Glucose metabolism is differentially altered by choline and methionine in bovine neonatal hepatocytes

Choline and methionine serve essential roles in the liver that may interact with glucose metabolism. Our objectives were to quantify glucose export, cellular glycogen, and expression of genes controlling oxidation and gluconeogenesis in primary bovine neonatal hepatocytes exposed to increasing conce...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 5; p. e0217160
Main Authors Chandler, Tawny L, White, Heather M
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 29.05.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Choline and methionine serve essential roles in the liver that may interact with glucose metabolism. Our objectives were to quantify glucose export, cellular glycogen, and expression of genes controlling oxidation and gluconeogenesis in primary bovine neonatal hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM) with or without fatty acids (FA). Primary hepatocytes isolated from 3 Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, 4528 μmol/L) and DLM (16, 30, 100, 300 μmol/L) with or without a 1 mmol/L FA cocktail in a factorial design. After 24 h, media was harvested to quantify glucose, β-hydroxybutyrate (BHB), and cells harvested to quantify glycogen, DNA, and gene expression. No interactions between CC and DLM were detected. The potential two-way interaction between CC or DLM and FA was partitioned into three contrasts when P ≤ 0.20: linear without FA, linear with FA, difference of slope. Fatty acids did not affect glucose or cellular glycogen but increased pyruvate carboxylase (PC), cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCKc, PEPCKm), and glucose-6-phosphatase (G6PC) expression. Increasing CC decreased glucose but increased cellular glycogen. Expression of PC and PEPCKc was increased by CC during FA treatment. Increasing DLM did not affect metabolites or PC expression, although PEPCKc was marginally decreased. Methionine did not affect G6PC, while CC had a marginal quadratic effect on G6PC. Oxidative and gluconeogenic enzymes appear to respond to FA in primary bovine neonatal hepatocytes. Increased PC and PEPCKc by CC during FA treatment suggest increased gluconeogenic capacity. Changes in G6PC may have shifted glucose-6-phosphate towards cellular glycogen; however, subsequent examination of G6PC protein is needed. Unaltered PC and marginally decreased PEPCKc suggest increased oxidative capacity with DLM, although BHB export was unaltered. The differential regulation supports unique effects of CC and DLM within bovine hepatocytes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: This research was supported by funding provided through the Real Science Initiative Grant by Balchem Corporation, New Hampton, NY (http://www.balchem.com/). This does not alter adherence to PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0217160