Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption

Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 17; no. 1; pp. 24 - 20
Main Authors Liu, Jiaolong, Zhang, Siyu, Qu, Dan, Zhou, Xuejiao, Yin, Moxuan, Wang, Chenxuan, Zhang, Xuelin, Li, Sichen, Zhang, Peijun, Zhou, Yuqi, Tao, Kai, Li, Mengyang, Wei, Bing, Wu, Hongjing
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M x S y /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. Highlights A series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy. “Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations. Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response.
AbstractList Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M S /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M x S y /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. A series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy. “Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations. Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response.
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M x S y /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. Highlights A series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy. “Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations. Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response.
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.HighlightsA series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy.“Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations.Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response.
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.
Abstract Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M x S y /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.
ArticleNumber 24
Author Yin, Moxuan
Zhou, Yuqi
Qu, Dan
Li, Mengyang
Liu, Jiaolong
Wu, Hongjing
Zhou, Xuejiao
Li, Sichen
Zhang, Xuelin
Wang, Chenxuan
Wei, Bing
Zhang, Peijun
Tao, Kai
Zhang, Siyu
Author_xml – sequence: 1
  givenname: Jiaolong
  surname: Liu
  fullname: Liu, Jiaolong
  organization: School of Physics, Xidian University
– sequence: 2
  givenname: Siyu
  surname: Zhang
  fullname: Zhang, Siyu
  organization: School of Physics, Xidian University
– sequence: 3
  givenname: Dan
  surname: Qu
  fullname: Qu, Dan
  organization: School of Physics, Xidian University
– sequence: 4
  givenname: Xuejiao
  surname: Zhou
  fullname: Zhou, Xuejiao
  organization: School of Advanced Materials and Nanotechnology, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University
– sequence: 5
  givenname: Moxuan
  surname: Yin
  fullname: Yin, Moxuan
  organization: School of Microelectronics, Xidian University
– sequence: 6
  givenname: Chenxuan
  surname: Wang
  fullname: Wang, Chenxuan
  organization: School of Microelectronics, Xidian University
– sequence: 7
  givenname: Xuelin
  surname: Zhang
  fullname: Zhang, Xuelin
  organization: School of Telecommunication Engineering, Xidian University
– sequence: 8
  givenname: Sichen
  surname: Li
  fullname: Li, Sichen
  organization: School of Advanced Materials and Nanotechnology, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University
– sequence: 9
  givenname: Peijun
  surname: Zhang
  fullname: Zhang, Peijun
  organization: School of Physics, Xidian University
– sequence: 10
  givenname: Yuqi
  surname: Zhou
  fullname: Zhou, Yuqi
  organization: School of Physics, Xidian University
– sequence: 11
  givenname: Kai
  surname: Tao
  fullname: Tao, Kai
  organization: The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University
– sequence: 12
  givenname: Mengyang
  surname: Li
  fullname: Li, Mengyang
  email: limengyang@xidian.edu.cn
  organization: School of Physics, Xidian University
– sequence: 13
  givenname: Bing
  surname: Wei
  fullname: Wei, Bing
  email: bwei@xidian.edu.cn
  organization: School of Physics, Xidian University
– sequence: 14
  givenname: Hongjing
  surname: Wu
  fullname: Wu, Hongjing
  email: wuhongjing@nwpu.edu.cn
  organization: MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39331290$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEUtFARLaF_gANaiQuXpf6294SqtNBKlUBtEUfL9jobVxs72N4i-A38aJykFNpDT7b8ZubN85uXYC_E4AB4jeB7BKE4yhRKDFuIaQsRQ6yFz8ABRgy2jDG0V-8EoZYLyPfBYc7eQIapwILRF2CfdIQg3MED8PvELZwtub30dtmcueJSzCVNtkzJ5eY6-WFwqbkqKYah-RJHnfwvXXwMzTxO69HXVx-aq2lc-N7lo7lOZltbrWP2pUr88GXZXEYz5dKcjrVXiis9BFe8bb7pW9ccmxzTeiP5Cjxf6DG7w7tzBr5-PL2en7UXnz-dz48vWsspLK3F0mLRU0s0X1DeOcM7IQ2URAtMrcEYaYGEYAz3kmvTOWY0FIRwQXiPJZmB851uH_WNWie_0umnitqr7UNMg9Kp-hudkoj3BENGO-iolEb2vdRGkr5jose1NgMfdlrryaxcb10oSY8PRB9Wgl-qId4qhCjhHG3cvLtTSPH75HJRK5-tG0cdXJyyqnuEddmMkQp9-wh6E6cU6l9tUazq1Rln4M3_lu69_N16BeAdwNZl5-QW9xAE1SZdapcuVdOltulSG5J8RLK-bJNQx_Lj01Syo-baJ9Q8_bP9BOsP3Mzk-Q
CitedBy_id crossref_primary_10_1016_j_apsusc_2025_162849
crossref_primary_10_1007_s10854_025_14503_w
crossref_primary_10_1016_j_cej_2025_161603
crossref_primary_10_1007_s40820_024_01638_4
crossref_primary_10_1016_j_cej_2025_160742
crossref_primary_10_1016_j_jmst_2025_01_046
crossref_primary_10_1007_s40820_024_01608_w
crossref_primary_10_1002_adfm_202420239
crossref_primary_10_1016_j_cclet_2025_111034
crossref_primary_10_1016_j_cej_2024_158873
crossref_primary_10_1002_adfm_202502952
Cites_doi 10.1002/adma.202210243
10.1021/acs.chemrev.1c00644
10.1039/D3EE01522J
10.1021/acsnano.3c07300
10.1002/adfm.202306599
10.1016/j.nanoen.2023.108938
10.1016/j.apcatb.2019.117937
10.1126/sciadv.adl6498
10.1016/j.jcis.2021.08.019
10.1002/adfm.202305463
10.1016/j.chempr.2018.07.005
10.1002/adfm.202314653
10.1002/adfm.202011229
10.1038/s41467-023-41697-6
10.1063/5.0067791
10.1016/j.carbon.2021.10.052
10.1039/D1CS00236H
10.1016/j.jcis.2023.05.094
10.1002/aenm.201900584
10.1016/j.pnsc.2020.06.001
10.1007/s40820-023-01179-2
10.1016/j.scib.2019.10.011
10.1002/adma.202311135
10.1002/adfm.202311983
10.1021/jacs.9b04492
10.1002/adma.202005802
10.1002/adfm.202405523
10.1021/acsnano.0c03013
10.1016/j.electacta.2019.01.011
10.1002/adfm.202105018
10.1002/adfm.202211542
10.1002/anie.202306333
10.1007/s40820-023-01123-4
10.1002/anie.201610301
10.1016/j.jcis.2021.08.186
10.1016/j.jallcom.2022.168577
10.1002/adma.202106195
10.1016/j.carbon.2021.04.029
10.1016/j.jmst.2021.06.065
10.1002/adfm.202110496
10.1002/anie.202200190
10.1002/aenm.201904147
10.1002/adma.202305586
10.1039/d1ee03764a
10.1126/science.aba7977
10.1002/adfm.202200544
10.1039/C7RA03260A
10.1021/acsami.3c15017
10.1016/j.apsusc.2018.02.175
10.1002/sstr.202200379
10.1039/C6TC05167G
10.1016/j.cej.2019.122159
10.1007/s40820-023-01151-0
10.1002/adma.202209354
10.1021/acsnano.3c05130
ContentType Journal Article
Copyright The Author(s) 2024 corrected publication 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024 corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-024-01515-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 20
ExternalDocumentID oai_doaj_org_article_816d3205490e488b8dd8ab83d957d26d
PMC11436618
39331290
10_1007_s40820_024_01515_0
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CAJEB
CCEZO
CDRFL
D1I
EBLON
EBS
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PHGZM
PIMPY
PROAC
Q--
RNS
RPM
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AAYXX
AFUIB
AHSBF
C1A
CCPQU
CITATION
EJD
IPNFZ
PHGZT
PQGLB
PTHSS
RIG
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c640t-c28c27d4c3a6f469eb6978b083a724cb221a7177552d86ab9e5ba07336736d283
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 18:31:25 EDT 2025
Fri Jul 11 06:20:39 EDT 2025
Fri Aug 01 10:40:47 EDT 2025
Fri Aug 01 03:41:36 EDT 2025
Thu Aug 07 06:48:42 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Sun Aug 17 01:18:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Defects-rich heterointerfaces; Sulfides; Polarization coupling; Electromagnetic wave absorption
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-c28c27d4c3a6f469eb6978b083a724cb221a7177552d86ab9e5ba07336736d283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-024-01515-0
PMID 39331290
PQID 3110566167
PQPubID 2044332
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_816d3205490e488b8dd8ab83d957d26d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436618
proquest_miscellaneous_3110408553
proquest_journals_3110566167
pubmed_primary_39331290
crossref_primary_10_1007_s40820_024_01515_0
crossref_citationtrail_10_1007_s40820_024_01515_0
springer_journals_10_1007_s40820_024_01515_0
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Z Zhao (1515_CR39) 2022; 186
D Li (1515_CR29) 2018; 4
B Li (1515_CR7) 2024; 34
W Zhao (1515_CR17) 2023; 33
P Wu (1515_CR27) 2024; 34
X Guan (1515_CR35) 2023; 17
G Chen (1515_CR44) 2022; 607
X Zhang (1515_CR3) 2023; 35
Y Li (1515_CR36) 2020; 32
Z Tang (1515_CR26) 2023; 14
L Jin (1515_CR51) 2023; 17
G Wang (1515_CR16) 2023; 15
D Li (1515_CR28) 2016; 55
P Zheng (1515_CR33) 2019; 257
T Zhu (1515_CR46) 2019; 378
Y Guo (1515_CR53) 2023; 16
R Guo (1515_CR30) 2019; 299
J Ding (1515_CR54) 2023; 33
L Gai (1515_CR45) 2021; 179
S Zhang (1515_CR12) 2023; 15
G Cui (1515_CR47) 2020; 30
J Wang (1515_CR15) 2023; 646
Y Zou (1515_CR25) 2020; 10
Z Jia (1515_CR8) 2024
Y Yang (1515_CR10) 2019; 141
L Liang (1515_CR11) 2022; 34
W Li (1515_CR43) 2022; 606
M Ning (1515_CR21) 2021; 31
S Wang (1515_CR22) 2020; 14
J He (1515_CR31) 2019; 9
J Xu (1515_CR52) 2022; 9
Q Ma (1515_CR41) 2023; 938
B Zhao (1515_CR37) 2023; 35
Z Su (1515_CR50) 2023; 15
F Pan (1515_CR6) 2024; 36
B Zhao (1515_CR13) 2023; 15
E Yang (1515_CR32) 2018; 442
W Chen (1515_CR55) 2022; 61
L Wu (1515_CR48) 2023; 118
B Li (1515_CR4) 2022; 104
X Zhang (1515_CR5) 2024; 10
D Zhang (1515_CR40) 2020; 65
X Liu (1515_CR23) 2017; 5
A Iqbal (1515_CR1) 2020; 369
J Liu (1515_CR14) 2023; 4
J Liu (1515_CR18) 2022; 32
G Chen (1515_CR38) 2023; 35
X-J Zhang (1515_CR42) 2017; 7
J Liu (1515_CR20) 2022; 32
F Pan (1515_CR49) 2023; 33
X Lin (1515_CR24) 2023; 62
X Yin (1515_CR2) 2021; 50
S Yin (1515_CR34) 2022; 15
J Liu (1515_CR9) 2021; 31
B Zheng (1515_CR19) 2022; 122
39676150 - Nanomicro Lett. 2024 Dec 16;17(1):89. doi: 10.1007/s40820-024-01608-w.
References_xml – volume: 35
  year: 2023
  ident: 1515_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210243
– volume: 122
  start-page: 5519
  year: 2022
  ident: 1515_CR19
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00644
– volume: 16
  start-page: 3462
  year: 2023
  ident: 1515_CR53
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01522J
– volume: 17
  start-page: 20525
  year: 2023
  ident: 1515_CR35
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c07300
– volume: 33
  start-page: 2306599
  year: 2023
  ident: 1515_CR49
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306599
– volume: 118
  year: 2023
  ident: 1515_CR48
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108938
– volume: 257
  year: 2019
  ident: 1515_CR33
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117937
– volume: 10
  start-page: eadl6498
  issue: 11
  year: 2024
  ident: 1515_CR5
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adl6498
– volume: 606
  start-page: 719
  year: 2022
  ident: 1515_CR43
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.019
– volume: 33
  start-page: 2305463
  year: 2023
  ident: 1515_CR54
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305463
– volume: 4
  start-page: 2345
  year: 2018
  ident: 1515_CR29
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.07.005
– volume: 34
  start-page: 2314653
  year: 2024
  ident: 1515_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202314653
– volume: 31
  start-page: 2011229
  year: 2021
  ident: 1515_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202011229
– volume: 14
  start-page: 5951
  year: 2023
  ident: 1515_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41697-6
– volume: 9
  year: 2022
  ident: 1515_CR52
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0067791
– volume: 186
  start-page: 323
  year: 2022
  ident: 1515_CR39
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.10.052
– volume: 50
  start-page: 10087
  year: 2021
  ident: 1515_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00236H
– volume: 646
  start-page: 970
  year: 2023
  ident: 1515_CR15
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.05.094
– volume: 9
  start-page: 1900584
  year: 2019
  ident: 1515_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900584
– volume: 30
  start-page: 343
  year: 2020
  ident: 1515_CR47
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2020.06.001
– volume: 15
  start-page: 204
  year: 2023
  ident: 1515_CR12
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01179-2
– volume: 65
  start-page: 138
  year: 2020
  ident: 1515_CR40
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.10.011
– volume: 36
  year: 2024
  ident: 1515_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202311135
– volume: 34
  start-page: 2311983
  year: 2024
  ident: 1515_CR27
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202311983
– volume: 141
  start-page: 10417
  year: 2019
  ident: 1515_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 32
  year: 2020
  ident: 1515_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005802
– year: 2024
  ident: 1515_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202405523
– volume: 14
  start-page: 8634
  year: 2020
  ident: 1515_CR22
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03013
– volume: 299
  start-page: 72
  year: 2019
  ident: 1515_CR30
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.01.011
– volume: 31
  start-page: 2105018
  year: 2021
  ident: 1515_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105018
– volume: 33
  start-page: 2211542
  year: 2023
  ident: 1515_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211542
– volume: 62
  year: 2023
  ident: 1515_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202306333
– volume: 15
  start-page: 152
  year: 2023
  ident: 1515_CR16
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01123-4
– volume: 55
  start-page: 15925
  year: 2016
  ident: 1515_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610301
– volume: 607
  start-page: 24
  year: 2022
  ident: 1515_CR44
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.186
– volume: 938
  year: 2023
  ident: 1515_CR41
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.168577
– volume: 34
  start-page: 2106195
  year: 2022
  ident: 1515_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106195
– volume: 179
  start-page: 111
  year: 2021
  ident: 1515_CR45
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.04.029
– volume: 104
  start-page: 244
  year: 2022
  ident: 1515_CR4
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.06.065
– volume: 32
  start-page: 2110496
  year: 2022
  ident: 1515_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110496
– volume: 61
  year: 2022
  ident: 1515_CR55
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200190
– volume: 10
  start-page: 1904147
  year: 2020
  ident: 1515_CR25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904147
– volume: 35
  year: 2023
  ident: 1515_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305586
– volume: 15
  start-page: 1556
  year: 2022
  ident: 1515_CR34
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee03764a
– volume: 369
  start-page: 446
  year: 2020
  ident: 1515_CR1
  publication-title: Science
  doi: 10.1126/science.aba7977
– volume: 32
  start-page: 2200544
  year: 2022
  ident: 1515_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200544
– volume: 7
  start-page: 22454
  year: 2017
  ident: 1515_CR42
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03260A
– volume: 15
  start-page: 59618
  year: 2023
  ident: 1515_CR13
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c15017
– volume: 442
  start-page: 622
  year: 2018
  ident: 1515_CR32
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.175
– volume: 4
  start-page: 2200379
  year: 2023
  ident: 1515_CR14
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200379
– volume: 5
  start-page: 3770
  year: 2017
  ident: 1515_CR23
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05167G
– volume: 378
  year: 2019
  ident: 1515_CR46
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122159
– volume: 15
  start-page: 183
  year: 2023
  ident: 1515_CR50
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01151-0
– volume: 35
  year: 2023
  ident: 1515_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209354
– volume: 17
  start-page: 18200
  year: 2023
  ident: 1515_CR51
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05130
– reference: 39676150 - Nanomicro Lett. 2024 Dec 16;17(1):89. doi: 10.1007/s40820-024-01608-w.
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5184236
Snippet Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are...
Abstract Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24
SubjectTerms Absorption
Carbon
Carrageenan
Cations
Coupling
Crystal defects
Defects-rich heterointerfaces; Sulfides; Polarization coupling; Electromagnetic wave absorption
Dipole moments
Displays
Electromagnetic radiation
Electronic structure
Energy
Engineering
Free energy
Heat of formation
Heterostructures
Lattice vacancies
Nanomaterials
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Particulate composites
Polarization
Strategy
Sulfides
Sulfur
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYDVx_EiOZWm1QgIh2oreIj-XldoEdXf7K_qjmXGy2V2eF65rx2t5xp4Ze-b7CHmtqoikhDXTTkYmJASsJo-GuTpyE72zxuF9x8dPanomPpzL8y2qL8wJ6-GB-4U7qArlSw6ORZ0HUDZbeV8ZW5W-ltpz5fH0BZu3FUyBJnGNjEyb90GkVRZbKDUCMV3KDZCZROAyvcHHlFyAXR8Mbe9Ia3zCSkx1RcGUztVQgZPq8JC1OWdg7iAyBweB5TtWLpEB_M6D_TUR86fX2GTkju-Ru4N3Sg_7VblPboX2AbmzhVn4kNy8DykDhGFJPp1iNk3Xg9CuIHKnpxDtw8D0BK_YZ_QzRs5DqSeddCus_53ReUtPVhdx7sPiYGKubGq7TPljMAReDdMvnV0tlvSoZ-m5NLMWqy3pV3Md6KFddFfpqHtEzo6PTidTNlA6MKdEvmSOV45rL1xpVITIPFgFYawFP9BoLpzlvDAQYGopua-UsXWQ1iCvJKafeXCFHpO9tmvDU0JFUSgLoxkJPmEdTS1Lz20UAoSrQowZKdYiaNyAd460GxfNiNScxNaA2JoktibPyJvxm-892sdfe79DyY49Eak7_QD62wz62_xLfzOyv9aLZjg-Fg3oGDimqlA6I6_GZtj4-Jpj2tCt-j4ITyfLjDzp1WicSVmXJV4wZqTaUbCdqe62tPNvCVwcdk0J_1xl5O1aFzfz-vNaPPsfa_Gc3OZIr5yyhfbJHihveAE-39K-TNv7B5zwR9s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBa29rIdhr3nrRs0YLdNqC1Lsn0a2ixFMGBF0QfWmyFZUhqgtbs8-iv6o0fKStLs0WukKIpJUyRFfh8hn1TpkZSwYkUjPRMSAlades2aynPtbWN0g_mOH4dqdCa-n8vzmHCbxbLKpU0Mhtp2DebId_MMOeJVpoqv178Yskbh7Wqk0HhItsEElxB8be8PD4-OlxrFC2RmWt8TIr2yuINWIxDbJV8DmkkEMCvWOJmSCzjf44HbO9QFXmUFxrosY6pIVezECf14yN6cMjj2IEIHR4GlG6ddIAX4lyf7d0HmH7ey4bA7eEqeRC-V7vVq9Yw8cO1z8vgOduELcvvNhUoQhq35dIRVNV0PRruACJ6ewqODhekJptrH9Agj6NjySQfdAvuAx3TS0pPFpZ9YN9sd6KkJY1ehjgyWwBQxPe7MYjanw56t50qPW-y6pD_1jaN7ZtZNg8l7Sc4OhqeDEYvUDqxRIp2zhpcNL6xocq08ROjOKAhnDfiDuuCiMZxnGgLNQkpuS6VN5aTRyC-JZWgWXKJXZKvtWveGUJFlysBqWoJvWHldydxy44UA4SrnfUKypQjqJuKeI_3GZb1CbA5iq0FsdRBbnSbk8-o71z3qx72z91Gyq5mI2B0-6KbjOhqAusyUzTk4yFXqwGia0tpSmzK3lSwsVzYhO0u9qKMZmdVrpU_Ix9UwGAC81dGt6xb9HISpk3lCXvdqtNpJXuU5JhoTUm4o2MZWN0fayUUAGYe3JodfLhPyZamL6339_1m8vf9vvCOPOBIoh3qgHbIFauneg1c3Nx_iq_sbh3dBOA
  priority: 102
  providerName: ProQuest
Title Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
URI https://link.springer.com/article/10.1007/s40820-024-01515-0
https://www.ncbi.nlm.nih.gov/pubmed/39331290
https://www.proquest.com/docview/3110566167
https://www.proquest.com/docview/3110408553
https://pubmed.ncbi.nlm.nih.gov/PMC11436618
https://doaj.org/article/816d3205490e488b8dd8ab83d957d26d
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4EHxDeBURmJN4hIHNtJHtuupUJimvYh9hbZsd1V2hLUNvsr9kdz56TpCgOJl0aqHdfqnX139t3vR8hHmTkkJczDtBQu5AICVhU5FZa5Y8qZUqsSzzu-H8nZOf92IS66orDVJtt9cyXpd-q-2A2pkaMQbAqEv2CFQwjU9wXE7qjX4y3mOEuRjWl7N4iUyvwOQg1HPJdkC2ImELQs3WJjCsbBpndGtnWiU7y-8ix1cRzKNJJd9c3909qxcJ4I4D7v9c8kzN9uYr2Bmz4lTzrPlA5bVXpGHtjqOXl8B6_wBbk9tD77I8RyfDrDTJq6BaBtIGqnZxDpw8D0FI_X5_QYo-auzJOO6wZrf-d0UdHT5sotjF19Gaul9m3XPncMhsBjYXpS62a1ppOWoedazSustKQ_1I2lQ72ql36be0nOp5Oz8Szs6BzCUvJoHZYsK1lqeJko6SAqt1pCCKvBB1Qp46VmLFYQXKZCMJNJpXMrtEJOSUw9M-AGvSJ7VV3ZN4TyOJYaRlMC_MHcqVwkhmnHOQhXWucCEm9EUJQd1jlSblwVPUqzF1sBYiu82IooIJ_6d362SB__7D1CyfY9EaXbf1Ev50W36IssliZh4BTnkYWNUmfGZEpniclFapg0ATnY6EXRbR2rAnQMnFIZyzQgH_pmWPR4k6MqWzdtH4SmE0lAXrdq1M8kyZMEDxcDku0o2M5Ud1uqxaUHFodVk8AvZwH5vNHF7bz-_l-8_b_u78gjhiTKPifogOyBmtr34Nmt9YA8zKZfB2R_ODocTeE5mhwdnwz88sZPOR74M5NfyFFCNA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcgAODG8MBcQMnMBTW5Jl-8AwJW1I6WMYmk57M5Ilh8y0dokTGP4Dv4XfyK5sJw2P3nq1FFnOrla70u73EfJCJgWSEqZ-nEeFLyIIWFVQKD9PC6YKk2uV43nH3r4cHIoPx9HxCvnV1cJgWmVnE52hNlWOZ-TrPESOeBnK-O3ZVx9Zo_B2taPQaNRix_74DiFb_WZ7E-T7krH-1rA38FtWAT-XIpj6OUtyFhuRcyULCA6tlhBJaXBFVMxErhkLFcQ4cRQxk0ilUxtphdSGmAFlYDeGca-Qq4LzFFdU0n_f6S-LkQdqcSuJZM7iHDaOQCQZvoBPixAuLV6gckZMgDfRbu-N-x7jxZnjxwtDX8aBbOt-XPUfckUHPmyyfoBuiR8s7a2OguBffvPf6Z9_3AG7rbV_i9xsfWK60SjxbbJiyzvkxjmkxLvk56Z1eSc-AgHQAebwVA307WxiazoEQcHA9AAP9kf0I8brbYEp7VUzrDoe0XFJD2YnxdjYer2nJtq1nbqsNRgCD6Tpp0rP6indariBTtWoxBpPeqS-Wbqh62riDOw9cngpIr9PVsuqtA8JFWEoNYymIvBE00KlETdMF0KAcKUtCo-EnQiyvEVZR7KPk2yOD-3EloHYMie2LPDIq_lvzhqMkQt7v0PJznsiPrh7UE1GWWtusiSUhjNwx9PAgonWiTGJ0gk3aRQbJo1H1jq9yFqjVWeLJeaR5_NmMDd4h6RKW82aPgiKF3GPPGjUaD4TnnKOx5oeSZYUbGmqyy3l-IuDNIdVw-HNiUded7q4mNf__4tHF3_GM3JtMNzbzXa393cek-sMqZtdJtIaWQUVtU_An5zqp24RU_L5sq3Gb52DexA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkBA8oPEdNsBIvEHUxLGd5HF0q8rXNLFN7C2yY7tU2pKpbfgr-KO5c9KkhYHEa-w6Vu_iu_Pd_X6EvJGZQ1LCPExL4UIuIGBVkVNhmTumnCm1KvG-48uxnJ7zjxfiYqOL31e7r1OSbU8DojRVq9G1caO-8Q1pkqMQ7AuEwmCRQwjab0OkEmNR33jAH2cpMjMNeUKkV-YbaDUcsV2SAdBMIIBZOuBkCsbBvncGt3WoU0xleca6OA5lGsmuE-fmbW1ZO08KcJMn-2dB5m9ZWW_sJrvkfuel0oNWrR6QW7Z6SO5tYBc-Ij8Pra8ECbE1n06xqqZuwWgbiODpGUT9sDA9xav2GT3BCLpr-aTjusE-4BmdV_S0uXRzY5ejsVpoP3bl68hgCbwipl9r3SxX9Khl67lSswq7Luk39cPSA72sF_7Ie0zOJ0dn42nYUTuEpeTRKixZVrLU8DJR0kGEbrWEcFaDP6hSxkvNWKwg0EyFYCaTSudWaIX8kliGZsAlekJ2qrqyzwjlcSw1rKYE-Ia5U7lIDNOOcxCutM4FJF6LoCg73HOk37gsesRmL7YCxFZ4sRVRQN72v7luUT_-Ofs9SrafiYjd_kG9mBXdAVBksTQJAwc5jywcmjozJlM6S0wuUsOkCcj-Wi-K7hhZFqBj4KDKWKYBed0PwwGAWR1V2bpp5yBMnUgC8rRVo34nSZ4keNEYkGxLwba2uj1Szb97kHH4ahJ4cxaQd2tdHPb19__i-f9Nf0XunBxOis8fjj_tkbsMuZV9qdA-2QGNtS_A4Vvpl_6b_gW-GUOh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defects-Rich+Heterostructures+Trigger+Strong+Polarization+Coupling+in+Sulfides%2FCarbon+Composites+with+Robust+Electromagnetic+Wave+Absorption&rft.jtitle=Nano-micro+letters&rft.au=Liu%2C+Jiaolong&rft.au=Zhang%2C+Siyu&rft.au=Qu%2C+Dan&rft.au=Zhou%2C+Xuejiao&rft.date=2025-12-01&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-024-01515-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40820_024_01515_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon