genetic architecture of leaf number and its genetic relationship to flowering time in maize
The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S...
Saved in:
Published in | The New phytologist Vol. 210; no. 1; pp. 256 - 268 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Academic Press
01.04.2016
New Phytologist Trust Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0028-646X 1469-8137 |
DOI | 10.1111/nph.13765 |
Cover
Loading…
Abstract | The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S₃ recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. |
---|---|
AbstractList | Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2S3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8,dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2S3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped by using 19,838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. * The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. * Here, using a large set of 866 maize-teosinte BC sub(2)S sub(3) recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. * We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. * This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. The number of leaves and their distributions on plants are critical factors determining plant architecture in maize ( Zea mays ), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC 2 S 3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above ( LA ) and below ( LB ) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN 8 , dlf1 and Zm CCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA 1‐1 , a major‐effect locus that specifically affects LA , was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S₃ recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC2S3 recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize‐teosinte BC₂S₃ recombinant inbred lines genotyped by using 19 838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near‐isogenic line analysis. Through fine mapping, qLA1‐1, a major‐effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. |
Author | Wu, Lishuan Li, Dan Huang, Cheng Wang, Xufeng Liang, Yameng Tian, Feng Zhang, Xiangbo Wu, Yaoyao Chen, Qiuyue Xu, Guanghui Wang, Chenglong Xu, Dingyi Tian, Jinge |
AuthorAffiliation | 1 National Maize Improvement Center of China China Agricultural University Beijing 100193 China |
AuthorAffiliation_xml | – name: 1 National Maize Improvement Center of China China Agricultural University Beijing 100193 China |
Author_xml | – sequence: 1 fullname: Li, Dan – sequence: 2 fullname: Wang, Xufeng – sequence: 3 fullname: Zhang, Xiangbo – sequence: 4 fullname: Chen, Qiuyue – sequence: 5 fullname: Xu, Guanghui – sequence: 6 fullname: Xu, Dingyi – sequence: 7 fullname: Wang, Chenglong – sequence: 8 fullname: Liang, Yameng – sequence: 9 fullname: Wu, Lishuan – sequence: 10 fullname: Huang, Cheng – sequence: 11 fullname: Tian, Jinge – sequence: 12 fullname: Wu, Yaoyao – sequence: 13 fullname: Tian, Feng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26593156$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7LZ64R_QgDd6MW2-Z-ZGkKJWKCpoQfAiZGbO7GaZSdYk47L-etP9KFoUzc0h5HlfzntyTtCR8w4QekzJGc3n3K0WZ5SXSt5DMypUXVT5doRmhLCqUEJ9OUYnMS4JIbVU7AE6ZkrWnEo1Q1_n4CDZFpvQLmyCNk0BsO_xAKbHbhobCNi4DtsU8YENMJhkvYsLu8LJ437wawjWzXGyI2Dr8GjsD3iI7vdmiPBoX0_R9ZvXny8ui6sPb99dvLoqWiWoLDj0xrC6N0LIGkjTQNnJrq94VZe0EX1Vyk4BkSTXuuGMyrpVPQeuoOloVfJT9HLnu5qaEboWXApm0KtgRxM22hurf39xdqHn_ruWRHFKqmzwfG8Q_LcJYtKjjS0Mg3Hgp6hpRfK0ai7Kf6NllTsVirD_QFUlZcWEyuizO-jST8HloW0pSjkTdaae_JrzNuDhNzNwvgPa4GMM0OvWpu1P5dh20JTom33ReV_0dl-y4sUdxcH0T-zefW0H2Pwd1O8_Xh4UxU6xjMmHW4WD9WqxSX7wc5ujshsHzbb9P93xvfHazION-voTI1QRQmneZcF_Ao486K8 |
CitedBy_id | crossref_primary_10_1016_j_cj_2020_03_009 crossref_primary_10_1371_journal_pone_0271424 crossref_primary_10_1111_nph_16772 crossref_primary_10_30910_turkjans_775861 crossref_primary_10_1007_s00122_024_04572_6 crossref_primary_10_1002_agg2_20477 crossref_primary_10_1111_mec_15359 crossref_primary_10_1111_pce_15119 crossref_primary_10_3389_fpls_2019_00814 crossref_primary_10_1088_1742_6596_2314_1_012010 crossref_primary_10_1371_journal_pgen_1008882 crossref_primary_10_1016_S2095_3119_16_61524_1 crossref_primary_10_1073_pnas_1720716115 crossref_primary_10_1073_pnas_1718058115 crossref_primary_10_3390_ijms25052694 crossref_primary_10_1007_s10681_020_02708_5 crossref_primary_10_1007_s11032_021_01208_1 crossref_primary_10_1093_insilicoplants_diad007 crossref_primary_10_3390_ijms25179607 crossref_primary_10_1111_nph_18559 crossref_primary_10_1007_s00122_023_04285_2 crossref_primary_10_1111_nph_15605 crossref_primary_10_1080_13102818_2023_2176169 crossref_primary_10_1111_jipb_13408 crossref_primary_10_3390_genes13101713 crossref_primary_10_1002_plr2_20134 crossref_primary_10_1093_aobpla_plab048 crossref_primary_10_3390_agriculture10090411 crossref_primary_10_3389_fpls_2024_1338086 crossref_primary_10_17097_ataunizfd_768620 crossref_primary_10_1371_journal_pgen_1008512 crossref_primary_10_1111_nph_15512 crossref_primary_10_1016_j_cj_2020_07_009 crossref_primary_10_1016_j_pbi_2021_102124 crossref_primary_10_1093_botlinnean_boac078 crossref_primary_10_1016_j_fcr_2024_109380 crossref_primary_10_1534_genetics_119_302594 crossref_primary_10_3389_fgene_2023_1150132 crossref_primary_10_1371_journal_pgen_1008791 crossref_primary_10_1007_s11032_019_1012_5 crossref_primary_10_1088_1755_1315_653_1_012081 crossref_primary_10_1007_s00122_018_3142_2 crossref_primary_10_1371_journal_pgen_1010664 crossref_primary_10_1016_j_cub_2018_07_029 crossref_primary_10_1038_s41467_024_54148_7 crossref_primary_10_1186_s12870_022_03711_9 crossref_primary_10_3389_fpls_2023_1006245 crossref_primary_10_1186_s12863_017_0503_9 crossref_primary_10_1186_s12870_018_1385_3 crossref_primary_10_1007_s10681_021_02912_x crossref_primary_10_1016_j_compag_2023_108349 crossref_primary_10_1007_s00425_019_03268_2 crossref_primary_10_1007_s00122_019_03426_w crossref_primary_10_3389_fpls_2024_1441288 crossref_primary_10_1007_s00122_023_04370_6 crossref_primary_10_1007_s00122_021_03907_x crossref_primary_10_3390_plants11192663 crossref_primary_10_1080_15427528_2022_2063776 crossref_primary_10_3389_fpls_2017_01437 crossref_primary_10_1093_genetics_iyac182 crossref_primary_10_1002_ppj2_20022 crossref_primary_10_1111_nph_14400 crossref_primary_10_3389_fpls_2019_00685 |
Cites_doi | 10.1038/ng.2309 10.2135/cropsci1993.0011183X003300060020x 10.1007/978-0-387-79418-1_3 10.1007/s11032-006-9071-9 10.1242/dev.00457 10.2135/cropsci1994.0011183X003400040010x 10.1073/pnas.1407401112 10.1104/pp.127.1.33 10.1079/9780851996011.0257 10.1093/aob/mcu032 10.1093/nar/8.19.4321 10.1038/ng.746 10.1073/pnas.1310949110 10.1534/genetics.104.032375 10.1093/jhered/esu019 10.1073/pnas.1203189109 10.1093/bioinformatics/btg112 10.1038/ng.2281 10.1242/dev.048348 10.1186/1471-2164-7-158 10.1038/ng.747 10.1038/nature02778 10.1534/genetics.106.067892 10.1007/s00122-012-1933-4 10.1534/genetics.107.076497 10.1104/pp.107.115261 10.1534/genetics.109.106922 10.1038/ng.143 10.1371/journal.pone.0043450 10.1105/tpc.110.081406 10.1093/genetics/153.2.993 10.1007/s00425-008-0709-1 10.1139/g96-120 10.1007/s001220050654 10.1007/s00122-006-0232-3 10.1073/pnas.0704145104 10.1534/genetics.109.110304 10.1007/s00122-008-0851-y 10.1038/30239 10.2135/cropsci1996.0011183X003600050041x 10.2307/1400446 10.1111/j.1365-313X.2006.02962.x 10.1534/genetics.112.138578 10.1371/journal.pgen.1003604 10.1023/A:1014838024509 10.1038/ng.1018 10.1111/j.1365-313X.2005.02591.x 10.1007/BF00221905 10.1242/dev.126.2.315 10.1093/genetics/141.1.391 10.1016/S1360-1385(99)01541-1 10.1126/science.1174276 10.1073/pnas.052125199 10.1007/s00122-007-0512-6 10.1016/j.copbio.2014.11.023 10.1104/pp.106.088815 10.1111/jipb.12358 |
ContentType | Journal Article |
Copyright | 2016 New Phytologist Trust 2015 The Authors. New Phytologist © 2015 New Phytologist Trust 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. Copyright © 2016 New Phytologist Trust |
Copyright_xml | – notice: 2016 New Phytologist Trust – notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust – notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. – notice: Copyright © 2016 New Phytologist Trust |
DBID | FBQ 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.13765 |
DatabaseName | AGRIS Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Genetics Abstracts AGRICOLA MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 268 |
ExternalDocumentID | PMC5063108 3963998611 26593156 10_1111_nph_13765 NPH13765 newphytologist.210.1.256 US201600110284 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31322042 – fundername: Recruitment Program of Global Experts – fundername: National Hi‐Tech Research and Development Program of China funderid: 2012AA10A307 – fundername: National Basic Research Program funderid: 2014CB147300 – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China grantid: 31322042 – fundername: National Hi‐Tech Research and Development Program of China grantid: 2012AA10A307 – fundername: National Basic Research Program grantid: 2014CB147300 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY 24P AEUQT AFPWT DOOOF ESX IPNFZ JSODD WRC AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6415-3efaa29fa4459e0bbe7d5df838971b4f875d6e05075d9b32159c6f3e36ebd1873 |
IEDL.DBID | 24P |
ISSN | 0028-646X |
IngestDate | Thu Aug 21 13:37:41 EDT 2025 Fri Jul 11 18:29:56 EDT 2025 Fri Jul 11 05:33:20 EDT 2025 Fri Jul 11 09:50:25 EDT 2025 Fri Jul 25 10:40:48 EDT 2025 Thu Apr 03 06:59:33 EDT 2025 Tue Jul 01 03:09:23 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Wed Jan 22 16:43:27 EST 2025 Thu Jul 03 22:44:20 EDT 2025 Thu Apr 03 09:43:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | leaf number maize (Zea mays) quantitative trait locus (QTL) genetic overlap flowering time |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6415-3efaa29fa4459e0bbe7d5df838971b4f875d6e05075d9b32159c6f3e36ebd1873 |
Notes | http://dx.doi.org/10.1111/nph.13765 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13765 |
PMID | 26593156 |
PQID | 1768113249 |
PQPubID | 2026848 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063108 proquest_miscellaneous_1803159347 proquest_miscellaneous_1780504602 proquest_miscellaneous_1768558246 proquest_journals_1768113249 pubmed_primary_26593156 crossref_citationtrail_10_1111_nph_13765 crossref_primary_10_1111_nph_13765 wiley_primary_10_1111_nph_13765_NPH13765 jstor_primary_newphytologist_210_1_256 fao_agris_US201600110284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2016 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2016 |
Publisher | Academic Press New Phytologist Trust Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Academic Press – name: New Phytologist Trust – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2007; 104 1996; 39 2004; 168 2000; 5 2015; 32 2002; 99 2008; 227 2010; 184 1997; 2 2003; 19 2008; 147 2012; 125 1996; 36 1999; 126 1998; 393 2013; 9 2002; 48 1997; 95 2007; 176 1993; 33 2007; 177 1994; 34 2008; 117 1983 2011; 23 2013; 110 2009; 325 2012 2006; 14 2009 2006; 7 1997 1992 1996; 92 2002 2014; 111 1990; 124 2006; 112 2005; 44 2014; 114 2012; 109 2003; 130 2001; 127 2007; 114 2004; 430 2014; 105 2010; 137 2012; 191 1999; 153 1980; 8 2011; 43 2006; 142 2009; 183 2015 2005; 50 2012; 7 2008; 40 2012; 44 1995; 141 2007; 49 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 Langdale J (e_1_2_7_34_1) 2005; 50 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_26_1 Neuffer MG (e_1_2_7_45_1) 1997 e_1_2_7_49_1 e_1_2_7_28_1 Moutiq R (e_1_2_7_41_1) 2002 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 Na C (e_1_2_7_44_1) 2006; 14 e_1_2_7_52_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 Gilmour AR (e_1_2_7_23_1) 2009 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Vlăduţu C (e_1_2_7_61_1) 1999; 153 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 9847245 - Development. 1999 Jan;126(2):315-23 12724300 - Bioinformatics. 2003 May 1;19(7):889-90 18539775 - Plant Physiol. 2008 Aug;147(4):2054-69 22581231 - Nat Genet. 2012 May 13;44(6):720-4 18469947 - Genome. 1996 Oct;39(5):957-68 7433111 - Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 17339203 - Genetics. 2007 May;176(1):645-57 22138690 - Nat Genet. 2011 Dec 04;44(1):32-9 22711828 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21 9603518 - Nature. 1998 May 14;393(6681):166-8 18301915 - Planta. 2008 May;227(6):1377-88 19661422 - Science. 2009 Aug 7;325(5941):714-8 16491426 - Theor Appl Genet. 2006 May;112(7):1295-305 24089449 - Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16969-74 25553537 - Curr Opin Biotechnol. 2015 Apr;32:121-9 22801873 - Theor Appl Genet. 2012 Nov;125(7):1539-51 21217756 - Nat Genet. 2011 Feb;43(2):159-62 17181778 - Plant J. 2007 Jan;49(2):338-53 21441432 - Plant Cell. 2011 Mar;23(3):942-60 16359397 - Plant J. 2005 Dec;44(6):1054-64 17308934 - Theor Appl Genet. 2007 May;114(7):1211-28 24166558 - Theor Appl Genet. 1996 May;92(7):905-14 25845500 - J Integr Plant Biol. 2016 Jan;58(1):81-90 21217757 - Nat Genet. 2011 Feb;43(2):163-8 25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80 15611184 - Genetics. 2004 Dec;168(4):2169-85 1968874 - Genetics. 1990 Mar;124(3):735-42 18454147 - Nat Genet. 2008 Jun;40(6):761-7 17947434 - Genetics. 2007 Nov;177(3):1915-28 22912876 - PLoS One. 2012;7(8):e43450 17071646 - Plant Physiol. 2006 Dec;142(4):1523-36 16784536 - BMC Genomics. 2006 Jun 19;7:158 24651369 - Ann Bot. 2014 Nov;114(7):1445-58 10511573 - Genetics. 1999 Oct;153(2):993-1007 15329722 - Nature. 2004 Aug 26;430(7003):1031-4 12702653 - Development. 2003 Jun;130(11):2385-95 23825971 - PLoS Genet. 2013 Jun;9(6):e1003604 11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13 10664615 - Trends Plant Sci. 2000 Feb;5(2):61-6 17595297 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11376-81 20223762 - Development. 2010 Apr;137(8):1243-50 19822732 - Genetics. 2009 Dec;183(4):1555-63 11983901 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6080-4 8536986 - Genetics. 1995 Sep;141(1):391-411 18677461 - Theor Appl Genet. 2008 Nov;117(7):1129-39 11553732 - Plant Physiol. 2001 Sep;127(1):33-45 22660546 - Nat Genet. 2012 Jun 03;44(7):808-11 20008571 - Genetics. 2010 Mar;184(3):799-812 22542971 - Genetics. 2012 Jul;191(3):883-94 24683184 - J Hered. 2014 Jul-Aug;105(4):576-582 |
References_xml | – year: 2015 article-title: Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem publication-title: Journal of Integrative Plant Biology – year: 2009 – volume: 39 start-page: 957 year: 1996 end-page: 968 article-title: Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize publication-title: Genome – volume: 50 start-page: 459 year: 2005 article-title: The then and now of maize leaf development publication-title: Maydica – volume: 40 start-page: 761 year: 2008 end-page: 767 article-title: Natural variation in is an important regulator of heading date and yield potential in rice publication-title: Nature Genetics – volume: 191 start-page: 883 year: 2012 end-page: 894 article-title: Megabase‐scale inversion polymorphism in the wild ancestor of maize publication-title: Genetics – volume: 2 start-page: 269 year: 1997 end-page: 293 article-title: Accounting for natural and extraneous variation in the analysis of field experiments publication-title: Journal of Agricultural, Biological, and Environmental Statistics – volume: 177 start-page: 1915 year: 2007 end-page: 1928 article-title: Linkage mapping of domestication loci in a large maize–teosinte backcross resource publication-title: Genetics – volume: 184 start-page: 799 year: 2010 end-page: 812 article-title: Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis publication-title: Genetics – start-page: 161 year: 1983 end-page: 180 – volume: 109 start-page: E1913 year: 2012 end-page: E1921 article-title: and the genetic basis of day‐length adaptation underlying the postdomestication spread of maize publication-title: Proceedings of the National Academy of Sciences, USA – volume: 9 start-page: e1003604 year: 2013 article-title: From many, one: genetic control of prolificacy during maize domestication publication-title: PLoS Genetics – volume: 127 start-page: 33 year: 2001 end-page: 45 article-title: The maize MADS Box gene affects node number and spikelet development and is co‐expressed with during flower development, in egg cells, and early embryogenesis publication-title: Plant Physiology – volume: 105 start-page: 576 year: 2014 end-page: 582 article-title: Defining the role of gene during maize domestication publication-title: Journal of Heredity – volume: 44 start-page: 808 year: 2012 end-page: 811 article-title: Comparative population genomics of maize domestication and improvement publication-title: Nature Genetics – volume: 126 start-page: 315 year: 1999 end-page: 323 article-title: Control of phyllotaxy in maize by the gene publication-title: Development – start-page: 257 year: 2002 end-page: 267 – volume: 8 start-page: 4321 year: 1980 end-page: 4326 article-title: Rapid isolation of high molecular weight plant DNA publication-title: Nucleic Acids Research – volume: 183 start-page: 1555 year: 2009 end-page: 1563 article-title: Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10 publication-title: Genetics – volume: 104 start-page: 11 376 year: 2007 end-page: 11 381 article-title: Conserved noncoding genomic sequences associated with a flowering‐time quantitative trait locus in maize publication-title: Proceedings of the National Academy of Sciences, USA – volume: 153 start-page: 993 year: 1999 end-page: 1007 article-title: Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures publication-title: Genetics – volume: 141 start-page: 391 year: 1995 article-title: Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific population publication-title: Genetics – volume: 44 start-page: 1054 year: 2005 end-page: 1064 article-title: Maize association population: a high‐resolution platform for quantitative trait locus dissection publication-title: Plant Journal – volume: 111 start-page: 18 775 year: 2014 end-page: 18 780 article-title: Maize SBP‐box transcription factors and affect yield traits by regulating the rate of lateral primordia initiation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 99 start-page: 6080 year: 2002 end-page: 6084 article-title: A single domestication for maize shown by multilocus microsatellite genotyping publication-title: Proceedings of the National Academy of Sciences, USA – year: 1997 – volume: 114 start-page: 1211 year: 2007 end-page: 1228 article-title: QTL mapping with near‐isogenic lines in maize publication-title: Theoretical and Applied Genetics – volume: 19 start-page: 889 year: 2003 end-page: 890 article-title: R/qtl: QTL mapping in experimental crosses publication-title: Bioinformatics – volume: 125 start-page: 1539 year: 2012 end-page: 1551 article-title: Detection of QTL for flowering time in multiple families of elite maize publication-title: Theoretical and Applied Genetics – volume: 168 start-page: 2169 year: 2004 end-page: 2185 article-title: Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta‐analysis and synteny conservation with the rice genome publication-title: Genetics – volume: 124 start-page: 735 year: 1990 end-page: 742 article-title: Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato publication-title: Genetics – volume: 34 start-page: 882 year: 1994 end-page: 896 article-title: Identification of quantitative trait loci using a small sample of topcrossed and F progeny from maize publication-title: Crop Science – start-page: 41 year: 2009 end-page: 55 – volume: 43 start-page: 159 year: 2011 end-page: 162 article-title: Genome‐wide association study of leaf architecture in the maize nested association mapping population publication-title: Nature Genetics – volume: 95 start-page: 1005 year: 1997 end-page: 1011 article-title: Heterogeneous inbred family (HIF) analysis: a method for developing near‐isogenic lines that differ at quantitative trait loci publication-title: Theoretical and Applied Genetics – volume: 36 start-page: 1320 year: 1996 end-page: 1327 article-title: Genetic mapping of qunatitative trait loci in maize in stress and nonstress environments: II. Plant height and flowering publication-title: Crop Science – volume: 7 start-page: e43450 year: 2012 article-title: A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling publication-title: PLoS ONE – volume: 14 start-page: 24 year: 2006 article-title: Analysis on canopy structure and photosynthetic characteristics of high yield maize population publication-title: Journal of Maize Sciences – volume: 147 start-page: 2054 year: 2008 end-page: 2069 article-title: Involvement of the MADS‐box gene in floral induction and inflorescence development in maize publication-title: Plant Physiology – volume: 33 start-page: 1209 year: 1993 end-page: 1216 article-title: Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize publication-title: Crop Science – volume: 23 start-page: 942 year: 2011 end-page: 960 article-title: The ‐like gene functions as a floral activator and is involved in photoperiod sensitivity in maize publication-title: The Plant Cell – volume: 112 start-page: 1295 year: 2006 end-page: 1305 article-title: Alignment of genetic maps and QTLs between inter‐and intra‐specific populations publication-title: Theoretical and Applied Genetics – volume: 130 start-page: 2385 year: 2003 end-page: 2395 article-title: Duplicate homologs and control inflorescence architecture and flower patterning in maize publication-title: Development – year: 1992 – volume: 44 start-page: 32 year: 2012 end-page: 39 article-title: Genome‐wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm publication-title: Nature Genetics – year: 2012 – volume: 430 start-page: 1031 year: 2004 end-page: 1034 article-title: Control of phyllotaxy by the cytokinin‐inducible response regulator homologue publication-title: Nature – volume: 325 start-page: 714 year: 2009 end-page: 718 article-title: The genetic architecture of maize flowering time publication-title: Science – volume: 393 start-page: 166 year: 1998 end-page: 168 article-title: Regulation of leaf initiation by the terminal ear 1 gene of maize publication-title: Nature – volume: 5 start-page: 61 year: 2000 end-page: 66 article-title: A floret by any other name: control of meristem identity in maize publication-title: Trends in Plant Science – volume: 92 start-page: 905 year: 1996 end-page: 914 article-title: Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis‐silking interval publication-title: Theoretical and Applied Genetics – volume: 142 start-page: 1523 year: 2006 end-page: 1536 article-title: encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize publication-title: Plant Physiology – volume: 32 start-page: 121 year: 2015 end-page: 129 article-title: Flowering time regulation in crops – what did we learn from Arabidopsis? publication-title: Current Opinion in Biotechnology – volume: 110 start-page: 16 969 year: 2013 end-page: 16 974 article-title: CACTA‐like transposable element in attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize publication-title: Proceedings of the National Academy of Sciences, USA – volume: 227 start-page: 1377 year: 2008 end-page: 1388 article-title: A maize CONSTANS‐like gene, , exhibits distinct diurnal expression patterns in varied photoperiods publication-title: Planta – volume: 48 start-page: 601 year: 2002 end-page: 613 article-title: Toward positional cloning of , a QTL controlling the transition from the vegetative to the reproductive phase in maize publication-title: Plant Molecular Biology – volume: 7 start-page: 158 year: 2006 article-title: The maize flowering time regulator defines a highly conserved zinc finger protein family in higher plants publication-title: BMC Genomics – volume: 114 start-page: 1445 year: 2014 end-page: 1458 article-title: Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals publication-title: Annals of Botany – volume: 43 start-page: 163 year: 2011 end-page: 168 article-title: Genome‐wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population publication-title: Nature Genetics – volume: 44 start-page: 720 year: 2012 end-page: 724 article-title: Parallel domestication of the genes in cereals publication-title: Nature Genetics – volume: 49 start-page: 338 year: 2007 end-page: 353 article-title: Subfunctionalization of and in the control of seedling and mature plant traits in maize publication-title: Plant Journal – volume: 176 start-page: 645 year: 2007 end-page: 657 article-title: Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by race O, and flowering time using advanced intercross maize lines publication-title: Genetics – volume: 117 start-page: 1129 year: 2008 end-page: 1139 article-title: Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers publication-title: Theoretical and Applied Genetics – volume: 137 start-page: 1243 year: 2010 end-page: 1250 article-title: The maize SBP‐box transcription factor encoded by regulates bract development and the establishment of meristem boundaries publication-title: Development – ident: e_1_2_7_28_1 doi: 10.1038/ng.2309 – ident: e_1_2_7_31_1 doi: 10.2135/cropsci1993.0011183X003300060020x – ident: e_1_2_7_51_1 – ident: e_1_2_7_13_1 doi: 10.1007/978-0-387-79418-1_3 – ident: e_1_2_7_46_1 doi: 10.1007/s11032-006-9071-9 – ident: e_1_2_7_6_1 doi: 10.1242/dev.00457 – ident: e_1_2_7_4_1 doi: 10.2135/cropsci1994.0011183X003400040010x – ident: e_1_2_7_12_1 doi: 10.1073/pnas.1407401112 – ident: e_1_2_7_47_1 – ident: e_1_2_7_25_1 doi: 10.1104/pp.127.1.33 – start-page: 257 volume-title: Quantitative genetics, genomics, and plant breeding year: 2002 ident: e_1_2_7_41_1 doi: 10.1079/9780851996011.0257 – ident: e_1_2_7_52_1 – ident: e_1_2_7_54_1 doi: 10.1093/aob/mcu032 – ident: e_1_2_7_42_1 doi: 10.1093/nar/8.19.4321 – ident: e_1_2_7_57_1 doi: 10.1038/ng.746 – ident: e_1_2_7_65_1 doi: 10.1073/pnas.1310949110 – volume: 14 start-page: 24 year: 2006 ident: e_1_2_7_44_1 article-title: Analysis on canopy structure and photosynthetic characteristics of high yield maize population publication-title: Journal of Maize Sciences – ident: e_1_2_7_10_1 doi: 10.1534/genetics.104.032375 – ident: e_1_2_7_33_1 doi: 10.1093/jhered/esu019 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.1203189109 – ident: e_1_2_7_8_1 doi: 10.1093/bioinformatics/btg112 – ident: e_1_2_7_36_1 doi: 10.1038/ng.2281 – ident: e_1_2_7_11_1 doi: 10.1242/dev.048348 – ident: e_1_2_7_14_1 doi: 10.1186/1471-2164-7-158 – ident: e_1_2_7_32_1 doi: 10.1038/ng.747 – ident: e_1_2_7_24_1 doi: 10.1038/nature02778 – ident: e_1_2_7_3_1 doi: 10.1534/genetics.106.067892 – volume-title: ASReml user guide release 3.0 year: 2009 ident: e_1_2_7_23_1 – ident: e_1_2_7_55_1 doi: 10.1007/s00122-012-1933-4 – ident: e_1_2_7_7_1 doi: 10.1534/genetics.107.076497 – ident: e_1_2_7_16_1 doi: 10.1104/pp.107.115261 – ident: e_1_2_7_18_1 doi: 10.1534/genetics.109.106922 – ident: e_1_2_7_64_1 doi: 10.1038/ng.143 – volume-title: Mutants of maize year: 1997 ident: e_1_2_7_45_1 – ident: e_1_2_7_17_1 doi: 10.1371/journal.pone.0043450 – ident: e_1_2_7_39_1 doi: 10.1105/tpc.110.081406 – volume: 153 start-page: 993 year: 1999 ident: e_1_2_7_61_1 article-title: Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures publication-title: Genetics doi: 10.1093/genetics/153.2.993 – volume: 50 start-page: 459 year: 2005 ident: e_1_2_7_34_1 article-title: The then and now of maize leaf development publication-title: Maydica – ident: e_1_2_7_40_1 doi: 10.1007/s00425-008-0709-1 – ident: e_1_2_7_2_1 doi: 10.1139/g96-120 – ident: e_1_2_7_58_1 doi: 10.1007/s001220050654 – ident: e_1_2_7_20_1 doi: 10.1007/s00122-006-0232-3 – ident: e_1_2_7_49_1 doi: 10.1073/pnas.0704145104 – ident: e_1_2_7_15_1 doi: 10.1534/genetics.109.110304 – ident: e_1_2_7_62_1 doi: 10.1007/s00122-008-0851-y – ident: e_1_2_7_59_1 doi: 10.1038/30239 – ident: e_1_2_7_60_1 doi: 10.2135/cropsci1996.0011183X003600050041x – ident: e_1_2_7_22_1 doi: 10.2307/1400446 – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-313X.2006.02962.x – ident: e_1_2_7_19_1 doi: 10.1534/genetics.112.138578 – ident: e_1_2_7_63_1 doi: 10.1371/journal.pgen.1003604 – ident: e_1_2_7_50_1 doi: 10.1023/A:1014838024509 – ident: e_1_2_7_27_1 doi: 10.1038/ng.1018 – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-313X.2005.02591.x – ident: e_1_2_7_48_1 doi: 10.1007/BF00221905 – ident: e_1_2_7_30_1 doi: 10.1242/dev.126.2.315 – ident: e_1_2_7_35_1 doi: 10.1093/genetics/141.1.391 – ident: e_1_2_7_38_1 doi: 10.1016/S1360-1385(99)01541-1 – ident: e_1_2_7_9_1 doi: 10.1126/science.1174276 – ident: e_1_2_7_37_1 doi: 10.1073/pnas.052125199 – ident: e_1_2_7_56_1 doi: 10.1007/s00122-007-0512-6 – ident: e_1_2_7_5_1 doi: 10.1016/j.copbio.2014.11.023 – ident: e_1_2_7_43_1 doi: 10.1104/pp.106.088815 – ident: e_1_2_7_26_1 doi: 10.1111/jipb.12358 – reference: 18301915 - Planta. 2008 May;227(6):1377-88 – reference: 22138690 - Nat Genet. 2011 Dec 04;44(1):32-9 – reference: 24089449 - Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16969-74 – reference: 16784536 - BMC Genomics. 2006 Jun 19;7:158 – reference: 25845500 - J Integr Plant Biol. 2016 Jan;58(1):81-90 – reference: 25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80 – reference: 19822732 - Genetics. 2009 Dec;183(4):1555-63 – reference: 24683184 - J Hered. 2014 Jul-Aug;105(4):576-582 – reference: 21441432 - Plant Cell. 2011 Mar;23(3):942-60 – reference: 24651369 - Ann Bot. 2014 Nov;114(7):1445-58 – reference: 1968874 - Genetics. 1990 Mar;124(3):735-42 – reference: 17947434 - Genetics. 2007 Nov;177(3):1915-28 – reference: 23825971 - PLoS Genet. 2013 Jun;9(6):e1003604 – reference: 17308934 - Theor Appl Genet. 2007 May;114(7):1211-28 – reference: 22581231 - Nat Genet. 2012 May 13;44(6):720-4 – reference: 21217756 - Nat Genet. 2011 Feb;43(2):159-62 – reference: 12702653 - Development. 2003 Jun;130(11):2385-95 – reference: 7433111 - Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 – reference: 19661422 - Science. 2009 Aug 7;325(5941):714-8 – reference: 24166558 - Theor Appl Genet. 1996 May;92(7):905-14 – reference: 17071646 - Plant Physiol. 2006 Dec;142(4):1523-36 – reference: 8536986 - Genetics. 1995 Sep;141(1):391-411 – reference: 17595297 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11376-81 – reference: 22660546 - Nat Genet. 2012 Jun 03;44(7):808-11 – reference: 12724300 - Bioinformatics. 2003 May 1;19(7):889-90 – reference: 18469947 - Genome. 1996 Oct;39(5):957-68 – reference: 11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13 – reference: 18539775 - Plant Physiol. 2008 Aug;147(4):2054-69 – reference: 20008571 - Genetics. 2010 Mar;184(3):799-812 – reference: 22542971 - Genetics. 2012 Jul;191(3):883-94 – reference: 15329722 - Nature. 2004 Aug 26;430(7003):1031-4 – reference: 18677461 - Theor Appl Genet. 2008 Nov;117(7):1129-39 – reference: 10511573 - Genetics. 1999 Oct;153(2):993-1007 – reference: 17181778 - Plant J. 2007 Jan;49(2):338-53 – reference: 22711828 - Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21 – reference: 9603518 - Nature. 1998 May 14;393(6681):166-8 – reference: 18454147 - Nat Genet. 2008 Jun;40(6):761-7 – reference: 16491426 - Theor Appl Genet. 2006 May;112(7):1295-305 – reference: 22912876 - PLoS One. 2012;7(8):e43450 – reference: 21217757 - Nat Genet. 2011 Feb;43(2):163-8 – reference: 15611184 - Genetics. 2004 Dec;168(4):2169-85 – reference: 11553732 - Plant Physiol. 2001 Sep;127(1):33-45 – reference: 10664615 - Trends Plant Sci. 2000 Feb;5(2):61-6 – reference: 25553537 - Curr Opin Biotechnol. 2015 Apr;32:121-9 – reference: 11983901 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6080-4 – reference: 22801873 - Theor Appl Genet. 2012 Nov;125(7):1539-51 – reference: 9847245 - Development. 1999 Jan;126(2):315-23 – reference: 20223762 - Development. 2010 Apr;137(8):1243-50 – reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64 – reference: 17339203 - Genetics. 2007 May;176(1):645-57 |
SSID | ssj0009562 |
Score | 2.4381943 |
Snippet | The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently... Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is... The number of leaves and their distributions on plants are critical factors determining plant architecture in maize ( Zea mays ), and leaf number is frequently... Summary The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is... * The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 256 |
SubjectTerms | Corn Crosses, Genetic Domestication flowering flowering time Flowers - genetics Flowers - physiology genes Genetic Association Studies genetic markers genetic overlap genetic relationships inbred lines Inbreeding leaf number Leaves loci maize (Zea mays) phenology Phenotype Physical Chromosome Mapping plant architecture Plant Leaves - anatomy & histology Plant Leaves - genetics Plants pleiotropy Quantitative Trait Loci - genetics quantitative trait locus (QTL) Reproducibility of Results single nucleotide polymorphism Time Factors Zea mays Zea mays - genetics Zea mays - physiology |
Title | genetic architecture of leaf number and its genetic relationship to flowering time in maize |
URI | https://www.jstor.org/stable/newphytologist.210.1.256 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13765 https://www.ncbi.nlm.nih.gov/pubmed/26593156 https://www.proquest.com/docview/1768113249 https://www.proquest.com/docview/1768558246 https://www.proquest.com/docview/1780504602 https://www.proquest.com/docview/1803159347 https://pubmed.ncbi.nlm.nih.gov/PMC5063108 |
Volume | 210 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEG52Vw9exPdGV2lFxEsk_UingydfyyC4LOrA3JrudLcTGJNhZ_agv96qvJjBdfESAl0JoR6pr5Lqrwh5yYN2HjJDKgRzUKB4nWoRs9QL5guNg2oU7nf-cqZmc_l5kS8OyNtxL0zPDzF9cMPI6N7XGODWbXaCvFkv3zAIj_yQ3MCttejkXJ7vMO4qPlIwK6kWA60QtvFMl-4lo8No27Er8Sq8-Xfb5C6c7fLR6R1yewCS9F1v-bvkIDT3yM33LYC9X_eJAfNT8A3cokh3fxbQNtJVsJH2o0CobTytt5tJ9mJsjlvWa7ptaVzhGDXIbxSn0NO6oT9t_Ts8IPPTT98_zNJhlkJaKcjRqQjRWl5GK2Vehsy5UPjcRw14pWBORihbvAoZoMPcl04AECgrFUUQKjjPdCEekqOmbcIxoY4BaKtk5qC2klVWlWBh54MqHdaazifk9ahUUw1E4zjvYmXGggP0bzr9J-TFJLru2TWuEjoGyxj7A956Zv6NIyceohZIrAl51ZlruhhKEfDObvIvRInheDMDqC4hJ6M9zRCkG8Og1GJQjcsyIc-nZQgv_Gdim9Be9jJ5rrlU18loUJxUGb9GRuM4jVLIIiGPejeaHporWGD4kMWeg00CSAG-v9LUy44KPAeEyTINKu9c8d9KNGfns-7k8f-LPiG3UNl9n9IJOdpeXIanAMG27lkXanD8-JX_AYWCLGE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aKuiL-N3UqquI-BLJfmSzAV9ULKe2R8Ee3NuSze56gWtytNcH_eudzRd3WItvgZ2EMB-Z32RnfwPwhjllLGaGmHNqsECxKlbcJ7Hl1GYqDKqR4bzzyVROZuLbPJ3vwIfhLEzHDzH-cAuR0X6vQ4CHH9IbUV6vFu8pxke6C7eEZFkY3MDE6QblrmQDB7MUct7zCoU-nvHWrWy064tmaEu8DnD-3Te5iWfbhHR0H-71SJJ87Ez_AHZc_RBuf2oQ7f16BBrtT9A5whlFsrlbQBpPlq7wpJsFQorakmp9OcpeDN1xi2pF1g3xyzBHDRMcCWPoSVWT86L67R7D7OjL2edJ3A9TiEuJSTrmzhcFy30hRJq7xBiX2dR6hYAlo0Z4rFusdAnCw9TmhiMSyEvpuePSGUtVxp_AXt3Ubh-IoYjaSpEYLK5EmZQ5mthYJ3MTik1jI3g3KFWXPdN4GHix1EPFgfrXrf4jeD2Krjp6jeuE9tEyuviJnz09-8ECKV6ALZhZI3jbmmu8GWsRdM929C-GiWbhYRphXQSHgz11H6WXmmKtRbEcF3kEr8ZljK-waVLUrrnqZNJUMSFvklGoOCETdoOMCvM0ci6yCJ52bjS-NJO4QMNLZlsONgoEDvDtlbpatFzgKUJMmihUeeuK_1ainp5O2ouD_xd9CXcmZyfH-vjr9PszuBsU3zUtHcLe-uLKPUc8tjYv2rD7A5n2LuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC52VxEv4nujq7Yi4iWSTjqdDp58DeNrGNCBuTXpdLcTGJNhd_agv96qvJjBdfEW6EoI9Uh9la7-CuB57JSxmBnCJOEGCxSrQpX4KLQJt5miQTWSzjt_ncnpQnxapssDeD2chen4IcYfbhQZ7feaAnxj_U6Q15vVK47hkR7CFdrsI_eOxXyHcVfGAwWzFHLZ0wpRG894614yOvRFM3QlXoQ3_26b3IWzbT6a3IQbPZBkbzrL34IDV9-Gq28bBHu_7oBG8zP0DTqiyHY3C1jj2doVnnWjQFhRW1Ztz0bZ06E5blVt2LZhfk1j1DC_MZpCz6qa_Syq3-4uLCYfvr-bhv0shbCUmKPDxPmiiHNfCJHmLjLGZTa1XiFeybgRHssWK12E6DC1uUkQCOSl9IlLpDOWqyy5B0d1U7tjYIYjaCtFZLC2EmVU5mhhY53MDdWaxgbwclCqLnuicZp3sdZDwYH6163-A3g2im46do2LhI7RMrr4gV89vfgWEyceoRZMrAG8aM013oylCHpnO_kXo0TH9DCNqC6Ak8Geug_SM82x1OJYjYs8gKfjMoYX7ZkUtWvOO5k0VbGQl8koVJyQUXyJjKJxGnkisgDud240vnQscYHTS2Z7DjYKEAX4_kpdrVoq8BQRJo8Uqrx1xX8rUc_m0_biwf-LPoFr8_cT_eXj7PNDuE5671qWTuBoe3ruHiEa25rHbdT9Aa8qLhY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+genetic+architecture+of+leaf+number+and+its+genetic+relationship+to+flowering+time+in+maize&rft.jtitle=The+New+phytologist&rft.au=Li%2C+Dan&rft.au=Wang%2C+Xufeng&rft.au=Zhang%2C+Xiangbo&rft.au=Chen%2C+Qiuyue&rft.date=2016-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=210&rft.issue=1&rft.spage=256&rft.epage=268&rft_id=info:doi/10.1111%2Fnph.13765&rft_id=info%3Apmid%2F26593156&rft.externalDocID=PMC5063108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |