Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes

Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle 1 – 3 . Here we show that oxygen can take the form of ordered oxygen...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 563; no. 7732; pp. 546 - 550
Main Authors Lei, Zhifeng, Liu, Xiongjun, Wu, Yuan, Wang, Hui, Jiang, Suihe, Wang, Shudao, Hui, Xidong, Wu, Yidong, Gault, Baptiste, Kontis, Paraskevas, Raabe, Dierk, Gu, Lin, Zhang, Qinghua, Chen, Houwen, Wang, Hongtao, Liu, Jiabin, An, Ke, Zeng, Qiaoshi, Nieh, Tai-Gang, Lu, Zhaoping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-018-0685-y

Cover

Loading…
Abstract Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle 1 – 3 . Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening 4 , 5 , such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs) 6 – 10 . The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off 11 . The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs 12 , by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations 13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.
AbstractList Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle.sup.1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening.sup.4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).sup.6-10. The tensile strength is enhanced (by 48.5 [plus or minus] 1.8 per cent) and ductility is substantially improved (by 95.2 [plus or minus] 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off.sup.11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs.sup.12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations.sup.13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle . Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening , such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs) . The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off . The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs , by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle.sup.1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening.sup.4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).sup.6-10. The tensile strength is enhanced (by 48.5 [plus or minus] 1.8 per cent) and ductility is substantially improved (by 95.2 [plus or minus] 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off.sup.11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs.sup.12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations.sup.13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs). The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6-10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1-3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6-10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle 1 – 3 . Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening 4 , 5 , such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs) 6 – 10 . The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off 11 . The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs 12 , by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations 13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.
Audience Academic
Author Wang, Shudao
Zhang, Qinghua
Jiang, Suihe
Wang, Hui
Kontis, Paraskevas
Chen, Houwen
Zeng, Qiaoshi
Liu, Xiongjun
Wu, Yidong
Lei, Zhifeng
Wang, Hongtao
Gu, Lin
Liu, Jiabin
Nieh, Tai-Gang
Lu, Zhaoping
Hui, Xidong
An, Ke
Gault, Baptiste
Raabe, Dierk
Wu, Yuan
Author_xml – sequence: 1
  givenname: Zhifeng
  surname: Lei
  fullname: Lei, Zhifeng
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 2
  givenname: Xiongjun
  surname: Liu
  fullname: Liu, Xiongjun
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 3
  givenname: Yuan
  surname: Wu
  fullname: Wu, Yuan
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 4
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 5
  givenname: Suihe
  surname: Jiang
  fullname: Jiang, Suihe
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 6
  givenname: Shudao
  surname: Wang
  fullname: Wang, Shudao
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 7
  givenname: Xidong
  surname: Hui
  fullname: Hui, Xidong
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 8
  givenname: Yidong
  surname: Wu
  fullname: Wu, Yidong
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
– sequence: 9
  givenname: Baptiste
  surname: Gault
  fullname: Gault, Baptiste
  organization: Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung
– sequence: 10
  givenname: Paraskevas
  surname: Kontis
  fullname: Kontis, Paraskevas
  organization: Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung
– sequence: 11
  givenname: Dierk
  surname: Raabe
  fullname: Raabe, Dierk
  organization: Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung
– sequence: 12
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 13
  givenname: Qinghua
  surname: Zhang
  fullname: Zhang, Qinghua
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 14
  givenname: Houwen
  surname: Chen
  fullname: Chen, Houwen
  organization: College of Materials Science and Engineering, Chongqing University
– sequence: 15
  givenname: Hongtao
  surname: Wang
  fullname: Wang, Hongtao
  organization: Institute of Applied Mechanics, Zhejiang University
– sequence: 16
  givenname: Jiabin
  surname: Liu
  fullname: Liu, Jiabin
  organization: School of Materials Science and Engineering, Zhejiang University
– sequence: 17
  givenname: Ke
  surname: An
  fullname: An, Ke
  organization: Spallation Neutron Source, Oak Ridge National Laboratory
– sequence: 18
  givenname: Qiaoshi
  surname: Zeng
  fullname: Zeng, Qiaoshi
  organization: Center for High Pressure Science and Technology Advanced Research, Pudong
– sequence: 19
  givenname: Tai-Gang
  surname: Nieh
  fullname: Nieh, Tai-Gang
  organization: Department of Materials Science and Engineering, University of Tennessee
– sequence: 20
  givenname: Zhaoping
  surname: Lu
  fullname: Lu, Zhaoping
  email: luzp@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30429610$$D View this record in MEDLINE/PubMed
BookMark eNp90l1v0zAUBmALDbFu8AO4QRHcgFCGv-K4l1U1YNIEEhRxaZ06TuoptTvbQc2_x1UHo1OHfGHJed4T6_icoRPnnUHoJcEXBDP5IXJSSVFiIkssZFWOT9CE8FqUXMj6BE0wpvmLZOIUncV4gzGuSM2foVOGOZ0KgidocelW4LRpipiCcV1aFeCaohl0sr1NY2FdAcXKdqvSuBT8Ziyg7_1Y_LJQ-NCYkKN-O3bGFdqvN73ZmvgcPW2hj-bF3X6Ofny8XMw_l9dfP13NZ9elFhynshFLoXWLGYW2ZVi2QnPCp5ovqxo04RSIBi01MZhiBkBxo1k-k0BFJZspO0dv93U3wd8OJia1tlGbvgdn_BAVJYxJWvEpzfTNA3rjh-Dy7bLiMjeDS3GvOuiNsq71KYDeFVWzqmakrhipsiqPqNwBE6DPL9TafHzgXx_xemNv1b_o4gjKqzFrq49WfXcQyCaZbepgiFFdff92aN8_bmeLn_Mvh_rVXa-G5do0ahPsGsKo_kxNBmQPdPAxBtP-JQSr3WSq_WSqPJlqN5lqzJn6QUbbBMnmmwSw_X-TdJ-M-S-uM-H-6R4P_QYH6vKM
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179266
crossref_primary_10_1016_j_matchar_2023_113560
crossref_primary_10_1016_j_jmrt_2023_03_175
crossref_primary_10_1016_j_jnucmat_2024_155186
crossref_primary_10_1103_PhysRevB_100_060102
crossref_primary_10_1016_j_matchar_2023_113321
crossref_primary_10_1016_j_jallcom_2022_168521
crossref_primary_10_1016_j_jmrt_2021_06_021
crossref_primary_10_1007_s11669_024_01151_6
crossref_primary_10_1016_j_corsci_2021_110073
crossref_primary_10_1016_j_actamat_2024_120062
crossref_primary_10_1016_j_msea_2021_141607
crossref_primary_10_1080_21663831_2024_2341937
crossref_primary_10_1002_adma_202101845
crossref_primary_10_1016_j_actamat_2023_118702
crossref_primary_10_1016_j_jmapro_2024_07_047
crossref_primary_10_1016_j_actamat_2022_118662
crossref_primary_10_1016_j_jmst_2024_05_082
crossref_primary_10_1016_j_matdes_2022_111057
crossref_primary_10_1016_j_jre_2022_06_005
crossref_primary_10_2139_ssrn_3922863
crossref_primary_10_1016_j_actamat_2021_117054
crossref_primary_10_1021_acs_nanolett_4c02086
crossref_primary_10_1557_mrs_2019_256
crossref_primary_10_1016_j_mtphys_2022_100799
crossref_primary_10_3390_met12060998
crossref_primary_10_1126_sciadv_ado9697
crossref_primary_10_3390_cryst11010046
crossref_primary_10_1016_j_pmatsci_2024_101252
crossref_primary_10_1007_s40195_020_01114_z
crossref_primary_10_1016_j_pmatsci_2024_101250
crossref_primary_10_1016_j_mattod_2021_10_025
crossref_primary_10_1016_j_msea_2021_141858
crossref_primary_10_1016_j_mtcomm_2022_104146
crossref_primary_10_1016_j_scriptamat_2024_116111
crossref_primary_10_1007_s12613_020_2238_2
crossref_primary_10_1016_j_triboint_2024_109947
crossref_primary_10_1016_j_matdes_2024_112925
crossref_primary_10_1016_j_jallcom_2023_168821
crossref_primary_10_1038_s43588_023_00412_7
crossref_primary_10_1016_j_msea_2020_139275
crossref_primary_10_1016_j_pnsc_2024_08_002
crossref_primary_10_1007_s11661_022_06746_7
crossref_primary_10_1111_jace_17659
crossref_primary_10_1016_j_jmrt_2023_12_193
crossref_primary_10_1016_j_actamat_2023_118728
crossref_primary_10_3389_fmats_2024_1436577
crossref_primary_10_1016_j_apsusc_2019_07_186
crossref_primary_10_1016_j_apsusc_2021_150466
crossref_primary_10_1016_j_jmrt_2022_02_078
crossref_primary_10_1016_j_ijhydene_2022_09_068
crossref_primary_10_1016_j_jallcom_2019_06_204
crossref_primary_10_1007_s11665_021_06092_6
crossref_primary_10_1016_j_vacuum_2024_113928
crossref_primary_10_1016_j_ijmecsci_2024_109140
crossref_primary_10_1016_j_scib_2023_05_027
crossref_primary_10_1063_5_0116898
crossref_primary_10_1002_adfm_202106715
crossref_primary_10_1007_s11661_024_07595_2
crossref_primary_10_1039_D1CP04151G
crossref_primary_10_3389_fmats_2021_805296
crossref_primary_10_1016_j_susc_2023_122273
crossref_primary_10_3389_fmats_2022_868721
crossref_primary_10_1016_j_scriptamat_2022_114625
crossref_primary_10_1016_j_msea_2020_139027
crossref_primary_10_3788_CJL231215
crossref_primary_10_1007_s40843_022_2178_x
crossref_primary_10_1016_j_mtcomm_2022_104367
crossref_primary_10_1016_j_matchar_2024_113844
crossref_primary_10_1007_s11837_022_05307_y
crossref_primary_10_1007_s11666_022_01359_3
crossref_primary_10_1016_j_msea_2022_144126
crossref_primary_10_1016_j_jmrt_2024_11_010
crossref_primary_10_1016_j_msea_2022_144367
crossref_primary_10_1016_j_actamat_2021_117093
crossref_primary_10_1016_j_jmst_2022_01_025
crossref_primary_10_1016_j_intermet_2023_108081
crossref_primary_10_1016_j_jallcom_2021_161412
crossref_primary_10_1016_j_scriptamat_2022_114630
crossref_primary_10_1007_s10854_024_13002_8
crossref_primary_10_1016_j_intermet_2022_107707
crossref_primary_10_1016_j_ijplas_2024_104180
crossref_primary_10_1016_j_corsci_2022_110153
crossref_primary_10_2139_ssrn_4087333
crossref_primary_10_1016_j_taml_2021_100310
crossref_primary_10_1038_s41578_019_0121_4
crossref_primary_10_2139_ssrn_4158211
crossref_primary_10_1016_j_actamat_2020_05_042
crossref_primary_10_1016_j_jmatprotec_2023_117988
crossref_primary_10_1063_5_0128657
crossref_primary_10_1016_j_jallcom_2022_167470
crossref_primary_10_1126_sciadv_aba7802
crossref_primary_10_1016_j_jallcom_2024_174578
crossref_primary_10_1016_j_wear_2020_203368
crossref_primary_10_1016_j_actamat_2021_117099
crossref_primary_10_1016_j_jallcom_2024_174331
crossref_primary_10_1007_s40843_023_2584_2
crossref_primary_10_1016_j_pmatsci_2021_100777
crossref_primary_10_1016_j_msea_2023_145582
crossref_primary_10_1016_j_jmrt_2023_09_283
crossref_primary_10_1038_s41598_019_51297_4
crossref_primary_10_1016_j_scriptamat_2024_116307
crossref_primary_10_1007_s11666_021_01175_1
crossref_primary_10_3390_met11060922
crossref_primary_10_1007_s11665_022_07735_y
crossref_primary_10_1016_j_ceramint_2023_09_042
crossref_primary_10_1016_j_msea_2022_143291
crossref_primary_10_1016_j_corsci_2020_108996
crossref_primary_10_1007_s10409_024_23569_x
crossref_primary_10_1007_s11661_021_06215_7
crossref_primary_10_1016_j_msea_2024_146721
crossref_primary_10_1016_j_msea_2022_143294
crossref_primary_10_1016_j_triboint_2020_106599
crossref_primary_10_1007_s11666_024_01734_2
crossref_primary_10_1016_j_actamat_2023_118970
crossref_primary_10_1007_s40195_024_01738_5
crossref_primary_10_1002_anie_202100917
crossref_primary_10_1016_j_cej_2024_151848
crossref_primary_10_1016_j_matdes_2023_111797
crossref_primary_10_1016_j_actamat_2020_04_017
crossref_primary_10_1016_j_pnsc_2020_01_015
crossref_primary_10_1016_j_msea_2020_139474
crossref_primary_10_1016_j_jallcom_2023_170901
crossref_primary_10_1016_j_jmrt_2023_08_010
crossref_primary_10_1016_j_jmst_2022_02_052
crossref_primary_10_1016_j_apmate_2023_100130
crossref_primary_10_1038_s41570_021_00255_8
crossref_primary_10_1016_j_msea_2019_138723
crossref_primary_10_1007_s42864_022_00153_6
crossref_primary_10_1142_S2424913023410035
crossref_primary_10_1016_j_jmrt_2023_04_167
crossref_primary_10_1016_j_jmst_2024_04_020
crossref_primary_10_1016_j_intermet_2022_107735
crossref_primary_10_1016_j_actamat_2022_118207
crossref_primary_10_1016_j_actamat_2022_118201
crossref_primary_10_1016_j_actamat_2023_118765
crossref_primary_10_1016_j_intermet_2024_108502
crossref_primary_10_1016_j_jmst_2021_05_063
crossref_primary_10_1016_j_chemosphere_2022_136012
crossref_primary_10_1007_s12598_021_01938_3
crossref_primary_10_1016_j_scriptamat_2024_116526
crossref_primary_10_1016_j_scriptamat_2021_114364
crossref_primary_10_1016_j_scriptamat_2022_114661
crossref_primary_10_3390_met12060932
crossref_primary_10_1016_j_jmrt_2023_11_180
crossref_primary_10_1016_j_jmrt_2024_05_253
crossref_primary_10_3390_met11101517
crossref_primary_10_2139_ssrn_4087329
crossref_primary_10_1016_j_scriptamat_2024_116529
crossref_primary_10_1063_5_0069518
crossref_primary_10_1002_sstr_202400011
crossref_primary_10_1007_s11661_020_05738_9
crossref_primary_10_1016_j_intermet_2021_107421
crossref_primary_10_1080_21663831_2024_2357269
crossref_primary_10_1016_j_ijplas_2025_104245
crossref_primary_10_3389_fmats_2021_767795
crossref_primary_10_1016_j_intermet_2019_106639
crossref_primary_10_1016_j_ijplas_2025_104243
crossref_primary_10_1016_j_ijplas_2024_104184
crossref_primary_10_1016_j_intermet_2022_107727
crossref_primary_10_1016_j_jallcom_2021_161859
crossref_primary_10_1016_j_jmrt_2024_11_245
crossref_primary_10_1016_j_nme_2024_101709
crossref_primary_10_1038_s41467_021_25264_5
crossref_primary_10_1016_j_jallcom_2022_166986
crossref_primary_10_1038_s41563_024_01912_1
crossref_primary_10_1007_s40843_020_1635_9
crossref_primary_10_1016_j_mattod_2023_04_020
crossref_primary_10_1016_j_mtcomm_2022_103447
crossref_primary_10_1007_s40843_020_1319_3
crossref_primary_10_1038_s41563_020_0750_4
crossref_primary_10_1016_j_actamat_2022_117974
crossref_primary_10_1016_j_jmrt_2021_04_020
crossref_primary_10_3390_met13010075
crossref_primary_10_1016_j_jmrt_2023_07_233
crossref_primary_10_3390_met13010077
crossref_primary_10_1016_j_intermet_2025_108689
crossref_primary_10_1016_j_msea_2023_144851
crossref_primary_10_1016_j_jallcom_2023_171385
crossref_primary_10_1016_j_jmst_2020_09_021
crossref_primary_10_1007_s12666_020_02135_z
crossref_primary_10_1016_j_ijrmhm_2023_106263
crossref_primary_10_3390_e25020256
crossref_primary_10_1002_smll_202309025
crossref_primary_10_1016_j_intermet_2019_106652
crossref_primary_10_1016_j_jallcom_2024_178280
crossref_primary_10_1016_j_jmst_2024_06_034
crossref_primary_10_1016_j_scriptamat_2024_116506
crossref_primary_10_1016_j_msea_2019_138555
crossref_primary_10_1016_j_jallcom_2020_156159
crossref_primary_10_1016_j_jmps_2024_105639
crossref_primary_10_1016_j_intermet_2020_106898
crossref_primary_10_1016_j_matlet_2021_129428
crossref_primary_10_1016_S1003_6326_22_66035_7
crossref_primary_10_1016_j_intermet_2020_106899
crossref_primary_10_1016_j_actamat_2019_08_024
crossref_primary_10_1016_j_matchar_2022_111921
crossref_primary_10_1016_j_matdes_2023_111981
crossref_primary_10_1016_j_ijplas_2023_103853
crossref_primary_10_1016_j_jmst_2024_05_020
crossref_primary_10_1016_j_msea_2022_144346
crossref_primary_10_1007_s44210_022_00002_8
crossref_primary_10_1016_j_matdes_2023_111997
crossref_primary_10_1016_j_matdes_2022_111239
crossref_primary_10_1016_j_jmst_2022_11_051
crossref_primary_10_1016_j_matdes_2023_111999
crossref_primary_10_1016_j_jallcom_2021_163171
crossref_primary_10_1103_PhysRevMaterials_9_L031401
crossref_primary_10_1088_2752_5724_ad8df2
crossref_primary_10_1016_j_jmst_2022_01_008
crossref_primary_10_1016_j_actamat_2022_117955
crossref_primary_10_1016_j_mattod_2023_12_006
crossref_primary_10_1016_j_msea_2021_140931
crossref_primary_10_1016_j_ijplas_2023_103822
crossref_primary_10_1007_s11661_021_06340_3
crossref_primary_10_1016_j_commatsci_2023_112140
crossref_primary_10_1039_D3NR05176E
crossref_primary_10_1016_j_actamat_2024_120494
crossref_primary_10_1002_jemt_24151
crossref_primary_10_1016_j_corsci_2020_109190
crossref_primary_10_1016_j_addma_2023_103725
crossref_primary_10_1016_j_jmrt_2023_08_069
crossref_primary_10_1016_j_jallcom_2022_164310
crossref_primary_10_1016_j_ijplas_2025_104288
crossref_primary_10_1016_j_partic_2024_04_010
crossref_primary_10_1016_j_corsci_2022_110763
crossref_primary_10_1016_j_matdes_2019_107893
crossref_primary_10_1016_j_matchar_2024_113881
crossref_primary_10_1016_j_msea_2022_144524
crossref_primary_10_1016_j_actamat_2021_117490
crossref_primary_10_1016_j_amf_2024_200140
crossref_primary_10_1016_j_msea_2022_143679
crossref_primary_10_1016_j_msea_2021_142061
crossref_primary_10_1016_j_jallcom_2021_160962
crossref_primary_10_1016_j_jmst_2020_08_016
crossref_primary_10_3390_e21030288
crossref_primary_10_1016_j_jallcom_2022_165455
crossref_primary_10_1016_j_msea_2020_139854
crossref_primary_10_1016_j_ijrmhm_2019_105109
crossref_primary_10_1063_5_0069108
crossref_primary_10_1038_s41524_020_00377_5
crossref_primary_10_7498_aps_69_20200707
crossref_primary_10_1126_sciadv_adq6398
crossref_primary_10_1016_j_jmst_2020_08_008
crossref_primary_10_1016_j_intermet_2025_108649
crossref_primary_10_1016_j_corsci_2021_109275
crossref_primary_10_1016_j_scriptamat_2023_115312
crossref_primary_10_1126_sciadv_adf8602
crossref_primary_10_1002_adem_201801359
crossref_primary_10_1016_j_jmrt_2024_08_068
crossref_primary_10_3390_met13050986
crossref_primary_10_1016_j_jallcom_2019_07_025
crossref_primary_10_1080_21663831_2021_2022033
crossref_primary_10_3390_met11091487
crossref_primary_10_3390_ma13071603
crossref_primary_10_1038_s41467_024_45513_7
crossref_primary_10_12677_MET_2021_103041
crossref_primary_10_1016_j_jallcom_2024_174968
crossref_primary_10_1016_j_mattod_2020_09_029
crossref_primary_10_1016_j_jmst_2022_10_070
crossref_primary_10_1016_j_jallcom_2018_12_168
crossref_primary_10_1016_j_intermet_2025_108655
crossref_primary_10_1016_j_jallcom_2021_160944
crossref_primary_10_1007_s12598_022_02152_5
crossref_primary_10_1016_j_actamat_2021_117480
crossref_primary_10_3390_ma15010355
crossref_primary_10_1016_j_apsusc_2024_162093
crossref_primary_10_1016_j_addma_2023_103914
crossref_primary_10_1016_j_jmmm_2024_172401
crossref_primary_10_1016_j_jmrt_2024_08_059
crossref_primary_10_1016_j_msea_2023_145957
crossref_primary_10_1016_j_ijplas_2024_103949
crossref_primary_10_1063_5_0061641
crossref_primary_10_1016_j_jmst_2024_06_022
crossref_primary_10_1007_s10853_023_08758_z
crossref_primary_10_1016_j_jallcom_2024_175604
crossref_primary_10_1016_j_jallcom_2024_175849
crossref_primary_10_1016_j_actamat_2022_118602
crossref_primary_10_1038_s43588_023_00536_w
crossref_primary_10_1016_j_jallcom_2024_176931
crossref_primary_10_3390_ma16072922
crossref_primary_10_1021_jacs_4c10681
crossref_primary_10_1016_j_intermet_2024_108585
crossref_primary_10_1080_21663831_2022_2029607
crossref_primary_10_1007_s41403_023_00447_2
crossref_primary_10_1016_j_jallcom_2019_06_261
crossref_primary_10_1016_j_msea_2022_143465
crossref_primary_10_1016_j_msea_2023_145942
crossref_primary_10_1016_j_msea_2023_144611
crossref_primary_10_1080_21663831_2022_2109442
crossref_primary_10_3390_catal14090569
crossref_primary_10_1016_j_intermet_2019_106474
crossref_primary_10_1016_j_jallcom_2022_167868
crossref_primary_10_1016_j_jallcom_2022_164118
crossref_primary_10_1016_j_jallcom_2022_165441
crossref_primary_10_1016_j_mattod_2021_02_022
crossref_primary_10_1016_j_jssc_2025_125202
crossref_primary_10_1016_j_jmst_2022_04_055
crossref_primary_10_1002_tcr_202200175
crossref_primary_10_1063_5_0188516
crossref_primary_10_1126_science_adp0559
crossref_primary_10_1016_j_pmatsci_2020_100722
crossref_primary_10_1016_j_jmst_2023_06_046
crossref_primary_10_1126_sciadv_adp4372
crossref_primary_10_1016_j_actamat_2021_116638
crossref_primary_10_1016_j_triboint_2024_109392
crossref_primary_10_1007_s40195_022_01399_2
crossref_primary_10_1038_s41598_022_13649_5
crossref_primary_10_1016_j_jmrt_2021_02_012
crossref_primary_10_1016_j_actamat_2021_116884
crossref_primary_10_1038_s41467_019_11464_7
crossref_primary_10_1016_j_jallcom_2023_169570
crossref_primary_10_1063_5_0198043
crossref_primary_10_1016_j_jallcom_2020_157997
crossref_primary_10_1039_D0NR06798A
crossref_primary_10_1016_j_intermet_2022_107470
crossref_primary_10_1007_s10853_023_09314_5
crossref_primary_10_1016_j_intermet_2022_107472
crossref_primary_10_1016_j_scriptamat_2020_06_022
crossref_primary_10_1007_s12666_022_02765_5
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1016_j_intermet_2023_107994
crossref_primary_10_1016_j_matchar_2022_111779
crossref_primary_10_1016_j_jmapro_2023_08_023
crossref_primary_10_1088_1748_605X_ad9af0
crossref_primary_10_1038_s41467_023_41485_2
crossref_primary_10_1016_j_jallcom_2021_160199
crossref_primary_10_1016_j_jallcom_2021_161289
crossref_primary_10_1016_j_scriptamat_2020_06_008
crossref_primary_10_1002_adma_201903855
crossref_primary_10_1016_j_mtla_2019_100522
crossref_primary_10_1016_j_scriptamat_2022_115257
crossref_primary_10_1016_j_matchemphys_2024_128992
crossref_primary_10_1016_j_ceramint_2024_12_547
crossref_primary_10_1016_j_ijrmhm_2023_106308
crossref_primary_10_1016_j_jmst_2022_12_025
crossref_primary_10_1007_s40843_022_2379_8
crossref_primary_10_1007_s40843_023_2578_5
crossref_primary_10_1016_j_mtcomm_2024_109716
crossref_primary_10_1002_adem_202400763
crossref_primary_10_1016_j_jmrt_2022_11_106
crossref_primary_10_1016_j_jallcom_2023_170347
crossref_primary_10_1016_j_triboint_2022_107529
crossref_primary_10_1007_s40195_022_01473_9
crossref_primary_10_1016_j_jmst_2023_05_010
crossref_primary_10_1016_j_triboint_2022_107523
crossref_primary_10_1007_s12598_024_02899_z
crossref_primary_10_1016_j_surfcoat_2024_130504
crossref_primary_10_1016_j_compositesb_2020_108563
crossref_primary_10_1016_j_actamat_2020_10_044
crossref_primary_10_1016_j_jmst_2023_06_025
crossref_primary_10_1016_j_jmst_2022_12_011
crossref_primary_10_1016_j_jmst_2022_12_010
crossref_primary_10_1016_j_pmatsci_2020_100740
crossref_primary_10_1016_j_isci_2023_108718
crossref_primary_10_1016_j_jallcom_2020_156204
crossref_primary_10_1038_s41467_022_34471_7
crossref_primary_10_1016_j_jallcom_2023_172734
crossref_primary_10_1007_s11665_023_08899_x
crossref_primary_10_1016_j_ijmecsci_2022_107065
crossref_primary_10_1016_j_addma_2024_104332
crossref_primary_10_1016_j_apmt_2019_100498
crossref_primary_10_1016_j_matdes_2021_110356
crossref_primary_10_1016_j_msea_2021_141085
crossref_primary_10_1016_j_corsci_2023_111197
crossref_primary_10_1016_j_jmst_2022_12_009
crossref_primary_10_1007_s40195_024_01763_4
crossref_primary_10_1016_j_jmst_2023_06_035
crossref_primary_10_1002_adma_202002619
crossref_primary_10_1002_adma_202209941
crossref_primary_10_1016_j_matchar_2021_111292
crossref_primary_10_2139_ssrn_4060462
crossref_primary_10_1016_j_matchar_2024_114380
crossref_primary_10_1016_j_intermet_2022_107489
crossref_primary_10_1016_j_msea_2024_146581
crossref_primary_10_1016_j_jmst_2024_01_030
crossref_primary_10_1016_j_jmst_2023_07_069
crossref_primary_10_1007_s10853_022_07227_3
crossref_primary_10_1016_j_jmatprotec_2023_118003
crossref_primary_10_1016_j_msea_2020_139936
crossref_primary_10_1016_j_actamat_2024_120526
crossref_primary_10_1016_j_msea_2023_146046
crossref_primary_10_1016_j_msea_2024_147677
crossref_primary_10_1016_j_ijplas_2022_103497
crossref_primary_10_1016_j_ijrmhm_2019_105132
crossref_primary_10_1016_j_msea_2025_147970
crossref_primary_10_1016_j_matchar_2025_114852
crossref_primary_10_1016_j_jmst_2022_11_031
crossref_primary_10_1016_j_jallcom_2024_176192
crossref_primary_10_1016_j_jmrt_2025_01_005
crossref_primary_10_1016_j_optlastec_2023_109396
crossref_primary_10_1016_j_jallcom_2024_173916
crossref_primary_10_1016_j_apsusc_2024_160730
crossref_primary_10_1007_s40195_022_01397_4
crossref_primary_10_1007_s42243_024_01384_2
crossref_primary_10_1016_j_ijplas_2024_103882
crossref_primary_10_1016_j_surfcoat_2024_130775
crossref_primary_10_1016_j_jallcom_2023_172798
crossref_primary_10_1016_j_msea_2024_147248
crossref_primary_10_1016_j_mechmat_2024_105107
crossref_primary_10_1134_S0031918X23601671
crossref_primary_10_1063_5_0108367
crossref_primary_10_1016_j_ijplas_2024_103884
crossref_primary_10_1016_j_jmst_2023_07_050
crossref_primary_10_1038_s41467_022_32620_6
crossref_primary_10_1016_j_jmst_2021_03_023
crossref_primary_10_1016_j_msea_2022_143964
crossref_primary_10_1016_j_mtla_2019_100565
crossref_primary_10_1002_smll_202500962
crossref_primary_10_1016_j_jmst_2021_03_024
crossref_primary_10_1016_j_msea_2022_142879
crossref_primary_10_1007_s40195_024_01805_x
crossref_primary_10_1016_j_apsusc_2021_149945
crossref_primary_10_1016_j_msea_2023_144919
crossref_primary_10_1021_acsomega_2c02027
crossref_primary_10_1016_j_jallcom_2023_170149
crossref_primary_10_1016_j_jmst_2023_07_049
crossref_primary_10_1002_adts_202100411
crossref_primary_10_1007_s11837_022_05277_1
crossref_primary_10_1016_j_mtadv_2023_100347
crossref_primary_10_1007_s44210_022_00008_2
crossref_primary_10_1016_j_jallcom_2019_04_121
crossref_primary_10_1016_j_surfcoat_2020_126326
crossref_primary_10_1016_j_matchar_2024_114357
crossref_primary_10_1016_j_surfcoat_2020_126325
crossref_primary_10_1002_adfm_202408941
crossref_primary_10_1016_j_mattod_2024_04_003
crossref_primary_10_1016_j_jmst_2021_08_034
crossref_primary_10_1016_j_mtcomm_2021_102657
crossref_primary_10_1002_ange_202213783
crossref_primary_10_1007_s11661_022_06706_1
crossref_primary_10_1016_j_msea_2024_147225
crossref_primary_10_1016_j_intermet_2020_106845
crossref_primary_10_1016_j_msea_2021_142373
crossref_primary_10_1016_j_commatsci_2024_112980
crossref_primary_10_3389_fmats_2021_816309
crossref_primary_10_1016_j_matdes_2021_109560
crossref_primary_10_1016_j_mtsust_2024_100694
crossref_primary_10_3390_ma12234022
crossref_primary_10_1016_j_msea_2022_143505
crossref_primary_10_1016_j_scriptamat_2019_02_015
crossref_primary_10_3390_met15020114
crossref_primary_10_1016_j_jmst_2022_12_044
crossref_primary_10_1007_s12598_023_02460_4
crossref_primary_10_15541_jim20200654
crossref_primary_10_1002_adem_202300616
crossref_primary_10_1016_j_ijmecsci_2023_108408
crossref_primary_10_1007_s40195_021_01260_y
crossref_primary_10_1016_j_jmst_2022_11_008
crossref_primary_10_1007_s40195_021_01282_6
crossref_primary_10_1007_s12613_023_2631_8
crossref_primary_10_1016_j_ijplas_2022_103296
crossref_primary_10_1016_j_ijplas_2023_103592
crossref_primary_10_1016_j_intermet_2024_108297
crossref_primary_10_1016_j_addma_2024_104126
crossref_primary_10_1016_j_ijplas_2019_08_013
crossref_primary_10_1039_D5RA00358J
crossref_primary_10_1016_j_pmatsci_2020_100709
crossref_primary_10_1016_j_jmst_2021_09_056
crossref_primary_10_1016_j_matlet_2022_133163
crossref_primary_10_3390_nano10010059
crossref_primary_10_1016_j_eng_2021_12_008
crossref_primary_10_1016_j_surfcoat_2020_125651
crossref_primary_10_1016_j_jallcom_2021_161215
crossref_primary_10_1016_j_scriptamat_2020_08_029
crossref_primary_10_1021_acs_jpcc_4c01845
crossref_primary_10_1016_j_actamat_2024_119911
crossref_primary_10_1016_j_matdes_2020_109018
crossref_primary_10_1016_j_msea_2022_143918
crossref_primary_10_1016_j_matdes_2021_109777
crossref_primary_10_1016_j_scriptamat_2019_05_032
crossref_primary_10_1016_j_jmps_2025_106106
crossref_primary_10_1016_j_jmrt_2021_07_116
crossref_primary_10_1016_j_actamat_2021_116801
crossref_primary_10_1016_S1003_6326_24_66674_4
crossref_primary_10_1016_j_actamat_2019_12_015
crossref_primary_10_1016_j_pmatsci_2021_100854
crossref_primary_10_1016_j_matdes_2024_112787
crossref_primary_10_1016_j_msea_2024_146513
crossref_primary_10_20517_microstructures_2024_2
crossref_primary_10_1021_jacs_4c03658
crossref_primary_10_3390_met13030594
crossref_primary_10_1021_acsnano_1c05113
crossref_primary_10_1016_j_jallcom_2023_171824
crossref_primary_10_1080_17452759_2020_1840783
crossref_primary_10_1002_adma_202202943
crossref_primary_10_1021_acs_jctc_3c00532
crossref_primary_10_1039_D1MH01912K
crossref_primary_10_3390_coatings12121795
crossref_primary_10_1016_j_apsusc_2019_143903
crossref_primary_10_1126_science_adr4917
crossref_primary_10_1016_j_msea_2024_146522
crossref_primary_10_1016_j_msea_2020_140065
crossref_primary_10_1016_j_jmrt_2024_11_068
crossref_primary_10_1016_j_jmst_2021_08_075
crossref_primary_10_1016_j_jallcom_2019_152466
crossref_primary_10_1016_j_matdes_2022_110820
crossref_primary_10_1016_j_jmst_2021_08_073
crossref_primary_10_1073_pnas_2200607119
crossref_primary_10_7498_aps_71_20221368
crossref_primary_10_1016_j_triboint_2023_108760
crossref_primary_10_1016_j_jmrt_2023_02_074
crossref_primary_10_1016_j_matchemphys_2022_125997
crossref_primary_10_1016_j_jmst_2020_10_043
crossref_primary_10_1016_j_jmrt_2023_10_194
crossref_primary_10_1016_j_actamat_2024_119939
crossref_primary_10_1016_j_jallcom_2020_155995
crossref_primary_10_1021_acsaem_2c02009
crossref_primary_10_1016_S1003_6326_24_66650_1
crossref_primary_10_1016_j_intermet_2020_107050
crossref_primary_10_1016_j_jallcom_2020_156842
crossref_primary_10_1016_j_jmst_2024_02_058
crossref_primary_10_1016_j_corcom_2021_11_002
crossref_primary_10_1016_j_msea_2023_145368
crossref_primary_10_1016_j_jallcom_2024_174394
crossref_primary_10_1016_j_msea_2021_142311
crossref_primary_10_1016_j_commatsci_2024_113196
crossref_primary_10_1002_advs_202100870
crossref_primary_10_1007_s12540_020_00923_2
crossref_primary_10_1016_j_wear_2024_205596
crossref_primary_10_1016_j_actamat_2024_119940
crossref_primary_10_1016_j_jallcom_2023_171802
crossref_primary_10_3390_ma16051759
crossref_primary_10_1016_j_jallcom_2022_166174
crossref_primary_10_1007_s11431_022_2300_1
crossref_primary_10_1007_s12598_022_01986_3
crossref_primary_10_1021_acs_nanolett_1c00444
crossref_primary_10_1016_j_msea_2023_145110
crossref_primary_10_1016_j_ijfatigue_2023_108111
crossref_primary_10_1016_j_msea_2021_141234
crossref_primary_10_1039_D3NR03465H
crossref_primary_10_1016_j_actamat_2022_118495
crossref_primary_10_1016_j_jmapro_2021_06_047
crossref_primary_10_1016_j_triboint_2024_109757
crossref_primary_10_1016_j_jmst_2020_12_079
crossref_primary_10_1007_s10853_022_07066_2
crossref_primary_10_1016_j_jallcom_2022_163954
crossref_primary_10_1016_j_jmst_2024_03_034
crossref_primary_10_1016_j_jallcom_2020_154839
crossref_primary_10_1111_ffe_13970
crossref_primary_10_1016_j_mser_2024_100834
crossref_primary_10_3390_ma16062454
crossref_primary_10_3390_cryst14121029
crossref_primary_10_1016_j_intermet_2021_107399
crossref_primary_10_1002_pssb_202100025
crossref_primary_10_1016_j_cpc_2021_108019
crossref_primary_10_1038_s44160_024_00690_7
crossref_primary_10_1016_j_actamat_2021_116843
crossref_primary_10_1016_j_apmt_2021_101233
crossref_primary_10_1016_j_jmst_2024_01_022
crossref_primary_10_1016_j_msea_2020_140035
crossref_primary_10_1016_j_msea_2021_140798
crossref_primary_10_1016_j_msea_2025_147920
crossref_primary_10_1016_j_physleta_2022_128272
crossref_primary_10_1557_s43577_022_00277_7
crossref_primary_10_3390_met9121324
crossref_primary_10_1103_PhysRevB_109_014417
crossref_primary_10_1007_s00894_023_05502_x
crossref_primary_10_1038_s41586_023_06894_9
crossref_primary_10_1016_j_ijplas_2021_102965
crossref_primary_10_1016_j_actamat_2019_11_026
crossref_primary_10_1016_j_scriptamat_2020_06_048
crossref_primary_10_1088_1361_6528_ab99ef
crossref_primary_10_1016_j_scriptamat_2021_113897
crossref_primary_10_1016_j_scriptamat_2021_113898
crossref_primary_10_1002_advs_202407283
crossref_primary_10_1016_j_jmrt_2023_02_066
crossref_primary_10_1016_j_jelechem_2024_118318
crossref_primary_10_1016_j_mtnano_2024_100511
crossref_primary_10_2139_ssrn_3926696
crossref_primary_10_1016_j_msea_2024_147653
crossref_primary_10_1016_j_matchar_2023_112956
crossref_primary_10_1016_j_msea_2020_140264
crossref_primary_10_1007_s11665_023_08239_z
crossref_primary_10_1007_s12613_020_2063_7
crossref_primary_10_1016_j_msea_2024_146525
crossref_primary_10_1016_j_msea_2024_146767
crossref_primary_10_1038_s41563_023_01517_0
crossref_primary_10_1016_j_jmst_2024_02_017
crossref_primary_10_1038_s43246_023_00341_y
crossref_primary_10_1016_j_ijfatigue_2024_108624
crossref_primary_10_1016_j_vacuum_2022_111586
crossref_primary_10_31857_S0015323023600971
crossref_primary_10_1002_smll_202311929
crossref_primary_10_1080_02670844_2020_1812480
crossref_primary_10_1016_j_ijplas_2021_102971
crossref_primary_10_1002_adma_202002652
crossref_primary_10_1007_s12598_025_03248_4
crossref_primary_10_1016_j_msea_2025_147927
crossref_primary_10_1016_j_actamat_2024_119983
crossref_primary_10_1016_j_jmrt_2023_03_088
crossref_primary_10_1016_j_jmst_2021_06_038
crossref_primary_10_1016_j_jallcom_2023_170757
crossref_primary_10_1016_j_jmrt_2023_02_040
crossref_primary_10_1038_s43246_023_00352_9
crossref_primary_10_1016_j_elecom_2021_106989
crossref_primary_10_1007_s10853_023_08443_1
crossref_primary_10_1016_j_ijplas_2024_104109
crossref_primary_10_1002_anie_202304510
crossref_primary_10_1016_j_ijplas_2020_102685
crossref_primary_10_1016_j_jmst_2020_12_080
crossref_primary_10_1016_j_ijmecsci_2022_107098
crossref_primary_10_1063_5_0160762
crossref_primary_10_1016_j_jallcom_2019_07_357
crossref_primary_10_1016_j_scriptamat_2022_114950
crossref_primary_10_1016_j_jmrt_2024_05_189
crossref_primary_10_1016_j_jeurceramsoc_2023_01_026
crossref_primary_10_1016_j_intermet_2019_04_003
crossref_primary_10_1016_j_jallcom_2019_01_053
crossref_primary_10_1016_j_ijplas_2024_104014
crossref_primary_10_1016_j_scriptamat_2020_02_002
crossref_primary_10_1016_j_jmst_2022_07_012
crossref_primary_10_1038_s41467_020_20109_z
crossref_primary_10_1016_j_scriptamat_2020_02_001
crossref_primary_10_1007_s11665_021_06093_5
crossref_primary_10_1016_j_triboint_2020_106444
crossref_primary_10_1016_j_intermet_2024_108440
crossref_primary_10_1016_j_jallcom_2023_172194
crossref_primary_10_1016_j_scriptamat_2024_116464
crossref_primary_10_1021_acsami_4c04902
crossref_primary_10_1007_s40195_023_01551_6
crossref_primary_10_1016_j_eng_2023_06_008
crossref_primary_10_1038_s43246_024_00487_3
crossref_primary_10_1016_j_jallcom_2021_161963
crossref_primary_10_1016_j_jeurceramsoc_2023_01_037
crossref_primary_10_3390_met15010096
crossref_primary_10_1002_mgea_70000
crossref_primary_10_1016_j_coche_2024_101020
crossref_primary_10_1063_5_0069417
crossref_primary_10_1002_asia_202300456
crossref_primary_10_1016_j_jallcom_2024_175737
crossref_primary_10_1016_j_intermet_2025_108735
crossref_primary_10_1016_j_jallcom_2022_164291
crossref_primary_10_1016_j_isci_2021_102177
crossref_primary_10_1016_j_jmrt_2023_10_007
crossref_primary_10_1002_adem_202001044
crossref_primary_10_1016_j_msea_2020_140101
crossref_primary_10_15251_DJNB_2023_181_145
crossref_primary_10_1007_s11837_022_05306_z
crossref_primary_10_1016_j_actamat_2022_118550
crossref_primary_10_1016_j_scriptamat_2024_116438
crossref_primary_10_1038_s41586_021_04309_1
crossref_primary_10_1016_j_triboint_2020_106662
crossref_primary_10_1016_j_mser_2024_100813
crossref_primary_10_1016_j_matchar_2019_110098
crossref_primary_10_1007_s12274_022_5207_4
crossref_primary_10_1016_j_mtla_2020_100746
crossref_primary_10_1021_acsnano_0c09470
crossref_primary_10_1021_acsnano_3c02762
crossref_primary_10_1016_j_commatsci_2021_110389
crossref_primary_10_1016_j_corsci_2022_110499
crossref_primary_10_1016_j_scriptamat_2020_02_021
crossref_primary_10_1016_j_scriptamat_2024_116440
crossref_primary_10_1016_j_apmt_2024_102347
crossref_primary_10_3390_e21020146
crossref_primary_10_1016_j_jmst_2023_11_057
crossref_primary_10_1016_j_corsci_2024_112185
crossref_primary_10_1016_j_pmatsci_2023_101090
crossref_primary_10_1007_s44210_022_00010_8
crossref_primary_10_1016_j_msea_2023_144779
crossref_primary_10_1021_jacs_0c07395
crossref_primary_10_1016_j_matdes_2019_107928
crossref_primary_10_1016_j_jallcom_2022_167542
crossref_primary_10_1016_j_ceramint_2021_04_123
crossref_primary_10_1016_j_scriptamat_2022_114504
crossref_primary_10_1016_j_jmst_2020_04_062
crossref_primary_10_3390_met12050811
crossref_primary_10_1007_s11708_019_0653_8
crossref_primary_10_1016_j_actamat_2019_10_015
crossref_primary_10_1016_j_intermet_2025_108714
crossref_primary_10_1016_j_matdes_2022_111186
crossref_primary_10_1016_j_msea_2020_140125
crossref_primary_10_1016_j_matchar_2021_110877
crossref_primary_10_1016_j_jallcom_2019_153388
crossref_primary_10_1016_j_mtchem_2024_102422
crossref_primary_10_1016_j_jallcom_2020_156060
crossref_primary_10_1002_adem_202300291
crossref_primary_10_1016_j_ica_2020_119854
crossref_primary_10_1103_PhysRevLett_124_096101
crossref_primary_10_1557_s43578_023_01128_0
crossref_primary_10_1016_j_ijrmhm_2021_105762
crossref_primary_10_1088_1674_1056_acfc37
crossref_primary_10_1016_j_apsusc_2020_145736
crossref_primary_10_1073_pnas_2316912121
crossref_primary_10_2139_ssrn_4128926
crossref_primary_10_1016_j_actamat_2023_118868
crossref_primary_10_1016_j_mattod_2024_08_004
crossref_primary_10_1002_adfm_202207536
crossref_primary_10_1016_j_matdes_2023_111891
crossref_primary_10_1016_j_msea_2024_146830
crossref_primary_10_1016_j_tsf_2021_138866
crossref_primary_10_1002_adma_202302067
crossref_primary_10_1016_j_matlet_2021_131252
crossref_primary_10_1016_j_msea_2025_148058
crossref_primary_10_1016_j_actamat_2022_118590
crossref_primary_10_1016_j_msea_2023_145446
crossref_primary_10_1016_j_triboint_2020_106470
crossref_primary_10_1016_j_jmapro_2023_05_097
crossref_primary_10_1002_ange_202100917
crossref_primary_10_1016_j_xcrp_2023_101254
crossref_primary_10_1016_j_ijplas_2024_104050
crossref_primary_10_1016_j_intermet_2022_107819
crossref_primary_10_1016_j_scriptamat_2019_07_010
crossref_primary_10_1002_sstr_202400110
crossref_primary_10_1007_s11837_019_03879_w
crossref_primary_10_1016_j_jallcom_2022_168692
crossref_primary_10_1002_anie_202213783
crossref_primary_10_1016_j_msea_2025_148041
crossref_primary_10_1016_j_msea_2025_148042
crossref_primary_10_1016_j_ceramint_2021_05_148
crossref_primary_10_1016_j_mtcomm_2024_109237
crossref_primary_10_1016_j_commatsci_2022_111764
crossref_primary_10_1080_21663831_2022_2135409
crossref_primary_10_1016_j_intermet_2020_107029
crossref_primary_10_1038_s41467_024_48619_0
crossref_primary_10_3390_ma16134701
crossref_primary_10_1038_s41524_025_01560_2
crossref_primary_10_1103_PhysRevB_109_104204
crossref_primary_10_1016_j_jmst_2020_12_015
crossref_primary_10_1016_j_msea_2023_145436
crossref_primary_10_1016_j_jnucmat_2021_153261
crossref_primary_10_1126_science_abf6986
crossref_primary_10_1016_j_matchar_2023_112773
crossref_primary_10_1016_j_jnucmat_2021_153023
crossref_primary_10_1038_s41467_021_24093_w
crossref_primary_10_1002_smll_202310327
crossref_primary_10_3390_met10050599
crossref_primary_10_1016_j_jmrt_2024_06_170
crossref_primary_10_1016_j_jmst_2020_12_017
crossref_primary_10_1016_j_intermet_2024_108627
crossref_primary_10_1080_21663831_2019_1604443
crossref_primary_10_1016_j_ijplas_2024_104079
crossref_primary_10_1016_j_jmst_2023_02_016
crossref_primary_10_1166_sam_2021_4080
crossref_primary_10_1002_adfm_202502367
crossref_primary_10_1016_j_actamat_2023_118884
crossref_primary_10_1016_j_jmrt_2023_09_184
crossref_primary_10_1016_j_jallcom_2024_177740
crossref_primary_10_1016_j_msea_2022_144035
crossref_primary_10_1063_5_0249449
crossref_primary_10_1016_j_msea_2022_144037
crossref_primary_10_1016_j_jmrt_2022_01_118
crossref_primary_10_1016_j_jmst_2020_03_064
crossref_primary_10_1016_j_msea_2019_138616
crossref_primary_10_3390_met10081073
crossref_primary_10_1016_j_msea_2020_139580
crossref_primary_10_1016_j_matchemphys_2021_124830
crossref_primary_10_1039_D2MH01023B
crossref_primary_10_3390_catal12091050
crossref_primary_10_1016_j_mtcomm_2023_106922
crossref_primary_10_1016_j_ijmecsci_2022_107931
crossref_primary_10_1016_j_vacuum_2024_113859
crossref_primary_10_1080_09500839_2023_2261392
crossref_primary_10_1016_j_jallcom_2024_174227
crossref_primary_10_1016_j_msea_2025_148062
crossref_primary_10_1016_j_matre_2021_01_002
crossref_primary_10_1016_j_msea_2022_144041
crossref_primary_10_1016_j_jallcom_2024_175311
crossref_primary_10_3390_met13040647
crossref_primary_10_1021_acs_jpcc_2c05666
crossref_primary_10_1016_j_mtchem_2024_102435
crossref_primary_10_1016_j_matdes_2022_111144
crossref_primary_10_1016_j_msea_2022_144046
crossref_primary_10_1016_j_actamat_2020_01_062
crossref_primary_10_1007_s13370_024_01198_1
crossref_primary_10_1016_j_actamat_2024_120102
crossref_primary_10_1016_j_addma_2023_103813
crossref_primary_10_1016_j_msea_2019_138661
crossref_primary_10_1016_j_triboint_2023_109154
crossref_primary_10_1016_j_matlet_2021_129778
crossref_primary_10_3389_fmats_2020_589052
crossref_primary_10_1016_j_corsci_2024_111965
crossref_primary_10_1016_j_wear_2022_204497
crossref_primary_10_1126_sciadv_adj1511
crossref_primary_10_1016_j_jmst_2023_05_081
crossref_primary_10_1016_j_actamat_2021_117571
crossref_primary_10_1016_j_actamat_2023_119077
crossref_primary_10_1007_s12274_021_3804_2
crossref_primary_10_1016_j_matdes_2022_111565
crossref_primary_10_1016_j_ijrmhm_2024_106884
crossref_primary_10_1016_j_intermet_2024_108274
crossref_primary_10_1016_j_matchar_2023_113059
crossref_primary_10_1016_j_matchar_2024_114641
crossref_primary_10_1016_j_ijrmhm_2024_106885
crossref_primary_10_3390_e22101074
crossref_primary_10_1016_j_addma_2024_104184
crossref_primary_10_1016_j_jallcom_2023_171039
crossref_primary_10_1002_er_6371
crossref_primary_10_1016_j_mtla_2019_100485
crossref_primary_10_1016_j_jmst_2019_09_010
crossref_primary_10_1038_s41467_024_45309_9
crossref_primary_10_1016_j_msea_2024_147298
crossref_primary_10_1016_j_jmapro_2023_03_017
crossref_primary_10_1017_S1431927620021340
crossref_primary_10_1360_TB_2024_0436
crossref_primary_10_1016_j_actamat_2024_120364
crossref_primary_10_1016_j_addma_2022_103319
crossref_primary_10_1016_S1003_6326_20_65384_5
crossref_primary_10_1016_j_ijplas_2020_102819
crossref_primary_10_1016_j_dt_2024_12_017
crossref_primary_10_1016_j_scriptamat_2024_115989
crossref_primary_10_1016_j_msea_2024_147262
crossref_primary_10_1093_nsr_nwae026
crossref_primary_10_3390_ma18030476
crossref_primary_10_1002_adfm_202007668
crossref_primary_10_1016_j_actamat_2021_117314
crossref_primary_10_1021_acsanm_4c00720
crossref_primary_10_1021_acs_inorgchem_0c00989
crossref_primary_10_1103_PhysRevMaterials_7_033606
crossref_primary_10_1016_j_micron_2021_103144
crossref_primary_10_1016_j_actamat_2023_119099
crossref_primary_10_1016_j_msea_2022_143144
crossref_primary_10_1016_j_scriptamat_2019_08_036
crossref_primary_10_1038_s41467_019_13311_1
crossref_primary_10_1016_j_ijrmhm_2023_106361
crossref_primary_10_1039_D4CP00776J
crossref_primary_10_1016_j_intermet_2019_106553
crossref_primary_10_1016_j_actamat_2023_119082
crossref_primary_10_1016_j_compositesb_2021_109305
crossref_primary_10_1016_j_jmrt_2022_06_057
crossref_primary_10_1007_s10853_020_05623_1
crossref_primary_10_1016_j_intermet_2023_108118
crossref_primary_10_1016_j_matlet_2019_03_075
crossref_primary_10_1016_j_ijrmhm_2021_105747
crossref_primary_10_1016_j_actamat_2022_117847
crossref_primary_10_1016_j_intermet_2023_108119
crossref_primary_10_1021_acsomega_4c08474
crossref_primary_10_1016_j_msea_2020_140523
crossref_primary_10_1016_j_intermet_2024_108497
crossref_primary_10_1038_s41467_021_26374_w
crossref_primary_10_1038_s41586_019_1702_5
crossref_primary_10_1088_1742_6596_1948_1_012207
crossref_primary_10_1016_j_jallcom_2023_171491
crossref_primary_10_1007_s12613_020_2028_x
crossref_primary_10_1016_j_cap_2024_11_001
crossref_primary_10_1103_PhysRevB_103_104107
crossref_primary_10_1016_j_ijplas_2023_103710
crossref_primary_10_1016_j_jmst_2023_05_072
crossref_primary_10_1016_j_jmrt_2023_08_194
crossref_primary_10_2320_matertrans_MT_MK2019009
crossref_primary_10_3390_coatings13091650
crossref_primary_10_1016_j_scriptamat_2020_02_042
crossref_primary_10_3389_fbioe_2022_952536
crossref_primary_10_1016_j_jmrt_2023_06_110
crossref_primary_10_3389_fmats_2020_537812
crossref_primary_10_1016_j_actamat_2021_117371
crossref_primary_10_1016_j_matchemphys_2021_125060
crossref_primary_10_1016_j_intermet_2024_108489
crossref_primary_10_1002_smll_201904180
crossref_primary_10_1016_j_actbio_2022_08_041
crossref_primary_10_1016_j_actamat_2020_02_059
crossref_primary_10_1016_j_actamat_2020_10_075
crossref_primary_10_3390_ma14164512
crossref_primary_10_1016_j_scriptamat_2023_115439
crossref_primary_10_1016_j_jallcom_2022_165103
crossref_primary_10_1016_j_jmrt_2022_06_074
crossref_primary_10_3390_coatings12070997
crossref_primary_10_1002_advs_202207535
crossref_primary_10_1016_j_actamat_2022_118515
crossref_primary_10_1016_j_mtcomm_2024_109635
crossref_primary_10_1016_j_ijplas_2023_103777
crossref_primary_10_1016_j_intermet_2023_108132
crossref_primary_10_1016_j_msea_2022_143570
crossref_primary_10_1016_j_scriptamat_2021_114070
crossref_primary_10_1038_s41524_024_01330_6
crossref_primary_10_1016_j_jmst_2023_11_047
crossref_primary_10_1007_s00339_021_04659_7
crossref_primary_10_1016_j_jallcom_2022_166408
crossref_primary_10_1007_s12274_024_6730_2
crossref_primary_10_1103_PhysRevMaterials_4_014402
crossref_primary_10_1016_j_jallcom_2019_152943
crossref_primary_10_1016_j_jmrt_2023_05_002
crossref_primary_10_1016_j_jmst_2023_12_057
crossref_primary_10_1016_j_triboint_2024_110165
crossref_primary_10_3390_e21101027
crossref_primary_10_1080_10408436_2021_1941751
crossref_primary_10_1016_j_jallcom_2019_152709
crossref_primary_10_1016_j_jmst_2023_10_003
crossref_primary_10_1103_PhysRevMaterials_7_113604
crossref_primary_10_1007_s11837_021_04847_z
crossref_primary_10_1038_s41570_024_00602_5
crossref_primary_10_1080_21663831_2019_1650131
crossref_primary_10_1557_mrs_2019_72
crossref_primary_10_1038_s41467_024_50078_6
crossref_primary_10_1007_s11663_021_02115_8
crossref_primary_10_1007_s12274_021_3719_y
crossref_primary_10_1103_PhysRevB_107_184116
crossref_primary_10_1016_j_actamat_2021_117112
crossref_primary_10_1016_j_actamat_2020_01_005
crossref_primary_10_1038_s41467_021_24523_9
crossref_primary_10_1002_ange_202304510
crossref_primary_10_1016_j_actamat_2020_02_039
crossref_primary_10_1016_j_surfcoat_2021_127427
crossref_primary_10_1016_j_jallcom_2022_165324
crossref_primary_10_1038_s41586_019_1617_1
crossref_primary_10_1007_s42864_021_00092_8
crossref_primary_10_1016_j_msea_2023_144978
crossref_primary_10_1016_j_scriptamat_2022_115236
crossref_primary_10_1016_j_jmrt_2022_06_099
crossref_primary_10_1063_5_0028977
crossref_primary_10_1016_j_jmrt_2023_12_026
crossref_primary_10_1007_s40195_022_01382_x
crossref_primary_10_1088_1674_1056_ad0ec5
crossref_primary_10_1088_1361_651X_ac6687
crossref_primary_10_1088_2752_5724_ac5e0c
crossref_primary_10_1016_j_mattod_2022_10_026
crossref_primary_10_1038_s41524_020_00389_1
crossref_primary_10_3389_fmats_2020_00172
crossref_primary_10_1016_j_intermet_2019_106599
crossref_primary_10_1016_j_intermet_2024_108451
crossref_primary_10_1007_s40843_020_1610_9
crossref_primary_10_1016_j_vacuum_2020_109248
crossref_primary_10_1039_C9TA09550K
crossref_primary_10_1016_j_jmst_2021_03_083
crossref_primary_10_1016_j_msea_2022_143112
crossref_primary_10_1016_j_heliyon_2024_e36064
crossref_primary_10_1016_j_scriptamat_2023_115763
crossref_primary_10_1007_s44210_022_00005_5
crossref_primary_10_1021_acsanm_0c00746
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_3390_ma18020366
crossref_primary_10_1007_s40195_023_01623_7
crossref_primary_10_1016_j_intermet_2020_106935
crossref_primary_10_1016_j_matdes_2021_110248
crossref_primary_10_1038_s41529_024_00495_1
crossref_primary_10_1016_j_jallcom_2022_164724
crossref_primary_10_1007_s11661_024_07568_5
crossref_primary_10_1016_j_jmst_2020_08_058
crossref_primary_10_1016_j_promfg_2019_12_051
crossref_primary_10_1016_j_msea_2020_139802
crossref_primary_10_1016_j_jmrt_2025_03_170
crossref_primary_10_1016_j_jmst_2020_07_014
crossref_primary_10_1016_j_jallcom_2023_172635
crossref_primary_10_1038_s41467_019_13087_4
crossref_primary_10_1016_j_actamat_2024_120614
crossref_primary_10_1038_s41467_020_15934_1
crossref_primary_10_2139_ssrn_4051623
crossref_primary_10_1016_j_actamat_2023_119115
crossref_primary_10_1038_s41467_021_25807_w
crossref_primary_10_1016_j_intermet_2023_107872
crossref_primary_10_1016_j_jmst_2020_08_062
crossref_primary_10_1016_j_jmst_2020_08_063
crossref_primary_10_1021_acs_nanolett_3c04052
crossref_primary_10_1016_j_scriptamat_2023_115750
crossref_primary_10_1016_j_jmst_2021_10_019
crossref_primary_10_1016_j_msea_2022_143646
crossref_primary_10_1016_j_jmst_2022_03_005
crossref_primary_10_1007_s11665_025_10853_y
crossref_primary_10_1002_adem_202201066
crossref_primary_10_1016_j_mattod_2020_04_005
crossref_primary_10_1016_j_jmrt_2024_07_104
crossref_primary_10_1016_j_matdes_2019_108201
crossref_primary_10_1016_j_pmatsci_2022_101018
crossref_primary_10_1016_j_jallcom_2022_168093
crossref_primary_10_3390_met13010001
crossref_primary_10_1016_j_jmst_2024_07_024
crossref_primary_10_1016_j_jmrt_2025_02_149
crossref_primary_10_1016_j_msea_2022_143892
crossref_primary_10_1016_j_addma_2020_101058
crossref_primary_10_1016_j_msea_2022_143653
crossref_primary_10_1038_s41467_022_28706_w
crossref_primary_10_1016_j_jallcom_2024_176290
crossref_primary_10_1016_j_optlastec_2020_106147
crossref_primary_10_1016_j_mtadv_2024_100540
crossref_primary_10_1007_s11665_022_07331_0
crossref_primary_10_1016_j_ijmecsci_2025_110164
crossref_primary_10_1016_j_jallcom_2021_162242
crossref_primary_10_1016_j_actamat_2021_116984
crossref_primary_10_1103_PhysRevMaterials_6_113804
crossref_primary_10_1016_j_jallcom_2023_170431
crossref_primary_10_1016_j_actamat_2021_116986
crossref_primary_10_1016_j_jallcom_2020_156321
crossref_primary_10_1039_D1RA03661K
crossref_primary_10_1016_j_triboint_2022_107435
crossref_primary_10_1016_j_intermet_2023_107896
crossref_primary_10_1016_j_msea_2024_147543
crossref_primary_10_1002_adma_202107965
crossref_primary_10_1016_j_jmst_2022_05_062
crossref_primary_10_1038_s41566_024_01468_1
crossref_primary_10_1007_s11106_022_00278_w
crossref_primary_10_1007_s12613_024_2931_7
crossref_primary_10_1063_10_0021377
crossref_primary_10_2139_ssrn_4075813
crossref_primary_10_1007_s11661_025_07717_4
crossref_primary_10_1002_smll_202304636
crossref_primary_10_1021_acsmaterialslett_9b00414
crossref_primary_10_1038_s41467_020_19277_9
crossref_primary_10_1016_j_ijplas_2024_103970
crossref_primary_10_1016_j_apsusc_2020_147576
crossref_primary_10_1016_j_jandt_2021_06_004
crossref_primary_10_1016_j_msea_2023_145073
crossref_primary_10_1016_j_jmst_2022_05_059
crossref_primary_10_1016_j_msea_2025_147856
crossref_primary_10_1016_S1003_6326_23_66287_9
crossref_primary_10_1016_j_matdes_2025_113620
crossref_primary_10_1016_j_scriptamat_2022_115164
crossref_primary_10_1080_21663831_2019_1610105
crossref_primary_10_1016_j_jallcom_2019_152523
crossref_primary_10_1016_j_jallcom_2024_176075
crossref_primary_10_1016_j_matdes_2022_110724
crossref_primary_10_1038_s41467_023_38531_4
crossref_primary_10_1016_j_scriptamat_2023_115727
crossref_primary_10_1002_advs_202205522
crossref_primary_10_1016_j_actamat_2020_09_056
crossref_primary_10_1016_j_mtcomm_2020_101902
crossref_primary_10_1038_s41563_020_0677_9
crossref_primary_10_1002_adem_202001514
crossref_primary_10_1016_j_ijplas_2021_103081
crossref_primary_10_1016_j_pmatsci_2023_101106
crossref_primary_10_3390_ma16227222
crossref_primary_10_1016_j_matchar_2024_114208
crossref_primary_10_1016_j_actamat_2024_120656
crossref_primary_10_1063_5_0218290
crossref_primary_10_2139_ssrn_4007946
crossref_primary_10_1016_j_ensm_2024_103408
crossref_primary_10_54227_mlab_20220035
crossref_primary_10_1016_j_intermet_2020_106741
crossref_primary_10_1016_j_jnucmat_2023_154286
crossref_primary_10_1088_1742_6596_2383_1_012141
crossref_primary_10_1002_adma_201901115
crossref_primary_10_1016_j_commatsci_2024_112886
crossref_primary_10_1007_s12613_023_2641_6
crossref_primary_10_1557_s43578_023_00924_y
crossref_primary_10_1016_j_jmst_2023_12_006
crossref_primary_10_1038_s41586_022_04914_8
crossref_primary_10_1007_s40195_022_01494_4
crossref_primary_10_1007_s40195_021_01281_7
crossref_primary_10_3390_met15030247
crossref_primary_10_1016_j_rineng_2024_102387
crossref_primary_10_1088_1742_6596_2383_1_012139
crossref_primary_10_20517_jmi_2024_71
crossref_primary_10_1016_j_corsci_2024_112601
crossref_primary_10_1016_j_msea_2021_141135
crossref_primary_10_1007_s42864_021_00085_7
crossref_primary_10_1016_j_jallcom_2021_162045
crossref_primary_10_1016_j_jallcom_2024_177183
crossref_primary_10_1016_j_jmst_2020_01_002
crossref_primary_10_1016_j_jnucmat_2022_154196
crossref_primary_10_2139_ssrn_4195385
crossref_primary_10_1016_j_msea_2021_142480
crossref_primary_10_2139_ssrn_4105267
crossref_primary_10_1016_j_addma_2024_104009
crossref_primary_10_1016_j_eng_2024_03_023
crossref_primary_10_1016_j_matchar_2023_113061
crossref_primary_10_3390_met15030250
crossref_primary_10_1016_j_actamat_2021_116786
crossref_primary_10_1016_j_mtnano_2021_100123
crossref_primary_10_1016_j_msea_2024_147346
crossref_primary_10_1063_5_0220107
crossref_primary_10_1016_j_ijmecsci_2023_108753
crossref_primary_10_1557_s43578_022_00695_y
crossref_primary_10_1016_j_jallcom_2024_177173
crossref_primary_10_1016_j_ijrmhm_2023_106201
crossref_primary_10_1016_j_jmst_2020_06_018
crossref_primary_10_2355_isijinternational_ISIJINT_2021_139
crossref_primary_10_1016_j_ceramint_2024_12_250
crossref_primary_10_1038_s41586_021_03428_z
crossref_primary_10_1016_j_jmst_2021_10_032
crossref_primary_10_1016_j_surfcoat_2023_130346
crossref_primary_10_1016_j_jallcom_2020_156533
crossref_primary_10_1016_j_mtnano_2021_100110
crossref_primary_10_1016_j_jallcom_2025_179899
crossref_primary_10_1080_21663831_2024_2437402
crossref_primary_10_1038_s41597_022_01911_4
crossref_primary_10_1007_s40195_021_01206_4
crossref_primary_10_1016_j_jallcom_2019_06_097
crossref_primary_10_1016_j_actamat_2023_119165
crossref_primary_10_1016_j_addma_2024_104243
crossref_primary_10_1016_j_jallcom_2023_171571
crossref_primary_10_3390_met9121243
crossref_primary_10_1103_PhysRevMaterials_4_103612
crossref_primary_10_1016_j_jmst_2022_06_047
crossref_primary_10_1016_S1003_6326_21_65572_3
crossref_primary_10_1016_j_intermet_2022_107508
crossref_primary_10_1016_j_pmatsci_2023_101140
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_3390_met13020205
crossref_primary_10_1016_j_matlet_2022_132548
crossref_primary_10_1002_adem_202000466
crossref_primary_10_1016_j_jmst_2022_05_005
crossref_primary_10_1016_j_jmst_2024_10_020
crossref_primary_10_1016_j_pmatsci_2018_12_003
crossref_primary_10_1039_D0MH01341B
crossref_primary_10_1038_s41467_023_43356_2
crossref_primary_10_1016_j_commatsci_2022_111575
crossref_primary_10_1016_j_msea_2023_145263
crossref_primary_10_1007_s40195_023_01638_0
crossref_primary_10_1016_S1003_6326_24_66651_3
crossref_primary_10_1016_j_jallcom_2021_159256
crossref_primary_10_1016_j_jallcom_2024_177520
crossref_primary_10_1080_21663831_2023_2197942
crossref_primary_10_1016_j_apsusc_2022_153391
crossref_primary_10_1016_j_jmmm_2022_169142
crossref_primary_10_1016_j_jmst_2024_11_067
crossref_primary_10_1016_j_scriptamat_2025_116569
crossref_primary_10_1016_j_wear_2024_205694
crossref_primary_10_3390_ma16030934
crossref_primary_10_1063_5_0170416
crossref_primary_10_1016_j_jmst_2024_11_063
crossref_primary_10_1063_5_0079981
crossref_primary_10_1016_j_jallcom_2019_153407
crossref_primary_10_1016_j_jmrt_2024_10_140
crossref_primary_10_1016_j_msea_2022_143806
crossref_primary_10_1016_S1872_2067_24_60067_7
crossref_primary_10_1002_adem_202200131
crossref_primary_10_1016_j_jallcom_2023_170863
crossref_primary_10_1016_j_mtnano_2021_100130
crossref_primary_10_1016_j_intermet_2022_107747
crossref_primary_10_1016_j_msea_2024_146401
crossref_primary_10_1016_j_actamat_2022_118159
crossref_primary_10_1007_s11665_023_08963_6
crossref_primary_10_1016_j_pnsc_2024_02_007
crossref_primary_10_1016_j_mtnano_2021_100139
crossref_primary_10_1021_acssuschemeng_3c01602
crossref_primary_10_1016_j_actamat_2020_08_065
crossref_primary_10_1016_j_msea_2024_146883
crossref_primary_10_1016_j_msea_2021_142440
crossref_primary_10_1016_j_msea_2024_146849
crossref_primary_10_1016_j_jmrt_2025_03_119
crossref_primary_10_1007_s40843_023_2705_2
crossref_primary_10_1002_smtd_202300871
crossref_primary_10_1007_s11661_020_06034_2
crossref_primary_10_1021_jacs_3c12048
crossref_primary_10_1016_j_jmst_2021_12_057
crossref_primary_10_1103_PhysRevLett_123_247601
crossref_primary_10_1007_s11085_024_10243_0
crossref_primary_10_1016_j_mtla_2023_101766
crossref_primary_10_1063_5_0206490
crossref_primary_10_1016_j_ceramint_2022_09_054
crossref_primary_10_1016_j_matchar_2021_111313
crossref_primary_10_1038_s41467_023_38000_y
crossref_primary_10_1016_j_jmst_2024_09_008
crossref_primary_10_1016_j_actamat_2023_119532
crossref_primary_10_1016_j_actamat_2020_08_034
crossref_primary_10_1016_j_actamat_2025_120713
crossref_primary_10_1002_adma_202302335
crossref_primary_10_1002_smtd_202300888
crossref_primary_10_1016_j_msea_2024_146614
crossref_primary_10_1016_j_jiec_2024_11_049
crossref_primary_10_1016_j_apmt_2021_101162
crossref_primary_10_1080_14786435_2023_2265844
crossref_primary_10_1016_j_vacuum_2022_111272
crossref_primary_10_1016_j_apsusc_2021_151290
crossref_primary_10_1016_j_compositesa_2021_106276
crossref_primary_10_1016_j_jmrt_2024_04_091
crossref_primary_10_1063_1_5136022
crossref_primary_10_1016_j_intermet_2022_107525
crossref_primary_10_1038_s41586_022_04459_w
crossref_primary_10_1080_21663831_2020_1772395
crossref_primary_10_1088_1361_6528_ac74ce
crossref_primary_10_1016_j_jmrt_2024_04_096
crossref_primary_10_1111_jace_18474
crossref_primary_10_1007_s40145_020_0373_x
crossref_primary_10_1038_s41467_023_36319_0
crossref_primary_10_1016_j_commatsci_2022_111787
crossref_primary_10_1016_j_msea_2024_146621
crossref_primary_10_1016_j_scriptamat_2024_116297
crossref_primary_10_1080_17452759_2021_1892389
crossref_primary_10_3390_nano12152722
crossref_primary_10_1016_j_actamat_2020_08_043
crossref_primary_10_1080_02670844_2021_1952048
crossref_primary_10_1002_adma_202412954
crossref_primary_10_1016_j_corsci_2024_112452
crossref_primary_10_3389_fbioe_2022_977282
crossref_primary_10_1016_j_corsci_2023_111484
crossref_primary_10_1103_PhysRevB_109_094203
crossref_primary_10_1016_j_jmst_2022_08_018
crossref_primary_10_1016_j_jmst_2023_01_023
crossref_primary_10_1088_2631_7990_abcca8
crossref_primary_10_1016_j_jmst_2022_06_001
crossref_primary_10_1016_j_jacomc_2024_04_001
crossref_primary_10_1016_j_msea_2022_142906
crossref_primary_10_1557_jmr_2020_43
crossref_primary_10_1038_s41467_021_23689_6
crossref_primary_10_1016_j_scriptamat_2019_12_034
crossref_primary_10_1016_j_msea_2024_146433
crossref_primary_10_1016_j_msea_2025_147800
crossref_primary_10_1016_j_msea_2025_147801
crossref_primary_10_1016_j_msea_2024_147767
crossref_primary_10_1016_j_ijplas_2024_104219
crossref_primary_10_3390_met10111491
crossref_primary_10_1016_j_actamat_2025_120935
crossref_primary_10_1016_j_compositesa_2023_107941
crossref_primary_10_1016_j_ijrmhm_2025_107039
crossref_primary_10_1002_mgea_17
crossref_primary_10_1016_j_jmst_2023_01_038
crossref_primary_10_1007_s11665_024_09230_y
crossref_primary_10_1016_j_jallcom_2023_171504
crossref_primary_10_1016_j_scriptamat_2019_11_059
crossref_primary_10_1007_s40843_020_1377_2
crossref_primary_10_1016_j_apmt_2023_101747
crossref_primary_10_1016_j_jmst_2022_09_053
crossref_primary_10_1016_j_intermet_2023_107845
crossref_primary_10_1007_s10853_022_07931_0
crossref_primary_10_1016_j_jallcom_2024_175138
crossref_primary_10_1016_j_surfcoat_2023_129305
crossref_primary_10_1007_s12613_024_2884_x
crossref_primary_10_1016_j_actamat_2021_116955
crossref_primary_10_1016_j_jallcom_2025_178944
crossref_primary_10_1016_j_jmapro_2023_01_064
crossref_primary_10_1039_D0TA10574K
crossref_primary_10_1021_acs_chemrev_3c00081
crossref_primary_10_1016_j_apmt_2022_101649
crossref_primary_10_1038_s41467_022_28687_w
crossref_primary_10_1016_j_scriptamat_2024_116031
crossref_primary_10_1016_j_heliyon_2024_e38420
crossref_primary_10_1016_j_jmst_2023_01_044
crossref_primary_10_1007_s44174_025_00314_4
crossref_primary_10_1016_j_jmst_2021_12_014
crossref_primary_10_1016_j_jallcom_2021_161108
crossref_primary_10_1016_j_matdes_2023_112365
crossref_primary_10_1016_j_actamat_2020_06_023
crossref_primary_10_1016_j_ijplas_2024_104237
crossref_primary_10_1007_s40195_019_00935_x
crossref_primary_10_1007_s40843_022_2254_8
crossref_primary_10_1016_j_jmst_2022_08_046
crossref_primary_10_1007_s11661_019_05344_4
crossref_primary_10_1016_j_scriptamat_2024_116488
crossref_primary_10_1039_D3CC04162J
crossref_primary_10_1016_j_jnucmat_2024_155259
crossref_primary_10_1016_j_matdes_2020_108695
crossref_primary_10_1038_s41467_021_25283_2
crossref_primary_10_1016_j_jallcom_2023_171734
crossref_primary_10_1016_j_matdes_2021_109849
crossref_primary_10_1016_j_ceramint_2023_03_290
crossref_primary_10_1080_14686996_2022_2129444
crossref_primary_10_1016_j_msea_2020_140169
crossref_primary_10_1016_j_msea_2023_145037
crossref_primary_10_1016_j_msea_2023_145036
Cites_doi 10.1016/j.msea.2013.01.025
10.1016/j.msea.2008.05.042
10.1016/0001-6160(62)90098-6
10.1016/j.msea.2003.10.257
10.1088/0959-5309/57/3/302
10.1016/j.jallcom.2014.11.012
10.1038/nmat3115
10.1103/PhysRevB.54.11169
10.1016/j.msea.2006.06.127
10.1103/PhysRevB.59.1758
10.1002/adem.200300567
10.1016/j.jallcom.2013.08.102
10.1016/j.matdes.2010.11.049
10.1017/S1431927602000594
10.1016/j.actamat.2011.06.006
10.1016/j.scriptamat.2004.02.003
10.1038/nature17981
10.1007/BF02663332
10.1002/adma.200600128
10.1103/PhysRevB.40.3616
10.1103/PhysRevLett.77.3865
10.1016/0079-6425(81)90001-3
10.1038/ncomms8748
10.1016/j.actamat.2016.08.072
10.1016/j.msea.2007.08.074
10.1007/BF01589305
10.1016/j.scriptamat.2014.09.031
10.1016/0022-5088(73)90061-1
10.1016/0001-6160(89)90143-0
10.1088/0370-1298/62/1/308
10.1016/j.msec.2014.10.078
10.1002/adma.200904354
10.1016/j.pmatsci.2013.10.001
10.1126/science.1254581
10.1007/s12540-011-1006-2
10.1016/j.scriptamat.2014.10.018
10.1016/0956-7151(90)90126-2
10.1016/j.matlet.2014.05.134
10.1007/s10853-012-6260-2
10.1016/j.ultramic.2006.06.008
10.1016/j.msea.2016.08.040
10.1103/PhysRevLett.65.353
10.1016/S1359-6454(02)00427-5
10.1103/PhysRevLett.116.135504
10.1016/0025-5416(77)90092-1
10.1016/0001-6160(68)90057-6
10.1038/nmat1141
10.1038/ncomms10143
10.1016/j.jnucmat.2015.05.053
10.1038/ncomms9736
10.1103/PhysRevB.49.16223
10.1016/S0031-8914(41)90517-7
10.1179/cmq.1967.6.4.301
10.1016/j.jmbbm.2012.01.017
ContentType Journal Article
Copyright Springer Nature Limited 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Nov 22, 2018
Copyright_xml – notice: Springer Nature Limited 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 22, 2018
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-018-0685-y
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Agricultural Science Database

MEDLINE - Academic




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 550
ExternalDocumentID A573175315
30429610
10_1038_s41586_018_0685_y
Genre Journal Article
GeographicLocations New York
United States--US
GeographicLocations_xml – name: New York
– name: United States--US
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AEZWR
AFBBN
AFFDN
AFHIU
AFHKK
AGCDD
AGGDT
AGQPQ
AHWEU
AIXLP
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Wed Jul 30 10:35:37 EDT 2025
Fri Jul 25 09:02:29 EDT 2025
Tue Jun 17 21:38:32 EDT 2025
Thu Jun 12 23:45:11 EDT 2025
Tue Jun 10 15:34:52 EDT 2025
Tue Jun 10 20:50:08 EDT 2025
Fri Jun 27 05:12:31 EDT 2025
Fri Jun 27 04:36:26 EDT 2025
Mon Jul 21 05:57:31 EDT 2025
Tue Jul 01 00:57:26 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:37:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7732
Keywords Chemical Short-range Order
Wavy Slip
Interstitial Strengthening
Double Cross Slip
High-entropy Alloys (HEA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30429610
PQID 2148961486
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_2133825492
proquest_journals_2148961486
gale_infotracmisc_A573175315
gale_infotracgeneralonefile_A573175315
gale_infotraccpiq_573175315
gale_infotracacademiconefile_A573175315
gale_incontextgauss_ISR_A573175315
gale_incontextgauss_ATWCN_A573175315
pubmed_primary_30429610
crossref_primary_10_1038_s41586_018_0685_y
crossref_citationtrail_10_1038_s41586_018_0685_y
springer_journals_10_1038_s41586_018_0685_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Nov
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Perdew, Burke, Ernzerhof (CR46) 1996; 77
Šob, Kratochvíl, Kroupa (CR56) 1975; 25
Mitchell, Heuer (CR53) 1977; 28
Shen, Oh, Lee (CR22) 2006; 434
Ritchie (CR11) 2011; 10
Zhang (CR34) 2015; 6
Nelson, Riley (CR64) 1945; 57
Wang (CR12) 2016; 120
Wei (CR4) 2011; 32
Yin, Iwasaki, Ping, Nagai (CR16) 2006; 18
CR30
Conrad (CR1) 1981; 26
Ulitchny, Gibala (CR55) 1973; 33
Zou, Ma, Spolenak (CR36) 2015; 6
Yeh (CR7) 2004; 6
Tyson (CR2) 1967; 6
Cantor, Chang, Knight, Vincent (CR6) 2004; 375/377
Pennycook, Rafferty, Nellist (CR24) 2000; 6
Dadfarnia (CR62) 2010; 22
Ramarolahy (CR17) 2012; 9
Zhang (CR8) 2014; 61
An (CR41) 2012
Blöchl, Jepsen, Andersen (CR49) 1994; 49
Senkov (CR37) 2012; 47
Thompson (CR40) 2007; 107
Schuh, Nieh, Iwasaki (CR52) 2003; 51
Hong, Laird (CR26) 1990; 38
Courtney (CR51) 2005
Zhu, Liao (CR13) 2004; 3
Nowick (CR43) 2012
Grandini (CR42) 2008; 21
Li, Pradeep, Deng, Raabe, Tasan (CR9) 2016; 534
Kresse, Joubert (CR45) 1999; 59
Liu, Wang, Zhang, Tang, Zhang (CR32) 2014; 583
Kresse, Furthmüller (CR44) 1996; 54
Cottrell, Bilby (CR14) 1949; 62
Yao, Pradeep, Tasan, Raabe (CR27) 2013; 82
Zunger, Wei, Ferreira, Bernard (CR47) 1990; 65
Talha, Behera, Sinha (CR23) 2015; 47
Kim, Geller, Freeman (CR60) 2004; 50
Mouawad, Boulnat, Fabrègue, Perez, De Carlan (CR3) 2015; 465
Ando, Nakashima, Tsuchiyama, Takaki (CR5) 2008; 486
Wu (CR39) 2014; 130
Gorr (CR38) 2015; 624
Zhang (CR35) 2015; 6
Fleischer (CR25) 1962; 10
Gludovatz (CR10) 2014; 345
Snoek (CR63) 1941; 8
Finlay, Snyder (CR54) 1950; 2
Nakada, Keh (CR58) 1968; 16
Granberg (CR33) 2016; 116
Methfessel, Paxton (CR50) 1989; 40
Press (CR48) 1992
Besse, Castany, Gloriant (CR18) 2011; 59
Wang, Li, Xing, Ou, Sun (CR19) 2015; 96
CR61
Nakada, Keh (CR57) 1971; 2
Li, Ponge, Choi, Raabe (CR59) 2015; 96
Jo, Madakashira, Suh, Han (CR21) 2016; 675
Yoo, Park (CR28) 2008; 496
Sankar, Baligidad, Gokhale (CR20) 2013; 569
Oh (CR15) 2011; 17
Mughrabi, Ackermann, Herz (CR31) 1979
Gerold, Karnthaler (CR29) 1989; 37
H Conrad (685_CR1) 1981; 26
TE Mitchell (685_CR53) 1977; 28
F Yin (685_CR16) 2006; 18
A Ramarolahy (685_CR17) 2012; 9
Y Zhang (685_CR8) 2014; 61
YZ Shen (685_CR22) 2006; 434
RO Ritchie (685_CR11) 2011; 10
JM Oh (685_CR15) 2011; 17
WL Finlay (685_CR54) 1950; 2
B Gludovatz (685_CR10) 2014; 345
M Besse (685_CR18) 2011; 59
B Mouawad (685_CR3) 2015; 465
B Gorr (685_CR38) 2015; 624
Y Zhang (685_CR35) 2015; 6
G Kresse (685_CR44) 1996; 54
J Snoek (685_CR63) 1941; 8
T Ando (685_CR5) 2008; 486
V Gerold (685_CR29) 1989; 37
Z Wang (685_CR12) 2016; 120
A Zunger (685_CR47) 1990; 65
M Ulitchny (685_CR55) 1973; 33
Z Zhang (685_CR34) 2015; 6
MG Jo (685_CR21) 2016; 675
PE Blöchl (685_CR49) 1994; 49
YT Zhu (685_CR13) 2004; 3
SJ Pennycook (685_CR24) 2000; 6
Y Nakada (685_CR57) 1971; 2
JW Yeh (685_CR7) 2004; 6
X Wang (685_CR19) 2015; 96
WH Press (685_CR48) 1992
AS Nowick (685_CR43) 2012
685_CR30
MJ Yao (685_CR27) 2013; 82
M Kim (685_CR60) 2004; 50
Q Wei (685_CR4) 2011; 32
M Talha (685_CR23) 2015; 47
685_CR61
M Dadfarnia (685_CR62) 2010; 22
YJ Li (685_CR59) 2015; 96
H Mughrabi (685_CR31) 1979
Y Zou (685_CR36) 2015; 6
JB Nelson (685_CR64) 1945; 57
M Šob (685_CR56) 1975; 25
AH Cottrell (685_CR14) 1949; 62
ON Senkov (685_CR37) 2012; 47
WR Tyson (685_CR2) 1967; 6
JP Perdew (685_CR46) 1996; 77
K An (685_CR41) 2012
CA Schuh (685_CR52) 2003; 51
G Kresse (685_CR45) 1999; 59
YD Wu (685_CR39) 2014; 130
F Granberg (685_CR33) 2016; 116
M Sankar (685_CR20) 2013; 569
CR Grandini (685_CR42) 2008; 21
Y Nakada (685_CR58) 1968; 16
CM Liu (685_CR32) 2014; 583
ZM Li (685_CR9) 2016; 534
JD Yoo (685_CR28) 2008; 496
M Methfessel (685_CR50) 1989; 40
TH Courtney (685_CR51) 2005
B Cantor (685_CR6) 2004; 375/377
SI Hong (685_CR26) 1990; 38
RL Fleischer (685_CR25) 1962; 10
K Thompson (685_CR40) 2007; 107
30568306 - Nature. 2018 Dec 19
References_xml – volume: 569
  start-page: 132
  year: 2013
  end-page: 136
  ident: CR20
  article-title: Effect of oxygen on microstructure and mechanical properties of niobium
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.01.025
– volume: 496
  start-page: 417
  year: 2008
  end-page: 424
  ident: CR28
  article-title: Microband-induced plasticity in a high Mn–Al–C light steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.05.042
– volume: 10
  start-page: 835
  year: 1962
  end-page: 842
  ident: CR25
  article-title: Solution hardening by tetragonal distortions: application to irradiation hardening in FCC crystals
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(62)90098-6
– volume: 375/377
  start-page: 213
  year: 2004
  end-page: 218
  ident: CR6
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.257
– volume: 57
  start-page: 160
  year: 1945
  ident: CR64
  article-title: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0959-5309/57/3/302
– year: 2005
  ident: CR51
  publication-title: Mechanical Behaviour of Materials
– volume: 624
  start-page: 270
  year: 2015
  end-page: 278
  ident: CR38
  article-title: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.11.012
– year: 1992
  ident: CR48
  publication-title: The Art of Scientific Computing
– volume: 10
  start-page: 817
  year: 2011
  end-page: 822
  ident: CR11
  article-title: The conflicts between strength and toughness
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3115
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR44
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 434
  start-page: 314
  year: 2006
  end-page: 318
  ident: CR22
  article-title: Nitrogen strengthening of interstitial-free steel by nitriding in potassium nitrate salt bath
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.06.127
– ident: CR61
– volume: 59
  start-page: 1758
  year: 1999
  ident: CR45
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 2
  start-page: 277–286
  year: 1950
  ident: CR54
  article-title: Effects of three interstitial solutes (nitrogen, oxygen, and carbon) on the mechanical properties of high-purity, alpha titanium
  publication-title: J. Met.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: CR7
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– start-page: 675
  year: 1979
  end-page: 69
  ident: CR31
  publication-title: Fatigue Mechanisms ASTM STP
– volume: 583
  start-page: 162
  year: 2014
  end-page: 169
  ident: CR32
  article-title: Microstructure and oxidation behavior of new refractory high entropy alloys J
  publication-title: Alloys Compd.
  doi: 10.1016/j.jallcom.2013.08.102
– volume: 21
  start-page: 13
  year: 2008
  end-page: 16
  ident: CR42
  article-title: A low cost automatic system for anelastic relaxations measurements
  publication-title: Rev. Brasil. Apl. Vácuo
– year: 2012
  ident: CR41
  publication-title: VDRIVE-Data Reduction and Interactive Visualization Software for Event Mode Neutron Diffraction. ORNL Report No. ORNL-TM-2012-621
– volume: 32
  start-page: 2934
  year: 2011
  end-page: 2939
  ident: CR4
  article-title: Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.11.049
– volume: 6
  start-page: 343
  year: 2000
  end-page: 352
  ident: CR24
  article-title: Z-contrast imaging in an aberration-corrected scanning transmission electron microscope
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927602000594
– volume: 59
  start-page: 5982
  year: 2011
  end-page: 5988
  ident: CR18
  article-title: Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: a comparative study on the oxygen influence
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.06.006
– volume: 50
  start-page: 1341
  year: 2004
  end-page: 1343
  ident: CR60
  article-title: The effect of interstitial N on grain boundary cohesive strength in Fe
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2004.02.003
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: CR9
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 2
  start-page: 441
  year: 1971
  end-page: 447
  ident: CR57
  article-title: Solid-solution strengthening in Ni-C alloys
  publication-title: Metall. Trans.
  doi: 10.1007/BF02663332
– volume: 18
  start-page: 1541
  year: 2006
  end-page: 1544
  ident: CR16
  article-title: Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600128
– volume: 40
  start-page: 3616
  year: 1989
  ident: CR50
  article-title: High-precision sampling for Brillouin-zone integration in metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3616
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR46
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 26
  start-page: 123
  year: 1981
  end-page: 403
  ident: CR1
  article-title: Effect of interstitial solutes on the strength and ductility of titanium
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/0079-6425(81)90001-3
– volume: 6
  year: 2015
  ident: CR36
  article-title: Ultrastrong ductile and stable high-entropy alloys at small scales
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8748
– volume: 120
  start-page: 228
  year: 2016
  end-page: 239
  ident: CR12
  article-title: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe Ni Mn Al Cr high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.072
– volume: 486
  start-page: 228
  year: 2008
  end-page: 234
  ident: CR5
  article-title: Microstructure and mechanical properties of a high nitrogen titanium alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.08.074
– volume: 82
  start-page: 5
  year: 2013
  end-page: 8
  ident: CR27
  article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility
  publication-title: Scr. Mater.
– volume: 25
  start-page: 872
  year: 1975
  end-page: 890
  ident: CR56
  article-title: Theory of strengthening of alpha titanium by interstitial solutes
  publication-title: Czech. J. Phys.
  doi: 10.1007/BF01589305
– volume: 96
  start-page: 13
  year: 2015
  end-page: 16
  ident: CR59
  article-title: Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.09.031
– volume: 33
  start-page: 105
  year: 1973
  end-page: 116
  ident: CR55
  article-title: The effects of interstitial solute additions on the mechanical properties of niobium and tantalum single crystals
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(73)90061-1
– volume: 37
  start-page: 2177
  year: 1989
  end-page: 2183
  ident: CR29
  article-title: On the origin of planar slip in f.c.c. alloys
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(89)90143-0
– ident: CR30
– volume: 62
  start-page: 49
  year: 1949
  ident: CR14
  article-title: Dislocation theory of yielding and strain ageing of iron
  publication-title: Proc. Phys. Soc. A
  doi: 10.1088/0370-1298/62/1/308
– volume: 47
  start-page: 196
  year: 2015
  end-page: 203
  ident: CR23
  article-title: Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.10.078
– volume: 22
  start-page: 1128
  year: 2010
  end-page: 1135
  ident: CR62
  article-title: Recent advances in the study of structural materials compatibility with hydrogen
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904354
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: CR8
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: CR10
  article-title: A fracture resistant high entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 17
  start-page: 733
  year: 2011
  end-page: 736
  ident: CR15
  article-title: Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-011-1006-2
– volume: 96
  start-page: 37
  year: 2015
  end-page: 40
  ident: CR19
  article-title: Role of oxygen in stress-induced ω phase transformation and {332}<113> mechanical twinning in βTi–20V alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.10.018
– volume: 38
  start-page: 1581
  year: 1990
  end-page: 1594
  ident: CR26
  article-title: Mechanisms of slip mode modification in F.C.C. solid solutions
  publication-title: Acta Metall.
  doi: 10.1016/0956-7151(90)90126-2
– year: 2012
  ident: CR43
  publication-title: Anelastic Relaxation in Crystalline Solids
– volume: 130
  start-page: 277
  year: 2014
  end-page: 280
  ident: CR39
  article-title: A refractory Hf Nb Ti Zr high-entropy alloy with excellent structural stability and tensile properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.05.134
– volume: 47
  start-page: 4062
  year: 2012
  end-page: 4074
  ident: CR37
  article-title: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6260-2
– volume: 107
  start-page: 131
  year: 2007
  end-page: 139
  ident: CR40
  article-title: In situ site-specific specimen preparation for atom probe tomography
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2006.06.008
– volume: 675
  start-page: 92
  year: 2016
  end-page: 98
  ident: CR21
  article-title: Effect of oxygen and nitrogen on microstructure and mechanical properties of vanadium
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.08.040
– volume: 65
  start-page: 353
  year: 1990
  ident: CR47
  article-title: Special quasirandom structures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.353
– volume: 51
  start-page: 431
  year: 2003
  end-page: 443
  ident: CR52
  article-title: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00427-5
– volume: 116
  start-page: 135504
  year: 2016
  ident: CR33
  article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.135504
– volume: 28
  start-page: 81
  year: 1977
  end-page: 97
  ident: CR53
  article-title: Solution hardening by aliovalent cations in ionic crystals
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0025-5416(77)90092-1
– volume: 16
  start-page: 903
  year: 1968
  end-page: 914
  ident: CR58
  article-title: Solid solution strengthening in Fe-N single crystals
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(68)90057-6
– volume: 3
  start-page: 351
  year: 2004
  end-page: 352
  ident: CR13
  article-title: Nanostructured metals: retaining ductility
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1141
– volume: 6
  year: 2015
  ident: CR34
  article-title: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10143
– volume: 465
  start-page: 54
  year: 2015
  end-page: 62
  ident: CR3
  article-title: Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.05.053
– volume: 6
  year: 2015
  ident: CR35
  article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9736
– volume: 49
  start-page: 16223
  year: 1994
  ident: CR49
  article-title: Improved tetrahedron method for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.16223
– volume: 8
  start-page: 711
  year: 1941
  end-page: 733
  ident: CR63
  article-title: Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron
  publication-title: Physica
  doi: 10.1016/S0031-8914(41)90517-7
– volume: 6
  start-page: 301
  year: 1967
  end-page: 332
  ident: CR2
  article-title: Strengthening of hcp Zr, Ti and Hf by interstitial solutes—a review
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.1967.6.4.301
– volume: 9
  start-page: 83
  year: 2012
  end-page: 90
  ident: CR17
  article-title: Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.01.017
– volume: 6
  start-page: 343
  year: 2000
  ident: 685_CR24
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927602000594
– volume: 534
  start-page: 227
  year: 2016
  ident: 685_CR9
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 8
  start-page: 711
  year: 1941
  ident: 685_CR63
  publication-title: Physica
  doi: 10.1016/S0031-8914(41)90517-7
– volume: 116
  start-page: 135504
  year: 2016
  ident: 685_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.135504
– volume: 496
  start-page: 417
  year: 2008
  ident: 685_CR28
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.05.042
– volume: 96
  start-page: 13
  year: 2015
  ident: 685_CR59
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.09.031
– volume: 6
  start-page: 299
  year: 2004
  ident: 685_CR7
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 57
  start-page: 160
  year: 1945
  ident: 685_CR64
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0959-5309/57/3/302
– volume: 37
  start-page: 2177
  year: 1989
  ident: 685_CR29
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(89)90143-0
– volume: 345
  start-page: 1153
  year: 2014
  ident: 685_CR10
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 569
  start-page: 132
  year: 2013
  ident: 685_CR20
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.01.025
– volume: 6
  start-page: 301
  year: 1967
  ident: 685_CR2
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.1967.6.4.301
– volume: 33
  start-page: 105
  year: 1973
  ident: 685_CR55
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(73)90061-1
– volume: 486
  start-page: 228
  year: 2008
  ident: 685_CR5
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.08.074
– volume: 583
  start-page: 162
  year: 2014
  ident: 685_CR32
  publication-title: Alloys Compd.
  doi: 10.1016/j.jallcom.2013.08.102
– start-page: 675
  volume-title: Fatigue Mechanisms ASTM STP
  year: 1979
  ident: 685_CR31
– volume: 61
  start-page: 1
  year: 2014
  ident: 685_CR8
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 675
  start-page: 92
  year: 2016
  ident: 685_CR21
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.08.040
– volume: 130
  start-page: 277
  year: 2014
  ident: 685_CR39
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.05.134
– volume: 59
  start-page: 5982
  year: 2011
  ident: 685_CR18
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.06.006
– volume: 54
  start-page: 11169
  year: 1996
  ident: 685_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 107
  start-page: 131
  year: 2007
  ident: 685_CR40
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2006.06.008
– volume: 51
  start-page: 431
  year: 2003
  ident: 685_CR52
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00427-5
– volume: 62
  start-page: 49
  year: 1949
  ident: 685_CR14
  publication-title: Proc. Phys. Soc. A
  doi: 10.1088/0370-1298/62/1/308
– volume: 32
  start-page: 2934
  year: 2011
  ident: 685_CR4
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.11.049
– volume: 465
  start-page: 54
  year: 2015
  ident: 685_CR3
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.05.053
– volume: 47
  start-page: 4062
  year: 2012
  ident: 685_CR37
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6260-2
– volume: 96
  start-page: 37
  year: 2015
  ident: 685_CR19
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.10.018
– volume: 18
  start-page: 1541
  year: 2006
  ident: 685_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600128
– volume: 77
  start-page: 3865
  year: 1996
  ident: 685_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 38
  start-page: 1581
  year: 1990
  ident: 685_CR26
  publication-title: Acta Metall.
  doi: 10.1016/0956-7151(90)90126-2
– volume-title: Mechanical Behaviour of Materials
  year: 2005
  ident: 685_CR51
– volume: 22
  start-page: 1128
  year: 2010
  ident: 685_CR62
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904354
– volume-title: Anelastic Relaxation in Crystalline Solids
  year: 2012
  ident: 685_CR43
– volume: 624
  start-page: 270
  year: 2015
  ident: 685_CR38
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.11.012
– volume: 6
  year: 2015
  ident: 685_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10143
– volume: 9
  start-page: 83
  year: 2012
  ident: 685_CR17
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.01.017
– volume: 49
  start-page: 16223
  year: 1994
  ident: 685_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.16223
– volume: 50
  start-page: 1341
  year: 2004
  ident: 685_CR60
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2004.02.003
– volume: 434
  start-page: 314
  year: 2006
  ident: 685_CR22
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.06.127
– volume: 82
  start-page: 5
  year: 2013
  ident: 685_CR27
  publication-title: Scr. Mater.
– volume: 47
  start-page: 196
  year: 2015
  ident: 685_CR23
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.10.078
– volume: 6
  year: 2015
  ident: 685_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9736
– volume: 28
  start-page: 81
  year: 1977
  ident: 685_CR53
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0025-5416(77)90092-1
– volume: 40
  start-page: 3616
  year: 1989
  ident: 685_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3616
– volume-title: The Art of Scientific Computing
  year: 1992
  ident: 685_CR48
– volume: 2
  start-page: 277–286
  year: 1950
  ident: 685_CR54
  publication-title: J. Met.
– volume: 16
  start-page: 903
  year: 1968
  ident: 685_CR58
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(68)90057-6
– volume: 2
  start-page: 441
  year: 1971
  ident: 685_CR57
  publication-title: Metall. Trans.
  doi: 10.1007/BF02663332
– volume: 59
  start-page: 1758
  year: 1999
  ident: 685_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 17
  start-page: 733
  year: 2011
  ident: 685_CR15
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-011-1006-2
– volume: 3
  start-page: 351
  year: 2004
  ident: 685_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1141
– ident: 685_CR61
– volume-title: VDRIVE-Data Reduction and Interactive Visualization Software for Event Mode Neutron Diffraction. ORNL Report No. ORNL-TM-2012-621
  year: 2012
  ident: 685_CR41
– volume: 21
  start-page: 13
  year: 2008
  ident: 685_CR42
  publication-title: Rev. Brasil. Apl. Vácuo
– volume: 26
  start-page: 123
  year: 1981
  ident: 685_CR1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/0079-6425(81)90001-3
– volume: 375/377
  start-page: 213
  year: 2004
  ident: 685_CR6
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.257
– volume: 120
  start-page: 228
  year: 2016
  ident: 685_CR12
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.072
– volume: 65
  start-page: 353
  year: 1990
  ident: 685_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.353
– volume: 10
  start-page: 817
  year: 2011
  ident: 685_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3115
– ident: 685_CR30
– volume: 6
  year: 2015
  ident: 685_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8748
– volume: 10
  start-page: 835
  year: 1962
  ident: 685_CR25
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(62)90098-6
– volume: 25
  start-page: 872
  year: 1975
  ident: 685_CR56
  publication-title: Czech. J. Phys.
  doi: 10.1007/BF01589305
– reference: 30568306 - Nature. 2018 Dec 19;:
SSID ssj0005174
Score 2.7128012
Snippet Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 546
SubjectTerms 119/118
639/301/1023/1026
639/301/1023/303
Alloying elements
Alloys
Carbon
Chemical properties
Cross slip
Cubic lattice
Deformation mechanisms
Dislocation
Dislocations
Doping
Ductility
Entropy
Hafnium base alloys
Heavy metals
High entropy alloys
Humanities and Social Sciences
Interstitial impurities
Interstitials
Letter
Mechanical properties
Metals (Materials)
multidisciplinary
Nitrogen
Nuclear facilities
Organic chemistry
Oxides
Oxygen
Science
Science (multidisciplinary)
Single crystals
Solid solutions
Specialty metals industry
Stacking fault energy
Strain hardening
Strength
Titanium
Zirconium
Title Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
URI https://link.springer.com/article/10.1038/s41586-018-0685-y
https://www.ncbi.nlm.nih.gov/pubmed/30429610
https://www.proquest.com/docview/2148961486
https://www.proquest.com/docview/2133825492
Volume 563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviI2vsDEZNPE1RcuH89EnVKqWgUSFRif6Zjm201VCSUdatPz33DlOu1RjL3mof47S8_l89p1_R8ixFlr6QQ57E5YwlyU6cDMVgTGMRaZ0JrzQ3OP-Po7PLti3aTS1B26VTatsbaIx1KqUeEZ-GoDf3kPWyvjT4srFqlEYXbUlNO6TXaQuw5SuZJpsUjy2WJjbqGaYnlawcKW4l06x7Erk1p11ads631ietuKlZhkaPSaPrP9I-82A75F7utgnD0wep6z2yZ6dqxV9bwmlPzwhk2FxaQL9FG-GFLPlJRWFosj0ipmxNZ0XVFAkLnbxrLdc1BTD8TX9OxfUcHNC1_K6Bl2jJgVdX-vqKbkYDSeDM9dWU3BlzLylq-IsljL3wkDkeeileSwZbI8ky6JESJ8FwpdCptLXGJwUIvCUDOG3VATgpahe-IzsFGWhXxCaKE_0WMxSpcE7ACdDASJOlK9VL09k4BCvlSWXlmocK1785ibkHaa8ET8H8XMUP68d8nHdZdHwbNwFPsYB4shfUWCCzEysqor3J78GY96PEvSJQj9yyJvbYF9_nndA7ywoL-EbQQTNtQT4p8iM1UEedJByMb_iN1rfdlpnzSDf9prDDhCms-w2t1rHrTmp-Eb5HfJ63Yw9MUWu0OUKMWFotvsg_ueNtq4liWdW0N9zyEmrvpuX_1fML-_-lAPyMMD5Yy5mHpKd5Z-VfgUe2jI7MtMQnunAx-foyxHZ_Twc_zj_B--INxI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviI2vsAEGjW9FS5zPPiBUjU0t2_oAndY349hOVwklHWlh-af4G7lzknapxt72Gp-j5Hy-O_vufkfIjhZauiyFs4kf-bYfaWYnKgBlGIpE6UQ4nqnjPh6EvRP_6ygYrZG_TS0MplU2OtEoapVLvCPfZeC3dxC1Mvw8PbexaxRGV5sWGpVYHOryDxzZik_9L7C-rxk72B_u9ey6q4AtQ9-Z2SpMQilTx2MiTT0nTkPpwzFB-kkQCen6TLhSyFi6GoN0QjBHSQ-exYKBtVYIvgQq_xYYXgd3VDSKliklK6jPTRTVi3cLMJQxnt1jbPMS2GXLDq5ag0vmcCU-a8zewX1yr_ZXabcSsA2yprNNctvkjcpik2zUuqGg72oA6_cPyHA_OzOJBRQrUbLx7IyKTFFElsVM3JJOMiooAiXbeLecT0uK4f-S_p4IarBAYWp-UYJsU5Pyri908ZCc3AifH5H1LM_0E0Ij5YiOH_qx0uCNgFOjgCKMlKtVJ40ks4jT8JLLGtocO2z85CbE7sW8Yj8H9nNkPy8t8mExZVrhelxHvIMLxBEvI8OEnLGYFwXvDk_3BrwbROiDeW5gkVdXkfW_f2sRva2J0hy-EVhQlUHAnyISV4tyq0Upp5Nzfmn0TWt0XC3yVa_ZbhGC-pDt4UbqeK2-Cr7cbBZ5uRjGmZiSl-l8jjSeZ64XgP2PK2ldcBLvyGC-Y5GPjfguX_5fNj-9_lNekDu94fERP-oPDrfIXYZ7yRSFbpP12a-5fgbe4Sx5brYkJT9uWgf8AyNCcYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAvExtfZQMMGh9jipo4n31AqNpWrQwqBJ3om3Fsp6uEko60sPxr_HXcOUm7VGNve43PUXI-3519d78jZFcLLR2WwNnECz3LCzWzYuWDMgxErHQsbNfUcX8eBMen3seRP1ojf-taGEyrrHWiUdQqk3hH3mbgt3cQtTJoJ1VaxJfD3ofpuYUdpDDSWrfTKEXkRBd_4PiWv-8fwlq_Yqx3NDw4tqoOA5YMPHtmqSAOpExsl4kkce0oCaQHRwbpxX4opOMx4UghI-loDNgJwWwlXXgWCQaWWyEQE6j_W6HrO7jHwlG4TC9ZQYCuI6pu1M7BaEZ4jo-w5YtvFQ2buGoZLpnGlVitMYG9e2Sj8l1ptxS2TbKm0y1y2-SQynyLbFZ6IqdvKzDrvftkeJSemSQDilUp6Xh2RkWqKKLMYlZuQScpFRRBky28Z86mBcVUgIL-nghqcEFhanZRgJxTk_6uL3T-gJzeCJ8fkvU0S_VjQkNli44XeJHS4JmAg6OAIgiVo1UnCSVrEbvmJZcVzDl22_jJTbjdjXjJfg7s58h-XrTIu8WUaYnxcR3xLi4QR-yMFKVwLOZ5zrvD7wcD3vVD9Mdcx2-Rl1eR9b99bRC9qYiSDL4RWFCWRMCfIipXg3K7QSmnk3N-afR1Y3RcLvJVr9lpEIIqkc3hWup4pcpyvtx4LfJiMYwzMT0v1dkcaVzXXDUA-x-V0rrgJN6XwXy7RfZr8V2-_L9sfnL9pzwnd2D380_9wck2uctwK5n60B2yPvs110_BUZzFz8yOpOTHTauAf8CKdb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+strength+and+ductility+in+a+high-entropy+alloy+via+ordered+oxygen+complexes&rft.jtitle=Nature+%28London%29&rft.au=Lei%2C+Zhifeng&rft.au=Liu%2C+Xiongjun&rft.au=Wu%2C+Yuan&rft.au=Wang%2C+Hui&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=563&rft.issue=7732&rft.spage=546&rft_id=info:doi/10.1038%2Fs41586-018-0685-y&rft.externalDocID=A573175315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon