Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability
Highlights MoSe 2 /MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe 2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The obtained MoSe 2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Interface engineering has...
Saved in:
Published in | Nano-Micro Letters Vol. 12; no. 1; pp. 171 - 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Science and Business Media LLC
25.08.2020
Springer Singapore Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
MoSe
2
/MoC/C multiphase boundaries boost ionic transfer kinetics.
MoSe
2
(5–10 nm) with rich edge sites is uniformly coated in N-doped framework.
The obtained MoSe
2
nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell.
Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe
2
/C composite as an intermediate phase to alter the bridging between MoSe
2
- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe
2
/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe
2
nanosheets on the 3D carbon framework, producing much smaller MoSe
2
nanodots. The obtained MoSe
2
nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g
−1
) and excellent rate capability. Moreover, the constructed LiFePO
4
//MoSe
2
/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g
−1
after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials. |
---|---|
AbstractList | Highlights
MoSe
2
/MoC/C multiphase boundaries boost ionic transfer kinetics.
MoSe
2
(5–10 nm) with rich edge sites is uniformly coated in N-doped framework.
The obtained MoSe
2
nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell.
Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe
2
/C composite as an intermediate phase to alter the bridging between MoSe
2
- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe
2
/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe
2
nanosheets on the 3D carbon framework, producing much smaller MoSe
2
nanodots. The obtained MoSe
2
nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g
−1
) and excellent rate capability. Moreover, the constructed LiFePO
4
//MoSe
2
/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g
−1
after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials. Highlights MoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The obtained MoSe2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Abstract Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe2/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework, producing much smaller MoSe2 nanodots. The obtained MoSe2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g−1) and excellent rate capability. Moreover, the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g−1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials. HighlightsMoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics.MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework.The obtained MoSe2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell.Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe2/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework, producing much smaller MoSe2 nanodots. The obtained MoSe2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g−1) and excellent rate capability. Moreover, the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g−1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials. |
ArticleNumber | 171 |
Author | Zhang, Wenchao Pan, Anqiang Liang, Shuquan Zhou, Haoshen Luo, Yilin Qiao, Yun Cao, Xinxin Xie, Xuefang Chen, Jing |
Author_xml | – sequence: 1 fullname: Chen, Jing – sequence: 2 fullname: Luo, Yilin – sequence: 3 orcidid: 0000-0001-9810-2248 fullname: Zhang, Wenchao – sequence: 4 fullname: Qiao, Yun – sequence: 5 orcidid: 0000-0001-7807-9714 fullname: Cao, Xinxin – sequence: 6 orcidid: 0000-0003-0663-7232 fullname: Xie, Xuefang – sequence: 7 fullname: Zhou, Haoshen – sequence: 8 fullname: Pan, Anqiang – sequence: 9 fullname: Liang, Shuquan |
BackLink | https://cir.nii.ac.jp/crid/1872272492423957888$$DView record in CiNii |
BookMark | eNp9ks1u1DAUhSNUREvpC7CyBItuAv63s0GiA4WRilh0WFuOczPjkrEHx0PVJ-F1cZoi1C5m4cS6-c7Rubn3ZXUUYoCqek3wO4Kxej9yrCmu8XSwIKTmz6oTSgSuhRDkqNxZKUqF5XF1No6-xYJyRZXgL6pjxgnTROmT6s9qH3xYo2XIkHrrAF0k362n0gXkW4CAvsVroMiGDq02CaD-5LcQRh-DHdDCpjYGdJnsFm5j-onau2LlYtrFZHNhUOyLwWL230LnbQaUI7qIcczoyueN32_RdS74GordzrZ-8PnuVfW8t8MIZw_v0-rH5efV4mt99f3LcvHxqnaS41x3THSE0dJXi5VUHQjqmOy5VJS4vmlbyS1QEE2HqeW9kwpcX-5MaCdb6NhptZx9u2hvzC75rU13Jlpv7gsxrY1N2bsBDEjaNBo6ygnm1oIlvAGmFGmZpkrL4vVh9trt29Kqg5CTHR6ZPv4S_Mas42-jlJrSF4PzB4MUf-1hzGbrRwfDYAPE_Wio4CW5IpgV9M0T9CbuUxlJobhijElJyGGqII3SVBdKz5RLcRwT9Mb5fD-9ktIPhmAzrZyZV87g6UwrZ3iR0ifSf90eFLFZNBY4rCH9T3VQ9XZWBe9LwOlJtKJl9ryh5b80Qmmt2V--6POb |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103696 crossref_primary_10_1016_j_jallcom_2023_169656 crossref_primary_10_1039_D0TA11030B crossref_primary_10_1002_cey2_191 crossref_primary_10_3390_nano11061517 crossref_primary_10_1016_j_ijhydene_2023_06_245 crossref_primary_10_1002_ange_202212439 crossref_primary_10_1016_j_cej_2023_148499 crossref_primary_10_1007_s40820_021_00758_5 crossref_primary_10_1021_acsami_0c22923 crossref_primary_10_1016_j_jallcom_2024_174373 crossref_primary_10_1016_j_cej_2021_129770 crossref_primary_10_1016_j_jallcom_2024_174177 crossref_primary_10_1002_smll_202203630 crossref_primary_10_1002_smll_202405921 crossref_primary_10_1007_s40820_022_00893_7 crossref_primary_10_1002_cssc_202300984 crossref_primary_10_1016_j_physb_2023_415643 crossref_primary_10_2139_ssrn_4054565 crossref_primary_10_1007_s10008_023_05406_z crossref_primary_10_1016_j_jpowsour_2021_230225 crossref_primary_10_1002_aenm_202003058 crossref_primary_10_1002_smtd_202201025 crossref_primary_10_1016_j_est_2023_107997 crossref_primary_10_1002_adfm_202213009 crossref_primary_10_1016_j_apsusc_2023_156532 crossref_primary_10_1002_smtd_202401974 crossref_primary_10_1016_j_apsusc_2022_152491 crossref_primary_10_1039_D2MA00091A crossref_primary_10_1016_j_ccr_2024_215725 crossref_primary_10_1016_j_cclet_2023_108263 crossref_primary_10_1039_D2QI02291E crossref_primary_10_2139_ssrn_4008695 crossref_primary_10_1002_aenm_202202318 crossref_primary_10_1016_j_jallcom_2023_169157 crossref_primary_10_1016_j_physb_2023_415312 crossref_primary_10_1021_acsaem_2c03779 crossref_primary_10_1088_1361_6463_ac7111 crossref_primary_10_1016_j_fuel_2024_131668 crossref_primary_10_1016_j_cej_2024_149520 crossref_primary_10_1021_acsaem_2c00141 crossref_primary_10_1021_acs_energyfuels_3c03250 crossref_primary_10_1002_adfm_202204364 crossref_primary_10_1016_j_ensm_2022_02_053 crossref_primary_10_1002_aenm_202301125 crossref_primary_10_1007_s11664_023_10453_3 crossref_primary_10_1016_j_cej_2023_143374 crossref_primary_10_3390_met14050595 crossref_primary_10_1002_batt_202300462 crossref_primary_10_1007_s12274_023_5945_y crossref_primary_10_1002_aenm_202202600 crossref_primary_10_1007_s12598_022_02253_1 crossref_primary_10_1002_adfm_202204833 crossref_primary_10_1016_j_ensm_2021_01_027 crossref_primary_10_1007_s12598_022_02131_w crossref_primary_10_1016_j_apmate_2023_100169 crossref_primary_10_1002_anie_202212439 crossref_primary_10_1016_j_apsusc_2022_154934 |
Cites_doi | 10.1038/s41557-018-0035-6 10.1016/j.joule.2018.04.022 10.1007/s40820-020-0402-x 10.1002/adfm.201700522 10.1039/c8cs00024g 10.1016/j.ensm.2018.02.012 10.1016/j.electacta.2017.09.129 10.1039/c6cs00823b 10.1039/c9ta06870h 10.1007/s40820-018-0212-6 10.1021/acsnano.9b00816 10.1038/ncomms12122 10.1021/acsnano.6b05566 10.1002/aenm.201801477 10.1016/j.nanoen.2019.06.042 10.1021/acsnano.7b03329 10.1016/j.electacta.2018.09.154 10.1002/aenm.201803768 10.1039/c8cs00649k 10.1016/j.electacta.2018.04.185 10.1016/j.apsusc.2019.03.165 10.1016/j.ensm.2018.04.009 10.1007/s40820-019-0311-z 10.1039/c7ee00388a 10.1126/science.aao3691 10.1016/j.ensm.2019.02.023 10.1016/j.nanoen.2018.03.002 10.1016/j.nanoen.2017.01.014 10.1016/j.nanoen.2018.06.045 10.1039/c4cs00350k 10.1039/d0nr01528h 10.1039/c6ta04390a 10.1038/s41563-019-0366-8 10.1039/c8ta03176b 10.1021/acsnano.8b01703 10.1016/j.ensm.2018.10.019 10.1039/c7ta06286a 10.1038/ncomms15894 10.1039/c5ta02100f 10.1126/sciadv.aav7412 10.1007/s40820-019-0361-2 10.1016/j.apmt.2017.01.006 10.1039/c7ta05946a 10.1002/adfm.201605017 10.1002/anie.201706426 10.1039/c7ee00329c 10.1016/j.apcatb.2019.118531 10.1021/acsami.7b19739 10.1021/acsnano.8b09548 10.1021/jacs.6b12185 10.1016/j.nanoen.2017.02.011 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-020-00511-4 |
DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_e62998ed24104aaea149e3771b382786 PMC7770767 10_1007_s40820_020_00511_4 |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 9D9 9DB AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC PTHSS Q-- R-B RNS RPM RT2 RYH SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU 92R 93N AAXDM ADINQ AHSBF C1A EJD IPNFZ RIG RSV AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c640t-d35d132727b0767de52c36f46721cf9bb64ae2e59d02a4fc67ecfd02358c6bed3 |
IEDL.DBID | BENPR |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:31:04 EDT 2025 Thu Aug 21 17:49:14 EDT 2025 Fri Jul 11 06:57:58 EDT 2025 Wed Aug 13 06:08:47 EDT 2025 Wed Aug 13 09:39:21 EDT 2025 Tue Jul 01 00:55:45 EDT 2025 Thu Apr 24 22:55:04 EDT 2025 Fri Feb 21 02:35:51 EST 2025 Fri Jun 27 00:16:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | MoSe nanodots MoC Heterostructure Battery Interface engineering Porous carbon framework |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-d35d132727b0767de52c36f46721cf9bb64ae2e59d02a4fc67ecfd02358c6bed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7807-9714 0000-0001-9810-2248 0000-0003-0663-7232 |
OpenAccessLink | https://www.proquest.com/docview/2473336611?pq-origsite=%requestingapplication% |
PMID | 34138178 |
PQID | 2436697828 |
PQPubID | 2044332 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e62998ed24104aaea149e3771b382786 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770767 proquest_miscellaneous_2542357103 proquest_journals_2473336611 proquest_journals_2436697828 crossref_citationtrail_10_1007_s40820_020_00511_4 crossref_primary_10_1007_s40820_020_00511_4 springer_journals_10_1007_s40820_020_00511_4 nii_cinii_1872272492423957888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-25 |
PublicationDateYYYYMMDD | 2020-08-25 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Nano-Micro Letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationYear | 2020 |
Publisher | Springer Science and Business Media LLC Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Zavabeti, Jannat, Zhong, Haidry, Yao, Ou (CR3) 2020; 12 Chen, Huang, Hu, Fan, Shang (CR9) 2019; 11 Kou, Wang, Gu, Xiong, Zheng (CR30) 2019; 9 Zhang, Liu, Guo (CR17) 2019; 5 Chao, Zhu, Yang, Xia, Liu (CR49) 2016; 7 Yang, Tang, Zhang, Zhang, Liang (CR36) 2017; 10 Rhodes, Chae, Ribeiro-Palau, Hone (CR2) 2019; 18 Zhao, Cai, Yang, Song, Neale (CR28) 2018; 47 Jang, Li, Chung, Xu, Jung (CR22) 2017; 8 Ge, Hou, Banks, Foster, Li (CR29) 2018; 12 Zheng, Lu, Amine, Pan (CR15) 2017; 33 Zhang, Mao, Li, Chen, Guo (CR18) 2017; 139 Xu, Zhu, Zou, Liu, Li (CR8) 2020; 12 Shi, Nie, Shao, Gao, Lin (CR37) 2017; 10 Deng, Qi, Li, Xiao, Yang (CR39) 2018; 277 Zhu, Li, Deng, He, Liu (CR24) 2017; 27 Zhu, Chen, Wang, Ma, Hu (CR50) 2018; 14 Xiang, Tao, Xu, Fang, Wu (CR14) 2017; 11 Wu, Wang, Liu, Xia, Xuan (CR23) 2017; 32 Lee, Kim, Choi, Seo, Choi (CR6) 2019; 63 Eftelthari (CR10) 2017; 8 Wang, Wang, Zhang, Liu, Shi (CR19) 2020; 12 Mariano, McKelvey, White, Kanan (CR26) 2017; 358 Yu, Nam, He, Wu, Zhang (CR34) 2018; 10 Xiao, Zhang, Chen, Xu, Deng (CR7) 2018; 10 Yun, Lu, Zhang, Tan, Zhang (CR16) 2018; 57 Vikraman, Hussain, Karuppasamy, Feroze, Kathalingam (CR32) 2020; 264 Niu, Yang, Wang, Zhang, Fan, Yang, Qian (CR13) 2017; 27 Zhang, Wang, Jin, Zhang, Wen, Yang (CR40) 2018; 12 Zhang, Pang, Sencadas, Guo (CR20) 2018; 2 Xiao, Wang, Urbankowski, Gogotsi (CR1) 2018; 47 Ge, Fan, Wang, Zhang, Liu (CR38) 2018; 8 Hu, Zhang, Liu, Mei, Huang (CR11) 2015; 44 Djire, Siegel, Ajenifujah, He, Thompson (CR51) 2018; 51 Lu, Yuan, Zhao, Zhang, Zhang, Li (CR21) 2017; 46 Su, Cao, Kong, Wang, Peng (CR43) 2018; 292 Chao, Liang, Chen, Bai, Shen (CR48) 2016; 10 Hu, Wu, Han, He, Ni, Chen (CR5) 2018; 47 Chen, Lv, Sun, Hu, Tao, Wang (CR31) 2018; 6 Wang, Peng, Zhang, Fu, Li (CR45) 2017; 256 Liu, Zhu, Chen (CR41) 2015; 3 Lin, Lei, Zhang, Liu, Wallace, Chen (CR4) 2019; 19 Kim, Nguyen, Kim, Hur (CR47) 2019; 481 Fang, Wang, Zhou, Lei, Chen (CR27) 2019; 13 Huang, Cui, Liu, Bi, Zhang (CR12) 2019; 13 Chen, Pan, Wang, Cao, Zhang (CR33) 2018; 21 Meng, Zheng, Qin, Zhao, Cao (CR25) 2017; 5 Luo, Zhou, Wang, Fang, Pan, Liang (CR44) 2016; 4 Yousaf, Wang, Chen, Wang, Aftab (CR42) 2018; 10 Su, Cao, Yu, Kong, Wang (CR35) 2019; 7 Zheng, Chen, Chen, Wei (CR46) 2017; 5 Q Su (511_CR43) 2018; 292 W Zhang (511_CR18) 2017; 139 JY Wang (511_CR45) 2017; 256 RG Mariano (511_CR26) 2017; 358 W Lu (511_CR21) 2017; 46 JM Ge (511_CR38) 2018; 8 D Rhodes (511_CR2) 2019; 18 Z Hu (511_CR5) 2018; 47 WC Zhang (511_CR20) 2018; 2 J Chen (511_CR33) 2018; 21 X Chen (511_CR31) 2018; 6 M Deng (511_CR39) 2018; 277 YJ Yang (511_CR36) 2017; 10 KI Jang (511_CR22) 2017; 8 T Meng (511_CR25) 2017; 5 J Zheng (511_CR15) 2017; 33 SP Zhang (511_CR40) 2018; 12 J Xiao (511_CR7) 2018; 10 M Yousaf (511_CR42) 2018; 10 T Xiang (511_CR14) 2017; 11 H Xu (511_CR8) 2020; 12 Y Yu (511_CR34) 2018; 10 Z Kou (511_CR30) 2019; 9 Q Su (511_CR35) 2019; 7 A Zavabeti (511_CR3) 2020; 12 X Zhao (511_CR28) 2018; 47 L Lin (511_CR4) 2019; 19 P Ge (511_CR29) 2018; 12 ZG Luo (511_CR44) 2016; 4 Z Wu (511_CR23) 2017; 32 WC Zhang (511_CR17) 2019; 5 H Kim (511_CR47) 2019; 481 C Zheng (511_CR46) 2017; 5 X Xiao (511_CR1) 2018; 47 A Djire (511_CR51) 2018; 51 Q Yun (511_CR16) 2018; 57 Z Shi (511_CR37) 2017; 10 A Eftelthari (511_CR10) 2017; 8 XL Hu (511_CR11) 2015; 44 GZ Fang (511_CR27) 2019; 13 S Zhu (511_CR24) 2017; 27 FE Niu (511_CR13) 2017; 27 J Lee (511_CR6) 2019; 63 DL Chao (511_CR48) 2016; 10 Y Liu (511_CR41) 2015; 3 H Huang (511_CR12) 2019; 13 S Chen (511_CR9) 2019; 11 K Wang (511_CR19) 2020; 12 DL Chao (511_CR49) 2016; 7 G Zhu (511_CR50) 2018; 14 D Vikraman (511_CR32) 2020; 264 |
References_xml | – volume: 10 start-page: 638 year: 2018 end-page: 643 ident: CR34 article-title: High phase-purity 1T′-MoS - and 1T′-MoSe -layered crystals publication-title: Nat. Chem. doi: 10.1038/s41557-018-0035-6 – volume: 2 start-page: 1534 year: 2018 end-page: 1547 ident: CR20 article-title: Understanding high-energy-density Sn P anodes for potassium-ion batteries publication-title: Joule doi: 10.1016/j.joule.2018.04.022 – volume: 12 start-page: 66 year: 2020 ident: CR3 article-title: Two-dimensional materials in large-areas: synthesis, properties and applications publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0402-x – volume: 27 start-page: 1700522 year: 2017 ident: CR13 article-title: MoSe -covered n, p-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700522 – volume: 47 start-page: 3100 year: 2018 end-page: 3128 ident: CR5 article-title: Two-dimensional transition metal dichalcogenides: interface and defect engineering publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00024g – volume: 12 start-page: 310 year: 2018 end-page: 323 ident: CR29 article-title: Binding MoSe with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.02.012 – volume: 256 start-page: 19 year: 2017 end-page: 27 ident: CR45 article-title: Construction of n-doped carbon@MoSe core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.129 – volume: 46 start-page: 2199 year: 2017 end-page: 2236 ident: CR21 article-title: Porous membranes in secondary battery technologies publication-title: Chem. Soc. Rev. doi: 10.1039/c6cs00823b – volume: 7 start-page: 22871 year: 2019 end-page: 22878 ident: CR35 article-title: Binding MoSe with dual protection carbon for high-performance sodium storage publication-title: J. Mater. Chem. A doi: 10.1039/c9ta06870h – volume: 10 start-page: 60 year: 2018 ident: CR7 article-title: Enhanced performance of a monolayer MoS /WSe heterojunction as a photoelectrochemical cathode publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0212-6 – volume: 13 start-page: 5635 year: 2019 end-page: 5645 ident: CR27 article-title: Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction publication-title: ACS Nano doi: 10.1021/acsnano.9b00816 – volume: 7 start-page: 12122 year: 2016 ident: CR49 article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance publication-title: Nat. Commun. doi: 10.1038/ncomms12122 – volume: 10 start-page: 10211 year: 2016 end-page: 10219 ident: CR48 article-title: Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays publication-title: ACS Nano doi: 10.1021/acsnano.6b05566 – volume: 8 start-page: 1801477 year: 2018 ident: CR38 article-title: MoSe /n-doped carbon as anodes for potassium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801477 – volume: 63 start-page: 103846 year: 2019 ident: CR6 article-title: In-situ coalesced vacancies on MoSe mimicking noble metal: unprecedented tafel reaction in hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.042 – volume: 11 start-page: 6483 year: 2017 end-page: 6491 ident: CR14 article-title: Stable 1t-MoSe and carbon nanotube hybridized flexible film: binder-free and high-performance li-ion anode publication-title: ACS Nano doi: 10.1021/acsnano.7b03329 – volume: 292 start-page: 339 year: 2018 end-page: 346 ident: CR43 article-title: Carbon-encapsulated MoSe /C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storage performances publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.154 – volume: 9 start-page: 1803768 year: 2019 ident: CR30 article-title: Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803768 – volume: 47 start-page: 8744 year: 2018 end-page: 8765 ident: CR1 article-title: Topochemical synthesis of 2D materials publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00649k – volume: 277 start-page: 205 year: 2018 end-page: 210 ident: CR39 article-title: MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.185 – volume: 481 start-page: 1196 year: 2019 end-page: 1205 ident: CR47 article-title: Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.165 – volume: 14 start-page: 246 year: 2018 end-page: 252 ident: CR50 article-title: High energy density hybrid lithium-ion capacitor enabled by Co ZnC@n-doped carbon nanopolyhedra anode and microporous carbon cathode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.04.009 – volume: 11 start-page: 80 year: 2019 ident: CR9 article-title: Boosting sodium storage of Fe S/MoS composite via heterointerface engineering publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0311-z – volume: 10 start-page: 1262 year: 2017 end-page: 1271 ident: CR37 article-title: Phosphorus-Mo C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation publication-title: Energy Environ. Sci. doi: 10.1039/c7ee00388a – volume: 358 start-page: 1187 year: 2017 end-page: 1191 ident: CR26 article-title: Selective increase in CO electroreduction activity at grain-boundary surface terminations publication-title: Science doi: 10.1126/science.aao3691 – volume: 19 start-page: 408 year: 2019 end-page: 423 ident: CR4 article-title: Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.02.023 – volume: 47 start-page: 224 year: 2018 end-page: 234 ident: CR28 article-title: MoSe nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.002 – volume: 32 start-page: 511 year: 2017 end-page: 519 ident: CR23 article-title: Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.014 – volume: 51 start-page: 122 year: 2018 end-page: 127 ident: CR51 article-title: Pseudocapacitive storage via micropores in high-surface area molybdenum nitrides publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.045 – volume: 44 start-page: 2376 year: 2015 end-page: 2404 ident: CR11 article-title: Nanostructured Mo-based electrode materials for electrochemical energy storage publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00350k – volume: 12 start-page: 12623 year: 2020 end-page: 12631 ident: CR19 article-title: Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composite for high-performance lithium-ion batteries publication-title: Nanoscale doi: 10.1039/d0nr01528h – volume: 4 start-page: 15302 year: 2016 end-page: 15308 ident: CR44 article-title: Two-dimensional hybrid nanosheets of few layered MoSe on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c6ta04390a – volume: 18 start-page: 541 year: 2019 end-page: 549 ident: CR2 article-title: Disorder in van der waals heterostructures of 2D materials publication-title: Nat. Mater. doi: 10.1038/s41563-019-0366-8 – volume: 6 start-page: 13705 year: 2018 end-page: 13716 ident: CR31 article-title: Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance publication-title: J. Mater. Chem. A doi: 10.1039/c8ta03176b – volume: 12 start-page: 4010 year: 2018 end-page: 4018 ident: CR40 article-title: Robust and conductive red MoSe for stable and fast lithium storage publication-title: ACS Nano doi: 10.1021/acsnano.8b01703 – volume: 21 start-page: 97 year: 2018 end-page: 106 ident: CR33 article-title: Hierarchical mesoporous MoSe @CoSe/n-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.10.019 – volume: 5 start-page: 19632 year: 2017 end-page: 19638 ident: CR46 article-title: A CMK-5-encapsulated MoSe composite for rechargeable lithium-ion batteries with improved electrochemical performance publication-title: J. Mater. Chem. A doi: 10.1039/c7ta06286a – volume: 8 start-page: 15894 year: 2017 ident: CR22 article-title: Self-assembled three dimensional network designs for soft electronics publication-title: Nat. Commun. doi: 10.1038/ncomms15894 – volume: 3 start-page: 11857 year: 2015 end-page: 11862 ident: CR41 article-title: Sheet-like MoSe /C composites with enhanced li-ion storage properties publication-title: J. Mater. Chem. A doi: 10.1039/c5ta02100f – volume: 5 start-page: eaav7412 year: 2019 ident: CR17 article-title: Approaching high-performance potassium-ion batteries via advanced design strategies and engineering publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7412 – volume: 12 start-page: 26 year: 2020 ident: CR8 article-title: Spatially bandgap-graded MoS )Se homojunctions for self-powered visible–near-infrared phototransistors publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0361-2 – volume: 8 start-page: 1 year: 2017 end-page: 17 ident: CR10 article-title: Molybdenum diselenide (MoSe ) for energy storage, catalysis, and optoelectronics publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.01.006 – volume: 5 start-page: 20228 year: 2017 end-page: 20238 ident: CR25 article-title: A three-dimensional hierarchically porous Mo C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage publication-title: J. Mater. Chem. A doi: 10.1039/c7ta05946a – volume: 27 start-page: 1605017 year: 2017 ident: CR24 article-title: Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605017 – volume: 57 start-page: 626 year: 2018 end-page: 646 ident: CR16 article-title: Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706426 – volume: 10 start-page: 979 year: 2017 end-page: 986 ident: CR36 article-title: “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage? publication-title: Energy Environ. Sci. doi: 10.1039/c7ee00329c – volume: 264 start-page: 118531 year: 2020 ident: CR32 article-title: Engineering the novel MoSe –Mo C hybrid nanoarray electrodes for energy storage and water splitting applications publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118531 – volume: 10 start-page: 14622 year: 2018 end-page: 14631 ident: CR42 article-title: Tunable free-standing core-shell CNT@MoSe anode for lithium storage publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b19739 – volume: 13 start-page: 3448 year: 2019 end-page: 3456 ident: CR12 article-title: Carbon-coated MoSe /MXene hybrid nanosheets for superior potassium storage publication-title: ACS Nano doi: 10.1021/acsnano.8b09548 – volume: 139 start-page: 3316 year: 2017 end-page: 3319 ident: CR18 article-title: Phosphorus-based alloy materials for advanced potassium-ion battery anode publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12185 – volume: 33 start-page: 497 year: 2017 end-page: 507 ident: CR15 article-title: Depolarization effect to enhance the performance of lithium ions batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.011 – volume: 10 start-page: 10211 year: 2016 ident: 511_CR48 publication-title: ACS Nano doi: 10.1021/acsnano.6b05566 – volume: 47 start-page: 8744 year: 2018 ident: 511_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00649k – volume: 5 start-page: eaav7412 year: 2019 ident: 511_CR17 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7412 – volume: 10 start-page: 979 year: 2017 ident: 511_CR36 publication-title: Energy Environ. Sci. doi: 10.1039/c7ee00329c – volume: 27 start-page: 1700522 year: 2017 ident: 511_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700522 – volume: 10 start-page: 60 year: 2018 ident: 511_CR7 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0212-6 – volume: 33 start-page: 497 year: 2017 ident: 511_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.011 – volume: 5 start-page: 19632 year: 2017 ident: 511_CR46 publication-title: J. Mater. Chem. A doi: 10.1039/c7ta06286a – volume: 10 start-page: 638 year: 2018 ident: 511_CR34 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0035-6 – volume: 358 start-page: 1187 year: 2017 ident: 511_CR26 publication-title: Science doi: 10.1126/science.aao3691 – volume: 10 start-page: 1262 year: 2017 ident: 511_CR37 publication-title: Energy Environ. Sci. doi: 10.1039/c7ee00388a – volume: 11 start-page: 80 year: 2019 ident: 511_CR9 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0311-z – volume: 6 start-page: 13705 year: 2018 ident: 511_CR31 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta03176b – volume: 12 start-page: 310 year: 2018 ident: 511_CR29 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.02.012 – volume: 10 start-page: 14622 year: 2018 ident: 511_CR42 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b19739 – volume: 292 start-page: 339 year: 2018 ident: 511_CR43 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.154 – volume: 44 start-page: 2376 year: 2015 ident: 511_CR11 publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00350k – volume: 12 start-page: 26 year: 2020 ident: 511_CR8 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0361-2 – volume: 14 start-page: 246 year: 2018 ident: 511_CR50 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.04.009 – volume: 256 start-page: 19 year: 2017 ident: 511_CR45 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.129 – volume: 9 start-page: 1803768 year: 2019 ident: 511_CR30 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803768 – volume: 21 start-page: 97 year: 2018 ident: 511_CR33 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.10.019 – volume: 63 start-page: 103846 year: 2019 ident: 511_CR6 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.042 – volume: 51 start-page: 122 year: 2018 ident: 511_CR51 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.045 – volume: 7 start-page: 22871 year: 2019 ident: 511_CR35 publication-title: J. Mater. Chem. A doi: 10.1039/c9ta06870h – volume: 481 start-page: 1196 year: 2019 ident: 511_CR47 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.165 – volume: 46 start-page: 2199 year: 2017 ident: 511_CR21 publication-title: Chem. Soc. Rev. doi: 10.1039/c6cs00823b – volume: 2 start-page: 1534 year: 2018 ident: 511_CR20 publication-title: Joule doi: 10.1016/j.joule.2018.04.022 – volume: 5 start-page: 20228 year: 2017 ident: 511_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/c7ta05946a – volume: 264 start-page: 118531 year: 2020 ident: 511_CR32 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118531 – volume: 32 start-page: 511 year: 2017 ident: 511_CR23 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.014 – volume: 12 start-page: 12623 year: 2020 ident: 511_CR19 publication-title: Nanoscale doi: 10.1039/d0nr01528h – volume: 47 start-page: 224 year: 2018 ident: 511_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.002 – volume: 57 start-page: 626 year: 2018 ident: 511_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706426 – volume: 12 start-page: 66 year: 2020 ident: 511_CR3 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0402-x – volume: 13 start-page: 3448 year: 2019 ident: 511_CR12 publication-title: ACS Nano doi: 10.1021/acsnano.8b09548 – volume: 4 start-page: 15302 year: 2016 ident: 511_CR44 publication-title: J. Mater. Chem. A doi: 10.1039/c6ta04390a – volume: 47 start-page: 3100 year: 2018 ident: 511_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00024g – volume: 12 start-page: 4010 year: 2018 ident: 511_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.8b01703 – volume: 8 start-page: 1 year: 2017 ident: 511_CR10 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.01.006 – volume: 277 start-page: 205 year: 2018 ident: 511_CR39 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.185 – volume: 8 start-page: 15894 year: 2017 ident: 511_CR22 publication-title: Nat. Commun. doi: 10.1038/ncomms15894 – volume: 13 start-page: 5635 year: 2019 ident: 511_CR27 publication-title: ACS Nano doi: 10.1021/acsnano.9b00816 – volume: 18 start-page: 541 year: 2019 ident: 511_CR2 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0366-8 – volume: 11 start-page: 6483 year: 2017 ident: 511_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.7b03329 – volume: 139 start-page: 3316 year: 2017 ident: 511_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12185 – volume: 7 start-page: 12122 year: 2016 ident: 511_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms12122 – volume: 19 start-page: 408 year: 2019 ident: 511_CR4 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.02.023 – volume: 27 start-page: 1605017 year: 2017 ident: 511_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605017 – volume: 3 start-page: 11857 year: 2015 ident: 511_CR41 publication-title: J. Mater. Chem. A doi: 10.1039/c5ta02100f – volume: 8 start-page: 1801477 year: 2018 ident: 511_CR38 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801477 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.433491 |
Snippet | Highlights
MoSe
2
/MoC/C multiphase boundaries boost ionic transfer kinetics.
MoSe
2
(5–10 nm) with rich edge sites is uniformly coated in N-doped framework.... HighlightsMoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics.MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework.The... Highlights MoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The... |
SourceID | doaj pubmedcentral proquest crossref springer nii |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 171 |
SubjectTerms | Anodes Battery Bridging Carbon Charge transfer Composite materials Electrode materials Engineering Heterostructure Incorporation Interface engineering Interface stability Kinetics Lithium Lithium-ion batteries MoC Molybdenum compounds MoSe2 nanodots Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nitrogen Physical Sciences and Mathematics Porous carbon framework Rechargeable batteries Structural stability T Technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgrYzEDSISv3PsLqwqBFy6lXqL7NimkSCp2uyhv4S_y4yTfVUqXDhsDvHs7GY8mYc9_oaQd2ATpQmK5zp4lgtWVLlJZWIQbYC7Usy4VCD7XZ2eiy8X8mKn1RfWhI3wwKPgPgYFBtMAIwGJg7XBQkgfuNal44Zpk8C2weftJFOgSUxjR6bt_iC2VRY7KDUCMV34FshMInCZ3uJjSibAr0-OdgykNW5hpU51ZZkrXajpBE46h4ddm4scMzFUckjK9rxcagYAvqtr27049m4V5p2t2OThFk_I4yk0pSejSJ6SB6F7Rh7tABY-J7-XK1xHoWkdMdom0Bke-MJbs7Hgi37rzwKjtvN0CWoS8k_YPmCE_qBze-36ji7WBWHU3QKrZgJTBhraR2AwH_mnQy1DoENPZ31_M9Cv7XDZrn7RswHIfwRgdzWijN--IOeLz8v5aT61dsgbJYoh91x6yINByA7kqn2QrOEqgtVmZRMr55SwgQVZ-YJZERulQxM9YvOYRrng-Uty0PVdeEWo1BqcB3fSeSOCUYZZLWOM3plofKEyUq6nom4m3HNsv_Gz3iA2p-mrC_zg9NUiI-8337kaUT_-Sj3DGd5QImJ3ugF6XE96XP9LjzNyBPoB_xCvpdEMhCMqjHYricsUGTlca049mZmbmgmuVAVB3n3DmnOgKMuMvN0Mg_3ATSHbhX4FNFIg4lFZ8IzoPYXce579ka69TEjkWuNroTPyYa262x-_X16v_4e83pCHLL1wYOjlITkYrlfhCOLDwR0nU_AHBxxR0Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAeIrQFhmJG0RK_M6RXVhVCLh0K_UWxbHTrgRJtZs99JfwdzvjvJqKInHYPcSzjtcez8Mz_oaQDyATpfGKx9o7FguWZLEJaWJgbYC6UszYkCD7U52ciW_n8ry_FLYbst2HkGSQ1ONlNyyNnMTo7iAngefzkDyS4LsjXy8nzHGmsRrTFBvEksriFkKNQDwXPoGYSQQt0xM2pmQCdHqvZDsjWmP4KlSpg9cqnaj-9s3fhzXTcKEQAOiterOZ2bB3MzDvhGGDdls9I097s5R-7vjoOXng6xfkyS2wwpfkz3qPZyg0nCFWRenpAi974aNFl-xFfzSnntGidnQNLOLjL1g6oIP9oMtia5uaroZkMGqvoauyB1IGGtpU0MGy6z9caGk9bRu6aJpdS79v2svN_jc9bYH8wkN3Vx3C-PUrcrb6ul6exH1Zh7hUImljx6UDHxgm2cK8auclK7mqQGKztKwya5UoPPMycwkrRFUq7cvKIS6PKZX1jr8mB3VT-zeESq1BcXArrTPCG2VYoWVVVc6ayrhERSQdliIve8xzLL3xKx_RmsPy5Ql-cPlyEZGP42-uOsSPf1IvcIVHSkTrDg-a7UXeb_7cK1D6BjaDAOe3KHwBbqnnWqeWG6YNDPMY-ANGiN-p0QwmR2Ro6WYSjygicjRwTt6LmF3OBFcqAwPvvmbNOVCkaUTej80gOzAgVNS-2QONFIh2lCY8InrGkLP_M2-pN5cBhVxr3BY6Ip8G1p1efv98vf0_8kPymIWtBeJcHpGDdrv3x2AFtvZd2PQ3PahGzA priority: 102 providerName: Springer Nature |
Title | Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability |
URI | https://cir.nii.ac.jp/crid/1872272492423957888 https://link.springer.com/article/10.1007/s40820-020-00511-4 https://www.proquest.com/docview/2436697828 https://www.proquest.com/docview/2473336611 https://www.proquest.com/docview/2542357103 https://pubmed.ncbi.nlm.nih.gov/PMC7770767 https://doaj.org/article/e62998ed24104aaea149e3771b382786 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYeoED4lMEtspI3CAi8XdOaOlWJgQTYp20W5TEzlYJktKmh_0l_Lu85yTtOmk7NAfbdRz7-X35-fcI-QA8URqneKidZaFgURIaHyYG2gaIK8VM4QNkz9Tphfh2KS97h9uqD6sceKJn1LYp0Uf-mQnNOQdpEn9Z_A0xaxServYpNPbICFiwAeNrlJ6c_fw1UBTTmJlpe06I6ZXFLbQagdgufAtoJhHATG9xMiW8lele4HYKtcajLJ-xLo5DpSPV38Tx9_Ewe3MUokWGxA7G2Y6080kBQIbV8_mOPns3GvPOkayXdNNn5GmvotKjjqaek0eufkGe3AIufEn-zdboT6Hen1jlpaMpXvzCorQL_KI_mnPHaF5bOgNyceExphHoIEDoJF8WTU2nQ2AYLW6gq7IHVYY2tKmgg0nXv7_c0jraNjRtmlVLv8_b6_n6Dz1vofmVg-4WHdr4zStyMT2ZTU7DPsVDWCoRtaHl0oI9DJNcwLxq6yQruaqAe7O4rJKiUCJ3zMnERiwXVam0KyuLGD2mVIWz_DXZr5vavSFUag1ChBeysEY4owzLtayqyhamMjZSAYmHpcjKHv8c03D8zjbIzX75sgh_uHyZCMjHzX8WHfrHg61TXOFNS0Tu9gXN8irrGUHmFCgABjaGAEM4z10OJqrjWscFN0wbGOYh0AeMEJ-x0QwmRySo9SYS3RUBORgoJ-vZzSpjAnZGAsrefdXD3gnI-0018BE8HMpr16yhjRSIfBRHPCB6hyB3vme3pp5fe0RyrXFb6IB8Gkh3-_L75-vtw2N9Rx4zv5WAlcsDst8u1-4QNMC2GJM9M_06JqOj9DidjvtND6UTJvCpJmPvW_kP-iZQkg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiKdqaGGR4AQW9r59QIikhJSmvTSVejN-rNtIYIfEEcov4V_wG5lZ20lTqb314By8683a896d_YaQt6ATpbGK-9rmzBcsiHzj0sTA2wBzpZhJXYLssRqeiu9n8myL_OvOwmBaZacTnaLOqwzXyD8yoTnnYE3Cz9PfPlaNwt3VroRGwxaHdvkHQrb5p4N9oO87xgZfx_2h31YV8DMlgtrPucwhBAO7nUIMr3MrWcZVAQqDhVkRpakSiWVWRnnAElFkStusyBEWxmQqtTmHce-Qu4LzCCXKDL51_Ms01oFa70piMWdxCRtHIJIMX8OnSYRL02tUTgnvyHRr3hv3XePGmauPF4a-0oFqz_24039YKzrwMf5D0YJQcMO2uhIEYDHLyWTDe76a-3llA9jZ1cEj8rB1iOmXhoMfky1bPiEPLsEkPiV_xwtcvaFu9bJIMkt7eMwMb_WaNDN6VJ1YRpMyp2NgTuvvY9GCBnCE9pNZWpV00KWh0XQJQ2UthDP0oVUBA_Sb8d1RmtrSuqK9qprXdDSpLyaLX_Skhu7nFoabNtjmy2fk9FZI_5xsl1VpdwiVWoPJ4qlMcyOsUYYlWhZFkaemMHmgPBJ2pIizFm0di378jFc40Y58cYAXki8WHnm_embaYI3c2LuHFF71RJxwd6Oancet2omtAnfDgBgKCLuTxCYQEFuudZhyw7SBae4Bf8AM8Tc0msHHERH62JHExRGP7HacE7fKbR4zAXIYgWt5XXMnqR55s2oGrYVbUUlpqwX0kQJxlsKAe0RvMOTG-2y2lJMLh3-uNYqF9siHjnXXf37993px81xfk3vD8dEoHh0cH74k95kTKzAicpds17OF3QPfs05fOYGn5Mdta5j_52yHog |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiKcItGAkbhA18TtHdsuqQKmQ2kq9RXFstytBstpmD_0l_F1mnOyrokgcdg_xrOO1x_OwZ74h5D3IRGm84qn2jqWCZUVqYpgYWBugrhQzNgbIHqvDM_H1XJ5vZPHHaPfllWSf04AoTU23P3Nhf5X4hmWSsxRdH-Qq8ILuknvgqeQY1Dde448zjZWZ1veEWF5ZbKDVCMR24WtAM4kAZnqNkymZAP0-KNzeoNZ4lRUr1sFrlc7UkInz92FtabtYFAB0WDOdbtmzN6Mxb1zJRk03eUweDSYq_dTz1BNyxzdPycMN4MJn5PfpAs9TaDxPDFXt6QgTv_DRqA_8ot_bE89o1Th6Cuzi0wMsI9BDgNBxNbdtQyfLwDBqr6GregBVBhraBuhg3Pcfk1s6T7uWjtr2qqNH0-5yuvhFTzogv_DQ3axHG79-Ts4mn0_Hh-lQ4iGtlci61HHpwB-GSbYwr9p5yWquAkhvltehsFaJyjMvC5exSoRaaV8Hhxg9plbWO_6C7DRt418SKrUGJcKttM4Ib5RhlZYhBGdNMC5TCcmXS1HWA_45luH4Wa6Qm-PylRl-cPlKkZAPq9_MevSPf1KPcIVXlIjcHR-084tyEASlV2AAGNgYAhzhqvIVuKiea51bbpg2MMw94A8YIX7nRjOYHFGg1VtIPK5IyO6Sc8pB3FyVTHClCjD2bmvWnANFnifk3aoZ5AheDlWNbxdAIwUiH-UZT4jeYsit_7Pd0kwvIyK51rgtdEI-Lll3_fLb5-vV_5G_Jfd_HEzKoy_H316TByzuMpDycpfsdPOF3wPjsLNv4v7_A8XCTf0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Interface+Bridging+Between+MoSe2+and+Three-Dimensional+Carbon+Framework+by+Incorporation+of+MoC+Intermediate+to+Boost+Lithium+Storage+Capability&rft.jtitle=Nano-micro+letters&rft.au=Chen%2C+Jing&rft.au=Luo+Yilin&rft.au=Zhang%2C+Wenchao&rft.au=Yu%2C+Qiao&rft.date=2020-08-25&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-020-00511-4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |