Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled ar...
Saved in:
Published in | Biotechnology and bioengineering Vol. 108; no. 7; pp. 1693 - 1703 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2011
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi‐level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost‐effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Biotechnol. Bioeng. 2011; 108:1693–1703. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. [PUBLICATION ABSTRACT] Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Biotechnol. Bioeng. 2011; 108:1693-1703. ? 2011 Wiley Periodicals, Inc. Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi‐level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost‐effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. Biotechnol. Bioeng. 2011; 108:1693–1703. © 2011 Wiley Periodicals, Inc. Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures.Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures. |
Author | Xiao, Wenqian Qi, Hao Haas, Nikhil Du, Yanan Khademhosseini, Ali Ghodousi, Majid |
AuthorAffiliation | 4 Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA 2 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 1 Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA 5 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China 3 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA |
AuthorAffiliation_xml | – name: 3 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA – name: 2 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: 5 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China – name: 1 Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA – name: 4 Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA |
Author_xml | – sequence: 1 givenname: Yanan surname: Du fullname: Du, Yanan organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477 – sequence: 2 givenname: Majid surname: Ghodousi fullname: Ghodousi, Majid organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477 – sequence: 3 givenname: Hao surname: Qi fullname: Qi, Hao organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477 – sequence: 4 givenname: Nikhil surname: Haas fullname: Haas, Nikhil organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477 – sequence: 5 givenname: Wenqian surname: Xiao fullname: Xiao, Wenqian organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477 – sequence: 6 givenname: Ali surname: Khademhosseini fullname: Khademhosseini, Ali email: alik@rics.bwh.harvard.edu organization: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139; telephone: -768-8395; fax: -768-8477 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24238768$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21337336$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkltv1DAQhS1URC_wwB9AERICHtL6ktjJCxJUUEoLSHQRT8hyvONdt1672Elh_z0Ou1ug4vJkWf7O8cyZ2UVbPnhA6D7B-wRjetDZfp8ygukttENwK0pMW7yFdjDGvGR1S7fRbkrn-Soazu-gbUoYE4zxHfT5DL4M4HurXKFSgkXnlkUwhQbnSqem4Iv5chrDDFyhg099HHSfij4U4GfWA8TiSiU9OBVLZy-gWFgdg54r78Glu-i2US7BvfW5hz6-ejk5fF2evj86Pnx-WmpeEVpODQAnouYGN22nGNEUKCbMVNhgzSmYqgNG8VQI1dFKdbyuRINb4IaRygi2h56tfC-HbgFTnRuKysnLaBcqLmVQVv7-4u1czsKVZLhtGB4NHq8NYsh5pF4ubBozUB7CkGQjakGZqHgmn_yTJFwQVtO2Ev9HMRGtIC1uMvrwBnoehuhzZrLhDeWkoqPfg1-7vG5vM80MPFoDeSTKmai8tuknV1HWCD7-drDi8qhSimCktr3qbRjDsS4XJse9knmv5I-9yoqnNxQb0z-xa_ev1sHy76B8cTzZKMqVwqYevl0rVLyQXDBRy0_vjiR-ezJ5c3LWyg_sO_gz61E |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1016_j_actbio_2019_03_016 crossref_primary_10_1088_1758_5082_5_3_035002 crossref_primary_10_3390_ijms160715997 crossref_primary_10_1039_C5TB00129C crossref_primary_10_1039_C9TB00185A crossref_primary_10_1039_C4LC00030G crossref_primary_10_1039_C9RA00257J crossref_primary_10_1088_1758_5090_abfca8 crossref_primary_10_1021_acsami_7b10960 crossref_primary_10_1007_s10856_014_5270_9 crossref_primary_10_1002_chem_202001881 crossref_primary_10_1039_c3lc51134k crossref_primary_10_1016_j_biosx_2022_100106 crossref_primary_10_1016_j_coche_2013_12_008 crossref_primary_10_1016_j_cbpa_2012_03_014 crossref_primary_10_1002_smll_202003797 crossref_primary_10_1039_c2cc16744a crossref_primary_10_1007_s10439_011_0452_9 crossref_primary_10_1021_ja204266a crossref_primary_10_1142_S0219519414300014 crossref_primary_10_1002_marc_201700835 crossref_primary_10_1002_biot_201400238 crossref_primary_10_2139_ssrn_4097607 crossref_primary_10_1016_j_msec_2016_05_106 crossref_primary_10_1039_C4BM00141A crossref_primary_10_1039_D1LC00807B crossref_primary_10_1016_j_addr_2013_11_011 crossref_primary_10_1016_j_biomaterials_2015_05_031 crossref_primary_10_1016_j_tcb_2011_09_005 crossref_primary_10_1039_c2lc40267j crossref_primary_10_1088_1748_605X_acf541 crossref_primary_10_1161_CIRCRESAHA_112_300638 crossref_primary_10_1002_adhm_201600913 crossref_primary_10_1126_science_aaf3627 crossref_primary_10_1002_ppsc_201200044 crossref_primary_10_1101_cshperspect_a025718 crossref_primary_10_1371_journal_pone_0109214 crossref_primary_10_1088_1758_5090_ac8620 crossref_primary_10_1039_C5BM00324E crossref_primary_10_1016_j_carbpol_2023_121299 crossref_primary_10_1002_smll_201201709 crossref_primary_10_3389_fphys_2016_00006 crossref_primary_10_1089_ten_tea_2012_0181 crossref_primary_10_1039_C6LC00247A crossref_primary_10_1002_adhm_202101392 crossref_primary_10_1039_C9RE00349E crossref_primary_10_1186_2045_824X_3_24 crossref_primary_10_1016_j_biomaterials_2014_06_053 crossref_primary_10_1002_smll_201802368 crossref_primary_10_1159_000348359 crossref_primary_10_1038_ncomms12401 crossref_primary_10_1002_bit_25100 crossref_primary_10_1039_C6LC01204C crossref_primary_10_1242_jcs_167783 crossref_primary_10_1016_j_jmbbm_2017_09_011 crossref_primary_10_3389_fbioe_2014_00052 crossref_primary_10_1016_j_jcis_2016_11_066 crossref_primary_10_1038_s41378_020_00229_8 crossref_primary_10_1016_j_actbio_2011_08_021 crossref_primary_10_1016_j_copbio_2011_04_001 crossref_primary_10_1021_acsami_9b05108 crossref_primary_10_1109_TMECH_2023_3304487 crossref_primary_10_1021_acsbiomaterials_9b01077 crossref_primary_10_1016_j_tcb_2012_09_004 crossref_primary_10_1088_1758_5090_7_1_015001 crossref_primary_10_1016_j_msec_2020_111143 crossref_primary_10_1089_ten_teb_2020_0322 crossref_primary_10_1002_adhm_202202840 crossref_primary_10_1115_1_4036226 crossref_primary_10_1016_j_jpha_2018_08_005 crossref_primary_10_1002_smll_201801724 crossref_primary_10_1016_j_actbio_2022_08_051 crossref_primary_10_1080_09205063_2015_1059018 crossref_primary_10_3390_mi13010075 crossref_primary_10_1002_admt_202300374 crossref_primary_10_1021_acsami_9b05517 crossref_primary_10_3390_mi10120840 crossref_primary_10_1039_C5LC00009B crossref_primary_10_1088_1758_5082_5_2_025002 crossref_primary_10_1177_2211068211426694 crossref_primary_10_1021_co500033h crossref_primary_10_5772_58820 crossref_primary_10_1002_admt_202201857 crossref_primary_10_1016_j_actbio_2016_12_020 crossref_primary_10_1021_acsami_6b15697 crossref_primary_10_1002_mabi_202100110 crossref_primary_10_1016_j_copbio_2013_09_004 crossref_primary_10_1002_bit_24550 crossref_primary_10_1016_j_actbio_2016_03_045 crossref_primary_10_1088_1758_5090_aa6121 crossref_primary_10_1021_acsami_0c17518 crossref_primary_10_1002_adhm_201700832 crossref_primary_10_1021_nn201826d crossref_primary_10_1007_s10544_013_9763_y crossref_primary_10_3389_fphys_2024_1425618 crossref_primary_10_1002_smll_201902815 crossref_primary_10_1021_acs_biomac_6b01672 crossref_primary_10_1016_j_msec_2015_09_104 crossref_primary_10_1016_j_mfglet_2023_08_009 crossref_primary_10_1063_1_4961422 crossref_primary_10_1002_admt_202200417 crossref_primary_10_1016_j_jbiosc_2012_10_014 crossref_primary_10_1007_s10439_016_1609_3 crossref_primary_10_1016_j_coche_2013_11_001 crossref_primary_10_1002_aic_12801 crossref_primary_10_1002_biot_201500298 crossref_primary_10_1002_adfm_201907670 crossref_primary_10_1002_adfm_201302901 crossref_primary_10_1088_1758_5090_aa7484 crossref_primary_10_2217_nnm_2019_0119 crossref_primary_10_1016_j_jbiosc_2016_03_023 crossref_primary_10_1002_bit_25493 crossref_primary_10_1109_RBME_2012_2233468 crossref_primary_10_1016_j_matlet_2012_09_024 crossref_primary_10_1021_acs_bioconjchem_5b00360 crossref_primary_10_3389_fbioe_2019_00144 crossref_primary_10_1002_adfm_201908857 crossref_primary_10_1016_j_biomaterials_2021_120688 crossref_primary_10_1002_adhm_201400150 crossref_primary_10_1002_adhm_201701067 crossref_primary_10_1007_s40139_015_0066_2 crossref_primary_10_1002_advs_202100798 crossref_primary_10_1088_2516_1091_abc947 crossref_primary_10_1002_wnan_171 crossref_primary_10_1002_term_1554 crossref_primary_10_1088_1758_5090_ab0621 crossref_primary_10_1002_adma_201303233 crossref_primary_10_1002_adfm_201908061 crossref_primary_10_1038_nprot_2013_110 crossref_primary_10_2217_rme_2018_0022 crossref_primary_10_1016_j_actbio_2018_12_052 crossref_primary_10_1016_j_copbio_2011_05_512 crossref_primary_10_1002_jbm_b_33768 crossref_primary_10_1016_j_pbiomolbio_2021_07_006 crossref_primary_10_1016_j_nantod_2014_04_008 crossref_primary_10_1016_j_mattod_2023_05_009 crossref_primary_10_1016_j_matlet_2018_06_045 crossref_primary_10_1109_TBME_2015_2437952 |
Cites_doi | 10.1089/ten.2007.0196 10.1073/pnas.76.4.1882 10.1039/b814285h 10.1155/2009/823148 10.1517/14712590903563352 10.1002/jbm.820251211 10.1002/adma.200900584 10.1016/j.biomaterials.2008.12.084 10.1007/s10544-009-9361-1 10.1073/pnas.0801866105 10.1023/B:BMMD.0000048559.29932.27 10.1073/pnas.0507681102 10.1016/j.biomaterials.2010.01.082 10.1073/pnas.0737381100 10.1038/35025220 10.1038/scientificamerican0509-64 10.1089/ten.teb.2009.0085 10.1039/b314469k 10.1039/b618409j 10.1016/S0142-9612(02)00175-8 10.1038/nmat2022 10.1016/j.actbio.2005.10.005 10.1186/1471-2105-10-S12-S4 10.1103/PhysRevE.80.061901 10.1016/j.mvr.2006.02.005 10.1016/j.biomaterials.2010.03.064 10.1038/nature05058 10.1073/pnas.0602740103 10.1039/b615486g 10.1177/0022034509334774 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS Copyright John Wiley and Sons, Limited Jul 2011 |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS – notice: Copyright John Wiley and Sons, Limited Jul 2011 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1002/bit.23102 |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Engineering Research Database MEDLINE Solid State and Superconductivity Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology Architecture |
EISSN | 1097-0290 |
EndPage | 1703 |
ExternalDocumentID | PMC3098307 2356183731 21337336 24238768 10_1002_bit_23102 BIT23102 ark_67375_WNG_0MKTJKS9_R |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR0847287 – fundername: Wyss Institute for Biologically Inspired Engineering – fundername: US Army Corps of Engineers – fundername: Office of Naval Research – fundername: National Institute of Health funderid: HL092836; DE019024; HL099073 – fundername: NIDCR NIH HHS grantid: DE019024 – fundername: NHLBI NIH HHS grantid: R01 HL099073 – fundername: NHLBI NIH HHS grantid: HL099073 – fundername: NHLBI NIH HHS grantid: R01 HL092836 – fundername: NHLBI NIH HHS grantid: HL092836 – fundername: NIDCR NIH HHS grantid: RL1 DE019024 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c6412-dfee61756f089ba31c2e2013f40f0c62ef4be320d77ab24ab6547809e6f314f73 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Thu Aug 21 18:33:13 EDT 2025 Fri Jul 11 11:56:24 EDT 2025 Thu Jul 10 18:15:46 EDT 2025 Fri Jul 11 17:01:21 EDT 2025 Fri Jul 25 19:05:44 EDT 2025 Mon Jul 21 05:56:34 EDT 2025 Mon Jul 21 09:15:29 EDT 2025 Tue Jul 01 01:08:45 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Wed Aug 20 07:24:56 EDT 2025 Wed Oct 30 09:56:37 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Reconstruction microengineered hydrogel Biomimetics Tissue engineering Blood vessel Network biomimetic biofabrication Hydrogel directed assembly vascular constructs Biomedical engineering |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6412-dfee61756f089ba31c2e2013f40f0c62ef4be320d77ab24ab6547809e6f314f73 |
Notes | US Army Corps of Engineers Wyss Institute for Biologically Inspired Engineering ArticleID:BIT23102 Yanan Du and Majid Ghodousi contributed equally to this work. istex:B2057CF405660645FB71565DF3A5CDAC93D091EA ark:/67375/WNG-0MKTJKS9-R National Institute of Health - No. HL092836; No. DE019024; No. HL099073 National Science Foundation - No. DMR0847287 Office of Naval Research SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3098307 |
PMID | 21337336 |
PQID | 868261427 |
PQPubID | 48814 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098307 proquest_miscellaneous_875723746 proquest_miscellaneous_1671352947 proquest_miscellaneous_1017971908 proquest_journals_868261427 pubmed_primary_21337336 pascalfrancis_primary_24238768 crossref_citationtrail_10_1002_bit_23102 crossref_primary_10_1002_bit_23102 wiley_primary_10_1002_bit_23102_BIT23102 istex_primary_ark_67375_WNG_0MKTJKS9_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wiley Subscription Services, Inc |
References | Lovett M, Lee K, Edwards A, Kaplan DL. 2009. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15(3): 353-370. McGuigan AP, Sefton MV. 2006. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA 103(31): 11461-11466. Borenstein JT, Tupper MM, Mack PJ, Weinberg EJ, Khalil AS, Hsiao J, Garcia-Cardena G. 2010. Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12(1): 71-79. Khademhosseini A, Vacanti J, Langer R. 2009. Progress in tissue engieering. Sci Am 300(5): 64-71. Shi Z, Chen N, Du Y, Khademhosseini A, Alber M. 2009. Stochastic model of self-assembly of cell-laden hydrogels. Phys Rev E Stat Nonlin Soft Matter Phys 80(6 Pt 1): 061901. Stegemann JP, Kaszuba SN, Rowe SL. 2007. Review: Advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13(11): 2601-2613. Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP. 2004. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices 6(4): 269-278. Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442(7101): 368-373. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. 2009. Organ printing: Tissue spheroids as building blocks. Biomaterials 30(12): 2164-2174. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. 2010. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21): 5536-5544. Weber LM, He J, Bradley B, Haskins K, Anseth KS. 2006. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater 2(1): 1-8. Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. 2010. Towards organ printing: Engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10(3): 409-420. Nichol JW, Khademhosseini A. 2009. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter 5(7): 1312-1319. Jones PA. 1979. Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc Natl Acad Sci USA 76(4): 1882-1886. Gombotz WR, Wang GH, Horbett TA, Hoffman AS. 1991. Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25(12): 1547-1562. Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. 2007. A cell-laden microfluidic hydrogel. Lab Chip 7(6): 756-762. Hacking SA, Khademhosseini A. 2009. Applications of microscale technologies for regenerative dentistry. J Dent Res 88(5): 409-421. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. 2006. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103(8): 2480-2487. Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA, Wheeler AR, Kumacheva E. 2010. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31(13): 3459-3464. Du Y, Lo E, Ali S, Khademhosseini A. 2008. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci USA 105(28): 9522-9527. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9): 5413-5418. van der Meer AD, Poot AA, Duits MH, Feijen J, Vermes I. 2009. Microfluidic technology in vascular research. J Biomed Biotechnol 2009: 823148. Chrobak KM, Potter DR, Tien J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3): 185-196. Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407(6801): 249-257. Nguyen KT, West JL. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22): 4307-4314. Jen-Huang H, Jeongyun K, Nitin A, Arjun PS, Joseph EM, Arul J, Victor MU. 2009. Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv Mater 21(35): 3567-3571. Andersson H, van den Berg A. 2004. Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities. Lab Chip 4(2): 98-103. Menolascina F, Bellomo D, Maiwald T, Bevilacqua V, Ciminelli C, Paradiso A, Tommasi S. 2009. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics 10(Suppl 12): S4. Golden AP, Tien J. 2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6): 720-725. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. 2007. Microfluidic scaffolds for tissue engineering. Nat Mater 6(11): 908-915. 2010; 12 2006; 71 2009; 88 2010; 10 2010; 31 2009; 21 2009; 80 2004; 4 2004; 6 2008; 105 2006; 2 1979; 76 2007; 13 2000; 407 2009; 2009 2009; 30 1991; 25 2009; 10 2002; 23 2007; 6 2007; 7 2009; 300 2009; 5 2003; 100 2006; 442 2009; 15 2006; 103 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 40251811 - Biotechnol Bioeng. 2025 Apr 18. doi: 10.1002/bit.29007. 40325613 - Biotechnol Bioeng. 2025 May 5. doi: 10.1002/bit.28953. |
References_xml | – reference: Jen-Huang H, Jeongyun K, Nitin A, Arjun PS, Joseph EM, Arul J, Victor MU. 2009. Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv Mater 21(35): 3567-3571. – reference: Golden AP, Tien J. 2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6): 720-725. – reference: Khademhosseini A, Langer R, Borenstein J, Vacanti JP. 2006. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103(8): 2480-2487. – reference: Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. 2007. Microfluidic scaffolds for tissue engineering. Nat Mater 6(11): 908-915. – reference: Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407(6801): 249-257. – reference: Shi Z, Chen N, Du Y, Khademhosseini A, Alber M. 2009. Stochastic model of self-assembly of cell-laden hydrogels. Phys Rev E Stat Nonlin Soft Matter Phys 80(6 Pt 1): 061901. – reference: Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. 2010. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21): 5536-5544. – reference: Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. 2010. Towards organ printing: Engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10(3): 409-420. – reference: Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442(7101): 368-373. – reference: Hacking SA, Khademhosseini A. 2009. Applications of microscale technologies for regenerative dentistry. J Dent Res 88(5): 409-421. – reference: van der Meer AD, Poot AA, Duits MH, Feijen J, Vermes I. 2009. Microfluidic technology in vascular research. J Biomed Biotechnol 2009: 823148. – reference: McGuigan AP, Sefton MV. 2006. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA 103(31): 11461-11466. – reference: Andersson H, van den Berg A. 2004. Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities. Lab Chip 4(2): 98-103. – reference: Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9): 5413-5418. – reference: Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP. 2004. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices 6(4): 269-278. – reference: Chrobak KM, Potter DR, Tien J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3): 185-196. – reference: Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA, Wheeler AR, Kumacheva E. 2010. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31(13): 3459-3464. – reference: Du Y, Lo E, Ali S, Khademhosseini A. 2008. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci USA 105(28): 9522-9527. – reference: Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. 2009. Organ printing: Tissue spheroids as building blocks. Biomaterials 30(12): 2164-2174. – reference: Stegemann JP, Kaszuba SN, Rowe SL. 2007. Review: Advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13(11): 2601-2613. – reference: Nichol JW, Khademhosseini A. 2009. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter 5(7): 1312-1319. – reference: Gombotz WR, Wang GH, Horbett TA, Hoffman AS. 1991. Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25(12): 1547-1562. – reference: Jones PA. 1979. Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc Natl Acad Sci USA 76(4): 1882-1886. – reference: Borenstein JT, Tupper MM, Mack PJ, Weinberg EJ, Khalil AS, Hsiao J, Garcia-Cardena G. 2010. Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12(1): 71-79. – reference: Lovett M, Lee K, Edwards A, Kaplan DL. 2009. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15(3): 353-370. – reference: Menolascina F, Bellomo D, Maiwald T, Bevilacqua V, Ciminelli C, Paradiso A, Tommasi S. 2009. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics 10(Suppl 12): S4. – reference: Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. 2007. A cell-laden microfluidic hydrogel. Lab Chip 7(6): 756-762. – reference: Weber LM, He J, Bradley B, Haskins K, Anseth KS. 2006. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater 2(1): 1-8. – reference: Nguyen KT, West JL. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22): 4307-4314. – reference: Khademhosseini A, Vacanti J, Langer R. 2009. Progress in tissue engieering. Sci Am 300(5): 64-71. – volume: 103 start-page: 11461 issue: 31 year: 2006 end-page: 11466 article-title: Vascularized organoid engineered by modular assembly enables blood perfusion publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: S4 issue: Suppl 12 year: 2009 article-title: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering publication-title: BMC Bioinformatics – volume: 7 start-page: 756 issue: 6 year: 2007 end-page: 762 article-title: A cell‐laden microfluidic hydrogel publication-title: Lab Chip – volume: 6 start-page: 908 issue: 11 year: 2007 end-page: 915 article-title: Microfluidic scaffolds for tissue engineering publication-title: Nat Mater – volume: 31 start-page: 5536 issue: 21 year: 2010 end-page: 5544 article-title: Cell‐laden microengineered gelatin methacrylate hydrogels publication-title: Biomaterials – volume: 76 start-page: 1882 issue: 4 year: 1979 end-page: 1886 article-title: Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 269 issue: 4 year: 2004 end-page: 278 article-title: Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane) publication-title: Biomed Microdevices – volume: 2009 start-page: 823148 year: 2009 article-title: Microfluidic technology in vascular research publication-title: J Biomed Biotechnol – volume: 105 start-page: 9522 issue: 28 year: 2008 end-page: 9527 article-title: Directed assembly of cell‐laden microgels for fabrication of 3D tissue constructs publication-title: Proc Natl Acad Sci USA – volume: 300 start-page: 64 issue: 5 year: 2009 end-page: 71 article-title: Progress in tissue engieering publication-title: Sci Am – volume: 88 start-page: 409 issue: 5 year: 2009 end-page: 421 article-title: Applications of microscale technologies for regenerative dentistry publication-title: J Dent Res – volume: 31 start-page: 3459 issue: 13 year: 2010 end-page: 3464 article-title: A circular cross‐section PDMS microfluidics system for replication of cardiovascular flow conditions publication-title: Biomaterials – volume: 7 start-page: 720 issue: 6 year: 2007 end-page: 725 article-title: Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element publication-title: Lab Chip – volume: 15 start-page: 353 issue: 3 year: 2009 end-page: 370 article-title: Vascularization strategies for tissue engineering publication-title: Tissue Eng Part B Rev – volume: 25 start-page: 1547 issue: 12 year: 1991 end-page: 1562 article-title: Protein adsorption to poly(ethylene oxide) surfaces publication-title: J Biomed Mater Res – volume: 21 start-page: 3567 issue: 35 year: 2009 end-page: 3571 article-title: Rapid fabrication of bio‐inspired 3D microfluidic vascular networks publication-title: Adv Mater – volume: 30 start-page: 2164 issue: 12 year: 2009 end-page: 2174 article-title: Organ printing: Tissue spheroids as building blocks publication-title: Biomaterials – volume: 23 start-page: 4307 issue: 22 year: 2002 end-page: 4314 article-title: Photopolymerizable hydrogels for tissue engineering applications publication-title: Biomaterials – volume: 407 start-page: 249 issue: 6801 year: 2000 end-page: 257 article-title: Angiogenesis in cancer and other diseases publication-title: Nature – volume: 80 start-page: 061901 issue: 6 Pt 1 year: 2009 article-title: Stochastic model of self‐assembly of cell‐laden hydrogels publication-title: Phys Rev E Stat Nonlin Soft Matter Phys – volume: 10 start-page: 409 issue: 3 year: 2010 end-page: 420 article-title: Towards organ printing: Engineering an intra‐organ branched vascular tree publication-title: Expert Opin Biol Ther – volume: 71 start-page: 185 issue: 3 year: 2006 end-page: 196 article-title: Formation of perfused, functional microvascular tubes in vitro publication-title: Microvasc Res – volume: 13 start-page: 2601 issue: 11 year: 2007 end-page: 2613 article-title: Review: Advances in vascular tissue engineering using protein‐based biomaterials publication-title: Tissue Eng – volume: 442 start-page: 368 issue: 7101 year: 2006 end-page: 373 article-title: The origins and the future of microfluidics publication-title: Nature – volume: 2 start-page: 1 issue: 1 year: 2006 end-page: 8 article-title: PEG‐based hydrogels as an in vitro encapsulation platform for testing controlled beta‐cell microenvironments publication-title: Acta Biomater – volume: 5 start-page: 1312 issue: 7 year: 2009 end-page: 1319 article-title: Modular tissue engineering: Engineering biological tissues from the bottom up publication-title: Soft Matter – volume: 12 start-page: 71 issue: 1 year: 2010 end-page: 79 article-title: Functional endothelialized microvascular networks with circular cross‐sections in a tissue culture substrate publication-title: Biomed Microdevices – volume: 100 start-page: 5413 issue: 9 year: 2003 end-page: 5418 article-title: Synthetic matrix metalloproteinase‐sensitive hydrogels for the conduction of tissue regeneration: Engineering cell‐invasion characteristics publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 98 issue: 2 year: 2004 end-page: 103 article-title: Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities publication-title: Lab Chip – volume: 103 start-page: 2480 issue: 8 year: 2006 end-page: 2487 article-title: Microscale technologies for tissue engineering and biology publication-title: Proc Natl Acad Sci USA – ident: e_1_2_7_27_1 doi: 10.1089/ten.2007.0196 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.76.4.1882 – ident: e_1_2_7_23_1 doi: 10.1039/b814285h – ident: e_1_2_7_28_1 doi: 10.1155/2009/823148 – ident: e_1_2_7_29_1 doi: 10.1517/14712590903563352 – ident: e_1_2_7_10_1 doi: 10.1002/jbm.820251211 – ident: e_1_2_7_12_1 doi: 10.1002/adma.200900584 – ident: e_1_2_7_21_1 doi: 10.1016/j.biomaterials.2008.12.084 – ident: e_1_2_7_3_1 doi: 10.1007/s10544-009-9361-1 – ident: e_1_2_7_7_1 doi: 10.1073/pnas.0801866105 – ident: e_1_2_7_26_1 doi: 10.1023/B:BMMD.0000048559.29932.27 – ident: e_1_2_7_14_1 doi: 10.1073/pnas.0507681102 – ident: e_1_2_7_8_1 doi: 10.1016/j.biomaterials.2010.01.082 – ident: e_1_2_7_18_1 doi: 10.1073/pnas.0737381100 – ident: e_1_2_7_4_1 doi: 10.1038/35025220 – ident: e_1_2_7_15_1 doi: 10.1038/scientificamerican0509-64 – ident: e_1_2_7_17_1 doi: 10.1089/ten.teb.2009.0085 – ident: e_1_2_7_2_1 doi: 10.1039/b314469k – ident: e_1_2_7_9_1 doi: 10.1039/b618409j – ident: e_1_2_7_22_1 doi: 10.1016/S0142-9612(02)00175-8 – ident: e_1_2_7_5_1 doi: 10.1038/nmat2022 – ident: e_1_2_7_30_1 doi: 10.1016/j.actbio.2005.10.005 – ident: e_1_2_7_20_1 doi: 10.1186/1471-2105-10-S12-S4 – ident: e_1_2_7_25_1 doi: 10.1103/PhysRevE.80.061901 – ident: e_1_2_7_6_1 doi: 10.1016/j.mvr.2006.02.005 – ident: e_1_2_7_24_1 doi: 10.1016/j.biomaterials.2010.03.064 – ident: e_1_2_7_31_1 doi: 10.1038/nature05058 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.0602740103 – ident: e_1_2_7_16_1 doi: 10.1039/b615486g – ident: e_1_2_7_11_1 doi: 10.1177/0022034509334774 – reference: 40251811 - Biotechnol Bioeng. 2025 Apr 18. doi: 10.1002/bit.29007. – reference: 40325613 - Biotechnol Bioeng. 2025 May 5. doi: 10.1002/bit.28953. |
SSID | ssj0007866 |
Score | 2.4449189 |
Snippet | Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular‐like structures for tissue engineering or in... Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in... Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1693 |
SubjectTerms | Animals Architecture Assembly biofabrication Biological and medical sciences Biomedical research biomimetic Biomimetics Biotechnology Cell Survival Cells Cells, Cultured Construction Construction costs directed assembly Endothelial Cells - physiology Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry Humans Hydrogel, Polyethylene Glycol Dimethacrylate Hydrogels Industrial applications and implications. Economical aspects Mice Microchannels microengineered hydrogel Microgels Microvessels Miscellaneous Myocytes, Smooth Muscle - physiology Three dimensional Tissue engineering Tissue Engineering - methods vascular constructs |
Title | Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels |
URI | https://api.istex.fr/ark:/67375/WNG-0MKTJKS9-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.23102 https://www.ncbi.nlm.nih.gov/pubmed/21337336 https://www.proquest.com/docview/868261427 https://www.proquest.com/docview/1017971908 https://www.proquest.com/docview/1671352947 https://www.proquest.com/docview/875723746 https://pubmed.ncbi.nlm.nih.gov/PMC3098307 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRQg48EgpmEK1IFRxcWqvHT_Eqa0opVV7aFPRA9LKu9mlURIb1alEOPET-I38EmbWjzTQIsTNkWet7Ox45pv17DcArxOdGIyLqeuHWrkYj6WbYdRxtUb0bzBhSRUdcD48ivZOw_2z3tkSvG3OwlT8EO2GG70Z1l_TC57JcnNOGiqH0y6BE_K_VKtFgOh4Th0VJ9V3SsqYg17KG1Yhj2-2Ixdi0S1S61eqjcxKVI-p-lpcBzz_rJ-8imttYNp9AJ-aKVX1KKPu5VR21bff2B7_c84P4X4NWNlWZWGPYEnnHVjZyjFZn8zYBrMlpHZvvgO3t5urOztNI7kO3LvCebgC2Ykt3kbHMmYI3PVEjmesMIy-IPz8_mOcoSNk57PBRfFZj5kqaobbkk0LpusHsaZ-lgYMR5pNqKyQzjDjBMvHcLr7rr-z59Z9HlwVhT53BwYtA2FMZLwklVngK64RlwRoKsZTEdcmlDrg3iCOM8nDTFLD5MRLdWQCPzRxsArLeZHrp8Dwlz_gkRooo0NFsTcNIgzC0mAmrpR04E2z4kLVJOjUi2MsKvpmLlDFwqrYgVet6JeK-eM6oQ1rNq1EdjGiUrm4Jz4evRfe4UF__-AkFccOrC_YVTuA8CxGpMSBtcbQRO1GSpFEmP35IY8deNnexdWjJclyXVyWwrrUGGFd8heZiBox8jTE57AbZKixAQ_iMHLgSWXd87_oBwGxZjoQL9h9K0AU5Yt38uG5pSoPvDTBKIJqt2Z9syLF9oe-vXj276JrcLfa4afi6eewjOaoXyBEnMp16wt-AcBVZVU |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrVDhwCPlYQplQaji4tReO35IXNqKkjZNDm0qeqlW9maXRkls1KQS4cRP4DfyS5hZP9pAixA3R561srPjmW_Ws98AvI1UpDEuxrbrK2ljPE7tBKOOrRSif40JSyzpgHO3F7RP_IPT1ukSvK_OwhT8EPWGG70Zxl_TC04b0ltXrKHpcNYkdIIOeIU6epuE6uiKPCqMii-VlDN7rZhXvEIO36qHLkSjFVLsV6qOTKaoIF10trgJev5ZQXkd2ZrQtPcAzqpJFRUpo-blLG3Kb7_xPf7vrB_C_RKzsu3CyB7BksoasLadYb4-mbNNZqpIzfZ8A-7sVFeru1UvuQbcu0Z7uAbJsanfRt8yZojd1SQdz1muGX1E-Pn9xzhBX8jO54OL_LMaM5mXJLdTNsuZKh_EqhJaGjAcKTahykI6xowznD6Gk70P_d22XbZ6sGXgu9weaDQORDKBdqI4TTxXcoXQxENr0Y4MuNJ-qjzuDMIwSbmfpNQzOXJiFWjP9XXoPYHlLM_UM2D4yx3wQA6kVr6k8Bt7AcbhVGMyLmVqwbtqyYUsedCpHcdYFAzOXKCKhVGxBW9q0S8F-cdNQpvGbmqJ5GJE1XJhS3zqfRROt9M_6BzH4siCjQXDqgcQpMWgFFmwXlmaKD3JVEQBJoCuz0MLXtd3cfVoSZJM5ZdTYbxqiMgu-otMQL0Yeezjc9gtMtTbgHuhH1jwtDDvq7_oeh4RZ1oQLhh-LUAs5Yt3suG5YSv3nDjCQIJqN3Z9uyLFzn7fXDz_d9FXsNrudw_F4X6vsw53iw1_qqV-ActomuolIsZZumEcwy_L5Wlw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VrbgeOFIOUygLQhUvTu2140M89aC0DY1Qm4o-IK3s9S6NcrhqUonwxE_gN_JLmFkfaaBFiDdHnrWys-OZb9az3wC8jlSkMS7GtusraWM8Tu0Eo46tFKJ_jQlLLOmA80En2D32909aJwvwtjoLU_BD1Btu9GYYf00v-Fmm12ekoWlv0iRwgv53yQ-ciEx6-3DGHRVGxYdKSpm9VswrWiGHr9dD54LREun1KxVHJmPUjy4aW1yFPP8soLwMbE1k2rkHn6s5FQUp_ebFJG3Kb7_RPf7npO_D3RKxso3CxB7Agho1YHljhNn6cMrWmKkhNZvzDbixWV3d2qo6yTXgziXSw2VIjkz1NnqWAUPkrobpYMpyzegTws_vPwYJekJ2Os3O8y9qwGReUtyO2SRnqnwQqwpoaUCvr9iQ6grpEDNOcPwQjnfedbd27bLRgy0D3-V2ptE0EMcEGpcxTTxXcoXAxENb0Y4MuNJ-qjzuZGGYpNxPUuqYHDmxCrTn-jr0HsHiKB-pJ8Dwl5vxQGZSK19S8I29AKNwqjEVlzK14E214kKWLOjUjGMgCv5mLlDFwqjYgle16FlB_XGV0Joxm1oiOe9TrVzYEp8674Vz0O7ut49icWjB6pxd1QMI0GJIiixYqQxNlH5kLKIA0z_X56EFL-u7uHq0JMlI5RdjYXxqiLgu-otMQJ0Yeezjc9g1MtTZgHuhH1jwuLDu2V90PY9oMy0I5-y-FiCO8vk7o96p4Sr3nDjCMIJqN2Z9vSLF5l7XXDz9d9EXcPPj9o74sNdpr8DtYrefCqmfwSJapnqOcHGSrhq38Atu8mgo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+assembly+of+cell-laden+hydrogel+constructs+to+engineer+vascular-like+microchannels&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Du%2C+Yanan&rft.au=Ghodousi%2C+Majid&rft.au=Qi%2C+Hao&rft.au=Haas%2C+Nikhil&rft.date=2011-07-01&rft.issn=1097-0290&rft.volume=108&rft.issue=7&rft.spage=1693&rft.epage=1703&rft_id=info:doi/10.1002%2Fbit.23102&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |