Fully hardware-implemented memristor convolutional neural network
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks 1 – 4 . However, convolutional neural networks (CNNs)—one of the most important models for image recognition 5 —have not yet been fully hardware-implemented using memristor cross...
Saved in:
Published in | Nature (London) Vol. 577; no. 7792; pp. 641 - 646 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.01.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks
1
–
4
. However, convolutional neural networks (CNNs)—one of the most important models for image recognition
5
—have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices
6
–
9
. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST
10
image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.
A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units. |
---|---|
AbstractList | Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks.sup.1-4. However, convolutional neural networks (CNNs)--one of the most important models for image recognition.sup.5--have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices.sup.6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST.sup.10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks.sup.1-4. However, convolutional neural networks (CNNs)--one of the most important models for image recognition.sup.5--have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices.sup.6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST.sup.10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units. Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1-4. However, convolutional neural networks (CNNs)-one of the most important models for image recognition5-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1-4. However, convolutional neural networks (CNNs)-one of the most important models for image recognition5-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. Memristor-enabled neuromorphic computing systems provide a fast and energyefficient approach to training neural networks1-4. However, convolutional neural networks (CNNs)-one of the most important models for image recognition5-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybridtraining method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks . However, convolutional neural networks (CNNs)-one of the most important models for image recognition -have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices . Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks 1 – 4 . However, convolutional neural networks (CNNs)—one of the most important models for image recognition 5 —have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices 6 – 9 . Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST 10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units. |
Audience | Academic |
Author | Qian, He Zhang, Wenqiang Tang, Jianshi Yao, Peng Gao, Bin Zhang, Qingtian Wu, Huaqiang Yang, J. Joshua |
Author_xml | – sequence: 1 givenname: Peng surname: Yao fullname: Yao, Peng organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 2 givenname: Huaqiang surname: Wu fullname: Wu, Huaqiang email: wuhq@tsinghua.edu.cn organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University – sequence: 3 givenname: Bin surname: Gao fullname: Gao, Bin organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University – sequence: 4 givenname: Jianshi surname: Tang fullname: Tang, Jianshi organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University – sequence: 5 givenname: Qingtian surname: Zhang fullname: Zhang, Qingtian organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 6 givenname: Wenqiang surname: Zhang fullname: Zhang, Wenqiang organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 7 givenname: J. Joshua surname: Yang fullname: Yang, J. Joshua organization: Department of Electrical and Computer Engineering, University of Massachusetts – sequence: 8 givenname: He surname: Qian fullname: Qian, He organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31996818$$D View this record in MEDLINE/PubMed |
BookMark | eNp90k9v0zAYBnALDbFu8AG4oAouIOTh_0mOVcVg0gQSDHG0HOdN8Ujszk7Y9u3n0MHo1KEcLEW_541jPwdozwcPCD2n5IgSXr5LgspSYcIIppVgWDxCMyoKhYUqiz00I4SVmJRc7aODlM4JIZIW4gna57SqVEnLGVocj113Pf9hYnNpImDXrzvowQ_QzHvoo0tDiHMb_K_QjYML3nRzD2P8vQyXIf58ih63pkvw7HY9RN-O358tP-LTzx9OlotTbJUgAwZqWN0oUzHR8kYWRBJLaC2s5QxoVdqGGmuUkaaquK1b1lDaCEJUrZgVBeOH6PVm7jqGixHSoHuXLHSd8RDGpBkXZVEVgshMX92j52GMeeuTkpxUlJfqTq1MB9r5NgzR2GmoXihFVCGlFFnhHWoFHvIZ5OtoXX695V_u8HbtLvS_6GgHyk8DvbM7p77ZCmQzwNWwMmNK-uTrl2379mG7OPu-_LStX9ye1Vj30Oh1dL2J1_pPRTKgG2BjSClC-5dQoqca6k0Nda6hnmqop6HFvYx1g5nqk__Tdf9Nsk0y5a_4FcS7q3s4dAMxEusy |
CitedBy_id | crossref_primary_10_1016_j_device_2024_100598 crossref_primary_10_3389_fncom_2022_859874 crossref_primary_10_1016_j_eswa_2024_126205 crossref_primary_10_1088_1361_6463_ad0b52 crossref_primary_10_1002_aelm_202001181 crossref_primary_10_1021_acssensors_3c01273 crossref_primary_10_1038_s41563_024_02088_4 crossref_primary_10_1007_s12530_022_09456_y crossref_primary_10_34133_2022_9859508 crossref_primary_10_1063_5_0170147 crossref_primary_10_1002_adfm_202213064 crossref_primary_10_1021_acsnano_3c03505 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1007_s11432_023_3785_8 crossref_primary_10_1038_s41467_023_36270_0 crossref_primary_10_1016_j_mee_2022_111778 crossref_primary_10_1016_j_sysarc_2021_102232 crossref_primary_10_1063_5_0009482 crossref_primary_10_1109_JPROC_2020_3003007 crossref_primary_10_35848_1347_4065_ac665d crossref_primary_10_3390_s20216229 crossref_primary_10_1039_D3TC02309E crossref_primary_10_1103_PhysRevApplied_18_014039 crossref_primary_10_1088_2634_4386_ac7d05 crossref_primary_10_1126_sciadv_adp3710 crossref_primary_10_1038_s41928_024_01315_9 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1007_s11071_021_06403_5 crossref_primary_10_1039_D2QM00151A crossref_primary_10_1109_TCSI_2021_3084867 crossref_primary_10_3390_electronics10060645 crossref_primary_10_1016_j_neucom_2021_04_061 crossref_primary_10_1109_MNANO_2023_3297106 crossref_primary_10_1109_TCSI_2023_3329337 crossref_primary_10_1038_s41467_024_45670_9 crossref_primary_10_1038_s41598_023_32338_5 crossref_primary_10_1016_j_chaos_2024_115584 crossref_primary_10_1134_S1064226923100170 crossref_primary_10_1360_nso_20220071 crossref_primary_10_1038_s41528_023_00262_3 crossref_primary_10_1063_5_0184774 crossref_primary_10_1103_PhysRevB_106_214110 crossref_primary_10_1007_s11426_024_2437_9 crossref_primary_10_1002_adma_202301063 crossref_primary_10_1039_D3NA00025G crossref_primary_10_1109_JQE_2022_3169565 crossref_primary_10_1103_PhysRevApplied_18_014040 crossref_primary_10_1109_JSSC_2023_3280357 crossref_primary_10_1109_JXCDC_2022_3202517 crossref_primary_10_3389_fnano_2021_670762 crossref_primary_10_1016_j_jallcom_2024_175644 crossref_primary_10_1007_s11432_022_3695_1 crossref_primary_10_1109_LMAG_2022_3152991 crossref_primary_10_1016_j_engappai_2023_106232 crossref_primary_10_3389_femat_2023_1061269 crossref_primary_10_1103_PhysRevApplied_18_024082 crossref_primary_10_1109_TCSII_2021_3067385 crossref_primary_10_1002_aisy_202100114 crossref_primary_10_1002_adfm_202105625 crossref_primary_10_1038_s41467_024_53321_2 crossref_primary_10_1002_adfm_202420045 crossref_primary_10_1103_PhysRevApplied_15_034067 crossref_primary_10_1002_adma_202204944 crossref_primary_10_1109_JEDS_2023_3311763 crossref_primary_10_1002_admt_202401944 crossref_primary_10_1016_j_device_2024_100329 crossref_primary_10_1021_acsnano_1c06980 crossref_primary_10_3389_fnins_2021_750458 crossref_primary_10_1016_j_xcrp_2021_100507 crossref_primary_10_1093_nsr_nwaa172 crossref_primary_10_1002_adfm_202502211 crossref_primary_10_1038_s41928_022_00785_z crossref_primary_10_1016_j_chaos_2021_111111 crossref_primary_10_7498_aps_70_20201961 crossref_primary_10_1063_5_0232917 crossref_primary_10_3390_mi13091512 crossref_primary_10_3389_fnins_2020_00358 crossref_primary_10_1002_adma_202201488 crossref_primary_10_3390_mi13020319 crossref_primary_10_1016_j_jmst_2024_12_078 crossref_primary_10_1021_acsphotonics_3c01253 crossref_primary_10_1109_MED_2023_3296084 crossref_primary_10_3390_mi13020317 crossref_primary_10_1002_ange_202217249 crossref_primary_10_1038_s41467_023_38299_7 crossref_primary_10_1109_JSSC_2022_3200515 crossref_primary_10_1038_s41524_022_00770_2 crossref_primary_10_1002_advs_202200629 crossref_primary_10_1016_j_mee_2022_111736 crossref_primary_10_1109_TCSI_2021_3082895 crossref_primary_10_1109_TCAD_2022_3156017 crossref_primary_10_1016_j_neucom_2021_05_062 crossref_primary_10_1002_adfm_202101201 crossref_primary_10_1002_aelm_202200733 crossref_primary_10_1002_aisy_202200196 crossref_primary_10_1063_5_0158076 crossref_primary_10_1002_aelm_202200972 crossref_primary_10_1016_j_chaos_2021_111369 crossref_primary_10_1016_j_vlsi_2025_102384 crossref_primary_10_1039_D3CS00918A crossref_primary_10_1007_s12668_020_00795_1 crossref_primary_10_1038_s41467_022_32790_3 crossref_primary_10_1109_JPROC_2020_3004543 crossref_primary_10_1016_j_pmatsci_2024_101298 crossref_primary_10_1109_LED_2022_3190267 crossref_primary_10_3889_oamjms_2021_6955 crossref_primary_10_1016_j_apsusc_2022_154281 crossref_primary_10_1038_s41467_023_38473_x crossref_primary_10_1039_D4MH00300D crossref_primary_10_1021_acsami_4c12457 crossref_primary_10_1002_adfm_202305238 crossref_primary_10_3389_fnano_2021_645995 crossref_primary_10_1016_j_micpro_2022_104441 crossref_primary_10_1021_acs_nanolett_3c03553 crossref_primary_10_1038_s41467_023_44620_1 crossref_primary_10_1109_LED_2021_3129202 crossref_primary_10_1002_adma_202305465 crossref_primary_10_1134_S2635167622070035 crossref_primary_10_1109_TCSII_2022_3233396 crossref_primary_10_1109_LED_2021_3090906 crossref_primary_10_1093_bulcsj_uoae083 crossref_primary_10_1088_2053_1583_ac1e71 crossref_primary_10_1109_TED_2023_3294352 crossref_primary_10_1038_s42256_023_00609_5 crossref_primary_10_1109_LED_2023_3306015 crossref_primary_10_1109_LED_2024_3498106 crossref_primary_10_1016_j_ijleo_2022_169878 crossref_primary_10_1002_advs_202406242 crossref_primary_10_1088_1361_6463_ac296d crossref_primary_10_1063_5_0067352 crossref_primary_10_1109_TCSI_2022_3199453 crossref_primary_10_1103_PhysRevApplied_21_014028 crossref_primary_10_1063_5_0160599 crossref_primary_10_1080_03081079_2021_1985487 crossref_primary_10_1088_2399_1984_ad299a crossref_primary_10_1109_TED_2021_3072868 crossref_primary_10_1063_5_0116699 crossref_primary_10_1021_acsomega_3c03200 crossref_primary_10_31857_S0544126923700461 crossref_primary_10_3389_fchem_2022_944029 crossref_primary_10_1038_s41566_022_00973_5 crossref_primary_10_1364_OL_446789 crossref_primary_10_1002_aelm_202200958 crossref_primary_10_1109_TED_2021_3134137 crossref_primary_10_1021_acsnano_4c05137 crossref_primary_10_1021_acsnano_4c06467 crossref_primary_10_1109_TVLSI_2022_3140395 crossref_primary_10_1140_epjs_s11734_022_00567_w crossref_primary_10_1063_5_0216429 crossref_primary_10_1002_smsc_202100072 crossref_primary_10_1021_acsnano_4c09735 crossref_primary_10_1080_00107514_2022_2160542 crossref_primary_10_1002_aisy_202000115 crossref_primary_10_1002_aisy_202000114 crossref_primary_10_1038_s41565_023_01343_0 crossref_primary_10_1109_JEDS_2022_3169745 crossref_primary_10_1016_j_mattod_2020_07_016 crossref_primary_10_1109_JETCAS_2023_3329449 crossref_primary_10_1002_aisy_202000111 crossref_primary_10_1021_acsaelm_4c00726 crossref_primary_10_1126_sciadv_adl1299 crossref_primary_10_1016_j_neucom_2021_11_034 crossref_primary_10_1109_TED_2023_3287824 crossref_primary_10_1109_TVLSI_2020_3001526 crossref_primary_10_1021_acs_nanolett_4c02470 crossref_primary_10_1109_JIOT_2023_3274116 crossref_primary_10_1126_sciadv_adr2082 crossref_primary_10_3390_molecules28020809 crossref_primary_10_1039_D3NH00180F crossref_primary_10_1039_D4MH01676A crossref_primary_10_1016_j_scib_2023_11_042 crossref_primary_10_1063_5_0084784 crossref_primary_10_1109_ACCESS_2021_3072193 crossref_primary_10_1002_inf2_12619 crossref_primary_10_1109_TCSII_2022_3224470 crossref_primary_10_1038_s41565_021_00943_y crossref_primary_10_1109_TCSII_2022_3157789 crossref_primary_10_1364_OPTICA_485883 crossref_primary_10_1002_EXP_20220162 crossref_primary_10_1002_adma_202202371 crossref_primary_10_1002_adfm_202312658 crossref_primary_10_1007_s10489_024_06091_9 crossref_primary_10_1109_ACCESS_2020_3044652 crossref_primary_10_1002_aelm_202300303 crossref_primary_10_1145_3474364 crossref_primary_10_1007_s12274_023_5789_5 crossref_primary_10_1038_s41928_023_00965_5 crossref_primary_10_1007_s11432_023_3789_7 crossref_primary_10_1140_epjb_s10051_024_00703_6 crossref_primary_10_1007_s40820_024_01445_x crossref_primary_10_1016_j_mtelec_2024_100099 crossref_primary_10_1038_s41928_024_01213_0 crossref_primary_10_1088_1742_6596_2613_1_012005 crossref_primary_10_1360_SSI_2023_0311 crossref_primary_10_1002_adma_202205402 crossref_primary_10_1002_aisy_202300411 crossref_primary_10_1038_s41467_023_41647_2 crossref_primary_10_1134_S2635167621060173 crossref_primary_10_1155_2022_2538896 crossref_primary_10_1039_D5NH00040H crossref_primary_10_1002_adfm_202312885 crossref_primary_10_3389_fnano_2023_1146852 crossref_primary_10_3389_fsens_2022_896299 crossref_primary_10_1002_adfm_202416619 crossref_primary_10_1038_s41467_023_42981_1 crossref_primary_10_1063_5_0128200 crossref_primary_10_1155_2021_4056454 crossref_primary_10_1016_j_chaos_2022_112389 crossref_primary_10_1002_adma_202307218 crossref_primary_10_1016_j_chip_2023_100044 crossref_primary_10_1016_j_neucom_2023_126778 crossref_primary_10_1109_TVLSI_2021_3069221 crossref_primary_10_1021_acs_nanolett_4c04434 crossref_primary_10_1126_sciadv_ado8999 crossref_primary_10_1109_JSTQE_2023_3234641 crossref_primary_10_1002_adma_202203684 crossref_primary_10_1002_admt_202100745 crossref_primary_10_1002_aelm_202200922 crossref_primary_10_1039_D4TC01257G crossref_primary_10_1021_acsami_4c09056 crossref_primary_10_2139_ssrn_4182150 crossref_primary_10_1016_j_mtcomm_2022_104754 crossref_primary_10_1002_aisy_202100199 crossref_primary_10_3390_jlpea10040040 crossref_primary_10_1002_adma_202106913 crossref_primary_10_1088_2634_4386_ac734a crossref_primary_10_1016_j_mejo_2022_105574 crossref_primary_10_1038_s41467_025_57183_0 crossref_primary_10_3389_fnins_2021_636127 crossref_primary_10_1038_s43588_024_00762_w crossref_primary_10_1080_14686996_2021_1911277 crossref_primary_10_35848_1347_4065_ac5721 crossref_primary_10_1002_adma_202301924 crossref_primary_10_1190_geo2023_0022_1 crossref_primary_10_3390_mi13020308 crossref_primary_10_1002_adfm_202308136 crossref_primary_10_1140_epjs_s11734_022_00565_y crossref_primary_10_1109_TBCAS_2022_3209073 crossref_primary_10_3390_nano13030605 crossref_primary_10_1088_2631_7990_ad1573 crossref_primary_10_1002_smll_202402273 crossref_primary_10_1038_s44335_024_00003_3 crossref_primary_10_1038_s41467_025_56254_6 crossref_primary_10_1039_D3RA00782K crossref_primary_10_1109_TVLSI_2022_3179621 crossref_primary_10_1016_j_chip_2024_100107 crossref_primary_10_1109_JSSC_2023_3314433 crossref_primary_10_1364_OE_468456 crossref_primary_10_1002_adma_202401021 crossref_primary_10_1038_s41528_022_00152_0 crossref_primary_10_1002_inf2_12416 crossref_primary_10_1109_TCAD_2022_3172907 crossref_primary_10_1038_s41467_025_58039_3 crossref_primary_10_1109_TCSI_2020_3036454 crossref_primary_10_1002_inf2_12659 crossref_primary_10_1063_5_0006850 crossref_primary_10_1002_aelm_202100330 crossref_primary_10_1002_adfm_202005582 crossref_primary_10_1063_5_0069116 crossref_primary_10_1002_aisy_202100174 crossref_primary_10_1016_j_engappai_2024_108078 crossref_primary_10_1016_j_knosys_2021_106903 crossref_primary_10_3389_felec_2022_825077 crossref_primary_10_1088_2634_4386_ac4fb7 crossref_primary_10_1021_acs_nanolett_4c01190 crossref_primary_10_1557_s43580_025_01198_8 crossref_primary_10_1016_j_micpro_2023_104779 crossref_primary_10_1002_pssa_202200643 crossref_primary_10_7498_aps_71_20220308 crossref_primary_10_3390_mi12101201 crossref_primary_10_1038_s41928_024_01211_2 crossref_primary_10_1126_sciadv_abc4797 crossref_primary_10_1039_D2TC03800E crossref_primary_10_1038_s41467_022_29870_9 crossref_primary_10_1002_aisy_202300456 crossref_primary_10_1109_TCSII_2022_3154465 crossref_primary_10_1109_TED_2021_3097975 crossref_primary_10_1109_TCSI_2021_3072200 crossref_primary_10_1126_sciadv_adi4083 crossref_primary_10_1038_s43588_024_00751_z crossref_primary_10_1002_advs_202301323 crossref_primary_10_1088_2634_4386_ac4a83 crossref_primary_10_1557_mrs_2020_196 crossref_primary_10_1109_TCSI_2024_3395842 crossref_primary_10_1126_sciadv_adl2767 crossref_primary_10_1021_acsaelm_2c00495 crossref_primary_10_1002_adma_202006469 crossref_primary_10_1016_j_chaos_2022_112106 crossref_primary_10_1149_2162_8777_ac557b crossref_primary_10_1016_j_apsusc_2023_158994 crossref_primary_10_1109_MCOM_001_2200272 crossref_primary_10_1038_s41467_023_43317_9 crossref_primary_10_1021_acsaelm_3c00698 crossref_primary_10_1109_TED_2023_3312229 crossref_primary_10_1088_2634_4386_abfca6 crossref_primary_10_1088_1361_6668_ad3d10 crossref_primary_10_1109_TCSII_2022_3157767 crossref_primary_10_1002_aelm_202000948 crossref_primary_10_1002_aelm_202101204 crossref_primary_10_1109_TMAG_2023_3323935 crossref_primary_10_1007_s11571_024_10069_1 crossref_primary_10_1109_TED_2024_3379159 crossref_primary_10_1002_aisy_202100159 crossref_primary_10_1039_D1SC01505B crossref_primary_10_1007_s40843_024_2946_y crossref_primary_10_1038_s41528_024_00313_3 crossref_primary_10_1002_pssr_202100208 crossref_primary_10_1088_1361_6463_ad7155 crossref_primary_10_1038_s41563_023_01676_0 crossref_primary_10_1109_TC_2020_3017870 crossref_primary_10_1140_epjb_s10051_024_00662_y crossref_primary_10_1109_TCAD_2021_3051856 crossref_primary_10_1021_acsaelm_3c00229 crossref_primary_10_1126_sciadv_abn7630 crossref_primary_10_1038_s41467_024_48631_4 crossref_primary_10_1038_s41586_020_03063_0 crossref_primary_10_1002_advs_202500521 crossref_primary_10_1063_5_0133846 crossref_primary_10_1190_geo2022_0196_1 crossref_primary_10_1038_s41928_024_01169_1 crossref_primary_10_1016_j_cossms_2024_101187 crossref_primary_10_1039_D4TC03586K crossref_primary_10_1002_adma_202005910 crossref_primary_10_1016_j_chaos_2020_110461 crossref_primary_10_1088_1674_4926_44_5_053102 crossref_primary_10_1007_s40042_023_00948_x crossref_primary_10_1021_acsami_4c15598 crossref_primary_10_1021_acs_nanolett_4c00212 crossref_primary_10_1063_5_0064536 crossref_primary_10_1186_s40580_023_00392_4 crossref_primary_10_1109_JXCDC_2021_3057856 crossref_primary_10_1039_D1NA00152C crossref_primary_10_1007_s11071_024_10226_5 crossref_primary_10_1038_s41467_022_32884_y crossref_primary_10_1134_S2635167621060215 crossref_primary_10_1002_advs_202307359 crossref_primary_10_1002_advs_202309538 crossref_primary_10_1038_s41928_020_0435_7 crossref_primary_10_1126_sciadv_ado1058 crossref_primary_10_1109_TVLSI_2024_3521394 crossref_primary_10_1002_aisy_202300026 crossref_primary_10_1088_1674_1056_acdac3 crossref_primary_10_1002_aisy_202000085 crossref_primary_10_1126_sciadv_adn4524 crossref_primary_10_1140_epjs_s11734_022_00639_x crossref_primary_10_1016_j_mtphys_2025_101703 crossref_primary_10_3390_nano14191573 crossref_primary_10_1021_acsami_3c02998 crossref_primary_10_1007_s40843_021_1771_5 crossref_primary_10_1109_LED_2022_3177774 crossref_primary_10_1016_j_energy_2022_125270 crossref_primary_10_1002_aelm_202300839 crossref_primary_10_1126_science_abj9979 crossref_primary_10_1021_acs_nanolett_4c01319 crossref_primary_10_1088_2634_4386_ac7db7 crossref_primary_10_1002_adfm_202416333 crossref_primary_10_1088_1402_4896_ad5474 crossref_primary_10_1007_s10825_020_01470_0 crossref_primary_10_1002_smll_202302593 crossref_primary_10_1016_j_neunet_2024_106780 crossref_primary_10_1038_s41598_024_62872_9 crossref_primary_10_1103_PhysRevA_104_062605 crossref_primary_10_1109_TED_2023_3296393 crossref_primary_10_1002_aelm_202000511 crossref_primary_10_1016_j_scs_2021_102849 crossref_primary_10_1007_s41939_024_00517_0 crossref_primary_10_1016_j_matpr_2023_10_028 crossref_primary_10_1109_TED_2024_3506498 crossref_primary_10_1109_JSEN_2022_3207912 crossref_primary_10_1109_TCSVT_2023_3275708 crossref_primary_10_1002_adma_202107811 crossref_primary_10_1016_j_nanoen_2025_110698 crossref_primary_10_1038_s42005_022_01111_x crossref_primary_10_1126_sciadv_adj2908 crossref_primary_10_1002_aelm_202200089 crossref_primary_10_1007_s43939_022_00032_4 crossref_primary_10_1016_j_sse_2021_108220 crossref_primary_10_1109_TNANO_2023_3293026 crossref_primary_10_1126_sciadv_adg7904 crossref_primary_10_3389_fnins_2022_1016026 crossref_primary_10_12677_APP_2021_116037 crossref_primary_10_1088_2634_4386_ac9012 crossref_primary_10_1016_j_chaos_2023_114440 crossref_primary_10_1038_s42256_023_00680_y crossref_primary_10_1088_1361_6641_ac31e3 crossref_primary_10_1016_j_cjph_2020_11_007 crossref_primary_10_1021_acsaelm_4c00199 crossref_primary_10_1103_PhysRevApplied_16_024045 crossref_primary_10_3390_e25081134 crossref_primary_10_1016_j_neucom_2020_04_130 crossref_primary_10_1364_AOP_470264 crossref_primary_10_1002_aisy_202400098 crossref_primary_10_1021_acsami_4c07951 crossref_primary_10_1002_aelm_202101127 crossref_primary_10_3390_electronics10212564 crossref_primary_10_1109_JLT_2023_3317090 crossref_primary_10_1002_smsc_202200082 crossref_primary_10_1109_TCSI_2023_3343081 crossref_primary_10_1145_3643134 crossref_primary_10_1016_j_apsusc_2022_153653 crossref_primary_10_1016_j_jmat_2025_101051 crossref_primary_10_1016_j_mejo_2024_106189 crossref_primary_10_1021_acsnano_4c12884 crossref_primary_10_1038_s41928_020_0411_2 crossref_primary_10_1016_j_nanoen_2022_107486 crossref_primary_10_3389_fpsyg_2021_751406 crossref_primary_10_3389_fdata_2022_787421 crossref_primary_10_3367_UFNr_2024_06_039698 crossref_primary_10_1038_s41467_024_55562_7 crossref_primary_10_1038_s41565_020_0655_z crossref_primary_10_3390_electronics12234796 crossref_primary_10_1007_s11432_022_3756_3 crossref_primary_10_1186_s11671_023_03901_w crossref_primary_10_1002_smll_202304518 crossref_primary_10_32603_1993_8985_2022_25_6_61_69 crossref_primary_10_3390_nano12132171 crossref_primary_10_1016_j_eswa_2023_121028 crossref_primary_10_1088_1674_4926_23120051 crossref_primary_10_1002_aelm_202300618 crossref_primary_10_1038_s41928_023_00952_w crossref_primary_10_1002_qute_202300021 crossref_primary_10_1155_2022_2530836 crossref_primary_10_1038_s41928_024_01137_9 crossref_primary_10_1016_j_sse_2021_108045 crossref_primary_10_1002_EXP_20220126 crossref_primary_10_1002_adfm_202416794 crossref_primary_10_1002_aelm_202100299 crossref_primary_10_1155_2022_9323646 crossref_primary_10_1038_s43588_024_00644_1 crossref_primary_10_3390_sym14071391 crossref_primary_10_1063_5_0232003 crossref_primary_10_1002_adfm_202302899 crossref_primary_10_1038_s41467_025_56286_y crossref_primary_10_3367_UFNe_2024_06_039698 crossref_primary_10_1103_PhysRevApplied_21_054028 crossref_primary_10_3390_jlpea12030044 crossref_primary_10_1088_1674_1056_ac7548 crossref_primary_10_1109_MCAS_2022_3214409 crossref_primary_10_1109_TII_2021_3086819 crossref_primary_10_1002_inf2_70018 crossref_primary_10_1016_j_neunet_2023_01_008 crossref_primary_10_1088_2634_4386_ac7a5a crossref_primary_10_3390_electronics11233851 crossref_primary_10_1088_1674_4926_44_10_104101 crossref_primary_10_1038_s41467_020_16985_0 crossref_primary_10_3389_fnins_2024_1279708 crossref_primary_10_1134_S1990793123040140 crossref_primary_10_1002_smsc_202200028 crossref_primary_10_1016_j_nxnano_2024_100052 crossref_primary_10_1038_s41928_021_00676_9 crossref_primary_10_1007_s11432_022_3503_4 crossref_primary_10_15541_jim20230066 crossref_primary_10_1007_s11390_023_4002_3 crossref_primary_10_3390_chips3040014 crossref_primary_10_1038_s41699_024_00522_4 crossref_primary_10_1109_TBCAS_2021_3090786 crossref_primary_10_1109_TED_2020_3045684 crossref_primary_10_1080_02670836_2022_2163533 crossref_primary_10_1038_s41928_023_00994_0 crossref_primary_10_1109_OJCOMS_2020_3020131 crossref_primary_10_31613_ceramist_2023_26_1_07 crossref_primary_10_34133_icomputing_0043 crossref_primary_10_35848_1347_4065_ac6a3b crossref_primary_10_1007_s40843_021_1925_x crossref_primary_10_1088_2634_4386_ac77b2 crossref_primary_10_1007_s40820_024_01335_2 crossref_primary_10_1002_adfm_202300458 crossref_primary_10_2139_ssrn_3998975 crossref_primary_10_1002_advs_202308460 crossref_primary_10_1142_S0217984925501490 crossref_primary_10_1039_D3NH00421J crossref_primary_10_1002_lpor_202100472 crossref_primary_10_1016_j_cjph_2024_02_049 crossref_primary_10_1007_s40843_021_1901_2 crossref_primary_10_1016_j_chip_2024_100086 crossref_primary_10_1109_JSSC_2022_3163197 crossref_primary_10_1002_aelm_202300806 crossref_primary_10_1016_j_chip_2024_100093 crossref_primary_10_1002_adfm_202100807 crossref_primary_10_1038_s43588_024_00744_y crossref_primary_10_1109_TVLSI_2023_3337777 crossref_primary_10_1002_aelm_202300803 crossref_primary_10_1038_s41467_023_44365_x crossref_primary_10_1360_TB_2022_0479 crossref_primary_10_1109_ACCESS_2022_3171799 crossref_primary_10_1038_s41467_025_56412_w crossref_primary_10_1109_TED_2022_3227529 crossref_primary_10_1002_adma_202409258 crossref_primary_10_1038_s41467_025_56079_3 crossref_primary_10_1002_adma_202302658 crossref_primary_10_1007_s40042_022_00537_4 crossref_primary_10_1016_j_chaos_2022_113024 crossref_primary_10_1016_j_sse_2021_108034 crossref_primary_10_1002_adma_202409017 crossref_primary_10_1016_j_jallcom_2023_170119 crossref_primary_10_1021_acs_nanolett_0c04696 crossref_primary_10_1016_j_isci_2021_103729 crossref_primary_10_1109_TPDS_2022_3149787 crossref_primary_10_1007_s11071_023_09204_0 crossref_primary_10_1126_sciadv_adi5104 crossref_primary_10_1002_adma_202209503 crossref_primary_10_1002_aelm_202400106 crossref_primary_10_1126_sciadv_abm8537 crossref_primary_10_3390_ma14216275 crossref_primary_10_1002_adfm_202405670 crossref_primary_10_3389_fnins_2021_717222 crossref_primary_10_1021_acsanm_5c00007 crossref_primary_10_1109_TCSI_2021_3064189 crossref_primary_10_1088_2634_4386_acd4e2 crossref_primary_10_1073_pnas_2319718121 crossref_primary_10_1016_j_jpdc_2024_104898 crossref_primary_10_1038_s41928_023_01053_4 crossref_primary_10_1002_aisy_202200145 crossref_primary_10_1007_s11432_020_3227_1 crossref_primary_10_1016_j_mne_2024_100251 crossref_primary_10_1002_smll_202105585 crossref_primary_10_1021_acsnano_3c05771 crossref_primary_10_1016_j_mtnano_2024_100543 crossref_primary_10_1073_pnas_2109194119 crossref_primary_10_1088_1674_4926_42_1_014102 crossref_primary_10_4018_JOEUC_300762 crossref_primary_10_1002_advs_202308847 crossref_primary_10_1088_1674_4926_42_1_014101 crossref_primary_10_1021_acsami_1c02963 crossref_primary_10_1038_s41586_024_07230_5 crossref_primary_10_1007_s00500_023_09374_4 crossref_primary_10_1080_14686996_2022_2162323 crossref_primary_10_1134_S2635167621020154 crossref_primary_10_1155_2022_3464984 crossref_primary_10_1016_j_neucom_2021_08_011 crossref_primary_10_1002_adfm_202205150 crossref_primary_10_1002_smtd_202402218 crossref_primary_10_1021_acsami_3c09300 crossref_primary_10_1038_s41467_023_38021_7 crossref_primary_10_1038_s41928_023_00939_7 crossref_primary_10_1007_s11432_023_3739_0 crossref_primary_10_1109_LED_2021_3091995 crossref_primary_10_1021_acsami_4c10991 crossref_primary_10_1103_PhysRevMaterials_6_105002 crossref_primary_10_1038_s41586_022_04992_8 crossref_primary_10_1002_adma_202300023 crossref_primary_10_1098_rsta_2021_0018 crossref_primary_10_1016_j_sse_2021_108064 crossref_primary_10_1002_adma_202105022 crossref_primary_10_1088_2634_4386_ac29ca crossref_primary_10_1063_5_0133146 crossref_primary_10_1002_adma_202207133 crossref_primary_10_1038_s41598_025_87924_6 crossref_primary_10_1134_S2635167623601092 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123181 crossref_primary_10_1557_s43577_023_00613_5 crossref_primary_10_7498_aps_71_20220281 crossref_primary_10_1109_MNANO_2022_3208723 crossref_primary_10_1109_TCDS_2021_3049487 crossref_primary_10_1186_s40580_024_00463_0 crossref_primary_10_34133_icomputing_0006 crossref_primary_10_1002_adfm_202212917 crossref_primary_10_1002_inf2_12196 crossref_primary_10_1002_cta_3022 crossref_primary_10_1021_acsnano_2c06432 crossref_primary_10_3390_fractalfract6070350 crossref_primary_10_1038_s41928_023_01064_1 crossref_primary_10_3390_mi12101183 crossref_primary_10_1002_aisy_202200173 crossref_primary_10_1038_s41928_022_00886_9 crossref_primary_10_1039_D0MA00488J crossref_primary_10_3390_s23063118 crossref_primary_10_1002_aisy_202200179 crossref_primary_10_1088_2053_1591_ad1125 crossref_primary_10_1002_aisy_202200177 crossref_primary_10_1038_s41467_021_22364_0 crossref_primary_10_1038_s41586_021_04196_6 crossref_primary_10_1088_1402_4896_ad7a2f crossref_primary_10_1109_TCSII_2022_3172494 crossref_primary_10_1002_advs_202003765 crossref_primary_10_1038_s41578_024_00740_8 crossref_primary_10_1088_1742_6596_2558_1_012010 crossref_primary_10_1007_s00521_023_08401_7 crossref_primary_10_1088_2634_4386_acb2f0 crossref_primary_10_58997_ejde_2023_83 crossref_primary_10_1038_s41467_024_49324_8 crossref_primary_10_1109_MCAS_2020_3027425 crossref_primary_10_1109_TCSII_2021_3068764 crossref_primary_10_1002_anie_202217249 crossref_primary_10_1109_ACCESS_2020_3045071 crossref_primary_10_1109_TCSI_2021_3130938 crossref_primary_10_1016_j_vlsi_2025_102410 crossref_primary_10_3390_electronics13091632 crossref_primary_10_1002_adma_202209371 crossref_primary_10_1016_j_jallcom_2021_161016 crossref_primary_10_1021_acsami_3c18053 crossref_primary_10_1016_j_mtelec_2024_100105 crossref_primary_10_1557_s43577_021_00093_5 crossref_primary_10_1038_s41928_023_01055_2 crossref_primary_10_1016_j_eswa_2022_119310 crossref_primary_10_1016_j_optmat_2021_111272 crossref_primary_10_1109_TCSI_2021_3115787 crossref_primary_10_1039_D3NR02395H crossref_primary_10_1088_1674_1056_acb9f6 crossref_primary_10_1002_aelm_202001258 crossref_primary_10_1002_aisy_202000040 crossref_primary_10_1038_s41467_023_43542_2 crossref_primary_10_1109_JETCAS_2023_3241750 crossref_primary_10_3389_fnins_2021_611300 crossref_primary_10_1007_s11431_023_2456_1 crossref_primary_10_1063_5_0073285 crossref_primary_10_3389_fnins_2022_959626 crossref_primary_10_1039_D3MH01762A crossref_primary_10_1016_j_ceramint_2024_05_090 crossref_primary_10_1007_s12200_022_00025_4 crossref_primary_10_1088_2634_4386_aca92c crossref_primary_10_1002_adma_202203830 crossref_primary_10_1016_j_neucom_2021_07_009 crossref_primary_10_1016_j_vlsi_2023_05_008 crossref_primary_10_1088_2634_4386_ac0242 crossref_primary_10_1002_aisy_202200110 crossref_primary_10_1007_s11071_022_07955_w crossref_primary_10_1109_TII_2021_3119387 crossref_primary_10_1002_advs_202002251 crossref_primary_10_1016_j_mejo_2024_106537 crossref_primary_10_1016_j_sysarc_2024_103192 crossref_primary_10_1109_ACCESS_2024_3361837 crossref_primary_10_3389_fnins_2022_913618 crossref_primary_10_1109_TED_2021_3089561 crossref_primary_10_1557_s43579_024_00520_z crossref_primary_10_1002_smll_202412761 crossref_primary_10_1049_ell2_13089 crossref_primary_10_3390_mi16020167 crossref_primary_10_1002_adma_202104370 crossref_primary_10_1002_aelm_202200448 crossref_primary_10_1016_j_scitotenv_2021_148088 crossref_primary_10_1063_5_0033613 crossref_primary_10_1126_science_ade3483 crossref_primary_10_1109_LED_2022_3182494 crossref_primary_10_1002_adfm_202418113 crossref_primary_10_1002_aisy_202200127 crossref_primary_10_12720_jait_15_10_1163_1173 crossref_primary_10_1002_aelm_202200449 crossref_primary_10_1063_5_0169341 crossref_primary_10_1016_j_mtnano_2023_100441 crossref_primary_10_1155_2022_8925205 crossref_primary_10_1109_LED_2024_3521924 crossref_primary_10_1109_TED_2023_3339115 crossref_primary_10_1016_j_mtnano_2023_100449 crossref_primary_10_1063_5_0126651 crossref_primary_10_1063_5_0200811 crossref_primary_10_1002_adma_202003984 crossref_primary_10_1016_j_neunet_2023_05_043 crossref_primary_10_1007_s11071_022_08005_1 crossref_primary_10_1038_s41467_022_28235_6 crossref_primary_10_1063_5_0053470 crossref_primary_10_1109_LED_2022_3183111 crossref_primary_10_20517_ss_2024_77 crossref_primary_10_1109_TED_2024_3379953 crossref_primary_10_1002_admt_202100373 crossref_primary_10_1016_j_device_2024_100645 crossref_primary_10_29026_oea_2025_240135 crossref_primary_10_1007_s00500_023_09110_y crossref_primary_10_1016_j_neucom_2021_08_072 crossref_primary_10_1109_TED_2021_3069746 crossref_primary_10_1002_adfm_202113050 crossref_primary_10_1016_j_isci_2020_101889 crossref_primary_10_1021_acs_nanolett_3c02888 crossref_primary_10_1109_JIOT_2023_3239944 crossref_primary_10_1109_TBCAS_2020_3036081 crossref_primary_10_1088_1402_4896_ad5054 crossref_primary_10_1021_acs_nanolett_3c04820 crossref_primary_10_1109_TCSII_2021_3103553 crossref_primary_10_3389_fnano_2023_1055527 crossref_primary_10_1016_j_chaos_2021_111624 crossref_primary_10_1016_j_mtelec_2023_100064 crossref_primary_10_1007_s11071_024_10709_5 crossref_primary_10_1016_j_mtnano_2023_100439 crossref_primary_10_1360_TB_2024_0931 crossref_primary_10_1002_smll_202311630 crossref_primary_10_1109_MCAS_2021_3092533 crossref_primary_10_1109_ACCESS_2023_3324375 crossref_primary_10_1109_JIOT_2023_3307405 crossref_primary_10_1021_acsnano_1c04654 crossref_primary_10_1016_j_eswa_2022_117053 crossref_primary_10_1145_3595638 crossref_primary_10_1002_adom_202201905 crossref_primary_10_1109_TFUZZ_2020_2995966 crossref_primary_10_1016_j_chemosphere_2022_136119 crossref_primary_10_1016_j_mssp_2024_108829 crossref_primary_10_7498_aps_71_20220463 crossref_primary_10_1109_TCSI_2021_3126477 crossref_primary_10_1002_adma_202307951 crossref_primary_10_1002_aisy_202100017 crossref_primary_10_1002_aisy_202100256 crossref_primary_10_1002_aelm_202200656 crossref_primary_10_1007_s10825_023_02123_8 crossref_primary_10_1109_OJSSCS_2021_3123287 crossref_primary_10_1007_s11432_020_3198_9 crossref_primary_10_1016_j_mtcomm_2025_111642 crossref_primary_10_1016_j_fmre_2022_06_022 crossref_primary_10_1063_1_5113536 crossref_primary_10_1088_1674_1056_ac380b crossref_primary_10_1109_TCAD_2021_3121347 crossref_primary_10_1016_j_mattod_2024_08_027 crossref_primary_10_1016_j_xcrp_2024_102202 crossref_primary_10_1109_TCSI_2021_3060798 crossref_primary_10_1002_adfm_202419179 crossref_primary_10_1109_TCSII_2023_3340112 crossref_primary_10_3389_femat_2022_1020076 crossref_primary_10_1016_j_chip_2022_100031 crossref_primary_10_1142_S0218127422501085 crossref_primary_10_1007_s11432_023_3751_y crossref_primary_10_1016_j_ceramint_2024_02_134 crossref_primary_10_1109_TCAD_2022_3175947 crossref_primary_10_1016_j_neucom_2024_128275 crossref_primary_10_1016_j_neunet_2025_107213 crossref_primary_10_1021_acsaelm_4c00428 crossref_primary_10_1002_aisy_202400543 crossref_primary_10_1126_sciadv_adl3135 crossref_primary_10_1109_TVLSI_2023_3306376 crossref_primary_10_1016_j_nanoen_2020_105156 crossref_primary_10_1002_adma_202210035 crossref_primary_10_1007_s40843_024_3122_7 crossref_primary_10_1016_j_neucom_2022_04_008 crossref_primary_10_1088_2632_2153_ad734a crossref_primary_10_1016_j_chip_2022_100004 crossref_primary_10_1021_acs_nanolett_4c05247 crossref_primary_10_1002_aelm_202200642 crossref_primary_10_1038_s41928_023_01010_1 crossref_primary_10_1109_TED_2021_3133197 crossref_primary_10_1007_s13198_021_01157_0 crossref_primary_10_1002_admt_202400965 crossref_primary_10_1021_acsnano_2c02906 crossref_primary_10_1038_s41598_020_80121_7 crossref_primary_10_1109_JETCAS_2023_3237582 crossref_primary_10_1063_5_0069456 crossref_primary_10_1109_TED_2023_3340653 crossref_primary_10_1016_j_chaos_2024_115452 crossref_primary_10_1007_s00521_021_06835_5 crossref_primary_10_35848_1347_4065_ab8be6 crossref_primary_10_1088_1674_4926_45_1_012301 crossref_primary_10_1109_TCSI_2022_3194918 crossref_primary_10_3390_s24072180 crossref_primary_10_1002_aisy_202100237 crossref_primary_10_1002_aelm_202200877 crossref_primary_10_1016_j_chaos_2021_111024 crossref_primary_10_7498_aps_70_20201632 crossref_primary_10_1016_j_chip_2022_100015 crossref_primary_10_1002_aisy_202100249 crossref_primary_10_1038_s41928_021_00591_z crossref_primary_10_1038_s41598_020_71334_x crossref_primary_10_1109_ACCESS_2020_3036088 crossref_primary_10_3390_electronics13234665 crossref_primary_10_1038_s41467_022_29411_4 crossref_primary_10_1109_LED_2020_3037203 crossref_primary_10_1109_TED_2022_3197105 crossref_primary_10_1080_14686996_2023_2196240 crossref_primary_10_1109_TVLSI_2020_3047641 crossref_primary_10_1088_2634_4386_ad3a94 crossref_primary_10_1021_acsnano_4c03278 crossref_primary_10_1038_s41578_024_00661_6 crossref_primary_10_1109_TED_2022_3233552 crossref_primary_10_1016_j_cnsns_2024_108072 crossref_primary_10_1007_s10462_021_10060_w crossref_primary_10_1038_s41467_021_23180_2 crossref_primary_10_3390_electronics10101198 crossref_primary_10_1038_s41467_024_44927_7 crossref_primary_10_1002_aelm_202100827 crossref_primary_10_1038_s41586_023_05759_5 crossref_primary_10_1021_acsami_4c22368 crossref_primary_10_1038_s41928_024_01280_3 crossref_primary_10_3390_electronics10091084 crossref_primary_10_3390_mi12121567 crossref_primary_10_1109_OJSSCS_2024_3432468 crossref_primary_10_1016_j_neucom_2022_06_044 crossref_primary_10_1088_1361_6528_abd3ca crossref_primary_10_1587_transfun_2021EAP1047 crossref_primary_10_1039_D4TC03155E crossref_primary_10_1016_j_chaos_2022_111999 crossref_primary_10_1126_sciadv_adp0778 crossref_primary_10_1364_PRJ_484662 crossref_primary_10_1109_TCSII_2023_3298910 crossref_primary_10_1016_j_yofte_2021_102612 crossref_primary_10_1109_JETCAS_2022_3172170 crossref_primary_10_1063_5_0170058 crossref_primary_10_1002_advs_202407440 crossref_primary_10_1002_smm2_1285 crossref_primary_10_1038_s41467_021_27575_z crossref_primary_10_1088_2632_959X_ad34a5 crossref_primary_10_1109_LCOMM_2023_3322456 crossref_primary_10_1002_aisy_202000210 crossref_primary_10_1038_s44335_024_00006_0 crossref_primary_10_1021_acsami_2c20297 crossref_primary_10_1038_s41566_023_01313_x crossref_primary_10_1002_aelm_202100845 crossref_primary_10_1016_j_nanoen_2024_109435 crossref_primary_10_1016_j_knosys_2024_112099 crossref_primary_10_1109_JSEN_2023_3248123 crossref_primary_10_1109_TCSI_2023_3250699 crossref_primary_10_1007_s40843_024_3211_2 crossref_primary_10_1088_1361_6463_ac2868 crossref_primary_10_1088_2634_4386_ac781a crossref_primary_10_1109_ACCESS_2023_3258360 crossref_primary_10_1038_s41566_021_00796_w crossref_primary_10_1039_D0NA00100G crossref_primary_10_1109_TCSI_2021_3095622 crossref_primary_10_1016_j_neucom_2022_12_006 crossref_primary_10_1088_1361_6641_ac92a3 crossref_primary_10_1021_acsaelm_3c01269 crossref_primary_10_1021_acs_jpclett_4c03367 crossref_primary_10_1088_2634_4386_ac1a7f crossref_primary_10_3390_electronics10091063 crossref_primary_10_1016_j_mee_2025_112329 crossref_primary_10_1002_aisy_202300762 crossref_primary_10_1038_s41467_020_16108_9 crossref_primary_10_1126_sciadv_adf7474 crossref_primary_10_1016_j_isci_2024_111327 crossref_primary_10_1016_j_nanoen_2023_109102 crossref_primary_10_1038_s41928_022_00795_x crossref_primary_10_1002_aelm_202200833 crossref_primary_10_1002_aelm_202300021 crossref_primary_10_1103_PhysRevApplied_14_014096 crossref_primary_10_1007_s12274_022_4416_1 crossref_primary_10_1038_s41467_024_49149_5 crossref_primary_10_1016_j_isci_2020_101809 crossref_primary_10_1063_5_0013638 crossref_primary_10_1016_j_matt_2022_06_009 crossref_primary_10_1109_TED_2021_3115993 crossref_primary_10_1016_j_neucom_2023_126849 crossref_primary_10_1007_s40747_024_01407_1 crossref_primary_10_1016_j_neucom_2022_12_014 crossref_primary_10_3390_coatings11060661 crossref_primary_10_1126_sciadv_adl3350 crossref_primary_10_1021_acsami_2c13780 crossref_primary_10_1038_s41467_021_23719_3 crossref_primary_10_1126_sciadv_adh0667 crossref_primary_10_3390_biomimetics9090543 crossref_primary_10_1002_sstr_202200064 crossref_primary_10_1021_acs_nanolett_3c03697 crossref_primary_10_1038_s44287_024_00037_6 crossref_primary_10_3390_electronics14061183 crossref_primary_10_1002_smtd_202301657 crossref_primary_10_1038_s43586_022_00122_w crossref_primary_10_1109_JSSC_2022_3140414 crossref_primary_10_1002_adma_202310704 crossref_primary_10_1007_s11432_021_3562_8 crossref_primary_10_1088_2634_4386_acb965 crossref_primary_10_1002_advs_202401915 crossref_primary_10_1109_TED_2020_2976115 crossref_primary_10_7498_aps_71_20220252 crossref_primary_10_1007_s11071_024_10329_z crossref_primary_10_1038_s41467_024_55701_0 crossref_primary_10_3389_fnins_2021_639526 crossref_primary_10_1080_14686996_2023_2180286 crossref_primary_10_1002_admt_202302238 crossref_primary_10_1002_admt_202400585 crossref_primary_10_1021_acsnano_4c09421 crossref_primary_10_1109_TCAD_2024_3349502 crossref_primary_10_1002_adfm_202405618 crossref_primary_10_35848_1882_0786_acb0ae crossref_primary_10_1038_s41928_022_00838_3 crossref_primary_10_1109_TCAD_2024_3358220 crossref_primary_10_1016_j_jallcom_2021_159809 crossref_primary_10_1002_flm2_25 crossref_primary_10_1007_s11664_022_09894_z crossref_primary_10_3390_nano13050803 crossref_primary_10_1038_s41467_021_25802_1 crossref_primary_10_1109_JETCAS_2023_3328864 crossref_primary_10_1063_5_0126392 crossref_primary_10_1186_s40580_023_00407_0 crossref_primary_10_1016_j_nanoen_2022_107744 crossref_primary_10_1002_aisy_202400710 crossref_primary_10_1016_j_chaos_2020_110504 crossref_primary_10_1016_j_nanoen_2024_109473 crossref_primary_10_3390_photonics9020075 crossref_primary_10_1038_s41928_024_01312_y crossref_primary_10_1088_2631_7990_acef79 crossref_primary_10_1002_advs_202105784 crossref_primary_10_2139_ssrn_4088197 crossref_primary_10_1038_s41467_020_20719_7 crossref_primary_10_1016_j_neucom_2021_01_122 crossref_primary_10_1002_aelm_202200816 crossref_primary_10_1063_5_0138363 crossref_primary_10_1140_epjs_s11734_024_01369_y crossref_primary_10_1109_JXCDC_2022_3206879 crossref_primary_10_1038_s41467_024_55160_7 crossref_primary_10_1109_JSSC_2023_3324335 crossref_primary_10_1016_j_neucom_2022_04_088 crossref_primary_10_1142_S0218127422501486 crossref_primary_10_1002_adfm_202415648 crossref_primary_10_1016_j_neunet_2024_106268 crossref_primary_10_1038_s41528_024_00356_6 crossref_primary_10_1038_s41928_023_00977_1 crossref_primary_10_1021_acsnano_3c07384 crossref_primary_10_1002_advs_202103357 crossref_primary_10_1038_s41928_024_01133_z crossref_primary_10_3389_fnins_2024_1360122 crossref_primary_10_1098_rsta_2023_0393 crossref_primary_10_1109_ACCESS_2023_3305432 crossref_primary_10_1021_acs_nanolett_4c02136 crossref_primary_10_1016_j_aeue_2022_154440 crossref_primary_10_1016_j_jallcom_2024_173502 crossref_primary_10_1038_s41565_020_0722_5 crossref_primary_10_1111_exsy_13271 crossref_primary_10_1002_aelm_202400258 crossref_primary_10_3390_electronics13030666 crossref_primary_10_3390_ma13071552 crossref_primary_10_26599_NR_2025_94907043 crossref_primary_10_1109_TBCAS_2022_3204742 crossref_primary_10_1002_adfm_202423273 crossref_primary_10_1063_5_0195190 crossref_primary_10_1109_LED_2024_3359600 crossref_primary_10_1016_j_apsusc_2023_157356 crossref_primary_10_1177_09506608251318108 crossref_primary_10_1007_s11432_023_3888_0 crossref_primary_10_1016_j_chaos_2023_113885 crossref_primary_10_1364_OL_518837 crossref_primary_10_1088_1742_6596_1631_1_012019 crossref_primary_10_1103_PhysRevApplied_16_044049 crossref_primary_10_1007_s11432_021_3235_7 crossref_primary_10_1098_rspa_2020_0210 crossref_primary_10_1021_acsaelm_4c00482 crossref_primary_10_1021_acs_nanolett_4c05414 crossref_primary_10_1002_adfm_202209091 crossref_primary_10_1002_aisy_202300313 crossref_primary_10_3390_mi13030453 crossref_primary_10_1021_acs_jpclett_2c01906 crossref_primary_10_1109_TNANO_2022_3153518 crossref_primary_10_3934_math_2024871 crossref_primary_10_1134_S2635167621060033 crossref_primary_10_31857_S0033849423100170 crossref_primary_10_1016_j_cej_2024_152215 crossref_primary_10_1142_S021812742330015X crossref_primary_10_1063_5_0227603 crossref_primary_10_1186_s40580_024_00415_8 crossref_primary_10_1140_epjs_s11734_022_00560_3 crossref_primary_10_1002_adma_202306260 crossref_primary_10_1109_TED_2023_3244509 crossref_primary_10_1109_TNANO_2021_3072974 crossref_primary_10_1063_5_0050847 crossref_primary_10_1088_2634_4386_ad33cc crossref_primary_10_1002_aelm_202300866 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1109_TED_2023_3288842 crossref_primary_10_1016_j_microrel_2025_115630 crossref_primary_10_1021_acsnano_2c09569 crossref_primary_10_1063_5_0167743 crossref_primary_10_1088_1674_4926_41_5_051205 crossref_primary_10_1002_adfm_202111996 crossref_primary_10_1109_TED_2023_3244761 crossref_primary_10_1126_sciadv_abj4801 crossref_primary_10_7498_aps_71_20220666 crossref_primary_10_1002_admt_202302047 crossref_primary_10_1134_S1063739723700555 crossref_primary_10_3390_electronics11111672 crossref_primary_10_1360_TB_2023_0859 crossref_primary_10_1021_acsomega_2c02665 crossref_primary_10_1021_acs_nanolett_2c03169 crossref_primary_10_1038_s41467_024_46246_3 crossref_primary_10_1109_TED_2021_3095430 crossref_primary_10_1021_acsami_2c11183 crossref_primary_10_1002_adfm_202311877 crossref_primary_10_1002_adma_202209925 crossref_primary_10_3390_mi14030506 crossref_primary_10_1038_s41928_024_01234_9 crossref_primary_10_1109_TED_2021_3095433 crossref_primary_10_1039_D2NH00536K crossref_primary_10_1016_j_mtchem_2022_101169 crossref_primary_10_1002_adma_202406608 crossref_primary_10_1109_TCSI_2021_3121676 crossref_primary_10_1142_S021812742230035X crossref_primary_10_1021_acsami_4c08914 crossref_primary_10_1088_1361_6528_ac8f51 crossref_primary_10_1007_s10462_024_10787_2 crossref_primary_10_3389_fnano_2022_851856 crossref_primary_10_1021_acsphotonics_2c01188 crossref_primary_10_1007_s44275_024_00009_w crossref_primary_10_3389_fncom_2021_646125 crossref_primary_10_1109_TED_2022_3177391 crossref_primary_10_1109_TED_2022_3227498 crossref_primary_10_1088_2634_4386_acf1c6 crossref_primary_10_1016_j_cnsns_2022_106961 crossref_primary_10_1109_ACCESS_2022_3196688 crossref_primary_10_3390_mi15121451 crossref_primary_10_1021_acsnano_1c07065 crossref_primary_10_3390_electronics9040542 crossref_primary_10_1007_s11664_021_09328_2 crossref_primary_10_1021_acs_chemrev_3c00527 crossref_primary_10_1515_itit_2023_0018 crossref_primary_10_1002_adfm_202006773 crossref_primary_10_1038_s41467_021_24260_z crossref_primary_10_1126_scirobotics_abl7344 crossref_primary_10_1038_s44172_024_00197_1 crossref_primary_10_1088_1361_6641_abb072 crossref_primary_10_1109_TCAD_2023_3251696 crossref_primary_10_1038_s41565_023_01351_0 crossref_primary_10_1002_aisy_202300125 crossref_primary_10_1007_s40747_021_00282_4 crossref_primary_10_1021_acsbiomaterials_4c00254 crossref_primary_10_1126_sciadv_adh9889 crossref_primary_10_1002_aelm_202300889 crossref_primary_10_1002_smll_202301452 crossref_primary_10_1021_acsaelm_1c00357 crossref_primary_10_1021_acs_nanolett_3c02194 crossref_primary_10_3389_fnano_2022_1034357 crossref_primary_10_1021_acsomega_4c00320 crossref_primary_10_1108_CW_09_2018_0072 crossref_primary_10_1016_j_measurement_2024_116532 crossref_primary_10_1038_s41928_024_01256_3 crossref_primary_10_1126_sciadv_adr6391 crossref_primary_10_1063_5_0245481 crossref_primary_10_1145_3673654 crossref_primary_10_1038_s41598_024_81521_9 crossref_primary_10_1038_s42256_022_00502_7 crossref_primary_10_1002_aisy_202100041 crossref_primary_10_1038_s41928_020_0463_3 crossref_primary_10_1109_LED_2022_3182945 crossref_primary_10_1039_D2NR06810A crossref_primary_10_1126_sciadv_abh0648 crossref_primary_10_1039_D2QM01319C crossref_primary_10_1038_s41598_022_13121_4 crossref_primary_10_1145_3533706 crossref_primary_10_1021_acsmaterialslett_2c01026 crossref_primary_10_1038_s41467_024_55321_8 crossref_primary_10_1039_D1TC02730A crossref_primary_10_1038_s41928_020_00523_3 crossref_primary_10_1039_D3NH00520H crossref_primary_10_1016_j_engappai_2024_109117 crossref_primary_10_1002_ange_202502536 crossref_primary_10_1038_s41467_020_20692_1 crossref_primary_10_1016_j_mejo_2022_105634 crossref_primary_10_1038_s41467_025_57543_w crossref_primary_10_1038_s41699_025_00531_x crossref_primary_10_1016_j_mejo_2022_105639 crossref_primary_10_1038_s41378_021_00313_7 crossref_primary_10_1016_j_chaos_2024_115910 crossref_primary_10_1016_j_eng_2021_06_021 crossref_primary_10_1109_TIE_2022_3190876 crossref_primary_10_1109_TED_2022_3204525 crossref_primary_10_4028_www_scientific_net_MSF_1027_107 crossref_primary_10_1038_s41467_022_30519_w crossref_primary_10_1016_j_cej_2024_148945 crossref_primary_10_1021_acsnano_4c10383 crossref_primary_10_3390_s24061982 crossref_primary_10_1002_adfm_202310193 crossref_primary_10_1109_TED_2020_3015940 crossref_primary_10_1109_TCSI_2021_3122327 crossref_primary_10_1016_j_fmre_2023_04_013 crossref_primary_10_1088_2634_4386_ac8a6a crossref_primary_10_1515_itit_2023_0021 crossref_primary_10_3390_nano12193455 crossref_primary_10_1021_acsnano_4c09154 crossref_primary_10_1038_s41467_023_41736_2 crossref_primary_10_3389_femat_2022_988785 crossref_primary_10_1109_LED_2023_3239608 crossref_primary_10_1002_smll_202105070 crossref_primary_10_1021_acsaelm_3c00325 crossref_primary_10_1038_s41467_023_41921_3 crossref_primary_10_1088_1361_6641_ac41e4 crossref_primary_10_1002_aelm_202400452 crossref_primary_10_1007_s11432_021_3336_8 crossref_primary_10_1038_s41928_022_00725_x crossref_primary_10_1109_LED_2021_3130828 crossref_primary_10_1039_D3TC04510B crossref_primary_10_1038_s41928_023_00951_x crossref_primary_10_1109_TMAG_2020_3032099 crossref_primary_10_1007_s10470_023_02230_3 crossref_primary_10_1109_TCSII_2023_3244779 crossref_primary_10_3389_fnano_2022_954165 crossref_primary_10_1016_j_saa_2022_120859 crossref_primary_10_1038_s41467_021_25455_0 crossref_primary_10_17816_gc623345 crossref_primary_10_1002_advs_202001842 crossref_primary_10_1063_5_0095384 crossref_primary_10_1038_s41528_021_00132_w crossref_primary_10_1109_TCSI_2021_3134313 crossref_primary_10_1038_s41467_023_40770_4 crossref_primary_10_1587_transinf_2020BDP0002 crossref_primary_10_1038_s41928_020_00501_9 crossref_primary_10_1002_aisy_202200207 crossref_primary_10_1007_s11432_024_4144_y crossref_primary_10_1038_s41467_023_42470_5 crossref_primary_10_1109_TIE_2023_3319747 crossref_primary_10_1063_5_0243029 crossref_primary_10_1002_aelm_202201064 crossref_primary_10_1002_adma_202403624 crossref_primary_10_1021_acs_nanolett_3c04073 crossref_primary_10_1088_1674_4926_44_5_054101 crossref_primary_10_3390_mi12101220 crossref_primary_10_1039_D2CP05803K crossref_primary_10_1016_j_ceramint_2024_12_203 crossref_primary_10_1063_5_0028539 crossref_primary_10_1021_acsomega_2c03893 crossref_primary_10_1007_s12652_022_04025_2 crossref_primary_10_1002_aisy_202200210 crossref_primary_10_1587_transele_2022CDP0004 crossref_primary_10_1016_j_scib_2021_04_025 crossref_primary_10_1002_aelm_202400421 crossref_primary_10_1002_aisy_202300399 crossref_primary_10_1002_adfm_202302787 crossref_primary_10_1088_1361_6641_ac271a crossref_primary_10_1002_adfm_202303879 crossref_primary_10_1038_s41467_020_18105_4 crossref_primary_10_1109_TCSI_2023_3334267 crossref_primary_10_1109_TCSI_2022_3180199 crossref_primary_10_1038_s41928_022_00878_9 crossref_primary_10_3390_sym15061279 crossref_primary_10_1038_s44287_024_00031_y crossref_primary_10_3390_sym14040800 crossref_primary_10_1002_aelm_202400482 crossref_primary_10_1088_1361_6463_ad6575 crossref_primary_10_1109_MNANO_2022_3141443 crossref_primary_10_1145_3598421 crossref_primary_10_3390_electronics10243176 crossref_primary_10_1109_TCSII_2022_3174920 crossref_primary_10_1007_s11432_021_3327_7 crossref_primary_10_1016_j_jmrt_2021_09_044 crossref_primary_10_1109_TCSII_2021_3072289 crossref_primary_10_35848_1347_4065_ad8169 crossref_primary_10_1063_1_5143815 crossref_primary_10_1007_s11432_024_4240_x crossref_primary_10_1088_2634_4386_ad9b4a crossref_primary_10_1109_ACCESS_2023_3263259 crossref_primary_10_3389_fnins_2021_661261 crossref_primary_10_3389_fnins_2024_1401690 crossref_primary_10_1002_admt_202200884 crossref_primary_10_1002_adfm_202404679 crossref_primary_10_31857_S0207401X23070142 crossref_primary_10_1109_TCAD_2020_3006188 crossref_primary_10_1063_5_0187297 crossref_primary_10_1039_D3MH01734F crossref_primary_10_1021_acsnano_4c09199 crossref_primary_10_3390_mi15101258 crossref_primary_10_1038_s41467_022_33629_7 crossref_primary_10_1002_pssa_202100753 crossref_primary_10_1109_TED_2022_3216537 crossref_primary_10_1002_adma_202205047 crossref_primary_10_1002_adma_202312783 crossref_primary_10_1109_TCSI_2021_3105043 crossref_primary_10_1038_s41586_025_08639_2 crossref_primary_10_1080_03772063_2021_1888812 crossref_primary_10_1002_aelm_202400006 crossref_primary_10_1007_s11432_021_3316_x crossref_primary_10_1016_j_mssp_2024_108480 crossref_primary_10_1038_s41928_024_01277_y crossref_primary_10_1126_sciadv_abh0693 crossref_primary_10_2139_ssrn_4111920 crossref_primary_10_7498_aps_73_20231211 crossref_primary_10_1063_5_0082061 crossref_primary_10_1007_s11432_020_3204_y crossref_primary_10_1038_s41467_021_25873_0 crossref_primary_10_1109_TIE_2023_3319711 crossref_primary_10_1063_5_0179424 crossref_primary_10_3390_mi15060770 crossref_primary_10_1063_5_0243471 crossref_primary_10_1007_s11571_022_09927_7 crossref_primary_10_1016_j_cej_2024_155651 crossref_primary_10_1016_j_snb_2020_129258 crossref_primary_10_1007_s11432_020_2960_x crossref_primary_10_1002_adfm_202205933 crossref_primary_10_1016_j_aeue_2023_154765 crossref_primary_10_1142_S0218127421300202 crossref_primary_10_1088_2053_1583_adb8c3 crossref_primary_10_1002_advs_202305075 crossref_primary_10_1088_1674_1056_ad02e8 crossref_primary_10_3390_mi13101700 crossref_primary_10_1038_s41699_022_00325_5 crossref_primary_10_1149_2162_8777_ab85be crossref_primary_10_1039_D4MA00133H crossref_primary_10_3389_fnano_2023_1147396 crossref_primary_10_1038_s41467_024_44759_5 crossref_primary_10_1002_adbi_202200298 crossref_primary_10_1016_j_knosys_2024_112627 crossref_primary_10_1109_JETCAS_2022_3227471 crossref_primary_10_1109_TCSII_2020_3015337 crossref_primary_10_23919_JSEE_2023_000018 crossref_primary_10_1007_s11571_023_10029_1 crossref_primary_10_1039_D1TC03315H crossref_primary_10_1039_D4NH00623B crossref_primary_10_1088_1674_4926_42_1_013104 crossref_primary_10_1088_1674_4926_42_6_064101 crossref_primary_10_1002_adma_202412549 crossref_primary_10_3390_electronics10202451 crossref_primary_10_1063_5_0210317 crossref_primary_10_1002_adfm_202416437 crossref_primary_10_1007_s11571_022_09871_6 crossref_primary_10_1002_advs_202106092 crossref_primary_10_1109_TCSI_2022_3215535 crossref_primary_10_1021_acsami_3c13775 crossref_primary_10_1007_s40843_022_2114_2 crossref_primary_10_1038_s41467_022_35723_2 crossref_primary_10_1109_TCSI_2021_3122381 crossref_primary_10_1002_adfm_202110976 crossref_primary_10_1049_cim2_12047 crossref_primary_10_1088_1674_1056_ab892a crossref_primary_10_1038_s41598_024_66853_w crossref_primary_10_1002_adma_202412993 crossref_primary_10_1002_aisy_202200029 crossref_primary_10_1038_s41467_024_45312_0 crossref_primary_10_1002_aisy_202200027 crossref_primary_10_1007_s10470_021_01799_x crossref_primary_10_1002_advs_202205960 crossref_primary_10_1002_aisy_202000124 crossref_primary_10_1002_advs_202201117 crossref_primary_10_1088_1674_1056_ab90e7 crossref_primary_10_1002_aelm_202400834 crossref_primary_10_1002_smll_202202590 crossref_primary_10_1007_s40843_024_2981_7 crossref_primary_10_1038_s41467_023_37097_5 crossref_primary_10_34133_adi_0044 crossref_primary_10_1002_aisy_202200031 crossref_primary_10_1002_aisy_202200272 crossref_primary_10_1126_science_adf5538 crossref_primary_10_1021_acsaelm_2c00979 crossref_primary_10_1002_adma_202104023 crossref_primary_10_3390_inorganics12030087 crossref_primary_10_1007_s00034_024_02796_x crossref_primary_10_1016_j_nantod_2024_102534 crossref_primary_10_3389_felec_2025_1513127 crossref_primary_10_1016_j_vlsi_2024_102206 crossref_primary_10_1039_D4MH00942H crossref_primary_10_1002_aisy_202000137 crossref_primary_10_1063_5_0210544 crossref_primary_10_2139_ssrn_4168618 crossref_primary_10_1038_s41598_022_11199_4 crossref_primary_10_1002_advs_202400966 crossref_primary_10_1002_adfm_202003419 crossref_primary_10_1088_1674_1056_abe0c4 crossref_primary_10_3390_app132413309 crossref_primary_10_1002_cjoc_202200257 crossref_primary_10_1016_j_chaos_2021_111533 crossref_primary_10_1109_TCSII_2020_3017789 crossref_primary_10_1038_s41467_021_22243_8 crossref_primary_10_1103_PhysRevApplied_17_014045 crossref_primary_10_1021_acssensors_3c01418 crossref_primary_10_1002_smll_202004619 crossref_primary_10_1002_aisy_202200047 crossref_primary_10_1002_aisy_202200289 crossref_primary_10_1002_aisy_202000149 crossref_primary_10_1002_advs_202202478 crossref_primary_10_2139_ssrn_3983965 crossref_primary_10_1038_s41377_023_01079_5 crossref_primary_10_3389_felec_2022_954661 crossref_primary_10_1002_adma_202311288 crossref_primary_10_1021_acsnano_3c00187 crossref_primary_10_1038_s41586_023_06337_5 crossref_primary_10_1016_j_scib_2023_09_006 crossref_primary_10_1016_j_vlsi_2021_09_001 crossref_primary_10_1109_LED_2023_3285916 crossref_primary_10_1016_j_optlaseng_2024_108740 crossref_primary_10_1002_sstr_202000109 crossref_primary_10_1088_1361_6528_ad61ee crossref_primary_10_1016_j_fmre_2021_06_020 crossref_primary_10_1038_s41467_024_51221_z crossref_primary_10_1038_s41578_023_00622_5 crossref_primary_10_1038_s41565_023_01339_w crossref_primary_10_1155_2022_1370919 crossref_primary_10_1038_s41928_024_01318_6 crossref_primary_10_1038_s41467_023_42172_y crossref_primary_10_1039_D2NR06773K crossref_primary_10_1038_s41467_022_29260_1 crossref_primary_10_1016_j_matt_2024_10_006 crossref_primary_10_1007_s42514_022_00092_1 crossref_primary_10_15541_jim20220721 crossref_primary_10_1126_sciadv_adg9123 crossref_primary_10_1109_ACCESS_2024_3431206 crossref_primary_10_1002_aelm_202000457 crossref_primary_10_1002_aisy_202000150 crossref_primary_10_1039_D2TC01363K crossref_primary_10_1007_s11071_024_09568_x crossref_primary_10_3390_electronics13173413 crossref_primary_10_1016_j_rinp_2023_107201 crossref_primary_10_1021_acsami_1c09436 crossref_primary_10_1063_5_0055982 crossref_primary_10_1109_ACCESS_2021_3122973 crossref_primary_10_1016_j_vlsi_2024_102254 crossref_primary_10_3389_fnano_2022_1021943 crossref_primary_10_1021_acsnano_4c03238 crossref_primary_10_1063_5_0133044 crossref_primary_10_1364_OE_497576 crossref_primary_10_1109_TED_2022_3176834 crossref_primary_10_1002_aisy_202400594 crossref_primary_10_1002_inc2_12013 crossref_primary_10_1016_j_eng_2021_05_004 crossref_primary_10_1002_adma_202210484 crossref_primary_10_1051_e3sconf_202346004012 crossref_primary_10_1038_s41467_020_18382_z crossref_primary_10_1002_adma_202401821 crossref_primary_10_1016_j_eng_2024_01_008 crossref_primary_10_1109_TPDS_2023_3297595 crossref_primary_10_1002_aelm_202200579 crossref_primary_10_1002_anie_202502536 crossref_primary_10_1021_acsanm_5c00337 crossref_primary_10_1038_s41598_020_71962_3 crossref_primary_10_1142_S0218348X23400406 crossref_primary_10_1016_j_device_2024_100546 crossref_primary_10_1109_TCSI_2022_3159153 crossref_primary_10_1038_s41467_022_35160_1 crossref_primary_10_1109_TCSI_2021_3136355 crossref_primary_10_1088_1742_6596_2316_1_012001 crossref_primary_10_1093_bulcsj_uoae119 crossref_primary_10_1002_aelm_202400651 crossref_primary_10_1039_D3NH00121K crossref_primary_10_1016_j_ceramint_2022_02_175 crossref_primary_10_35848_1347_4065_ada9f5 crossref_primary_10_1109_JETCAS_2022_3223295 crossref_primary_10_1016_j_chaos_2024_114458 crossref_primary_10_1088_2634_4386_ad6732 crossref_primary_10_1002_adma_202103376 crossref_primary_10_1002_pssa_202300416 crossref_primary_10_1016_j_chaos_2024_114459 crossref_primary_10_1002_adfm_202313010 crossref_primary_10_1021_acs_jpclett_3c00063 crossref_primary_10_1021_acs_jpclett_3c03558 crossref_primary_10_1109_TED_2022_3164630 crossref_primary_10_3390_electronics10020181 crossref_primary_10_3390_e25091261 crossref_primary_10_1002_aelm_202200323 crossref_primary_10_1038_s41467_024_44766_6 crossref_primary_10_1007_s11432_023_4021_y crossref_primary_10_1126_sciadv_ado3937 crossref_primary_10_1016_j_device_2023_100218 crossref_primary_10_1002_aisy_202200001 crossref_primary_10_1016_j_jmst_2021_12_016 crossref_primary_10_3390_e24060786 crossref_primary_10_1117_1_AP_7_1_016004 crossref_primary_10_1002_aelm_202001118 crossref_primary_10_1021_acsaelm_0c00700 crossref_primary_10_1038_s41467_023_41958_4 crossref_primary_10_1109_LED_2022_3165831 crossref_primary_10_1142_S0217979221501666 crossref_primary_10_1039_D4TC02527J crossref_primary_10_1016_j_dsp_2024_104412 crossref_primary_10_1039_D1NH00292A crossref_primary_10_3390_sym13091731 crossref_primary_10_1126_sciadv_abm2956 crossref_primary_10_1002_smll_202400458 crossref_primary_10_1002_aisy_202200018 crossref_primary_10_1002_aisy_202200014 crossref_primary_10_1109_JETCAS_2022_3214334 crossref_primary_10_1038_s41467_022_34178_9 crossref_primary_10_3788_LOP222566 crossref_primary_10_1021_acsaelm_2c00918 crossref_primary_10_1021_acsnano_3c06510 crossref_primary_10_1007_s10470_025_02322_2 crossref_primary_10_1038_s41467_022_34230_8 crossref_primary_10_1109_JETCAS_2022_3223031 crossref_primary_10_1166_mex_2023_2457 crossref_primary_10_35848_1347_4065_ac6b01 crossref_primary_10_1016_j_nanoms_2021_01_001 crossref_primary_10_1038_s41467_022_29712_8 crossref_primary_10_3389_fnano_2022_940825 |
Cites_doi | 10.1038/ncomms15199 10.1038/nnano.2017.83 10.1109/LED.2016.2573140 10.1109/JSSC.2016.2616357 10.1038/s41565-018-0302-0 10.1038/s41563-019-0291-x 10.1038/s41563-017-0001-5 10.1016/j.neunet.2018.08.012 10.1109/JSSC.2013.2279571 10.1109/JPROC.2018.2790840 10.1109/LED.2016.2582859 10.1038/nature23307 10.1038/ncomms12611 10.1038/s41586-018-0180-5 10.1038/s41467-018-04484-2 10.1126/science.aay0291 10.1038/nnano.2015.29 10.1038/s41928-018-0092-2 10.1109/JSSC.2004.835817 10.1109/TED.2015.2439635 10.1038/nature14539 10.1109/5.726791 10.1038/nature14441 10.1145/3316781.3317797 10.1109/CVPR.2016.90 10.1109/IEDM.2017.8268522 10.1109/VLSIT.2018.8510690 10.1109/ISSCC.2014.6757323 10.1109/ASPDAC.2018.8297292 10.23919/VLSIT.2019.8776551 10.1109/IEDM.2017.8268326 10.1109/IEDM.2017.8268372 10.1109/IEDM.2018.8614482 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Jan 30, 2020 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 30, 2020 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-020-1942-4 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection (ProQuest) Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 646 |
ExternalDocumentID | A660675554 31996818 10_1038_s41586_020_1942_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AGOIJ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c640t-e1a2bd6a924f3d57050c01b4cc32e198cd1aca6a5a993cbf2d11d4006b62c4723 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Jul 21 09:23:56 EDT 2025 Fri Jul 25 08:57:04 EDT 2025 Tue Jun 17 21:06:22 EDT 2025 Thu Jun 12 23:37:31 EDT 2025 Tue Jun 10 15:33:40 EDT 2025 Tue Jun 10 20:38:10 EDT 2025 Fri Jun 27 04:40:33 EDT 2025 Fri Jun 27 04:22:10 EDT 2025 Wed Feb 19 02:30:21 EST 2025 Thu Apr 24 22:55:27 EDT 2025 Tue Jul 01 01:21:17 EDT 2025 Fri Feb 21 02:37:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7792 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-e1a2bd6a924f3d57050c01b4cc32e198cd1aca6a5a993cbf2d11d4006b62c4723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31996818 |
PQID | 2353091386 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2348797405 proquest_journals_2353091386 gale_infotracmisc_A660675554 gale_infotracgeneralonefile_A660675554 gale_infotraccpiq_660675554 gale_infotracacademiconefile_A660675554 gale_incontextgauss_ISR_A660675554 gale_incontextgauss_ATWCN_A660675554 pubmed_primary_31996818 crossref_primary_10_1038_s41586_020_1942_4 crossref_citationtrail_10_1038_s41586_020_1942_4 springer_journals_10_1038_s41586_020_1942_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-30 |
PublicationDateYYYYMMDD | 2020-01-30 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Yao (CR24) 2017; 8 Pi (CR33) 2019; 14 Williams (CR3) 2017; 19 Yu (CR19) 2018; 106 Serb (CR28) 2016; 7 Li (CR4) 2018; 9 CR39 Chen, Krishna, Emer, Sze (CR15) 2017; 52 CR16 CR38 CR37 CR14 CR13 CR35 CR12 CR34 CR11 CR32 LeCun, Bengio, Hinton (CR5) 2015; 521 Kumar, Strachan, Williams (CR23) 2017; 548 CR31 CR30 Woo (CR17) 2016; 37 Gao, Chen, Yu (CR22) 2016; 37 Prezioso (CR25) 2015; 521 Xia, Yang (CR7) 2019; 18 Wong, Salahuddin (CR2) 2015; 10 Ding (CR8) 2019; 366 Burr (CR18) 2017; 3 Choi (CR20) 2018; 17 Kull (CR41) 2013; 48 Ielmini, Wong (CR1) 2018; 1 LeCun, Bottou, Bengio, Haffner (CR10) 1998; 86 CR6 CR29 CR9 Burr (CR21) 2015; 62 Sheridan (CR26) 2017; 12 O’Halloran, Sarpeshkar (CR40) 2004; 39 CR42 Zhang (CR36) 2018; 108 Ambrogio (CR27) 2018; 558 1942_CR29 Q Zhang (1942_CR36) 2018; 108 L Kull (1942_CR41) 2013; 48 1942_CR42 1942_CR6 D Ielmini (1942_CR1) 2018; 1 1942_CR9 M O’Halloran (1942_CR40) 2004; 39 Y LeCun (1942_CR10) 1998; 86 S Kumar (1942_CR23) 2017; 548 GW Burr (1942_CR18) 2017; 3 1942_CR37 1942_CR16 1942_CR38 S Choi (1942_CR20) 2018; 17 1942_CR39 1942_CR11 1942_CR12 1942_CR34 1942_CR13 1942_CR35 1942_CR14 H-SP Wong (1942_CR2) 2015; 10 GW Burr (1942_CR21) 2015; 62 1942_CR30 1942_CR31 1942_CR32 C Li (1942_CR4) 2018; 9 S Yu (1942_CR19) 2018; 106 Y-H Chen (1942_CR15) 2017; 52 A Serb (1942_CR28) 2016; 7 K Ding (1942_CR8) 2019; 366 Y LeCun (1942_CR5) 2015; 521 J Woo (1942_CR17) 2016; 37 M Prezioso (1942_CR25) 2015; 521 P Yao (1942_CR24) 2017; 8 S Ambrogio (1942_CR27) 2018; 558 S Pi (1942_CR33) 2019; 14 L Gao (1942_CR22) 2016; 37 RS Williams (1942_CR3) 2017; 19 PM Sheridan (1942_CR26) 2017; 12 Q Xia (1942_CR7) 2019; 18 |
References_xml | – volume: 8 year: 2017 ident: CR24 article-title: Face classification using electronic synapses publication-title: Nat. Commun. doi: 10.1038/ncomms15199 – volume: 12 start-page: 784 year: 2017 end-page: 789 ident: CR26 article-title: Sparse coding with memristor networks publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.83 – volume: 37 start-page: 870 year: 2016 end-page: 873 ident: CR22 article-title: Demonstration of convolution kernel operation on resistive cross-point array publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2016.2573140 – ident: CR14 – ident: CR39 – volume: 52 start-page: 127 year: 2017 end-page: 138 ident: CR15 article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2616357 – ident: CR16 – volume: 14 start-page: 35 year: 2019 end-page: 39 ident: CR33 article-title: Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0302-0 – ident: CR37 – volume: 18 start-page: 309 year: 2019 end-page: 323 ident: CR7 article-title: Memristive crossbar arrays for brain-inspired computing publication-title: Nat. Mater. doi: 10.1038/s41563-019-0291-x – volume: 17 start-page: 335 year: 2018 end-page: 340 ident: CR20 article-title: SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations publication-title: Nat. Mater. doi: 10.1038/s41563-017-0001-5 – volume: 108 start-page: 217 year: 2018 end-page: 223 ident: CR36 article-title: Sign backpropagation: an on-chip learning algorithm for analog RRAM neuromorphic computing systems publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.012 – ident: CR12 – ident: CR30 – volume: 48 start-page: 3049 year: 2013 end-page: 3058 ident: CR41 article-title: A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2013.2279571 – volume: 106 start-page: 260 year: 2018 end-page: 285 ident: CR19 article-title: Neuro-inspired computing with emerging nonvolatile memorys publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2790840 – volume: 37 start-page: 994 year: 2016 end-page: 997 ident: CR17 article-title: Improved synaptic behavior under identical pulses using AlO /HfO bilayer RRAM array for neuromorphic systems publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2016.2582859 – volume: 3 start-page: 89 year: 2017 end-page: 124 ident: CR18 article-title: Neuromorphic computing using non-volatile memory publication-title: Adv. Phys. X – ident: CR35 – ident: CR6 – ident: CR29 – volume: 19 start-page: 7 year: 2017 end-page: 13 ident: CR3 article-title: What’s next? Comput publication-title: Sci. Eng. – volume: 548 start-page: 318 year: 2017 end-page: 321 ident: CR23 article-title: Chaotic dynamics in nanoscale NbO Mott memristors for analogue computing publication-title: Nature doi: 10.1038/nature23307 – ident: CR42 – volume: 7 year: 2016 ident: CR28 article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses publication-title: Nat. Commun. doi: 10.1038/ncomms12611 – volume: 558 start-page: 60 year: 2018 end-page: 67 ident: CR27 article-title: Equivalent-accuracy accelerated neural-network training using analogue memory publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 9 year: 2018 ident: CR4 article-title: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-018-04484-2 – volume: 366 start-page: 210 year: 2019 end-page: 215 ident: CR8 article-title: Phase-change heterostructure enables ultralow noise and drift for memory operation publication-title: Science doi: 10.1126/science.aay0291 – ident: CR38 – volume: 10 start-page: 191 year: 2015 end-page: 194 ident: CR2 article-title: Memory leads the way to better computing publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.29 – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR9 – volume: 1 start-page: 333 year: 2018 end-page: 343 ident: CR1 article-title: In-memory computing with resistive switching devices publication-title: Nat. Electron. doi: 10.1038/s41928-018-0092-2 – ident: CR32 – ident: CR34 – volume: 39 start-page: 1985 year: 2004 end-page: 1996 ident: CR40 article-title: 10-nW 12-bit accurate analog storage cell with 10-aA leakage publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2004.835817 – volume: 62 start-page: 3498 year: 2015 end-page: 3507 ident: CR21 article-title: Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element publication-title: IEEE Trans. Electron Dev. doi: 10.1109/TED.2015.2439635 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR5 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR10 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 521 start-page: 61 year: 2015 end-page: 64 ident: CR25 article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors publication-title: Nature doi: 10.1038/nature14441 – volume: 18 start-page: 309 year: 2019 ident: 1942_CR7 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0291-x – volume: 14 start-page: 35 year: 2019 ident: 1942_CR33 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0302-0 – volume: 558 start-page: 60 year: 2018 ident: 1942_CR27 publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 48 start-page: 3049 year: 2013 ident: 1942_CR41 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2013.2279571 – ident: 1942_CR14 – volume: 39 start-page: 1985 year: 2004 ident: 1942_CR40 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2004.835817 – ident: 1942_CR39 doi: 10.1145/3316781.3317797 – ident: 1942_CR30 – volume: 9 year: 2018 ident: 1942_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04484-2 – ident: 1942_CR12 – ident: 1942_CR32 – volume: 10 start-page: 191 year: 2015 ident: 1942_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.29 – volume: 521 start-page: 436 year: 2015 ident: 1942_CR5 publication-title: Nature doi: 10.1038/nature14539 – volume: 62 start-page: 3498 year: 2015 ident: 1942_CR21 publication-title: IEEE Trans. Electron Dev. doi: 10.1109/TED.2015.2439635 – volume: 108 start-page: 217 year: 2018 ident: 1942_CR36 publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.012 – volume: 548 start-page: 318 year: 2017 ident: 1942_CR23 publication-title: Nature doi: 10.1038/nature23307 – volume: 12 start-page: 784 year: 2017 ident: 1942_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.83 – ident: 1942_CR11 doi: 10.1109/CVPR.2016.90 – volume: 52 start-page: 127 year: 2017 ident: 1942_CR15 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2616357 – volume: 37 start-page: 994 year: 2016 ident: 1942_CR17 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2016.2582859 – ident: 1942_CR37 doi: 10.1109/IEDM.2017.8268522 – ident: 1942_CR34 doi: 10.1109/VLSIT.2018.8510690 – volume: 521 start-page: 61 year: 2015 ident: 1942_CR25 publication-title: Nature doi: 10.1038/nature14441 – volume: 8 year: 2017 ident: 1942_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms15199 – ident: 1942_CR42 – volume: 366 start-page: 210 year: 2019 ident: 1942_CR8 publication-title: Science doi: 10.1126/science.aay0291 – ident: 1942_CR16 doi: 10.1109/ISSCC.2014.6757323 – ident: 1942_CR13 – volume: 17 start-page: 335 year: 2018 ident: 1942_CR20 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0001-5 – ident: 1942_CR31 – ident: 1942_CR35 doi: 10.1109/ASPDAC.2018.8297292 – volume: 1 start-page: 333 year: 2018 ident: 1942_CR1 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0092-2 – ident: 1942_CR38 doi: 10.23919/VLSIT.2019.8776551 – volume: 19 start-page: 7 year: 2017 ident: 1942_CR3 publication-title: Sci. Eng. – volume: 86 start-page: 2278 year: 1998 ident: 1942_CR10 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 37 start-page: 870 year: 2016 ident: 1942_CR22 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2016.2573140 – ident: 1942_CR29 doi: 10.1109/IEDM.2017.8268326 – ident: 1942_CR6 doi: 10.1109/IEDM.2017.8268372 – volume: 7 year: 2016 ident: 1942_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms12611 – ident: 1942_CR9 doi: 10.1109/IEDM.2018.8614482 – volume: 3 start-page: 89 year: 2017 ident: 1942_CR18 publication-title: Adv. Phys. X – volume: 106 start-page: 260 year: 2018 ident: 1942_CR19 publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2790840 |
SSID | ssj0005174 |
Score | 2.7309506 |
Snippet | Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks
1
–
4
. However, convolutional neural... Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks . However, convolutional neural... Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks.sup.1-4. However, convolutional... Memristor-enabled neuromorphic computing systems provide a fast and energyefficient approach to training neural networks1-4. However, convolutional neural... Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1-4. However, convolutional neural... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 641 |
SubjectTerms | 639/166/987 639/925/927/1007 Accuracy Arrays Artificial neural networks Design and construction Edge computing Efficiency Energy efficiency Fabrication Hardware Humanities and Social Sciences Kernels Memristors Methods multidisciplinary Neural networks Object recognition Science Science (multidisciplinary) Software Training Transistors |
Title | Fully hardware-implemented memristor convolutional neural network |
URI | https://link.springer.com/article/10.1038/s41586-020-1942-4 https://www.ncbi.nlm.nih.gov/pubmed/31996818 https://www.proquest.com/docview/2353091386 https://www.proquest.com/docview/2348797405 |
Volume | 577 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2Avo-2-3HbBG2WfmMqSLdtPIwvNusHC6FqWNyHJciksThonjP33u7PlpA5dX5wHnWXndKe70_18R8ixBTc1VRrr24kYAhRtA00zzLkynmtFVVy3Tvg-EmeX0bdxPHYHbpWDVbZ7Yr1R51ODZ-QnjMcca1im4tPsJsCuUZhddS00tshOCJYGIV3p8Msa4rFRhbnNavL0pALDlSL8lgYQxrMg6tilzd35lnnayJfWZmi4Sx47_9HvNwu-Rx7Ycp88rHGcptone05XK_-dKyj9_gnpY5z518fvq_6ouQ2uJw40bnN_Yid1dYG5j_hzJ4fwAKxzWf_UKPGn5HJ4ejE4C1zrhMCIiC4CGyqmc6Eguip4Hic0poaGOjKGMxtmqclDZZRQsQL_xOiC5WGYgzoLLZiJEsafke1yWtoXxE-LIlNagd8E3h3jhdIsM1kBUyciUTr2CG0ZJ42rK47tLX7LOr_NU9nwWgKvJfJaRh75sLpl1hTVuI_4GFdDYrGKEtEwV2pZVbJ_8Wswkn0hMOQBn8gjr-8i-_rzvEP01hEVU3hHo9w3CPBPsQxWh_KwQ2lm1zfy1uibzuhVs6J3TXPUIQTdNd3hVsSk2zsquZZ0j7xaDeOdiIcr7XSJNBBoQihIgf3PG9FccZIjsBz8MI98bGV1Pfl_2Xxw_6sckkcMlYXiaeUR2V7Ml_YluGML3SNbyTiBazoIe7X-9cjO59PRj_N_8XcvNA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviI2vsAEBjW9Fc-zETR8QqgalZVsfoBN7M7bjTJNo2jWtpv1T_I3cJU67VGNve8qDL05yPt9H7vw7QnYsuKmJ0ohvJ2IIULQNNG1jzpXxVCuq4rJ1wuFA9I6i78fx8Rr5W5-FwbLKWieWijodG_xHvst4zBHDMhGfJ2cBdo3C7GrdQqMSi317cQ4hW_Gp_wXW9zVj3a_DvV7gugoERkR0FthQMZ0KBYFHxtO4RWNqaKgjYzizEIKbNFRGCRUrMN1GZywNwxQkXWjBTNRCoANQ-bciDpYcT6Z3vy1LSlZQn-ssKk92CzCUCZb70iBsRyyIGnZw1RpcMocr-dnS7HXvk3vOX_U7lYBtkDWbb5LbZd2oKTbJhtMNhf_OAVi_f0A6GNde-Hie61xNbXA6ckXqNvVHdlSiGUx9rHd3cg8PQFzN8lJWpT8kRzfC1EdkPR_n9gnxkyxrK63ATwNvkvFMadY27QymbomW0rFHaM04aRyOObbT-CPLfDpPZMVrCbyWyGsZeeTD4pZJBeJxHfEOroZEcIwcq29O1LwoZGf4a28gO0JgiAU-mEdeXUXW__mjQfTWEWVjeEej3JkH-FKE3WpQbjUozeT0TF4afdMYPalW9KppthuEoCtMc7gWMel0VSGXO8sjLxfDeCfW3-V2PEcaCGwh9KTA_seVaC44ybGQHfw-j3ysZXU5-X_Z_PT6V3lB7vSGhwfyoD_Y3yJ3GW4cin9Kt8n6bDq3z8AVnOnn5f7zye-b3vD_ACkvaPY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviI2vsAEBjY-BojpO4iQPCFUd1cqgQrCJvRnbcaZJNO2aVtP-Nf467hKna6qxtz3lwRcnOd9n7vwzITsGwtREKsS34xEkKMp4iqZYc2VBpiSVUXV0wrch3z8KvxxHx2vkb7MXBtsqG5tYGepsrPEfeYcFUYAYlgnv5LYt4vte_9PkzMMTpLDS2hynUYvIgbk4h_St_DjYg7V-zVj_82Fv37MnDHiah3TmGV8ylXEJSUgeZFFMI6qpr0KtA2YgHdeZL7XkMpLgxrXKWeb7GUg9V5zpMEbQAzD_t-IgTlDHkt5Se8kKAnRTUQ2STglOM8HWX-r5aci8sOUTVz3DkmtcqdVWLrB_n9yzsavbrYVtg6yZYpPcrnpIdblJNqydKN13Fsx69wHpYo574eLernM5Nd7pyDasm8wdmVGFbDB1sffd6gA8ADE2q0vVof6QHN0IUx-R9WJcmCfETfI8lUpCzAaRJQtyqViq0xymjnksVeQQ2jBOaItpjkdr_BFVbT1IRM1rAbwWyGsROuT94pZJDehxHfEOroZAoIwCRe5EzstSdA9_9YaiyzmmWxCPOeTVVWSDnz9aRG8tUT6Gd9TS7n-AL0UIrhblVotST07PxNLom9boSb2iV02z3SIEu6Hbw42ICWu3SnGpZQ55uRjGO7EXrzDjOdJAkgtpKAX2P65Fc8HJAJvaIQZ0yIdGVi8n_y-bn17_Ki_IHVB18XUwPNgidxnqDcWfpttkfTadm2cQFc7U80r9XPL7pvX9H_aLbPc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+hardware-implemented+memristor+convolutional+neural+network&rft.jtitle=Nature+%28London%29&rft.au=Yao%2C+Peng&rft.au=Wu%2C+Huaqiang&rft.au=Gao%2C+Bin&rft.au=Tang%2C+Jianshi&rft.date=2020-01-30&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=577&rft.issue=7792&rft.spage=641&rft_id=info:doi/10.1038%2Fs41586-020-1942-4&rft.externalDocID=A660675554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |