Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle 1 – 3 . Here we show that oxygen can take the form of ordered oxygen...
Saved in:
Published in | Nature (London) Vol. 563; no. 7732; pp. 546 - 550 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-018-0685-y |
Cover
Loading…
Abstract | Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle
1
–
3
. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening
4
,
5
, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)
6
–
10
. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off
11
. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs
12
, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations
13
do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions. |
---|---|
AbstractList | Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle.sup.1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening.sup.4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).sup.6-10. The tensile strength is enhanced (by 48.5 [plus or minus] 1.8 per cent) and ductility is substantially improved (by 95.2 [plus or minus] 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off.sup.11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs.sup.12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations.sup.13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle . Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening , such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs) . The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off . The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs , by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle.sup.1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening.sup.4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).sup.6-10. The tensile strength is enhanced (by 48.5 [plus or minus] 1.8 per cent) and ductility is substantially improved (by 95.2 [plus or minus] 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off.sup.11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs.sup.12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations.sup.13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions. Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs). The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6-10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6-10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle 1 – 3 . Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening 4 , 5 , such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs) 6 – 10 . The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off 11 . The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs 12 , by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations 13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions. |
Audience | Academic |
Author | Wang, Shudao Zhang, Qinghua Jiang, Suihe Wang, Hui Kontis, Paraskevas Chen, Houwen Zeng, Qiaoshi Liu, Xiongjun Wu, Yidong Lei, Zhifeng Wang, Hongtao Gu, Lin Liu, Jiabin Nieh, Tai-Gang Lu, Zhaoping Hui, Xidong An, Ke Gault, Baptiste Raabe, Dierk Wu, Yuan |
Author_xml | – sequence: 1 givenname: Zhifeng surname: Lei fullname: Lei, Zhifeng organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 2 givenname: Xiongjun surname: Liu fullname: Liu, Xiongjun organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 3 givenname: Yuan surname: Wu fullname: Wu, Yuan organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 4 givenname: Hui surname: Wang fullname: Wang, Hui organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 5 givenname: Suihe surname: Jiang fullname: Jiang, Suihe organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 6 givenname: Shudao surname: Wang fullname: Wang, Shudao organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 7 givenname: Xidong surname: Hui fullname: Hui, Xidong organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 8 givenname: Yidong surname: Wu fullname: Wu, Yidong organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing – sequence: 9 givenname: Baptiste surname: Gault fullname: Gault, Baptiste organization: Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung – sequence: 10 givenname: Paraskevas surname: Kontis fullname: Kontis, Paraskevas organization: Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung – sequence: 11 givenname: Dierk surname: Raabe fullname: Raabe, Dierk organization: Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung – sequence: 12 givenname: Lin surname: Gu fullname: Gu, Lin organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 13 givenname: Qinghua surname: Zhang fullname: Zhang, Qinghua organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 14 givenname: Houwen surname: Chen fullname: Chen, Houwen organization: College of Materials Science and Engineering, Chongqing University – sequence: 15 givenname: Hongtao surname: Wang fullname: Wang, Hongtao organization: Institute of Applied Mechanics, Zhejiang University – sequence: 16 givenname: Jiabin surname: Liu fullname: Liu, Jiabin organization: School of Materials Science and Engineering, Zhejiang University – sequence: 17 givenname: Ke surname: An fullname: An, Ke organization: Spallation Neutron Source, Oak Ridge National Laboratory – sequence: 18 givenname: Qiaoshi surname: Zeng fullname: Zeng, Qiaoshi organization: Center for High Pressure Science and Technology Advanced Research, Pudong – sequence: 19 givenname: Tai-Gang surname: Nieh fullname: Nieh, Tai-Gang organization: Department of Materials Science and Engineering, University of Tennessee – sequence: 20 givenname: Zhaoping surname: Lu fullname: Lu, Zhaoping email: luzp@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30429610$$D View this record in MEDLINE/PubMed |
BookMark | eNp90l1v0zAUBmALDbFu8AO4QRHcgFCGv-K4l1U1YNIEEhRxaZ06TuoptTvbQc2_x1UHo1OHfGHJed4T6_icoRPnnUHoJcEXBDP5IXJSSVFiIkssZFWOT9CE8FqUXMj6BE0wpvmLZOIUncV4gzGuSM2foVOGOZ0KgidocelW4LRpipiCcV1aFeCaohl0sr1NY2FdAcXKdqvSuBT8Ziyg7_1Y_LJQ-NCYkKN-O3bGFdqvN73ZmvgcPW2hj-bF3X6Ofny8XMw_l9dfP13NZ9elFhynshFLoXWLGYW2ZVi2QnPCp5ovqxo04RSIBi01MZhiBkBxo1k-k0BFJZspO0dv93U3wd8OJia1tlGbvgdn_BAVJYxJWvEpzfTNA3rjh-Dy7bLiMjeDS3GvOuiNsq71KYDeFVWzqmakrhipsiqPqNwBE6DPL9TafHzgXx_xemNv1b_o4gjKqzFrq49WfXcQyCaZbepgiFFdff92aN8_bmeLn_Mvh_rVXa-G5do0ahPsGsKo_kxNBmQPdPAxBtP-JQSr3WSq_WSqPJlqN5lqzJn6QUbbBMnmmwSw_X-TdJ-M-S-uM-H-6R4P_QYH6vKM |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179266 crossref_primary_10_1016_j_matchar_2023_113560 crossref_primary_10_1016_j_jmrt_2023_03_175 crossref_primary_10_1016_j_jnucmat_2024_155186 crossref_primary_10_1103_PhysRevB_100_060102 crossref_primary_10_1016_j_matchar_2023_113321 crossref_primary_10_1016_j_jallcom_2022_168521 crossref_primary_10_1016_j_jmrt_2021_06_021 crossref_primary_10_1007_s11669_024_01151_6 crossref_primary_10_1016_j_corsci_2021_110073 crossref_primary_10_1016_j_actamat_2024_120062 crossref_primary_10_1016_j_msea_2021_141607 crossref_primary_10_1080_21663831_2024_2341937 crossref_primary_10_1002_adma_202101845 crossref_primary_10_1016_j_actamat_2023_118702 crossref_primary_10_1016_j_jmapro_2024_07_047 crossref_primary_10_1016_j_actamat_2022_118662 crossref_primary_10_1016_j_jmst_2024_05_082 crossref_primary_10_1016_j_matdes_2022_111057 crossref_primary_10_1016_j_jre_2022_06_005 crossref_primary_10_2139_ssrn_3922863 crossref_primary_10_1016_j_actamat_2021_117054 crossref_primary_10_1021_acs_nanolett_4c02086 crossref_primary_10_1557_mrs_2019_256 crossref_primary_10_1016_j_mtphys_2022_100799 crossref_primary_10_3390_met12060998 crossref_primary_10_1126_sciadv_ado9697 crossref_primary_10_3390_cryst11010046 crossref_primary_10_1016_j_pmatsci_2024_101252 crossref_primary_10_1007_s40195_020_01114_z crossref_primary_10_1016_j_pmatsci_2024_101250 crossref_primary_10_1016_j_mattod_2021_10_025 crossref_primary_10_1016_j_msea_2021_141858 crossref_primary_10_1016_j_mtcomm_2022_104146 crossref_primary_10_1016_j_scriptamat_2024_116111 crossref_primary_10_1007_s12613_020_2238_2 crossref_primary_10_1016_j_triboint_2024_109947 crossref_primary_10_1016_j_matdes_2024_112925 crossref_primary_10_1016_j_jallcom_2023_168821 crossref_primary_10_1038_s43588_023_00412_7 crossref_primary_10_1016_j_msea_2020_139275 crossref_primary_10_1016_j_pnsc_2024_08_002 crossref_primary_10_1007_s11661_022_06746_7 crossref_primary_10_1111_jace_17659 crossref_primary_10_1016_j_jmrt_2023_12_193 crossref_primary_10_1016_j_actamat_2023_118728 crossref_primary_10_3389_fmats_2024_1436577 crossref_primary_10_1016_j_apsusc_2019_07_186 crossref_primary_10_1016_j_apsusc_2021_150466 crossref_primary_10_1016_j_jmrt_2022_02_078 crossref_primary_10_1016_j_ijhydene_2022_09_068 crossref_primary_10_1016_j_jallcom_2019_06_204 crossref_primary_10_1007_s11665_021_06092_6 crossref_primary_10_1016_j_vacuum_2024_113928 crossref_primary_10_1016_j_ijmecsci_2024_109140 crossref_primary_10_1016_j_scib_2023_05_027 crossref_primary_10_1063_5_0116898 crossref_primary_10_1002_adfm_202106715 crossref_primary_10_1007_s11661_024_07595_2 crossref_primary_10_1039_D1CP04151G crossref_primary_10_3389_fmats_2021_805296 crossref_primary_10_1016_j_susc_2023_122273 crossref_primary_10_3389_fmats_2022_868721 crossref_primary_10_1016_j_scriptamat_2022_114625 crossref_primary_10_1016_j_msea_2020_139027 crossref_primary_10_3788_CJL231215 crossref_primary_10_1007_s40843_022_2178_x crossref_primary_10_1016_j_mtcomm_2022_104367 crossref_primary_10_1016_j_matchar_2024_113844 crossref_primary_10_1007_s11837_022_05307_y crossref_primary_10_1007_s11666_022_01359_3 crossref_primary_10_1016_j_msea_2022_144126 crossref_primary_10_1016_j_jmrt_2024_11_010 crossref_primary_10_1016_j_msea_2022_144367 crossref_primary_10_1016_j_actamat_2021_117093 crossref_primary_10_1016_j_jmst_2022_01_025 crossref_primary_10_1016_j_intermet_2023_108081 crossref_primary_10_1016_j_jallcom_2021_161412 crossref_primary_10_1016_j_scriptamat_2022_114630 crossref_primary_10_1007_s10854_024_13002_8 crossref_primary_10_1016_j_intermet_2022_107707 crossref_primary_10_1016_j_ijplas_2024_104180 crossref_primary_10_1016_j_corsci_2022_110153 crossref_primary_10_2139_ssrn_4087333 crossref_primary_10_1016_j_taml_2021_100310 crossref_primary_10_1038_s41578_019_0121_4 crossref_primary_10_2139_ssrn_4158211 crossref_primary_10_1016_j_actamat_2020_05_042 crossref_primary_10_1016_j_jmatprotec_2023_117988 crossref_primary_10_1063_5_0128657 crossref_primary_10_1016_j_jallcom_2022_167470 crossref_primary_10_1126_sciadv_aba7802 crossref_primary_10_1016_j_jallcom_2024_174578 crossref_primary_10_1016_j_wear_2020_203368 crossref_primary_10_1016_j_actamat_2021_117099 crossref_primary_10_1016_j_jallcom_2024_174331 crossref_primary_10_1007_s40843_023_2584_2 crossref_primary_10_1016_j_pmatsci_2021_100777 crossref_primary_10_1016_j_msea_2023_145582 crossref_primary_10_1016_j_jmrt_2023_09_283 crossref_primary_10_1038_s41598_019_51297_4 crossref_primary_10_1016_j_scriptamat_2024_116307 crossref_primary_10_1007_s11666_021_01175_1 crossref_primary_10_3390_met11060922 crossref_primary_10_1007_s11665_022_07735_y crossref_primary_10_1016_j_ceramint_2023_09_042 crossref_primary_10_1016_j_msea_2022_143291 crossref_primary_10_1016_j_corsci_2020_108996 crossref_primary_10_1007_s10409_024_23569_x crossref_primary_10_1007_s11661_021_06215_7 crossref_primary_10_1016_j_msea_2024_146721 crossref_primary_10_1016_j_msea_2022_143294 crossref_primary_10_1016_j_triboint_2020_106599 crossref_primary_10_1007_s11666_024_01734_2 crossref_primary_10_1016_j_actamat_2023_118970 crossref_primary_10_1007_s40195_024_01738_5 crossref_primary_10_1002_anie_202100917 crossref_primary_10_1016_j_cej_2024_151848 crossref_primary_10_1016_j_matdes_2023_111797 crossref_primary_10_1016_j_actamat_2020_04_017 crossref_primary_10_1016_j_pnsc_2020_01_015 crossref_primary_10_1016_j_msea_2020_139474 crossref_primary_10_1016_j_jallcom_2023_170901 crossref_primary_10_1016_j_jmrt_2023_08_010 crossref_primary_10_1016_j_jmst_2022_02_052 crossref_primary_10_1016_j_apmate_2023_100130 crossref_primary_10_1038_s41570_021_00255_8 crossref_primary_10_1016_j_msea_2019_138723 crossref_primary_10_1007_s42864_022_00153_6 crossref_primary_10_1142_S2424913023410035 crossref_primary_10_1016_j_jmrt_2023_04_167 crossref_primary_10_1016_j_jmst_2024_04_020 crossref_primary_10_1016_j_intermet_2022_107735 crossref_primary_10_1016_j_actamat_2022_118207 crossref_primary_10_1016_j_actamat_2022_118201 crossref_primary_10_1016_j_actamat_2023_118765 crossref_primary_10_1016_j_intermet_2024_108502 crossref_primary_10_1016_j_jmst_2021_05_063 crossref_primary_10_1016_j_chemosphere_2022_136012 crossref_primary_10_1007_s12598_021_01938_3 crossref_primary_10_1016_j_scriptamat_2024_116526 crossref_primary_10_1016_j_scriptamat_2021_114364 crossref_primary_10_1016_j_scriptamat_2022_114661 crossref_primary_10_3390_met12060932 crossref_primary_10_1016_j_jmrt_2023_11_180 crossref_primary_10_1016_j_jmrt_2024_05_253 crossref_primary_10_3390_met11101517 crossref_primary_10_2139_ssrn_4087329 crossref_primary_10_1016_j_scriptamat_2024_116529 crossref_primary_10_1063_5_0069518 crossref_primary_10_1002_sstr_202400011 crossref_primary_10_1007_s11661_020_05738_9 crossref_primary_10_1016_j_intermet_2021_107421 crossref_primary_10_1080_21663831_2024_2357269 crossref_primary_10_1016_j_ijplas_2025_104245 crossref_primary_10_3389_fmats_2021_767795 crossref_primary_10_1016_j_intermet_2019_106639 crossref_primary_10_1016_j_ijplas_2025_104243 crossref_primary_10_1016_j_ijplas_2024_104184 crossref_primary_10_1016_j_intermet_2022_107727 crossref_primary_10_1016_j_jallcom_2021_161859 crossref_primary_10_1016_j_jmrt_2024_11_245 crossref_primary_10_1016_j_nme_2024_101709 crossref_primary_10_1038_s41467_021_25264_5 crossref_primary_10_1016_j_jallcom_2022_166986 crossref_primary_10_1038_s41563_024_01912_1 crossref_primary_10_1007_s40843_020_1635_9 crossref_primary_10_1016_j_mattod_2023_04_020 crossref_primary_10_1016_j_mtcomm_2022_103447 crossref_primary_10_1007_s40843_020_1319_3 crossref_primary_10_1038_s41563_020_0750_4 crossref_primary_10_1016_j_actamat_2022_117974 crossref_primary_10_1016_j_jmrt_2021_04_020 crossref_primary_10_3390_met13010075 crossref_primary_10_1016_j_jmrt_2023_07_233 crossref_primary_10_3390_met13010077 crossref_primary_10_1016_j_intermet_2025_108689 crossref_primary_10_1016_j_msea_2023_144851 crossref_primary_10_1016_j_jallcom_2023_171385 crossref_primary_10_1016_j_jmst_2020_09_021 crossref_primary_10_1007_s12666_020_02135_z crossref_primary_10_1016_j_ijrmhm_2023_106263 crossref_primary_10_3390_e25020256 crossref_primary_10_1002_smll_202309025 crossref_primary_10_1016_j_intermet_2019_106652 crossref_primary_10_1016_j_jallcom_2024_178280 crossref_primary_10_1016_j_jmst_2024_06_034 crossref_primary_10_1016_j_scriptamat_2024_116506 crossref_primary_10_1016_j_msea_2019_138555 crossref_primary_10_1016_j_jallcom_2020_156159 crossref_primary_10_1016_j_jmps_2024_105639 crossref_primary_10_1016_j_intermet_2020_106898 crossref_primary_10_1016_j_matlet_2021_129428 crossref_primary_10_1016_S1003_6326_22_66035_7 crossref_primary_10_1016_j_intermet_2020_106899 crossref_primary_10_1016_j_actamat_2019_08_024 crossref_primary_10_1016_j_matchar_2022_111921 crossref_primary_10_1016_j_matdes_2023_111981 crossref_primary_10_1016_j_ijplas_2023_103853 crossref_primary_10_1016_j_jmst_2024_05_020 crossref_primary_10_1016_j_msea_2022_144346 crossref_primary_10_1007_s44210_022_00002_8 crossref_primary_10_1016_j_matdes_2023_111997 crossref_primary_10_1016_j_matdes_2022_111239 crossref_primary_10_1016_j_jmst_2022_11_051 crossref_primary_10_1016_j_matdes_2023_111999 crossref_primary_10_1016_j_jallcom_2021_163171 crossref_primary_10_1103_PhysRevMaterials_9_L031401 crossref_primary_10_1088_2752_5724_ad8df2 crossref_primary_10_1016_j_jmst_2022_01_008 crossref_primary_10_1016_j_actamat_2022_117955 crossref_primary_10_1016_j_mattod_2023_12_006 crossref_primary_10_1016_j_msea_2021_140931 crossref_primary_10_1016_j_ijplas_2023_103822 crossref_primary_10_1007_s11661_021_06340_3 crossref_primary_10_1016_j_commatsci_2023_112140 crossref_primary_10_1039_D3NR05176E crossref_primary_10_1016_j_actamat_2024_120494 crossref_primary_10_1002_jemt_24151 crossref_primary_10_1016_j_corsci_2020_109190 crossref_primary_10_1016_j_addma_2023_103725 crossref_primary_10_1016_j_jmrt_2023_08_069 crossref_primary_10_1016_j_jallcom_2022_164310 crossref_primary_10_1016_j_ijplas_2025_104288 crossref_primary_10_1016_j_partic_2024_04_010 crossref_primary_10_1016_j_corsci_2022_110763 crossref_primary_10_1016_j_matdes_2019_107893 crossref_primary_10_1016_j_matchar_2024_113881 crossref_primary_10_1016_j_msea_2022_144524 crossref_primary_10_1016_j_actamat_2021_117490 crossref_primary_10_1016_j_amf_2024_200140 crossref_primary_10_1016_j_msea_2022_143679 crossref_primary_10_1016_j_msea_2021_142061 crossref_primary_10_1016_j_jallcom_2021_160962 crossref_primary_10_1016_j_jmst_2020_08_016 crossref_primary_10_3390_e21030288 crossref_primary_10_1016_j_jallcom_2022_165455 crossref_primary_10_1016_j_msea_2020_139854 crossref_primary_10_1016_j_ijrmhm_2019_105109 crossref_primary_10_1063_5_0069108 crossref_primary_10_1038_s41524_020_00377_5 crossref_primary_10_7498_aps_69_20200707 crossref_primary_10_1126_sciadv_adq6398 crossref_primary_10_1016_j_jmst_2020_08_008 crossref_primary_10_1016_j_intermet_2025_108649 crossref_primary_10_1016_j_corsci_2021_109275 crossref_primary_10_1016_j_scriptamat_2023_115312 crossref_primary_10_1126_sciadv_adf8602 crossref_primary_10_1002_adem_201801359 crossref_primary_10_1016_j_jmrt_2024_08_068 crossref_primary_10_3390_met13050986 crossref_primary_10_1016_j_jallcom_2019_07_025 crossref_primary_10_1080_21663831_2021_2022033 crossref_primary_10_3390_met11091487 crossref_primary_10_3390_ma13071603 crossref_primary_10_1038_s41467_024_45513_7 crossref_primary_10_12677_MET_2021_103041 crossref_primary_10_1016_j_jallcom_2024_174968 crossref_primary_10_1016_j_mattod_2020_09_029 crossref_primary_10_1016_j_jmst_2022_10_070 crossref_primary_10_1016_j_jallcom_2018_12_168 crossref_primary_10_1016_j_intermet_2025_108655 crossref_primary_10_1016_j_jallcom_2021_160944 crossref_primary_10_1007_s12598_022_02152_5 crossref_primary_10_1016_j_actamat_2021_117480 crossref_primary_10_3390_ma15010355 crossref_primary_10_1016_j_apsusc_2024_162093 crossref_primary_10_1016_j_addma_2023_103914 crossref_primary_10_1016_j_jmmm_2024_172401 crossref_primary_10_1016_j_jmrt_2024_08_059 crossref_primary_10_1016_j_msea_2023_145957 crossref_primary_10_1016_j_ijplas_2024_103949 crossref_primary_10_1063_5_0061641 crossref_primary_10_1016_j_jmst_2024_06_022 crossref_primary_10_1007_s10853_023_08758_z crossref_primary_10_1016_j_jallcom_2024_175604 crossref_primary_10_1016_j_jallcom_2024_175849 crossref_primary_10_1016_j_actamat_2022_118602 crossref_primary_10_1038_s43588_023_00536_w crossref_primary_10_1016_j_jallcom_2024_176931 crossref_primary_10_3390_ma16072922 crossref_primary_10_1021_jacs_4c10681 crossref_primary_10_1016_j_intermet_2024_108585 crossref_primary_10_1080_21663831_2022_2029607 crossref_primary_10_1007_s41403_023_00447_2 crossref_primary_10_1016_j_jallcom_2019_06_261 crossref_primary_10_1016_j_msea_2022_143465 crossref_primary_10_1016_j_msea_2023_145942 crossref_primary_10_1016_j_msea_2023_144611 crossref_primary_10_1080_21663831_2022_2109442 crossref_primary_10_3390_catal14090569 crossref_primary_10_1016_j_intermet_2019_106474 crossref_primary_10_1016_j_jallcom_2022_167868 crossref_primary_10_1016_j_jallcom_2022_164118 crossref_primary_10_1016_j_jallcom_2022_165441 crossref_primary_10_1016_j_mattod_2021_02_022 crossref_primary_10_1016_j_jssc_2025_125202 crossref_primary_10_1016_j_jmst_2022_04_055 crossref_primary_10_1002_tcr_202200175 crossref_primary_10_1063_5_0188516 crossref_primary_10_1126_science_adp0559 crossref_primary_10_1016_j_pmatsci_2020_100722 crossref_primary_10_1016_j_jmst_2023_06_046 crossref_primary_10_1126_sciadv_adp4372 crossref_primary_10_1016_j_actamat_2021_116638 crossref_primary_10_1016_j_triboint_2024_109392 crossref_primary_10_1007_s40195_022_01399_2 crossref_primary_10_1038_s41598_022_13649_5 crossref_primary_10_1016_j_jmrt_2021_02_012 crossref_primary_10_1016_j_actamat_2021_116884 crossref_primary_10_1038_s41467_019_11464_7 crossref_primary_10_1016_j_jallcom_2023_169570 crossref_primary_10_1063_5_0198043 crossref_primary_10_1016_j_jallcom_2020_157997 crossref_primary_10_1039_D0NR06798A crossref_primary_10_1016_j_intermet_2022_107470 crossref_primary_10_1007_s10853_023_09314_5 crossref_primary_10_1016_j_intermet_2022_107472 crossref_primary_10_1016_j_scriptamat_2020_06_022 crossref_primary_10_1007_s12666_022_02765_5 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1016_j_intermet_2023_107994 crossref_primary_10_1016_j_matchar_2022_111779 crossref_primary_10_1016_j_jmapro_2023_08_023 crossref_primary_10_1088_1748_605X_ad9af0 crossref_primary_10_1038_s41467_023_41485_2 crossref_primary_10_1016_j_jallcom_2021_160199 crossref_primary_10_1016_j_jallcom_2021_161289 crossref_primary_10_1016_j_scriptamat_2020_06_008 crossref_primary_10_1002_adma_201903855 crossref_primary_10_1016_j_mtla_2019_100522 crossref_primary_10_1016_j_scriptamat_2022_115257 crossref_primary_10_1016_j_matchemphys_2024_128992 crossref_primary_10_1016_j_ceramint_2024_12_547 crossref_primary_10_1016_j_ijrmhm_2023_106308 crossref_primary_10_1016_j_jmst_2022_12_025 crossref_primary_10_1007_s40843_022_2379_8 crossref_primary_10_1007_s40843_023_2578_5 crossref_primary_10_1016_j_mtcomm_2024_109716 crossref_primary_10_1002_adem_202400763 crossref_primary_10_1016_j_jmrt_2022_11_106 crossref_primary_10_1016_j_jallcom_2023_170347 crossref_primary_10_1016_j_triboint_2022_107529 crossref_primary_10_1007_s40195_022_01473_9 crossref_primary_10_1016_j_jmst_2023_05_010 crossref_primary_10_1016_j_triboint_2022_107523 crossref_primary_10_1007_s12598_024_02899_z crossref_primary_10_1016_j_surfcoat_2024_130504 crossref_primary_10_1016_j_compositesb_2020_108563 crossref_primary_10_1016_j_actamat_2020_10_044 crossref_primary_10_1016_j_jmst_2023_06_025 crossref_primary_10_1016_j_jmst_2022_12_011 crossref_primary_10_1016_j_jmst_2022_12_010 crossref_primary_10_1016_j_pmatsci_2020_100740 crossref_primary_10_1016_j_isci_2023_108718 crossref_primary_10_1016_j_jallcom_2020_156204 crossref_primary_10_1038_s41467_022_34471_7 crossref_primary_10_1016_j_jallcom_2023_172734 crossref_primary_10_1007_s11665_023_08899_x crossref_primary_10_1016_j_ijmecsci_2022_107065 crossref_primary_10_1016_j_addma_2024_104332 crossref_primary_10_1016_j_apmt_2019_100498 crossref_primary_10_1016_j_matdes_2021_110356 crossref_primary_10_1016_j_msea_2021_141085 crossref_primary_10_1016_j_corsci_2023_111197 crossref_primary_10_1016_j_jmst_2022_12_009 crossref_primary_10_1007_s40195_024_01763_4 crossref_primary_10_1016_j_jmst_2023_06_035 crossref_primary_10_1002_adma_202002619 crossref_primary_10_1002_adma_202209941 crossref_primary_10_1016_j_matchar_2021_111292 crossref_primary_10_2139_ssrn_4060462 crossref_primary_10_1016_j_matchar_2024_114380 crossref_primary_10_1016_j_intermet_2022_107489 crossref_primary_10_1016_j_msea_2024_146581 crossref_primary_10_1016_j_jmst_2024_01_030 crossref_primary_10_1016_j_jmst_2023_07_069 crossref_primary_10_1007_s10853_022_07227_3 crossref_primary_10_1016_j_jmatprotec_2023_118003 crossref_primary_10_1016_j_msea_2020_139936 crossref_primary_10_1016_j_actamat_2024_120526 crossref_primary_10_1016_j_msea_2023_146046 crossref_primary_10_1016_j_msea_2024_147677 crossref_primary_10_1016_j_ijplas_2022_103497 crossref_primary_10_1016_j_ijrmhm_2019_105132 crossref_primary_10_1016_j_msea_2025_147970 crossref_primary_10_1016_j_matchar_2025_114852 crossref_primary_10_1016_j_jmst_2022_11_031 crossref_primary_10_1016_j_jallcom_2024_176192 crossref_primary_10_1016_j_jmrt_2025_01_005 crossref_primary_10_1016_j_optlastec_2023_109396 crossref_primary_10_1016_j_jallcom_2024_173916 crossref_primary_10_1016_j_apsusc_2024_160730 crossref_primary_10_1007_s40195_022_01397_4 crossref_primary_10_1007_s42243_024_01384_2 crossref_primary_10_1016_j_ijplas_2024_103882 crossref_primary_10_1016_j_surfcoat_2024_130775 crossref_primary_10_1016_j_jallcom_2023_172798 crossref_primary_10_1016_j_msea_2024_147248 crossref_primary_10_1016_j_mechmat_2024_105107 crossref_primary_10_1134_S0031918X23601671 crossref_primary_10_1063_5_0108367 crossref_primary_10_1016_j_ijplas_2024_103884 crossref_primary_10_1016_j_jmst_2023_07_050 crossref_primary_10_1038_s41467_022_32620_6 crossref_primary_10_1016_j_jmst_2021_03_023 crossref_primary_10_1016_j_msea_2022_143964 crossref_primary_10_1016_j_mtla_2019_100565 crossref_primary_10_1002_smll_202500962 crossref_primary_10_1016_j_jmst_2021_03_024 crossref_primary_10_1016_j_msea_2022_142879 crossref_primary_10_1007_s40195_024_01805_x crossref_primary_10_1016_j_apsusc_2021_149945 crossref_primary_10_1016_j_msea_2023_144919 crossref_primary_10_1021_acsomega_2c02027 crossref_primary_10_1016_j_jallcom_2023_170149 crossref_primary_10_1016_j_jmst_2023_07_049 crossref_primary_10_1002_adts_202100411 crossref_primary_10_1007_s11837_022_05277_1 crossref_primary_10_1016_j_mtadv_2023_100347 crossref_primary_10_1007_s44210_022_00008_2 crossref_primary_10_1016_j_jallcom_2019_04_121 crossref_primary_10_1016_j_surfcoat_2020_126326 crossref_primary_10_1016_j_matchar_2024_114357 crossref_primary_10_1016_j_surfcoat_2020_126325 crossref_primary_10_1002_adfm_202408941 crossref_primary_10_1016_j_mattod_2024_04_003 crossref_primary_10_1016_j_jmst_2021_08_034 crossref_primary_10_1016_j_mtcomm_2021_102657 crossref_primary_10_1002_ange_202213783 crossref_primary_10_1007_s11661_022_06706_1 crossref_primary_10_1016_j_msea_2024_147225 crossref_primary_10_1016_j_intermet_2020_106845 crossref_primary_10_1016_j_msea_2021_142373 crossref_primary_10_1016_j_commatsci_2024_112980 crossref_primary_10_3389_fmats_2021_816309 crossref_primary_10_1016_j_matdes_2021_109560 crossref_primary_10_1016_j_mtsust_2024_100694 crossref_primary_10_3390_ma12234022 crossref_primary_10_1016_j_msea_2022_143505 crossref_primary_10_1016_j_scriptamat_2019_02_015 crossref_primary_10_3390_met15020114 crossref_primary_10_1016_j_jmst_2022_12_044 crossref_primary_10_1007_s12598_023_02460_4 crossref_primary_10_15541_jim20200654 crossref_primary_10_1002_adem_202300616 crossref_primary_10_1016_j_ijmecsci_2023_108408 crossref_primary_10_1007_s40195_021_01260_y crossref_primary_10_1016_j_jmst_2022_11_008 crossref_primary_10_1007_s40195_021_01282_6 crossref_primary_10_1007_s12613_023_2631_8 crossref_primary_10_1016_j_ijplas_2022_103296 crossref_primary_10_1016_j_ijplas_2023_103592 crossref_primary_10_1016_j_intermet_2024_108297 crossref_primary_10_1016_j_addma_2024_104126 crossref_primary_10_1016_j_ijplas_2019_08_013 crossref_primary_10_1039_D5RA00358J crossref_primary_10_1016_j_pmatsci_2020_100709 crossref_primary_10_1016_j_jmst_2021_09_056 crossref_primary_10_1016_j_matlet_2022_133163 crossref_primary_10_3390_nano10010059 crossref_primary_10_1016_j_eng_2021_12_008 crossref_primary_10_1016_j_surfcoat_2020_125651 crossref_primary_10_1016_j_jallcom_2021_161215 crossref_primary_10_1016_j_scriptamat_2020_08_029 crossref_primary_10_1021_acs_jpcc_4c01845 crossref_primary_10_1016_j_actamat_2024_119911 crossref_primary_10_1016_j_matdes_2020_109018 crossref_primary_10_1016_j_msea_2022_143918 crossref_primary_10_1016_j_matdes_2021_109777 crossref_primary_10_1016_j_scriptamat_2019_05_032 crossref_primary_10_1016_j_jmps_2025_106106 crossref_primary_10_1016_j_jmrt_2021_07_116 crossref_primary_10_1016_j_actamat_2021_116801 crossref_primary_10_1016_S1003_6326_24_66674_4 crossref_primary_10_1016_j_actamat_2019_12_015 crossref_primary_10_1016_j_pmatsci_2021_100854 crossref_primary_10_1016_j_matdes_2024_112787 crossref_primary_10_1016_j_msea_2024_146513 crossref_primary_10_20517_microstructures_2024_2 crossref_primary_10_1021_jacs_4c03658 crossref_primary_10_3390_met13030594 crossref_primary_10_1021_acsnano_1c05113 crossref_primary_10_1016_j_jallcom_2023_171824 crossref_primary_10_1080_17452759_2020_1840783 crossref_primary_10_1002_adma_202202943 crossref_primary_10_1021_acs_jctc_3c00532 crossref_primary_10_1039_D1MH01912K crossref_primary_10_3390_coatings12121795 crossref_primary_10_1016_j_apsusc_2019_143903 crossref_primary_10_1126_science_adr4917 crossref_primary_10_1016_j_msea_2024_146522 crossref_primary_10_1016_j_msea_2020_140065 crossref_primary_10_1016_j_jmrt_2024_11_068 crossref_primary_10_1016_j_jmst_2021_08_075 crossref_primary_10_1016_j_jallcom_2019_152466 crossref_primary_10_1016_j_matdes_2022_110820 crossref_primary_10_1016_j_jmst_2021_08_073 crossref_primary_10_1073_pnas_2200607119 crossref_primary_10_7498_aps_71_20221368 crossref_primary_10_1016_j_triboint_2023_108760 crossref_primary_10_1016_j_jmrt_2023_02_074 crossref_primary_10_1016_j_matchemphys_2022_125997 crossref_primary_10_1016_j_jmst_2020_10_043 crossref_primary_10_1016_j_jmrt_2023_10_194 crossref_primary_10_1016_j_actamat_2024_119939 crossref_primary_10_1016_j_jallcom_2020_155995 crossref_primary_10_1021_acsaem_2c02009 crossref_primary_10_1016_S1003_6326_24_66650_1 crossref_primary_10_1016_j_intermet_2020_107050 crossref_primary_10_1016_j_jallcom_2020_156842 crossref_primary_10_1016_j_jmst_2024_02_058 crossref_primary_10_1016_j_corcom_2021_11_002 crossref_primary_10_1016_j_msea_2023_145368 crossref_primary_10_1016_j_jallcom_2024_174394 crossref_primary_10_1016_j_msea_2021_142311 crossref_primary_10_1016_j_commatsci_2024_113196 crossref_primary_10_1002_advs_202100870 crossref_primary_10_1007_s12540_020_00923_2 crossref_primary_10_1016_j_wear_2024_205596 crossref_primary_10_1016_j_actamat_2024_119940 crossref_primary_10_1016_j_jallcom_2023_171802 crossref_primary_10_3390_ma16051759 crossref_primary_10_1016_j_jallcom_2022_166174 crossref_primary_10_1007_s11431_022_2300_1 crossref_primary_10_1007_s12598_022_01986_3 crossref_primary_10_1021_acs_nanolett_1c00444 crossref_primary_10_1016_j_msea_2023_145110 crossref_primary_10_1016_j_ijfatigue_2023_108111 crossref_primary_10_1016_j_msea_2021_141234 crossref_primary_10_1039_D3NR03465H crossref_primary_10_1016_j_actamat_2022_118495 crossref_primary_10_1016_j_jmapro_2021_06_047 crossref_primary_10_1016_j_triboint_2024_109757 crossref_primary_10_1016_j_jmst_2020_12_079 crossref_primary_10_1007_s10853_022_07066_2 crossref_primary_10_1016_j_jallcom_2022_163954 crossref_primary_10_1016_j_jmst_2024_03_034 crossref_primary_10_1016_j_jallcom_2020_154839 crossref_primary_10_1111_ffe_13970 crossref_primary_10_1016_j_mser_2024_100834 crossref_primary_10_3390_ma16062454 crossref_primary_10_3390_cryst14121029 crossref_primary_10_1016_j_intermet_2021_107399 crossref_primary_10_1002_pssb_202100025 crossref_primary_10_1016_j_cpc_2021_108019 crossref_primary_10_1038_s44160_024_00690_7 crossref_primary_10_1016_j_actamat_2021_116843 crossref_primary_10_1016_j_apmt_2021_101233 crossref_primary_10_1016_j_jmst_2024_01_022 crossref_primary_10_1016_j_msea_2020_140035 crossref_primary_10_1016_j_msea_2021_140798 crossref_primary_10_1016_j_msea_2025_147920 crossref_primary_10_1016_j_physleta_2022_128272 crossref_primary_10_1557_s43577_022_00277_7 crossref_primary_10_3390_met9121324 crossref_primary_10_1103_PhysRevB_109_014417 crossref_primary_10_1007_s00894_023_05502_x crossref_primary_10_1038_s41586_023_06894_9 crossref_primary_10_1016_j_ijplas_2021_102965 crossref_primary_10_1016_j_actamat_2019_11_026 crossref_primary_10_1016_j_scriptamat_2020_06_048 crossref_primary_10_1088_1361_6528_ab99ef crossref_primary_10_1016_j_scriptamat_2021_113897 crossref_primary_10_1016_j_scriptamat_2021_113898 crossref_primary_10_1002_advs_202407283 crossref_primary_10_1016_j_jmrt_2023_02_066 crossref_primary_10_1016_j_jelechem_2024_118318 crossref_primary_10_1016_j_mtnano_2024_100511 crossref_primary_10_2139_ssrn_3926696 crossref_primary_10_1016_j_msea_2024_147653 crossref_primary_10_1016_j_matchar_2023_112956 crossref_primary_10_1016_j_msea_2020_140264 crossref_primary_10_1007_s11665_023_08239_z crossref_primary_10_1007_s12613_020_2063_7 crossref_primary_10_1016_j_msea_2024_146525 crossref_primary_10_1016_j_msea_2024_146767 crossref_primary_10_1038_s41563_023_01517_0 crossref_primary_10_1016_j_jmst_2024_02_017 crossref_primary_10_1038_s43246_023_00341_y crossref_primary_10_1016_j_ijfatigue_2024_108624 crossref_primary_10_1016_j_vacuum_2022_111586 crossref_primary_10_31857_S0015323023600971 crossref_primary_10_1002_smll_202311929 crossref_primary_10_1080_02670844_2020_1812480 crossref_primary_10_1016_j_ijplas_2021_102971 crossref_primary_10_1002_adma_202002652 crossref_primary_10_1007_s12598_025_03248_4 crossref_primary_10_1016_j_msea_2025_147927 crossref_primary_10_1016_j_actamat_2024_119983 crossref_primary_10_1016_j_jmrt_2023_03_088 crossref_primary_10_1016_j_jmst_2021_06_038 crossref_primary_10_1016_j_jallcom_2023_170757 crossref_primary_10_1016_j_jmrt_2023_02_040 crossref_primary_10_1038_s43246_023_00352_9 crossref_primary_10_1016_j_elecom_2021_106989 crossref_primary_10_1007_s10853_023_08443_1 crossref_primary_10_1016_j_ijplas_2024_104109 crossref_primary_10_1002_anie_202304510 crossref_primary_10_1016_j_ijplas_2020_102685 crossref_primary_10_1016_j_jmst_2020_12_080 crossref_primary_10_1016_j_ijmecsci_2022_107098 crossref_primary_10_1063_5_0160762 crossref_primary_10_1016_j_jallcom_2019_07_357 crossref_primary_10_1016_j_scriptamat_2022_114950 crossref_primary_10_1016_j_jmrt_2024_05_189 crossref_primary_10_1016_j_jeurceramsoc_2023_01_026 crossref_primary_10_1016_j_intermet_2019_04_003 crossref_primary_10_1016_j_jallcom_2019_01_053 crossref_primary_10_1016_j_ijplas_2024_104014 crossref_primary_10_1016_j_scriptamat_2020_02_002 crossref_primary_10_1016_j_jmst_2022_07_012 crossref_primary_10_1038_s41467_020_20109_z crossref_primary_10_1016_j_scriptamat_2020_02_001 crossref_primary_10_1007_s11665_021_06093_5 crossref_primary_10_1016_j_triboint_2020_106444 crossref_primary_10_1016_j_intermet_2024_108440 crossref_primary_10_1016_j_jallcom_2023_172194 crossref_primary_10_1016_j_scriptamat_2024_116464 crossref_primary_10_1021_acsami_4c04902 crossref_primary_10_1007_s40195_023_01551_6 crossref_primary_10_1016_j_eng_2023_06_008 crossref_primary_10_1038_s43246_024_00487_3 crossref_primary_10_1016_j_jallcom_2021_161963 crossref_primary_10_1016_j_jeurceramsoc_2023_01_037 crossref_primary_10_3390_met15010096 crossref_primary_10_1002_mgea_70000 crossref_primary_10_1016_j_coche_2024_101020 crossref_primary_10_1063_5_0069417 crossref_primary_10_1002_asia_202300456 crossref_primary_10_1016_j_jallcom_2024_175737 crossref_primary_10_1016_j_intermet_2025_108735 crossref_primary_10_1016_j_jallcom_2022_164291 crossref_primary_10_1016_j_isci_2021_102177 crossref_primary_10_1016_j_jmrt_2023_10_007 crossref_primary_10_1002_adem_202001044 crossref_primary_10_1016_j_msea_2020_140101 crossref_primary_10_15251_DJNB_2023_181_145 crossref_primary_10_1007_s11837_022_05306_z crossref_primary_10_1016_j_actamat_2022_118550 crossref_primary_10_1016_j_scriptamat_2024_116438 crossref_primary_10_1038_s41586_021_04309_1 crossref_primary_10_1016_j_triboint_2020_106662 crossref_primary_10_1016_j_mser_2024_100813 crossref_primary_10_1016_j_matchar_2019_110098 crossref_primary_10_1007_s12274_022_5207_4 crossref_primary_10_1016_j_mtla_2020_100746 crossref_primary_10_1021_acsnano_0c09470 crossref_primary_10_1021_acsnano_3c02762 crossref_primary_10_1016_j_commatsci_2021_110389 crossref_primary_10_1016_j_corsci_2022_110499 crossref_primary_10_1016_j_scriptamat_2020_02_021 crossref_primary_10_1016_j_scriptamat_2024_116440 crossref_primary_10_1016_j_apmt_2024_102347 crossref_primary_10_3390_e21020146 crossref_primary_10_1016_j_jmst_2023_11_057 crossref_primary_10_1016_j_corsci_2024_112185 crossref_primary_10_1016_j_pmatsci_2023_101090 crossref_primary_10_1007_s44210_022_00010_8 crossref_primary_10_1016_j_msea_2023_144779 crossref_primary_10_1021_jacs_0c07395 crossref_primary_10_1016_j_matdes_2019_107928 crossref_primary_10_1016_j_jallcom_2022_167542 crossref_primary_10_1016_j_ceramint_2021_04_123 crossref_primary_10_1016_j_scriptamat_2022_114504 crossref_primary_10_1016_j_jmst_2020_04_062 crossref_primary_10_3390_met12050811 crossref_primary_10_1007_s11708_019_0653_8 crossref_primary_10_1016_j_actamat_2019_10_015 crossref_primary_10_1016_j_intermet_2025_108714 crossref_primary_10_1016_j_matdes_2022_111186 crossref_primary_10_1016_j_msea_2020_140125 crossref_primary_10_1016_j_matchar_2021_110877 crossref_primary_10_1016_j_jallcom_2019_153388 crossref_primary_10_1016_j_mtchem_2024_102422 crossref_primary_10_1016_j_jallcom_2020_156060 crossref_primary_10_1002_adem_202300291 crossref_primary_10_1016_j_ica_2020_119854 crossref_primary_10_1103_PhysRevLett_124_096101 crossref_primary_10_1557_s43578_023_01128_0 crossref_primary_10_1016_j_ijrmhm_2021_105762 crossref_primary_10_1088_1674_1056_acfc37 crossref_primary_10_1016_j_apsusc_2020_145736 crossref_primary_10_1073_pnas_2316912121 crossref_primary_10_2139_ssrn_4128926 crossref_primary_10_1016_j_actamat_2023_118868 crossref_primary_10_1016_j_mattod_2024_08_004 crossref_primary_10_1002_adfm_202207536 crossref_primary_10_1016_j_matdes_2023_111891 crossref_primary_10_1016_j_msea_2024_146830 crossref_primary_10_1016_j_tsf_2021_138866 crossref_primary_10_1002_adma_202302067 crossref_primary_10_1016_j_matlet_2021_131252 crossref_primary_10_1016_j_msea_2025_148058 crossref_primary_10_1016_j_actamat_2022_118590 crossref_primary_10_1016_j_msea_2023_145446 crossref_primary_10_1016_j_triboint_2020_106470 crossref_primary_10_1016_j_jmapro_2023_05_097 crossref_primary_10_1002_ange_202100917 crossref_primary_10_1016_j_xcrp_2023_101254 crossref_primary_10_1016_j_ijplas_2024_104050 crossref_primary_10_1016_j_intermet_2022_107819 crossref_primary_10_1016_j_scriptamat_2019_07_010 crossref_primary_10_1002_sstr_202400110 crossref_primary_10_1007_s11837_019_03879_w crossref_primary_10_1016_j_jallcom_2022_168692 crossref_primary_10_1002_anie_202213783 crossref_primary_10_1016_j_msea_2025_148041 crossref_primary_10_1016_j_msea_2025_148042 crossref_primary_10_1016_j_ceramint_2021_05_148 crossref_primary_10_1016_j_mtcomm_2024_109237 crossref_primary_10_1016_j_commatsci_2022_111764 crossref_primary_10_1080_21663831_2022_2135409 crossref_primary_10_1016_j_intermet_2020_107029 crossref_primary_10_1038_s41467_024_48619_0 crossref_primary_10_3390_ma16134701 crossref_primary_10_1038_s41524_025_01560_2 crossref_primary_10_1103_PhysRevB_109_104204 crossref_primary_10_1016_j_jmst_2020_12_015 crossref_primary_10_1016_j_msea_2023_145436 crossref_primary_10_1016_j_jnucmat_2021_153261 crossref_primary_10_1126_science_abf6986 crossref_primary_10_1016_j_matchar_2023_112773 crossref_primary_10_1016_j_jnucmat_2021_153023 crossref_primary_10_1038_s41467_021_24093_w crossref_primary_10_1002_smll_202310327 crossref_primary_10_3390_met10050599 crossref_primary_10_1016_j_jmrt_2024_06_170 crossref_primary_10_1016_j_jmst_2020_12_017 crossref_primary_10_1016_j_intermet_2024_108627 crossref_primary_10_1080_21663831_2019_1604443 crossref_primary_10_1016_j_ijplas_2024_104079 crossref_primary_10_1016_j_jmst_2023_02_016 crossref_primary_10_1166_sam_2021_4080 crossref_primary_10_1002_adfm_202502367 crossref_primary_10_1016_j_actamat_2023_118884 crossref_primary_10_1016_j_jmrt_2023_09_184 crossref_primary_10_1016_j_jallcom_2024_177740 crossref_primary_10_1016_j_msea_2022_144035 crossref_primary_10_1063_5_0249449 crossref_primary_10_1016_j_msea_2022_144037 crossref_primary_10_1016_j_jmrt_2022_01_118 crossref_primary_10_1016_j_jmst_2020_03_064 crossref_primary_10_1016_j_msea_2019_138616 crossref_primary_10_3390_met10081073 crossref_primary_10_1016_j_msea_2020_139580 crossref_primary_10_1016_j_matchemphys_2021_124830 crossref_primary_10_1039_D2MH01023B crossref_primary_10_3390_catal12091050 crossref_primary_10_1016_j_mtcomm_2023_106922 crossref_primary_10_1016_j_ijmecsci_2022_107931 crossref_primary_10_1016_j_vacuum_2024_113859 crossref_primary_10_1080_09500839_2023_2261392 crossref_primary_10_1016_j_jallcom_2024_174227 crossref_primary_10_1016_j_msea_2025_148062 crossref_primary_10_1016_j_matre_2021_01_002 crossref_primary_10_1016_j_msea_2022_144041 crossref_primary_10_1016_j_jallcom_2024_175311 crossref_primary_10_3390_met13040647 crossref_primary_10_1021_acs_jpcc_2c05666 crossref_primary_10_1016_j_mtchem_2024_102435 crossref_primary_10_1016_j_matdes_2022_111144 crossref_primary_10_1016_j_msea_2022_144046 crossref_primary_10_1016_j_actamat_2020_01_062 crossref_primary_10_1007_s13370_024_01198_1 crossref_primary_10_1016_j_actamat_2024_120102 crossref_primary_10_1016_j_addma_2023_103813 crossref_primary_10_1016_j_msea_2019_138661 crossref_primary_10_1016_j_triboint_2023_109154 crossref_primary_10_1016_j_matlet_2021_129778 crossref_primary_10_3389_fmats_2020_589052 crossref_primary_10_1016_j_corsci_2024_111965 crossref_primary_10_1016_j_wear_2022_204497 crossref_primary_10_1126_sciadv_adj1511 crossref_primary_10_1016_j_jmst_2023_05_081 crossref_primary_10_1016_j_actamat_2021_117571 crossref_primary_10_1016_j_actamat_2023_119077 crossref_primary_10_1007_s12274_021_3804_2 crossref_primary_10_1016_j_matdes_2022_111565 crossref_primary_10_1016_j_ijrmhm_2024_106884 crossref_primary_10_1016_j_intermet_2024_108274 crossref_primary_10_1016_j_matchar_2023_113059 crossref_primary_10_1016_j_matchar_2024_114641 crossref_primary_10_1016_j_ijrmhm_2024_106885 crossref_primary_10_3390_e22101074 crossref_primary_10_1016_j_addma_2024_104184 crossref_primary_10_1016_j_jallcom_2023_171039 crossref_primary_10_1002_er_6371 crossref_primary_10_1016_j_mtla_2019_100485 crossref_primary_10_1016_j_jmst_2019_09_010 crossref_primary_10_1038_s41467_024_45309_9 crossref_primary_10_1016_j_msea_2024_147298 crossref_primary_10_1016_j_jmapro_2023_03_017 crossref_primary_10_1017_S1431927620021340 crossref_primary_10_1360_TB_2024_0436 crossref_primary_10_1016_j_actamat_2024_120364 crossref_primary_10_1016_j_addma_2022_103319 crossref_primary_10_1016_S1003_6326_20_65384_5 crossref_primary_10_1016_j_ijplas_2020_102819 crossref_primary_10_1016_j_dt_2024_12_017 crossref_primary_10_1016_j_scriptamat_2024_115989 crossref_primary_10_1016_j_msea_2024_147262 crossref_primary_10_1093_nsr_nwae026 crossref_primary_10_3390_ma18030476 crossref_primary_10_1002_adfm_202007668 crossref_primary_10_1016_j_actamat_2021_117314 crossref_primary_10_1021_acsanm_4c00720 crossref_primary_10_1021_acs_inorgchem_0c00989 crossref_primary_10_1103_PhysRevMaterials_7_033606 crossref_primary_10_1016_j_micron_2021_103144 crossref_primary_10_1016_j_actamat_2023_119099 crossref_primary_10_1016_j_msea_2022_143144 crossref_primary_10_1016_j_scriptamat_2019_08_036 crossref_primary_10_1038_s41467_019_13311_1 crossref_primary_10_1016_j_ijrmhm_2023_106361 crossref_primary_10_1039_D4CP00776J crossref_primary_10_1016_j_intermet_2019_106553 crossref_primary_10_1016_j_actamat_2023_119082 crossref_primary_10_1016_j_compositesb_2021_109305 crossref_primary_10_1016_j_jmrt_2022_06_057 crossref_primary_10_1007_s10853_020_05623_1 crossref_primary_10_1016_j_intermet_2023_108118 crossref_primary_10_1016_j_matlet_2019_03_075 crossref_primary_10_1016_j_ijrmhm_2021_105747 crossref_primary_10_1016_j_actamat_2022_117847 crossref_primary_10_1016_j_intermet_2023_108119 crossref_primary_10_1021_acsomega_4c08474 crossref_primary_10_1016_j_msea_2020_140523 crossref_primary_10_1016_j_intermet_2024_108497 crossref_primary_10_1038_s41467_021_26374_w crossref_primary_10_1038_s41586_019_1702_5 crossref_primary_10_1088_1742_6596_1948_1_012207 crossref_primary_10_1016_j_jallcom_2023_171491 crossref_primary_10_1007_s12613_020_2028_x crossref_primary_10_1016_j_cap_2024_11_001 crossref_primary_10_1103_PhysRevB_103_104107 crossref_primary_10_1016_j_ijplas_2023_103710 crossref_primary_10_1016_j_jmst_2023_05_072 crossref_primary_10_1016_j_jmrt_2023_08_194 crossref_primary_10_2320_matertrans_MT_MK2019009 crossref_primary_10_3390_coatings13091650 crossref_primary_10_1016_j_scriptamat_2020_02_042 crossref_primary_10_3389_fbioe_2022_952536 crossref_primary_10_1016_j_jmrt_2023_06_110 crossref_primary_10_3389_fmats_2020_537812 crossref_primary_10_1016_j_actamat_2021_117371 crossref_primary_10_1016_j_matchemphys_2021_125060 crossref_primary_10_1016_j_intermet_2024_108489 crossref_primary_10_1002_smll_201904180 crossref_primary_10_1016_j_actbio_2022_08_041 crossref_primary_10_1016_j_actamat_2020_02_059 crossref_primary_10_1016_j_actamat_2020_10_075 crossref_primary_10_3390_ma14164512 crossref_primary_10_1016_j_scriptamat_2023_115439 crossref_primary_10_1016_j_jallcom_2022_165103 crossref_primary_10_1016_j_jmrt_2022_06_074 crossref_primary_10_3390_coatings12070997 crossref_primary_10_1002_advs_202207535 crossref_primary_10_1016_j_actamat_2022_118515 crossref_primary_10_1016_j_mtcomm_2024_109635 crossref_primary_10_1016_j_ijplas_2023_103777 crossref_primary_10_1016_j_intermet_2023_108132 crossref_primary_10_1016_j_msea_2022_143570 crossref_primary_10_1016_j_scriptamat_2021_114070 crossref_primary_10_1038_s41524_024_01330_6 crossref_primary_10_1016_j_jmst_2023_11_047 crossref_primary_10_1007_s00339_021_04659_7 crossref_primary_10_1016_j_jallcom_2022_166408 crossref_primary_10_1007_s12274_024_6730_2 crossref_primary_10_1103_PhysRevMaterials_4_014402 crossref_primary_10_1016_j_jallcom_2019_152943 crossref_primary_10_1016_j_jmrt_2023_05_002 crossref_primary_10_1016_j_jmst_2023_12_057 crossref_primary_10_1016_j_triboint_2024_110165 crossref_primary_10_3390_e21101027 crossref_primary_10_1080_10408436_2021_1941751 crossref_primary_10_1016_j_jallcom_2019_152709 crossref_primary_10_1016_j_jmst_2023_10_003 crossref_primary_10_1103_PhysRevMaterials_7_113604 crossref_primary_10_1007_s11837_021_04847_z crossref_primary_10_1038_s41570_024_00602_5 crossref_primary_10_1080_21663831_2019_1650131 crossref_primary_10_1557_mrs_2019_72 crossref_primary_10_1038_s41467_024_50078_6 crossref_primary_10_1007_s11663_021_02115_8 crossref_primary_10_1007_s12274_021_3719_y crossref_primary_10_1103_PhysRevB_107_184116 crossref_primary_10_1016_j_actamat_2021_117112 crossref_primary_10_1016_j_actamat_2020_01_005 crossref_primary_10_1038_s41467_021_24523_9 crossref_primary_10_1002_ange_202304510 crossref_primary_10_1016_j_actamat_2020_02_039 crossref_primary_10_1016_j_surfcoat_2021_127427 crossref_primary_10_1016_j_jallcom_2022_165324 crossref_primary_10_1038_s41586_019_1617_1 crossref_primary_10_1007_s42864_021_00092_8 crossref_primary_10_1016_j_msea_2023_144978 crossref_primary_10_1016_j_scriptamat_2022_115236 crossref_primary_10_1016_j_jmrt_2022_06_099 crossref_primary_10_1063_5_0028977 crossref_primary_10_1016_j_jmrt_2023_12_026 crossref_primary_10_1007_s40195_022_01382_x crossref_primary_10_1088_1674_1056_ad0ec5 crossref_primary_10_1088_1361_651X_ac6687 crossref_primary_10_1088_2752_5724_ac5e0c crossref_primary_10_1016_j_mattod_2022_10_026 crossref_primary_10_1038_s41524_020_00389_1 crossref_primary_10_3389_fmats_2020_00172 crossref_primary_10_1016_j_intermet_2019_106599 crossref_primary_10_1016_j_intermet_2024_108451 crossref_primary_10_1007_s40843_020_1610_9 crossref_primary_10_1016_j_vacuum_2020_109248 crossref_primary_10_1039_C9TA09550K crossref_primary_10_1016_j_jmst_2021_03_083 crossref_primary_10_1016_j_msea_2022_143112 crossref_primary_10_1016_j_heliyon_2024_e36064 crossref_primary_10_1016_j_scriptamat_2023_115763 crossref_primary_10_1007_s44210_022_00005_5 crossref_primary_10_1021_acsanm_0c00746 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_3390_ma18020366 crossref_primary_10_1007_s40195_023_01623_7 crossref_primary_10_1016_j_intermet_2020_106935 crossref_primary_10_1016_j_matdes_2021_110248 crossref_primary_10_1038_s41529_024_00495_1 crossref_primary_10_1016_j_jallcom_2022_164724 crossref_primary_10_1007_s11661_024_07568_5 crossref_primary_10_1016_j_jmst_2020_08_058 crossref_primary_10_1016_j_promfg_2019_12_051 crossref_primary_10_1016_j_msea_2020_139802 crossref_primary_10_1016_j_jmrt_2025_03_170 crossref_primary_10_1016_j_jmst_2020_07_014 crossref_primary_10_1016_j_jallcom_2023_172635 crossref_primary_10_1038_s41467_019_13087_4 crossref_primary_10_1016_j_actamat_2024_120614 crossref_primary_10_1038_s41467_020_15934_1 crossref_primary_10_2139_ssrn_4051623 crossref_primary_10_1016_j_actamat_2023_119115 crossref_primary_10_1038_s41467_021_25807_w crossref_primary_10_1016_j_intermet_2023_107872 crossref_primary_10_1016_j_jmst_2020_08_062 crossref_primary_10_1016_j_jmst_2020_08_063 crossref_primary_10_1021_acs_nanolett_3c04052 crossref_primary_10_1016_j_scriptamat_2023_115750 crossref_primary_10_1016_j_jmst_2021_10_019 crossref_primary_10_1016_j_msea_2022_143646 crossref_primary_10_1016_j_jmst_2022_03_005 crossref_primary_10_1007_s11665_025_10853_y crossref_primary_10_1002_adem_202201066 crossref_primary_10_1016_j_mattod_2020_04_005 crossref_primary_10_1016_j_jmrt_2024_07_104 crossref_primary_10_1016_j_matdes_2019_108201 crossref_primary_10_1016_j_pmatsci_2022_101018 crossref_primary_10_1016_j_jallcom_2022_168093 crossref_primary_10_3390_met13010001 crossref_primary_10_1016_j_jmst_2024_07_024 crossref_primary_10_1016_j_jmrt_2025_02_149 crossref_primary_10_1016_j_msea_2022_143892 crossref_primary_10_1016_j_addma_2020_101058 crossref_primary_10_1016_j_msea_2022_143653 crossref_primary_10_1038_s41467_022_28706_w crossref_primary_10_1016_j_jallcom_2024_176290 crossref_primary_10_1016_j_optlastec_2020_106147 crossref_primary_10_1016_j_mtadv_2024_100540 crossref_primary_10_1007_s11665_022_07331_0 crossref_primary_10_1016_j_ijmecsci_2025_110164 crossref_primary_10_1016_j_jallcom_2021_162242 crossref_primary_10_1016_j_actamat_2021_116984 crossref_primary_10_1103_PhysRevMaterials_6_113804 crossref_primary_10_1016_j_jallcom_2023_170431 crossref_primary_10_1016_j_actamat_2021_116986 crossref_primary_10_1016_j_jallcom_2020_156321 crossref_primary_10_1039_D1RA03661K crossref_primary_10_1016_j_triboint_2022_107435 crossref_primary_10_1016_j_intermet_2023_107896 crossref_primary_10_1016_j_msea_2024_147543 crossref_primary_10_1002_adma_202107965 crossref_primary_10_1016_j_jmst_2022_05_062 crossref_primary_10_1038_s41566_024_01468_1 crossref_primary_10_1007_s11106_022_00278_w crossref_primary_10_1007_s12613_024_2931_7 crossref_primary_10_1063_10_0021377 crossref_primary_10_2139_ssrn_4075813 crossref_primary_10_1007_s11661_025_07717_4 crossref_primary_10_1002_smll_202304636 crossref_primary_10_1021_acsmaterialslett_9b00414 crossref_primary_10_1038_s41467_020_19277_9 crossref_primary_10_1016_j_ijplas_2024_103970 crossref_primary_10_1016_j_apsusc_2020_147576 crossref_primary_10_1016_j_jandt_2021_06_004 crossref_primary_10_1016_j_msea_2023_145073 crossref_primary_10_1016_j_jmst_2022_05_059 crossref_primary_10_1016_j_msea_2025_147856 crossref_primary_10_1016_S1003_6326_23_66287_9 crossref_primary_10_1016_j_matdes_2025_113620 crossref_primary_10_1016_j_scriptamat_2022_115164 crossref_primary_10_1080_21663831_2019_1610105 crossref_primary_10_1016_j_jallcom_2019_152523 crossref_primary_10_1016_j_jallcom_2024_176075 crossref_primary_10_1016_j_matdes_2022_110724 crossref_primary_10_1038_s41467_023_38531_4 crossref_primary_10_1016_j_scriptamat_2023_115727 crossref_primary_10_1002_advs_202205522 crossref_primary_10_1016_j_actamat_2020_09_056 crossref_primary_10_1016_j_mtcomm_2020_101902 crossref_primary_10_1038_s41563_020_0677_9 crossref_primary_10_1002_adem_202001514 crossref_primary_10_1016_j_ijplas_2021_103081 crossref_primary_10_1016_j_pmatsci_2023_101106 crossref_primary_10_3390_ma16227222 crossref_primary_10_1016_j_matchar_2024_114208 crossref_primary_10_1016_j_actamat_2024_120656 crossref_primary_10_1063_5_0218290 crossref_primary_10_2139_ssrn_4007946 crossref_primary_10_1016_j_ensm_2024_103408 crossref_primary_10_54227_mlab_20220035 crossref_primary_10_1016_j_intermet_2020_106741 crossref_primary_10_1016_j_jnucmat_2023_154286 crossref_primary_10_1088_1742_6596_2383_1_012141 crossref_primary_10_1002_adma_201901115 crossref_primary_10_1016_j_commatsci_2024_112886 crossref_primary_10_1007_s12613_023_2641_6 crossref_primary_10_1557_s43578_023_00924_y crossref_primary_10_1016_j_jmst_2023_12_006 crossref_primary_10_1038_s41586_022_04914_8 crossref_primary_10_1007_s40195_022_01494_4 crossref_primary_10_1007_s40195_021_01281_7 crossref_primary_10_3390_met15030247 crossref_primary_10_1016_j_rineng_2024_102387 crossref_primary_10_1088_1742_6596_2383_1_012139 crossref_primary_10_20517_jmi_2024_71 crossref_primary_10_1016_j_corsci_2024_112601 crossref_primary_10_1016_j_msea_2021_141135 crossref_primary_10_1007_s42864_021_00085_7 crossref_primary_10_1016_j_jallcom_2021_162045 crossref_primary_10_1016_j_jallcom_2024_177183 crossref_primary_10_1016_j_jmst_2020_01_002 crossref_primary_10_1016_j_jnucmat_2022_154196 crossref_primary_10_2139_ssrn_4195385 crossref_primary_10_1016_j_msea_2021_142480 crossref_primary_10_2139_ssrn_4105267 crossref_primary_10_1016_j_addma_2024_104009 crossref_primary_10_1016_j_eng_2024_03_023 crossref_primary_10_1016_j_matchar_2023_113061 crossref_primary_10_3390_met15030250 crossref_primary_10_1016_j_actamat_2021_116786 crossref_primary_10_1016_j_mtnano_2021_100123 crossref_primary_10_1016_j_msea_2024_147346 crossref_primary_10_1063_5_0220107 crossref_primary_10_1016_j_ijmecsci_2023_108753 crossref_primary_10_1557_s43578_022_00695_y crossref_primary_10_1016_j_jallcom_2024_177173 crossref_primary_10_1016_j_ijrmhm_2023_106201 crossref_primary_10_1016_j_jmst_2020_06_018 crossref_primary_10_2355_isijinternational_ISIJINT_2021_139 crossref_primary_10_1016_j_ceramint_2024_12_250 crossref_primary_10_1038_s41586_021_03428_z crossref_primary_10_1016_j_jmst_2021_10_032 crossref_primary_10_1016_j_surfcoat_2023_130346 crossref_primary_10_1016_j_jallcom_2020_156533 crossref_primary_10_1016_j_mtnano_2021_100110 crossref_primary_10_1016_j_jallcom_2025_179899 crossref_primary_10_1080_21663831_2024_2437402 crossref_primary_10_1038_s41597_022_01911_4 crossref_primary_10_1007_s40195_021_01206_4 crossref_primary_10_1016_j_jallcom_2019_06_097 crossref_primary_10_1016_j_actamat_2023_119165 crossref_primary_10_1016_j_addma_2024_104243 crossref_primary_10_1016_j_jallcom_2023_171571 crossref_primary_10_3390_met9121243 crossref_primary_10_1103_PhysRevMaterials_4_103612 crossref_primary_10_1016_j_jmst_2022_06_047 crossref_primary_10_1016_S1003_6326_21_65572_3 crossref_primary_10_1016_j_intermet_2022_107508 crossref_primary_10_1016_j_pmatsci_2023_101140 crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_3390_met13020205 crossref_primary_10_1016_j_matlet_2022_132548 crossref_primary_10_1002_adem_202000466 crossref_primary_10_1016_j_jmst_2022_05_005 crossref_primary_10_1016_j_jmst_2024_10_020 crossref_primary_10_1016_j_pmatsci_2018_12_003 crossref_primary_10_1039_D0MH01341B crossref_primary_10_1038_s41467_023_43356_2 crossref_primary_10_1016_j_commatsci_2022_111575 crossref_primary_10_1016_j_msea_2023_145263 crossref_primary_10_1007_s40195_023_01638_0 crossref_primary_10_1016_S1003_6326_24_66651_3 crossref_primary_10_1016_j_jallcom_2021_159256 crossref_primary_10_1016_j_jallcom_2024_177520 crossref_primary_10_1080_21663831_2023_2197942 crossref_primary_10_1016_j_apsusc_2022_153391 crossref_primary_10_1016_j_jmmm_2022_169142 crossref_primary_10_1016_j_jmst_2024_11_067 crossref_primary_10_1016_j_scriptamat_2025_116569 crossref_primary_10_1016_j_wear_2024_205694 crossref_primary_10_3390_ma16030934 crossref_primary_10_1063_5_0170416 crossref_primary_10_1016_j_jmst_2024_11_063 crossref_primary_10_1063_5_0079981 crossref_primary_10_1016_j_jallcom_2019_153407 crossref_primary_10_1016_j_jmrt_2024_10_140 crossref_primary_10_1016_j_msea_2022_143806 crossref_primary_10_1016_S1872_2067_24_60067_7 crossref_primary_10_1002_adem_202200131 crossref_primary_10_1016_j_jallcom_2023_170863 crossref_primary_10_1016_j_mtnano_2021_100130 crossref_primary_10_1016_j_intermet_2022_107747 crossref_primary_10_1016_j_msea_2024_146401 crossref_primary_10_1016_j_actamat_2022_118159 crossref_primary_10_1007_s11665_023_08963_6 crossref_primary_10_1016_j_pnsc_2024_02_007 crossref_primary_10_1016_j_mtnano_2021_100139 crossref_primary_10_1021_acssuschemeng_3c01602 crossref_primary_10_1016_j_actamat_2020_08_065 crossref_primary_10_1016_j_msea_2024_146883 crossref_primary_10_1016_j_msea_2021_142440 crossref_primary_10_1016_j_msea_2024_146849 crossref_primary_10_1016_j_jmrt_2025_03_119 crossref_primary_10_1007_s40843_023_2705_2 crossref_primary_10_1002_smtd_202300871 crossref_primary_10_1007_s11661_020_06034_2 crossref_primary_10_1021_jacs_3c12048 crossref_primary_10_1016_j_jmst_2021_12_057 crossref_primary_10_1103_PhysRevLett_123_247601 crossref_primary_10_1007_s11085_024_10243_0 crossref_primary_10_1016_j_mtla_2023_101766 crossref_primary_10_1063_5_0206490 crossref_primary_10_1016_j_ceramint_2022_09_054 crossref_primary_10_1016_j_matchar_2021_111313 crossref_primary_10_1038_s41467_023_38000_y crossref_primary_10_1016_j_jmst_2024_09_008 crossref_primary_10_1016_j_actamat_2023_119532 crossref_primary_10_1016_j_actamat_2020_08_034 crossref_primary_10_1016_j_actamat_2025_120713 crossref_primary_10_1002_adma_202302335 crossref_primary_10_1002_smtd_202300888 crossref_primary_10_1016_j_msea_2024_146614 crossref_primary_10_1016_j_jiec_2024_11_049 crossref_primary_10_1016_j_apmt_2021_101162 crossref_primary_10_1080_14786435_2023_2265844 crossref_primary_10_1016_j_vacuum_2022_111272 crossref_primary_10_1016_j_apsusc_2021_151290 crossref_primary_10_1016_j_compositesa_2021_106276 crossref_primary_10_1016_j_jmrt_2024_04_091 crossref_primary_10_1063_1_5136022 crossref_primary_10_1016_j_intermet_2022_107525 crossref_primary_10_1038_s41586_022_04459_w crossref_primary_10_1080_21663831_2020_1772395 crossref_primary_10_1088_1361_6528_ac74ce crossref_primary_10_1016_j_jmrt_2024_04_096 crossref_primary_10_1111_jace_18474 crossref_primary_10_1007_s40145_020_0373_x crossref_primary_10_1038_s41467_023_36319_0 crossref_primary_10_1016_j_commatsci_2022_111787 crossref_primary_10_1016_j_msea_2024_146621 crossref_primary_10_1016_j_scriptamat_2024_116297 crossref_primary_10_1080_17452759_2021_1892389 crossref_primary_10_3390_nano12152722 crossref_primary_10_1016_j_actamat_2020_08_043 crossref_primary_10_1080_02670844_2021_1952048 crossref_primary_10_1002_adma_202412954 crossref_primary_10_1016_j_corsci_2024_112452 crossref_primary_10_3389_fbioe_2022_977282 crossref_primary_10_1016_j_corsci_2023_111484 crossref_primary_10_1103_PhysRevB_109_094203 crossref_primary_10_1016_j_jmst_2022_08_018 crossref_primary_10_1016_j_jmst_2023_01_023 crossref_primary_10_1088_2631_7990_abcca8 crossref_primary_10_1016_j_jmst_2022_06_001 crossref_primary_10_1016_j_jacomc_2024_04_001 crossref_primary_10_1016_j_msea_2022_142906 crossref_primary_10_1557_jmr_2020_43 crossref_primary_10_1038_s41467_021_23689_6 crossref_primary_10_1016_j_scriptamat_2019_12_034 crossref_primary_10_1016_j_msea_2024_146433 crossref_primary_10_1016_j_msea_2025_147800 crossref_primary_10_1016_j_msea_2025_147801 crossref_primary_10_1016_j_msea_2024_147767 crossref_primary_10_1016_j_ijplas_2024_104219 crossref_primary_10_3390_met10111491 crossref_primary_10_1016_j_actamat_2025_120935 crossref_primary_10_1016_j_compositesa_2023_107941 crossref_primary_10_1016_j_ijrmhm_2025_107039 crossref_primary_10_1002_mgea_17 crossref_primary_10_1016_j_jmst_2023_01_038 crossref_primary_10_1007_s11665_024_09230_y crossref_primary_10_1016_j_jallcom_2023_171504 crossref_primary_10_1016_j_scriptamat_2019_11_059 crossref_primary_10_1007_s40843_020_1377_2 crossref_primary_10_1016_j_apmt_2023_101747 crossref_primary_10_1016_j_jmst_2022_09_053 crossref_primary_10_1016_j_intermet_2023_107845 crossref_primary_10_1007_s10853_022_07931_0 crossref_primary_10_1016_j_jallcom_2024_175138 crossref_primary_10_1016_j_surfcoat_2023_129305 crossref_primary_10_1007_s12613_024_2884_x crossref_primary_10_1016_j_actamat_2021_116955 crossref_primary_10_1016_j_jallcom_2025_178944 crossref_primary_10_1016_j_jmapro_2023_01_064 crossref_primary_10_1039_D0TA10574K crossref_primary_10_1021_acs_chemrev_3c00081 crossref_primary_10_1016_j_apmt_2022_101649 crossref_primary_10_1038_s41467_022_28687_w crossref_primary_10_1016_j_scriptamat_2024_116031 crossref_primary_10_1016_j_heliyon_2024_e38420 crossref_primary_10_1016_j_jmst_2023_01_044 crossref_primary_10_1007_s44174_025_00314_4 crossref_primary_10_1016_j_jmst_2021_12_014 crossref_primary_10_1016_j_jallcom_2021_161108 crossref_primary_10_1016_j_matdes_2023_112365 crossref_primary_10_1016_j_actamat_2020_06_023 crossref_primary_10_1016_j_ijplas_2024_104237 crossref_primary_10_1007_s40195_019_00935_x crossref_primary_10_1007_s40843_022_2254_8 crossref_primary_10_1016_j_jmst_2022_08_046 crossref_primary_10_1007_s11661_019_05344_4 crossref_primary_10_1016_j_scriptamat_2024_116488 crossref_primary_10_1039_D3CC04162J crossref_primary_10_1016_j_jnucmat_2024_155259 crossref_primary_10_1016_j_matdes_2020_108695 crossref_primary_10_1038_s41467_021_25283_2 crossref_primary_10_1016_j_jallcom_2023_171734 crossref_primary_10_1016_j_matdes_2021_109849 crossref_primary_10_1016_j_ceramint_2023_03_290 crossref_primary_10_1080_14686996_2022_2129444 crossref_primary_10_1016_j_msea_2020_140169 crossref_primary_10_1016_j_msea_2023_145037 crossref_primary_10_1016_j_msea_2023_145036 |
Cites_doi | 10.1016/j.msea.2013.01.025 10.1016/j.msea.2008.05.042 10.1016/0001-6160(62)90098-6 10.1016/j.msea.2003.10.257 10.1088/0959-5309/57/3/302 10.1016/j.jallcom.2014.11.012 10.1038/nmat3115 10.1103/PhysRevB.54.11169 10.1016/j.msea.2006.06.127 10.1103/PhysRevB.59.1758 10.1002/adem.200300567 10.1016/j.jallcom.2013.08.102 10.1016/j.matdes.2010.11.049 10.1017/S1431927602000594 10.1016/j.actamat.2011.06.006 10.1016/j.scriptamat.2004.02.003 10.1038/nature17981 10.1007/BF02663332 10.1002/adma.200600128 10.1103/PhysRevB.40.3616 10.1103/PhysRevLett.77.3865 10.1016/0079-6425(81)90001-3 10.1038/ncomms8748 10.1016/j.actamat.2016.08.072 10.1016/j.msea.2007.08.074 10.1007/BF01589305 10.1016/j.scriptamat.2014.09.031 10.1016/0022-5088(73)90061-1 10.1016/0001-6160(89)90143-0 10.1088/0370-1298/62/1/308 10.1016/j.msec.2014.10.078 10.1002/adma.200904354 10.1016/j.pmatsci.2013.10.001 10.1126/science.1254581 10.1007/s12540-011-1006-2 10.1016/j.scriptamat.2014.10.018 10.1016/0956-7151(90)90126-2 10.1016/j.matlet.2014.05.134 10.1007/s10853-012-6260-2 10.1016/j.ultramic.2006.06.008 10.1016/j.msea.2016.08.040 10.1103/PhysRevLett.65.353 10.1016/S1359-6454(02)00427-5 10.1103/PhysRevLett.116.135504 10.1016/0025-5416(77)90092-1 10.1016/0001-6160(68)90057-6 10.1038/nmat1141 10.1038/ncomms10143 10.1016/j.jnucmat.2015.05.053 10.1038/ncomms9736 10.1103/PhysRevB.49.16223 10.1016/S0031-8914(41)90517-7 10.1179/cmq.1967.6.4.301 10.1016/j.jmbbm.2012.01.017 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Nov 22, 2018 |
Copyright_xml | – notice: Springer Nature Limited 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 22, 2018 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-018-0685-y |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 550 |
ExternalDocumentID | A573175315 30429610 10_1038_s41586_018_0685_y |
Genre | Journal Article |
GeographicLocations | New York United States--US |
GeographicLocations_xml | – name: New York – name: United States--US |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AFANA ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AEZWR AFBBN AFFDN AFHIU AFHKK AGCDD AGGDT AGQPQ AHWEU AIXLP AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Wed Jul 30 10:35:37 EDT 2025 Fri Jul 25 09:02:29 EDT 2025 Tue Jun 17 21:38:32 EDT 2025 Thu Jun 12 23:45:11 EDT 2025 Tue Jun 10 15:34:52 EDT 2025 Tue Jun 10 20:50:08 EDT 2025 Fri Jun 27 05:12:31 EDT 2025 Fri Jun 27 04:36:26 EDT 2025 Mon Jul 21 05:57:31 EDT 2025 Tue Jul 01 00:57:26 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:37:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7732 |
Keywords | Chemical Short-range Order Wavy Slip Interstitial Strengthening Double Cross Slip High-entropy Alloys (HEA) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30429610 |
PQID | 2148961486 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2133825492 proquest_journals_2148961486 gale_infotracmisc_A573175315 gale_infotracgeneralonefile_A573175315 gale_infotraccpiq_573175315 gale_infotracacademiconefile_A573175315 gale_incontextgauss_ISR_A573175315 gale_incontextgauss_ATWCN_A573175315 pubmed_primary_30429610 crossref_primary_10_1038_s41586_018_0685_y crossref_citationtrail_10_1038_s41586_018_0685_y springer_journals_10_1038_s41586_018_0685_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Perdew, Burke, Ernzerhof (CR46) 1996; 77 Šob, Kratochvíl, Kroupa (CR56) 1975; 25 Mitchell, Heuer (CR53) 1977; 28 Shen, Oh, Lee (CR22) 2006; 434 Ritchie (CR11) 2011; 10 Zhang (CR34) 2015; 6 Nelson, Riley (CR64) 1945; 57 Wang (CR12) 2016; 120 Wei (CR4) 2011; 32 Yin, Iwasaki, Ping, Nagai (CR16) 2006; 18 CR30 Conrad (CR1) 1981; 26 Ulitchny, Gibala (CR55) 1973; 33 Zou, Ma, Spolenak (CR36) 2015; 6 Yeh (CR7) 2004; 6 Tyson (CR2) 1967; 6 Cantor, Chang, Knight, Vincent (CR6) 2004; 375/377 Pennycook, Rafferty, Nellist (CR24) 2000; 6 Dadfarnia (CR62) 2010; 22 Ramarolahy (CR17) 2012; 9 Zhang (CR8) 2014; 61 An (CR41) 2012 Blöchl, Jepsen, Andersen (CR49) 1994; 49 Senkov (CR37) 2012; 47 Thompson (CR40) 2007; 107 Schuh, Nieh, Iwasaki (CR52) 2003; 51 Hong, Laird (CR26) 1990; 38 Courtney (CR51) 2005 Zhu, Liao (CR13) 2004; 3 Nowick (CR43) 2012 Grandini (CR42) 2008; 21 Li, Pradeep, Deng, Raabe, Tasan (CR9) 2016; 534 Kresse, Joubert (CR45) 1999; 59 Liu, Wang, Zhang, Tang, Zhang (CR32) 2014; 583 Kresse, Furthmüller (CR44) 1996; 54 Cottrell, Bilby (CR14) 1949; 62 Yao, Pradeep, Tasan, Raabe (CR27) 2013; 82 Zunger, Wei, Ferreira, Bernard (CR47) 1990; 65 Talha, Behera, Sinha (CR23) 2015; 47 Kim, Geller, Freeman (CR60) 2004; 50 Mouawad, Boulnat, Fabrègue, Perez, De Carlan (CR3) 2015; 465 Ando, Nakashima, Tsuchiyama, Takaki (CR5) 2008; 486 Wu (CR39) 2014; 130 Gorr (CR38) 2015; 624 Zhang (CR35) 2015; 6 Fleischer (CR25) 1962; 10 Gludovatz (CR10) 2014; 345 Snoek (CR63) 1941; 8 Finlay, Snyder (CR54) 1950; 2 Nakada, Keh (CR58) 1968; 16 Granberg (CR33) 2016; 116 Methfessel, Paxton (CR50) 1989; 40 Press (CR48) 1992 Besse, Castany, Gloriant (CR18) 2011; 59 Wang, Li, Xing, Ou, Sun (CR19) 2015; 96 CR61 Nakada, Keh (CR57) 1971; 2 Li, Ponge, Choi, Raabe (CR59) 2015; 96 Jo, Madakashira, Suh, Han (CR21) 2016; 675 Yoo, Park (CR28) 2008; 496 Sankar, Baligidad, Gokhale (CR20) 2013; 569 Oh (CR15) 2011; 17 Mughrabi, Ackermann, Herz (CR31) 1979 Gerold, Karnthaler (CR29) 1989; 37 H Conrad (685_CR1) 1981; 26 TE Mitchell (685_CR53) 1977; 28 F Yin (685_CR16) 2006; 18 A Ramarolahy (685_CR17) 2012; 9 Y Zhang (685_CR8) 2014; 61 YZ Shen (685_CR22) 2006; 434 RO Ritchie (685_CR11) 2011; 10 JM Oh (685_CR15) 2011; 17 WL Finlay (685_CR54) 1950; 2 B Gludovatz (685_CR10) 2014; 345 M Besse (685_CR18) 2011; 59 B Mouawad (685_CR3) 2015; 465 B Gorr (685_CR38) 2015; 624 Y Zhang (685_CR35) 2015; 6 G Kresse (685_CR44) 1996; 54 J Snoek (685_CR63) 1941; 8 T Ando (685_CR5) 2008; 486 V Gerold (685_CR29) 1989; 37 Z Wang (685_CR12) 2016; 120 A Zunger (685_CR47) 1990; 65 M Ulitchny (685_CR55) 1973; 33 Z Zhang (685_CR34) 2015; 6 MG Jo (685_CR21) 2016; 675 PE Blöchl (685_CR49) 1994; 49 YT Zhu (685_CR13) 2004; 3 SJ Pennycook (685_CR24) 2000; 6 Y Nakada (685_CR57) 1971; 2 JW Yeh (685_CR7) 2004; 6 X Wang (685_CR19) 2015; 96 WH Press (685_CR48) 1992 AS Nowick (685_CR43) 2012 685_CR30 MJ Yao (685_CR27) 2013; 82 M Kim (685_CR60) 2004; 50 Q Wei (685_CR4) 2011; 32 M Talha (685_CR23) 2015; 47 685_CR61 M Dadfarnia (685_CR62) 2010; 22 YJ Li (685_CR59) 2015; 96 H Mughrabi (685_CR31) 1979 Y Zou (685_CR36) 2015; 6 JB Nelson (685_CR64) 1945; 57 M Šob (685_CR56) 1975; 25 AH Cottrell (685_CR14) 1949; 62 ON Senkov (685_CR37) 2012; 47 WR Tyson (685_CR2) 1967; 6 JP Perdew (685_CR46) 1996; 77 K An (685_CR41) 2012 CA Schuh (685_CR52) 2003; 51 G Kresse (685_CR45) 1999; 59 YD Wu (685_CR39) 2014; 130 F Granberg (685_CR33) 2016; 116 M Sankar (685_CR20) 2013; 569 CR Grandini (685_CR42) 2008; 21 Y Nakada (685_CR58) 1968; 16 CM Liu (685_CR32) 2014; 583 ZM Li (685_CR9) 2016; 534 JD Yoo (685_CR28) 2008; 496 M Methfessel (685_CR50) 1989; 40 TH Courtney (685_CR51) 2005 B Cantor (685_CR6) 2004; 375/377 SI Hong (685_CR26) 1990; 38 RL Fleischer (685_CR25) 1962; 10 K Thompson (685_CR40) 2007; 107 30568306 - Nature. 2018 Dec 19 |
References_xml | – volume: 569 start-page: 132 year: 2013 end-page: 136 ident: CR20 article-title: Effect of oxygen on microstructure and mechanical properties of niobium publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.01.025 – volume: 496 start-page: 417 year: 2008 end-page: 424 ident: CR28 article-title: Microband-induced plasticity in a high Mn–Al–C light steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.05.042 – volume: 10 start-page: 835 year: 1962 end-page: 842 ident: CR25 article-title: Solution hardening by tetragonal distortions: application to irradiation hardening in FCC crystals publication-title: Acta Metall. doi: 10.1016/0001-6160(62)90098-6 – volume: 375/377 start-page: 213 year: 2004 end-page: 218 ident: CR6 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 57 start-page: 160 year: 1945 ident: CR64 article-title: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals publication-title: Proc. Phys. Soc. doi: 10.1088/0959-5309/57/3/302 – year: 2005 ident: CR51 publication-title: Mechanical Behaviour of Materials – volume: 624 start-page: 270 year: 2015 end-page: 278 ident: CR38 article-title: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.11.012 – year: 1992 ident: CR48 publication-title: The Art of Scientific Computing – volume: 10 start-page: 817 year: 2011 end-page: 822 ident: CR11 article-title: The conflicts between strength and toughness publication-title: Nat. Mater. doi: 10.1038/nmat3115 – volume: 54 start-page: 11169 year: 1996 ident: CR44 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 434 start-page: 314 year: 2006 end-page: 318 ident: CR22 article-title: Nitrogen strengthening of interstitial-free steel by nitriding in potassium nitrate salt bath publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.06.127 – ident: CR61 – volume: 59 start-page: 1758 year: 1999 ident: CR45 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 2 start-page: 277–286 year: 1950 ident: CR54 article-title: Effects of three interstitial solutes (nitrogen, oxygen, and carbon) on the mechanical properties of high-purity, alpha titanium publication-title: J. Met. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: CR7 article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – start-page: 675 year: 1979 end-page: 69 ident: CR31 publication-title: Fatigue Mechanisms ASTM STP – volume: 583 start-page: 162 year: 2014 end-page: 169 ident: CR32 article-title: Microstructure and oxidation behavior of new refractory high entropy alloys J publication-title: Alloys Compd. doi: 10.1016/j.jallcom.2013.08.102 – volume: 21 start-page: 13 year: 2008 end-page: 16 ident: CR42 article-title: A low cost automatic system for anelastic relaxations measurements publication-title: Rev. Brasil. Apl. Vácuo – year: 2012 ident: CR41 publication-title: VDRIVE-Data Reduction and Interactive Visualization Software for Event Mode Neutron Diffraction. ORNL Report No. ORNL-TM-2012-621 – volume: 32 start-page: 2934 year: 2011 end-page: 2939 ident: CR4 article-title: Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.11.049 – volume: 6 start-page: 343 year: 2000 end-page: 352 ident: CR24 article-title: Z-contrast imaging in an aberration-corrected scanning transmission electron microscope publication-title: Microsc. Microanal. doi: 10.1017/S1431927602000594 – volume: 59 start-page: 5982 year: 2011 end-page: 5988 ident: CR18 article-title: Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: a comparative study on the oxygen influence publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.06.006 – volume: 50 start-page: 1341 year: 2004 end-page: 1343 ident: CR60 article-title: The effect of interstitial N on grain boundary cohesive strength in Fe publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2004.02.003 – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: CR9 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 2 start-page: 441 year: 1971 end-page: 447 ident: CR57 article-title: Solid-solution strengthening in Ni-C alloys publication-title: Metall. Trans. doi: 10.1007/BF02663332 – volume: 18 start-page: 1541 year: 2006 end-page: 1544 ident: CR16 article-title: Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution publication-title: Adv. Mater. doi: 10.1002/adma.200600128 – volume: 40 start-page: 3616 year: 1989 ident: CR50 article-title: High-precision sampling for Brillouin-zone integration in metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 77 start-page: 3865 year: 1996 ident: CR46 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 26 start-page: 123 year: 1981 end-page: 403 ident: CR1 article-title: Effect of interstitial solutes on the strength and ductility of titanium publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(81)90001-3 – volume: 6 year: 2015 ident: CR36 article-title: Ultrastrong ductile and stable high-entropy alloys at small scales publication-title: Nat. Commun. doi: 10.1038/ncomms8748 – volume: 120 start-page: 228 year: 2016 end-page: 239 ident: CR12 article-title: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe Ni Mn Al Cr high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.072 – volume: 486 start-page: 228 year: 2008 end-page: 234 ident: CR5 article-title: Microstructure and mechanical properties of a high nitrogen titanium alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.08.074 – volume: 82 start-page: 5 year: 2013 end-page: 8 ident: CR27 article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility publication-title: Scr. Mater. – volume: 25 start-page: 872 year: 1975 end-page: 890 ident: CR56 article-title: Theory of strengthening of alpha titanium by interstitial solutes publication-title: Czech. J. Phys. doi: 10.1007/BF01589305 – volume: 96 start-page: 13 year: 2015 end-page: 16 ident: CR59 article-title: Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.09.031 – volume: 33 start-page: 105 year: 1973 end-page: 116 ident: CR55 article-title: The effects of interstitial solute additions on the mechanical properties of niobium and tantalum single crystals publication-title: J. Less Common Met. doi: 10.1016/0022-5088(73)90061-1 – volume: 37 start-page: 2177 year: 1989 end-page: 2183 ident: CR29 article-title: On the origin of planar slip in f.c.c. alloys publication-title: Acta Metall. doi: 10.1016/0001-6160(89)90143-0 – ident: CR30 – volume: 62 start-page: 49 year: 1949 ident: CR14 article-title: Dislocation theory of yielding and strain ageing of iron publication-title: Proc. Phys. Soc. A doi: 10.1088/0370-1298/62/1/308 – volume: 47 start-page: 196 year: 2015 end-page: 203 ident: CR23 article-title: Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.10.078 – volume: 22 start-page: 1128 year: 2010 end-page: 1135 ident: CR62 article-title: Recent advances in the study of structural materials compatibility with hydrogen publication-title: Adv. Mater. doi: 10.1002/adma.200904354 – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: CR8 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: CR10 article-title: A fracture resistant high entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 17 start-page: 733 year: 2011 end-page: 736 ident: CR15 article-title: Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V publication-title: Met. Mater. Int. doi: 10.1007/s12540-011-1006-2 – volume: 96 start-page: 37 year: 2015 end-page: 40 ident: CR19 article-title: Role of oxygen in stress-induced ω phase transformation and {332}<113> mechanical twinning in βTi–20V alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.10.018 – volume: 38 start-page: 1581 year: 1990 end-page: 1594 ident: CR26 article-title: Mechanisms of slip mode modification in F.C.C. solid solutions publication-title: Acta Metall. doi: 10.1016/0956-7151(90)90126-2 – year: 2012 ident: CR43 publication-title: Anelastic Relaxation in Crystalline Solids – volume: 130 start-page: 277 year: 2014 end-page: 280 ident: CR39 article-title: A refractory Hf Nb Ti Zr high-entropy alloy with excellent structural stability and tensile properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.05.134 – volume: 47 start-page: 4062 year: 2012 end-page: 4074 ident: CR37 article-title: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6260-2 – volume: 107 start-page: 131 year: 2007 end-page: 139 ident: CR40 article-title: In situ site-specific specimen preparation for atom probe tomography publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2006.06.008 – volume: 675 start-page: 92 year: 2016 end-page: 98 ident: CR21 article-title: Effect of oxygen and nitrogen on microstructure and mechanical properties of vanadium publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.08.040 – volume: 65 start-page: 353 year: 1990 ident: CR47 article-title: Special quasirandom structures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.353 – volume: 51 start-page: 431 year: 2003 end-page: 443 ident: CR52 article-title: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00427-5 – volume: 116 start-page: 135504 year: 2016 ident: CR33 article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.135504 – volume: 28 start-page: 81 year: 1977 end-page: 97 ident: CR53 article-title: Solution hardening by aliovalent cations in ionic crystals publication-title: Mater. Sci. Eng. A doi: 10.1016/0025-5416(77)90092-1 – volume: 16 start-page: 903 year: 1968 end-page: 914 ident: CR58 article-title: Solid solution strengthening in Fe-N single crystals publication-title: Acta Metall. doi: 10.1016/0001-6160(68)90057-6 – volume: 3 start-page: 351 year: 2004 end-page: 352 ident: CR13 article-title: Nanostructured metals: retaining ductility publication-title: Nat. Mater. doi: 10.1038/nmat1141 – volume: 6 year: 2015 ident: CR34 article-title: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi publication-title: Nat. Commun. doi: 10.1038/ncomms10143 – volume: 465 start-page: 54 year: 2015 end-page: 62 ident: CR3 article-title: Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.05.053 – volume: 6 year: 2015 ident: CR35 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun. doi: 10.1038/ncomms9736 – volume: 49 start-page: 16223 year: 1994 ident: CR49 article-title: Improved tetrahedron method for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.16223 – volume: 8 start-page: 711 year: 1941 end-page: 733 ident: CR63 article-title: Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron publication-title: Physica doi: 10.1016/S0031-8914(41)90517-7 – volume: 6 start-page: 301 year: 1967 end-page: 332 ident: CR2 article-title: Strengthening of hcp Zr, Ti and Hf by interstitial solutes—a review publication-title: Can. Metall. Q. doi: 10.1179/cmq.1967.6.4.301 – volume: 9 start-page: 83 year: 2012 end-page: 90 ident: CR17 article-title: Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.01.017 – volume: 6 start-page: 343 year: 2000 ident: 685_CR24 publication-title: Microsc. Microanal. doi: 10.1017/S1431927602000594 – volume: 534 start-page: 227 year: 2016 ident: 685_CR9 publication-title: Nature doi: 10.1038/nature17981 – volume: 8 start-page: 711 year: 1941 ident: 685_CR63 publication-title: Physica doi: 10.1016/S0031-8914(41)90517-7 – volume: 116 start-page: 135504 year: 2016 ident: 685_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.135504 – volume: 496 start-page: 417 year: 2008 ident: 685_CR28 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.05.042 – volume: 96 start-page: 13 year: 2015 ident: 685_CR59 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.09.031 – volume: 6 start-page: 299 year: 2004 ident: 685_CR7 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 57 start-page: 160 year: 1945 ident: 685_CR64 publication-title: Proc. Phys. Soc. doi: 10.1088/0959-5309/57/3/302 – volume: 37 start-page: 2177 year: 1989 ident: 685_CR29 publication-title: Acta Metall. doi: 10.1016/0001-6160(89)90143-0 – volume: 345 start-page: 1153 year: 2014 ident: 685_CR10 publication-title: Science doi: 10.1126/science.1254581 – volume: 569 start-page: 132 year: 2013 ident: 685_CR20 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.01.025 – volume: 6 start-page: 301 year: 1967 ident: 685_CR2 publication-title: Can. Metall. Q. doi: 10.1179/cmq.1967.6.4.301 – volume: 33 start-page: 105 year: 1973 ident: 685_CR55 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(73)90061-1 – volume: 486 start-page: 228 year: 2008 ident: 685_CR5 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.08.074 – volume: 583 start-page: 162 year: 2014 ident: 685_CR32 publication-title: Alloys Compd. doi: 10.1016/j.jallcom.2013.08.102 – start-page: 675 volume-title: Fatigue Mechanisms ASTM STP year: 1979 ident: 685_CR31 – volume: 61 start-page: 1 year: 2014 ident: 685_CR8 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 675 start-page: 92 year: 2016 ident: 685_CR21 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.08.040 – volume: 130 start-page: 277 year: 2014 ident: 685_CR39 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.05.134 – volume: 59 start-page: 5982 year: 2011 ident: 685_CR18 publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.06.006 – volume: 54 start-page: 11169 year: 1996 ident: 685_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 107 start-page: 131 year: 2007 ident: 685_CR40 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2006.06.008 – volume: 51 start-page: 431 year: 2003 ident: 685_CR52 publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00427-5 – volume: 62 start-page: 49 year: 1949 ident: 685_CR14 publication-title: Proc. Phys. Soc. A doi: 10.1088/0370-1298/62/1/308 – volume: 32 start-page: 2934 year: 2011 ident: 685_CR4 publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.11.049 – volume: 465 start-page: 54 year: 2015 ident: 685_CR3 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.05.053 – volume: 47 start-page: 4062 year: 2012 ident: 685_CR37 publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6260-2 – volume: 96 start-page: 37 year: 2015 ident: 685_CR19 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.10.018 – volume: 18 start-page: 1541 year: 2006 ident: 685_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.200600128 – volume: 77 start-page: 3865 year: 1996 ident: 685_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 38 start-page: 1581 year: 1990 ident: 685_CR26 publication-title: Acta Metall. doi: 10.1016/0956-7151(90)90126-2 – volume-title: Mechanical Behaviour of Materials year: 2005 ident: 685_CR51 – volume: 22 start-page: 1128 year: 2010 ident: 685_CR62 publication-title: Adv. Mater. doi: 10.1002/adma.200904354 – volume-title: Anelastic Relaxation in Crystalline Solids year: 2012 ident: 685_CR43 – volume: 624 start-page: 270 year: 2015 ident: 685_CR38 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.11.012 – volume: 6 year: 2015 ident: 685_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms10143 – volume: 9 start-page: 83 year: 2012 ident: 685_CR17 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.01.017 – volume: 49 start-page: 16223 year: 1994 ident: 685_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.16223 – volume: 50 start-page: 1341 year: 2004 ident: 685_CR60 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2004.02.003 – volume: 434 start-page: 314 year: 2006 ident: 685_CR22 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.06.127 – volume: 82 start-page: 5 year: 2013 ident: 685_CR27 publication-title: Scr. Mater. – volume: 47 start-page: 196 year: 2015 ident: 685_CR23 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.10.078 – volume: 6 year: 2015 ident: 685_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms9736 – volume: 28 start-page: 81 year: 1977 ident: 685_CR53 publication-title: Mater. Sci. Eng. A doi: 10.1016/0025-5416(77)90092-1 – volume: 40 start-page: 3616 year: 1989 ident: 685_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume-title: The Art of Scientific Computing year: 1992 ident: 685_CR48 – volume: 2 start-page: 277–286 year: 1950 ident: 685_CR54 publication-title: J. Met. – volume: 16 start-page: 903 year: 1968 ident: 685_CR58 publication-title: Acta Metall. doi: 10.1016/0001-6160(68)90057-6 – volume: 2 start-page: 441 year: 1971 ident: 685_CR57 publication-title: Metall. Trans. doi: 10.1007/BF02663332 – volume: 59 start-page: 1758 year: 1999 ident: 685_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 17 start-page: 733 year: 2011 ident: 685_CR15 publication-title: Met. Mater. Int. doi: 10.1007/s12540-011-1006-2 – volume: 3 start-page: 351 year: 2004 ident: 685_CR13 publication-title: Nat. Mater. doi: 10.1038/nmat1141 – ident: 685_CR61 – volume-title: VDRIVE-Data Reduction and Interactive Visualization Software for Event Mode Neutron Diffraction. ORNL Report No. ORNL-TM-2012-621 year: 2012 ident: 685_CR41 – volume: 21 start-page: 13 year: 2008 ident: 685_CR42 publication-title: Rev. Brasil. Apl. Vácuo – volume: 26 start-page: 123 year: 1981 ident: 685_CR1 publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(81)90001-3 – volume: 375/377 start-page: 213 year: 2004 ident: 685_CR6 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 120 start-page: 228 year: 2016 ident: 685_CR12 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.072 – volume: 65 start-page: 353 year: 1990 ident: 685_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.353 – volume: 10 start-page: 817 year: 2011 ident: 685_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat3115 – ident: 685_CR30 – volume: 6 year: 2015 ident: 685_CR36 publication-title: Nat. Commun. doi: 10.1038/ncomms8748 – volume: 10 start-page: 835 year: 1962 ident: 685_CR25 publication-title: Acta Metall. doi: 10.1016/0001-6160(62)90098-6 – volume: 25 start-page: 872 year: 1975 ident: 685_CR56 publication-title: Czech. J. Phys. doi: 10.1007/BF01589305 – reference: 30568306 - Nature. 2018 Dec 19;: |
SSID | ssj0005174 |
Score | 2.7128012 |
Snippet | Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 546 |
SubjectTerms | 119/118 639/301/1023/1026 639/301/1023/303 Alloying elements Alloys Carbon Chemical properties Cross slip Cubic lattice Deformation mechanisms Dislocation Dislocations Doping Ductility Entropy Hafnium base alloys Heavy metals High entropy alloys Humanities and Social Sciences Interstitial impurities Interstitials Letter Mechanical properties Metals (Materials) multidisciplinary Nitrogen Nuclear facilities Organic chemistry Oxides Oxygen Science Science (multidisciplinary) Single crystals Solid solutions Specialty metals industry Stacking fault energy Strain hardening Strength Titanium Zirconium |
Title | Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes |
URI | https://link.springer.com/article/10.1038/s41586-018-0685-y https://www.ncbi.nlm.nih.gov/pubmed/30429610 https://www.proquest.com/docview/2148961486 https://www.proquest.com/docview/2133825492 |
Volume | 563 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviI2vsDEZNPE1RcuH89EnVKqWgUSFRif6Zjm201VCSUdatPz33DlOu1RjL3mof47S8_l89p1_R8ixFlr6QQ57E5YwlyU6cDMVgTGMRaZ0JrzQ3OP-Po7PLti3aTS1B26VTatsbaIx1KqUeEZ-GoDf3kPWyvjT4srFqlEYXbUlNO6TXaQuw5SuZJpsUjy2WJjbqGaYnlawcKW4l06x7Erk1p11ads631ietuKlZhkaPSaPrP9I-82A75F7utgnD0wep6z2yZ6dqxV9bwmlPzwhk2FxaQL9FG-GFLPlJRWFosj0ipmxNZ0XVFAkLnbxrLdc1BTD8TX9OxfUcHNC1_K6Bl2jJgVdX-vqKbkYDSeDM9dWU3BlzLylq-IsljL3wkDkeeileSwZbI8ky6JESJ8FwpdCptLXGJwUIvCUDOG3VATgpahe-IzsFGWhXxCaKE_0WMxSpcE7ACdDASJOlK9VL09k4BCvlSWXlmocK1785ibkHaa8ET8H8XMUP68d8nHdZdHwbNwFPsYB4shfUWCCzEysqor3J78GY96PEvSJQj9yyJvbYF9_nndA7ywoL-EbQQTNtQT4p8iM1UEedJByMb_iN1rfdlpnzSDf9prDDhCms-w2t1rHrTmp-Eb5HfJ63Yw9MUWu0OUKMWFotvsg_ueNtq4liWdW0N9zyEmrvpuX_1fML-_-lAPyMMD5Yy5mHpKd5Z-VfgUe2jI7MtMQnunAx-foyxHZ_Twc_zj_B--INxI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviI2vsAEGjW9FS5zPPiBUjU0t2_oAndY349hOVwklHWlh-af4G7lzknapxt72Gp-j5Hy-O_vufkfIjhZauiyFs4kf-bYfaWYnKgBlGIpE6UQ4nqnjPh6EvRP_6ygYrZG_TS0MplU2OtEoapVLvCPfZeC3dxC1Mvw8PbexaxRGV5sWGpVYHOryDxzZik_9L7C-rxk72B_u9ey6q4AtQ9-Z2SpMQilTx2MiTT0nTkPpwzFB-kkQCen6TLhSyFi6GoN0QjBHSQ-exYKBtVYIvgQq_xYYXgd3VDSKliklK6jPTRTVi3cLMJQxnt1jbPMS2GXLDq5ag0vmcCU-a8zewX1yr_ZXabcSsA2yprNNctvkjcpik2zUuqGg72oA6_cPyHA_OzOJBRQrUbLx7IyKTFFElsVM3JJOMiooAiXbeLecT0uK4f-S_p4IarBAYWp-UYJsU5Pyri908ZCc3AifH5H1LM_0E0Ij5YiOH_qx0uCNgFOjgCKMlKtVJ40ks4jT8JLLGtocO2z85CbE7sW8Yj8H9nNkPy8t8mExZVrhelxHvIMLxBEvI8OEnLGYFwXvDk_3BrwbROiDeW5gkVdXkfW_f2sRva2J0hy-EVhQlUHAnyISV4tyq0Upp5Nzfmn0TWt0XC3yVa_ZbhGC-pDt4UbqeK2-Cr7cbBZ5uRjGmZiSl-l8jjSeZ64XgP2PK2ldcBLvyGC-Y5GPjfguX_5fNj-9_lNekDu94fERP-oPDrfIXYZ7yRSFbpP12a-5fgbe4Sx5brYkJT9uWgf8AyNCcYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAvExtfZQMMGh9jipo4n31AqNpWrQwqBJ3om3Fsp6uEko60sPxr_HXcOUm7VGNve43PUXI-3519d78jZFcLLR2WwNnECz3LCzWzYuWDMgxErHQsbNfUcX8eBMen3seRP1ojf-taGEyrrHWiUdQqk3hH3mbgt3cQtTJoJ1VaxJfD3ofpuYUdpDDSWrfTKEXkRBd_4PiWv-8fwlq_Yqx3NDw4tqoOA5YMPHtmqSAOpExsl4kkce0oCaQHRwbpxX4opOMx4UghI-loDNgJwWwlXXgWCQaWWyEQE6j_W6HrO7jHwlG4TC9ZQYCuI6pu1M7BaEZ4jo-w5YtvFQ2buGoZLpnGlVitMYG9e2Sj8l1ptxS2TbKm0y1y2-SQynyLbFZ6IqdvKzDrvftkeJSemSQDilUp6Xh2RkWqKKLMYlZuQScpFRRBky28Z86mBcVUgIL-nghqcEFhanZRgJxTk_6uL3T-gJzeCJ8fkvU0S_VjQkNli44XeJHS4JmAg6OAIgiVo1UnCSVrEbvmJZcVzDl22_jJTbjdjXjJfg7s58h-XrTIu8WUaYnxcR3xLi4QR-yMFKVwLOZ5zrvD7wcD3vVD9Mdcx2-Rl1eR9b99bRC9qYiSDL4RWFCWRMCfIipXg3K7QSmnk3N-afR1Y3RcLvJVr9lpEIIqkc3hWup4pcpyvtx4LfJiMYwzMT0v1dkcaVzXXDUA-x-V0rrgJN6XwXy7RfZr8V2-_L9sfnL9pzwnd2D380_9wck2uctwK5n60B2yPvs110_BUZzFz8yOpOTHTauAf8CKdb4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+strength+and+ductility+in+a+high-entropy+alloy+via+ordered+oxygen+complexes&rft.jtitle=Nature+%28London%29&rft.au=Lei%2C+Zhifeng&rft.au=Liu%2C+Xiongjun&rft.au=Wu%2C+Yuan&rft.au=Wang%2C+Hui&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=563&rft.issue=7732&rft.spage=546&rft_id=info:doi/10.1038%2Fs41586-018-0685-y&rft.externalDocID=A573175315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |