genetic architecture of leaf number and its genetic relationship to flowering time in maize

The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 210; no. 1; pp. 256 - 268
Main Authors Li, Dan, Wang, Xufeng, Zhang, Xiangbo, Chen, Qiuyue, Xu, Guanghui, Xu, Dingyi, Wang, Chenglong, Liang, Yameng, Wu, Lishuan, Huang, Cheng, Tian, Jinge, Wu, Yaoyao, Tian, Feng
Format Journal Article
LanguageEnglish
Published England Academic Press 01.04.2016
New Phytologist Trust
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
DOI10.1111/nph.13765

Cover

Loading…
Abstract The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S₃ recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
AbstractList Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2S3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8,dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2S3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped by using 19,838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
* The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. * Here, using a large set of 866 maize-teosinte BC sub(2)S sub(3) recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. * We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. * This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize ( Zea mays ), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC 2 S 3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above ( LA ) and below ( LB ) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN 8 , dlf1 and Zm CCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA 1‐1 , a major‐effect locus that specifically affects LA , was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S₃ recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC2S3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S₃ recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.
Author Wu, Lishuan
Li, Dan
Huang, Cheng
Wang, Xufeng
Liang, Yameng
Tian, Feng
Zhang, Xiangbo
Wu, Yaoyao
Chen, Qiuyue
Xu, Guanghui
Wang, Chenglong
Xu, Dingyi
Tian, Jinge
AuthorAffiliation 1 National Maize Improvement Center of China China Agricultural University Beijing 100193 China
AuthorAffiliation_xml – name: 1 National Maize Improvement Center of China China Agricultural University Beijing 100193 China
Author_xml – sequence: 1
  fullname: Li, Dan
– sequence: 2
  fullname: Wang, Xufeng
– sequence: 3
  fullname: Zhang, Xiangbo
– sequence: 4
  fullname: Chen, Qiuyue
– sequence: 5
  fullname: Xu, Guanghui
– sequence: 6
  fullname: Xu, Dingyi
– sequence: 7
  fullname: Wang, Chenglong
– sequence: 8
  fullname: Liang, Yameng
– sequence: 9
  fullname: Wu, Lishuan
– sequence: 10
  fullname: Huang, Cheng
– sequence: 11
  fullname: Tian, Jinge
– sequence: 12
  fullname: Wu, Yaoyao
– sequence: 13
  fullname: Tian, Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26593156$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7LZ64R_QgDd6MW2-Z-ZGkKJWKCpoQfAiZGbO7GaZSdYk47L-etP9KFoUzc0h5HlfzntyTtCR8w4QekzJGc3n3K0WZ5SXSt5DMypUXVT5doRmhLCqUEJ9OUYnMS4JIbVU7AE6ZkrWnEo1Q1_n4CDZFpvQLmyCNk0BsO_xAKbHbhobCNi4DtsU8YENMJhkvYsLu8LJ437wawjWzXGyI2Dr8GjsD3iI7vdmiPBoX0_R9ZvXny8ui6sPb99dvLoqWiWoLDj0xrC6N0LIGkjTQNnJrq94VZe0EX1Vyk4BkSTXuuGMyrpVPQeuoOloVfJT9HLnu5qaEboWXApm0KtgRxM22hurf39xdqHn_ruWRHFKqmzwfG8Q_LcJYtKjjS0Mg3Hgp6hpRfK0ai7Kf6NllTsVirD_QFUlZcWEyuizO-jST8HloW0pSjkTdaae_JrzNuDhNzNwvgPa4GMM0OvWpu1P5dh20JTom33ReV_0dl-y4sUdxcH0T-zefW0H2Pwd1O8_Xh4UxU6xjMmHW4WD9WqxSX7wc5ujshsHzbb9P93xvfHazION-voTI1QRQmneZcF_Ao486K8
CitedBy_id crossref_primary_10_1016_j_cj_2020_03_009
crossref_primary_10_1371_journal_pone_0271424
crossref_primary_10_1111_nph_16772
crossref_primary_10_30910_turkjans_775861
crossref_primary_10_1007_s00122_024_04572_6
crossref_primary_10_1002_agg2_20477
crossref_primary_10_1111_mec_15359
crossref_primary_10_1111_pce_15119
crossref_primary_10_3389_fpls_2019_00814
crossref_primary_10_1088_1742_6596_2314_1_012010
crossref_primary_10_1371_journal_pgen_1008882
crossref_primary_10_1016_S2095_3119_16_61524_1
crossref_primary_10_1073_pnas_1720716115
crossref_primary_10_1073_pnas_1718058115
crossref_primary_10_3390_ijms25052694
crossref_primary_10_1007_s10681_020_02708_5
crossref_primary_10_1007_s11032_021_01208_1
crossref_primary_10_1093_insilicoplants_diad007
crossref_primary_10_3390_ijms25179607
crossref_primary_10_1111_nph_18559
crossref_primary_10_1007_s00122_023_04285_2
crossref_primary_10_1111_nph_15605
crossref_primary_10_1080_13102818_2023_2176169
crossref_primary_10_1111_jipb_13408
crossref_primary_10_3390_genes13101713
crossref_primary_10_1002_plr2_20134
crossref_primary_10_1093_aobpla_plab048
crossref_primary_10_3390_agriculture10090411
crossref_primary_10_3389_fpls_2024_1338086
crossref_primary_10_17097_ataunizfd_768620
crossref_primary_10_1371_journal_pgen_1008512
crossref_primary_10_1111_nph_15512
crossref_primary_10_1016_j_cj_2020_07_009
crossref_primary_10_1016_j_pbi_2021_102124
crossref_primary_10_1093_botlinnean_boac078
crossref_primary_10_1016_j_fcr_2024_109380
crossref_primary_10_1534_genetics_119_302594
crossref_primary_10_3389_fgene_2023_1150132
crossref_primary_10_1371_journal_pgen_1008791
crossref_primary_10_1007_s11032_019_1012_5
crossref_primary_10_1088_1755_1315_653_1_012081
crossref_primary_10_1007_s00122_018_3142_2
crossref_primary_10_1371_journal_pgen_1010664
crossref_primary_10_1016_j_cub_2018_07_029
crossref_primary_10_1038_s41467_024_54148_7
crossref_primary_10_1186_s12870_022_03711_9
crossref_primary_10_3389_fpls_2023_1006245
crossref_primary_10_1186_s12863_017_0503_9
crossref_primary_10_1186_s12870_018_1385_3
crossref_primary_10_1007_s10681_021_02912_x
crossref_primary_10_1016_j_compag_2023_108349
crossref_primary_10_1007_s00425_019_03268_2
crossref_primary_10_1007_s00122_019_03426_w
crossref_primary_10_3389_fpls_2024_1441288
crossref_primary_10_1007_s00122_023_04370_6
crossref_primary_10_1007_s00122_021_03907_x
crossref_primary_10_3390_plants11192663
crossref_primary_10_1080_15427528_2022_2063776
crossref_primary_10_3389_fpls_2017_01437
crossref_primary_10_1093_genetics_iyac182
crossref_primary_10_1002_ppj2_20022
crossref_primary_10_1111_nph_14400
crossref_primary_10_3389_fpls_2019_00685
Cites_doi 10.1038/ng.2309
10.2135/cropsci1993.0011183X003300060020x
10.1007/978-0-387-79418-1_3
10.1007/s11032-006-9071-9
10.1242/dev.00457
10.2135/cropsci1994.0011183X003400040010x
10.1073/pnas.1407401112
10.1104/pp.127.1.33
10.1079/9780851996011.0257
10.1093/aob/mcu032
10.1093/nar/8.19.4321
10.1038/ng.746
10.1073/pnas.1310949110
10.1534/genetics.104.032375
10.1093/jhered/esu019
10.1073/pnas.1203189109
10.1093/bioinformatics/btg112
10.1038/ng.2281
10.1242/dev.048348
10.1186/1471-2164-7-158
10.1038/ng.747
10.1038/nature02778
10.1534/genetics.106.067892
10.1007/s00122-012-1933-4
10.1534/genetics.107.076497
10.1104/pp.107.115261
10.1534/genetics.109.106922
10.1038/ng.143
10.1371/journal.pone.0043450
10.1105/tpc.110.081406
10.1093/genetics/153.2.993
10.1007/s00425-008-0709-1
10.1139/g96-120
10.1007/s001220050654
10.1007/s00122-006-0232-3
10.1073/pnas.0704145104
10.1534/genetics.109.110304
10.1007/s00122-008-0851-y
10.1038/30239
10.2135/cropsci1996.0011183X003600050041x
10.2307/1400446
10.1111/j.1365-313X.2006.02962.x
10.1534/genetics.112.138578
10.1371/journal.pgen.1003604
10.1023/A:1014838024509
10.1038/ng.1018
10.1111/j.1365-313X.2005.02591.x
10.1007/BF00221905
10.1242/dev.126.2.315
10.1093/genetics/141.1.391
10.1016/S1360-1385(99)01541-1
10.1126/science.1174276
10.1073/pnas.052125199
10.1007/s00122-007-0512-6
10.1016/j.copbio.2014.11.023
10.1104/pp.106.088815
10.1111/jipb.12358
ContentType Journal Article
Copyright 2016 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Copyright © 2016 New Phytologist Trust
Copyright_xml – notice: 2016 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
– notice: Copyright © 2016 New Phytologist Trust
DBID FBQ
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.13765
DatabaseName AGRIS
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
Genetics Abstracts



AGRICOLA
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 268
ExternalDocumentID PMC5063108
3963998611
26593156
10_1111_nph_13765
NPH13765
newphytologist.210.1.256
US201600110284
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31322042
– fundername: Recruitment Program of Global Experts
– fundername: National Hi‐Tech Research and Development Program of China
  funderid: 2012AA10A307
– fundername: National Basic Research Program
  funderid: 2014CB147300
– fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  grantid: 31322042
– fundername: National Hi‐Tech Research and Development Program of China
  grantid: 2012AA10A307
– fundername: National Basic Research Program
  grantid: 2014CB147300
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
24P
AEUQT
AFPWT
DOOOF
ESX
IPNFZ
JSODD
WRC
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6415-3efaa29fa4459e0bbe7d5df838971b4f875d6e05075d9b32159c6f3e36ebd1873
IEDL.DBID 24P
ISSN 0028-646X
IngestDate Thu Aug 21 13:37:41 EDT 2025
Fri Jul 11 18:29:56 EDT 2025
Fri Jul 11 05:33:20 EDT 2025
Fri Jul 11 09:50:25 EDT 2025
Fri Jul 25 10:40:48 EDT 2025
Thu Apr 03 06:59:33 EDT 2025
Tue Jul 01 03:09:23 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Wed Jan 22 16:43:27 EST 2025
Thu Jul 03 22:44:20 EDT 2025
Thu Apr 03 09:43:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords leaf number
maize (Zea mays)
quantitative trait locus (QTL)
genetic overlap
flowering time
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6415-3efaa29fa4459e0bbe7d5df838971b4f875d6e05075d9b32159c6f3e36ebd1873
Notes http://dx.doi.org/10.1111/nph.13765
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13765
PMID 26593156
PQID 1768113249
PQPubID 2026848
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063108
proquest_miscellaneous_1803159347
proquest_miscellaneous_1780504602
proquest_miscellaneous_1768558246
proquest_journals_1768113249
pubmed_primary_26593156
crossref_citationtrail_10_1111_nph_13765
crossref_primary_10_1111_nph_13765
wiley_primary_10_1111_nph_13765_NPH13765
jstor_primary_newphytologist_210_1_256
fao_agris_US201600110284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2016
Publisher Academic Press
New Phytologist Trust
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Academic Press
– name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2007; 104
1996; 39
2004; 168
2000; 5
2015; 32
2002; 99
2008; 227
2010; 184
1997; 2
2003; 19
2008; 147
2012; 125
1996; 36
1999; 126
1998; 393
2013; 9
2002; 48
1997; 95
2007; 176
1993; 33
2007; 177
1994; 34
2008; 117
1983
2011; 23
2013; 110
2009; 325
2012
2006; 14
2009
2006; 7
1997
1992
1996; 92
2002
2014; 111
1990; 124
2006; 112
2005; 44
2014; 114
2012; 109
2003; 130
2001; 127
2007; 114
2004; 430
2014; 105
2010; 137
2012; 191
1999; 153
1980; 8
2011; 43
2006; 142
2009; 183
2015
2005; 50
2012; 7
2008; 40
2012; 44
1995; 141
2007; 49
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
Langdale J (e_1_2_7_34_1) 2005; 50
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_26_1
Neuffer MG (e_1_2_7_45_1) 1997
e_1_2_7_49_1
e_1_2_7_28_1
Moutiq R (e_1_2_7_41_1) 2002
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
Na C (e_1_2_7_44_1) 2006; 14
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
Gilmour AR (e_1_2_7_23_1) 2009
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Vlăduţu C (e_1_2_7_61_1) 1999; 153
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
9847245 - Development. 1999 Jan;126(2):315-23
12724300 - Bioinformatics. 2003 May 1;19(7):889-90
18539775 - Plant Physiol. 2008 Aug;147(4):2054-69
22581231 - Nat Genet. 2012 May 13;44(6):720-4
18469947 - Genome. 1996 Oct;39(5):957-68
7433111 - Nucleic Acids Res. 1980 Oct 10;8(19):4321-5
17339203 - Genetics. 2007 May;176(1):645-57
22138690 - Nat Genet. 2011 Dec 04;44(1):32-9
22711828 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21
9603518 - Nature. 1998 May 14;393(6681):166-8
18301915 - Planta. 2008 May;227(6):1377-88
19661422 - Science. 2009 Aug 7;325(5941):714-8
16491426 - Theor Appl Genet. 2006 May;112(7):1295-305
24089449 - Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16969-74
25553537 - Curr Opin Biotechnol. 2015 Apr;32:121-9
22801873 - Theor Appl Genet. 2012 Nov;125(7):1539-51
21217756 - Nat Genet. 2011 Feb;43(2):159-62
17181778 - Plant J. 2007 Jan;49(2):338-53
21441432 - Plant Cell. 2011 Mar;23(3):942-60
16359397 - Plant J. 2005 Dec;44(6):1054-64
17308934 - Theor Appl Genet. 2007 May;114(7):1211-28
24166558 - Theor Appl Genet. 1996 May;92(7):905-14
25845500 - J Integr Plant Biol. 2016 Jan;58(1):81-90
21217757 - Nat Genet. 2011 Feb;43(2):163-8
25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80
15611184 - Genetics. 2004 Dec;168(4):2169-85
1968874 - Genetics. 1990 Mar;124(3):735-42
18454147 - Nat Genet. 2008 Jun;40(6):761-7
17947434 - Genetics. 2007 Nov;177(3):1915-28
22912876 - PLoS One. 2012;7(8):e43450
17071646 - Plant Physiol. 2006 Dec;142(4):1523-36
16784536 - BMC Genomics. 2006 Jun 19;7:158
24651369 - Ann Bot. 2014 Nov;114(7):1445-58
10511573 - Genetics. 1999 Oct;153(2):993-1007
15329722 - Nature. 2004 Aug 26;430(7003):1031-4
12702653 - Development. 2003 Jun;130(11):2385-95
23825971 - PLoS Genet. 2013 Jun;9(6):e1003604
11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13
10664615 - Trends Plant Sci. 2000 Feb;5(2):61-6
17595297 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11376-81
20223762 - Development. 2010 Apr;137(8):1243-50
19822732 - Genetics. 2009 Dec;183(4):1555-63
11983901 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6080-4
8536986 - Genetics. 1995 Sep;141(1):391-411
18677461 - Theor Appl Genet. 2008 Nov;117(7):1129-39
11553732 - Plant Physiol. 2001 Sep;127(1):33-45
22660546 - Nat Genet. 2012 Jun 03;44(7):808-11
20008571 - Genetics. 2010 Mar;184(3):799-812
22542971 - Genetics. 2012 Jul;191(3):883-94
24683184 - J Hered. 2014 Jul-Aug;105(4):576-582
References_xml – year: 2015
  article-title: Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem
  publication-title: Journal of Integrative Plant Biology
– year: 2009
– volume: 39
  start-page: 957
  year: 1996
  end-page: 968
  article-title: Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize
  publication-title: Genome
– volume: 50
  start-page: 459
  year: 2005
  article-title: The then and now of maize leaf development
  publication-title: Maydica
– volume: 40
  start-page: 761
  year: 2008
  end-page: 767
  article-title: Natural variation in is an important regulator of heading date and yield potential in rice
  publication-title: Nature Genetics
– volume: 191
  start-page: 883
  year: 2012
  end-page: 894
  article-title: Megabase‐scale inversion polymorphism in the wild ancestor of maize
  publication-title: Genetics
– volume: 2
  start-page: 269
  year: 1997
  end-page: 293
  article-title: Accounting for natural and extraneous variation in the analysis of field experiments
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 177
  start-page: 1915
  year: 2007
  end-page: 1928
  article-title: Linkage mapping of domestication loci in a large maize–teosinte backcross resource
  publication-title: Genetics
– volume: 184
  start-page: 799
  year: 2010
  end-page: 812
  article-title: Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis
  publication-title: Genetics
– start-page: 161
  year: 1983
  end-page: 180
– volume: 109
  start-page: E1913
  year: 2012
  end-page: E1921
  article-title: and the genetic basis of day‐length adaptation underlying the postdomestication spread of maize
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 9
  start-page: e1003604
  year: 2013
  article-title: From many, one: genetic control of prolificacy during maize domestication
  publication-title: PLoS Genetics
– volume: 127
  start-page: 33
  year: 2001
  end-page: 45
  article-title: The maize MADS Box gene affects node number and spikelet development and is co‐expressed with during flower development, in egg cells, and early embryogenesis
  publication-title: Plant Physiology
– volume: 105
  start-page: 576
  year: 2014
  end-page: 582
  article-title: Defining the role of gene during maize domestication
  publication-title: Journal of Heredity
– volume: 44
  start-page: 808
  year: 2012
  end-page: 811
  article-title: Comparative population genomics of maize domestication and improvement
  publication-title: Nature Genetics
– volume: 126
  start-page: 315
  year: 1999
  end-page: 323
  article-title: Control of phyllotaxy in maize by the gene
  publication-title: Development
– start-page: 257
  year: 2002
  end-page: 267
– volume: 8
  start-page: 4321
  year: 1980
  end-page: 4326
  article-title: Rapid isolation of high molecular weight plant DNA
  publication-title: Nucleic Acids Research
– volume: 183
  start-page: 1555
  year: 2009
  end-page: 1563
  article-title: Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10
  publication-title: Genetics
– volume: 104
  start-page: 11 376
  year: 2007
  end-page: 11 381
  article-title: Conserved noncoding genomic sequences associated with a flowering‐time quantitative trait locus in maize
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 153
  start-page: 993
  year: 1999
  end-page: 1007
  article-title: Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures
  publication-title: Genetics
– volume: 141
  start-page: 391
  year: 1995
  article-title: Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific population
  publication-title: Genetics
– volume: 44
  start-page: 1054
  year: 2005
  end-page: 1064
  article-title: Maize association population: a high‐resolution platform for quantitative trait locus dissection
  publication-title: Plant Journal
– volume: 111
  start-page: 18 775
  year: 2014
  end-page: 18 780
  article-title: Maize SBP‐box transcription factors and affect yield traits by regulating the rate of lateral primordia initiation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 99
  start-page: 6080
  year: 2002
  end-page: 6084
  article-title: A single domestication for maize shown by multilocus microsatellite genotyping
  publication-title: Proceedings of the National Academy of Sciences, USA
– year: 1997
– volume: 114
  start-page: 1211
  year: 2007
  end-page: 1228
  article-title: QTL mapping with near‐isogenic lines in maize
  publication-title: Theoretical and Applied Genetics
– volume: 19
  start-page: 889
  year: 2003
  end-page: 890
  article-title: R/qtl: QTL mapping in experimental crosses
  publication-title: Bioinformatics
– volume: 125
  start-page: 1539
  year: 2012
  end-page: 1551
  article-title: Detection of QTL for flowering time in multiple families of elite maize
  publication-title: Theoretical and Applied Genetics
– volume: 168
  start-page: 2169
  year: 2004
  end-page: 2185
  article-title: Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta‐analysis and synteny conservation with the rice genome
  publication-title: Genetics
– volume: 124
  start-page: 735
  year: 1990
  end-page: 742
  article-title: Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato
  publication-title: Genetics
– volume: 34
  start-page: 882
  year: 1994
  end-page: 896
  article-title: Identification of quantitative trait loci using a small sample of topcrossed and F progeny from maize
  publication-title: Crop Science
– start-page: 41
  year: 2009
  end-page: 55
– volume: 43
  start-page: 159
  year: 2011
  end-page: 162
  article-title: Genome‐wide association study of leaf architecture in the maize nested association mapping population
  publication-title: Nature Genetics
– volume: 95
  start-page: 1005
  year: 1997
  end-page: 1011
  article-title: Heterogeneous inbred family (HIF) analysis: a method for developing near‐isogenic lines that differ at quantitative trait loci
  publication-title: Theoretical and Applied Genetics
– volume: 36
  start-page: 1320
  year: 1996
  end-page: 1327
  article-title: Genetic mapping of qunatitative trait loci in maize in stress and nonstress environments: II. Plant height and flowering
  publication-title: Crop Science
– volume: 7
  start-page: e43450
  year: 2012
  article-title: A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling
  publication-title: PLoS ONE
– volume: 14
  start-page: 24
  year: 2006
  article-title: Analysis on canopy structure and photosynthetic characteristics of high yield maize population
  publication-title: Journal of Maize Sciences
– volume: 147
  start-page: 2054
  year: 2008
  end-page: 2069
  article-title: Involvement of the MADS‐box gene in floral induction and inflorescence development in maize
  publication-title: Plant Physiology
– volume: 33
  start-page: 1209
  year: 1993
  end-page: 1216
  article-title: Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize
  publication-title: Crop Science
– volume: 23
  start-page: 942
  year: 2011
  end-page: 960
  article-title: The ‐like gene functions as a floral activator and is involved in photoperiod sensitivity in maize
  publication-title: The Plant Cell
– volume: 112
  start-page: 1295
  year: 2006
  end-page: 1305
  article-title: Alignment of genetic maps and QTLs between inter‐and intra‐specific populations
  publication-title: Theoretical and Applied Genetics
– volume: 130
  start-page: 2385
  year: 2003
  end-page: 2395
  article-title: Duplicate homologs and control inflorescence architecture and flower patterning in maize
  publication-title: Development
– year: 1992
– volume: 44
  start-page: 32
  year: 2012
  end-page: 39
  article-title: Genome‐wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm
  publication-title: Nature Genetics
– year: 2012
– volume: 430
  start-page: 1031
  year: 2004
  end-page: 1034
  article-title: Control of phyllotaxy by the cytokinin‐inducible response regulator homologue
  publication-title: Nature
– volume: 325
  start-page: 714
  year: 2009
  end-page: 718
  article-title: The genetic architecture of maize flowering time
  publication-title: Science
– volume: 393
  start-page: 166
  year: 1998
  end-page: 168
  article-title: Regulation of leaf initiation by the terminal ear 1 gene of maize
  publication-title: Nature
– volume: 5
  start-page: 61
  year: 2000
  end-page: 66
  article-title: A floret by any other name: control of meristem identity in maize
  publication-title: Trends in Plant Science
– volume: 92
  start-page: 905
  year: 1996
  end-page: 914
  article-title: Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis‐silking interval
  publication-title: Theoretical and Applied Genetics
– volume: 142
  start-page: 1523
  year: 2006
  end-page: 1536
  article-title: encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize
  publication-title: Plant Physiology
– volume: 32
  start-page: 121
  year: 2015
  end-page: 129
  article-title: Flowering time regulation in crops – what did we learn from Arabidopsis?
  publication-title: Current Opinion in Biotechnology
– volume: 110
  start-page: 16 969
  year: 2013
  end-page: 16 974
  article-title: CACTA‐like transposable element in attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 227
  start-page: 1377
  year: 2008
  end-page: 1388
  article-title: A maize CONSTANS‐like gene, , exhibits distinct diurnal expression patterns in varied photoperiods
  publication-title: Planta
– volume: 48
  start-page: 601
  year: 2002
  end-page: 613
  article-title: Toward positional cloning of , a QTL controlling the transition from the vegetative to the reproductive phase in maize
  publication-title: Plant Molecular Biology
– volume: 7
  start-page: 158
  year: 2006
  article-title: The maize flowering time regulator defines a highly conserved zinc finger protein family in higher plants
  publication-title: BMC Genomics
– volume: 114
  start-page: 1445
  year: 2014
  end-page: 1458
  article-title: Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals
  publication-title: Annals of Botany
– volume: 43
  start-page: 163
  year: 2011
  end-page: 168
  article-title: Genome‐wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population
  publication-title: Nature Genetics
– volume: 44
  start-page: 720
  year: 2012
  end-page: 724
  article-title: Parallel domestication of the genes in cereals
  publication-title: Nature Genetics
– volume: 49
  start-page: 338
  year: 2007
  end-page: 353
  article-title: Subfunctionalization of and in the control of seedling and mature plant traits in maize
  publication-title: Plant Journal
– volume: 176
  start-page: 645
  year: 2007
  end-page: 657
  article-title: Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by race O, and flowering time using advanced intercross maize lines
  publication-title: Genetics
– volume: 117
  start-page: 1129
  year: 2008
  end-page: 1139
  article-title: Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers
  publication-title: Theoretical and Applied Genetics
– volume: 137
  start-page: 1243
  year: 2010
  end-page: 1250
  article-title: The maize SBP‐box transcription factor encoded by regulates bract development and the establishment of meristem boundaries
  publication-title: Development
– ident: e_1_2_7_28_1
  doi: 10.1038/ng.2309
– ident: e_1_2_7_31_1
  doi: 10.2135/cropsci1993.0011183X003300060020x
– ident: e_1_2_7_51_1
– ident: e_1_2_7_13_1
  doi: 10.1007/978-0-387-79418-1_3
– ident: e_1_2_7_46_1
  doi: 10.1007/s11032-006-9071-9
– ident: e_1_2_7_6_1
  doi: 10.1242/dev.00457
– ident: e_1_2_7_4_1
  doi: 10.2135/cropsci1994.0011183X003400040010x
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.1407401112
– ident: e_1_2_7_47_1
– ident: e_1_2_7_25_1
  doi: 10.1104/pp.127.1.33
– start-page: 257
  volume-title: Quantitative genetics, genomics, and plant breeding
  year: 2002
  ident: e_1_2_7_41_1
  doi: 10.1079/9780851996011.0257
– ident: e_1_2_7_52_1
– ident: e_1_2_7_54_1
  doi: 10.1093/aob/mcu032
– ident: e_1_2_7_42_1
  doi: 10.1093/nar/8.19.4321
– ident: e_1_2_7_57_1
  doi: 10.1038/ng.746
– ident: e_1_2_7_65_1
  doi: 10.1073/pnas.1310949110
– volume: 14
  start-page: 24
  year: 2006
  ident: e_1_2_7_44_1
  article-title: Analysis on canopy structure and photosynthetic characteristics of high yield maize population
  publication-title: Journal of Maize Sciences
– ident: e_1_2_7_10_1
  doi: 10.1534/genetics.104.032375
– ident: e_1_2_7_33_1
  doi: 10.1093/jhered/esu019
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.1203189109
– ident: e_1_2_7_8_1
  doi: 10.1093/bioinformatics/btg112
– ident: e_1_2_7_36_1
  doi: 10.1038/ng.2281
– ident: e_1_2_7_11_1
  doi: 10.1242/dev.048348
– ident: e_1_2_7_14_1
  doi: 10.1186/1471-2164-7-158
– ident: e_1_2_7_32_1
  doi: 10.1038/ng.747
– ident: e_1_2_7_24_1
  doi: 10.1038/nature02778
– ident: e_1_2_7_3_1
  doi: 10.1534/genetics.106.067892
– volume-title: ASReml user guide release 3.0
  year: 2009
  ident: e_1_2_7_23_1
– ident: e_1_2_7_55_1
  doi: 10.1007/s00122-012-1933-4
– ident: e_1_2_7_7_1
  doi: 10.1534/genetics.107.076497
– ident: e_1_2_7_16_1
  doi: 10.1104/pp.107.115261
– ident: e_1_2_7_18_1
  doi: 10.1534/genetics.109.106922
– ident: e_1_2_7_64_1
  doi: 10.1038/ng.143
– volume-title: Mutants of maize
  year: 1997
  ident: e_1_2_7_45_1
– ident: e_1_2_7_17_1
  doi: 10.1371/journal.pone.0043450
– ident: e_1_2_7_39_1
  doi: 10.1105/tpc.110.081406
– volume: 153
  start-page: 993
  year: 1999
  ident: e_1_2_7_61_1
  article-title: Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures
  publication-title: Genetics
  doi: 10.1093/genetics/153.2.993
– volume: 50
  start-page: 459
  year: 2005
  ident: e_1_2_7_34_1
  article-title: The then and now of maize leaf development
  publication-title: Maydica
– ident: e_1_2_7_40_1
  doi: 10.1007/s00425-008-0709-1
– ident: e_1_2_7_2_1
  doi: 10.1139/g96-120
– ident: e_1_2_7_58_1
  doi: 10.1007/s001220050654
– ident: e_1_2_7_20_1
  doi: 10.1007/s00122-006-0232-3
– ident: e_1_2_7_49_1
  doi: 10.1073/pnas.0704145104
– ident: e_1_2_7_15_1
  doi: 10.1534/genetics.109.110304
– ident: e_1_2_7_62_1
  doi: 10.1007/s00122-008-0851-y
– ident: e_1_2_7_59_1
  doi: 10.1038/30239
– ident: e_1_2_7_60_1
  doi: 10.2135/cropsci1996.0011183X003600050041x
– ident: e_1_2_7_22_1
  doi: 10.2307/1400446
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1365-313X.2006.02962.x
– ident: e_1_2_7_19_1
  doi: 10.1534/genetics.112.138578
– ident: e_1_2_7_63_1
  doi: 10.1371/journal.pgen.1003604
– ident: e_1_2_7_50_1
  doi: 10.1023/A:1014838024509
– ident: e_1_2_7_27_1
  doi: 10.1038/ng.1018
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-313X.2005.02591.x
– ident: e_1_2_7_48_1
  doi: 10.1007/BF00221905
– ident: e_1_2_7_30_1
  doi: 10.1242/dev.126.2.315
– ident: e_1_2_7_35_1
  doi: 10.1093/genetics/141.1.391
– ident: e_1_2_7_38_1
  doi: 10.1016/S1360-1385(99)01541-1
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1174276
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.052125199
– ident: e_1_2_7_56_1
  doi: 10.1007/s00122-007-0512-6
– ident: e_1_2_7_5_1
  doi: 10.1016/j.copbio.2014.11.023
– ident: e_1_2_7_43_1
  doi: 10.1104/pp.106.088815
– ident: e_1_2_7_26_1
  doi: 10.1111/jipb.12358
– reference: 18301915 - Planta. 2008 May;227(6):1377-88
– reference: 22138690 - Nat Genet. 2011 Dec 04;44(1):32-9
– reference: 24089449 - Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16969-74
– reference: 16784536 - BMC Genomics. 2006 Jun 19;7:158
– reference: 25845500 - J Integr Plant Biol. 2016 Jan;58(1):81-90
– reference: 25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80
– reference: 19822732 - Genetics. 2009 Dec;183(4):1555-63
– reference: 24683184 - J Hered. 2014 Jul-Aug;105(4):576-582
– reference: 21441432 - Plant Cell. 2011 Mar;23(3):942-60
– reference: 24651369 - Ann Bot. 2014 Nov;114(7):1445-58
– reference: 1968874 - Genetics. 1990 Mar;124(3):735-42
– reference: 17947434 - Genetics. 2007 Nov;177(3):1915-28
– reference: 23825971 - PLoS Genet. 2013 Jun;9(6):e1003604
– reference: 17308934 - Theor Appl Genet. 2007 May;114(7):1211-28
– reference: 22581231 - Nat Genet. 2012 May 13;44(6):720-4
– reference: 21217756 - Nat Genet. 2011 Feb;43(2):159-62
– reference: 12702653 - Development. 2003 Jun;130(11):2385-95
– reference: 7433111 - Nucleic Acids Res. 1980 Oct 10;8(19):4321-5
– reference: 19661422 - Science. 2009 Aug 7;325(5941):714-8
– reference: 24166558 - Theor Appl Genet. 1996 May;92(7):905-14
– reference: 17071646 - Plant Physiol. 2006 Dec;142(4):1523-36
– reference: 8536986 - Genetics. 1995 Sep;141(1):391-411
– reference: 17595297 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11376-81
– reference: 22660546 - Nat Genet. 2012 Jun 03;44(7):808-11
– reference: 12724300 - Bioinformatics. 2003 May 1;19(7):889-90
– reference: 18469947 - Genome. 1996 Oct;39(5):957-68
– reference: 11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13
– reference: 18539775 - Plant Physiol. 2008 Aug;147(4):2054-69
– reference: 20008571 - Genetics. 2010 Mar;184(3):799-812
– reference: 22542971 - Genetics. 2012 Jul;191(3):883-94
– reference: 15329722 - Nature. 2004 Aug 26;430(7003):1031-4
– reference: 18677461 - Theor Appl Genet. 2008 Nov;117(7):1129-39
– reference: 10511573 - Genetics. 1999 Oct;153(2):993-1007
– reference: 17181778 - Plant J. 2007 Jan;49(2):338-53
– reference: 22711828 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21
– reference: 9603518 - Nature. 1998 May 14;393(6681):166-8
– reference: 18454147 - Nat Genet. 2008 Jun;40(6):761-7
– reference: 16491426 - Theor Appl Genet. 2006 May;112(7):1295-305
– reference: 22912876 - PLoS One. 2012;7(8):e43450
– reference: 21217757 - Nat Genet. 2011 Feb;43(2):163-8
– reference: 15611184 - Genetics. 2004 Dec;168(4):2169-85
– reference: 11553732 - Plant Physiol. 2001 Sep;127(1):33-45
– reference: 10664615 - Trends Plant Sci. 2000 Feb;5(2):61-6
– reference: 25553537 - Curr Opin Biotechnol. 2015 Apr;32:121-9
– reference: 11983901 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6080-4
– reference: 22801873 - Theor Appl Genet. 2012 Nov;125(7):1539-51
– reference: 9847245 - Development. 1999 Jan;126(2):315-23
– reference: 20223762 - Development. 2010 Apr;137(8):1243-50
– reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64
– reference: 17339203 - Genetics. 2007 May;176(1):645-57
SSID ssj0009562
Score 2.4381943
Snippet The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently...
Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is...
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize ( Zea mays ), and leaf number is frequently...
Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is...
* The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 256
SubjectTerms Corn
Crosses, Genetic
Domestication
flowering
flowering time
Flowers - genetics
Flowers - physiology
genes
Genetic Association Studies
genetic markers
genetic overlap
genetic relationships
inbred lines
Inbreeding
leaf number
Leaves
loci
maize (Zea mays)
phenology
Phenotype
Physical Chromosome Mapping
plant architecture
Plant Leaves - anatomy & histology
Plant Leaves - genetics
Plants
pleiotropy
Quantitative Trait Loci - genetics
quantitative trait locus (QTL)
Reproducibility of Results
single nucleotide polymorphism
Time Factors
Zea mays
Zea mays - genetics
Zea mays - physiology
Title genetic architecture of leaf number and its genetic relationship to flowering time in maize
URI https://www.jstor.org/stable/newphytologist.210.1.256
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13765
https://www.ncbi.nlm.nih.gov/pubmed/26593156
https://www.proquest.com/docview/1768113249
https://www.proquest.com/docview/1768558246
https://www.proquest.com/docview/1780504602
https://www.proquest.com/docview/1803159347
https://pubmed.ncbi.nlm.nih.gov/PMC5063108
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEG52Vw9exPdGV2lFxEsk_UingydfyyC4LOrA3JrudLcTGJNhZ_agv96qvJjBdfESAl0JoR6pr5Lqrwh5yYN2HjJDKgRzUKB4nWoRs9QL5guNg2oU7nf-cqZmc_l5kS8OyNtxL0zPDzF9cMPI6N7XGODWbXaCvFkv3zAIj_yQ3MCttejkXJ7vMO4qPlIwK6kWA60QtvFMl-4lo8No27Er8Sq8-Xfb5C6c7fLR6R1yewCS9F1v-bvkIDT3yM33LYC9X_eJAfNT8A3cokh3fxbQNtJVsJH2o0CobTytt5tJ9mJsjlvWa7ptaVzhGDXIbxSn0NO6oT9t_Ts8IPPTT98_zNJhlkJaKcjRqQjRWl5GK2Vehsy5UPjcRw14pWBORihbvAoZoMPcl04AECgrFUUQKjjPdCEekqOmbcIxoY4BaKtk5qC2klVWlWBh54MqHdaazifk9ahUUw1E4zjvYmXGggP0bzr9J-TFJLru2TWuEjoGyxj7A956Zv6NIyceohZIrAl51ZlruhhKEfDObvIvRInheDMDqC4hJ6M9zRCkG8Og1GJQjcsyIc-nZQgv_Gdim9Be9jJ5rrlU18loUJxUGb9GRuM4jVLIIiGPejeaHporWGD4kMWeg00CSAG-v9LUy44KPAeEyTINKu9c8d9KNGfns-7k8f-LPiG3UNl9n9IJOdpeXIanAMG27lkXanD8-JX_AYWCLGE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aKuiL-N3UqquI-BLJfmSzAV9ULKe2R8Ee3NuSze56gWtytNcH_eudzRd3WItvgZ2EMB-Z32RnfwPwhjllLGaGmHNqsECxKlbcJ7Hl1GYqDKqR4bzzyVROZuLbPJ3vwIfhLEzHDzH-cAuR0X6vQ4CHH9IbUV6vFu8pxke6C7eEZFkY3MDE6QblrmQDB7MUct7zCoU-nvHWrWy064tmaEu8DnD-3Te5iWfbhHR0H-71SJJ87Ez_AHZc_RBuf2oQ7f16BBrtT9A5whlFsrlbQBpPlq7wpJsFQorakmp9OcpeDN1xi2pF1g3xyzBHDRMcCWPoSVWT86L67R7D7OjL2edJ3A9TiEuJSTrmzhcFy30hRJq7xBiX2dR6hYAlo0Z4rFusdAnCw9TmhiMSyEvpuePSGUtVxp_AXt3Ubh-IoYjaSpEYLK5EmZQ5mthYJ3MTik1jI3g3KFWXPdN4GHix1EPFgfrXrf4jeD2Krjp6jeuE9tEyuviJnz09-8ECKV6ALZhZI3jbmmu8GWsRdM929C-GiWbhYRphXQSHgz11H6WXmmKtRbEcF3kEr8ZljK-waVLUrrnqZNJUMSFvklGoOCETdoOMCvM0ci6yCJ52bjS-NJO4QMNLZlsONgoEDvDtlbpatFzgKUJMmihUeeuK_1ainp5O2ouD_xd9CXcmZyfH-vjr9PszuBsU3zUtHcLe-uLKPUc8tjYv2rD7A5n2LuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC52VxEv4nujq7Yi4iWSTjqdDp58DeNrGNCBuTXpdLcTGJNhd_agv96qvJjBdfEW6EoI9Uh9la7-CuB57JSxmBnCJOEGCxSrQpX4KLQJt5miQTWSzjt_ncnpQnxapssDeD2chen4IcYfbhQZ7feaAnxj_U6Q15vVK47hkR7CFdrsI_eOxXyHcVfGAwWzFHLZ0wpRG894614yOvRFM3QlXoQ3_26b3IWzbT6a3IQbPZBkbzrL34IDV9-Gq28bBHu_7oBG8zP0DTqiyHY3C1jj2doVnnWjQFhRW1Ztz0bZ06E5blVt2LZhfk1j1DC_MZpCz6qa_Syq3-4uLCYfvr-bhv0shbCUmKPDxPmiiHNfCJHmLjLGZTa1XiFeybgRHssWK12E6DC1uUkQCOSl9IlLpDOWqyy5B0d1U7tjYIYjaCtFZLC2EmVU5mhhY53MDdWaxgbwclCqLnuicZp3sdZDwYH6163-A3g2im46do2LhI7RMrr4gV89vfgWEyceoRZMrAG8aM013oylCHpnO_kXo0TH9DCNqC6Ak8Geug_SM82x1OJYjYs8gKfjMoYX7ZkUtWvOO5k0VbGQl8koVJyQUXyJjKJxGnkisgDud240vnQscYHTS2Z7DjYKEAX4_kpdrVoq8BQRJo8Uqrx1xX8rUc_m0_biwf-LPoFr8_cT_eXj7PNDuE5671qWTuBoe3ruHiEa25rHbdT9Aa8qLhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+genetic+architecture+of+leaf+number+and+its+genetic+relationship+to+flowering+time+in+maize&rft.jtitle=The+New+phytologist&rft.au=Li%2C+Dan&rft.au=Wang%2C+Xufeng&rft.au=Zhang%2C+Xiangbo&rft.au=Chen%2C+Qiuyue&rft.date=2016-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=210&rft.issue=1&rft.spage=256&rft.epage=268&rft_id=info:doi/10.1111%2Fnph.13765&rft_id=info%3Apmid%2F26593156&rft.externalDocID=PMC5063108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon