New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images
In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 15; no. 9; pp. 23004 - 23019 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.09.2015
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. |
---|---|
AbstractList | In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity.In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. |
Author | Tian, Bo Yang, Lei Ren, Yanyun Hu, Huosheng |
AuthorAffiliation | 1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China; E-Mails: yangyoungya@sina.com (L.Y.); ryypine@163.com (Y.R.) 2 School of Computer Science and Electrical Engineering, University of Essex, Colchester CO4 3SQ, UK; E-Mail: hhu@essex.ac.uk 3 School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China |
AuthorAffiliation_xml | – name: 3 School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China – name: 1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China; E-Mails: yangyoungya@sina.com (L.Y.); ryypine@163.com (Y.R.) – name: 2 School of Computer Science and Electrical Engineering, University of Essex, Colchester CO4 3SQ, UK; E-Mail: hhu@essex.ac.uk |
Author_xml | – sequence: 1 givenname: Lei surname: Yang fullname: Yang, Lei – sequence: 2 givenname: Yanyun surname: Ren fullname: Ren, Yanyun – sequence: 3 givenname: Huosheng orcidid: 0000-0001-5797-1412 surname: Hu fullname: Hu, Huosheng – sequence: 4 givenname: Bo surname: Tian fullname: Tian, Bo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26378540$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNURD_gwg9AlrggpIDHdhznggRbSlcqcGB7thx7spslGwfbC_Tf42VLaSsOXPwxfvx6xvMeFwejH7EongJ9xXlDX0eoaMM4peJBcQSCiVIxRg9urQ-L4xjXlDLOuXpUHDLJa1UJelR0n_AHOTMx5WEYyCkmtKn3I_mIaeUdeWciOpL3XyaT4-UCN5MPZiAzPyb8mcgiGPu1H5fEd-QcjSPtFbmMu8ApTmlF5huzxPi4eNiZIeKT6_mkuDx7v5idlxefP8xnby9KKwWkEpSrVAdNC85YQKTSKA5Wdl0rWU1bZAo6S1sDQGvpalBSVlXTuspIB7zjJ8V8r-u8Wesp9BsTrrQ3vf4d8GGpTUi9HVAbW1MlDa1Yw0XdiaxiGyOYzK8AoMtab_Za07bdoLM4plz4HdG7J2O_0kv_XQsJVKg6C7y4Fgj-2xZj0ps-WhwGM6LfRg11rXJPGqH-AwXeiKpSLKPP76Frvw1j_tVMMWgEsAoy9ex28jdZ_-l8Bl7uARt8jAG7GwSo3tlK_7VVhuk92PZp54dd4f3wryu_AIUbzFI |
CitedBy_id | crossref_primary_10_1007_s10044_024_01224_9 crossref_primary_10_1049_iet_cvi_2018_5324 crossref_primary_10_1007_s12652_017_0592_3 crossref_primary_10_1016_j_asoc_2020_106713 crossref_primary_10_1007_s11276_017_1557_3 crossref_primary_10_3390_s17092096 crossref_primary_10_3390_s24165365 crossref_primary_10_1016_j_dcan_2015_12_001 crossref_primary_10_1109_JSEN_2023_3276891 crossref_primary_10_3390_app13126916 crossref_primary_10_3390_diagnostics12123060 crossref_primary_10_3390_app7100993 crossref_primary_10_1007_s10489_020_01751_y crossref_primary_10_1007_s11042_019_7720_3 crossref_primary_10_3390_s17081776 crossref_primary_10_1016_j_procs_2017_01_191 crossref_primary_10_32604_csse_2024_052931 crossref_primary_10_3390_s16070996 crossref_primary_10_2174_2210327909666190611143215 crossref_primary_10_1007_s11042_020_09181_1 crossref_primary_10_1007_s11042_022_12113_w crossref_primary_10_3390_s22239067 crossref_primary_10_1016_j_apacoust_2022_108725 crossref_primary_10_3390_s19173768 crossref_primary_10_1007_s40846_018_0404_z crossref_primary_10_3390_en11112866 crossref_primary_10_1109_JBHI_2018_2808281 crossref_primary_10_1016_j_eswa_2018_06_019 crossref_primary_10_1089_g4h_2019_0130 crossref_primary_10_3390_s22041557 crossref_primary_10_1016_j_engappai_2018_08_014 crossref_primary_10_1109_ACCESS_2019_2902718 crossref_primary_10_1007_s12652_020_02880_5 crossref_primary_10_3390_sym14020293 crossref_primary_10_3390_s20236966 crossref_primary_10_14326_abe_12_214 crossref_primary_10_1109_ACCESS_2017_2771389 crossref_primary_10_1177_0142331219881578 crossref_primary_10_1007_s41347_024_00417_7 crossref_primary_10_1109_ACCESS_2018_2795239 crossref_primary_10_3390_e23030328 |
Cites_doi | 10.1016/j.neucom.2011.09.037 10.1016/j.cmpb.2014.02.001 10.3390/s141019806 10.1109/TNSRE.2007.916282 10.1007/s00779-012-0552-z 10.1007/s11554-012-0246-9 10.1016/j.imavis.2012.11.003 10.1109/JETCAS.2013.2256832 10.3390/s140202756 10.1109/JBHI.2013.2274479 10.1109/JBHI.2014.2312180 10.1016/j.patcog.2011.04.017 10.1007/978-3-319-10602-1_9 10.3390/s140610691 10.1109/TBME.2009.2030171 10.1109/TITB.2010.2051956 10.1109/ICBBE.2008.669 10.1007/s11760-014-0645-4 10.1109/JBHI.2014.2319372 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2015 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
Copyright_xml | – notice: Copyright MDPI AG 2015 – notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7SP 7TB 7U5 8FD FR3 L7M 5PM DOA |
DOI | 10.3390/s150923004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | MEDLINE - Academic Solid State and Superconductivity Abstracts CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
EndPage | 23019 |
ExternalDocumentID | oai_doaj_org_article_ac7086a0529347f49bdc9a426be211ed PMC4610487 3835574521 26378540 10_3390_s150923004 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 7SP 7TB 7U5 8FD FR3 L7M 5PM PUEGO |
ID | FETCH-LOGICAL-c641t-18d58f19b1dac1ee06a831c6ffb6270be281fc0ba11076d71866559bd5a6d13f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Thu Aug 21 18:25:53 EDT 2025 Thu Jul 10 23:45:25 EDT 2025 Fri Jul 11 04:07:52 EDT 2025 Fri Jul 25 08:15:29 EDT 2025 Mon Jul 21 05:59:15 EDT 2025 Tue Jul 01 01:36:16 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | depth images Single-Gauss-Model Dense spatio-temporal-context fall detection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-18d58f19b1dac1ee06a831c6ffb6270be281fc0ba11076d71866559bd5a6d13f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5797-1412 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s150923004 |
PMID | 26378540 |
PQID | 1721941251 |
PQPubID | 2032333 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac7086a0529347f49bdc9a426be211ed pubmedcentral_primary_oai_pubmedcentral_nih_gov_4610487 proquest_miscellaneous_1778002948 proquest_miscellaneous_1713945582 proquest_journals_1721941251 pubmed_primary_26378540 crossref_primary_10_3390_s150923004 crossref_citationtrail_10_3390_s150923004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-11 |
PublicationDateYYYYMMDD | 2015-09-11 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2015 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Planinc (ref_15) 2013; 17 Rougier (ref_20) 2013; 31 ref_14 Feng (ref_5) 2014; 8 Rimminen (ref_11) 2010; 14 Stone (ref_23) 2015; 19 Zhang (ref_21) 2014; Volume 8693 Yang (ref_22) 2014; 114 Mastorakis (ref_19) 2012; 9 Wu (ref_7) 2008; 16 Yu (ref_13) 2013; 17 ref_1 Nashwa (ref_4) 2013; 6 Ozdemir (ref_9) 2014; 14 ref_2 Liao (ref_6) 2012; 45 Mubashir (ref_10) 2013; 100 ref_8 Delahoz (ref_3) 2014; 14 Zigel (ref_12) 2009; 56 Gasparrini (ref_17) 2014; 14 Ozcan (ref_16) 2013; 3 Bian (ref_18) 2015; 19 25340452 - Sensors (Basel). 2014;14(10):19806-42 24771601 - IEEE J Biomed Health Inform. 2015 Mar;19(2):430-9 24521943 - Sensors (Basel). 2014 Feb 11;14(2):2756-75 20525533 - IEEE Trans Inf Technol Biomed. 2010 Nov;14(6):1475-6 19709955 - IEEE Trans Biomed Eng. 2009 Dec;56(12):2858-67 24240718 - IEEE J Biomed Health Inform. 2013 Nov;17(6):1002-14 24598316 - Comput Methods Programs Biomed. 2014 Apr;114(2):172-82 18403286 - IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):178-83 17946368 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:6388-91 24945676 - Sensors (Basel). 2014;14(6):10691-708 24733032 - IEEE J Biomed Health Inform. 2015 Jan;19(1):290-301 |
References_xml | – volume: 100 start-page: 144 year: 2013 ident: ref_10 article-title: A survey on fall detection: Principles and approaches publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.09.037 – volume: 6 start-page: 1230 year: 2013 ident: ref_4 article-title: Fall detection and prevention for the elderly: A review of trends and challenges publication-title: Int. J. Smart Sens. Intell. Syst. – volume: 114 start-page: 172 year: 2014 ident: ref_22 article-title: Fall detection for multiple pedestrians using depth image processing technique publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.02.001 – volume: 14 start-page: 19806 year: 2014 ident: ref_3 article-title: Survey on fall detection and fall prevention using wearable and external sensors publication-title: Sensors doi: 10.3390/s141019806 – volume: 16 start-page: 178 year: 2008 ident: ref_7 article-title: Portable preimpact fall detector with inertial sensors publication-title: IEEE Trans. Neural Syst. Rehabilit. Eng. doi: 10.1109/TNSRE.2007.916282 – volume: 17 start-page: 1063 year: 2013 ident: ref_15 article-title: Introducing the use of depth data for fall detection publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-012-0552-z – ident: ref_2 – volume: 9 start-page: 635 year: 2012 ident: ref_19 article-title: Fall detection system using Kinect’s infrared sensor publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-012-0246-9 – volume: 31 start-page: 246 year: 2013 ident: ref_20 article-title: 3D head tracking for fall detection using a single calibrated camera publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2012.11.003 – volume: 3 start-page: 125 year: 2013 ident: ref_16 article-title: Automatic Fall Detection and Activity Classification by a Wearable Embedded Smart Camera publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2013.2256832 – volume: 14 start-page: 2756 year: 2014 ident: ref_17 article-title: A depth-based fall detection system using a Kinect sensor publication-title: Sensors doi: 10.3390/s140202756 – volume: 17 start-page: 1002 year: 2013 ident: ref_13 article-title: An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2013.2274479 – volume: 19 start-page: 290 year: 2015 ident: ref_23 article-title: Fall detection in homes of older adults using the Microsoft Kinect publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2312180 – volume: 45 start-page: 24 year: 2012 ident: ref_6 article-title: Slip and fall event detection using Bayesian Belief Network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.04.017 – volume: Volume 8693 start-page: 127 year: 2014 ident: ref_21 article-title: Fast visual tracking via dense spatio-temporal context learning publication-title: Computer Vision–ECCV 2014 doi: 10.1007/978-3-319-10602-1_9 – volume: 14 start-page: 10691 year: 2014 ident: ref_9 article-title: Detecting falls with wearable sensors using machine learning techniques publication-title: Sensors doi: 10.3390/s140610691 – volume: 56 start-page: 2858 year: 2009 ident: ref_12 article-title: A method for automatic fall detection of elderly people using floor vibrations and sound-Proof of concept on human mimicking doll falls publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2030171 – ident: ref_14 – ident: ref_1 – volume: 14 start-page: 1475 year: 2010 ident: ref_11 article-title: Detection of falls among the elderly by a floor sensor using the electric near field publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2051956 – ident: ref_8 doi: 10.1109/ICBBE.2008.669 – volume: 8 start-page: 1129 year: 2014 ident: ref_5 article-title: Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera publication-title: Signal Image Video Process. doi: 10.1007/s11760-014-0645-4 – volume: 19 start-page: 430 year: 2015 ident: ref_18 article-title: Fall detection based on body part tracking using a depth camera publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2319372 – reference: 18403286 - IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):178-83 – reference: 24598316 - Comput Methods Programs Biomed. 2014 Apr;114(2):172-82 – reference: 24521943 - Sensors (Basel). 2014 Feb 11;14(2):2756-75 – reference: 17946368 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:6388-91 – reference: 24240718 - IEEE J Biomed Health Inform. 2013 Nov;17(6):1002-14 – reference: 25340452 - Sensors (Basel). 2014;14(10):19806-42 – reference: 24733032 - IEEE J Biomed Health Inform. 2015 Jan;19(1):290-301 – reference: 24945676 - Sensors (Basel). 2014;14(6):10691-708 – reference: 24771601 - IEEE J Biomed Health Inform. 2015 Mar;19(2):430-9 – reference: 19709955 - IEEE Trans Biomed Eng. 2009 Dec;56(12):2858-67 – reference: 20525533 - IEEE Trans Inf Technol Biomed. 2010 Nov;14(6):1475-6 |
SSID | ssj0023338 |
Score | 2.4031718 |
Snippet | In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 23004 |
SubjectTerms | Accidental Falls Adult Algorithms Computer engineering Dense spatio-temporal-context depth images fall detection Falls Head - physiology Home environment Human subjects Humans Image detection Imaging, Three-Dimensional - methods Mathematical analysis Methods Older people Planes Sensors Single-Gauss-Model Three dimensional Tracking Two dimensional |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BgozgwiFqvP6Ic6TAakGCC63UW2Q7toq0ZCs2lei_59nJLruogguXlbIZRcl4PPNeMnpD9DpKGy2SXtmEmSilkaoEz9Kl88iYyiteh9xt8UUvzuSnc3W-M-or9YSN8sCj446tr4G6bfogJWQdZeM631jUFRfAXUKXsi9q3oZMTVRLgHmNYqQCpP54DdgDJFNN49g25Ser9N8ELf_skNwpOfN7dHfCiuzteI-HdCv09-nOjoLgA4pIUmxu1wN-lkv2Pgy5tapnn_NkaHaCItUxHH_NndPl6ahEtWRZlernwFCrfHpbzlaRLbDezF2z3EaAa10OF-zjdySc9UM6m384fbcop9EJpdeSDyU3nTKRN4531vMQKm2N4F7H6PSsruA7w6OvnE30T3d1lr1T8K2yuuMiikd00K_68IRYtFo7oBonrAR2QlIyuoJd12gTTOMKerPxaOsnXfE03mLZgl8k77e_vV_Qq63t5aimcaPVSVqYrUVSwM5_IC7aKS7af8VFQUebZW2nbbluE99tZMJ0Bb3cnsaGSl9JbB9WV8kGoFgqZWZ_s6kT0G6kKejxGCnbu51pURvg4ILqvRjae5z9M_23iyzsnbTvQSCf_o_nf0a3ge1Uam3h_IgOhh9X4Tnw0-Be5K3yC_-hF4c priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyju0ICO4cIgaJ37lVFFgtSDBhVbaW-QnRVqSpUkl-PedcbK7XVT1EinJKHL8mPk-e_QNIe8iN9GA08vrUFY511zkwLNkbh14TOEEUyFlW3yX8zP-dSEW04ZbP6VVrn1ictS-c7hHfoRUpeYYjo9Xf3KsGoWnq1MJjbvkHkqXYUqXWmwJVwX8a5QkrYDaH_UAfgDPFFNRtnUQSlr9NwHM__MkrwWe2T55OCFG-mEc4kfkTmgfkwfXdASfkAiuis5MP8BluaSfwpASrFr6LdWHpicQqjyF-x8pfzo_HfWoljRpU_0dKEQsh3vmtIt0DqNO7T-akgngW6vhnH75DW6nf0rOZp9PP87zqYBC7iRnQ860Fzqy2jJvHAuhkEZXzMkYrSxVYUOpWXSFNUgCpVdJ_E7U1gsjPati9YzstV0bXhAajZQWsI2tDAcEBa5JywLsfC110LXNyPt1jzZuUhfHIhfLBlgG9n6z7f2MvN3YrkZNjRutTnBgNhaog50edBc_m2lZNcYp4GQGjysrriKHtrvaAOqAf2Ms-Iwcroe1mRZn32ynUkbebF7DssKzEtOG7hJtABpzIXR5m41CuF1znZHn40zZtLaUldKAhjOidubQzu_svml_nSd5b1TABxr58vamH5D7gN0Epq4wdkj2hovL8Arw0WBfp0VwBVu0Dug priority: 102 providerName: ProQuest |
Title | New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26378540 https://www.proquest.com/docview/1721941251 https://www.proquest.com/docview/1713945582 https://www.proquest.com/docview/1778002948 https://pubmed.ncbi.nlm.nih.gov/PMC4610487 https://doaj.org/article/ac7086a0529347f49bdc9a426be211ed |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7QUeEL_JGJURvPAQiBPHdh4QorBSkDYhWKW-RbZjM6QsHW0mbf89ZycN61QhXiIluUTJ2Xf3XXz5DuCVY8opdHpxYdMsZpLlMeZZPNYGPWZucipsqLY45tMZ-zrP5zuw7t_ZK3C1NbXz_aRmy_rN5e-r92jw73zGiSn72xWCGsQpgRZ0DyOS8AZ6xIbVhDTLQkdr_1NXjAEx6WhKb1y7EZgCf_820HmzdvJaMJrcg7s9iiQfumG_Dzu2eQB3rnELPgSH7otM1KrFTV2TT7YNRVcNOQo9o8kYw1dFcP9HqKmOTzqOqpoEvqrLlmAUM_47Olk4MsWZQPQVCQUGeK_z9pR8OUNXtHoEs8nhycdp3DdViA1ntI2prHLpaKFppQy1NuFKZtRw5zRPRaJtKqkziVY-MeSVCIR4eaGrXPGKZi57DLvNorFPgTjFuUa8ozPFEFWhu5I8Qbmq4NLKQkfweq3R0vSM477xRV1i5uG1X_7VfgQvB9nzjmdjq9TYD8wg4bmxw4HF8mfZm1qpjMA8TfklzIwJx_DZTaEQieC7UWqrCA7Ww1qu51vpM-GCebQXwYvhNJqaXz9RjV1ceBmEyyzPZfovGeEheMFkBE-6mTI8bcozIREhRyA25tDG62yeaX6dBspvz4qPqeX-f2npGdxGWJf7qhZKD2C3XV7Y5widWj2CW2IucCsnn0ewNz48_vZ9FD5DjILF_AHpXRhb |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGcJFDACDhyixonjOAeEKGW1Sx8XttLegu3YFGlJliYV9E_xGxk7yW4XVb31EinJKHLseXwTT74BeGOZtBKdXpibOAmZYGmIeRYPlUaPmeqUZsZXWxzx8TH7MktnG_B3-BfGlVUOPtE76rLW7hv5jktVcubC8YfFr9B1jXK7q0MLjU4t9s35b0zZmveTPVzft3E8-jz9NA77rgKh5oy2IRVlKizNFS2lpsZEXIqEam6t4nEWKRMLanWkpMuMeJl5Rrg0V2UqeUkTm-Bzb8BNDLyRs6hstkrwEsz3OgrUJMmjnQbBFuKnqG8CNwQ93xvgMkD7f13mhUA3ugd3e4RKPnYqdR82TPUA7lzgLXwIFl0jGcmmxcN8TvZM6wu6KnLo-1GTXQyNJcHzr75eO5x2_Fdz4rmw_rQEI6R23-hJbckYtYyoc-KLF_BZi_aETH6im2sewfG1TO1j2KzqyjwBYiXnCrGUSiRDxIauUPAI5cqcCyNyFcC7YUYL3bOZu6Ya8wKzGjf7xWr2A3i9lF10HB6XSu26hVlKON5tf6E-_V70ZlxInWEOKN32aMIyy3DsOpeIcvDdKDVlANvDsha9M2iKleoG8Gp5G83Y7c3IytRnTgahOEtTEV8lkzl4nzMRwFanKcvRxjzJBKLvALI1HVp7nfU71Y8TTyfuGPcxbX169dBfwq3x9PCgOJgc7T-D24gbU1c2Q-k2bLanZ-Y5YrNWvfAGQeDbdVvgPylaS80 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYyAA4do4_gR54AQZVntUqiQaKW9BduxKdKSLE0q6F_j1zF2kt0uqnrrJVKSUeTY8_gmnnyD0EvHlFPg9OLcpjRmkvEY8iwRawMekxtOMhuqLfbF9JB9nPP5Fvo7_AvjyyoHnxgcdVkb_4185FOVnPlwPHJ9WcSX8eTt8lfsO0j5ndahnUanInv29Dekb82b2RjW-lWaTj4cvJ_GfYeB2AhG2pjIkktHck1KZYi1iVCSEiOc0yLNEm1TSZxJtPJZkiizwA7Hc11yJUpCHYXnXkFXM8qJt7Fsvk72KOR-HR0qpXkyagB4AZZK-oZwQwAMfQLOA7f_12ieCXqTW-hmj1bxu069bqMtW91BN85wGN5FDtwknqimhcNigce2DcVdFf4celPjXQiTJYbzr6F2Oz7ouLAWOPBi_WkxREvjv9fj2uEpaBzWpzgUMsCzlu0Rnv0El9fcQ4eXMrX30XZVV_Yhwk4JoQFXaaoYoDdwi1IkIFfmQlqZ6wi9Hma0MD2zuW-wsSggw_GzX6xnP0IvVrLLjs_jXKldvzArCc_BHS7Ux9-L3qQLZTLIB5XfKqUscwzGbnIFiAfejRBbRmhnWNaidwxNsVbjCD1f3QaT9vs0qrL1iZcBWM44l-lFMpmH-jmTEXrQacpqtKmgmQQkHqFsQ4c2XmfzTvXjKFCLe_Z9SGEfXTz0Z-ga2F7xaba_9xhdBwjJfQUNITtouz0-sU8AprX6abAHjL5dtgH-A45xUAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Fast+Fall+Detection+Method+Based+on+Spatio-Temporal+Context+Tracking+of+Head+by+Using+Depth+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Lei&rft.au=Ren%2C+Yanyun&rft.au=Hu%2C+Huosheng&rft.au=Tian%2C+Bo&rft.date=2015-09-11&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=15&rft.issue=9&rft.spage=23004&rft.epage=23019&rft_id=info:doi/10.3390%2Fs150923004&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s150923004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |