New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images

In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 15; no. 9; pp. 23004 - 23019
Main Authors Yang, Lei, Ren, Yanyun, Hu, Huosheng, Tian, Bo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.09.2015
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity.
AbstractList In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity.In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity.
In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity.
Author Tian, Bo
Yang, Lei
Ren, Yanyun
Hu, Huosheng
AuthorAffiliation 1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China; E-Mails: yangyoungya@sina.com (L.Y.); ryypine@163.com (Y.R.)
2 School of Computer Science and Electrical Engineering, University of Essex, Colchester CO4 3SQ, UK; E-Mail: hhu@essex.ac.uk
3 School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China
AuthorAffiliation_xml – name: 3 School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China
– name: 1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China; E-Mails: yangyoungya@sina.com (L.Y.); ryypine@163.com (Y.R.)
– name: 2 School of Computer Science and Electrical Engineering, University of Essex, Colchester CO4 3SQ, UK; E-Mail: hhu@essex.ac.uk
Author_xml – sequence: 1
  givenname: Lei
  surname: Yang
  fullname: Yang, Lei
– sequence: 2
  givenname: Yanyun
  surname: Ren
  fullname: Ren, Yanyun
– sequence: 3
  givenname: Huosheng
  orcidid: 0000-0001-5797-1412
  surname: Hu
  fullname: Hu, Huosheng
– sequence: 4
  givenname: Bo
  surname: Tian
  fullname: Tian, Bo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26378540$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gwg9AlrggpIDHdhznggRbSlcqcGB7thx7spslGwfbC_Tf42VLaSsOXPwxfvx6xvMeFwejH7EongJ9xXlDX0eoaMM4peJBcQSCiVIxRg9urQ-L4xjXlDLOuXpUHDLJa1UJelR0n_AHOTMx5WEYyCkmtKn3I_mIaeUdeWciOpL3XyaT4-UCN5MPZiAzPyb8mcgiGPu1H5fEd-QcjSPtFbmMu8ApTmlF5huzxPi4eNiZIeKT6_mkuDx7v5idlxefP8xnby9KKwWkEpSrVAdNC85YQKTSKA5Wdl0rWU1bZAo6S1sDQGvpalBSVlXTuspIB7zjJ8V8r-u8Wesp9BsTrrQ3vf4d8GGpTUi9HVAbW1MlDa1Yw0XdiaxiGyOYzK8AoMtab_Za07bdoLM4plz4HdG7J2O_0kv_XQsJVKg6C7y4Fgj-2xZj0ps-WhwGM6LfRg11rXJPGqH-AwXeiKpSLKPP76Frvw1j_tVMMWgEsAoy9ex28jdZ_-l8Bl7uARt8jAG7GwSo3tlK_7VVhuk92PZp54dd4f3wryu_AIUbzFI
CitedBy_id crossref_primary_10_1007_s10044_024_01224_9
crossref_primary_10_1049_iet_cvi_2018_5324
crossref_primary_10_1007_s12652_017_0592_3
crossref_primary_10_1016_j_asoc_2020_106713
crossref_primary_10_1007_s11276_017_1557_3
crossref_primary_10_3390_s17092096
crossref_primary_10_3390_s24165365
crossref_primary_10_1016_j_dcan_2015_12_001
crossref_primary_10_1109_JSEN_2023_3276891
crossref_primary_10_3390_app13126916
crossref_primary_10_3390_diagnostics12123060
crossref_primary_10_3390_app7100993
crossref_primary_10_1007_s10489_020_01751_y
crossref_primary_10_1007_s11042_019_7720_3
crossref_primary_10_3390_s17081776
crossref_primary_10_1016_j_procs_2017_01_191
crossref_primary_10_32604_csse_2024_052931
crossref_primary_10_3390_s16070996
crossref_primary_10_2174_2210327909666190611143215
crossref_primary_10_1007_s11042_020_09181_1
crossref_primary_10_1007_s11042_022_12113_w
crossref_primary_10_3390_s22239067
crossref_primary_10_1016_j_apacoust_2022_108725
crossref_primary_10_3390_s19173768
crossref_primary_10_1007_s40846_018_0404_z
crossref_primary_10_3390_en11112866
crossref_primary_10_1109_JBHI_2018_2808281
crossref_primary_10_1016_j_eswa_2018_06_019
crossref_primary_10_1089_g4h_2019_0130
crossref_primary_10_3390_s22041557
crossref_primary_10_1016_j_engappai_2018_08_014
crossref_primary_10_1109_ACCESS_2019_2902718
crossref_primary_10_1007_s12652_020_02880_5
crossref_primary_10_3390_sym14020293
crossref_primary_10_3390_s20236966
crossref_primary_10_14326_abe_12_214
crossref_primary_10_1109_ACCESS_2017_2771389
crossref_primary_10_1177_0142331219881578
crossref_primary_10_1007_s41347_024_00417_7
crossref_primary_10_1109_ACCESS_2018_2795239
crossref_primary_10_3390_e23030328
Cites_doi 10.1016/j.neucom.2011.09.037
10.1016/j.cmpb.2014.02.001
10.3390/s141019806
10.1109/TNSRE.2007.916282
10.1007/s00779-012-0552-z
10.1007/s11554-012-0246-9
10.1016/j.imavis.2012.11.003
10.1109/JETCAS.2013.2256832
10.3390/s140202756
10.1109/JBHI.2013.2274479
10.1109/JBHI.2014.2312180
10.1016/j.patcog.2011.04.017
10.1007/978-3-319-10602-1_9
10.3390/s140610691
10.1109/TBME.2009.2030171
10.1109/TITB.2010.2051956
10.1109/ICBBE.2008.669
10.1007/s11760-014-0645-4
10.1109/JBHI.2014.2319372
ContentType Journal Article
Copyright Copyright MDPI AG 2015
2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
Copyright_xml – notice: Copyright MDPI AG 2015
– notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7SP
7TB
7U5
8FD
FR3
L7M
5PM
DOA
DOI 10.3390/s150923004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList MEDLINE - Academic
Solid State and Superconductivity Abstracts

CrossRef
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 23019
ExternalDocumentID oai_doaj_org_article_ac7086a0529347f49bdc9a426be211ed
PMC4610487
3835574521
26378540
10_3390_s150923004
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7SP
7TB
7U5
8FD
FR3
L7M
5PM
PUEGO
ID FETCH-LOGICAL-c641t-18d58f19b1dac1ee06a831c6ffb6270be281fc0ba11076d71866559bd5a6d13f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:24 EDT 2025
Thu Aug 21 18:25:53 EDT 2025
Thu Jul 10 23:45:25 EDT 2025
Fri Jul 11 04:07:52 EDT 2025
Fri Jul 25 08:15:29 EDT 2025
Mon Jul 21 05:59:15 EDT 2025
Tue Jul 01 01:36:16 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords depth images
Single-Gauss-Model
Dense spatio-temporal-context
fall detection
Language English
License https://creativecommons.org/licenses/by/4.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-18d58f19b1dac1ee06a831c6ffb6270be281fc0ba11076d71866559bd5a6d13f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5797-1412
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s150923004
PMID 26378540
PQID 1721941251
PQPubID 2032333
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_ac7086a0529347f49bdc9a426be211ed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4610487
proquest_miscellaneous_1778002948
proquest_miscellaneous_1713945582
proquest_journals_1721941251
pubmed_primary_26378540
crossref_primary_10_3390_s150923004
crossref_citationtrail_10_3390_s150923004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-11
PublicationDateYYYYMMDD 2015-09-11
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-11
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2015
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Planinc (ref_15) 2013; 17
Rougier (ref_20) 2013; 31
ref_14
Feng (ref_5) 2014; 8
Rimminen (ref_11) 2010; 14
Stone (ref_23) 2015; 19
Zhang (ref_21) 2014; Volume 8693
Yang (ref_22) 2014; 114
Mastorakis (ref_19) 2012; 9
Wu (ref_7) 2008; 16
Yu (ref_13) 2013; 17
ref_1
Nashwa (ref_4) 2013; 6
Ozdemir (ref_9) 2014; 14
ref_2
Liao (ref_6) 2012; 45
Mubashir (ref_10) 2013; 100
ref_8
Delahoz (ref_3) 2014; 14
Zigel (ref_12) 2009; 56
Gasparrini (ref_17) 2014; 14
Ozcan (ref_16) 2013; 3
Bian (ref_18) 2015; 19
25340452 - Sensors (Basel). 2014;14(10):19806-42
24771601 - IEEE J Biomed Health Inform. 2015 Mar;19(2):430-9
24521943 - Sensors (Basel). 2014 Feb 11;14(2):2756-75
20525533 - IEEE Trans Inf Technol Biomed. 2010 Nov;14(6):1475-6
19709955 - IEEE Trans Biomed Eng. 2009 Dec;56(12):2858-67
24240718 - IEEE J Biomed Health Inform. 2013 Nov;17(6):1002-14
24598316 - Comput Methods Programs Biomed. 2014 Apr;114(2):172-82
18403286 - IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):178-83
17946368 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:6388-91
24945676 - Sensors (Basel). 2014;14(6):10691-708
24733032 - IEEE J Biomed Health Inform. 2015 Jan;19(1):290-301
References_xml – volume: 100
  start-page: 144
  year: 2013
  ident: ref_10
  article-title: A survey on fall detection: Principles and approaches
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.09.037
– volume: 6
  start-page: 1230
  year: 2013
  ident: ref_4
  article-title: Fall detection and prevention for the elderly: A review of trends and challenges
  publication-title: Int. J. Smart Sens. Intell. Syst.
– volume: 114
  start-page: 172
  year: 2014
  ident: ref_22
  article-title: Fall detection for multiple pedestrians using depth image processing technique
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.02.001
– volume: 14
  start-page: 19806
  year: 2014
  ident: ref_3
  article-title: Survey on fall detection and fall prevention using wearable and external sensors
  publication-title: Sensors
  doi: 10.3390/s141019806
– volume: 16
  start-page: 178
  year: 2008
  ident: ref_7
  article-title: Portable preimpact fall detector with inertial sensors
  publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng.
  doi: 10.1109/TNSRE.2007.916282
– volume: 17
  start-page: 1063
  year: 2013
  ident: ref_15
  article-title: Introducing the use of depth data for fall detection
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-012-0552-z
– ident: ref_2
– volume: 9
  start-page: 635
  year: 2012
  ident: ref_19
  article-title: Fall detection system using Kinect’s infrared sensor
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-012-0246-9
– volume: 31
  start-page: 246
  year: 2013
  ident: ref_20
  article-title: 3D head tracking for fall detection using a single calibrated camera
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2012.11.003
– volume: 3
  start-page: 125
  year: 2013
  ident: ref_16
  article-title: Automatic Fall Detection and Activity Classification by a Wearable Embedded Smart Camera
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2013.2256832
– volume: 14
  start-page: 2756
  year: 2014
  ident: ref_17
  article-title: A depth-based fall detection system using a Kinect sensor
  publication-title: Sensors
  doi: 10.3390/s140202756
– volume: 17
  start-page: 1002
  year: 2013
  ident: ref_13
  article-title: An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2013.2274479
– volume: 19
  start-page: 290
  year: 2015
  ident: ref_23
  article-title: Fall detection in homes of older adults using the Microsoft Kinect
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2312180
– volume: 45
  start-page: 24
  year: 2012
  ident: ref_6
  article-title: Slip and fall event detection using Bayesian Belief Network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.04.017
– volume: Volume 8693
  start-page: 127
  year: 2014
  ident: ref_21
  article-title: Fast visual tracking via dense spatio-temporal context learning
  publication-title: Computer Vision–ECCV 2014
  doi: 10.1007/978-3-319-10602-1_9
– volume: 14
  start-page: 10691
  year: 2014
  ident: ref_9
  article-title: Detecting falls with wearable sensors using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s140610691
– volume: 56
  start-page: 2858
  year: 2009
  ident: ref_12
  article-title: A method for automatic fall detection of elderly people using floor vibrations and sound-Proof of concept on human mimicking doll falls
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2030171
– ident: ref_14
– ident: ref_1
– volume: 14
  start-page: 1475
  year: 2010
  ident: ref_11
  article-title: Detection of falls among the elderly by a floor sensor using the electric near field
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2051956
– ident: ref_8
  doi: 10.1109/ICBBE.2008.669
– volume: 8
  start-page: 1129
  year: 2014
  ident: ref_5
  article-title: Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-014-0645-4
– volume: 19
  start-page: 430
  year: 2015
  ident: ref_18
  article-title: Fall detection based on body part tracking using a depth camera
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2319372
– reference: 18403286 - IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):178-83
– reference: 24598316 - Comput Methods Programs Biomed. 2014 Apr;114(2):172-82
– reference: 24521943 - Sensors (Basel). 2014 Feb 11;14(2):2756-75
– reference: 17946368 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:6388-91
– reference: 24240718 - IEEE J Biomed Health Inform. 2013 Nov;17(6):1002-14
– reference: 25340452 - Sensors (Basel). 2014;14(10):19806-42
– reference: 24733032 - IEEE J Biomed Health Inform. 2015 Jan;19(1):290-301
– reference: 24945676 - Sensors (Basel). 2014;14(6):10691-708
– reference: 24771601 - IEEE J Biomed Health Inform. 2015 Mar;19(2):430-9
– reference: 19709955 - IEEE Trans Biomed Eng. 2009 Dec;56(12):2858-67
– reference: 20525533 - IEEE Trans Inf Technol Biomed. 2010 Nov;14(6):1475-6
SSID ssj0023338
Score 2.4031718
Snippet In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 23004
SubjectTerms Accidental Falls
Adult
Algorithms
Computer engineering
Dense spatio-temporal-context
depth images
fall detection
Falls
Head - physiology
Home environment
Human subjects
Humans
Image detection
Imaging, Three-Dimensional - methods
Mathematical analysis
Methods
Older people
Planes
Sensors
Single-Gauss-Model
Three dimensional
Tracking
Two dimensional
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BgozgwiFqvP6Ic6TAakGCC63UW2Q7toq0ZCs2lei_59nJLruogguXlbIZRcl4PPNeMnpD9DpKGy2SXtmEmSilkaoEz9Kl88iYyiteh9xt8UUvzuSnc3W-M-or9YSN8sCj446tr4G6bfogJWQdZeM631jUFRfAXUKXsi9q3oZMTVRLgHmNYqQCpP54DdgDJFNN49g25Ser9N8ELf_skNwpOfN7dHfCiuzteI-HdCv09-nOjoLgA4pIUmxu1wN-lkv2Pgy5tapnn_NkaHaCItUxHH_NndPl6ahEtWRZlernwFCrfHpbzlaRLbDezF2z3EaAa10OF-zjdySc9UM6m384fbcop9EJpdeSDyU3nTKRN4531vMQKm2N4F7H6PSsruA7w6OvnE30T3d1lr1T8K2yuuMiikd00K_68IRYtFo7oBonrAR2QlIyuoJd12gTTOMKerPxaOsnXfE03mLZgl8k77e_vV_Qq63t5aimcaPVSVqYrUVSwM5_IC7aKS7af8VFQUebZW2nbbluE99tZMJ0Bb3cnsaGSl9JbB9WV8kGoFgqZWZ_s6kT0G6kKejxGCnbu51pURvg4ILqvRjae5z9M_23iyzsnbTvQSCf_o_nf0a3ge1Uam3h_IgOhh9X4Tnw0-Be5K3yC_-hF4c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyju0ICO4cIgaJ37lVFFgtSDBhVbaW-QnRVqSpUkl-PedcbK7XVT1EinJKHL8mPk-e_QNIe8iN9GA08vrUFY511zkwLNkbh14TOEEUyFlW3yX8zP-dSEW04ZbP6VVrn1ictS-c7hHfoRUpeYYjo9Xf3KsGoWnq1MJjbvkHkqXYUqXWmwJVwX8a5QkrYDaH_UAfgDPFFNRtnUQSlr9NwHM__MkrwWe2T55OCFG-mEc4kfkTmgfkwfXdASfkAiuis5MP8BluaSfwpASrFr6LdWHpicQqjyF-x8pfzo_HfWoljRpU_0dKEQsh3vmtIt0DqNO7T-akgngW6vhnH75DW6nf0rOZp9PP87zqYBC7iRnQ860Fzqy2jJvHAuhkEZXzMkYrSxVYUOpWXSFNUgCpVdJ_E7U1gsjPati9YzstV0bXhAajZQWsI2tDAcEBa5JywLsfC110LXNyPt1jzZuUhfHIhfLBlgG9n6z7f2MvN3YrkZNjRutTnBgNhaog50edBc_m2lZNcYp4GQGjysrriKHtrvaAOqAf2Ms-Iwcroe1mRZn32ynUkbebF7DssKzEtOG7hJtABpzIXR5m41CuF1znZHn40zZtLaUldKAhjOidubQzu_svml_nSd5b1TABxr58vamH5D7gN0Epq4wdkj2hovL8Arw0WBfp0VwBVu0Dug
  priority: 102
  providerName: ProQuest
Title New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images
URI https://www.ncbi.nlm.nih.gov/pubmed/26378540
https://www.proquest.com/docview/1721941251
https://www.proquest.com/docview/1713945582
https://www.proquest.com/docview/1778002948
https://pubmed.ncbi.nlm.nih.gov/PMC4610487
https://doaj.org/article/ac7086a0529347f49bdc9a426be211ed
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7QUeEL_JGJURvPAQiBPHdh4QorBSkDYhWKW-RbZjM6QsHW0mbf89ZycN61QhXiIluUTJ2Xf3XXz5DuCVY8opdHpxYdMsZpLlMeZZPNYGPWZucipsqLY45tMZ-zrP5zuw7t_ZK3C1NbXz_aRmy_rN5e-r92jw73zGiSn72xWCGsQpgRZ0DyOS8AZ6xIbVhDTLQkdr_1NXjAEx6WhKb1y7EZgCf_820HmzdvJaMJrcg7s9iiQfumG_Dzu2eQB3rnELPgSH7otM1KrFTV2TT7YNRVcNOQo9o8kYw1dFcP9HqKmOTzqOqpoEvqrLlmAUM_47Olk4MsWZQPQVCQUGeK_z9pR8OUNXtHoEs8nhycdp3DdViA1ntI2prHLpaKFppQy1NuFKZtRw5zRPRaJtKqkziVY-MeSVCIR4eaGrXPGKZi57DLvNorFPgTjFuUa8ozPFEFWhu5I8Qbmq4NLKQkfweq3R0vSM477xRV1i5uG1X_7VfgQvB9nzjmdjq9TYD8wg4bmxw4HF8mfZm1qpjMA8TfklzIwJx_DZTaEQieC7UWqrCA7Ww1qu51vpM-GCebQXwYvhNJqaXz9RjV1ceBmEyyzPZfovGeEheMFkBE-6mTI8bcozIREhRyA25tDG62yeaX6dBspvz4qPqeX-f2npGdxGWJf7qhZKD2C3XV7Y5widWj2CW2IucCsnn0ewNz48_vZ9FD5DjILF_AHpXRhb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGcJFDACDhyixonjOAeEKGW1Sx8XttLegu3YFGlJliYV9E_xGxk7yW4XVb31EinJKHLseXwTT74BeGOZtBKdXpibOAmZYGmIeRYPlUaPmeqUZsZXWxzx8TH7MktnG_B3-BfGlVUOPtE76rLW7hv5jktVcubC8YfFr9B1jXK7q0MLjU4t9s35b0zZmveTPVzft3E8-jz9NA77rgKh5oy2IRVlKizNFS2lpsZEXIqEam6t4nEWKRMLanWkpMuMeJl5Rrg0V2UqeUkTm-Bzb8BNDLyRs6hstkrwEsz3OgrUJMmjnQbBFuKnqG8CNwQ93xvgMkD7f13mhUA3ugd3e4RKPnYqdR82TPUA7lzgLXwIFl0jGcmmxcN8TvZM6wu6KnLo-1GTXQyNJcHzr75eO5x2_Fdz4rmw_rQEI6R23-hJbckYtYyoc-KLF_BZi_aETH6im2sewfG1TO1j2KzqyjwBYiXnCrGUSiRDxIauUPAI5cqcCyNyFcC7YUYL3bOZu6Ya8wKzGjf7xWr2A3i9lF10HB6XSu26hVlKON5tf6E-_V70ZlxInWEOKN32aMIyy3DsOpeIcvDdKDVlANvDsha9M2iKleoG8Gp5G83Y7c3IytRnTgahOEtTEV8lkzl4nzMRwFanKcvRxjzJBKLvALI1HVp7nfU71Y8TTyfuGPcxbX169dBfwq3x9PCgOJgc7T-D24gbU1c2Q-k2bLanZ-Y5YrNWvfAGQeDbdVvgPylaS80
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYyAA4do4_gR54AQZVntUqiQaKW9BduxKdKSLE0q6F_j1zF2kt0uqnrrJVKSUeTY8_gmnnyD0EvHlFPg9OLcpjRmkvEY8iwRawMekxtOMhuqLfbF9JB9nPP5Fvo7_AvjyyoHnxgcdVkb_4185FOVnPlwPHJ9WcSX8eTt8lfsO0j5ndahnUanInv29Dekb82b2RjW-lWaTj4cvJ_GfYeB2AhG2pjIkktHck1KZYi1iVCSEiOc0yLNEm1TSZxJtPJZkiizwA7Hc11yJUpCHYXnXkFXM8qJt7Fsvk72KOR-HR0qpXkyagB4AZZK-oZwQwAMfQLOA7f_12ieCXqTW-hmj1bxu069bqMtW91BN85wGN5FDtwknqimhcNigce2DcVdFf4celPjXQiTJYbzr6F2Oz7ouLAWOPBi_WkxREvjv9fj2uEpaBzWpzgUMsCzlu0Rnv0El9fcQ4eXMrX30XZVV_Yhwk4JoQFXaaoYoDdwi1IkIFfmQlqZ6wi9Hma0MD2zuW-wsSggw_GzX6xnP0IvVrLLjs_jXKldvzArCc_BHS7Ux9-L3qQLZTLIB5XfKqUscwzGbnIFiAfejRBbRmhnWNaidwxNsVbjCD1f3QaT9vs0qrL1iZcBWM44l-lFMpmH-jmTEXrQacpqtKmgmQQkHqFsQ4c2XmfzTvXjKFCLe_Z9SGEfXTz0Z-ga2F7xaba_9xhdBwjJfQUNITtouz0-sU8AprX6abAHjL5dtgH-A45xUAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Fast+Fall+Detection+Method+Based+on+Spatio-Temporal+Context+Tracking+of+Head+by+Using+Depth+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Lei&rft.au=Ren%2C+Yanyun&rft.au=Hu%2C+Huosheng&rft.au=Tian%2C+Bo&rft.date=2015-09-11&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=15&rft.issue=9&rft.spage=23004&rft.epage=23019&rft_id=info:doi/10.3390%2Fs150923004&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s150923004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon