Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability

Highlights MoSe 2 /MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe 2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The obtained MoSe 2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Interface engineering has...

Full description

Saved in:
Bibliographic Details
Published inNano-Micro Letters Vol. 12; no. 1; pp. 171 - 13
Main Authors Chen, Jing, Luo, Yilin, Zhang, Wenchao, Qiao, Yun, Cao, Xinxin, Xie, Xuefang, Zhou, Haoshen, Pan, Anqiang, Liang, Shuquan
Format Journal Article
LanguageEnglish
Published Singapore Springer Science and Business Media LLC 25.08.2020
Springer Singapore
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights MoSe 2 /MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe 2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The obtained MoSe 2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe 2 /C composite as an intermediate phase to alter the bridging between MoSe 2 - and nitrogen-doped three-dimensional (3D) carbon framework as MoSe 2 /MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe 2 nanosheets on the 3D carbon framework, producing much smaller MoSe 2 nanodots. The obtained MoSe 2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g −1 ) and excellent rate capability. Moreover, the constructed LiFePO 4 //MoSe 2 /MoC/N–C full cell exhibits over 86% capacity retention at 2 A g −1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials.
AbstractList Highlights MoSe 2 /MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe 2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The obtained MoSe 2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe 2 /C composite as an intermediate phase to alter the bridging between MoSe 2 - and nitrogen-doped three-dimensional (3D) carbon framework as MoSe 2 /MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe 2 nanosheets on the 3D carbon framework, producing much smaller MoSe 2 nanodots. The obtained MoSe 2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g −1 ) and excellent rate capability. Moreover, the constructed LiFePO 4 //MoSe 2 /MoC/N–C full cell exhibits over 86% capacity retention at 2 A g −1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials.
Highlights MoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The obtained MoSe2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Abstract Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe2/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework, producing much smaller MoSe2 nanodots. The obtained MoSe2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g−1) and excellent rate capability. Moreover, the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g−1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials.
HighlightsMoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics.MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework.The obtained MoSe2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell.Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe2/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework, producing much smaller MoSe2 nanodots. The obtained MoSe2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g−1) and excellent rate capability. Moreover, the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g−1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials.
ArticleNumber 171
Author Zhang, Wenchao
Pan, Anqiang
Liang, Shuquan
Zhou, Haoshen
Luo, Yilin
Qiao, Yun
Cao, Xinxin
Xie, Xuefang
Chen, Jing
Author_xml – sequence: 1
  fullname: Chen, Jing
– sequence: 2
  fullname: Luo, Yilin
– sequence: 3
  orcidid: 0000-0001-9810-2248
  fullname: Zhang, Wenchao
– sequence: 4
  fullname: Qiao, Yun
– sequence: 5
  orcidid: 0000-0001-7807-9714
  fullname: Cao, Xinxin
– sequence: 6
  orcidid: 0000-0003-0663-7232
  fullname: Xie, Xuefang
– sequence: 7
  fullname: Zhou, Haoshen
– sequence: 8
  fullname: Pan, Anqiang
– sequence: 9
  fullname: Liang, Shuquan
BackLink https://cir.nii.ac.jp/crid/1872272492423957888$$DView record in CiNii
BookMark eNp9ks1u1DAUhSNUREvpC7CyBItuAv63s0GiA4WRilh0WFuOczPjkrEHx0PVJ-F1cZoi1C5m4cS6-c7Rubn3ZXUUYoCqek3wO4Kxej9yrCmu8XSwIKTmz6oTSgSuhRDkqNxZKUqF5XF1No6-xYJyRZXgL6pjxgnTROmT6s9qH3xYo2XIkHrrAF0k362n0gXkW4CAvsVroMiGDq02CaD-5LcQRh-DHdDCpjYGdJnsFm5j-onau2LlYtrFZHNhUOyLwWL230LnbQaUI7qIcczoyueN32_RdS74GordzrZ-8PnuVfW8t8MIZw_v0-rH5efV4mt99f3LcvHxqnaS41x3THSE0dJXi5VUHQjqmOy5VJS4vmlbyS1QEE2HqeW9kwpcX-5MaCdb6NhptZx9u2hvzC75rU13Jlpv7gsxrY1N2bsBDEjaNBo6ygnm1oIlvAGmFGmZpkrL4vVh9trt29Kqg5CTHR6ZPv4S_Mas42-jlJrSF4PzB4MUf-1hzGbrRwfDYAPE_Wio4CW5IpgV9M0T9CbuUxlJobhijElJyGGqII3SVBdKz5RLcRwT9Mb5fD-9ktIPhmAzrZyZV87g6UwrZ3iR0ifSf90eFLFZNBY4rCH9T3VQ9XZWBe9LwOlJtKJl9ryh5b80Qmmt2V--6POb
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103696
crossref_primary_10_1016_j_jallcom_2023_169656
crossref_primary_10_1039_D0TA11030B
crossref_primary_10_1002_cey2_191
crossref_primary_10_3390_nano11061517
crossref_primary_10_1016_j_ijhydene_2023_06_245
crossref_primary_10_1002_ange_202212439
crossref_primary_10_1016_j_cej_2023_148499
crossref_primary_10_1007_s40820_021_00758_5
crossref_primary_10_1021_acsami_0c22923
crossref_primary_10_1016_j_jallcom_2024_174373
crossref_primary_10_1016_j_cej_2021_129770
crossref_primary_10_1016_j_jallcom_2024_174177
crossref_primary_10_1002_smll_202203630
crossref_primary_10_1002_smll_202405921
crossref_primary_10_1007_s40820_022_00893_7
crossref_primary_10_1002_cssc_202300984
crossref_primary_10_1016_j_physb_2023_415643
crossref_primary_10_2139_ssrn_4054565
crossref_primary_10_1007_s10008_023_05406_z
crossref_primary_10_1016_j_jpowsour_2021_230225
crossref_primary_10_1002_aenm_202003058
crossref_primary_10_1002_smtd_202201025
crossref_primary_10_1016_j_est_2023_107997
crossref_primary_10_1002_adfm_202213009
crossref_primary_10_1016_j_apsusc_2023_156532
crossref_primary_10_1002_smtd_202401974
crossref_primary_10_1016_j_apsusc_2022_152491
crossref_primary_10_1039_D2MA00091A
crossref_primary_10_1016_j_ccr_2024_215725
crossref_primary_10_1016_j_cclet_2023_108263
crossref_primary_10_1039_D2QI02291E
crossref_primary_10_2139_ssrn_4008695
crossref_primary_10_1002_aenm_202202318
crossref_primary_10_1016_j_jallcom_2023_169157
crossref_primary_10_1016_j_physb_2023_415312
crossref_primary_10_1021_acsaem_2c03779
crossref_primary_10_1088_1361_6463_ac7111
crossref_primary_10_1016_j_fuel_2024_131668
crossref_primary_10_1016_j_cej_2024_149520
crossref_primary_10_1021_acsaem_2c00141
crossref_primary_10_1021_acs_energyfuels_3c03250
crossref_primary_10_1002_adfm_202204364
crossref_primary_10_1016_j_ensm_2022_02_053
crossref_primary_10_1002_aenm_202301125
crossref_primary_10_1007_s11664_023_10453_3
crossref_primary_10_1016_j_cej_2023_143374
crossref_primary_10_3390_met14050595
crossref_primary_10_1002_batt_202300462
crossref_primary_10_1007_s12274_023_5945_y
crossref_primary_10_1002_aenm_202202600
crossref_primary_10_1007_s12598_022_02253_1
crossref_primary_10_1002_adfm_202204833
crossref_primary_10_1016_j_ensm_2021_01_027
crossref_primary_10_1007_s12598_022_02131_w
crossref_primary_10_1016_j_apmate_2023_100169
crossref_primary_10_1002_anie_202212439
crossref_primary_10_1016_j_apsusc_2022_154934
Cites_doi 10.1038/s41557-018-0035-6
10.1016/j.joule.2018.04.022
10.1007/s40820-020-0402-x
10.1002/adfm.201700522
10.1039/c8cs00024g
10.1016/j.ensm.2018.02.012
10.1016/j.electacta.2017.09.129
10.1039/c6cs00823b
10.1039/c9ta06870h
10.1007/s40820-018-0212-6
10.1021/acsnano.9b00816
10.1038/ncomms12122
10.1021/acsnano.6b05566
10.1002/aenm.201801477
10.1016/j.nanoen.2019.06.042
10.1021/acsnano.7b03329
10.1016/j.electacta.2018.09.154
10.1002/aenm.201803768
10.1039/c8cs00649k
10.1016/j.electacta.2018.04.185
10.1016/j.apsusc.2019.03.165
10.1016/j.ensm.2018.04.009
10.1007/s40820-019-0311-z
10.1039/c7ee00388a
10.1126/science.aao3691
10.1016/j.ensm.2019.02.023
10.1016/j.nanoen.2018.03.002
10.1016/j.nanoen.2017.01.014
10.1016/j.nanoen.2018.06.045
10.1039/c4cs00350k
10.1039/d0nr01528h
10.1039/c6ta04390a
10.1038/s41563-019-0366-8
10.1039/c8ta03176b
10.1021/acsnano.8b01703
10.1016/j.ensm.2018.10.019
10.1039/c7ta06286a
10.1038/ncomms15894
10.1039/c5ta02100f
10.1126/sciadv.aav7412
10.1007/s40820-019-0361-2
10.1016/j.apmt.2017.01.006
10.1039/c7ta05946a
10.1002/adfm.201605017
10.1002/anie.201706426
10.1039/c7ee00329c
10.1016/j.apcatb.2019.118531
10.1021/acsami.7b19739
10.1021/acsnano.8b09548
10.1021/jacs.6b12185
10.1016/j.nanoen.2017.02.011
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-020-00511-4
DatabaseName CiNii Complete
Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 13
ExternalDocumentID oai_doaj_org_article_e62998ed24104aaea149e3771b382786
PMC7770767
10_1007_s40820_020_00511_4
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
Q--
R-B
RNS
RPM
RT2
RYH
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
92R
93N
AAXDM
ADINQ
AHSBF
C1A
EJD
IPNFZ
RIG
RSV
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c640t-d35d132727b0767de52c36f46721cf9bb64ae2e59d02a4fc67ecfd02358c6bed3
IEDL.DBID BENPR
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:31:04 EDT 2025
Thu Aug 21 17:49:14 EDT 2025
Fri Jul 11 06:57:58 EDT 2025
Wed Aug 13 06:08:47 EDT 2025
Wed Aug 13 09:39:21 EDT 2025
Tue Jul 01 00:55:45 EDT 2025
Thu Apr 24 22:55:04 EDT 2025
Fri Feb 21 02:35:51 EST 2025
Fri Jun 27 00:16:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords MoSe
nanodots
MoC
Heterostructure
Battery
Interface engineering
Porous carbon framework
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-d35d132727b0767de52c36f46721cf9bb64ae2e59d02a4fc67ecfd02358c6bed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7807-9714
0000-0001-9810-2248
0000-0003-0663-7232
OpenAccessLink https://www.proquest.com/docview/2473336611?pq-origsite=%requestingapplication%
PMID 34138178
PQID 2436697828
PQPubID 2044332
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e62998ed24104aaea149e3771b382786
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770767
proquest_miscellaneous_2542357103
proquest_journals_2473336611
proquest_journals_2436697828
crossref_citationtrail_10_1007_s40820_020_00511_4
crossref_primary_10_1007_s40820_020_00511_4
springer_journals_10_1007_s40820_020_00511_4
nii_cinii_1872272492423957888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-25
PublicationDateYYYYMMDD 2020-08-25
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-25
  day: 25
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-Micro Letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2020
Publisher Springer Science and Business Media LLC
Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Science and Business Media LLC
– name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Zavabeti, Jannat, Zhong, Haidry, Yao, Ou (CR3) 2020; 12
Chen, Huang, Hu, Fan, Shang (CR9) 2019; 11
Kou, Wang, Gu, Xiong, Zheng (CR30) 2019; 9
Zhang, Liu, Guo (CR17) 2019; 5
Chao, Zhu, Yang, Xia, Liu (CR49) 2016; 7
Yang, Tang, Zhang, Zhang, Liang (CR36) 2017; 10
Rhodes, Chae, Ribeiro-Palau, Hone (CR2) 2019; 18
Zhao, Cai, Yang, Song, Neale (CR28) 2018; 47
Jang, Li, Chung, Xu, Jung (CR22) 2017; 8
Ge, Hou, Banks, Foster, Li (CR29) 2018; 12
Zheng, Lu, Amine, Pan (CR15) 2017; 33
Zhang, Mao, Li, Chen, Guo (CR18) 2017; 139
Xu, Zhu, Zou, Liu, Li (CR8) 2020; 12
Shi, Nie, Shao, Gao, Lin (CR37) 2017; 10
Deng, Qi, Li, Xiao, Yang (CR39) 2018; 277
Zhu, Li, Deng, He, Liu (CR24) 2017; 27
Zhu, Chen, Wang, Ma, Hu (CR50) 2018; 14
Xiang, Tao, Xu, Fang, Wu (CR14) 2017; 11
Wu, Wang, Liu, Xia, Xuan (CR23) 2017; 32
Lee, Kim, Choi, Seo, Choi (CR6) 2019; 63
Eftelthari (CR10) 2017; 8
Wang, Wang, Zhang, Liu, Shi (CR19) 2020; 12
Mariano, McKelvey, White, Kanan (CR26) 2017; 358
Yu, Nam, He, Wu, Zhang (CR34) 2018; 10
Xiao, Zhang, Chen, Xu, Deng (CR7) 2018; 10
Yun, Lu, Zhang, Tan, Zhang (CR16) 2018; 57
Vikraman, Hussain, Karuppasamy, Feroze, Kathalingam (CR32) 2020; 264
Niu, Yang, Wang, Zhang, Fan, Yang, Qian (CR13) 2017; 27
Zhang, Wang, Jin, Zhang, Wen, Yang (CR40) 2018; 12
Zhang, Pang, Sencadas, Guo (CR20) 2018; 2
Xiao, Wang, Urbankowski, Gogotsi (CR1) 2018; 47
Ge, Fan, Wang, Zhang, Liu (CR38) 2018; 8
Hu, Zhang, Liu, Mei, Huang (CR11) 2015; 44
Djire, Siegel, Ajenifujah, He, Thompson (CR51) 2018; 51
Lu, Yuan, Zhao, Zhang, Zhang, Li (CR21) 2017; 46
Su, Cao, Kong, Wang, Peng (CR43) 2018; 292
Chao, Liang, Chen, Bai, Shen (CR48) 2016; 10
Hu, Wu, Han, He, Ni, Chen (CR5) 2018; 47
Chen, Lv, Sun, Hu, Tao, Wang (CR31) 2018; 6
Wang, Peng, Zhang, Fu, Li (CR45) 2017; 256
Liu, Zhu, Chen (CR41) 2015; 3
Lin, Lei, Zhang, Liu, Wallace, Chen (CR4) 2019; 19
Kim, Nguyen, Kim, Hur (CR47) 2019; 481
Fang, Wang, Zhou, Lei, Chen (CR27) 2019; 13
Huang, Cui, Liu, Bi, Zhang (CR12) 2019; 13
Chen, Pan, Wang, Cao, Zhang (CR33) 2018; 21
Meng, Zheng, Qin, Zhao, Cao (CR25) 2017; 5
Luo, Zhou, Wang, Fang, Pan, Liang (CR44) 2016; 4
Yousaf, Wang, Chen, Wang, Aftab (CR42) 2018; 10
Su, Cao, Yu, Kong, Wang (CR35) 2019; 7
Zheng, Chen, Chen, Wei (CR46) 2017; 5
Q Su (511_CR43) 2018; 292
W Zhang (511_CR18) 2017; 139
JY Wang (511_CR45) 2017; 256
RG Mariano (511_CR26) 2017; 358
W Lu (511_CR21) 2017; 46
JM Ge (511_CR38) 2018; 8
D Rhodes (511_CR2) 2019; 18
Z Hu (511_CR5) 2018; 47
WC Zhang (511_CR20) 2018; 2
J Chen (511_CR33) 2018; 21
X Chen (511_CR31) 2018; 6
M Deng (511_CR39) 2018; 277
YJ Yang (511_CR36) 2017; 10
KI Jang (511_CR22) 2017; 8
T Meng (511_CR25) 2017; 5
J Zheng (511_CR15) 2017; 33
SP Zhang (511_CR40) 2018; 12
J Xiao (511_CR7) 2018; 10
M Yousaf (511_CR42) 2018; 10
T Xiang (511_CR14) 2017; 11
H Xu (511_CR8) 2020; 12
Y Yu (511_CR34) 2018; 10
Z Kou (511_CR30) 2019; 9
Q Su (511_CR35) 2019; 7
A Zavabeti (511_CR3) 2020; 12
X Zhao (511_CR28) 2018; 47
L Lin (511_CR4) 2019; 19
P Ge (511_CR29) 2018; 12
ZG Luo (511_CR44) 2016; 4
Z Wu (511_CR23) 2017; 32
WC Zhang (511_CR17) 2019; 5
H Kim (511_CR47) 2019; 481
C Zheng (511_CR46) 2017; 5
X Xiao (511_CR1) 2018; 47
A Djire (511_CR51) 2018; 51
Q Yun (511_CR16) 2018; 57
Z Shi (511_CR37) 2017; 10
A Eftelthari (511_CR10) 2017; 8
XL Hu (511_CR11) 2015; 44
GZ Fang (511_CR27) 2019; 13
S Zhu (511_CR24) 2017; 27
FE Niu (511_CR13) 2017; 27
J Lee (511_CR6) 2019; 63
DL Chao (511_CR48) 2016; 10
Y Liu (511_CR41) 2015; 3
H Huang (511_CR12) 2019; 13
S Chen (511_CR9) 2019; 11
K Wang (511_CR19) 2020; 12
DL Chao (511_CR49) 2016; 7
G Zhu (511_CR50) 2018; 14
D Vikraman (511_CR32) 2020; 264
References_xml – volume: 10
  start-page: 638
  year: 2018
  end-page: 643
  ident: CR34
  article-title: High phase-purity 1T′-MoS - and 1T′-MoSe -layered crystals
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0035-6
– volume: 2
  start-page: 1534
  year: 2018
  end-page: 1547
  ident: CR20
  article-title: Understanding high-energy-density Sn P anodes for potassium-ion batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.022
– volume: 12
  start-page: 66
  year: 2020
  ident: CR3
  article-title: Two-dimensional materials in large-areas: synthesis, properties and applications
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0402-x
– volume: 27
  start-page: 1700522
  year: 2017
  ident: CR13
  article-title: MoSe -covered n, p-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700522
– volume: 47
  start-page: 3100
  year: 2018
  end-page: 3128
  ident: CR5
  article-title: Two-dimensional transition metal dichalcogenides: interface and defect engineering
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00024g
– volume: 12
  start-page: 310
  year: 2018
  end-page: 323
  ident: CR29
  article-title: Binding MoSe with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.02.012
– volume: 256
  start-page: 19
  year: 2017
  end-page: 27
  ident: CR45
  article-title: Construction of n-doped carbon@MoSe core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.129
– volume: 46
  start-page: 2199
  year: 2017
  end-page: 2236
  ident: CR21
  article-title: Porous membranes in secondary battery technologies
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c6cs00823b
– volume: 7
  start-page: 22871
  year: 2019
  end-page: 22878
  ident: CR35
  article-title: Binding MoSe with dual protection carbon for high-performance sodium storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c9ta06870h
– volume: 10
  start-page: 60
  year: 2018
  ident: CR7
  article-title: Enhanced performance of a monolayer MoS /WSe heterojunction as a photoelectrochemical cathode
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0212-6
– volume: 13
  start-page: 5635
  year: 2019
  end-page: 5645
  ident: CR27
  article-title: Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00816
– volume: 7
  start-page: 12122
  year: 2016
  ident: CR49
  article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12122
– volume: 10
  start-page: 10211
  year: 2016
  end-page: 10219
  ident: CR48
  article-title: Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05566
– volume: 8
  start-page: 1801477
  year: 2018
  ident: CR38
  article-title: MoSe /n-doped carbon as anodes for potassium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801477
– volume: 63
  start-page: 103846
  year: 2019
  ident: CR6
  article-title: In-situ coalesced vacancies on MoSe mimicking noble metal: unprecedented tafel reaction in hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.042
– volume: 11
  start-page: 6483
  year: 2017
  end-page: 6491
  ident: CR14
  article-title: Stable 1t-MoSe and carbon nanotube hybridized flexible film: binder-free and high-performance li-ion anode
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03329
– volume: 292
  start-page: 339
  year: 2018
  end-page: 346
  ident: CR43
  article-title: Carbon-encapsulated MoSe /C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storage performances
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.154
– volume: 9
  start-page: 1803768
  year: 2019
  ident: CR30
  article-title: Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803768
– volume: 47
  start-page: 8744
  year: 2018
  end-page: 8765
  ident: CR1
  article-title: Topochemical synthesis of 2D materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00649k
– volume: 277
  start-page: 205
  year: 2018
  end-page: 210
  ident: CR39
  article-title: MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.185
– volume: 481
  start-page: 1196
  year: 2019
  end-page: 1205
  ident: CR47
  article-title: Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.165
– volume: 14
  start-page: 246
  year: 2018
  end-page: 252
  ident: CR50
  article-title: High energy density hybrid lithium-ion capacitor enabled by Co ZnC@n-doped carbon nanopolyhedra anode and microporous carbon cathode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.04.009
– volume: 11
  start-page: 80
  year: 2019
  ident: CR9
  article-title: Boosting sodium storage of Fe S/MoS composite via heterointerface engineering
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0311-z
– volume: 10
  start-page: 1262
  year: 2017
  end-page: 1271
  ident: CR37
  article-title: Phosphorus-Mo C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee00388a
– volume: 358
  start-page: 1187
  year: 2017
  end-page: 1191
  ident: CR26
  article-title: Selective increase in CO electroreduction activity at grain-boundary surface terminations
  publication-title: Science
  doi: 10.1126/science.aao3691
– volume: 19
  start-page: 408
  year: 2019
  end-page: 423
  ident: CR4
  article-title: Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.02.023
– volume: 47
  start-page: 224
  year: 2018
  end-page: 234
  ident: CR28
  article-title: MoSe nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.002
– volume: 32
  start-page: 511
  year: 2017
  end-page: 519
  ident: CR23
  article-title: Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.014
– volume: 51
  start-page: 122
  year: 2018
  end-page: 127
  ident: CR51
  article-title: Pseudocapacitive storage via micropores in high-surface area molybdenum nitrides
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.045
– volume: 44
  start-page: 2376
  year: 2015
  end-page: 2404
  ident: CR11
  article-title: Nanostructured Mo-based electrode materials for electrochemical energy storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00350k
– volume: 12
  start-page: 12623
  year: 2020
  end-page: 12631
  ident: CR19
  article-title: Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composite for high-performance lithium-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/d0nr01528h
– volume: 4
  start-page: 15302
  year: 2016
  end-page: 15308
  ident: CR44
  article-title: Two-dimensional hybrid nanosheets of few layered MoSe on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta04390a
– volume: 18
  start-page: 541
  year: 2019
  end-page: 549
  ident: CR2
  article-title: Disorder in van der waals heterostructures of 2D materials
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0366-8
– volume: 6
  start-page: 13705
  year: 2018
  end-page: 13716
  ident: CR31
  article-title: Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta03176b
– volume: 12
  start-page: 4010
  year: 2018
  end-page: 4018
  ident: CR40
  article-title: Robust and conductive red MoSe for stable and fast lithium storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01703
– volume: 21
  start-page: 97
  year: 2018
  end-page: 106
  ident: CR33
  article-title: Hierarchical mesoporous MoSe @CoSe/n-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.10.019
– volume: 5
  start-page: 19632
  year: 2017
  end-page: 19638
  ident: CR46
  article-title: A CMK-5-encapsulated MoSe composite for rechargeable lithium-ion batteries with improved electrochemical performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta06286a
– volume: 8
  start-page: 15894
  year: 2017
  ident: CR22
  article-title: Self-assembled three dimensional network designs for soft electronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15894
– volume: 3
  start-page: 11857
  year: 2015
  end-page: 11862
  ident: CR41
  article-title: Sheet-like MoSe /C composites with enhanced li-ion storage properties
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta02100f
– volume: 5
  start-page: eaav7412
  year: 2019
  ident: CR17
  article-title: Approaching high-performance potassium-ion batteries via advanced design strategies and engineering
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7412
– volume: 12
  start-page: 26
  year: 2020
  ident: CR8
  article-title: Spatially bandgap-graded MoS )Se homojunctions for self-powered visible–near-infrared phototransistors
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0361-2
– volume: 8
  start-page: 1
  year: 2017
  end-page: 17
  ident: CR10
  article-title: Molybdenum diselenide (MoSe ) for energy storage, catalysis, and optoelectronics
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.01.006
– volume: 5
  start-page: 20228
  year: 2017
  end-page: 20238
  ident: CR25
  article-title: A three-dimensional hierarchically porous Mo C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta05946a
– volume: 27
  start-page: 1605017
  year: 2017
  ident: CR24
  article-title: Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605017
– volume: 57
  start-page: 626
  year: 2018
  end-page: 646
  ident: CR16
  article-title: Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706426
– volume: 10
  start-page: 979
  year: 2017
  end-page: 986
  ident: CR36
  article-title: “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage?
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee00329c
– volume: 264
  start-page: 118531
  year: 2020
  ident: CR32
  article-title: Engineering the novel MoSe –Mo C hybrid nanoarray electrodes for energy storage and water splitting applications
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118531
– volume: 10
  start-page: 14622
  year: 2018
  end-page: 14631
  ident: CR42
  article-title: Tunable free-standing core-shell CNT@MoSe anode for lithium storage
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b19739
– volume: 13
  start-page: 3448
  year: 2019
  end-page: 3456
  ident: CR12
  article-title: Carbon-coated MoSe /MXene hybrid nanosheets for superior potassium storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09548
– volume: 139
  start-page: 3316
  year: 2017
  end-page: 3319
  ident: CR18
  article-title: Phosphorus-based alloy materials for advanced potassium-ion battery anode
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12185
– volume: 33
  start-page: 497
  year: 2017
  end-page: 507
  ident: CR15
  article-title: Depolarization effect to enhance the performance of lithium ions batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.011
– volume: 10
  start-page: 10211
  year: 2016
  ident: 511_CR48
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05566
– volume: 47
  start-page: 8744
  year: 2018
  ident: 511_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00649k
– volume: 5
  start-page: eaav7412
  year: 2019
  ident: 511_CR17
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7412
– volume: 10
  start-page: 979
  year: 2017
  ident: 511_CR36
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee00329c
– volume: 27
  start-page: 1700522
  year: 2017
  ident: 511_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700522
– volume: 10
  start-page: 60
  year: 2018
  ident: 511_CR7
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0212-6
– volume: 33
  start-page: 497
  year: 2017
  ident: 511_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.011
– volume: 5
  start-page: 19632
  year: 2017
  ident: 511_CR46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta06286a
– volume: 10
  start-page: 638
  year: 2018
  ident: 511_CR34
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0035-6
– volume: 358
  start-page: 1187
  year: 2017
  ident: 511_CR26
  publication-title: Science
  doi: 10.1126/science.aao3691
– volume: 10
  start-page: 1262
  year: 2017
  ident: 511_CR37
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee00388a
– volume: 11
  start-page: 80
  year: 2019
  ident: 511_CR9
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0311-z
– volume: 6
  start-page: 13705
  year: 2018
  ident: 511_CR31
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta03176b
– volume: 12
  start-page: 310
  year: 2018
  ident: 511_CR29
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.02.012
– volume: 10
  start-page: 14622
  year: 2018
  ident: 511_CR42
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b19739
– volume: 292
  start-page: 339
  year: 2018
  ident: 511_CR43
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.154
– volume: 44
  start-page: 2376
  year: 2015
  ident: 511_CR11
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00350k
– volume: 12
  start-page: 26
  year: 2020
  ident: 511_CR8
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0361-2
– volume: 14
  start-page: 246
  year: 2018
  ident: 511_CR50
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.04.009
– volume: 256
  start-page: 19
  year: 2017
  ident: 511_CR45
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.129
– volume: 9
  start-page: 1803768
  year: 2019
  ident: 511_CR30
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803768
– volume: 21
  start-page: 97
  year: 2018
  ident: 511_CR33
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.10.019
– volume: 63
  start-page: 103846
  year: 2019
  ident: 511_CR6
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.042
– volume: 51
  start-page: 122
  year: 2018
  ident: 511_CR51
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.045
– volume: 7
  start-page: 22871
  year: 2019
  ident: 511_CR35
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c9ta06870h
– volume: 481
  start-page: 1196
  year: 2019
  ident: 511_CR47
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.165
– volume: 46
  start-page: 2199
  year: 2017
  ident: 511_CR21
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c6cs00823b
– volume: 2
  start-page: 1534
  year: 2018
  ident: 511_CR20
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.022
– volume: 5
  start-page: 20228
  year: 2017
  ident: 511_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta05946a
– volume: 264
  start-page: 118531
  year: 2020
  ident: 511_CR32
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118531
– volume: 32
  start-page: 511
  year: 2017
  ident: 511_CR23
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.014
– volume: 12
  start-page: 12623
  year: 2020
  ident: 511_CR19
  publication-title: Nanoscale
  doi: 10.1039/d0nr01528h
– volume: 47
  start-page: 224
  year: 2018
  ident: 511_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.002
– volume: 57
  start-page: 626
  year: 2018
  ident: 511_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706426
– volume: 12
  start-page: 66
  year: 2020
  ident: 511_CR3
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0402-x
– volume: 13
  start-page: 3448
  year: 2019
  ident: 511_CR12
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09548
– volume: 4
  start-page: 15302
  year: 2016
  ident: 511_CR44
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta04390a
– volume: 47
  start-page: 3100
  year: 2018
  ident: 511_CR5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00024g
– volume: 12
  start-page: 4010
  year: 2018
  ident: 511_CR40
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01703
– volume: 8
  start-page: 1
  year: 2017
  ident: 511_CR10
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.01.006
– volume: 277
  start-page: 205
  year: 2018
  ident: 511_CR39
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.185
– volume: 8
  start-page: 15894
  year: 2017
  ident: 511_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15894
– volume: 13
  start-page: 5635
  year: 2019
  ident: 511_CR27
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00816
– volume: 18
  start-page: 541
  year: 2019
  ident: 511_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0366-8
– volume: 11
  start-page: 6483
  year: 2017
  ident: 511_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03329
– volume: 139
  start-page: 3316
  year: 2017
  ident: 511_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12185
– volume: 7
  start-page: 12122
  year: 2016
  ident: 511_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12122
– volume: 19
  start-page: 408
  year: 2019
  ident: 511_CR4
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.02.023
– volume: 27
  start-page: 1605017
  year: 2017
  ident: 511_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605017
– volume: 3
  start-page: 11857
  year: 2015
  ident: 511_CR41
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta02100f
– volume: 8
  start-page: 1801477
  year: 2018
  ident: 511_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801477
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.433491
Snippet Highlights MoSe 2 /MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe 2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework....
HighlightsMoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics.MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework.The...
Highlights MoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The...
SourceID doaj
pubmedcentral
proquest
crossref
springer
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Anodes
Battery
Bridging
Carbon
Charge transfer
Composite materials
Electrode materials
Engineering
Heterostructure
Incorporation
Interface engineering
Interface stability
Kinetics
Lithium
Lithium-ion batteries
MoC
Molybdenum compounds
MoSe2 nanodots
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nitrogen
Physical Sciences and Mathematics
Porous carbon framework
Rechargeable batteries
Structural stability
T
Technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgrYzEDSISv3PsLqwqBFy6lXqL7NimkSCp2uyhv4S_y4yTfVUqXDhsDvHs7GY8mYc9_oaQd2ATpQmK5zp4lgtWVLlJZWIQbYC7Usy4VCD7XZ2eiy8X8mKn1RfWhI3wwKPgPgYFBtMAIwGJg7XBQkgfuNal44Zpk8C2weftJFOgSUxjR6bt_iC2VRY7KDUCMV34FshMInCZ3uJjSibAr0-OdgykNW5hpU51ZZkrXajpBE46h4ddm4scMzFUckjK9rxcagYAvqtr27049m4V5p2t2OThFk_I4yk0pSejSJ6SB6F7Rh7tABY-J7-XK1xHoWkdMdom0Bke-MJbs7Hgi37rzwKjtvN0CWoS8k_YPmCE_qBze-36ji7WBWHU3QKrZgJTBhraR2AwH_mnQy1DoENPZ31_M9Cv7XDZrn7RswHIfwRgdzWijN--IOeLz8v5aT61dsgbJYoh91x6yINByA7kqn2QrOEqgtVmZRMr55SwgQVZ-YJZERulQxM9YvOYRrng-Uty0PVdeEWo1BqcB3fSeSOCUYZZLWOM3plofKEyUq6nom4m3HNsv_Gz3iA2p-mrC_zg9NUiI-8337kaUT_-Sj3DGd5QImJ3ugF6XE96XP9LjzNyBPoB_xCvpdEMhCMqjHYricsUGTlca049mZmbmgmuVAVB3n3DmnOgKMuMvN0Mg_3ATSHbhX4FNFIg4lFZ8IzoPYXce579ka69TEjkWuNroTPyYa262x-_X16v_4e83pCHLL1wYOjlITkYrlfhCOLDwR0nU_AHBxxR0Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAeIrQFhmJG0RK_M6RXVhVCLh0K_UWxbHTrgRJtZs99JfwdzvjvJqKInHYPcSzjtcez8Mz_oaQDyATpfGKx9o7FguWZLEJaWJgbYC6UszYkCD7U52ciW_n8ry_FLYbst2HkGSQ1ONlNyyNnMTo7iAngefzkDyS4LsjXy8nzHGmsRrTFBvEksriFkKNQDwXPoGYSQQt0xM2pmQCdHqvZDsjWmP4KlSpg9cqnaj-9s3fhzXTcKEQAOiterOZ2bB3MzDvhGGDdls9I097s5R-7vjoOXng6xfkyS2wwpfkz3qPZyg0nCFWRenpAi974aNFl-xFfzSnntGidnQNLOLjL1g6oIP9oMtia5uaroZkMGqvoauyB1IGGtpU0MGy6z9caGk9bRu6aJpdS79v2svN_jc9bYH8wkN3Vx3C-PUrcrb6ul6exH1Zh7hUImljx6UDHxgm2cK8auclK7mqQGKztKwya5UoPPMycwkrRFUq7cvKIS6PKZX1jr8mB3VT-zeESq1BcXArrTPCG2VYoWVVVc6ayrhERSQdliIve8xzLL3xKx_RmsPy5Ql-cPlyEZGP42-uOsSPf1IvcIVHSkTrDg-a7UXeb_7cK1D6BjaDAOe3KHwBbqnnWqeWG6YNDPMY-ANGiN-p0QwmR2Ro6WYSjygicjRwTt6LmF3OBFcqAwPvvmbNOVCkaUTej80gOzAgVNS-2QONFIh2lCY8InrGkLP_M2-pN5cBhVxr3BY6Ip8G1p1efv98vf0_8kPymIWtBeJcHpGDdrv3x2AFtvZd2PQ3PahGzA
  priority: 102
  providerName: Springer Nature
Title Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability
URI https://cir.nii.ac.jp/crid/1872272492423957888
https://link.springer.com/article/10.1007/s40820-020-00511-4
https://www.proquest.com/docview/2436697828
https://www.proquest.com/docview/2473336611
https://www.proquest.com/docview/2542357103
https://pubmed.ncbi.nlm.nih.gov/PMC7770767
https://doaj.org/article/e62998ed24104aaea149e3771b382786
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYeoED4lMEtspI3CAi8XdOaOlWJgQTYp20W5TEzlYJktKmh_0l_Lu85yTtOmk7NAfbdRz7-X35-fcI-QA8URqneKidZaFgURIaHyYG2gaIK8VM4QNkz9Tphfh2KS97h9uqD6sceKJn1LYp0Uf-mQnNOQdpEn9Z_A0xaxServYpNPbICFiwAeNrlJ6c_fw1UBTTmJlpe06I6ZXFLbQagdgufAtoJhHATG9xMiW8lele4HYKtcajLJ-xLo5DpSPV38Tx9_Ewe3MUokWGxA7G2Y6080kBQIbV8_mOPns3GvPOkayXdNNn5GmvotKjjqaek0eufkGe3AIufEn-zdboT6Hen1jlpaMpXvzCorQL_KI_mnPHaF5bOgNyceExphHoIEDoJF8WTU2nQ2AYLW6gq7IHVYY2tKmgg0nXv7_c0jraNjRtmlVLv8_b6_n6Dz1vofmVg-4WHdr4zStyMT2ZTU7DPsVDWCoRtaHl0oI9DJNcwLxq6yQruaqAe7O4rJKiUCJ3zMnERiwXVam0KyuLGD2mVIWz_DXZr5vavSFUag1ChBeysEY4owzLtayqyhamMjZSAYmHpcjKHv8c03D8zjbIzX75sgh_uHyZCMjHzX8WHfrHg61TXOFNS0Tu9gXN8irrGUHmFCgABjaGAEM4z10OJqrjWscFN0wbGOYh0AeMEJ-x0QwmRySo9SYS3RUBORgoJ-vZzSpjAnZGAsrefdXD3gnI-0018BE8HMpr16yhjRSIfBRHPCB6hyB3vme3pp5fe0RyrXFb6IB8Gkh3-_L75-vtw2N9Rx4zv5WAlcsDst8u1-4QNMC2GJM9M_06JqOj9DidjvtND6UTJvCpJmPvW_kP-iZQkg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiKdqaGGR4AQW9r59QIikhJSmvTSVejN-rNtIYIfEEcov4V_wG5lZ20lTqb314By8683a896d_YaQt6ATpbGK-9rmzBcsiHzj0sTA2wBzpZhJXYLssRqeiu9n8myL_OvOwmBaZacTnaLOqwzXyD8yoTnnYE3Cz9PfPlaNwt3VroRGwxaHdvkHQrb5p4N9oO87xgZfx_2h31YV8DMlgtrPucwhBAO7nUIMr3MrWcZVAQqDhVkRpakSiWVWRnnAElFkStusyBEWxmQqtTmHce-Qu4LzCCXKDL51_Ms01oFa70piMWdxCRtHIJIMX8OnSYRL02tUTgnvyHRr3hv3XePGmauPF4a-0oFqz_24039YKzrwMf5D0YJQcMO2uhIEYDHLyWTDe76a-3llA9jZ1cEj8rB1iOmXhoMfky1bPiEPLsEkPiV_xwtcvaFu9bJIMkt7eMwMb_WaNDN6VJ1YRpMyp2NgTuvvY9GCBnCE9pNZWpV00KWh0XQJQ2UthDP0oVUBA_Sb8d1RmtrSuqK9qprXdDSpLyaLX_Skhu7nFoabNtjmy2fk9FZI_5xsl1VpdwiVWoPJ4qlMcyOsUYYlWhZFkaemMHmgPBJ2pIizFm0di378jFc40Y58cYAXki8WHnm_embaYI3c2LuHFF71RJxwd6Oancet2omtAnfDgBgKCLuTxCYQEFuudZhyw7SBae4Bf8AM8Tc0msHHERH62JHExRGP7HacE7fKbR4zAXIYgWt5XXMnqR55s2oGrYVbUUlpqwX0kQJxlsKAe0RvMOTG-2y2lJMLh3-uNYqF9siHjnXXf37993px81xfk3vD8dEoHh0cH74k95kTKzAicpds17OF3QPfs05fOYGn5Mdta5j_52yHog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiKcItGAkbhA18TtHdsuqQKmQ2kq9RXFstytBstpmD_0l_F1mnOyrokgcdg_xrOO1x_OwZ74h5D3IRGm84qn2jqWCZUVqYpgYWBugrhQzNgbIHqvDM_H1XJ5vZPHHaPfllWSf04AoTU23P3Nhf5X4hmWSsxRdH-Qq8ILuknvgqeQY1Dde448zjZWZ1veEWF5ZbKDVCMR24WtAM4kAZnqNkymZAP0-KNzeoNZ4lRUr1sFrlc7UkInz92FtabtYFAB0WDOdbtmzN6Mxb1zJRk03eUweDSYq_dTz1BNyxzdPycMN4MJn5PfpAs9TaDxPDFXt6QgTv_DRqA_8ot_bE89o1Th6Cuzi0wMsI9BDgNBxNbdtQyfLwDBqr6GregBVBhraBuhg3Pcfk1s6T7uWjtr2qqNH0-5yuvhFTzogv_DQ3axHG79-Ts4mn0_Hh-lQ4iGtlci61HHpwB-GSbYwr9p5yWquAkhvltehsFaJyjMvC5exSoRaaV8Hhxg9plbWO_6C7DRt418SKrUGJcKttM4Ib5RhlZYhBGdNMC5TCcmXS1HWA_45luH4Wa6Qm-PylRl-cPlKkZAPq9_MevSPf1KPcIVXlIjcHR-084tyEASlV2AAGNgYAhzhqvIVuKiea51bbpg2MMw94A8YIX7nRjOYHFGg1VtIPK5IyO6Sc8pB3FyVTHClCjD2bmvWnANFnifk3aoZ5AheDlWNbxdAIwUiH-UZT4jeYsit_7Pd0kwvIyK51rgtdEI-Lll3_fLb5-vV_5G_Jfd_HEzKoy_H316TByzuMpDycpfsdPOF3wPjsLNv4v7_A8XCTf0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Interface+Bridging+Between+MoSe2+and+Three-Dimensional+Carbon+Framework+by+Incorporation+of+MoC+Intermediate+to+Boost+Lithium+Storage+Capability&rft.jtitle=Nano-micro+letters&rft.au=Chen%2C+Jing&rft.au=Luo+Yilin&rft.au=Zhang%2C+Wenchao&rft.au=Yu%2C+Qiao&rft.date=2020-08-25&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-020-00511-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon