Fully hardware-implemented memristor convolutional neural network

Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks 1 – 4 . However, convolutional neural networks (CNNs)—one of the most important models for image recognition 5 —have not yet been fully hardware-implemented using memristor cross...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 577; no. 7792; pp. 641 - 646
Main Authors Yao, Peng, Wu, Huaqiang, Gao, Bin, Tang, Jianshi, Zhang, Qingtian, Zhang, Wenqiang, Yang, J. Joshua, Qian, He
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.01.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks 1 – 4 . However, convolutional neural networks (CNNs)—one of the most important models for image recognition 5 —have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices 6 – 9 . Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST 10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units.
AbstractList Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks.sup.1-4. However, convolutional neural networks (CNNs)--one of the most important models for image recognition.sup.5--have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices.sup.6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST.sup.10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks.sup.1-4. However, convolutional neural networks (CNNs)--one of the most important models for image recognition.sup.5--have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices.sup.6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST.sup.10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units.
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1-4. However, convolutional neural networks (CNNs)-one of the most important models for image recognition5-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1-4. However, convolutional neural networks (CNNs)-one of the most important models for image recognition5-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.
Memristor-enabled neuromorphic computing systems provide a fast and energyefficient approach to training neural networks1-4. However, convolutional neural networks (CNNs)-one of the most important models for image recognition5-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6-9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybridtraining method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks . However, convolutional neural networks (CNNs)-one of the most important models for image recognition -have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices . Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks 1 – 4 . However, convolutional neural networks (CNNs)—one of the most important models for image recognition 5 —have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices 6 – 9 . Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST 10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units.
Audience Academic
Author Qian, He
Zhang, Wenqiang
Tang, Jianshi
Yao, Peng
Gao, Bin
Zhang, Qingtian
Wu, Huaqiang
Yang, J. Joshua
Author_xml – sequence: 1
  givenname: Peng
  surname: Yao
  fullname: Yao, Peng
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 2
  givenname: Huaqiang
  surname: Wu
  fullname: Wu, Huaqiang
  email: wuhq@tsinghua.edu.cn
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
– sequence: 3
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
– sequence: 4
  givenname: Jianshi
  surname: Tang
  fullname: Tang, Jianshi
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
– sequence: 5
  givenname: Qingtian
  surname: Zhang
  fullname: Zhang, Qingtian
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 6
  givenname: Wenqiang
  surname: Zhang
  fullname: Zhang, Wenqiang
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 7
  givenname: J. Joshua
  surname: Yang
  fullname: Yang, J. Joshua
  organization: Department of Electrical and Computer Engineering, University of Massachusetts
– sequence: 8
  givenname: He
  surname: Qian
  fullname: Qian, He
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31996818$$D View this record in MEDLINE/PubMed
BookMark eNp90k9v0zAYBnALDbFu8AG4oAouIOTh_0mOVcVg0gQSDHG0HOdN8Ujszk7Y9u3n0MHo1KEcLEW_541jPwdozwcPCD2n5IgSXr5LgspSYcIIppVgWDxCMyoKhYUqiz00I4SVmJRc7aODlM4JIZIW4gna57SqVEnLGVocj113Pf9hYnNpImDXrzvowQ_QzHvoo0tDiHMb_K_QjYML3nRzD2P8vQyXIf58ih63pkvw7HY9RN-O358tP-LTzx9OlotTbJUgAwZqWN0oUzHR8kYWRBJLaC2s5QxoVdqGGmuUkaaquK1b1lDaCEJUrZgVBeOH6PVm7jqGixHSoHuXLHSd8RDGpBkXZVEVgshMX92j52GMeeuTkpxUlJfqTq1MB9r5NgzR2GmoXihFVCGlFFnhHWoFHvIZ5OtoXX695V_u8HbtLvS_6GgHyk8DvbM7p77ZCmQzwNWwMmNK-uTrl2379mG7OPu-_LStX9ye1Vj30Oh1dL2J1_pPRTKgG2BjSClC-5dQoqca6k0Nda6hnmqop6HFvYx1g5nqk__Tdf9Nsk0y5a_4FcS7q3s4dAMxEusy
CitedBy_id crossref_primary_10_1016_j_device_2024_100598
crossref_primary_10_3389_fncom_2022_859874
crossref_primary_10_1016_j_eswa_2024_126205
crossref_primary_10_1088_1361_6463_ad0b52
crossref_primary_10_1002_aelm_202001181
crossref_primary_10_1021_acssensors_3c01273
crossref_primary_10_1038_s41563_024_02088_4
crossref_primary_10_1007_s12530_022_09456_y
crossref_primary_10_34133_2022_9859508
crossref_primary_10_1063_5_0170147
crossref_primary_10_1002_adfm_202213064
crossref_primary_10_1021_acsnano_3c03505
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1007_s11432_023_3785_8
crossref_primary_10_1038_s41467_023_36270_0
crossref_primary_10_1016_j_mee_2022_111778
crossref_primary_10_1016_j_sysarc_2021_102232
crossref_primary_10_1063_5_0009482
crossref_primary_10_1109_JPROC_2020_3003007
crossref_primary_10_35848_1347_4065_ac665d
crossref_primary_10_3390_s20216229
crossref_primary_10_1039_D3TC02309E
crossref_primary_10_1103_PhysRevApplied_18_014039
crossref_primary_10_1088_2634_4386_ac7d05
crossref_primary_10_1126_sciadv_adp3710
crossref_primary_10_1038_s41928_024_01315_9
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1007_s11071_021_06403_5
crossref_primary_10_1039_D2QM00151A
crossref_primary_10_1109_TCSI_2021_3084867
crossref_primary_10_3390_electronics10060645
crossref_primary_10_1016_j_neucom_2021_04_061
crossref_primary_10_1109_MNANO_2023_3297106
crossref_primary_10_1109_TCSI_2023_3329337
crossref_primary_10_1038_s41467_024_45670_9
crossref_primary_10_1038_s41598_023_32338_5
crossref_primary_10_1016_j_chaos_2024_115584
crossref_primary_10_1134_S1064226923100170
crossref_primary_10_1360_nso_20220071
crossref_primary_10_1038_s41528_023_00262_3
crossref_primary_10_1063_5_0184774
crossref_primary_10_1103_PhysRevB_106_214110
crossref_primary_10_1007_s11426_024_2437_9
crossref_primary_10_1002_adma_202301063
crossref_primary_10_1039_D3NA00025G
crossref_primary_10_1109_JQE_2022_3169565
crossref_primary_10_1103_PhysRevApplied_18_014040
crossref_primary_10_1109_JSSC_2023_3280357
crossref_primary_10_1109_JXCDC_2022_3202517
crossref_primary_10_3389_fnano_2021_670762
crossref_primary_10_1016_j_jallcom_2024_175644
crossref_primary_10_1007_s11432_022_3695_1
crossref_primary_10_1109_LMAG_2022_3152991
crossref_primary_10_1016_j_engappai_2023_106232
crossref_primary_10_3389_femat_2023_1061269
crossref_primary_10_1103_PhysRevApplied_18_024082
crossref_primary_10_1109_TCSII_2021_3067385
crossref_primary_10_1002_aisy_202100114
crossref_primary_10_1002_adfm_202105625
crossref_primary_10_1038_s41467_024_53321_2
crossref_primary_10_1002_adfm_202420045
crossref_primary_10_1103_PhysRevApplied_15_034067
crossref_primary_10_1002_adma_202204944
crossref_primary_10_1109_JEDS_2023_3311763
crossref_primary_10_1002_admt_202401944
crossref_primary_10_1016_j_device_2024_100329
crossref_primary_10_1021_acsnano_1c06980
crossref_primary_10_3389_fnins_2021_750458
crossref_primary_10_1016_j_xcrp_2021_100507
crossref_primary_10_1093_nsr_nwaa172
crossref_primary_10_1002_adfm_202502211
crossref_primary_10_1038_s41928_022_00785_z
crossref_primary_10_1016_j_chaos_2021_111111
crossref_primary_10_7498_aps_70_20201961
crossref_primary_10_1063_5_0232917
crossref_primary_10_3390_mi13091512
crossref_primary_10_3389_fnins_2020_00358
crossref_primary_10_1002_adma_202201488
crossref_primary_10_3390_mi13020319
crossref_primary_10_1016_j_jmst_2024_12_078
crossref_primary_10_1021_acsphotonics_3c01253
crossref_primary_10_1109_MED_2023_3296084
crossref_primary_10_3390_mi13020317
crossref_primary_10_1002_ange_202217249
crossref_primary_10_1038_s41467_023_38299_7
crossref_primary_10_1109_JSSC_2022_3200515
crossref_primary_10_1038_s41524_022_00770_2
crossref_primary_10_1002_advs_202200629
crossref_primary_10_1016_j_mee_2022_111736
crossref_primary_10_1109_TCSI_2021_3082895
crossref_primary_10_1109_TCAD_2022_3156017
crossref_primary_10_1016_j_neucom_2021_05_062
crossref_primary_10_1002_adfm_202101201
crossref_primary_10_1002_aelm_202200733
crossref_primary_10_1002_aisy_202200196
crossref_primary_10_1063_5_0158076
crossref_primary_10_1002_aelm_202200972
crossref_primary_10_1016_j_chaos_2021_111369
crossref_primary_10_1016_j_vlsi_2025_102384
crossref_primary_10_1039_D3CS00918A
crossref_primary_10_1007_s12668_020_00795_1
crossref_primary_10_1038_s41467_022_32790_3
crossref_primary_10_1109_JPROC_2020_3004543
crossref_primary_10_1016_j_pmatsci_2024_101298
crossref_primary_10_1109_LED_2022_3190267
crossref_primary_10_3889_oamjms_2021_6955
crossref_primary_10_1016_j_apsusc_2022_154281
crossref_primary_10_1038_s41467_023_38473_x
crossref_primary_10_1039_D4MH00300D
crossref_primary_10_1021_acsami_4c12457
crossref_primary_10_1002_adfm_202305238
crossref_primary_10_3389_fnano_2021_645995
crossref_primary_10_1016_j_micpro_2022_104441
crossref_primary_10_1021_acs_nanolett_3c03553
crossref_primary_10_1038_s41467_023_44620_1
crossref_primary_10_1109_LED_2021_3129202
crossref_primary_10_1002_adma_202305465
crossref_primary_10_1134_S2635167622070035
crossref_primary_10_1109_TCSII_2022_3233396
crossref_primary_10_1109_LED_2021_3090906
crossref_primary_10_1093_bulcsj_uoae083
crossref_primary_10_1088_2053_1583_ac1e71
crossref_primary_10_1109_TED_2023_3294352
crossref_primary_10_1038_s42256_023_00609_5
crossref_primary_10_1109_LED_2023_3306015
crossref_primary_10_1109_LED_2024_3498106
crossref_primary_10_1016_j_ijleo_2022_169878
crossref_primary_10_1002_advs_202406242
crossref_primary_10_1088_1361_6463_ac296d
crossref_primary_10_1063_5_0067352
crossref_primary_10_1109_TCSI_2022_3199453
crossref_primary_10_1103_PhysRevApplied_21_014028
crossref_primary_10_1063_5_0160599
crossref_primary_10_1080_03081079_2021_1985487
crossref_primary_10_1088_2399_1984_ad299a
crossref_primary_10_1109_TED_2021_3072868
crossref_primary_10_1063_5_0116699
crossref_primary_10_1021_acsomega_3c03200
crossref_primary_10_31857_S0544126923700461
crossref_primary_10_3389_fchem_2022_944029
crossref_primary_10_1038_s41566_022_00973_5
crossref_primary_10_1364_OL_446789
crossref_primary_10_1002_aelm_202200958
crossref_primary_10_1109_TED_2021_3134137
crossref_primary_10_1021_acsnano_4c05137
crossref_primary_10_1021_acsnano_4c06467
crossref_primary_10_1109_TVLSI_2022_3140395
crossref_primary_10_1140_epjs_s11734_022_00567_w
crossref_primary_10_1063_5_0216429
crossref_primary_10_1002_smsc_202100072
crossref_primary_10_1021_acsnano_4c09735
crossref_primary_10_1080_00107514_2022_2160542
crossref_primary_10_1002_aisy_202000115
crossref_primary_10_1002_aisy_202000114
crossref_primary_10_1038_s41565_023_01343_0
crossref_primary_10_1109_JEDS_2022_3169745
crossref_primary_10_1016_j_mattod_2020_07_016
crossref_primary_10_1109_JETCAS_2023_3329449
crossref_primary_10_1002_aisy_202000111
crossref_primary_10_1021_acsaelm_4c00726
crossref_primary_10_1126_sciadv_adl1299
crossref_primary_10_1016_j_neucom_2021_11_034
crossref_primary_10_1109_TED_2023_3287824
crossref_primary_10_1109_TVLSI_2020_3001526
crossref_primary_10_1021_acs_nanolett_4c02470
crossref_primary_10_1109_JIOT_2023_3274116
crossref_primary_10_1126_sciadv_adr2082
crossref_primary_10_3390_molecules28020809
crossref_primary_10_1039_D3NH00180F
crossref_primary_10_1039_D4MH01676A
crossref_primary_10_1016_j_scib_2023_11_042
crossref_primary_10_1063_5_0084784
crossref_primary_10_1109_ACCESS_2021_3072193
crossref_primary_10_1002_inf2_12619
crossref_primary_10_1109_TCSII_2022_3224470
crossref_primary_10_1038_s41565_021_00943_y
crossref_primary_10_1109_TCSII_2022_3157789
crossref_primary_10_1364_OPTICA_485883
crossref_primary_10_1002_EXP_20220162
crossref_primary_10_1002_adma_202202371
crossref_primary_10_1002_adfm_202312658
crossref_primary_10_1007_s10489_024_06091_9
crossref_primary_10_1109_ACCESS_2020_3044652
crossref_primary_10_1002_aelm_202300303
crossref_primary_10_1145_3474364
crossref_primary_10_1007_s12274_023_5789_5
crossref_primary_10_1038_s41928_023_00965_5
crossref_primary_10_1007_s11432_023_3789_7
crossref_primary_10_1140_epjb_s10051_024_00703_6
crossref_primary_10_1007_s40820_024_01445_x
crossref_primary_10_1016_j_mtelec_2024_100099
crossref_primary_10_1038_s41928_024_01213_0
crossref_primary_10_1088_1742_6596_2613_1_012005
crossref_primary_10_1360_SSI_2023_0311
crossref_primary_10_1002_adma_202205402
crossref_primary_10_1002_aisy_202300411
crossref_primary_10_1038_s41467_023_41647_2
crossref_primary_10_1134_S2635167621060173
crossref_primary_10_1155_2022_2538896
crossref_primary_10_1039_D5NH00040H
crossref_primary_10_1002_adfm_202312885
crossref_primary_10_3389_fnano_2023_1146852
crossref_primary_10_3389_fsens_2022_896299
crossref_primary_10_1002_adfm_202416619
crossref_primary_10_1038_s41467_023_42981_1
crossref_primary_10_1063_5_0128200
crossref_primary_10_1155_2021_4056454
crossref_primary_10_1016_j_chaos_2022_112389
crossref_primary_10_1002_adma_202307218
crossref_primary_10_1016_j_chip_2023_100044
crossref_primary_10_1016_j_neucom_2023_126778
crossref_primary_10_1109_TVLSI_2021_3069221
crossref_primary_10_1021_acs_nanolett_4c04434
crossref_primary_10_1126_sciadv_ado8999
crossref_primary_10_1109_JSTQE_2023_3234641
crossref_primary_10_1002_adma_202203684
crossref_primary_10_1002_admt_202100745
crossref_primary_10_1002_aelm_202200922
crossref_primary_10_1039_D4TC01257G
crossref_primary_10_1021_acsami_4c09056
crossref_primary_10_2139_ssrn_4182150
crossref_primary_10_1016_j_mtcomm_2022_104754
crossref_primary_10_1002_aisy_202100199
crossref_primary_10_3390_jlpea10040040
crossref_primary_10_1002_adma_202106913
crossref_primary_10_1088_2634_4386_ac734a
crossref_primary_10_1016_j_mejo_2022_105574
crossref_primary_10_1038_s41467_025_57183_0
crossref_primary_10_3389_fnins_2021_636127
crossref_primary_10_1038_s43588_024_00762_w
crossref_primary_10_1080_14686996_2021_1911277
crossref_primary_10_35848_1347_4065_ac5721
crossref_primary_10_1002_adma_202301924
crossref_primary_10_1190_geo2023_0022_1
crossref_primary_10_3390_mi13020308
crossref_primary_10_1002_adfm_202308136
crossref_primary_10_1140_epjs_s11734_022_00565_y
crossref_primary_10_1109_TBCAS_2022_3209073
crossref_primary_10_3390_nano13030605
crossref_primary_10_1088_2631_7990_ad1573
crossref_primary_10_1002_smll_202402273
crossref_primary_10_1038_s44335_024_00003_3
crossref_primary_10_1038_s41467_025_56254_6
crossref_primary_10_1039_D3RA00782K
crossref_primary_10_1109_TVLSI_2022_3179621
crossref_primary_10_1016_j_chip_2024_100107
crossref_primary_10_1109_JSSC_2023_3314433
crossref_primary_10_1364_OE_468456
crossref_primary_10_1002_adma_202401021
crossref_primary_10_1038_s41528_022_00152_0
crossref_primary_10_1002_inf2_12416
crossref_primary_10_1109_TCAD_2022_3172907
crossref_primary_10_1038_s41467_025_58039_3
crossref_primary_10_1109_TCSI_2020_3036454
crossref_primary_10_1002_inf2_12659
crossref_primary_10_1063_5_0006850
crossref_primary_10_1002_aelm_202100330
crossref_primary_10_1002_adfm_202005582
crossref_primary_10_1063_5_0069116
crossref_primary_10_1002_aisy_202100174
crossref_primary_10_1016_j_engappai_2024_108078
crossref_primary_10_1016_j_knosys_2021_106903
crossref_primary_10_3389_felec_2022_825077
crossref_primary_10_1088_2634_4386_ac4fb7
crossref_primary_10_1021_acs_nanolett_4c01190
crossref_primary_10_1557_s43580_025_01198_8
crossref_primary_10_1016_j_micpro_2023_104779
crossref_primary_10_1002_pssa_202200643
crossref_primary_10_7498_aps_71_20220308
crossref_primary_10_3390_mi12101201
crossref_primary_10_1038_s41928_024_01211_2
crossref_primary_10_1126_sciadv_abc4797
crossref_primary_10_1039_D2TC03800E
crossref_primary_10_1038_s41467_022_29870_9
crossref_primary_10_1002_aisy_202300456
crossref_primary_10_1109_TCSII_2022_3154465
crossref_primary_10_1109_TED_2021_3097975
crossref_primary_10_1109_TCSI_2021_3072200
crossref_primary_10_1126_sciadv_adi4083
crossref_primary_10_1038_s43588_024_00751_z
crossref_primary_10_1002_advs_202301323
crossref_primary_10_1088_2634_4386_ac4a83
crossref_primary_10_1557_mrs_2020_196
crossref_primary_10_1109_TCSI_2024_3395842
crossref_primary_10_1126_sciadv_adl2767
crossref_primary_10_1021_acsaelm_2c00495
crossref_primary_10_1002_adma_202006469
crossref_primary_10_1016_j_chaos_2022_112106
crossref_primary_10_1149_2162_8777_ac557b
crossref_primary_10_1016_j_apsusc_2023_158994
crossref_primary_10_1109_MCOM_001_2200272
crossref_primary_10_1038_s41467_023_43317_9
crossref_primary_10_1021_acsaelm_3c00698
crossref_primary_10_1109_TED_2023_3312229
crossref_primary_10_1088_2634_4386_abfca6
crossref_primary_10_1088_1361_6668_ad3d10
crossref_primary_10_1109_TCSII_2022_3157767
crossref_primary_10_1002_aelm_202000948
crossref_primary_10_1002_aelm_202101204
crossref_primary_10_1109_TMAG_2023_3323935
crossref_primary_10_1007_s11571_024_10069_1
crossref_primary_10_1109_TED_2024_3379159
crossref_primary_10_1002_aisy_202100159
crossref_primary_10_1039_D1SC01505B
crossref_primary_10_1007_s40843_024_2946_y
crossref_primary_10_1038_s41528_024_00313_3
crossref_primary_10_1002_pssr_202100208
crossref_primary_10_1088_1361_6463_ad7155
crossref_primary_10_1038_s41563_023_01676_0
crossref_primary_10_1109_TC_2020_3017870
crossref_primary_10_1140_epjb_s10051_024_00662_y
crossref_primary_10_1109_TCAD_2021_3051856
crossref_primary_10_1021_acsaelm_3c00229
crossref_primary_10_1126_sciadv_abn7630
crossref_primary_10_1038_s41467_024_48631_4
crossref_primary_10_1038_s41586_020_03063_0
crossref_primary_10_1002_advs_202500521
crossref_primary_10_1063_5_0133846
crossref_primary_10_1190_geo2022_0196_1
crossref_primary_10_1038_s41928_024_01169_1
crossref_primary_10_1016_j_cossms_2024_101187
crossref_primary_10_1039_D4TC03586K
crossref_primary_10_1002_adma_202005910
crossref_primary_10_1016_j_chaos_2020_110461
crossref_primary_10_1088_1674_4926_44_5_053102
crossref_primary_10_1007_s40042_023_00948_x
crossref_primary_10_1021_acsami_4c15598
crossref_primary_10_1021_acs_nanolett_4c00212
crossref_primary_10_1063_5_0064536
crossref_primary_10_1186_s40580_023_00392_4
crossref_primary_10_1109_JXCDC_2021_3057856
crossref_primary_10_1039_D1NA00152C
crossref_primary_10_1007_s11071_024_10226_5
crossref_primary_10_1038_s41467_022_32884_y
crossref_primary_10_1134_S2635167621060215
crossref_primary_10_1002_advs_202307359
crossref_primary_10_1002_advs_202309538
crossref_primary_10_1038_s41928_020_0435_7
crossref_primary_10_1126_sciadv_ado1058
crossref_primary_10_1109_TVLSI_2024_3521394
crossref_primary_10_1002_aisy_202300026
crossref_primary_10_1088_1674_1056_acdac3
crossref_primary_10_1002_aisy_202000085
crossref_primary_10_1126_sciadv_adn4524
crossref_primary_10_1140_epjs_s11734_022_00639_x
crossref_primary_10_1016_j_mtphys_2025_101703
crossref_primary_10_3390_nano14191573
crossref_primary_10_1021_acsami_3c02998
crossref_primary_10_1007_s40843_021_1771_5
crossref_primary_10_1109_LED_2022_3177774
crossref_primary_10_1016_j_energy_2022_125270
crossref_primary_10_1002_aelm_202300839
crossref_primary_10_1126_science_abj9979
crossref_primary_10_1021_acs_nanolett_4c01319
crossref_primary_10_1088_2634_4386_ac7db7
crossref_primary_10_1002_adfm_202416333
crossref_primary_10_1088_1402_4896_ad5474
crossref_primary_10_1007_s10825_020_01470_0
crossref_primary_10_1002_smll_202302593
crossref_primary_10_1016_j_neunet_2024_106780
crossref_primary_10_1038_s41598_024_62872_9
crossref_primary_10_1103_PhysRevA_104_062605
crossref_primary_10_1109_TED_2023_3296393
crossref_primary_10_1002_aelm_202000511
crossref_primary_10_1016_j_scs_2021_102849
crossref_primary_10_1007_s41939_024_00517_0
crossref_primary_10_1016_j_matpr_2023_10_028
crossref_primary_10_1109_TED_2024_3506498
crossref_primary_10_1109_JSEN_2022_3207912
crossref_primary_10_1109_TCSVT_2023_3275708
crossref_primary_10_1002_adma_202107811
crossref_primary_10_1016_j_nanoen_2025_110698
crossref_primary_10_1038_s42005_022_01111_x
crossref_primary_10_1126_sciadv_adj2908
crossref_primary_10_1002_aelm_202200089
crossref_primary_10_1007_s43939_022_00032_4
crossref_primary_10_1016_j_sse_2021_108220
crossref_primary_10_1109_TNANO_2023_3293026
crossref_primary_10_1126_sciadv_adg7904
crossref_primary_10_3389_fnins_2022_1016026
crossref_primary_10_12677_APP_2021_116037
crossref_primary_10_1088_2634_4386_ac9012
crossref_primary_10_1016_j_chaos_2023_114440
crossref_primary_10_1038_s42256_023_00680_y
crossref_primary_10_1088_1361_6641_ac31e3
crossref_primary_10_1016_j_cjph_2020_11_007
crossref_primary_10_1021_acsaelm_4c00199
crossref_primary_10_1103_PhysRevApplied_16_024045
crossref_primary_10_3390_e25081134
crossref_primary_10_1016_j_neucom_2020_04_130
crossref_primary_10_1364_AOP_470264
crossref_primary_10_1002_aisy_202400098
crossref_primary_10_1021_acsami_4c07951
crossref_primary_10_1002_aelm_202101127
crossref_primary_10_3390_electronics10212564
crossref_primary_10_1109_JLT_2023_3317090
crossref_primary_10_1002_smsc_202200082
crossref_primary_10_1109_TCSI_2023_3343081
crossref_primary_10_1145_3643134
crossref_primary_10_1016_j_apsusc_2022_153653
crossref_primary_10_1016_j_jmat_2025_101051
crossref_primary_10_1016_j_mejo_2024_106189
crossref_primary_10_1021_acsnano_4c12884
crossref_primary_10_1038_s41928_020_0411_2
crossref_primary_10_1016_j_nanoen_2022_107486
crossref_primary_10_3389_fpsyg_2021_751406
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_3367_UFNr_2024_06_039698
crossref_primary_10_1038_s41467_024_55562_7
crossref_primary_10_1038_s41565_020_0655_z
crossref_primary_10_3390_electronics12234796
crossref_primary_10_1007_s11432_022_3756_3
crossref_primary_10_1186_s11671_023_03901_w
crossref_primary_10_1002_smll_202304518
crossref_primary_10_32603_1993_8985_2022_25_6_61_69
crossref_primary_10_3390_nano12132171
crossref_primary_10_1016_j_eswa_2023_121028
crossref_primary_10_1088_1674_4926_23120051
crossref_primary_10_1002_aelm_202300618
crossref_primary_10_1038_s41928_023_00952_w
crossref_primary_10_1002_qute_202300021
crossref_primary_10_1155_2022_2530836
crossref_primary_10_1038_s41928_024_01137_9
crossref_primary_10_1016_j_sse_2021_108045
crossref_primary_10_1002_EXP_20220126
crossref_primary_10_1002_adfm_202416794
crossref_primary_10_1002_aelm_202100299
crossref_primary_10_1155_2022_9323646
crossref_primary_10_1038_s43588_024_00644_1
crossref_primary_10_3390_sym14071391
crossref_primary_10_1063_5_0232003
crossref_primary_10_1002_adfm_202302899
crossref_primary_10_1038_s41467_025_56286_y
crossref_primary_10_3367_UFNe_2024_06_039698
crossref_primary_10_1103_PhysRevApplied_21_054028
crossref_primary_10_3390_jlpea12030044
crossref_primary_10_1088_1674_1056_ac7548
crossref_primary_10_1109_MCAS_2022_3214409
crossref_primary_10_1109_TII_2021_3086819
crossref_primary_10_1002_inf2_70018
crossref_primary_10_1016_j_neunet_2023_01_008
crossref_primary_10_1088_2634_4386_ac7a5a
crossref_primary_10_3390_electronics11233851
crossref_primary_10_1088_1674_4926_44_10_104101
crossref_primary_10_1038_s41467_020_16985_0
crossref_primary_10_3389_fnins_2024_1279708
crossref_primary_10_1134_S1990793123040140
crossref_primary_10_1002_smsc_202200028
crossref_primary_10_1016_j_nxnano_2024_100052
crossref_primary_10_1038_s41928_021_00676_9
crossref_primary_10_1007_s11432_022_3503_4
crossref_primary_10_15541_jim20230066
crossref_primary_10_1007_s11390_023_4002_3
crossref_primary_10_3390_chips3040014
crossref_primary_10_1038_s41699_024_00522_4
crossref_primary_10_1109_TBCAS_2021_3090786
crossref_primary_10_1109_TED_2020_3045684
crossref_primary_10_1080_02670836_2022_2163533
crossref_primary_10_1038_s41928_023_00994_0
crossref_primary_10_1109_OJCOMS_2020_3020131
crossref_primary_10_31613_ceramist_2023_26_1_07
crossref_primary_10_34133_icomputing_0043
crossref_primary_10_35848_1347_4065_ac6a3b
crossref_primary_10_1007_s40843_021_1925_x
crossref_primary_10_1088_2634_4386_ac77b2
crossref_primary_10_1007_s40820_024_01335_2
crossref_primary_10_1002_adfm_202300458
crossref_primary_10_2139_ssrn_3998975
crossref_primary_10_1002_advs_202308460
crossref_primary_10_1142_S0217984925501490
crossref_primary_10_1039_D3NH00421J
crossref_primary_10_1002_lpor_202100472
crossref_primary_10_1016_j_cjph_2024_02_049
crossref_primary_10_1007_s40843_021_1901_2
crossref_primary_10_1016_j_chip_2024_100086
crossref_primary_10_1109_JSSC_2022_3163197
crossref_primary_10_1002_aelm_202300806
crossref_primary_10_1016_j_chip_2024_100093
crossref_primary_10_1002_adfm_202100807
crossref_primary_10_1038_s43588_024_00744_y
crossref_primary_10_1109_TVLSI_2023_3337777
crossref_primary_10_1002_aelm_202300803
crossref_primary_10_1038_s41467_023_44365_x
crossref_primary_10_1360_TB_2022_0479
crossref_primary_10_1109_ACCESS_2022_3171799
crossref_primary_10_1038_s41467_025_56412_w
crossref_primary_10_1109_TED_2022_3227529
crossref_primary_10_1002_adma_202409258
crossref_primary_10_1038_s41467_025_56079_3
crossref_primary_10_1002_adma_202302658
crossref_primary_10_1007_s40042_022_00537_4
crossref_primary_10_1016_j_chaos_2022_113024
crossref_primary_10_1016_j_sse_2021_108034
crossref_primary_10_1002_adma_202409017
crossref_primary_10_1016_j_jallcom_2023_170119
crossref_primary_10_1021_acs_nanolett_0c04696
crossref_primary_10_1016_j_isci_2021_103729
crossref_primary_10_1109_TPDS_2022_3149787
crossref_primary_10_1007_s11071_023_09204_0
crossref_primary_10_1126_sciadv_adi5104
crossref_primary_10_1002_adma_202209503
crossref_primary_10_1002_aelm_202400106
crossref_primary_10_1126_sciadv_abm8537
crossref_primary_10_3390_ma14216275
crossref_primary_10_1002_adfm_202405670
crossref_primary_10_3389_fnins_2021_717222
crossref_primary_10_1021_acsanm_5c00007
crossref_primary_10_1109_TCSI_2021_3064189
crossref_primary_10_1088_2634_4386_acd4e2
crossref_primary_10_1073_pnas_2319718121
crossref_primary_10_1016_j_jpdc_2024_104898
crossref_primary_10_1038_s41928_023_01053_4
crossref_primary_10_1002_aisy_202200145
crossref_primary_10_1007_s11432_020_3227_1
crossref_primary_10_1016_j_mne_2024_100251
crossref_primary_10_1002_smll_202105585
crossref_primary_10_1021_acsnano_3c05771
crossref_primary_10_1016_j_mtnano_2024_100543
crossref_primary_10_1073_pnas_2109194119
crossref_primary_10_1088_1674_4926_42_1_014102
crossref_primary_10_4018_JOEUC_300762
crossref_primary_10_1002_advs_202308847
crossref_primary_10_1088_1674_4926_42_1_014101
crossref_primary_10_1021_acsami_1c02963
crossref_primary_10_1038_s41586_024_07230_5
crossref_primary_10_1007_s00500_023_09374_4
crossref_primary_10_1080_14686996_2022_2162323
crossref_primary_10_1134_S2635167621020154
crossref_primary_10_1155_2022_3464984
crossref_primary_10_1016_j_neucom_2021_08_011
crossref_primary_10_1002_adfm_202205150
crossref_primary_10_1002_smtd_202402218
crossref_primary_10_1021_acsami_3c09300
crossref_primary_10_1038_s41467_023_38021_7
crossref_primary_10_1038_s41928_023_00939_7
crossref_primary_10_1007_s11432_023_3739_0
crossref_primary_10_1109_LED_2021_3091995
crossref_primary_10_1021_acsami_4c10991
crossref_primary_10_1103_PhysRevMaterials_6_105002
crossref_primary_10_1038_s41586_022_04992_8
crossref_primary_10_1002_adma_202300023
crossref_primary_10_1098_rsta_2021_0018
crossref_primary_10_1016_j_sse_2021_108064
crossref_primary_10_1002_adma_202105022
crossref_primary_10_1088_2634_4386_ac29ca
crossref_primary_10_1063_5_0133146
crossref_primary_10_1002_adma_202207133
crossref_primary_10_1038_s41598_025_87924_6
crossref_primary_10_1134_S2635167623601092
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123181
crossref_primary_10_1557_s43577_023_00613_5
crossref_primary_10_7498_aps_71_20220281
crossref_primary_10_1109_MNANO_2022_3208723
crossref_primary_10_1109_TCDS_2021_3049487
crossref_primary_10_1186_s40580_024_00463_0
crossref_primary_10_34133_icomputing_0006
crossref_primary_10_1002_adfm_202212917
crossref_primary_10_1002_inf2_12196
crossref_primary_10_1002_cta_3022
crossref_primary_10_1021_acsnano_2c06432
crossref_primary_10_3390_fractalfract6070350
crossref_primary_10_1038_s41928_023_01064_1
crossref_primary_10_3390_mi12101183
crossref_primary_10_1002_aisy_202200173
crossref_primary_10_1038_s41928_022_00886_9
crossref_primary_10_1039_D0MA00488J
crossref_primary_10_3390_s23063118
crossref_primary_10_1002_aisy_202200179
crossref_primary_10_1088_2053_1591_ad1125
crossref_primary_10_1002_aisy_202200177
crossref_primary_10_1038_s41467_021_22364_0
crossref_primary_10_1038_s41586_021_04196_6
crossref_primary_10_1088_1402_4896_ad7a2f
crossref_primary_10_1109_TCSII_2022_3172494
crossref_primary_10_1002_advs_202003765
crossref_primary_10_1038_s41578_024_00740_8
crossref_primary_10_1088_1742_6596_2558_1_012010
crossref_primary_10_1007_s00521_023_08401_7
crossref_primary_10_1088_2634_4386_acb2f0
crossref_primary_10_58997_ejde_2023_83
crossref_primary_10_1038_s41467_024_49324_8
crossref_primary_10_1109_MCAS_2020_3027425
crossref_primary_10_1109_TCSII_2021_3068764
crossref_primary_10_1002_anie_202217249
crossref_primary_10_1109_ACCESS_2020_3045071
crossref_primary_10_1109_TCSI_2021_3130938
crossref_primary_10_1016_j_vlsi_2025_102410
crossref_primary_10_3390_electronics13091632
crossref_primary_10_1002_adma_202209371
crossref_primary_10_1016_j_jallcom_2021_161016
crossref_primary_10_1021_acsami_3c18053
crossref_primary_10_1016_j_mtelec_2024_100105
crossref_primary_10_1557_s43577_021_00093_5
crossref_primary_10_1038_s41928_023_01055_2
crossref_primary_10_1016_j_eswa_2022_119310
crossref_primary_10_1016_j_optmat_2021_111272
crossref_primary_10_1109_TCSI_2021_3115787
crossref_primary_10_1039_D3NR02395H
crossref_primary_10_1088_1674_1056_acb9f6
crossref_primary_10_1002_aelm_202001258
crossref_primary_10_1002_aisy_202000040
crossref_primary_10_1038_s41467_023_43542_2
crossref_primary_10_1109_JETCAS_2023_3241750
crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_1007_s11431_023_2456_1
crossref_primary_10_1063_5_0073285
crossref_primary_10_3389_fnins_2022_959626
crossref_primary_10_1039_D3MH01762A
crossref_primary_10_1016_j_ceramint_2024_05_090
crossref_primary_10_1007_s12200_022_00025_4
crossref_primary_10_1088_2634_4386_aca92c
crossref_primary_10_1002_adma_202203830
crossref_primary_10_1016_j_neucom_2021_07_009
crossref_primary_10_1016_j_vlsi_2023_05_008
crossref_primary_10_1088_2634_4386_ac0242
crossref_primary_10_1002_aisy_202200110
crossref_primary_10_1007_s11071_022_07955_w
crossref_primary_10_1109_TII_2021_3119387
crossref_primary_10_1002_advs_202002251
crossref_primary_10_1016_j_mejo_2024_106537
crossref_primary_10_1016_j_sysarc_2024_103192
crossref_primary_10_1109_ACCESS_2024_3361837
crossref_primary_10_3389_fnins_2022_913618
crossref_primary_10_1109_TED_2021_3089561
crossref_primary_10_1557_s43579_024_00520_z
crossref_primary_10_1002_smll_202412761
crossref_primary_10_1049_ell2_13089
crossref_primary_10_3390_mi16020167
crossref_primary_10_1002_adma_202104370
crossref_primary_10_1002_aelm_202200448
crossref_primary_10_1016_j_scitotenv_2021_148088
crossref_primary_10_1063_5_0033613
crossref_primary_10_1126_science_ade3483
crossref_primary_10_1109_LED_2022_3182494
crossref_primary_10_1002_adfm_202418113
crossref_primary_10_1002_aisy_202200127
crossref_primary_10_12720_jait_15_10_1163_1173
crossref_primary_10_1002_aelm_202200449
crossref_primary_10_1063_5_0169341
crossref_primary_10_1016_j_mtnano_2023_100441
crossref_primary_10_1155_2022_8925205
crossref_primary_10_1109_LED_2024_3521924
crossref_primary_10_1109_TED_2023_3339115
crossref_primary_10_1016_j_mtnano_2023_100449
crossref_primary_10_1063_5_0126651
crossref_primary_10_1063_5_0200811
crossref_primary_10_1002_adma_202003984
crossref_primary_10_1016_j_neunet_2023_05_043
crossref_primary_10_1007_s11071_022_08005_1
crossref_primary_10_1038_s41467_022_28235_6
crossref_primary_10_1063_5_0053470
crossref_primary_10_1109_LED_2022_3183111
crossref_primary_10_20517_ss_2024_77
crossref_primary_10_1109_TED_2024_3379953
crossref_primary_10_1002_admt_202100373
crossref_primary_10_1016_j_device_2024_100645
crossref_primary_10_29026_oea_2025_240135
crossref_primary_10_1007_s00500_023_09110_y
crossref_primary_10_1016_j_neucom_2021_08_072
crossref_primary_10_1109_TED_2021_3069746
crossref_primary_10_1002_adfm_202113050
crossref_primary_10_1016_j_isci_2020_101889
crossref_primary_10_1021_acs_nanolett_3c02888
crossref_primary_10_1109_JIOT_2023_3239944
crossref_primary_10_1109_TBCAS_2020_3036081
crossref_primary_10_1088_1402_4896_ad5054
crossref_primary_10_1021_acs_nanolett_3c04820
crossref_primary_10_1109_TCSII_2021_3103553
crossref_primary_10_3389_fnano_2023_1055527
crossref_primary_10_1016_j_chaos_2021_111624
crossref_primary_10_1016_j_mtelec_2023_100064
crossref_primary_10_1007_s11071_024_10709_5
crossref_primary_10_1016_j_mtnano_2023_100439
crossref_primary_10_1360_TB_2024_0931
crossref_primary_10_1002_smll_202311630
crossref_primary_10_1109_MCAS_2021_3092533
crossref_primary_10_1109_ACCESS_2023_3324375
crossref_primary_10_1109_JIOT_2023_3307405
crossref_primary_10_1021_acsnano_1c04654
crossref_primary_10_1016_j_eswa_2022_117053
crossref_primary_10_1145_3595638
crossref_primary_10_1002_adom_202201905
crossref_primary_10_1109_TFUZZ_2020_2995966
crossref_primary_10_1016_j_chemosphere_2022_136119
crossref_primary_10_1016_j_mssp_2024_108829
crossref_primary_10_7498_aps_71_20220463
crossref_primary_10_1109_TCSI_2021_3126477
crossref_primary_10_1002_adma_202307951
crossref_primary_10_1002_aisy_202100017
crossref_primary_10_1002_aisy_202100256
crossref_primary_10_1002_aelm_202200656
crossref_primary_10_1007_s10825_023_02123_8
crossref_primary_10_1109_OJSSCS_2021_3123287
crossref_primary_10_1007_s11432_020_3198_9
crossref_primary_10_1016_j_mtcomm_2025_111642
crossref_primary_10_1016_j_fmre_2022_06_022
crossref_primary_10_1063_1_5113536
crossref_primary_10_1088_1674_1056_ac380b
crossref_primary_10_1109_TCAD_2021_3121347
crossref_primary_10_1016_j_mattod_2024_08_027
crossref_primary_10_1016_j_xcrp_2024_102202
crossref_primary_10_1109_TCSI_2021_3060798
crossref_primary_10_1002_adfm_202419179
crossref_primary_10_1109_TCSII_2023_3340112
crossref_primary_10_3389_femat_2022_1020076
crossref_primary_10_1016_j_chip_2022_100031
crossref_primary_10_1142_S0218127422501085
crossref_primary_10_1007_s11432_023_3751_y
crossref_primary_10_1016_j_ceramint_2024_02_134
crossref_primary_10_1109_TCAD_2022_3175947
crossref_primary_10_1016_j_neucom_2024_128275
crossref_primary_10_1016_j_neunet_2025_107213
crossref_primary_10_1021_acsaelm_4c00428
crossref_primary_10_1002_aisy_202400543
crossref_primary_10_1126_sciadv_adl3135
crossref_primary_10_1109_TVLSI_2023_3306376
crossref_primary_10_1016_j_nanoen_2020_105156
crossref_primary_10_1002_adma_202210035
crossref_primary_10_1007_s40843_024_3122_7
crossref_primary_10_1016_j_neucom_2022_04_008
crossref_primary_10_1088_2632_2153_ad734a
crossref_primary_10_1016_j_chip_2022_100004
crossref_primary_10_1021_acs_nanolett_4c05247
crossref_primary_10_1002_aelm_202200642
crossref_primary_10_1038_s41928_023_01010_1
crossref_primary_10_1109_TED_2021_3133197
crossref_primary_10_1007_s13198_021_01157_0
crossref_primary_10_1002_admt_202400965
crossref_primary_10_1021_acsnano_2c02906
crossref_primary_10_1038_s41598_020_80121_7
crossref_primary_10_1109_JETCAS_2023_3237582
crossref_primary_10_1063_5_0069456
crossref_primary_10_1109_TED_2023_3340653
crossref_primary_10_1016_j_chaos_2024_115452
crossref_primary_10_1007_s00521_021_06835_5
crossref_primary_10_35848_1347_4065_ab8be6
crossref_primary_10_1088_1674_4926_45_1_012301
crossref_primary_10_1109_TCSI_2022_3194918
crossref_primary_10_3390_s24072180
crossref_primary_10_1002_aisy_202100237
crossref_primary_10_1002_aelm_202200877
crossref_primary_10_1016_j_chaos_2021_111024
crossref_primary_10_7498_aps_70_20201632
crossref_primary_10_1016_j_chip_2022_100015
crossref_primary_10_1002_aisy_202100249
crossref_primary_10_1038_s41928_021_00591_z
crossref_primary_10_1038_s41598_020_71334_x
crossref_primary_10_1109_ACCESS_2020_3036088
crossref_primary_10_3390_electronics13234665
crossref_primary_10_1038_s41467_022_29411_4
crossref_primary_10_1109_LED_2020_3037203
crossref_primary_10_1109_TED_2022_3197105
crossref_primary_10_1080_14686996_2023_2196240
crossref_primary_10_1109_TVLSI_2020_3047641
crossref_primary_10_1088_2634_4386_ad3a94
crossref_primary_10_1021_acsnano_4c03278
crossref_primary_10_1038_s41578_024_00661_6
crossref_primary_10_1109_TED_2022_3233552
crossref_primary_10_1016_j_cnsns_2024_108072
crossref_primary_10_1007_s10462_021_10060_w
crossref_primary_10_1038_s41467_021_23180_2
crossref_primary_10_3390_electronics10101198
crossref_primary_10_1038_s41467_024_44927_7
crossref_primary_10_1002_aelm_202100827
crossref_primary_10_1038_s41586_023_05759_5
crossref_primary_10_1021_acsami_4c22368
crossref_primary_10_1038_s41928_024_01280_3
crossref_primary_10_3390_electronics10091084
crossref_primary_10_3390_mi12121567
crossref_primary_10_1109_OJSSCS_2024_3432468
crossref_primary_10_1016_j_neucom_2022_06_044
crossref_primary_10_1088_1361_6528_abd3ca
crossref_primary_10_1587_transfun_2021EAP1047
crossref_primary_10_1039_D4TC03155E
crossref_primary_10_1016_j_chaos_2022_111999
crossref_primary_10_1126_sciadv_adp0778
crossref_primary_10_1364_PRJ_484662
crossref_primary_10_1109_TCSII_2023_3298910
crossref_primary_10_1016_j_yofte_2021_102612
crossref_primary_10_1109_JETCAS_2022_3172170
crossref_primary_10_1063_5_0170058
crossref_primary_10_1002_advs_202407440
crossref_primary_10_1002_smm2_1285
crossref_primary_10_1038_s41467_021_27575_z
crossref_primary_10_1088_2632_959X_ad34a5
crossref_primary_10_1109_LCOMM_2023_3322456
crossref_primary_10_1002_aisy_202000210
crossref_primary_10_1038_s44335_024_00006_0
crossref_primary_10_1021_acsami_2c20297
crossref_primary_10_1038_s41566_023_01313_x
crossref_primary_10_1002_aelm_202100845
crossref_primary_10_1016_j_nanoen_2024_109435
crossref_primary_10_1016_j_knosys_2024_112099
crossref_primary_10_1109_JSEN_2023_3248123
crossref_primary_10_1109_TCSI_2023_3250699
crossref_primary_10_1007_s40843_024_3211_2
crossref_primary_10_1088_1361_6463_ac2868
crossref_primary_10_1088_2634_4386_ac781a
crossref_primary_10_1109_ACCESS_2023_3258360
crossref_primary_10_1038_s41566_021_00796_w
crossref_primary_10_1039_D0NA00100G
crossref_primary_10_1109_TCSI_2021_3095622
crossref_primary_10_1016_j_neucom_2022_12_006
crossref_primary_10_1088_1361_6641_ac92a3
crossref_primary_10_1021_acsaelm_3c01269
crossref_primary_10_1021_acs_jpclett_4c03367
crossref_primary_10_1088_2634_4386_ac1a7f
crossref_primary_10_3390_electronics10091063
crossref_primary_10_1016_j_mee_2025_112329
crossref_primary_10_1002_aisy_202300762
crossref_primary_10_1038_s41467_020_16108_9
crossref_primary_10_1126_sciadv_adf7474
crossref_primary_10_1016_j_isci_2024_111327
crossref_primary_10_1016_j_nanoen_2023_109102
crossref_primary_10_1038_s41928_022_00795_x
crossref_primary_10_1002_aelm_202200833
crossref_primary_10_1002_aelm_202300021
crossref_primary_10_1103_PhysRevApplied_14_014096
crossref_primary_10_1007_s12274_022_4416_1
crossref_primary_10_1038_s41467_024_49149_5
crossref_primary_10_1016_j_isci_2020_101809
crossref_primary_10_1063_5_0013638
crossref_primary_10_1016_j_matt_2022_06_009
crossref_primary_10_1109_TED_2021_3115993
crossref_primary_10_1016_j_neucom_2023_126849
crossref_primary_10_1007_s40747_024_01407_1
crossref_primary_10_1016_j_neucom_2022_12_014
crossref_primary_10_3390_coatings11060661
crossref_primary_10_1126_sciadv_adl3350
crossref_primary_10_1021_acsami_2c13780
crossref_primary_10_1038_s41467_021_23719_3
crossref_primary_10_1126_sciadv_adh0667
crossref_primary_10_3390_biomimetics9090543
crossref_primary_10_1002_sstr_202200064
crossref_primary_10_1021_acs_nanolett_3c03697
crossref_primary_10_1038_s44287_024_00037_6
crossref_primary_10_3390_electronics14061183
crossref_primary_10_1002_smtd_202301657
crossref_primary_10_1038_s43586_022_00122_w
crossref_primary_10_1109_JSSC_2022_3140414
crossref_primary_10_1002_adma_202310704
crossref_primary_10_1007_s11432_021_3562_8
crossref_primary_10_1088_2634_4386_acb965
crossref_primary_10_1002_advs_202401915
crossref_primary_10_1109_TED_2020_2976115
crossref_primary_10_7498_aps_71_20220252
crossref_primary_10_1007_s11071_024_10329_z
crossref_primary_10_1038_s41467_024_55701_0
crossref_primary_10_3389_fnins_2021_639526
crossref_primary_10_1080_14686996_2023_2180286
crossref_primary_10_1002_admt_202302238
crossref_primary_10_1002_admt_202400585
crossref_primary_10_1021_acsnano_4c09421
crossref_primary_10_1109_TCAD_2024_3349502
crossref_primary_10_1002_adfm_202405618
crossref_primary_10_35848_1882_0786_acb0ae
crossref_primary_10_1038_s41928_022_00838_3
crossref_primary_10_1109_TCAD_2024_3358220
crossref_primary_10_1016_j_jallcom_2021_159809
crossref_primary_10_1002_flm2_25
crossref_primary_10_1007_s11664_022_09894_z
crossref_primary_10_3390_nano13050803
crossref_primary_10_1038_s41467_021_25802_1
crossref_primary_10_1109_JETCAS_2023_3328864
crossref_primary_10_1063_5_0126392
crossref_primary_10_1186_s40580_023_00407_0
crossref_primary_10_1016_j_nanoen_2022_107744
crossref_primary_10_1002_aisy_202400710
crossref_primary_10_1016_j_chaos_2020_110504
crossref_primary_10_1016_j_nanoen_2024_109473
crossref_primary_10_3390_photonics9020075
crossref_primary_10_1038_s41928_024_01312_y
crossref_primary_10_1088_2631_7990_acef79
crossref_primary_10_1002_advs_202105784
crossref_primary_10_2139_ssrn_4088197
crossref_primary_10_1038_s41467_020_20719_7
crossref_primary_10_1016_j_neucom_2021_01_122
crossref_primary_10_1002_aelm_202200816
crossref_primary_10_1063_5_0138363
crossref_primary_10_1140_epjs_s11734_024_01369_y
crossref_primary_10_1109_JXCDC_2022_3206879
crossref_primary_10_1038_s41467_024_55160_7
crossref_primary_10_1109_JSSC_2023_3324335
crossref_primary_10_1016_j_neucom_2022_04_088
crossref_primary_10_1142_S0218127422501486
crossref_primary_10_1002_adfm_202415648
crossref_primary_10_1016_j_neunet_2024_106268
crossref_primary_10_1038_s41528_024_00356_6
crossref_primary_10_1038_s41928_023_00977_1
crossref_primary_10_1021_acsnano_3c07384
crossref_primary_10_1002_advs_202103357
crossref_primary_10_1038_s41928_024_01133_z
crossref_primary_10_3389_fnins_2024_1360122
crossref_primary_10_1098_rsta_2023_0393
crossref_primary_10_1109_ACCESS_2023_3305432
crossref_primary_10_1021_acs_nanolett_4c02136
crossref_primary_10_1016_j_aeue_2022_154440
crossref_primary_10_1016_j_jallcom_2024_173502
crossref_primary_10_1038_s41565_020_0722_5
crossref_primary_10_1111_exsy_13271
crossref_primary_10_1002_aelm_202400258
crossref_primary_10_3390_electronics13030666
crossref_primary_10_3390_ma13071552
crossref_primary_10_26599_NR_2025_94907043
crossref_primary_10_1109_TBCAS_2022_3204742
crossref_primary_10_1002_adfm_202423273
crossref_primary_10_1063_5_0195190
crossref_primary_10_1109_LED_2024_3359600
crossref_primary_10_1016_j_apsusc_2023_157356
crossref_primary_10_1177_09506608251318108
crossref_primary_10_1007_s11432_023_3888_0
crossref_primary_10_1016_j_chaos_2023_113885
crossref_primary_10_1364_OL_518837
crossref_primary_10_1088_1742_6596_1631_1_012019
crossref_primary_10_1103_PhysRevApplied_16_044049
crossref_primary_10_1007_s11432_021_3235_7
crossref_primary_10_1098_rspa_2020_0210
crossref_primary_10_1021_acsaelm_4c00482
crossref_primary_10_1021_acs_nanolett_4c05414
crossref_primary_10_1002_adfm_202209091
crossref_primary_10_1002_aisy_202300313
crossref_primary_10_3390_mi13030453
crossref_primary_10_1021_acs_jpclett_2c01906
crossref_primary_10_1109_TNANO_2022_3153518
crossref_primary_10_3934_math_2024871
crossref_primary_10_1134_S2635167621060033
crossref_primary_10_31857_S0033849423100170
crossref_primary_10_1016_j_cej_2024_152215
crossref_primary_10_1142_S021812742330015X
crossref_primary_10_1063_5_0227603
crossref_primary_10_1186_s40580_024_00415_8
crossref_primary_10_1140_epjs_s11734_022_00560_3
crossref_primary_10_1002_adma_202306260
crossref_primary_10_1109_TED_2023_3244509
crossref_primary_10_1109_TNANO_2021_3072974
crossref_primary_10_1063_5_0050847
crossref_primary_10_1088_2634_4386_ad33cc
crossref_primary_10_1002_aelm_202300866
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1109_TED_2023_3288842
crossref_primary_10_1016_j_microrel_2025_115630
crossref_primary_10_1021_acsnano_2c09569
crossref_primary_10_1063_5_0167743
crossref_primary_10_1088_1674_4926_41_5_051205
crossref_primary_10_1002_adfm_202111996
crossref_primary_10_1109_TED_2023_3244761
crossref_primary_10_1126_sciadv_abj4801
crossref_primary_10_7498_aps_71_20220666
crossref_primary_10_1002_admt_202302047
crossref_primary_10_1134_S1063739723700555
crossref_primary_10_3390_electronics11111672
crossref_primary_10_1360_TB_2023_0859
crossref_primary_10_1021_acsomega_2c02665
crossref_primary_10_1021_acs_nanolett_2c03169
crossref_primary_10_1038_s41467_024_46246_3
crossref_primary_10_1109_TED_2021_3095430
crossref_primary_10_1021_acsami_2c11183
crossref_primary_10_1002_adfm_202311877
crossref_primary_10_1002_adma_202209925
crossref_primary_10_3390_mi14030506
crossref_primary_10_1038_s41928_024_01234_9
crossref_primary_10_1109_TED_2021_3095433
crossref_primary_10_1039_D2NH00536K
crossref_primary_10_1016_j_mtchem_2022_101169
crossref_primary_10_1002_adma_202406608
crossref_primary_10_1109_TCSI_2021_3121676
crossref_primary_10_1142_S021812742230035X
crossref_primary_10_1021_acsami_4c08914
crossref_primary_10_1088_1361_6528_ac8f51
crossref_primary_10_1007_s10462_024_10787_2
crossref_primary_10_3389_fnano_2022_851856
crossref_primary_10_1021_acsphotonics_2c01188
crossref_primary_10_1007_s44275_024_00009_w
crossref_primary_10_3389_fncom_2021_646125
crossref_primary_10_1109_TED_2022_3177391
crossref_primary_10_1109_TED_2022_3227498
crossref_primary_10_1088_2634_4386_acf1c6
crossref_primary_10_1016_j_cnsns_2022_106961
crossref_primary_10_1109_ACCESS_2022_3196688
crossref_primary_10_3390_mi15121451
crossref_primary_10_1021_acsnano_1c07065
crossref_primary_10_3390_electronics9040542
crossref_primary_10_1007_s11664_021_09328_2
crossref_primary_10_1021_acs_chemrev_3c00527
crossref_primary_10_1515_itit_2023_0018
crossref_primary_10_1002_adfm_202006773
crossref_primary_10_1038_s41467_021_24260_z
crossref_primary_10_1126_scirobotics_abl7344
crossref_primary_10_1038_s44172_024_00197_1
crossref_primary_10_1088_1361_6641_abb072
crossref_primary_10_1109_TCAD_2023_3251696
crossref_primary_10_1038_s41565_023_01351_0
crossref_primary_10_1002_aisy_202300125
crossref_primary_10_1007_s40747_021_00282_4
crossref_primary_10_1021_acsbiomaterials_4c00254
crossref_primary_10_1126_sciadv_adh9889
crossref_primary_10_1002_aelm_202300889
crossref_primary_10_1002_smll_202301452
crossref_primary_10_1021_acsaelm_1c00357
crossref_primary_10_1021_acs_nanolett_3c02194
crossref_primary_10_3389_fnano_2022_1034357
crossref_primary_10_1021_acsomega_4c00320
crossref_primary_10_1108_CW_09_2018_0072
crossref_primary_10_1016_j_measurement_2024_116532
crossref_primary_10_1038_s41928_024_01256_3
crossref_primary_10_1126_sciadv_adr6391
crossref_primary_10_1063_5_0245481
crossref_primary_10_1145_3673654
crossref_primary_10_1038_s41598_024_81521_9
crossref_primary_10_1038_s42256_022_00502_7
crossref_primary_10_1002_aisy_202100041
crossref_primary_10_1038_s41928_020_0463_3
crossref_primary_10_1109_LED_2022_3182945
crossref_primary_10_1039_D2NR06810A
crossref_primary_10_1126_sciadv_abh0648
crossref_primary_10_1039_D2QM01319C
crossref_primary_10_1038_s41598_022_13121_4
crossref_primary_10_1145_3533706
crossref_primary_10_1021_acsmaterialslett_2c01026
crossref_primary_10_1038_s41467_024_55321_8
crossref_primary_10_1039_D1TC02730A
crossref_primary_10_1038_s41928_020_00523_3
crossref_primary_10_1039_D3NH00520H
crossref_primary_10_1016_j_engappai_2024_109117
crossref_primary_10_1002_ange_202502536
crossref_primary_10_1038_s41467_020_20692_1
crossref_primary_10_1016_j_mejo_2022_105634
crossref_primary_10_1038_s41467_025_57543_w
crossref_primary_10_1038_s41699_025_00531_x
crossref_primary_10_1016_j_mejo_2022_105639
crossref_primary_10_1038_s41378_021_00313_7
crossref_primary_10_1016_j_chaos_2024_115910
crossref_primary_10_1016_j_eng_2021_06_021
crossref_primary_10_1109_TIE_2022_3190876
crossref_primary_10_1109_TED_2022_3204525
crossref_primary_10_4028_www_scientific_net_MSF_1027_107
crossref_primary_10_1038_s41467_022_30519_w
crossref_primary_10_1016_j_cej_2024_148945
crossref_primary_10_1021_acsnano_4c10383
crossref_primary_10_3390_s24061982
crossref_primary_10_1002_adfm_202310193
crossref_primary_10_1109_TED_2020_3015940
crossref_primary_10_1109_TCSI_2021_3122327
crossref_primary_10_1016_j_fmre_2023_04_013
crossref_primary_10_1088_2634_4386_ac8a6a
crossref_primary_10_1515_itit_2023_0021
crossref_primary_10_3390_nano12193455
crossref_primary_10_1021_acsnano_4c09154
crossref_primary_10_1038_s41467_023_41736_2
crossref_primary_10_3389_femat_2022_988785
crossref_primary_10_1109_LED_2023_3239608
crossref_primary_10_1002_smll_202105070
crossref_primary_10_1021_acsaelm_3c00325
crossref_primary_10_1038_s41467_023_41921_3
crossref_primary_10_1088_1361_6641_ac41e4
crossref_primary_10_1002_aelm_202400452
crossref_primary_10_1007_s11432_021_3336_8
crossref_primary_10_1038_s41928_022_00725_x
crossref_primary_10_1109_LED_2021_3130828
crossref_primary_10_1039_D3TC04510B
crossref_primary_10_1038_s41928_023_00951_x
crossref_primary_10_1109_TMAG_2020_3032099
crossref_primary_10_1007_s10470_023_02230_3
crossref_primary_10_1109_TCSII_2023_3244779
crossref_primary_10_3389_fnano_2022_954165
crossref_primary_10_1016_j_saa_2022_120859
crossref_primary_10_1038_s41467_021_25455_0
crossref_primary_10_17816_gc623345
crossref_primary_10_1002_advs_202001842
crossref_primary_10_1063_5_0095384
crossref_primary_10_1038_s41528_021_00132_w
crossref_primary_10_1109_TCSI_2021_3134313
crossref_primary_10_1038_s41467_023_40770_4
crossref_primary_10_1587_transinf_2020BDP0002
crossref_primary_10_1038_s41928_020_00501_9
crossref_primary_10_1002_aisy_202200207
crossref_primary_10_1007_s11432_024_4144_y
crossref_primary_10_1038_s41467_023_42470_5
crossref_primary_10_1109_TIE_2023_3319747
crossref_primary_10_1063_5_0243029
crossref_primary_10_1002_aelm_202201064
crossref_primary_10_1002_adma_202403624
crossref_primary_10_1021_acs_nanolett_3c04073
crossref_primary_10_1088_1674_4926_44_5_054101
crossref_primary_10_3390_mi12101220
crossref_primary_10_1039_D2CP05803K
crossref_primary_10_1016_j_ceramint_2024_12_203
crossref_primary_10_1063_5_0028539
crossref_primary_10_1021_acsomega_2c03893
crossref_primary_10_1007_s12652_022_04025_2
crossref_primary_10_1002_aisy_202200210
crossref_primary_10_1587_transele_2022CDP0004
crossref_primary_10_1016_j_scib_2021_04_025
crossref_primary_10_1002_aelm_202400421
crossref_primary_10_1002_aisy_202300399
crossref_primary_10_1002_adfm_202302787
crossref_primary_10_1088_1361_6641_ac271a
crossref_primary_10_1002_adfm_202303879
crossref_primary_10_1038_s41467_020_18105_4
crossref_primary_10_1109_TCSI_2023_3334267
crossref_primary_10_1109_TCSI_2022_3180199
crossref_primary_10_1038_s41928_022_00878_9
crossref_primary_10_3390_sym15061279
crossref_primary_10_1038_s44287_024_00031_y
crossref_primary_10_3390_sym14040800
crossref_primary_10_1002_aelm_202400482
crossref_primary_10_1088_1361_6463_ad6575
crossref_primary_10_1109_MNANO_2022_3141443
crossref_primary_10_1145_3598421
crossref_primary_10_3390_electronics10243176
crossref_primary_10_1109_TCSII_2022_3174920
crossref_primary_10_1007_s11432_021_3327_7
crossref_primary_10_1016_j_jmrt_2021_09_044
crossref_primary_10_1109_TCSII_2021_3072289
crossref_primary_10_35848_1347_4065_ad8169
crossref_primary_10_1063_1_5143815
crossref_primary_10_1007_s11432_024_4240_x
crossref_primary_10_1088_2634_4386_ad9b4a
crossref_primary_10_1109_ACCESS_2023_3263259
crossref_primary_10_3389_fnins_2021_661261
crossref_primary_10_3389_fnins_2024_1401690
crossref_primary_10_1002_admt_202200884
crossref_primary_10_1002_adfm_202404679
crossref_primary_10_31857_S0207401X23070142
crossref_primary_10_1109_TCAD_2020_3006188
crossref_primary_10_1063_5_0187297
crossref_primary_10_1039_D3MH01734F
crossref_primary_10_1021_acsnano_4c09199
crossref_primary_10_3390_mi15101258
crossref_primary_10_1038_s41467_022_33629_7
crossref_primary_10_1002_pssa_202100753
crossref_primary_10_1109_TED_2022_3216537
crossref_primary_10_1002_adma_202205047
crossref_primary_10_1002_adma_202312783
crossref_primary_10_1109_TCSI_2021_3105043
crossref_primary_10_1038_s41586_025_08639_2
crossref_primary_10_1080_03772063_2021_1888812
crossref_primary_10_1002_aelm_202400006
crossref_primary_10_1007_s11432_021_3316_x
crossref_primary_10_1016_j_mssp_2024_108480
crossref_primary_10_1038_s41928_024_01277_y
crossref_primary_10_1126_sciadv_abh0693
crossref_primary_10_2139_ssrn_4111920
crossref_primary_10_7498_aps_73_20231211
crossref_primary_10_1063_5_0082061
crossref_primary_10_1007_s11432_020_3204_y
crossref_primary_10_1038_s41467_021_25873_0
crossref_primary_10_1109_TIE_2023_3319711
crossref_primary_10_1063_5_0179424
crossref_primary_10_3390_mi15060770
crossref_primary_10_1063_5_0243471
crossref_primary_10_1007_s11571_022_09927_7
crossref_primary_10_1016_j_cej_2024_155651
crossref_primary_10_1016_j_snb_2020_129258
crossref_primary_10_1007_s11432_020_2960_x
crossref_primary_10_1002_adfm_202205933
crossref_primary_10_1016_j_aeue_2023_154765
crossref_primary_10_1142_S0218127421300202
crossref_primary_10_1088_2053_1583_adb8c3
crossref_primary_10_1002_advs_202305075
crossref_primary_10_1088_1674_1056_ad02e8
crossref_primary_10_3390_mi13101700
crossref_primary_10_1038_s41699_022_00325_5
crossref_primary_10_1149_2162_8777_ab85be
crossref_primary_10_1039_D4MA00133H
crossref_primary_10_3389_fnano_2023_1147396
crossref_primary_10_1038_s41467_024_44759_5
crossref_primary_10_1002_adbi_202200298
crossref_primary_10_1016_j_knosys_2024_112627
crossref_primary_10_1109_JETCAS_2022_3227471
crossref_primary_10_1109_TCSII_2020_3015337
crossref_primary_10_23919_JSEE_2023_000018
crossref_primary_10_1007_s11571_023_10029_1
crossref_primary_10_1039_D1TC03315H
crossref_primary_10_1039_D4NH00623B
crossref_primary_10_1088_1674_4926_42_1_013104
crossref_primary_10_1088_1674_4926_42_6_064101
crossref_primary_10_1002_adma_202412549
crossref_primary_10_3390_electronics10202451
crossref_primary_10_1063_5_0210317
crossref_primary_10_1002_adfm_202416437
crossref_primary_10_1007_s11571_022_09871_6
crossref_primary_10_1002_advs_202106092
crossref_primary_10_1109_TCSI_2022_3215535
crossref_primary_10_1021_acsami_3c13775
crossref_primary_10_1007_s40843_022_2114_2
crossref_primary_10_1038_s41467_022_35723_2
crossref_primary_10_1109_TCSI_2021_3122381
crossref_primary_10_1002_adfm_202110976
crossref_primary_10_1049_cim2_12047
crossref_primary_10_1088_1674_1056_ab892a
crossref_primary_10_1038_s41598_024_66853_w
crossref_primary_10_1002_adma_202412993
crossref_primary_10_1002_aisy_202200029
crossref_primary_10_1038_s41467_024_45312_0
crossref_primary_10_1002_aisy_202200027
crossref_primary_10_1007_s10470_021_01799_x
crossref_primary_10_1002_advs_202205960
crossref_primary_10_1002_aisy_202000124
crossref_primary_10_1002_advs_202201117
crossref_primary_10_1088_1674_1056_ab90e7
crossref_primary_10_1002_aelm_202400834
crossref_primary_10_1002_smll_202202590
crossref_primary_10_1007_s40843_024_2981_7
crossref_primary_10_1038_s41467_023_37097_5
crossref_primary_10_34133_adi_0044
crossref_primary_10_1002_aisy_202200031
crossref_primary_10_1002_aisy_202200272
crossref_primary_10_1126_science_adf5538
crossref_primary_10_1021_acsaelm_2c00979
crossref_primary_10_1002_adma_202104023
crossref_primary_10_3390_inorganics12030087
crossref_primary_10_1007_s00034_024_02796_x
crossref_primary_10_1016_j_nantod_2024_102534
crossref_primary_10_3389_felec_2025_1513127
crossref_primary_10_1016_j_vlsi_2024_102206
crossref_primary_10_1039_D4MH00942H
crossref_primary_10_1002_aisy_202000137
crossref_primary_10_1063_5_0210544
crossref_primary_10_2139_ssrn_4168618
crossref_primary_10_1038_s41598_022_11199_4
crossref_primary_10_1002_advs_202400966
crossref_primary_10_1002_adfm_202003419
crossref_primary_10_1088_1674_1056_abe0c4
crossref_primary_10_3390_app132413309
crossref_primary_10_1002_cjoc_202200257
crossref_primary_10_1016_j_chaos_2021_111533
crossref_primary_10_1109_TCSII_2020_3017789
crossref_primary_10_1038_s41467_021_22243_8
crossref_primary_10_1103_PhysRevApplied_17_014045
crossref_primary_10_1021_acssensors_3c01418
crossref_primary_10_1002_smll_202004619
crossref_primary_10_1002_aisy_202200047
crossref_primary_10_1002_aisy_202200289
crossref_primary_10_1002_aisy_202000149
crossref_primary_10_1002_advs_202202478
crossref_primary_10_2139_ssrn_3983965
crossref_primary_10_1038_s41377_023_01079_5
crossref_primary_10_3389_felec_2022_954661
crossref_primary_10_1002_adma_202311288
crossref_primary_10_1021_acsnano_3c00187
crossref_primary_10_1038_s41586_023_06337_5
crossref_primary_10_1016_j_scib_2023_09_006
crossref_primary_10_1016_j_vlsi_2021_09_001
crossref_primary_10_1109_LED_2023_3285916
crossref_primary_10_1016_j_optlaseng_2024_108740
crossref_primary_10_1002_sstr_202000109
crossref_primary_10_1088_1361_6528_ad61ee
crossref_primary_10_1016_j_fmre_2021_06_020
crossref_primary_10_1038_s41467_024_51221_z
crossref_primary_10_1038_s41578_023_00622_5
crossref_primary_10_1038_s41565_023_01339_w
crossref_primary_10_1155_2022_1370919
crossref_primary_10_1038_s41928_024_01318_6
crossref_primary_10_1038_s41467_023_42172_y
crossref_primary_10_1039_D2NR06773K
crossref_primary_10_1038_s41467_022_29260_1
crossref_primary_10_1016_j_matt_2024_10_006
crossref_primary_10_1007_s42514_022_00092_1
crossref_primary_10_15541_jim20220721
crossref_primary_10_1126_sciadv_adg9123
crossref_primary_10_1109_ACCESS_2024_3431206
crossref_primary_10_1002_aelm_202000457
crossref_primary_10_1002_aisy_202000150
crossref_primary_10_1039_D2TC01363K
crossref_primary_10_1007_s11071_024_09568_x
crossref_primary_10_3390_electronics13173413
crossref_primary_10_1016_j_rinp_2023_107201
crossref_primary_10_1021_acsami_1c09436
crossref_primary_10_1063_5_0055982
crossref_primary_10_1109_ACCESS_2021_3122973
crossref_primary_10_1016_j_vlsi_2024_102254
crossref_primary_10_3389_fnano_2022_1021943
crossref_primary_10_1021_acsnano_4c03238
crossref_primary_10_1063_5_0133044
crossref_primary_10_1364_OE_497576
crossref_primary_10_1109_TED_2022_3176834
crossref_primary_10_1002_aisy_202400594
crossref_primary_10_1002_inc2_12013
crossref_primary_10_1016_j_eng_2021_05_004
crossref_primary_10_1002_adma_202210484
crossref_primary_10_1051_e3sconf_202346004012
crossref_primary_10_1038_s41467_020_18382_z
crossref_primary_10_1002_adma_202401821
crossref_primary_10_1016_j_eng_2024_01_008
crossref_primary_10_1109_TPDS_2023_3297595
crossref_primary_10_1002_aelm_202200579
crossref_primary_10_1002_anie_202502536
crossref_primary_10_1021_acsanm_5c00337
crossref_primary_10_1038_s41598_020_71962_3
crossref_primary_10_1142_S0218348X23400406
crossref_primary_10_1016_j_device_2024_100546
crossref_primary_10_1109_TCSI_2022_3159153
crossref_primary_10_1038_s41467_022_35160_1
crossref_primary_10_1109_TCSI_2021_3136355
crossref_primary_10_1088_1742_6596_2316_1_012001
crossref_primary_10_1093_bulcsj_uoae119
crossref_primary_10_1002_aelm_202400651
crossref_primary_10_1039_D3NH00121K
crossref_primary_10_1016_j_ceramint_2022_02_175
crossref_primary_10_35848_1347_4065_ada9f5
crossref_primary_10_1109_JETCAS_2022_3223295
crossref_primary_10_1016_j_chaos_2024_114458
crossref_primary_10_1088_2634_4386_ad6732
crossref_primary_10_1002_adma_202103376
crossref_primary_10_1002_pssa_202300416
crossref_primary_10_1016_j_chaos_2024_114459
crossref_primary_10_1002_adfm_202313010
crossref_primary_10_1021_acs_jpclett_3c00063
crossref_primary_10_1021_acs_jpclett_3c03558
crossref_primary_10_1109_TED_2022_3164630
crossref_primary_10_3390_electronics10020181
crossref_primary_10_3390_e25091261
crossref_primary_10_1002_aelm_202200323
crossref_primary_10_1038_s41467_024_44766_6
crossref_primary_10_1007_s11432_023_4021_y
crossref_primary_10_1126_sciadv_ado3937
crossref_primary_10_1016_j_device_2023_100218
crossref_primary_10_1002_aisy_202200001
crossref_primary_10_1016_j_jmst_2021_12_016
crossref_primary_10_3390_e24060786
crossref_primary_10_1117_1_AP_7_1_016004
crossref_primary_10_1002_aelm_202001118
crossref_primary_10_1021_acsaelm_0c00700
crossref_primary_10_1038_s41467_023_41958_4
crossref_primary_10_1109_LED_2022_3165831
crossref_primary_10_1142_S0217979221501666
crossref_primary_10_1039_D4TC02527J
crossref_primary_10_1016_j_dsp_2024_104412
crossref_primary_10_1039_D1NH00292A
crossref_primary_10_3390_sym13091731
crossref_primary_10_1126_sciadv_abm2956
crossref_primary_10_1002_smll_202400458
crossref_primary_10_1002_aisy_202200018
crossref_primary_10_1002_aisy_202200014
crossref_primary_10_1109_JETCAS_2022_3214334
crossref_primary_10_1038_s41467_022_34178_9
crossref_primary_10_3788_LOP222566
crossref_primary_10_1021_acsaelm_2c00918
crossref_primary_10_1021_acsnano_3c06510
crossref_primary_10_1007_s10470_025_02322_2
crossref_primary_10_1038_s41467_022_34230_8
crossref_primary_10_1109_JETCAS_2022_3223031
crossref_primary_10_1166_mex_2023_2457
crossref_primary_10_35848_1347_4065_ac6b01
crossref_primary_10_1016_j_nanoms_2021_01_001
crossref_primary_10_1038_s41467_022_29712_8
crossref_primary_10_3389_fnano_2022_940825
Cites_doi 10.1038/ncomms15199
10.1038/nnano.2017.83
10.1109/LED.2016.2573140
10.1109/JSSC.2016.2616357
10.1038/s41565-018-0302-0
10.1038/s41563-019-0291-x
10.1038/s41563-017-0001-5
10.1016/j.neunet.2018.08.012
10.1109/JSSC.2013.2279571
10.1109/JPROC.2018.2790840
10.1109/LED.2016.2582859
10.1038/nature23307
10.1038/ncomms12611
10.1038/s41586-018-0180-5
10.1038/s41467-018-04484-2
10.1126/science.aay0291
10.1038/nnano.2015.29
10.1038/s41928-018-0092-2
10.1109/JSSC.2004.835817
10.1109/TED.2015.2439635
10.1038/nature14539
10.1109/5.726791
10.1038/nature14441
10.1145/3316781.3317797
10.1109/CVPR.2016.90
10.1109/IEDM.2017.8268522
10.1109/VLSIT.2018.8510690
10.1109/ISSCC.2014.6757323
10.1109/ASPDAC.2018.8297292
10.23919/VLSIT.2019.8776551
10.1109/IEDM.2017.8268326
10.1109/IEDM.2017.8268372
10.1109/IEDM.2018.8614482
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Jan 30, 2020
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 30, 2020
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-020-1942-4
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection (ProQuest)
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Agricultural Science Database

PubMed



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 646
ExternalDocumentID A660675554
31996818
10_1038_s41586_020_1942_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGOIJ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c640t-e1a2bd6a924f3d57050c01b4cc32e198cd1aca6a5a993cbf2d11d4006b62c4723
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Mon Jul 21 09:23:56 EDT 2025
Fri Jul 25 08:57:04 EDT 2025
Tue Jun 17 21:06:22 EDT 2025
Thu Jun 12 23:37:31 EDT 2025
Tue Jun 10 15:33:40 EDT 2025
Tue Jun 10 20:38:10 EDT 2025
Fri Jun 27 04:40:33 EDT 2025
Fri Jun 27 04:22:10 EDT 2025
Wed Feb 19 02:30:21 EST 2025
Thu Apr 24 22:55:27 EDT 2025
Tue Jul 01 01:21:17 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7792
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-e1a2bd6a924f3d57050c01b4cc32e198cd1aca6a5a993cbf2d11d4006b62c4723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31996818
PQID 2353091386
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_2348797405
proquest_journals_2353091386
gale_infotracmisc_A660675554
gale_infotracgeneralonefile_A660675554
gale_infotraccpiq_660675554
gale_infotracacademiconefile_A660675554
gale_incontextgauss_ISR_A660675554
gale_incontextgauss_ATWCN_A660675554
pubmed_primary_31996818
crossref_primary_10_1038_s41586_020_1942_4
crossref_citationtrail_10_1038_s41586_020_1942_4
springer_journals_10_1038_s41586_020_1942_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-30
PublicationDateYYYYMMDD 2020-01-30
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Yao (CR24) 2017; 8
Pi (CR33) 2019; 14
Williams (CR3) 2017; 19
Yu (CR19) 2018; 106
Serb (CR28) 2016; 7
Li (CR4) 2018; 9
CR39
Chen, Krishna, Emer, Sze (CR15) 2017; 52
CR16
CR38
CR37
CR14
CR13
CR35
CR12
CR34
CR11
CR32
LeCun, Bengio, Hinton (CR5) 2015; 521
Kumar, Strachan, Williams (CR23) 2017; 548
CR31
CR30
Woo (CR17) 2016; 37
Gao, Chen, Yu (CR22) 2016; 37
Prezioso (CR25) 2015; 521
Xia, Yang (CR7) 2019; 18
Wong, Salahuddin (CR2) 2015; 10
Ding (CR8) 2019; 366
Burr (CR18) 2017; 3
Choi (CR20) 2018; 17
Kull (CR41) 2013; 48
Ielmini, Wong (CR1) 2018; 1
LeCun, Bottou, Bengio, Haffner (CR10) 1998; 86
CR6
CR29
CR9
Burr (CR21) 2015; 62
Sheridan (CR26) 2017; 12
O’Halloran, Sarpeshkar (CR40) 2004; 39
CR42
Zhang (CR36) 2018; 108
Ambrogio (CR27) 2018; 558
1942_CR29
Q Zhang (1942_CR36) 2018; 108
L Kull (1942_CR41) 2013; 48
1942_CR42
1942_CR6
D Ielmini (1942_CR1) 2018; 1
1942_CR9
M O’Halloran (1942_CR40) 2004; 39
Y LeCun (1942_CR10) 1998; 86
S Kumar (1942_CR23) 2017; 548
GW Burr (1942_CR18) 2017; 3
1942_CR37
1942_CR16
1942_CR38
S Choi (1942_CR20) 2018; 17
1942_CR39
1942_CR11
1942_CR12
1942_CR34
1942_CR13
1942_CR35
1942_CR14
H-SP Wong (1942_CR2) 2015; 10
GW Burr (1942_CR21) 2015; 62
1942_CR30
1942_CR31
1942_CR32
C Li (1942_CR4) 2018; 9
S Yu (1942_CR19) 2018; 106
Y-H Chen (1942_CR15) 2017; 52
A Serb (1942_CR28) 2016; 7
K Ding (1942_CR8) 2019; 366
Y LeCun (1942_CR5) 2015; 521
J Woo (1942_CR17) 2016; 37
M Prezioso (1942_CR25) 2015; 521
P Yao (1942_CR24) 2017; 8
S Ambrogio (1942_CR27) 2018; 558
S Pi (1942_CR33) 2019; 14
L Gao (1942_CR22) 2016; 37
RS Williams (1942_CR3) 2017; 19
PM Sheridan (1942_CR26) 2017; 12
Q Xia (1942_CR7) 2019; 18
References_xml – volume: 8
  year: 2017
  ident: CR24
  article-title: Face classification using electronic synapses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15199
– volume: 12
  start-page: 784
  year: 2017
  end-page: 789
  ident: CR26
  article-title: Sparse coding with memristor networks
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
– volume: 37
  start-page: 870
  year: 2016
  end-page: 873
  ident: CR22
  article-title: Demonstration of convolution kernel operation on resistive cross-point array
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2016.2573140
– ident: CR14
– ident: CR39
– volume: 52
  start-page: 127
  year: 2017
  end-page: 138
  ident: CR15
  article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2616357
– ident: CR16
– volume: 14
  start-page: 35
  year: 2019
  end-page: 39
  ident: CR33
  article-title: Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0302-0
– ident: CR37
– volume: 18
  start-page: 309
  year: 2019
  end-page: 323
  ident: CR7
  article-title: Memristive crossbar arrays for brain-inspired computing
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0291-x
– volume: 17
  start-page: 335
  year: 2018
  end-page: 340
  ident: CR20
  article-title: SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-017-0001-5
– volume: 108
  start-page: 217
  year: 2018
  end-page: 223
  ident: CR36
  article-title: Sign backpropagation: an on-chip learning algorithm for analog RRAM neuromorphic computing systems
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.012
– ident: CR12
– ident: CR30
– volume: 48
  start-page: 3049
  year: 2013
  end-page: 3058
  ident: CR41
  article-title: A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2013.2279571
– volume: 106
  start-page: 260
  year: 2018
  end-page: 285
  ident: CR19
  article-title: Neuro-inspired computing with emerging nonvolatile memorys
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2790840
– volume: 37
  start-page: 994
  year: 2016
  end-page: 997
  ident: CR17
  article-title: Improved synaptic behavior under identical pulses using AlO /HfO bilayer RRAM array for neuromorphic systems
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2016.2582859
– volume: 3
  start-page: 89
  year: 2017
  end-page: 124
  ident: CR18
  article-title: Neuromorphic computing using non-volatile memory
  publication-title: Adv. Phys. X
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 19
  start-page: 7
  year: 2017
  end-page: 13
  ident: CR3
  article-title: What’s next? Comput
  publication-title: Sci. Eng.
– volume: 548
  start-page: 318
  year: 2017
  end-page: 321
  ident: CR23
  article-title: Chaotic dynamics in nanoscale NbO Mott memristors for analogue computing
  publication-title: Nature
  doi: 10.1038/nature23307
– ident: CR42
– volume: 7
  year: 2016
  ident: CR28
  article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12611
– volume: 558
  start-page: 60
  year: 2018
  end-page: 67
  ident: CR27
  article-title: Equivalent-accuracy accelerated neural-network training using analogue memory
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
– volume: 9
  year: 2018
  ident: CR4
  article-title: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04484-2
– volume: 366
  start-page: 210
  year: 2019
  end-page: 215
  ident: CR8
  article-title: Phase-change heterostructure enables ultralow noise and drift for memory operation
  publication-title: Science
  doi: 10.1126/science.aay0291
– ident: CR38
– volume: 10
  start-page: 191
  year: 2015
  end-page: 194
  ident: CR2
  article-title: Memory leads the way to better computing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.29
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 1
  start-page: 333
  year: 2018
  end-page: 343
  ident: CR1
  article-title: In-memory computing with resistive switching devices
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
– ident: CR32
– ident: CR34
– volume: 39
  start-page: 1985
  year: 2004
  end-page: 1996
  ident: CR40
  article-title: 10-nW 12-bit accurate analog storage cell with 10-aA leakage
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2004.835817
– volume: 62
  start-page: 3498
  year: 2015
  end-page: 3507
  ident: CR21
  article-title: Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element
  publication-title: IEEE Trans. Electron Dev.
  doi: 10.1109/TED.2015.2439635
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR5
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR10
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 521
  start-page: 61
  year: 2015
  end-page: 64
  ident: CR25
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 18
  start-page: 309
  year: 2019
  ident: 1942_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0291-x
– volume: 14
  start-page: 35
  year: 2019
  ident: 1942_CR33
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0302-0
– volume: 558
  start-page: 60
  year: 2018
  ident: 1942_CR27
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
– volume: 48
  start-page: 3049
  year: 2013
  ident: 1942_CR41
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2013.2279571
– ident: 1942_CR14
– volume: 39
  start-page: 1985
  year: 2004
  ident: 1942_CR40
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2004.835817
– ident: 1942_CR39
  doi: 10.1145/3316781.3317797
– ident: 1942_CR30
– volume: 9
  year: 2018
  ident: 1942_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04484-2
– ident: 1942_CR12
– ident: 1942_CR32
– volume: 10
  start-page: 191
  year: 2015
  ident: 1942_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.29
– volume: 521
  start-page: 436
  year: 2015
  ident: 1942_CR5
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 62
  start-page: 3498
  year: 2015
  ident: 1942_CR21
  publication-title: IEEE Trans. Electron Dev.
  doi: 10.1109/TED.2015.2439635
– volume: 108
  start-page: 217
  year: 2018
  ident: 1942_CR36
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.012
– volume: 548
  start-page: 318
  year: 2017
  ident: 1942_CR23
  publication-title: Nature
  doi: 10.1038/nature23307
– volume: 12
  start-page: 784
  year: 2017
  ident: 1942_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
– ident: 1942_CR11
  doi: 10.1109/CVPR.2016.90
– volume: 52
  start-page: 127
  year: 2017
  ident: 1942_CR15
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2616357
– volume: 37
  start-page: 994
  year: 2016
  ident: 1942_CR17
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2016.2582859
– ident: 1942_CR37
  doi: 10.1109/IEDM.2017.8268522
– ident: 1942_CR34
  doi: 10.1109/VLSIT.2018.8510690
– volume: 521
  start-page: 61
  year: 2015
  ident: 1942_CR25
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 8
  year: 2017
  ident: 1942_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15199
– ident: 1942_CR42
– volume: 366
  start-page: 210
  year: 2019
  ident: 1942_CR8
  publication-title: Science
  doi: 10.1126/science.aay0291
– ident: 1942_CR16
  doi: 10.1109/ISSCC.2014.6757323
– ident: 1942_CR13
– volume: 17
  start-page: 335
  year: 2018
  ident: 1942_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-017-0001-5
– ident: 1942_CR31
– ident: 1942_CR35
  doi: 10.1109/ASPDAC.2018.8297292
– volume: 1
  start-page: 333
  year: 2018
  ident: 1942_CR1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
– ident: 1942_CR38
  doi: 10.23919/VLSIT.2019.8776551
– volume: 19
  start-page: 7
  year: 2017
  ident: 1942_CR3
  publication-title: Sci. Eng.
– volume: 86
  start-page: 2278
  year: 1998
  ident: 1942_CR10
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 37
  start-page: 870
  year: 2016
  ident: 1942_CR22
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2016.2573140
– ident: 1942_CR29
  doi: 10.1109/IEDM.2017.8268326
– ident: 1942_CR6
  doi: 10.1109/IEDM.2017.8268372
– volume: 7
  year: 2016
  ident: 1942_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12611
– ident: 1942_CR9
  doi: 10.1109/IEDM.2018.8614482
– volume: 3
  start-page: 89
  year: 2017
  ident: 1942_CR18
  publication-title: Adv. Phys. X
– volume: 106
  start-page: 260
  year: 2018
  ident: 1942_CR19
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2790840
SSID ssj0005174
Score 2.7309506
Snippet Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks 1 – 4 . However, convolutional neural...
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks . However, convolutional neural...
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks.sup.1-4. However, convolutional...
Memristor-enabled neuromorphic computing systems provide a fast and energyefficient approach to training neural networks1-4. However, convolutional neural...
Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1-4. However, convolutional neural...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 641
SubjectTerms 639/166/987
639/925/927/1007
Accuracy
Arrays
Artificial neural networks
Design and construction
Edge computing
Efficiency
Energy efficiency
Fabrication
Hardware
Humanities and Social Sciences
Kernels
Memristors
Methods
multidisciplinary
Neural networks
Object recognition
Science
Science (multidisciplinary)
Software
Training
Transistors
Title Fully hardware-implemented memristor convolutional neural network
URI https://link.springer.com/article/10.1038/s41586-020-1942-4
https://www.ncbi.nlm.nih.gov/pubmed/31996818
https://www.proquest.com/docview/2353091386
https://www.proquest.com/docview/2348797405
Volume 577
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2Avo-2-3HbBG2WfmMqSLdtPIwvNusHC6FqWNyHJciksThonjP33u7PlpA5dX5wHnWXndKe70_18R8ixBTc1VRrr24kYAhRtA00zzLkynmtFVVy3Tvg-EmeX0bdxPHYHbpWDVbZ7Yr1R51ODZ-QnjMcca1im4tPsJsCuUZhddS00tshOCJYGIV3p8Msa4rFRhbnNavL0pALDlSL8lgYQxrMg6tilzd35lnnayJfWZmi4Sx47_9HvNwu-Rx7Ycp88rHGcptone05XK_-dKyj9_gnpY5z518fvq_6ouQ2uJw40bnN_Yid1dYG5j_hzJ4fwAKxzWf_UKPGn5HJ4ejE4C1zrhMCIiC4CGyqmc6Eguip4Hic0poaGOjKGMxtmqclDZZRQsQL_xOiC5WGYgzoLLZiJEsafke1yWtoXxE-LIlNagd8E3h3jhdIsM1kBUyciUTr2CG0ZJ42rK47tLX7LOr_NU9nwWgKvJfJaRh75sLpl1hTVuI_4GFdDYrGKEtEwV2pZVbJ_8Wswkn0hMOQBn8gjr-8i-_rzvEP01hEVU3hHo9w3CPBPsQxWh_KwQ2lm1zfy1uibzuhVs6J3TXPUIQTdNd3hVsSk2zsquZZ0j7xaDeOdiIcr7XSJNBBoQihIgf3PG9FccZIjsBz8MI98bGV1Pfl_2Xxw_6sckkcMlYXiaeUR2V7Ml_YluGML3SNbyTiBazoIe7X-9cjO59PRj_N_8XcvNA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviI2vsAEBjW9Fc-zETR8QqgalZVsfoBN7M7bjTJNo2jWtpv1T_I3cJU67VGNve8qDL05yPt9H7vw7QnYsuKmJ0ohvJ2IIULQNNG1jzpXxVCuq4rJ1wuFA9I6i78fx8Rr5W5-FwbLKWieWijodG_xHvst4zBHDMhGfJ2cBdo3C7GrdQqMSi317cQ4hW_Gp_wXW9zVj3a_DvV7gugoERkR0FthQMZ0KBYFHxtO4RWNqaKgjYzizEIKbNFRGCRUrMN1GZywNwxQkXWjBTNRCoANQ-bciDpYcT6Z3vy1LSlZQn-ssKk92CzCUCZb70iBsRyyIGnZw1RpcMocr-dnS7HXvk3vOX_U7lYBtkDWbb5LbZd2oKTbJhtMNhf_OAVi_f0A6GNde-Hie61xNbXA6ckXqNvVHdlSiGUx9rHd3cg8PQFzN8lJWpT8kRzfC1EdkPR_n9gnxkyxrK63ATwNvkvFMadY27QymbomW0rFHaM04aRyOObbT-CPLfDpPZMVrCbyWyGsZeeTD4pZJBeJxHfEOroZEcIwcq29O1LwoZGf4a28gO0JgiAU-mEdeXUXW__mjQfTWEWVjeEej3JkH-FKE3WpQbjUozeT0TF4afdMYPalW9KppthuEoCtMc7gWMel0VSGXO8sjLxfDeCfW3-V2PEcaCGwh9KTA_seVaC44ybGQHfw-j3ysZXU5-X_Z_PT6V3lB7vSGhwfyoD_Y3yJ3GW4cin9Kt8n6bDq3z8AVnOnn5f7zye-b3vD_ACkvaPY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviI2vsAEBjY-BojpO4iQPCFUd1cqgQrCJvRnbcaZJNO2aVtP-Nf467hKna6qxtz3lwRcnOd9n7vwzITsGwtREKsS34xEkKMp4iqZYc2VBpiSVUXV0wrch3z8KvxxHx2vkb7MXBtsqG5tYGepsrPEfeYcFUYAYlgnv5LYt4vte_9PkzMMTpLDS2hynUYvIgbk4h_St_DjYg7V-zVj_82Fv37MnDHiah3TmGV8ylXEJSUgeZFFMI6qpr0KtA2YgHdeZL7XkMpLgxrXKWeb7GUg9V5zpMEbQAzD_t-IgTlDHkt5Se8kKAnRTUQ2STglOM8HWX-r5aci8sOUTVz3DkmtcqdVWLrB_n9yzsavbrYVtg6yZYpPcrnpIdblJNqydKN13Fsx69wHpYo574eLernM5Nd7pyDasm8wdmVGFbDB1sffd6gA8ADE2q0vVof6QHN0IUx-R9WJcmCfETfI8lUpCzAaRJQtyqViq0xymjnksVeQQ2jBOaItpjkdr_BFVbT1IRM1rAbwWyGsROuT94pZJDehxHfEOroZAoIwCRe5EzstSdA9_9YaiyzmmWxCPOeTVVWSDnz9aRG8tUT6Gd9TS7n-AL0UIrhblVotST07PxNLom9boSb2iV02z3SIEu6Hbw42ICWu3SnGpZQ55uRjGO7EXrzDjOdJAkgtpKAX2P65Fc8HJAJvaIQZ0yIdGVi8n_y-bn17_Ki_IHVB18XUwPNgidxnqDcWfpttkfTadm2cQFc7U80r9XPL7pvX9H_aLbPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+hardware-implemented+memristor+convolutional+neural+network&rft.jtitle=Nature+%28London%29&rft.au=Yao%2C+Peng&rft.au=Wu%2C+Huaqiang&rft.au=Gao%2C+Bin&rft.au=Tang%2C+Jianshi&rft.date=2020-01-30&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=577&rft.issue=7792&rft.spage=641&rft_id=info:doi/10.1038%2Fs41586-020-1942-4&rft.externalDocID=A660675554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon