Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative...
Saved in:
Published in | Nano-micro letters Vol. 17; no. 1; pp. 24 - 20 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M
x
S
y
/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.
Highlights
A series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy.
“Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations.
Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. |
---|---|
AbstractList | Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M
S
/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M x S y /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. A series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy. “Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations. Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M x S y /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. Highlights A series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy. “Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations. Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.HighlightsA series of sulfides/carbon composites with sulfur vacancies-rich sulfides heterointerfaces are well-designed and developed via a simple one-pot carrageenan-assistant cations-regulated strategy.“Janus effect” of interfacial sulfur vacancies, which triggers strong defect-type interfacial polarization, are firstly intuitively confirmed by both theoretical and experimental investigations.Optimized Co/Ni-carbon composites (CAs) imbued with sulfur vacancies-rich heterointerfaces displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. Abstract Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in M x S y /carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such “Janus effect” (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response. |
ArticleNumber | 24 |
Author | Yin, Moxuan Zhou, Yuqi Qu, Dan Li, Mengyang Liu, Jiaolong Wu, Hongjing Zhou, Xuejiao Li, Sichen Zhang, Xuelin Wang, Chenxuan Wei, Bing Zhang, Peijun Tao, Kai Zhang, Siyu |
Author_xml | – sequence: 1 givenname: Jiaolong surname: Liu fullname: Liu, Jiaolong organization: School of Physics, Xidian University – sequence: 2 givenname: Siyu surname: Zhang fullname: Zhang, Siyu organization: School of Physics, Xidian University – sequence: 3 givenname: Dan surname: Qu fullname: Qu, Dan organization: School of Physics, Xidian University – sequence: 4 givenname: Xuejiao surname: Zhou fullname: Zhou, Xuejiao organization: School of Advanced Materials and Nanotechnology, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University – sequence: 5 givenname: Moxuan surname: Yin fullname: Yin, Moxuan organization: School of Microelectronics, Xidian University – sequence: 6 givenname: Chenxuan surname: Wang fullname: Wang, Chenxuan organization: School of Microelectronics, Xidian University – sequence: 7 givenname: Xuelin surname: Zhang fullname: Zhang, Xuelin organization: School of Telecommunication Engineering, Xidian University – sequence: 8 givenname: Sichen surname: Li fullname: Li, Sichen organization: School of Advanced Materials and Nanotechnology, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University – sequence: 9 givenname: Peijun surname: Zhang fullname: Zhang, Peijun organization: School of Physics, Xidian University – sequence: 10 givenname: Yuqi surname: Zhou fullname: Zhou, Yuqi organization: School of Physics, Xidian University – sequence: 11 givenname: Kai surname: Tao fullname: Tao, Kai organization: The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University – sequence: 12 givenname: Mengyang surname: Li fullname: Li, Mengyang email: limengyang@xidian.edu.cn organization: School of Physics, Xidian University – sequence: 13 givenname: Bing surname: Wei fullname: Wei, Bing email: bwei@xidian.edu.cn organization: School of Physics, Xidian University – sequence: 14 givenname: Hongjing surname: Wu fullname: Wu, Hongjing email: wuhongjing@nwpu.edu.cn organization: MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39331290$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vEzEUtFARLaF_gANaiQuXpf6294SqtNBKlUBtEUfL9jobVxs72N4i-A38aJykFNpDT7b8ZubN85uXYC_E4AB4jeB7BKE4yhRKDFuIaQsRQ6yFz8ABRgy2jDG0V-8EoZYLyPfBYc7eQIapwILRF2CfdIQg3MED8PvELZwtub30dtmcueJSzCVNtkzJ5eY6-WFwqbkqKYah-RJHnfwvXXwMzTxO69HXVx-aq2lc-N7lo7lOZltbrWP2pUr88GXZXEYz5dKcjrVXiis9BFe8bb7pW9ccmxzTeiP5Cjxf6DG7w7tzBr5-PL2en7UXnz-dz48vWsspLK3F0mLRU0s0X1DeOcM7IQ2URAtMrcEYaYGEYAz3kmvTOWY0FIRwQXiPJZmB851uH_WNWie_0umnitqr7UNMg9Kp-hudkoj3BENGO-iolEb2vdRGkr5jose1NgMfdlrryaxcb10oSY8PRB9Wgl-qId4qhCjhHG3cvLtTSPH75HJRK5-tG0cdXJyyqnuEddmMkQp9-wh6E6cU6l9tUazq1Rln4M3_lu69_N16BeAdwNZl5-QW9xAE1SZdapcuVdOltulSG5J8RLK-bJNQx_Lj01Syo-baJ9Q8_bP9BOsP3Mzk-Q |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2025_162849 crossref_primary_10_1007_s10854_025_14503_w crossref_primary_10_1016_j_cej_2025_161603 crossref_primary_10_1007_s40820_024_01638_4 crossref_primary_10_1016_j_cej_2025_160742 crossref_primary_10_1016_j_jmst_2025_01_046 crossref_primary_10_1007_s40820_024_01608_w crossref_primary_10_1002_adfm_202420239 crossref_primary_10_1016_j_cclet_2025_111034 crossref_primary_10_1016_j_cej_2024_158873 crossref_primary_10_1002_adfm_202502952 |
Cites_doi | 10.1002/adma.202210243 10.1021/acs.chemrev.1c00644 10.1039/D3EE01522J 10.1021/acsnano.3c07300 10.1002/adfm.202306599 10.1016/j.nanoen.2023.108938 10.1016/j.apcatb.2019.117937 10.1126/sciadv.adl6498 10.1016/j.jcis.2021.08.019 10.1002/adfm.202305463 10.1016/j.chempr.2018.07.005 10.1002/adfm.202314653 10.1002/adfm.202011229 10.1038/s41467-023-41697-6 10.1063/5.0067791 10.1016/j.carbon.2021.10.052 10.1039/D1CS00236H 10.1016/j.jcis.2023.05.094 10.1002/aenm.201900584 10.1016/j.pnsc.2020.06.001 10.1007/s40820-023-01179-2 10.1016/j.scib.2019.10.011 10.1002/adma.202311135 10.1002/adfm.202311983 10.1021/jacs.9b04492 10.1002/adma.202005802 10.1002/adfm.202405523 10.1021/acsnano.0c03013 10.1016/j.electacta.2019.01.011 10.1002/adfm.202105018 10.1002/adfm.202211542 10.1002/anie.202306333 10.1007/s40820-023-01123-4 10.1002/anie.201610301 10.1016/j.jcis.2021.08.186 10.1016/j.jallcom.2022.168577 10.1002/adma.202106195 10.1016/j.carbon.2021.04.029 10.1016/j.jmst.2021.06.065 10.1002/adfm.202110496 10.1002/anie.202200190 10.1002/aenm.201904147 10.1002/adma.202305586 10.1039/d1ee03764a 10.1126/science.aba7977 10.1002/adfm.202200544 10.1039/C7RA03260A 10.1021/acsami.3c15017 10.1016/j.apsusc.2018.02.175 10.1002/sstr.202200379 10.1039/C6TC05167G 10.1016/j.cej.2019.122159 10.1007/s40820-023-01151-0 10.1002/adma.202209354 10.1021/acsnano.3c05130 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 corrected publication 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-024-01515-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_816d3205490e488b8dd8ab83d957d26d PMC11436618 39331290 10_1007_s40820_024_01515_0 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 9D9 9DB AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C24 C6C CAJEB CCEZO CDRFL D1I EBLON EBS ESX GROUPED_DOAJ GX1 HCIFZ IAO IHR ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PHGZM PIMPY PROAC Q-- RNS RPM RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AAYXX AFUIB AHSBF C1A CCPQU CITATION EJD IPNFZ PHGZT PQGLB PTHSS RIG NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c640t-c28c27d4c3a6f469eb6978b083a724cb221a7177552d86ab9e5ba07336736d283 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Aug 21 18:31:25 EDT 2025 Fri Jul 11 06:20:39 EDT 2025 Fri Aug 01 10:40:47 EDT 2025 Fri Aug 01 03:41:36 EDT 2025 Thu Aug 07 06:48:42 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Sun Aug 17 01:18:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Defects-rich heterointerfaces; Sulfides; Polarization coupling; Electromagnetic wave absorption |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-c28c27d4c3a6f469eb6978b083a724cb221a7177552d86ab9e5ba07336736d283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-024-01515-0 |
PMID | 39331290 |
PQID | 3110566167 |
PQPubID | 2044332 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_816d3205490e488b8dd8ab83d957d26d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436618 proquest_miscellaneous_3110408553 proquest_journals_3110566167 pubmed_primary_39331290 crossref_primary_10_1007_s40820_024_01515_0 crossref_citationtrail_10_1007_s40820_024_01515_0 springer_journals_10_1007_s40820_024_01515_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Z Zhao (1515_CR39) 2022; 186 D Li (1515_CR29) 2018; 4 B Li (1515_CR7) 2024; 34 W Zhao (1515_CR17) 2023; 33 P Wu (1515_CR27) 2024; 34 X Guan (1515_CR35) 2023; 17 G Chen (1515_CR44) 2022; 607 X Zhang (1515_CR3) 2023; 35 Y Li (1515_CR36) 2020; 32 Z Tang (1515_CR26) 2023; 14 L Jin (1515_CR51) 2023; 17 G Wang (1515_CR16) 2023; 15 D Li (1515_CR28) 2016; 55 P Zheng (1515_CR33) 2019; 257 T Zhu (1515_CR46) 2019; 378 Y Guo (1515_CR53) 2023; 16 R Guo (1515_CR30) 2019; 299 J Ding (1515_CR54) 2023; 33 L Gai (1515_CR45) 2021; 179 S Zhang (1515_CR12) 2023; 15 G Cui (1515_CR47) 2020; 30 J Wang (1515_CR15) 2023; 646 Y Zou (1515_CR25) 2020; 10 Z Jia (1515_CR8) 2024 Y Yang (1515_CR10) 2019; 141 L Liang (1515_CR11) 2022; 34 W Li (1515_CR43) 2022; 606 M Ning (1515_CR21) 2021; 31 S Wang (1515_CR22) 2020; 14 J He (1515_CR31) 2019; 9 J Xu (1515_CR52) 2022; 9 Q Ma (1515_CR41) 2023; 938 B Zhao (1515_CR37) 2023; 35 Z Su (1515_CR50) 2023; 15 F Pan (1515_CR6) 2024; 36 B Zhao (1515_CR13) 2023; 15 E Yang (1515_CR32) 2018; 442 W Chen (1515_CR55) 2022; 61 L Wu (1515_CR48) 2023; 118 B Li (1515_CR4) 2022; 104 X Zhang (1515_CR5) 2024; 10 D Zhang (1515_CR40) 2020; 65 X Liu (1515_CR23) 2017; 5 A Iqbal (1515_CR1) 2020; 369 J Liu (1515_CR14) 2023; 4 J Liu (1515_CR18) 2022; 32 G Chen (1515_CR38) 2023; 35 X-J Zhang (1515_CR42) 2017; 7 J Liu (1515_CR20) 2022; 32 F Pan (1515_CR49) 2023; 33 X Lin (1515_CR24) 2023; 62 X Yin (1515_CR2) 2021; 50 S Yin (1515_CR34) 2022; 15 J Liu (1515_CR9) 2021; 31 B Zheng (1515_CR19) 2022; 122 39676150 - Nanomicro Lett. 2024 Dec 16;17(1):89. doi: 10.1007/s40820-024-01608-w. |
References_xml | – volume: 35 year: 2023 ident: 1515_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.202210243 – volume: 122 start-page: 5519 year: 2022 ident: 1515_CR19 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00644 – volume: 16 start-page: 3462 year: 2023 ident: 1515_CR53 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01522J – volume: 17 start-page: 20525 year: 2023 ident: 1515_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.3c07300 – volume: 33 start-page: 2306599 year: 2023 ident: 1515_CR49 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306599 – volume: 118 year: 2023 ident: 1515_CR48 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108938 – volume: 257 year: 2019 ident: 1515_CR33 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117937 – volume: 10 start-page: eadl6498 issue: 11 year: 2024 ident: 1515_CR5 publication-title: Sci. Adv. doi: 10.1126/sciadv.adl6498 – volume: 606 start-page: 719 year: 2022 ident: 1515_CR43 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.019 – volume: 33 start-page: 2305463 year: 2023 ident: 1515_CR54 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305463 – volume: 4 start-page: 2345 year: 2018 ident: 1515_CR29 publication-title: Chem doi: 10.1016/j.chempr.2018.07.005 – volume: 34 start-page: 2314653 year: 2024 ident: 1515_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202314653 – volume: 31 start-page: 2011229 year: 2021 ident: 1515_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011229 – volume: 14 start-page: 5951 year: 2023 ident: 1515_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41697-6 – volume: 9 year: 2022 ident: 1515_CR52 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0067791 – volume: 186 start-page: 323 year: 2022 ident: 1515_CR39 publication-title: Carbon doi: 10.1016/j.carbon.2021.10.052 – volume: 50 start-page: 10087 year: 2021 ident: 1515_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00236H – volume: 646 start-page: 970 year: 2023 ident: 1515_CR15 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.05.094 – volume: 9 start-page: 1900584 year: 2019 ident: 1515_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900584 – volume: 30 start-page: 343 year: 2020 ident: 1515_CR47 publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/j.pnsc.2020.06.001 – volume: 15 start-page: 204 year: 2023 ident: 1515_CR12 publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01179-2 – volume: 65 start-page: 138 year: 2020 ident: 1515_CR40 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.011 – volume: 36 year: 2024 ident: 1515_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.202311135 – volume: 34 start-page: 2311983 year: 2024 ident: 1515_CR27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202311983 – volume: 141 start-page: 10417 year: 2019 ident: 1515_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 32 year: 2020 ident: 1515_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.202005802 – year: 2024 ident: 1515_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202405523 – volume: 14 start-page: 8634 year: 2020 ident: 1515_CR22 publication-title: ACS Nano doi: 10.1021/acsnano.0c03013 – volume: 299 start-page: 72 year: 2019 ident: 1515_CR30 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.01.011 – volume: 31 start-page: 2105018 year: 2021 ident: 1515_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105018 – volume: 33 start-page: 2211542 year: 2023 ident: 1515_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211542 – volume: 62 year: 2023 ident: 1515_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202306333 – volume: 15 start-page: 152 year: 2023 ident: 1515_CR16 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01123-4 – volume: 55 start-page: 15925 year: 2016 ident: 1515_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610301 – volume: 607 start-page: 24 year: 2022 ident: 1515_CR44 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.186 – volume: 938 year: 2023 ident: 1515_CR41 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.168577 – volume: 34 start-page: 2106195 year: 2022 ident: 1515_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.202106195 – volume: 179 start-page: 111 year: 2021 ident: 1515_CR45 publication-title: Carbon doi: 10.1016/j.carbon.2021.04.029 – volume: 104 start-page: 244 year: 2022 ident: 1515_CR4 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.06.065 – volume: 32 start-page: 2110496 year: 2022 ident: 1515_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110496 – volume: 61 year: 2022 ident: 1515_CR55 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200190 – volume: 10 start-page: 1904147 year: 2020 ident: 1515_CR25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904147 – volume: 35 year: 2023 ident: 1515_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.202305586 – volume: 15 start-page: 1556 year: 2022 ident: 1515_CR34 publication-title: Energy Environ. Sci. doi: 10.1039/d1ee03764a – volume: 369 start-page: 446 year: 2020 ident: 1515_CR1 publication-title: Science doi: 10.1126/science.aba7977 – volume: 32 start-page: 2200544 year: 2022 ident: 1515_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200544 – volume: 7 start-page: 22454 year: 2017 ident: 1515_CR42 publication-title: RSC Adv. doi: 10.1039/C7RA03260A – volume: 15 start-page: 59618 year: 2023 ident: 1515_CR13 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c15017 – volume: 442 start-page: 622 year: 2018 ident: 1515_CR32 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.175 – volume: 4 start-page: 2200379 year: 2023 ident: 1515_CR14 publication-title: Small Struct. doi: 10.1002/sstr.202200379 – volume: 5 start-page: 3770 year: 2017 ident: 1515_CR23 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05167G – volume: 378 year: 2019 ident: 1515_CR46 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122159 – volume: 15 start-page: 183 year: 2023 ident: 1515_CR50 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01151-0 – volume: 35 year: 2023 ident: 1515_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.202209354 – volume: 17 start-page: 18200 year: 2023 ident: 1515_CR51 publication-title: ACS Nano doi: 10.1021/acsnano.3c05130 – reference: 39676150 - Nanomicro Lett. 2024 Dec 16;17(1):89. doi: 10.1007/s40820-024-01608-w. |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5184236 |
Snippet | Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are... Abstract Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 24 |
SubjectTerms | Absorption Carbon Carrageenan Cations Coupling Crystal defects Defects-rich heterointerfaces; Sulfides; Polarization coupling; Electromagnetic wave absorption Dipole moments Displays Electromagnetic radiation Electronic structure Energy Engineering Free energy Heat of formation Heterostructures Lattice vacancies Nanomaterials Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Particulate composites Polarization Strategy Sulfides Sulfur |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYDVx_EiOZWm1QgIh2oreIj-XldoEdXf7K_qjmXGy2V2eF65rx2t5xp4Ze-b7CHmtqoikhDXTTkYmJASsJo-GuTpyE72zxuF9x8dPanomPpzL8y2qL8wJ6-GB-4U7qArlSw6ORZ0HUDZbeV8ZW5W-ltpz5fH0BZu3FUyBJnGNjEyb90GkVRZbKDUCMV3KDZCZROAyvcHHlFyAXR8Mbe9Ia3zCSkx1RcGUztVQgZPq8JC1OWdg7iAyBweB5TtWLpEB_M6D_TUR86fX2GTkju-Ru4N3Sg_7VblPboX2AbmzhVn4kNy8DykDhGFJPp1iNk3Xg9CuIHKnpxDtw8D0BK_YZ_QzRs5DqSeddCus_53ReUtPVhdx7sPiYGKubGq7TPljMAReDdMvnV0tlvSoZ-m5NLMWqy3pV3Md6KFddFfpqHtEzo6PTidTNlA6MKdEvmSOV45rL1xpVITIPFgFYawFP9BoLpzlvDAQYGopua-UsXWQ1iCvJKafeXCFHpO9tmvDU0JFUSgLoxkJPmEdTS1Lz20UAoSrQowZKdYiaNyAd460GxfNiNScxNaA2JoktibPyJvxm-892sdfe79DyY49Eak7_QD62wz62_xLfzOyv9aLZjg-Fg3oGDimqlA6I6_GZtj4-Jpj2tCt-j4ITyfLjDzp1WicSVmXJV4wZqTaUbCdqe62tPNvCVwcdk0J_1xl5O1aFzfz-vNaPPsfa_Gc3OZIr5yyhfbJHihveAE-39K-TNv7B5zwR9s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBa29rIdhr3nrRs0YLdNqC1Lsn0a2ixFMGBF0QfWmyFZUhqgtbs8-iv6o0fKStLs0WukKIpJUyRFfh8hn1TpkZSwYkUjPRMSAlades2aynPtbWN0g_mOH4dqdCa-n8vzmHCbxbLKpU0Mhtp2DebId_MMOeJVpoqv178Yskbh7Wqk0HhItsEElxB8be8PD4-OlxrFC2RmWt8TIr2yuINWIxDbJV8DmkkEMCvWOJmSCzjf44HbO9QFXmUFxrosY6pIVezECf14yN6cMjj2IEIHR4GlG6ddIAX4lyf7d0HmH7ey4bA7eEqeRC-V7vVq9Yw8cO1z8vgOduELcvvNhUoQhq35dIRVNV0PRruACJ6ewqODhekJptrH9Agj6NjySQfdAvuAx3TS0pPFpZ9YN9sd6KkJY1ehjgyWwBQxPe7MYjanw56t50qPW-y6pD_1jaN7ZtZNg8l7Sc4OhqeDEYvUDqxRIp2zhpcNL6xocq08ROjOKAhnDfiDuuCiMZxnGgLNQkpuS6VN5aTRyC-JZWgWXKJXZKvtWveGUJFlysBqWoJvWHldydxy44UA4SrnfUKypQjqJuKeI_3GZb1CbA5iq0FsdRBbnSbk8-o71z3qx72z91Gyq5mI2B0-6KbjOhqAusyUzTk4yFXqwGia0tpSmzK3lSwsVzYhO0u9qKMZmdVrpU_Ix9UwGAC81dGt6xb9HISpk3lCXvdqtNpJXuU5JhoTUm4o2MZWN0fayUUAGYe3JodfLhPyZamL6339_1m8vf9vvCOPOBIoh3qgHbIFauneg1c3Nx_iq_sbh3dBOA priority: 102 providerName: ProQuest |
Title | Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption |
URI | https://link.springer.com/article/10.1007/s40820-024-01515-0 https://www.ncbi.nlm.nih.gov/pubmed/39331290 https://www.proquest.com/docview/3110566167 https://www.proquest.com/docview/3110408553 https://pubmed.ncbi.nlm.nih.gov/PMC11436618 https://doaj.org/article/816d3205490e488b8dd8ab83d957d26d |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4EHxDeBURmJN4hIHNtJHtuupUJimvYh9hbZsd1V2hLUNvsr9kdz56TpCgOJl0aqHdfqnX139t3vR8hHmTkkJczDtBQu5AICVhU5FZa5Y8qZUqsSzzu-H8nZOf92IS66orDVJtt9cyXpd-q-2A2pkaMQbAqEv2CFQwjU9wXE7qjX4y3mOEuRjWl7N4iUyvwOQg1HPJdkC2ImELQs3WJjCsbBpndGtnWiU7y-8ix1cRzKNJJd9c3909qxcJ4I4D7v9c8kzN9uYr2Bmz4lTzrPlA5bVXpGHtjqOXl8B6_wBbk9tD77I8RyfDrDTJq6BaBtIGqnZxDpw8D0FI_X5_QYo-auzJOO6wZrf-d0UdHT5sotjF19Gaul9m3XPncMhsBjYXpS62a1ppOWoedazSustKQ_1I2lQ72ql36be0nOp5Oz8Szs6BzCUvJoHZYsK1lqeJko6SAqt1pCCKvBB1Qp46VmLFYQXKZCMJNJpXMrtEJOSUw9M-AGvSJ7VV3ZN4TyOJYaRlMC_MHcqVwkhmnHOQhXWucCEm9EUJQd1jlSblwVPUqzF1sBYiu82IooIJ_6d362SB__7D1CyfY9EaXbf1Ev50W36IssliZh4BTnkYWNUmfGZEpniclFapg0ATnY6EXRbR2rAnQMnFIZyzQgH_pmWPR4k6MqWzdtH4SmE0lAXrdq1M8kyZMEDxcDku0o2M5Ud1uqxaUHFodVk8AvZwH5vNHF7bz-_l-8_b_u78gjhiTKPifogOyBmtr34Nmt9YA8zKZfB2R_ODocTeE5mhwdnwz88sZPOR74M5NfyFFCNA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcgAODG8MBcQMnMBTW5Jl-8AwJW1I6WMYmk57M5Ilh8y0dokTGP4Dv4XfyK5sJw2P3nq1FFnOrla70u73EfJCJgWSEqZ-nEeFLyIIWFVQKD9PC6YKk2uV43nH3r4cHIoPx9HxCvnV1cJgWmVnE52hNlWOZ-TrPESOeBnK-O3ZVx9Zo_B2taPQaNRix_74DiFb_WZ7E-T7krH-1rA38FtWAT-XIpj6OUtyFhuRcyULCA6tlhBJaXBFVMxErhkLFcQ4cRQxk0ilUxtphdSGmAFlYDeGca-Qq4LzFFdU0n_f6S-LkQdqcSuJZM7iHDaOQCQZvoBPixAuLV6gckZMgDfRbu-N-x7jxZnjxwtDX8aBbOt-XPUfckUHPmyyfoBuiR8s7a2OguBffvPf6Z9_3AG7rbV_i9xsfWK60SjxbbJiyzvkxjmkxLvk56Z1eSc-AgHQAebwVA307WxiazoEQcHA9AAP9kf0I8brbYEp7VUzrDoe0XFJD2YnxdjYer2nJtq1nbqsNRgCD6Tpp0rP6indariBTtWoxBpPeqS-Wbqh62riDOw9cngpIr9PVsuqtA8JFWEoNYymIvBE00KlETdMF0KAcKUtCo-EnQiyvEVZR7KPk2yOD-3EloHYMie2LPDIq_lvzhqMkQt7v0PJznsiPrh7UE1GWWtusiSUhjNwx9PAgonWiTGJ0gk3aRQbJo1H1jq9yFqjVWeLJeaR5_NmMDd4h6RKW82aPgiKF3GPPGjUaD4TnnKOx5oeSZYUbGmqyy3l-IuDNIdVw-HNiUded7q4mNf__4tHF3_GM3JtMNzbzXa393cek-sMqZtdJtIaWQUVtU_An5zqp24RU_L5sq3Gb52DexA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkBA8oPEdNsBIvEHUxLGd5HF0q8rXNLFN7C2yY7tU2pKpbfgr-KO5c9KkhYHEa-w6Vu_iu_Pd_X6EvJGZQ1LCPExL4UIuIGBVkVNhmTumnCm1KvG-48uxnJ7zjxfiYqOL31e7r1OSbU8DojRVq9G1caO-8Q1pkqMQ7AuEwmCRQwjab0OkEmNR33jAH2cpMjMNeUKkV-YbaDUcsV2SAdBMIIBZOuBkCsbBvncGt3WoU0xleca6OA5lGsmuE-fmbW1ZO08KcJMn-2dB5m9ZWW_sJrvkfuel0oNWrR6QW7Z6SO5tYBc-Ij8Pra8ECbE1n06xqqZuwWgbiODpGUT9sDA9xav2GT3BCLpr-aTjusE-4BmdV_S0uXRzY5ejsVpoP3bl68hgCbwipl9r3SxX9Khl67lSswq7Luk39cPSA72sF_7Ie0zOJ0dn42nYUTuEpeTRKixZVrLU8DJR0kGEbrWEcFaDP6hSxkvNWKwg0EyFYCaTSudWaIX8kliGZsAlekJ2qrqyzwjlcSw1rKYE-Ia5U7lIDNOOcxCutM4FJF6LoCg73HOk37gsesRmL7YCxFZ4sRVRQN72v7luUT_-Ofs9SrafiYjd_kG9mBXdAVBksTQJAwc5jywcmjozJlM6S0wuUsOkCcj-Wi-K7hhZFqBj4KDKWKYBed0PwwGAWR1V2bpp5yBMnUgC8rRVo34nSZ4keNEYkGxLwba2uj1Szb97kHH4ahJ4cxaQd2tdHPb19__i-f9Nf0XunBxOis8fjj_tkbsMuZV9qdA-2QGNtS_A4Vvpl_6b_gW-GUOh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defects-Rich+Heterostructures+Trigger+Strong+Polarization+Coupling+in+Sulfides%2FCarbon+Composites+with+Robust+Electromagnetic+Wave+Absorption&rft.jtitle=Nano-micro+letters&rft.au=Liu%2C+Jiaolong&rft.au=Zhang%2C+Siyu&rft.au=Qu%2C+Dan&rft.au=Zhou%2C+Xuejiao&rft.date=2025-12-01&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-024-01515-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40820_024_01515_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |