Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels

Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled ar...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 108; no. 7; pp. 1693 - 1703
Main Authors Du, Yanan, Ghodousi, Majid, Qi, Hao, Haas, Nikhil, Xiao, Wenqian, Khademhosseini, Ali
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2011
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi‐level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost‐effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Biotechnol. Bioeng. 2011; 108:1693–1703. © 2011 Wiley Periodicals, Inc.
AbstractList Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. [PUBLICATION ABSTRACT]
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Biotechnol. Bioeng. 2011; 108:1693-1703. ? 2011 Wiley Periodicals, Inc.
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures.
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures.
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi‐level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost‐effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Biotechnol. Bioeng. 2011; 108:1693–1703. © 2011 Wiley Periodicals, Inc.
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures.Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures.
Author Xiao, Wenqian
Qi, Hao
Haas, Nikhil
Du, Yanan
Khademhosseini, Ali
Ghodousi, Majid
AuthorAffiliation 4 Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
2 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
1 Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
5 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
3 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA
AuthorAffiliation_xml – name: 3 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA
– name: 2 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: 5 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
– name: 1 Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
– name: 4 Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
Author_xml – sequence: 1
  givenname: Yanan
  surname: Du
  fullname: Du, Yanan
  organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477
– sequence: 2
  givenname: Majid
  surname: Ghodousi
  fullname: Ghodousi, Majid
  organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477
– sequence: 3
  givenname: Hao
  surname: Qi
  fullname: Qi, Hao
  organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477
– sequence: 4
  givenname: Nikhil
  surname: Haas
  fullname: Haas, Nikhil
  organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477
– sequence: 5
  givenname: Wenqian
  surname: Xiao
  fullname: Xiao, Wenqian
  organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477
– sequence: 6
  givenname: Ali
  surname: Khademhosseini
  fullname: Khademhosseini, Ali
  email: alik@rics.bwh.harvard.edu
  organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24238768$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21337336$$D View this record in MEDLINE/PubMed
BookMark eNqFkltv1DAQhS1URC_wwB9AERICHtL6ktjJCxJUUEoLSHQRT8hyvONdt1672Elh_z0Ou1ug4vJkWf7O8cyZ2UVbPnhA6D7B-wRjetDZfp8ygukttENwK0pMW7yFdjDGvGR1S7fRbkrn-Soazu-gbUoYE4zxHfT5DL4M4HurXKFSgkXnlkUwhQbnSqem4Iv5chrDDFyhg099HHSfij4U4GfWA8TiSiU9OBVLZy-gWFgdg54r78Glu-i2US7BvfW5hz6-ejk5fF2evj86Pnx-WmpeEVpODQAnouYGN22nGNEUKCbMVNhgzSmYqgNG8VQI1dFKdbyuRINb4IaRygi2h56tfC-HbgFTnRuKysnLaBcqLmVQVv7-4u1czsKVZLhtGB4NHq8NYsh5pF4ubBozUB7CkGQjakGZqHgmn_yTJFwQVtO2Ev9HMRGtIC1uMvrwBnoehuhzZrLhDeWkoqPfg1-7vG5vM80MPFoDeSTKmai8tuknV1HWCD7-drDi8qhSimCktr3qbRjDsS4XJse9knmv5I-9yoqnNxQb0z-xa_ev1sHy76B8cTzZKMqVwqYevl0rVLyQXDBRy0_vjiR-ezJ5c3LWyg_sO_gz61E
CODEN BIBIAU
CitedBy_id crossref_primary_10_1016_j_actbio_2019_03_016
crossref_primary_10_1088_1758_5082_5_3_035002
crossref_primary_10_3390_ijms160715997
crossref_primary_10_1039_C5TB00129C
crossref_primary_10_1039_C9TB00185A
crossref_primary_10_1039_C4LC00030G
crossref_primary_10_1039_C9RA00257J
crossref_primary_10_1088_1758_5090_abfca8
crossref_primary_10_1021_acsami_7b10960
crossref_primary_10_1007_s10856_014_5270_9
crossref_primary_10_1002_chem_202001881
crossref_primary_10_1039_c3lc51134k
crossref_primary_10_1016_j_biosx_2022_100106
crossref_primary_10_1016_j_coche_2013_12_008
crossref_primary_10_1016_j_cbpa_2012_03_014
crossref_primary_10_1002_smll_202003797
crossref_primary_10_1039_c2cc16744a
crossref_primary_10_1007_s10439_011_0452_9
crossref_primary_10_1021_ja204266a
crossref_primary_10_1142_S0219519414300014
crossref_primary_10_1002_marc_201700835
crossref_primary_10_1002_biot_201400238
crossref_primary_10_2139_ssrn_4097607
crossref_primary_10_1016_j_msec_2016_05_106
crossref_primary_10_1039_C4BM00141A
crossref_primary_10_1039_D1LC00807B
crossref_primary_10_1016_j_addr_2013_11_011
crossref_primary_10_1016_j_biomaterials_2015_05_031
crossref_primary_10_1016_j_tcb_2011_09_005
crossref_primary_10_1039_c2lc40267j
crossref_primary_10_1088_1748_605X_acf541
crossref_primary_10_1161_CIRCRESAHA_112_300638
crossref_primary_10_1002_adhm_201600913
crossref_primary_10_1126_science_aaf3627
crossref_primary_10_1002_ppsc_201200044
crossref_primary_10_1101_cshperspect_a025718
crossref_primary_10_1371_journal_pone_0109214
crossref_primary_10_1088_1758_5090_ac8620
crossref_primary_10_1039_C5BM00324E
crossref_primary_10_1016_j_carbpol_2023_121299
crossref_primary_10_1002_smll_201201709
crossref_primary_10_3389_fphys_2016_00006
crossref_primary_10_1089_ten_tea_2012_0181
crossref_primary_10_1039_C6LC00247A
crossref_primary_10_1002_adhm_202101392
crossref_primary_10_1039_C9RE00349E
crossref_primary_10_1186_2045_824X_3_24
crossref_primary_10_1016_j_biomaterials_2014_06_053
crossref_primary_10_1002_smll_201802368
crossref_primary_10_1159_000348359
crossref_primary_10_1038_ncomms12401
crossref_primary_10_1002_bit_25100
crossref_primary_10_1039_C6LC01204C
crossref_primary_10_1242_jcs_167783
crossref_primary_10_1016_j_jmbbm_2017_09_011
crossref_primary_10_3389_fbioe_2014_00052
crossref_primary_10_1016_j_jcis_2016_11_066
crossref_primary_10_1038_s41378_020_00229_8
crossref_primary_10_1016_j_actbio_2011_08_021
crossref_primary_10_1016_j_copbio_2011_04_001
crossref_primary_10_1021_acsami_9b05108
crossref_primary_10_1109_TMECH_2023_3304487
crossref_primary_10_1021_acsbiomaterials_9b01077
crossref_primary_10_1016_j_tcb_2012_09_004
crossref_primary_10_1088_1758_5090_7_1_015001
crossref_primary_10_1016_j_msec_2020_111143
crossref_primary_10_1089_ten_teb_2020_0322
crossref_primary_10_1002_adhm_202202840
crossref_primary_10_1115_1_4036226
crossref_primary_10_1016_j_jpha_2018_08_005
crossref_primary_10_1002_smll_201801724
crossref_primary_10_1016_j_actbio_2022_08_051
crossref_primary_10_1080_09205063_2015_1059018
crossref_primary_10_3390_mi13010075
crossref_primary_10_1002_admt_202300374
crossref_primary_10_1021_acsami_9b05517
crossref_primary_10_3390_mi10120840
crossref_primary_10_1039_C5LC00009B
crossref_primary_10_1088_1758_5082_5_2_025002
crossref_primary_10_1177_2211068211426694
crossref_primary_10_1021_co500033h
crossref_primary_10_5772_58820
crossref_primary_10_1002_admt_202201857
crossref_primary_10_1016_j_actbio_2016_12_020
crossref_primary_10_1021_acsami_6b15697
crossref_primary_10_1002_mabi_202100110
crossref_primary_10_1016_j_copbio_2013_09_004
crossref_primary_10_1002_bit_24550
crossref_primary_10_1016_j_actbio_2016_03_045
crossref_primary_10_1088_1758_5090_aa6121
crossref_primary_10_1021_acsami_0c17518
crossref_primary_10_1002_adhm_201700832
crossref_primary_10_1021_nn201826d
crossref_primary_10_1007_s10544_013_9763_y
crossref_primary_10_3389_fphys_2024_1425618
crossref_primary_10_1002_smll_201902815
crossref_primary_10_1021_acs_biomac_6b01672
crossref_primary_10_1016_j_msec_2015_09_104
crossref_primary_10_1016_j_mfglet_2023_08_009
crossref_primary_10_1063_1_4961422
crossref_primary_10_1002_admt_202200417
crossref_primary_10_1016_j_jbiosc_2012_10_014
crossref_primary_10_1007_s10439_016_1609_3
crossref_primary_10_1016_j_coche_2013_11_001
crossref_primary_10_1002_aic_12801
crossref_primary_10_1002_biot_201500298
crossref_primary_10_1002_adfm_201907670
crossref_primary_10_1002_adfm_201302901
crossref_primary_10_1088_1758_5090_aa7484
crossref_primary_10_2217_nnm_2019_0119
crossref_primary_10_1016_j_jbiosc_2016_03_023
crossref_primary_10_1002_bit_25493
crossref_primary_10_1109_RBME_2012_2233468
crossref_primary_10_1016_j_matlet_2012_09_024
crossref_primary_10_1021_acs_bioconjchem_5b00360
crossref_primary_10_3389_fbioe_2019_00144
crossref_primary_10_1002_adfm_201908857
crossref_primary_10_1016_j_biomaterials_2021_120688
crossref_primary_10_1002_adhm_201400150
crossref_primary_10_1002_adhm_201701067
crossref_primary_10_1007_s40139_015_0066_2
crossref_primary_10_1002_advs_202100798
crossref_primary_10_1088_2516_1091_abc947
crossref_primary_10_1002_wnan_171
crossref_primary_10_1002_term_1554
crossref_primary_10_1088_1758_5090_ab0621
crossref_primary_10_1002_adma_201303233
crossref_primary_10_1002_adfm_201908061
crossref_primary_10_1038_nprot_2013_110
crossref_primary_10_2217_rme_2018_0022
crossref_primary_10_1016_j_actbio_2018_12_052
crossref_primary_10_1016_j_copbio_2011_05_512
crossref_primary_10_1002_jbm_b_33768
crossref_primary_10_1016_j_pbiomolbio_2021_07_006
crossref_primary_10_1016_j_nantod_2014_04_008
crossref_primary_10_1016_j_mattod_2023_05_009
crossref_primary_10_1016_j_matlet_2018_06_045
crossref_primary_10_1109_TBME_2015_2437952
Cites_doi 10.1089/ten.2007.0196
10.1073/pnas.76.4.1882
10.1039/b814285h
10.1155/2009/823148
10.1517/14712590903563352
10.1002/jbm.820251211
10.1002/adma.200900584
10.1016/j.biomaterials.2008.12.084
10.1007/s10544-009-9361-1
10.1073/pnas.0801866105
10.1023/B:BMMD.0000048559.29932.27
10.1073/pnas.0507681102
10.1016/j.biomaterials.2010.01.082
10.1073/pnas.0737381100
10.1038/35025220
10.1038/scientificamerican0509-64
10.1089/ten.teb.2009.0085
10.1039/b314469k
10.1039/b618409j
10.1016/S0142-9612(02)00175-8
10.1038/nmat2022
10.1016/j.actbio.2005.10.005
10.1186/1471-2105-10-S12-S4
10.1103/PhysRevE.80.061901
10.1016/j.mvr.2006.02.005
10.1016/j.biomaterials.2010.03.064
10.1038/nature05058
10.1073/pnas.0602740103
10.1039/b615486g
10.1177/0022034509334774
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright John Wiley and Sons, Limited Jul 2011
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright John Wiley and Sons, Limited Jul 2011
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1002/bit.23102
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Engineering Research Database
MEDLINE
Solid State and Superconductivity Abstracts


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
Architecture
EISSN 1097-0290
EndPage 1703
ExternalDocumentID PMC3098307
2356183731
21337336
24238768
10_1002_bit_23102
BIT23102
ark_67375_WNG_0MKTJKS9_R
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR0847287
– fundername: Wyss Institute for Biologically Inspired Engineering
– fundername: US Army Corps of Engineers
– fundername: Office of Naval Research
– fundername: National Institute of Health
  funderid: HL092836; DE019024; HL099073
– fundername: NIDCR NIH HHS
  grantid: DE019024
– fundername: NHLBI NIH HHS
  grantid: R01 HL099073
– fundername: NHLBI NIH HHS
  grantid: HL099073
– fundername: NHLBI NIH HHS
  grantid: R01 HL092836
– fundername: NHLBI NIH HHS
  grantid: HL092836
– fundername: NIDCR NIH HHS
  grantid: RL1 DE019024
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c6412-dfee61756f089ba31c2e2013f40f0c62ef4be320d77ab24ab6547809e6f314f73
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Thu Aug 21 18:33:13 EDT 2025
Fri Jul 11 11:56:24 EDT 2025
Thu Jul 10 18:15:46 EDT 2025
Fri Jul 11 17:01:21 EDT 2025
Fri Jul 25 19:05:44 EDT 2025
Mon Jul 21 05:56:34 EDT 2025
Mon Jul 21 09:15:29 EDT 2025
Tue Jul 01 01:08:45 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Wed Aug 20 07:24:56 EDT 2025
Wed Oct 30 09:56:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Reconstruction
microengineered hydrogel
Biomimetics
Tissue engineering
Blood vessel
Network
biomimetic
biofabrication
Hydrogel
directed assembly
vascular constructs
Biomedical engineering
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6412-dfee61756f089ba31c2e2013f40f0c62ef4be320d77ab24ab6547809e6f314f73
Notes US Army Corps of Engineers
Wyss Institute for Biologically Inspired Engineering
ArticleID:BIT23102
Yanan Du and Majid Ghodousi contributed equally to this work.
istex:B2057CF405660645FB71565DF3A5CDAC93D091EA
ark:/67375/WNG-0MKTJKS9-R
National Institute of Health - No. HL092836; No. DE019024; No. HL099073
National Science Foundation - No. DMR0847287
Office of Naval Research
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3098307
PMID 21337336
PQID 868261427
PQPubID 48814
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098307
proquest_miscellaneous_875723746
proquest_miscellaneous_1671352947
proquest_miscellaneous_1017971908
proquest_journals_868261427
pubmed_primary_21337336
pascalfrancis_primary_24238768
crossref_citationtrail_10_1002_bit_23102
crossref_primary_10_1002_bit_23102
wiley_primary_10_1002_bit_23102_BIT23102
istex_primary_ark_67375_WNG_0MKTJKS9_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Lovett M, Lee K, Edwards A, Kaplan DL. 2009. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15(3): 353-370.
McGuigan AP, Sefton MV. 2006. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA 103(31): 11461-11466.
Borenstein JT, Tupper MM, Mack PJ, Weinberg EJ, Khalil AS, Hsiao J, Garcia-Cardena G. 2010. Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12(1): 71-79.
Khademhosseini A, Vacanti J, Langer R. 2009. Progress in tissue engieering. Sci Am 300(5): 64-71.
Shi Z, Chen N, Du Y, Khademhosseini A, Alber M. 2009. Stochastic model of self-assembly of cell-laden hydrogels. Phys Rev E Stat Nonlin Soft Matter Phys 80(6 Pt 1): 061901.
Stegemann JP, Kaszuba SN, Rowe SL. 2007. Review: Advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13(11): 2601-2613.
Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP. 2004. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices 6(4): 269-278.
Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442(7101): 368-373.
Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. 2009. Organ printing: Tissue spheroids as building blocks. Biomaterials 30(12): 2164-2174.
Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. 2010. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21): 5536-5544.
Weber LM, He J, Bradley B, Haskins K, Anseth KS. 2006. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater 2(1): 1-8.
Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. 2010. Towards organ printing: Engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10(3): 409-420.
Nichol JW, Khademhosseini A. 2009. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter 5(7): 1312-1319.
Jones PA. 1979. Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc Natl Acad Sci USA 76(4): 1882-1886.
Gombotz WR, Wang GH, Horbett TA, Hoffman AS. 1991. Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25(12): 1547-1562.
Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. 2007. A cell-laden microfluidic hydrogel. Lab Chip 7(6): 756-762.
Hacking SA, Khademhosseini A. 2009. Applications of microscale technologies for regenerative dentistry. J Dent Res 88(5): 409-421.
Khademhosseini A, Langer R, Borenstein J, Vacanti JP. 2006. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103(8): 2480-2487.
Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA, Wheeler AR, Kumacheva E. 2010. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31(13): 3459-3464.
Du Y, Lo E, Ali S, Khademhosseini A. 2008. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci USA 105(28): 9522-9527.
Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9): 5413-5418.
van der Meer AD, Poot AA, Duits MH, Feijen J, Vermes I. 2009. Microfluidic technology in vascular research. J Biomed Biotechnol 2009: 823148.
Chrobak KM, Potter DR, Tien J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3): 185-196.
Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407(6801): 249-257.
Nguyen KT, West JL. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22): 4307-4314.
Jen-Huang H, Jeongyun K, Nitin A, Arjun PS, Joseph EM, Arul J, Victor MU. 2009. Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv Mater 21(35): 3567-3571.
Andersson H, van den Berg A. 2004. Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities. Lab Chip 4(2): 98-103.
Menolascina F, Bellomo D, Maiwald T, Bevilacqua V, Ciminelli C, Paradiso A, Tommasi S. 2009. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics 10(Suppl 12): S4.
Golden AP, Tien J. 2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6): 720-725.
Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. 2007. Microfluidic scaffolds for tissue engineering. Nat Mater 6(11): 908-915.
2010; 12
2006; 71
2009; 88
2010; 10
2010; 31
2009; 21
2009; 80
2004; 4
2004; 6
2008; 105
2006; 2
1979; 76
2007; 13
2000; 407
2009; 2009
2009; 30
1991; 25
2009; 10
2002; 23
2007; 6
2007; 7
2009; 300
2009; 5
2003; 100
2006; 442
2009; 15
2006; 103
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
40251811 - Biotechnol Bioeng. 2025 Apr 18. doi: 10.1002/bit.29007.
40325613 - Biotechnol Bioeng. 2025 May 5. doi: 10.1002/bit.28953.
References_xml – reference: Jen-Huang H, Jeongyun K, Nitin A, Arjun PS, Joseph EM, Arul J, Victor MU. 2009. Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv Mater 21(35): 3567-3571.
– reference: Golden AP, Tien J. 2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6): 720-725.
– reference: Khademhosseini A, Langer R, Borenstein J, Vacanti JP. 2006. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103(8): 2480-2487.
– reference: Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. 2007. Microfluidic scaffolds for tissue engineering. Nat Mater 6(11): 908-915.
– reference: Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407(6801): 249-257.
– reference: Shi Z, Chen N, Du Y, Khademhosseini A, Alber M. 2009. Stochastic model of self-assembly of cell-laden hydrogels. Phys Rev E Stat Nonlin Soft Matter Phys 80(6 Pt 1): 061901.
– reference: Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. 2010. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21): 5536-5544.
– reference: Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. 2010. Towards organ printing: Engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10(3): 409-420.
– reference: Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442(7101): 368-373.
– reference: Hacking SA, Khademhosseini A. 2009. Applications of microscale technologies for regenerative dentistry. J Dent Res 88(5): 409-421.
– reference: van der Meer AD, Poot AA, Duits MH, Feijen J, Vermes I. 2009. Microfluidic technology in vascular research. J Biomed Biotechnol 2009: 823148.
– reference: McGuigan AP, Sefton MV. 2006. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA 103(31): 11461-11466.
– reference: Andersson H, van den Berg A. 2004. Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities. Lab Chip 4(2): 98-103.
– reference: Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9): 5413-5418.
– reference: Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP. 2004. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices 6(4): 269-278.
– reference: Chrobak KM, Potter DR, Tien J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3): 185-196.
– reference: Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA, Wheeler AR, Kumacheva E. 2010. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31(13): 3459-3464.
– reference: Du Y, Lo E, Ali S, Khademhosseini A. 2008. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci USA 105(28): 9522-9527.
– reference: Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. 2009. Organ printing: Tissue spheroids as building blocks. Biomaterials 30(12): 2164-2174.
– reference: Stegemann JP, Kaszuba SN, Rowe SL. 2007. Review: Advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13(11): 2601-2613.
– reference: Nichol JW, Khademhosseini A. 2009. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter 5(7): 1312-1319.
– reference: Gombotz WR, Wang GH, Horbett TA, Hoffman AS. 1991. Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25(12): 1547-1562.
– reference: Jones PA. 1979. Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc Natl Acad Sci USA 76(4): 1882-1886.
– reference: Borenstein JT, Tupper MM, Mack PJ, Weinberg EJ, Khalil AS, Hsiao J, Garcia-Cardena G. 2010. Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12(1): 71-79.
– reference: Lovett M, Lee K, Edwards A, Kaplan DL. 2009. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15(3): 353-370.
– reference: Menolascina F, Bellomo D, Maiwald T, Bevilacqua V, Ciminelli C, Paradiso A, Tommasi S. 2009. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics 10(Suppl 12): S4.
– reference: Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. 2007. A cell-laden microfluidic hydrogel. Lab Chip 7(6): 756-762.
– reference: Weber LM, He J, Bradley B, Haskins K, Anseth KS. 2006. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater 2(1): 1-8.
– reference: Nguyen KT, West JL. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22): 4307-4314.
– reference: Khademhosseini A, Vacanti J, Langer R. 2009. Progress in tissue engieering. Sci Am 300(5): 64-71.
– volume: 103
  start-page: 11461
  issue: 31
  year: 2006
  end-page: 11466
  article-title: Vascularized organoid engineered by modular assembly enables blood perfusion
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: S4
  issue: Suppl 12
  year: 2009
  article-title: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 756
  issue: 6
  year: 2007
  end-page: 762
  article-title: A cell‐laden microfluidic hydrogel
  publication-title: Lab Chip
– volume: 6
  start-page: 908
  issue: 11
  year: 2007
  end-page: 915
  article-title: Microfluidic scaffolds for tissue engineering
  publication-title: Nat Mater
– volume: 31
  start-page: 5536
  issue: 21
  year: 2010
  end-page: 5544
  article-title: Cell‐laden microengineered gelatin methacrylate hydrogels
  publication-title: Biomaterials
– volume: 76
  start-page: 1882
  issue: 4
  year: 1979
  end-page: 1886
  article-title: Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 269
  issue: 4
  year: 2004
  end-page: 278
  article-title: Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane)
  publication-title: Biomed Microdevices
– volume: 2009
  start-page: 823148
  year: 2009
  article-title: Microfluidic technology in vascular research
  publication-title: J Biomed Biotechnol
– volume: 105
  start-page: 9522
  issue: 28
  year: 2008
  end-page: 9527
  article-title: Directed assembly of cell‐laden microgels for fabrication of 3D tissue constructs
  publication-title: Proc Natl Acad Sci USA
– volume: 300
  start-page: 64
  issue: 5
  year: 2009
  end-page: 71
  article-title: Progress in tissue engieering
  publication-title: Sci Am
– volume: 88
  start-page: 409
  issue: 5
  year: 2009
  end-page: 421
  article-title: Applications of microscale technologies for regenerative dentistry
  publication-title: J Dent Res
– volume: 31
  start-page: 3459
  issue: 13
  year: 2010
  end-page: 3464
  article-title: A circular cross‐section PDMS microfluidics system for replication of cardiovascular flow conditions
  publication-title: Biomaterials
– volume: 7
  start-page: 720
  issue: 6
  year: 2007
  end-page: 725
  article-title: Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
  publication-title: Lab Chip
– volume: 15
  start-page: 353
  issue: 3
  year: 2009
  end-page: 370
  article-title: Vascularization strategies for tissue engineering
  publication-title: Tissue Eng Part B Rev
– volume: 25
  start-page: 1547
  issue: 12
  year: 1991
  end-page: 1562
  article-title: Protein adsorption to poly(ethylene oxide) surfaces
  publication-title: J Biomed Mater Res
– volume: 21
  start-page: 3567
  issue: 35
  year: 2009
  end-page: 3571
  article-title: Rapid fabrication of bio‐inspired 3D microfluidic vascular networks
  publication-title: Adv Mater
– volume: 30
  start-page: 2164
  issue: 12
  year: 2009
  end-page: 2174
  article-title: Organ printing: Tissue spheroids as building blocks
  publication-title: Biomaterials
– volume: 23
  start-page: 4307
  issue: 22
  year: 2002
  end-page: 4314
  article-title: Photopolymerizable hydrogels for tissue engineering applications
  publication-title: Biomaterials
– volume: 407
  start-page: 249
  issue: 6801
  year: 2000
  end-page: 257
  article-title: Angiogenesis in cancer and other diseases
  publication-title: Nature
– volume: 80
  start-page: 061901
  issue: 6 Pt 1
  year: 2009
  article-title: Stochastic model of self‐assembly of cell‐laden hydrogels
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
– volume: 10
  start-page: 409
  issue: 3
  year: 2010
  end-page: 420
  article-title: Towards organ printing: Engineering an intra‐organ branched vascular tree
  publication-title: Expert Opin Biol Ther
– volume: 71
  start-page: 185
  issue: 3
  year: 2006
  end-page: 196
  article-title: Formation of perfused, functional microvascular tubes in vitro
  publication-title: Microvasc Res
– volume: 13
  start-page: 2601
  issue: 11
  year: 2007
  end-page: 2613
  article-title: Review: Advances in vascular tissue engineering using protein‐based biomaterials
  publication-title: Tissue Eng
– volume: 442
  start-page: 368
  issue: 7101
  year: 2006
  end-page: 373
  article-title: The origins and the future of microfluidics
  publication-title: Nature
– volume: 2
  start-page: 1
  issue: 1
  year: 2006
  end-page: 8
  article-title: PEG‐based hydrogels as an in vitro encapsulation platform for testing controlled beta‐cell microenvironments
  publication-title: Acta Biomater
– volume: 5
  start-page: 1312
  issue: 7
  year: 2009
  end-page: 1319
  article-title: Modular tissue engineering: Engineering biological tissues from the bottom up
  publication-title: Soft Matter
– volume: 12
  start-page: 71
  issue: 1
  year: 2010
  end-page: 79
  article-title: Functional endothelialized microvascular networks with circular cross‐sections in a tissue culture substrate
  publication-title: Biomed Microdevices
– volume: 100
  start-page: 5413
  issue: 9
  year: 2003
  end-page: 5418
  article-title: Synthetic matrix metalloproteinase‐sensitive hydrogels for the conduction of tissue regeneration: Engineering cell‐invasion characteristics
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 98
  issue: 2
  year: 2004
  end-page: 103
  article-title: Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities
  publication-title: Lab Chip
– volume: 103
  start-page: 2480
  issue: 8
  year: 2006
  end-page: 2487
  article-title: Microscale technologies for tissue engineering and biology
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_7_27_1
  doi: 10.1089/ten.2007.0196
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.76.4.1882
– ident: e_1_2_7_23_1
  doi: 10.1039/b814285h
– ident: e_1_2_7_28_1
  doi: 10.1155/2009/823148
– ident: e_1_2_7_29_1
  doi: 10.1517/14712590903563352
– ident: e_1_2_7_10_1
  doi: 10.1002/jbm.820251211
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.200900584
– ident: e_1_2_7_21_1
  doi: 10.1016/j.biomaterials.2008.12.084
– ident: e_1_2_7_3_1
  doi: 10.1007/s10544-009-9361-1
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.0801866105
– ident: e_1_2_7_26_1
  doi: 10.1023/B:BMMD.0000048559.29932.27
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.0507681102
– ident: e_1_2_7_8_1
  doi: 10.1016/j.biomaterials.2010.01.082
– ident: e_1_2_7_18_1
  doi: 10.1073/pnas.0737381100
– ident: e_1_2_7_4_1
  doi: 10.1038/35025220
– ident: e_1_2_7_15_1
  doi: 10.1038/scientificamerican0509-64
– ident: e_1_2_7_17_1
  doi: 10.1089/ten.teb.2009.0085
– ident: e_1_2_7_2_1
  doi: 10.1039/b314469k
– ident: e_1_2_7_9_1
  doi: 10.1039/b618409j
– ident: e_1_2_7_22_1
  doi: 10.1016/S0142-9612(02)00175-8
– ident: e_1_2_7_5_1
  doi: 10.1038/nmat2022
– ident: e_1_2_7_30_1
  doi: 10.1016/j.actbio.2005.10.005
– ident: e_1_2_7_20_1
  doi: 10.1186/1471-2105-10-S12-S4
– ident: e_1_2_7_25_1
  doi: 10.1103/PhysRevE.80.061901
– ident: e_1_2_7_6_1
  doi: 10.1016/j.mvr.2006.02.005
– ident: e_1_2_7_24_1
  doi: 10.1016/j.biomaterials.2010.03.064
– ident: e_1_2_7_31_1
  doi: 10.1038/nature05058
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.0602740103
– ident: e_1_2_7_16_1
  doi: 10.1039/b615486g
– ident: e_1_2_7_11_1
  doi: 10.1177/0022034509334774
– reference: 40251811 - Biotechnol Bioeng. 2025 Apr 18. doi: 10.1002/bit.29007.
– reference: 40325613 - Biotechnol Bioeng. 2025 May 5. doi: 10.1002/bit.28953.
SSID ssj0007866
Score 2.4449189
Snippet Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in...
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in...
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1693
SubjectTerms Animals
Architecture
Assembly
biofabrication
Biological and medical sciences
Biomedical research
biomimetic
Biomimetics
Biotechnology
Cell Survival
Cells
Cells, Cultured
Construction
Construction costs
directed assembly
Endothelial Cells - physiology
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Humans
Hydrogel, Polyethylene Glycol Dimethacrylate
Hydrogels
Industrial applications and implications. Economical aspects
Mice
Microchannels
microengineered hydrogel
Microgels
Microvessels
Miscellaneous
Myocytes, Smooth Muscle - physiology
Three dimensional
Tissue engineering
Tissue Engineering - methods
vascular constructs
Title Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels
URI https://api.istex.fr/ark:/67375/WNG-0MKTJKS9-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.23102
https://www.ncbi.nlm.nih.gov/pubmed/21337336
https://www.proquest.com/docview/868261427
https://www.proquest.com/docview/1017971908
https://www.proquest.com/docview/1671352947
https://www.proquest.com/docview/875723746
https://pubmed.ncbi.nlm.nih.gov/PMC3098307
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRQg48EgpmEK1IFRxcWqvHT_Eqa0opVV7aFPRA9LKu9mlURIb1alEOPET-I38EmbWjzTQIsTNkWet7Ox45pv17DcArxOdGIyLqeuHWrkYj6WbYdRxtUb0bzBhSRUdcD48ivZOw_2z3tkSvG3OwlT8EO2GG70Z1l_TC57JcnNOGiqH0y6BE_K_VKtFgOh4Th0VJ9V3SsqYg17KG1Yhj2-2Ixdi0S1S61eqjcxKVI-p-lpcBzz_rJ-8imttYNp9AJ-aKVX1KKPu5VR21bff2B7_c84P4X4NWNlWZWGPYEnnHVjZyjFZn8zYBrMlpHZvvgO3t5urOztNI7kO3LvCebgC2Ykt3kbHMmYI3PVEjmesMIy-IPz8_mOcoSNk57PBRfFZj5kqaobbkk0LpusHsaZ-lgYMR5pNqKyQzjDjBMvHcLr7rr-z59Z9HlwVhT53BwYtA2FMZLwklVngK64RlwRoKsZTEdcmlDrg3iCOM8nDTFLD5MRLdWQCPzRxsArLeZHrp8Dwlz_gkRooo0NFsTcNIgzC0mAmrpR04E2z4kLVJOjUi2MsKvpmLlDFwqrYgVet6JeK-eM6oQ1rNq1EdjGiUrm4Jz4evRfe4UF__-AkFccOrC_YVTuA8CxGpMSBtcbQRO1GSpFEmP35IY8deNnexdWjJclyXVyWwrrUGGFd8heZiBox8jTE57AbZKixAQ_iMHLgSWXd87_oBwGxZjoQL9h9K0AU5Yt38uG5pSoPvDTBKIJqt2Z9syLF9oe-vXj276JrcLfa4afi6eewjOaoXyBEnMp16wt-AcBVZVU
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrVDhwCPlYQplQaji4tReO35IXNqKkjZNDm0qeqlW9maXRkls1KQS4cRP4DfyS5hZP9pAixA3R561srPjmW_Ws98AvI1UpDEuxrbrK2ljPE7tBKOOrRSif40JSyzpgHO3F7RP_IPT1ukSvK_OwhT8EPWGG70Zxl_TC04b0ltXrKHpcNYkdIIOeIU6epuE6uiKPCqMii-VlDN7rZhXvEIO36qHLkSjFVLsV6qOTKaoIF10trgJev5ZQXkd2ZrQtPcAzqpJFRUpo-blLG3Kb7_xPf7vrB_C_RKzsu3CyB7BksoasLadYb4-mbNNZqpIzfZ8A-7sVFeru1UvuQbcu0Z7uAbJsanfRt8yZojd1SQdz1muGX1E-Pn9xzhBX8jO54OL_LMaM5mXJLdTNsuZKh_EqhJaGjAcKTahykI6xowznD6Gk70P_d22XbZ6sGXgu9weaDQORDKBdqI4TTxXcoXQxENr0Y4MuNJ-qjzuDMIwSbmfpNQzOXJiFWjP9XXoPYHlLM_UM2D4yx3wQA6kVr6k8Bt7AcbhVGMyLmVqwbtqyYUsedCpHcdYFAzOXKCKhVGxBW9q0S8F-cdNQpvGbmqJ5GJE1XJhS3zqfRROt9M_6BzH4siCjQXDqgcQpMWgFFmwXlmaKD3JVEQBJoCuz0MLXtd3cfVoSZJM5ZdTYbxqiMgu-otMQL0Yeezjc9gtMtTbgHuhH1jwtDDvq7_oeh4RZ1oQLhh-LUAs5Yt3suG5YSv3nDjCQIJqN3Z9uyLFzn7fXDz_d9FXsNrudw_F4X6vsw53iw1_qqV-ActomuolIsZZumEcwy_L5Wlw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VrbgeOFIOUygLQhUvTu2140M89aC0DY1Qm4o-IK3s9S6NcrhqUonwxE_gN_JLmFkfaaBFiDdHnrWys-OZb9az3wC8jlSkMS7GtusraWM8Tu0Eo46tFKJ_jQlLLOmA80En2D32909aJwvwtjoLU_BD1Btu9GYYf00v-Fmm12ekoWlv0iRwgv53yQ-ciEx6-3DGHRVGxYdKSpm9VswrWiGHr9dD54LREun1KxVHJmPUjy4aW1yFPP8soLwMbE1k2rkHn6s5FQUp_ebFJG3Kb7_RPf7npO_D3RKxso3CxB7Agho1YHljhNn6cMrWmKkhNZvzDbixWV3d2qo6yTXgziXSw2VIjkz1NnqWAUPkrobpYMpyzegTws_vPwYJekJ2Os3O8y9qwGReUtyO2SRnqnwQqwpoaUCvr9iQ6grpEDNOcPwQjnfedbd27bLRgy0D3-V2ptE0EMcEGpcxTTxXcoXAxENb0Y4MuNJ-qjzuZGGYpNxPUuqYHDmxCrTn-jr0HsHiKB-pJ8Dwl5vxQGZSK19S8I29AKNwqjEVlzK14E214kKWLOjUjGMgCv5mLlDFwqjYgle16FlB_XGV0Joxm1oiOe9TrVzYEp8674Vz0O7ut49icWjB6pxd1QMI0GJIiixYqQxNlH5kLKIA0z_X56EFL-u7uHq0JMlI5RdjYXxqiLgu-otMQJ0Yeezjc9g1MtTZgHuhH1jwuLDu2V90PY9oMy0I5-y-FiCO8vk7o96p4Sr3nDjCMIJqN2Z9vSLF5l7XXDz9d9EXcPPj9o74sNdpr8DtYrefCqmfwSJapnqOcHGSrhq38Atu8mgo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+assembly+of+cell-laden+hydrogel+constructs+to+engineer+vascular-like+microchannels&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Du%2C+Yanan&rft.au=Ghodousi%2C+Majid&rft.au=Qi%2C+Hao&rft.au=Haas%2C+Nikhil&rft.date=2011-07-01&rft.issn=1097-0290&rft.volume=108&rft.issue=7&rft.spage=1693&rft.epage=1703&rft_id=info:doi/10.1002%2Fbit.23102&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon