038_s41467_020_20460_1 crossref_primary_10_1093_hmg_ddac204 crossref_primary_10_1002_bies_201600028 crossref_primary_10_1016_j_tig_2022_07_003 crossref_primary_10_15252_embj_2023114760 crossref_primary_10_1139_gen_2020_0104 crossref_primary_10_3389_fgeed_2020_571239 crossref_primary_10_1038_s41587_024_02320_1 crossref_primary_10_1186_s12955_019_1207_9 crossref_primary_10_1038_nbt_3678 crossref_primary_10_1124_pr_119_017681 crossref_primary_10_1007_s10529_018_2555_y crossref_primary_10_1038_s41596_025_01154_8 crossref_primary_10_1016_j_celrep_2020_108093 crossref_primary_10_1111_bcp_15343 crossref_primary_10_1182_blood_2015_09_618587 crossref_primary_10_1016_j_addr_2020_07_004 crossref_primary_10_3390_cells11111843 crossref_primary_10_1007_s12035_024_04143_2 crossref_primary_10_1016_j_molcel_2017_03_007 crossref_primary_10_1101_gr_197152_115 crossref_primary_10_1111_nyas_13024 crossref_primary_10_1002_smll_202409353 crossref_primary_10_3390_medicina58101496 crossref_primary_10_1093_jscdis_yoae008 crossref_primary_10_1038_s41467_020_20714_y crossref_primary_10_1016_j_jgg_2024_01_001 crossref_primary_10_1056_NEJMoa2029392 crossref_primary_10_1056_NEJMra1800729 crossref_primary_10_1111_cge_13593 crossref_primary_10_1016_j_ymthe_2018_10_008 crossref_primary_10_3389_fgeed_2023_1104666 crossref_primary_10_1038_s41467_018_07310_x crossref_primary_10_1016_j_ymthe_2017_02_003 crossref_primary_10_1016_j_omtm_2021_09_010 crossref_primary_10_1038_s41580_023_00697_6 crossref_primary_10_1371_journal_pone_0307049 crossref_primary_10_1016_j_celrep_2016_03_064 crossref_primary_10_1681_ASN_2016020146 crossref_primary_10_1016_j_tig_2017_07_001 crossref_primary_10_1038_s41573_024_01086_0 crossref_primary_10_1016_j_exphem_2017_07_006 crossref_primary_10_1016_j_tig_2016_06_004 crossref_primary_10_1002_smtd_201900075 crossref_primary_10_1016_j_mayocp_2018_08_001 crossref_primary_10_1126_sciadv_abb7107 crossref_primary_10_1038_nbt_3450 crossref_primary_10_1042_BSR20170976 crossref_primary_10_1007_s00277_023_05457_2 crossref_primary_10_1038_nm_4170 crossref_primary_10_1038_s41588_022_01257_y crossref_primary_10_1161_ATVBAHA_116_304790 crossref_primary_10_1016_j_tig_2018_09_004 crossref_primary_10_1182_blood_2020005301 crossref_primary_10_1007_s12015_024_10715_5 crossref_primary_10_1016_j_gde_2016_10_007 crossref_primary_10_1007_s40291_019_00386_1 crossref_primary_10_1016_j_gpb_2016_01_002 crossref_primary_10_1093_nar_gky550 crossref_primary_10_1002_bies_201600032 crossref_primary_10_3390_cells13100800 crossref_primary_10_1177_1535370220945305 crossref_primary_10_1080_14728222_2022_2066519 crossref_primary_10_1182_blood_2023022190 crossref_primary_10_1016_j_ymthe_2017_03_024 crossref_primary_10_3390_biology13020126 crossref_primary_10_1038_s41586_021_03639_4 crossref_primary_10_1007_s40291_018_0370_8 crossref_primary_10_3389_fgeed_2022_1085111 |
Cites_doi | 10.1038/nature12787 10.1016/j.cell.2013.08.021 10.1126/science.1259037 10.1186/s13072-015-0009-5 10.1126/science.1245813 10.1182/blood-2011-06-362038 10.1073/pnas.1317023110 10.1371/journal.pgen.1002139 10.1038/nature08243 10.1126/science.1211053 10.1038/nbt.2136 10.1126/science.1242088 10.1016/j.cell.2015.01.006 10.1172/JCI61623 10.1126/science.1246981 10.1093/bioinformatics/btr064 10.1038/nature11232 10.1016/j.devcel.2012.09.003 10.1126/science.1222794 10.1038/ng0910-734 10.1038/nmeth.2681 10.1093/nar/gku936 10.1016/0092-8674(81)90413-X 10.1182/blood-2015-04-638528 10.1038/nbt.3026 10.1016/j.cell.2014.02.019 10.1182/blood-2012-06-292078 10.1093/nar/gkt997 10.1038/mt.2008.6 10.1038/nature14299 10.1016/j.stem.2014.10.004 10.1038/nmeth.3047 10.1038/nbt.2647 10.1038/nature07730 10.1038/nbt.2137 10.1074/jbc.M114.564625 10.1126/science.1165409 10.1126/science.1231143 10.1038/nature09906 10.1126/science.1232033 10.1242/dev.072850 10.1016/j.cell.2015.02.040 10.1016/j.molcel.2011.12.021 10.1038/nature13695 10.1038/nature07829 10.1038/nature05295 10.1038/nbt.2800 10.1038/nature14592 10.1172/JCI81163 10.1016/j.cell.2015.02.038 10.1038/nature13166 10.1126/science.1247005 10.1126/science.1246426 10.1073/pnas.1016071107 10.1371/journal.pone.0059890 10.1016/j.cell.2013.03.035 10.1016/S1097-2765(00)80433-5 10.1084/jem.20121846 10.1038/ni925 10.1182/blood.V90.11.4602 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 COPYRIGHT 2015 Nature Publishing Group Copyright Nature Publishing Group Nov 12, 2015 |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: COPYRIGHT 2015 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 12, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature15521 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection (ProQuest) Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 197 |
ExternalDocumentID | PMC4644101 3869163551 A434515562 26375006 10_1038_nature15521 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K08 DK093705 – fundername: PHS HHS grantid: R01 A1084905 – fundername: NHLBI NIH HHS grantid: R01 HL119099 – fundername: NHGRI NIH HHS grantid: K99-HG008171 – fundername: NIDDK NIH HHS grantid: F30DK103359-01A1 – fundername: Howard Hughes Medical Institute – fundername: NHLBI NIH HHS grantid: P01 HL032262 – fundername: NIDDK NIH HHS grantid: K08DK093705 – fundername: NHGRI NIH HHS grantid: R01HG005085 – fundername: NIDDK NIH HHS grantid: R01 DK097768 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM ABAWZ |
ID | FETCH-LOGICAL-c641t-2a4c8a8df5defcc9c264d309a4f0817ab492a86d63ebd18af8dd754b09a9d7793 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:36:05 EDT 2025 Mon Jul 21 09:22:31 EDT 2025 Fri Jul 25 08:55:39 EDT 2025 Tue Jun 17 21:33:39 EDT 2025 Thu Jun 12 23:33:15 EDT 2025 Tue Jun 10 15:33:06 EDT 2025 Tue Jun 10 20:51:28 EDT 2025 Fri Jun 27 04:39:06 EDT 2025 Mon Jul 21 05:58:53 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 03:21:38 EDT 2025 Fri Feb 21 02:38:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7577 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-2a4c8a8df5defcc9c264d309a4f0817ab492a86d63ebd18af8dd754b09a9d7793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. These authors jointly supervised this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4644101 |
PMID | 26375006 |
PQID | 1733897881 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4644101 proquest_miscellaneous_1733189628 proquest_journals_1733897881 gale_infotracmisc_A434515562 gale_infotracgeneralonefile_A434515562 gale_infotraccpiq_434515562 gale_infotracacademiconefile_A434515562 gale_incontextgauss_ISR_A434515562 pubmed_primary_26375006 crossref_primary_10_1038_nature15521 crossref_citationtrail_10_1038_nature15521 springer_journals_10_1038_nature15521 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-12 |
PublicationDateYYYYMMDD | 2015-11-12 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Whyte (CR10) 2013; 153 Banerji, Rusconi, Schaffner (CR1) 1981; 27 Mali (CR23) 2013; 339 Shalem (CR25) 2014; 343 Gröschel (CR29) 2014; 157 Brinkman, Chen, Amendola, van Steensel (CR54) 2014; 42 Andersson (CR4) 2014; 507 Ran (CR38) 2013; 154 Hsu (CR39) 2013; 31 Paul (CR11) 2011; 7 Findlay, Boyle, Hause, Klein, Shendure (CR47) 2014; 513 Sexton, Cavalli (CR19) 2015; 160 Koike-Yusa, Li, Tan, Velasco-Herrera, Yusa (CR26) 2014; 32 Patwardhan (CR18) 2012; 30 Visel (CR2) 2009; 457 Weber, Bartsch, Stocking, Fehse (CR59) 2008; 16 Zhou (CR27) 2014; 509 Esvelt (CR46) 2013; 10 Maurano (CR12) 2012; 337 Sanjana, Shalem, Zhang (CR51) 2014; 11 Liu (CR40) 2003; 4 Porcu (CR43) 1997; 90 Kurita (CR34) 2013; 8 Vierstra (CR14) 2014; 346 Wang, Wei, Sabatini, Lander (CR24) 2014; 343 Hardison (CR13) 2010; 42 Xu (CR33) 2011; 334 Hardison, Blobel (CR35) 2013; 342 Ernst (CR8) 2011; 473 Mandal (CR37) 2014; 15 John (CR41) 2012; 139 Yu (CR42) 2012; 209 Ran (CR44) 2015; 520 Giarratana (CR53) 2011; 118 Doench (CR60) 2014; 32 Bauer (CR28) 2013; 342 Dogan (CR56) 2015; 8 Creyghton (CR6) 2010; 107 Johnson (CR21) 2012; 122 Sankaran (CR32) 2009; 460 Villar (CR15) 2015; 160 Bauer, Kamran, Orkin (CR48) 2012; 120 Cong (CR22) 2013; 339 Canver (CR36) 2014; 289 Kowalczyk (CR55) 2012; 45 Basak (CR49) 2015; 125 Melnikov (CR17) 2012; 30 Bender, Bulger, Close, Groudine (CR20) 2000; 5 Chen (CR52) 2015; 160 Thurman (CR3) 2012; 488 Mansour (CR30) 2014; 346 Pennacchio (CR16) 2006; 444 Sankaran (CR31) 2008; 322 Parker (CR9) 2013; 110 Xu (CR7) 2012; 23 Kleinstiver (CR45) 2015; 523 Heintzman (CR5) 2009; 459 Mathelier (CR58) 2014; 42 Funnell (CR50) 2015; 126 Grant, Bailey, Noble (CR57) 2011; 27 T Sexton (BFnature15521_CR19) 2015; 160 J Xu (BFnature15521_CR33) 2011; 334 K Weber (BFnature15521_CR59) 2008; 16 MS Kowalczyk (BFnature15521_CR55) 2012; 45 S Chen (BFnature15521_CR52) 2015; 160 A Melnikov (BFnature15521_CR17) 2012; 30 A Mathelier (BFnature15521_CR58) 2014; 42 L Cong (BFnature15521_CR22) 2013; 339 JG Doench (BFnature15521_CR60) 2014; 32 VG Sankaran (BFnature15521_CR32) 2009; 460 Y Zhou (BFnature15521_CR27) 2014; 509 M Bender (BFnature15521_CR20) 2000; 5 ND Heintzman (BFnature15521_CR5) 2009; 459 R Andersson (BFnature15521_CR4) 2014; 507 KD Johnson (BFnature15521_CR21) 2012; 122 SCJ Parker (BFnature15521_CR9) 2013; 110 Y Yu (BFnature15521_CR42) 2012; 209 MR Mansour (BFnature15521_CR30) 2014; 346 A Basak (BFnature15521_CR49) 2015; 125 RC Hardison (BFnature15521_CR13) 2010; 42 RP Patwardhan (BFnature15521_CR18) 2012; 30 RC Hardison (BFnature15521_CR35) 2013; 342 MT Maurano (BFnature15521_CR12) 2012; 337 DE Bauer (BFnature15521_CR28) 2013; 342 A Visel (BFnature15521_CR2) 2009; 457 D Villar (BFnature15521_CR15) 2015; 160 J Ernst (BFnature15521_CR8) 2011; 473 DE Bauer (BFnature15521_CR48) 2012; 120 LA Pennacchio (BFnature15521_CR16) 2006; 444 S Gröschel (BFnature15521_CR29) 2014; 157 PD Hsu (BFnature15521_CR39) 2013; 31 CE Grant (BFnature15521_CR57) 2011; 27 A John (BFnature15521_CR41) 2012; 139 RE Thurman (BFnature15521_CR3) 2012; 488 N Dogan (BFnature15521_CR56) 2015; 8 P Mali (BFnature15521_CR23) 2013; 339 WA Whyte (BFnature15521_CR10) 2013; 153 GM Findlay (BFnature15521_CR47) 2014; 513 H Koike-Yusa (BFnature15521_CR26) 2014; 32 PW Funnell (BFnature15521_CR50) 2015; 126 J Banerji (BFnature15521_CR1) 1981; 27 EK Brinkman (BFnature15521_CR54) 2014; 42 J Vierstra (BFnature15521_CR14) 2014; 346 NE Sanjana (BFnature15521_CR51) 2014; 11 BP Kleinstiver (BFnature15521_CR45) 2015; 523 T Wang (BFnature15521_CR24) 2014; 343 R Kurita (BFnature15521_CR34) 2013; 8 P Liu (BFnature15521_CR40) 2003; 4 MP Creyghton (BFnature15521_CR6) 2010; 107 FA Ran (BFnature15521_CR38) 2013; 154 O Shalem (BFnature15521_CR25) 2014; 343 MC Canver (BFnature15521_CR36) 2014; 289 KM Esvelt (BFnature15521_CR46) 2013; 10 J Xu (BFnature15521_CR7) 2012; 23 BS Porcu (BFnature15521_CR43) 1997; 90 DS Paul (BFnature15521_CR11) 2011; 7 M Giarratana (BFnature15521_CR53) 2011; 118 PK Mandal (BFnature15521_CR37) 2014; 15 VG Sankaran (BFnature15521_CR31) 2008; 322 FA Ran (BFnature15521_CR44) 2015; 520 |
References_xml | – volume: 507 start-page: 455 year: 2014 end-page: 461 ident: CR4 article-title: An atlas of active enhancers across human cell types and tissues publication-title: Nature doi: 10.1038/nature12787 – volume: 154 start-page: 1380 year: 2013 end-page: 1389 ident: CR38 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 346 start-page: 1373 year: 2014 end-page: 1377 ident: CR30 article-title: An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element publication-title: Science doi: 10.1126/science.1259037 – volume: 90 start-page: 4602 year: 1997 end-page: 4609 ident: CR43 article-title: The human β globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice publication-title: Blood – volume: 8 start-page: 16 year: 2015 ident: CR56 article-title: Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility publication-title: Epigenetics Chromatin doi: 10.1186/s13072-015-0009-5 – volume: 342 start-page: 206 year: 2013 end-page: 207 ident: CR35 article-title: GWAS to therapy by genome edits? publication-title: Science doi: 10.1126/science.1245813 – volume: 118 start-page: 5071 year: 2011 end-page: 5079 ident: CR53 article-title: Proof of principle for transfusion of generated red blood cells publication-title: Blood doi: 10.1182/blood-2011-06-362038 – volume: 110 start-page: 17921 year: 2013 end-page: 17926 ident: CR9 article-title: Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1317023110 – volume: 7 start-page: e1002139 year: 2011 ident: CR11 article-title: Maps of open chromatin guide the functional follow-up of genome-wide association signals: Application to hematological traits publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002139 – volume: 460 start-page: 1093 year: 2009 end-page: 1097 ident: CR32 article-title: Developmental and species-divergent globin switching are driven by BCL11A publication-title: Nature doi: 10.1038/nature08243 – volume: 334 start-page: 993 year: 2011 end-page: 996 ident: CR33 article-title: Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing publication-title: Science doi: 10.1126/science.1211053 – volume: 30 start-page: 265 year: 2012 end-page: 270 ident: CR18 article-title: Massively parallel functional dissection of mammalian enhancers publication-title: Nature Biotechnol. doi: 10.1038/nbt.2136 – volume: 342 start-page: 253 year: 2013 end-page: 257 ident: CR28 article-title: An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level publication-title: Science doi: 10.1126/science.1242088 – volume: 160 start-page: 554 year: 2015 end-page: 566 ident: CR15 article-title: Enhancer evolution across 20 mammalian species publication-title: Cell doi: 10.1016/j.cell.2015.01.006 – volume: 122 start-page: 3692 year: 2012 end-page: 3704 ident: CR21 article-title: Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity publication-title: J. Clin. Invest. doi: 10.1172/JCI61623 – volume: 343 start-page: 80 year: 2014 end-page: 84 ident: CR24 article-title: Genetic screens in human cells using the CRISPR-Cas9 system publication-title: Science doi: 10.1126/science.1246981 – volume: 27 start-page: 1017 year: 2011 end-page: 1018 ident: CR57 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr064 – volume: 488 start-page: 75 year: 2012 end-page: 82 ident: CR3 article-title: The accessible chromatin landscape of the human genome publication-title: Nature doi: 10.1038/nature11232 – volume: 23 start-page: 796 year: 2012 end-page: 811 ident: CR7 article-title: Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.09.003 – volume: 337 start-page: 1190 year: 2012 end-page: 1195 ident: CR12 article-title: Systematic localization of common disease-associated variation in regulatory DNA publication-title: Science doi: 10.1126/science.1222794 – volume: 42 start-page: 734 year: 2010 end-page: 735 ident: CR13 article-title: Variable evolutionary signatures at the heart of enhancers publication-title: Nature Genet. doi: 10.1038/ng0910-734 – volume: 10 start-page: 1116 year: 2013 end-page: 1121 ident: CR46 article-title: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing publication-title: Nature Methods doi: 10.1038/nmeth.2681 – volume: 42 start-page: e168 year: 2014 ident: CR54 article-title: Easy quantitative assessment of genome editing by sequence trace decomposition publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku936 – volume: 27 start-page: 299 year: 1981 end-page: 308 ident: CR1 article-title: Expression of a β-globin gene is enhanced by remote SV40 DNA sequences publication-title: Cell doi: 10.1016/0092-8674(81)90413-X – volume: 126 start-page: 89 year: 2015 end-page: 93 ident: CR50 article-title: 2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment publication-title: Blood doi: 10.1182/blood-2015-04-638528 – volume: 32 start-page: 1262 year: 2014 end-page: 1267 ident: CR60 article-title: Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation publication-title: Nature Biotechnol. doi: 10.1038/nbt.3026 – volume: 157 start-page: 369 year: 2014 end-page: 381 ident: CR29 article-title: A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in Leukemia publication-title: Cell doi: 10.1016/j.cell.2014.02.019 – volume: 120 start-page: 2945 year: 2012 end-page: 2953 ident: CR48 article-title: Reawakening fetal hemoglobin: Prospects for new therapies for the beta-globin disorders publication-title: Blood doi: 10.1182/blood-2012-06-292078 – volume: 42 start-page: 142 year: 2014 end-page: 147 ident: CR58 article-title: JASPAR 2014: An extensively expanded and updated open-access database of transcription factor binding profiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt997 – volume: 16 start-page: 698 year: 2008 end-page: 706 ident: CR59 article-title: A multicolor panel of novel lentiviral ‘gene ontology’ (LeGO) vectors for functional gene analysis publication-title: Mol. Ther. doi: 10.1038/mt.2008.6 – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: CR44 article-title: genome editing using Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 15 start-page: 643 year: 2014 end-page: 652 ident: CR37 article-title: Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.10.004 – volume: 11 start-page: 783 year: 2014 end-page: 784 ident: CR51 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nature Methods doi: 10.1038/nmeth.3047 – volume: 31 start-page: 827 year: 2013 end-page: 832 ident: CR39 article-title: DNA targeting specificity of RNA-guided Cas9 nucleases publication-title: Nature Biotechnol. doi: 10.1038/nbt.2647 – volume: 457 start-page: 854 year: 2009 end-page: 858 ident: CR2 article-title: ChIP-seq accurately predicts tissue-specific activity of enhancers publication-title: Nature doi: 10.1038/nature07730 – volume: 30 start-page: 271 year: 2012 end-page: 277 ident: CR17 article-title: Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay publication-title: Nature Biotechnol. doi: 10.1038/nbt.2137 – volume: 289 start-page: 21312 year: 2014 end-page: 21324 ident: CR36 article-title: Characterization of genomic deletion efficiency mediated by clusted regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.564625 – volume: 322 start-page: 1839 year: 2008 end-page: 1842 ident: CR31 article-title: Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A publication-title: Science doi: 10.1126/science.1165409 – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: CR22 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 473 start-page: 43 year: 2011 end-page: 49 ident: CR8 article-title: Mapping and analysis of chromatin state dynamics in nine human cell types publication-title: Nature doi: 10.1038/nature09906 – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: CR23 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 139 start-page: 1831 year: 2012 end-page: 1841 ident: CR41 article-title: Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development publication-title: Development doi: 10.1242/dev.072850 – volume: 160 start-page: 1049 year: 2015 end-page: 1059 ident: CR19 article-title: The role of chromosome domains in shaping the functional genome publication-title: Cell doi: 10.1016/j.cell.2015.02.040 – volume: 45 start-page: 447 year: 2012 end-page: 458 ident: CR55 article-title: Intragenic enhancers act as alternative promoters publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.12.021 – volume: 513 start-page: 120 year: 2014 end-page: 123 ident: CR47 article-title: Saturation editing of genomic regions by multiplex homology-directed repair publication-title: Nature doi: 10.1038/nature13695 – volume: 459 start-page: 108 year: 2009 end-page: 112 ident: CR5 article-title: Histone modifications at human enhancers reflect global cell-type-specific gene expression publication-title: Nature doi: 10.1038/nature07829 – volume: 444 start-page: 499 year: 2006 end-page: 502 ident: CR16 article-title: enhancer analysis of human conserved non-coding sequences publication-title: Nature doi: 10.1038/nature05295 – volume: 32 start-page: 267 year: 2014 end-page: 273 ident: CR26 article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library publication-title: Nature Biotechnol. doi: 10.1038/nbt.2800 – volume: 523 start-page: 481 year: 2015 end-page: 485 ident: CR45 article-title: Engineered CRISPR-Cas9 nucleases with altered and improved PAM specificities publication-title: Nature doi: 10.1038/nature14592 – volume: 125 start-page: 2363 year: 2015 end-page: 2368 ident: CR49 article-title: Persistence of fetal hemoglobin and altered neurodevelopment due to BCL11A deletions publication-title: JCI doi: 10.1172/JCI81163 – volume: 160 start-page: 1246 year: 2015 end-page: 1260 ident: CR52 article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis publication-title: Cell doi: 10.1016/j.cell.2015.02.038 – volume: 509 start-page: 487 year: 2014 end-page: 491 ident: CR27 article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells publication-title: Nature doi: 10.1038/nature13166 – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: CR25 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science doi: 10.1126/science.1247005 – volume: 346 start-page: 1007 year: 2014 end-page: 1012 ident: CR14 article-title: Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution publication-title: Science doi: 10.1126/science.1246426 – volume: 107 start-page: 21931 year: 2010 end-page: 21936 ident: CR6 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016071107 – volume: 8 start-page: e59890 year: 2013 ident: CR34 article-title: Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0059890 – volume: 153 start-page: 307 year: 2013 end-page: 319 ident: CR10 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 5 start-page: 387 year: 2000 end-page: 393 ident: CR20 article-title: β-globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80433-5 – volume: 209 start-page: 2467 year: 2012 end-page: 2483 ident: CR42 article-title: Bcl11a is essential for lymphoid development and negatively regulates p53 publication-title: J. Exp. Med. doi: 10.1084/jem.20121846 – volume: 4 start-page: 525 year: 2003 end-page: 532 ident: CR40 article-title: Bcl11a is essential for normal lymphoid development publication-title: Nature Immunol. doi: 10.1038/ni925 – volume: 343 start-page: 80 year: 2014 ident: BFnature15521_CR24 publication-title: Science doi: 10.1126/science.1246981 – volume: 154 start-page: 1380 year: 2013 ident: BFnature15521_CR38 publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 32 start-page: 1262 year: 2014 ident: BFnature15521_CR60 publication-title: Nature Biotechnol. doi: 10.1038/nbt.3026 – volume: 209 start-page: 2467 year: 2012 ident: BFnature15521_CR42 publication-title: J. Exp. Med. doi: 10.1084/jem.20121846 – volume: 120 start-page: 2945 year: 2012 ident: BFnature15521_CR48 publication-title: Blood doi: 10.1182/blood-2012-06-292078 – volume: 139 start-page: 1831 year: 2012 ident: BFnature15521_CR41 publication-title: Development doi: 10.1242/dev.072850 – volume: 473 start-page: 43 year: 2011 ident: BFnature15521_CR8 publication-title: Nature doi: 10.1038/nature09906 – volume: 90 start-page: 4602 year: 1997 ident: BFnature15521_CR43 publication-title: Blood doi: 10.1182/blood.V90.11.4602 – volume: 337 start-page: 1190 year: 2012 ident: BFnature15521_CR12 publication-title: Science doi: 10.1126/science.1222794 – volume: 457 start-page: 854 year: 2009 ident: BFnature15521_CR2 publication-title: Nature doi: 10.1038/nature07730 – volume: 509 start-page: 487 year: 2014 ident: BFnature15521_CR27 publication-title: Nature doi: 10.1038/nature13166 – volume: 513 start-page: 120 year: 2014 ident: BFnature15521_CR47 publication-title: Nature doi: 10.1038/nature13695 – volume: 342 start-page: 206 year: 2013 ident: BFnature15521_CR35 publication-title: Science doi: 10.1126/science.1245813 – volume: 488 start-page: 75 year: 2012 ident: BFnature15521_CR3 publication-title: Nature doi: 10.1038/nature11232 – volume: 32 start-page: 267 year: 2014 ident: BFnature15521_CR26 publication-title: Nature Biotechnol. doi: 10.1038/nbt.2800 – volume: 342 start-page: 253 year: 2013 ident: BFnature15521_CR28 publication-title: Science doi: 10.1126/science.1242088 – volume: 339 start-page: 823 year: 2013 ident: BFnature15521_CR23 publication-title: Science doi: 10.1126/science.1232033 – volume: 42 start-page: 142 year: 2014 ident: BFnature15521_CR58 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt997 – volume: 444 start-page: 499 year: 2006 ident: BFnature15521_CR16 publication-title: Nature doi: 10.1038/nature05295 – volume: 507 start-page: 455 year: 2014 ident: BFnature15521_CR4 publication-title: Nature doi: 10.1038/nature12787 – volume: 42 start-page: 734 year: 2010 ident: BFnature15521_CR13 publication-title: Nature Genet. doi: 10.1038/ng0910-734 – volume: 118 start-page: 5071 year: 2011 ident: BFnature15521_CR53 publication-title: Blood doi: 10.1182/blood-2011-06-362038 – volume: 30 start-page: 265 year: 2012 ident: BFnature15521_CR18 publication-title: Nature Biotechnol. doi: 10.1038/nbt.2136 – volume: 27 start-page: 1017 year: 2011 ident: BFnature15521_CR57 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr064 – volume: 459 start-page: 108 year: 2009 ident: BFnature15521_CR5 publication-title: Nature doi: 10.1038/nature07829 – volume: 346 start-page: 1007 year: 2014 ident: BFnature15521_CR14 publication-title: Science doi: 10.1126/science.1246426 – volume: 334 start-page: 993 year: 2011 ident: BFnature15521_CR33 publication-title: Science doi: 10.1126/science.1211053 – volume: 107 start-page: 21931 year: 2010 ident: BFnature15521_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016071107 – volume: 11 start-page: 783 year: 2014 ident: BFnature15521_CR51 publication-title: Nature Methods doi: 10.1038/nmeth.3047 – volume: 153 start-page: 307 year: 2013 ident: BFnature15521_CR10 publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 4 start-page: 525 year: 2003 ident: BFnature15521_CR40 publication-title: Nature Immunol. doi: 10.1038/ni925 – volume: 523 start-page: 481 year: 2015 ident: BFnature15521_CR45 publication-title: Nature doi: 10.1038/nature14592 – volume: 460 start-page: 1093 year: 2009 ident: BFnature15521_CR32 publication-title: Nature doi: 10.1038/nature08243 – volume: 346 start-page: 1373 year: 2014 ident: BFnature15521_CR30 publication-title: Science doi: 10.1126/science.1259037 – volume: 126 start-page: 89 year: 2015 ident: BFnature15521_CR50 publication-title: Blood doi: 10.1182/blood-2015-04-638528 – volume: 160 start-page: 1246 year: 2015 ident: BFnature15521_CR52 publication-title: Cell doi: 10.1016/j.cell.2015.02.038 – volume: 8 start-page: 16 year: 2015 ident: BFnature15521_CR56 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-015-0009-5 – volume: 289 start-page: 21312 year: 2014 ident: BFnature15521_CR36 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.564625 – volume: 15 start-page: 643 year: 2014 ident: BFnature15521_CR37 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.10.004 – volume: 23 start-page: 796 year: 2012 ident: BFnature15521_CR7 publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.09.003 – volume: 125 start-page: 2363 year: 2015 ident: BFnature15521_CR49 publication-title: JCI doi: 10.1172/JCI81163 – volume: 110 start-page: 17921 year: 2013 ident: BFnature15521_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1317023110 – volume: 42 start-page: e168 year: 2014 ident: BFnature15521_CR54 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku936 – volume: 16 start-page: 698 year: 2008 ident: BFnature15521_CR59 publication-title: Mol. Ther. doi: 10.1038/mt.2008.6 – volume: 31 start-page: 827 year: 2013 ident: BFnature15521_CR39 publication-title: Nature Biotechnol. doi: 10.1038/nbt.2647 – volume: 45 start-page: 447 year: 2012 ident: BFnature15521_CR55 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.12.021 – volume: 5 start-page: 387 year: 2000 ident: BFnature15521_CR20 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80433-5 – volume: 10 start-page: 1116 year: 2013 ident: BFnature15521_CR46 publication-title: Nature Methods doi: 10.1038/nmeth.2681 – volume: 122 start-page: 3692 year: 2012 ident: BFnature15521_CR21 publication-title: J. Clin. Invest. doi: 10.1172/JCI61623 – volume: 27 start-page: 299 year: 1981 ident: BFnature15521_CR1 publication-title: Cell doi: 10.1016/0092-8674(81)90413-X – volume: 7 start-page: e1002139 year: 2011 ident: BFnature15521_CR11 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002139 – volume: 160 start-page: 554 year: 2015 ident: BFnature15521_CR15 publication-title: Cell doi: 10.1016/j.cell.2015.01.006 – volume: 160 start-page: 1049 year: 2015 ident: BFnature15521_CR19 publication-title: Cell doi: 10.1016/j.cell.2015.02.040 – volume: 157 start-page: 369 year: 2014 ident: BFnature15521_CR29 publication-title: Cell doi: 10.1016/j.cell.2014.02.019 – volume: 8 start-page: e59890 year: 2013 ident: BFnature15521_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone.0059890 – volume: 339 start-page: 819 year: 2013 ident: BFnature15521_CR22 publication-title: Science doi: 10.1126/science.1231143 – volume: 30 start-page: 271 year: 2012 ident: BFnature15521_CR17 publication-title: Nature Biotechnol. doi: 10.1038/nbt.2137 – volume: 322 start-page: 1839 year: 2008 ident: BFnature15521_CR31 publication-title: Science doi: 10.1126/science.1165409 – volume: 343 start-page: 84 year: 2014 ident: BFnature15521_CR25 publication-title: Science doi: 10.1126/science.1247005 – volume: 520 start-page: 186 year: 2015 ident: BFnature15521_CR44 publication-title: Nature doi: 10.1038/nature14299 |
SSID | ssj0005174 |
Score | 2.6503654 |
Snippet | Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only... Enhancers, critical determinants of cellular identity, are commonly identified by correlative chromatin marks and gain-of-function potential, though only... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 192 |
SubjectTerms | 13/100 13/109 13/31 38/22 38/70 38/77 38/88 45/23 49/47 631/1647/1511 631/208/200 631/337/572/2102 64/60 692/308/2056 Animals Base Sequence Carrier Proteins - genetics Cells, Cultured Clustered Regularly Interspaced Short Palindromic Repeats - genetics CRISPR-Associated Proteins - metabolism CRISPR-Cas Systems - genetics DNA methylation DNA-Binding Proteins Enhancer Elements, Genetic - genetics Erythroblasts - metabolism Fetal Hemoglobin - genetics Gene expression Genetic diversity Genetic Engineering Genome - genetics Genomes Genomics Humanities and Social Sciences Humans Methods Mice Molecular Sequence Data multidisciplinary Mutagenesis Mutagenesis - genetics Nuclear Proteins - genetics Organ Specificity Physiological aspects Repressor Proteins Reproducibility of Results RNA, Guide, CRISPR-Cas Systems - genetics Science Species Specificity Studies |
Title | BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis |
URI | https://link.springer.com/article/10.1038/nature15521 https://www.ncbi.nlm.nih.gov/pubmed/26375006 https://www.proquest.com/docview/1733897881 https://www.proquest.com/docview/1733189628 https://pubmed.ncbi.nlm.nih.gov/PMC4644101 |
Volume | 527 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8N0KS9TIN9BVjlTexTiohjxx9PU6noGNrQxIbUt8hxEqg00kLah_33OyduaTq0l77cpXHsu_Mv8d3vAA4KlmjLjQxFrpOQZ7EOM3QMfOcpShEjhqZNb8DvZ-Lkgp-OkpH_4Fb7tMpFTGwCdT6x7hv5IZX4MqUd-fnn6U3ouka501XfQmMDtijuNC6lSw2_3KV4rLEw-_q8iKnDljbT8Y_Rzo60HpdXNqb1pMm1k9NmQxo-gcceSZJ-u_Tb8KCoduBhk9Fp6x3Y9l5bkw-eWvrjUzg9GnyjtE-K6sqt9i1pjuOb0gaS_SEDU-uwqSVBHErGFcGHn5PaPYRx6dHkej7D-IPRcVw_g4vh8a_BSei7KYRWcDoLY8OtMiovk7wordUWoVDOIm14ibBAmozr2CiRC1ZkOVWmVHkuE56hhs4luvFz2KwmVfESiCnRbU1kCxRyaXXGY4lQSkqWMF4yGsCnxYym1lONu44Xv9PmyJupdGX6AzhYKk9bho371d64pUkdZ0XlkmIuzbyu068_z9M-Z9x1qhFxAO-9UjnBG1rjawxw2I7mqqO519G00_FNuiJ915Fetut039_sdxTRN21XvDCk1MeGOr2z5ABeL8XuSpfvVhWTeatDlRaxCuBFa3fLyYkFQ5gXiQBkxyKXCo4xvCupxlcNczh36DfC-75d2O7KsP6d893_D38PHiF8TFxlJo33YXN2Oy9eIUSbZT3YkCOJv2pAe41P9mDr6Pjsx_lfCvs8hw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviI2vsAEGbXxJ0RLbieMHhEqhtFu3B9ikvQXHcbZKW9otrdD-Kf5G7vLRNWXibc93bdzz-XeX-u53hGxZHigjtHTDVAWuSJhyEzgY8M5js5BBDu2XswH3D8L-kdg9Do5XyJ-mFwbLKhtMLIE6HRv8j3zHl_AypZD8_PPkwsWpUXi72ozQqNxiz179hle24tPgK-zvNmO9b4fdvltPFXBNKPypy7QwkY7SLEhtZowykBKk3FNaZBAepU6EYjoK05DbJPUjnUVpKgORgIZKpUTyJYD8O4JDJMfO9N7365KSJdbnuh_Q49FORdOJfGd-KwIux4GFQLhcpLl0U1sGwN5D8qDOXGmncrU1smLzdXK3rCA1xTpZq1GioO9rKusPj8jul-7Q9zvU5qfoXZe0vP4vWylockW7ulBu2bsCeS8d5RSMPaMF_giN5dj0fDYFvAM0HhWPydGt2PkJWc3HuX1GqM4AJrRnLAiFNCoRTELqJiUPuMi475CPjUVjU1Ob44SNs7i8YudRvGB-h2zNlScVo8fNam9wa2LkyMixCOdEz4oiHvz8EXcEFzgZJ2QOeVcrZWN4oNF1TwMsG2m1WpobLU0zGV3EC9K3LelJtU83fc1mSxGwwLTFjSPFNRYV8fXJccjruRg_ifV1uR3PKh0_UiGLHPK08ru5cVjIIa30QofIlkfOFZChvC3JR6clU7nAbNuD5243vruwrH9t_vz_y39F7vUP94fxcHCwt0HuQ-oaYFeozzbJ6vRyZl9AejhNXpZnkpJftw0CfwEzaHeP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviI2vbAMM2viSoja2E9sPCJWOat3GhIBJewuO42yVRtotrdD-Nf467vJRmjLxtue7NM75vlzf_Y6QbcdDbYWRfpTq0BcJ034ChgFnHpdFDHLooJwN-Pko2jsW-yfhyQr53fTCYFll4xNLR52OLf5H3gkkHKY0gp93sros4svu4MPkwscJUnjT2ozTqFTkwF39guNb8X64C3u9w9jg0_f-nl9PGPBtJIKpz4ywyqg0C1OXWastpAcp72ojMgiV0iRCM6OiNOIuSQNlMpWmMhQJcOhUSgRiAvd_S3Kp0MZUf6G8ZAkBuu4N7HLVqSA7EfssaEXD5ZiwEBSXCzaXbm3LYDi4T-7VWSztVWq3RlZcvk5ul9Wktlgna7XHKOibGtb67QOy_7F_GAQ96vIz1LRLWpYClG0VNLmifVNov-xjgRyYjnIKwp7RAj_CYGk2_Tmbgu8DzzwqHpLjG5HzI7Kaj3P3hFCTgcswXeuAKKTViWAS0jgpechFxgOPvGskGtsa5hynbZzH5XU7V_GC-D2yPWeeVOge17O9xK2JES8jR807NbOiiIffvsY9wQVOyYmYR17XTNkYXmhN3d8Ay0aIrRbnZovTTkYX8QL1VYt6Wu3TdT-z1WIEv2Db5EaR4tovFfFfK_LIizkZn8Rau9yNZxVPoHTElEceV3o3Fw6LOKSY3cgjsqWRcwZEK29T8tFZiVouMPPuwnt3Gt1dWNa_Mt_4__Kfkztg_vHh8Ohgk9yFLDbEBtGAbZHV6eXMPYVMcZo8K02Skh837QP-AEoKe5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCL11A+enhancer+dissection+by+Cas9-mediated+in+situ+saturating+mutagenesis&rft.jtitle=Nature+%28London%29&rft.au=Canver%2C+Matthew+C&rft.au=Smith%2C+Elenoe+C&rft.au=Sher%2C+Falak&rft.au=Pinello%2C+Luca&rft.date=2015-11-12&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.spage=192&rft_id=info:doi/10.1038%2Fnature15521&rft.externalDocID=A434515562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |