Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells deter...
Saved in:
Published in | Experimental & molecular medicine Vol. 52; no. 9; pp. 1475 - 1485 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2020
Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-3613 2092-6413 2092-6413 |
DOI | 10.1038/s12276-020-00500-y |
Cover
Loading…
Abstract | Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8
+
T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8
+
T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T
H
2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8
+
T and CD4
+
T
H
1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.
Cancer: Combination treatment targeting tumor blood vessels and immunity
Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium. |
---|---|
AbstractList | Cancer: Combination treatment targeting tumor blood vessels and immunity Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium. Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. KCI Citation Count: 0 Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Cancer: Combination treatment targeting tumor blood vessels and immunity Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium. Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.Cancer: Combination treatment targeting tumor blood vessels and immunityCombining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium. Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 T and CD4 T 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium. |
Author | Lee, Won Suk Yang, Hannah Chon, Hong Jae Kim, Chan |
Author_xml | – sequence: 1 givenname: Won Suk orcidid: 0000-0003-2753-5294 surname: Lee fullname: Lee, Won Suk organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine – sequence: 2 givenname: Hannah surname: Yang fullname: Yang, Hannah organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine – sequence: 3 givenname: Hong Jae surname: Chon fullname: Chon, Hong Jae email: minidoctor@cha.ac.kr organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine – sequence: 4 givenname: Chan orcidid: 0000-0001-9780-6155 surname: Kim fullname: Kim, Chan email: chan@cha.ac.kr organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32913278$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002625333$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9ks1u1DAUhSNURKeFF2CBIrGBReD6N8kGqRrxM1IlJFTWluPYM55J7MF2Kg1PwGPjTtpCu-jK8vV3zr22z1lx4rzTRfEawQcEpPkYEcY1rwBDBcAAqsOzYoGhxRWniJwUi3zOK8IROS3OYtwCYEZr-qI4JbhFBNfNoviz9GNnnUzWu9KbUrpkK-nW1q-1s6pMGx3k_pDrfWnHcXK6VButdntvXSq7waud7HXpfBjlYH_rWF7LqKZBhuoODz7GJIddmXy590nnDjLlunRKh9nUpsPL4rmRQ9Svbtfz4ueXz1fLb9Xl96-r5cVlpTiFVEmi2s4ojMH0skNMtW3LOb7ZY2J4zRra911Laq0pA96B4thALRUiCKtWk_Pi_ezrghE7ZYWX9riuvdgFcfHjaiVaVhMKJLOrme293Ip9sKMMh6PgWPBhLWRIVg1a9J1pQUHHwCjKlGmR5qyVzNA6F1GXvT7NXvupG3Wv8jMEOTwwfXji7CbPdC0aaIBTng3e3RoE_2vSMYnRRqWHQTrtpygwpYgDwxxn9O0jdOun4PKzZqpmQDDlLFNv_p_ofpS7cGQAz8DxC4M29wgCcZNAMSdQ5ASKYwLFIYuaRyJl0zFe-VZ2eFpKZmnMfdxah39jP6H6C4vi82E |
CitedBy_id | crossref_primary_10_1111_1759_7714_15167 crossref_primary_10_3389_fonc_2023_1321326 crossref_primary_10_3390_curroncol30020181 crossref_primary_10_3390_ijms25136967 crossref_primary_10_1172_JCI148549 crossref_primary_10_3390_cancers15225401 crossref_primary_10_1016_j_beem_2023_101796 crossref_primary_10_3390_cancers16244251 crossref_primary_10_1016_j_bbcan_2023_189020 crossref_primary_10_1016_j_onano_2022_100081 crossref_primary_10_1186_s12943_021_01489_2 crossref_primary_10_1038_s41467_022_33080_8 crossref_primary_10_1039_D2BM00600F crossref_primary_10_1016_j_compbiomed_2022_106477 crossref_primary_10_3389_fimmu_2024_1487610 crossref_primary_10_1016_j_nucmedbio_2022_03_005 crossref_primary_10_3389_fphar_2022_989461 crossref_primary_10_1016_j_pharmthera_2022_108211 crossref_primary_10_1016_j_jbc_2021_101128 crossref_primary_10_1186_s40824_023_00420_8 crossref_primary_10_3390_cancers14143367 crossref_primary_10_1016_j_jconrel_2023_05_005 crossref_primary_10_34133_research_0098 crossref_primary_10_1038_s41392_023_01460_1 crossref_primary_10_1158_1078_0432_CCR_18_0900 crossref_primary_10_1155_2023_9292536 crossref_primary_10_3389_fonc_2022_755053 crossref_primary_10_1007_s00280_023_04541_8 crossref_primary_10_1007_s11894_024_00920_0 crossref_primary_10_3389_fonc_2024_1459178 crossref_primary_10_1016_j_addr_2022_114138 crossref_primary_10_34133_bmr_0068 crossref_primary_10_3389_fonc_2023_1145999 crossref_primary_10_1080_13543784_2022_2053108 crossref_primary_10_1158_0008_5472_CAN_23_1418 crossref_primary_10_3389_fimmu_2021_650486 crossref_primary_10_1016_j_jhepr_2023_100672 crossref_primary_10_1056_EVIDra2300353 crossref_primary_10_1111_ajco_14108 crossref_primary_10_1080_14737140_2023_2181162 crossref_primary_10_1038_s41591_022_01868_2 crossref_primary_10_3389_fonc_2024_1388663 crossref_primary_10_1016_j_intimp_2023_109774 crossref_primary_10_1038_s41598_024_61000_x crossref_primary_10_3390_livers3010011 crossref_primary_10_1126_sciadv_adr1299 crossref_primary_10_1186_s12876_024_03144_8 crossref_primary_10_1136_jitc_2020_000857 crossref_primary_10_3390_cells13191666 crossref_primary_10_1042_CS20200300 crossref_primary_10_1016_j_intimp_2022_108968 crossref_primary_10_1016_j_yexcr_2021_112522 crossref_primary_10_1177_15330338231204198 crossref_primary_10_12677_ACM_2023_134883 crossref_primary_10_1038_s41467_021_26343_3 crossref_primary_10_1042_BCJ20210233 crossref_primary_10_3390_cancers14174216 crossref_primary_10_1016_j_esmoop_2023_102071 crossref_primary_10_1016_S1470_2045_24_00374_7 crossref_primary_10_1186_s12885_024_12479_0 crossref_primary_10_1007_s11684_023_1015_9 crossref_primary_10_3389_fsurg_2023_1340657 crossref_primary_10_3892_ol_2022_13254 crossref_primary_10_1039_D4SC00643G crossref_primary_10_24060_2076_3093_2024_14_1_94_100 crossref_primary_10_3390_ijms22189795 crossref_primary_10_1186_s12964_022_00951_y crossref_primary_10_1038_s41389_021_00335_w crossref_primary_10_1186_s13048_022_01004_1 crossref_primary_10_3390_cancers13102288 crossref_primary_10_1016_j_actbio_2022_10_032 crossref_primary_10_1038_s12276_024_01310_2 crossref_primary_10_1002_ctd2_231 crossref_primary_10_1016_j_trsl_2021_04_008 crossref_primary_10_3389_fimmu_2024_1477146 crossref_primary_10_3389_fimmu_2023_1272133 crossref_primary_10_3390_ijms22041631 crossref_primary_10_3390_ijms24043226 crossref_primary_10_3389_fphar_2022_868695 crossref_primary_10_3390_cancers13030363 crossref_primary_10_3389_fimmu_2024_1460282 crossref_primary_10_3390_biomedicines11082160 crossref_primary_10_3390_pharmaceutics14081589 crossref_primary_10_1016_j_cej_2024_158143 crossref_primary_10_1177_17588359221118874 crossref_primary_10_1186_s40364_021_00312_w crossref_primary_10_2147_ITT_S494670 crossref_primary_10_1016_j_radonc_2023_109795 crossref_primary_10_3390_cancers13184625 crossref_primary_10_1007_s11696_021_01588_w crossref_primary_10_1002_smll_202300544 crossref_primary_10_1038_s41598_023_30412_6 crossref_primary_10_3892_etm_2023_12362 crossref_primary_10_3389_fcell_2022_1086835 crossref_primary_10_1080_0284186X_2021_1962971 crossref_primary_10_1007_s13346_021_01036_y crossref_primary_10_3389_fimmu_2021_704050 crossref_primary_10_3390_jcm13051335 crossref_primary_10_2217_fon_2022_0281 crossref_primary_10_3389_fonc_2024_1390299 crossref_primary_10_3389_fonc_2021_835889 crossref_primary_10_1053_j_gastro_2022_02_024 crossref_primary_10_1186_s12885_023_10661_4 crossref_primary_10_1136_jitc_2023_008611 crossref_primary_10_3390_life12081225 crossref_primary_10_1136_jitc_2023_007402 crossref_primary_10_3389_fimmu_2023_1212577 crossref_primary_10_1016_j_critrevonc_2023_104102 crossref_primary_10_1016_j_carbpol_2023_121564 crossref_primary_10_1007_s10585_024_10309_y crossref_primary_10_1016_j_intimp_2023_111362 crossref_primary_10_3389_fonc_2020_619010 crossref_primary_10_3390_ijms22179414 crossref_primary_10_1186_s12885_024_12708_6 crossref_primary_10_3389_fonc_2023_1310106 crossref_primary_10_1097_MD_0000000000038574 crossref_primary_10_3390_curroncol30010070 crossref_primary_10_1039_D4QI02098G crossref_primary_10_1038_s41392_024_01857_6 crossref_primary_10_3389_fonc_2022_1039378 crossref_primary_10_1016_j_xcrm_2024_101648 crossref_primary_10_1007_s10549_021_06369_3 crossref_primary_10_1038_s41573_023_00671_z crossref_primary_10_3390_ijms25021266 crossref_primary_10_3389_fonc_2022_846597 crossref_primary_10_3389_fonc_2024_1371307 crossref_primary_10_3390_ijms21207743 crossref_primary_10_3389_fimmu_2023_1170321 crossref_primary_10_1007_s12032_023_02289_y crossref_primary_10_1016_j_ijbiomac_2024_132543 crossref_primary_10_1016_j_prp_2024_155370 crossref_primary_10_1016_j_semcancer_2022_02_009 crossref_primary_10_1038_s41416_023_02437_1 crossref_primary_10_3390_ijms251910486 crossref_primary_10_1038_s41416_022_01820_8 crossref_primary_10_1016_j_drup_2025_101229 crossref_primary_10_3390_biomedicines10010077 crossref_primary_10_1016_j_bbcan_2024_189162 crossref_primary_10_1111_imcb_12647 crossref_primary_10_3390_cancers16030491 crossref_primary_10_1016_j_jtho_2024_02_008 crossref_primary_10_2147_IJN_S408521 crossref_primary_10_3389_fonc_2022_942678 crossref_primary_10_1007_s00262_024_03893_1 crossref_primary_10_37349_ei_2024_00177 crossref_primary_10_1016_j_canlet_2024_217241 crossref_primary_10_1016_j_celrep_2023_112162 crossref_primary_10_1371_journal_pone_0317331 crossref_primary_10_3389_fonc_2022_956372 crossref_primary_10_1016_j_ymthe_2024_07_014 crossref_primary_10_3389_fimmu_2022_1035323 crossref_primary_10_1007_s12672_025_01966_w crossref_primary_10_1186_s13046_021_01961_3 crossref_primary_10_2217_fon_2021_1027 crossref_primary_10_1002_mc_23442 crossref_primary_10_1186_s12967_024_05552_6 crossref_primary_10_1007_s00262_023_03520_5 crossref_primary_10_1016_j_imbio_2021_152078 crossref_primary_10_1007_s12031_022_02060_4 crossref_primary_10_1016_j_phrs_2023_107010 crossref_primary_10_3389_fonc_2022_1032844 crossref_primary_10_1038_s41598_023_35985_w crossref_primary_10_1186_s40824_023_00391_w crossref_primary_10_1038_s41598_022_13484_8 crossref_primary_10_1038_s41598_025_91401_5 crossref_primary_10_3389_fphar_2024_1447582 crossref_primary_10_1016_j_cclet_2022_108104 crossref_primary_10_1158_1078_0432_CCR_22_1366 crossref_primary_10_5812_hepatmon_145022 crossref_primary_10_1016_j_exer_2024_110072 crossref_primary_10_3389_fimmu_2023_1295953 crossref_primary_10_1016_j_lungcan_2023_03_009 crossref_primary_10_1038_s41392_024_01992_0 crossref_primary_10_3389_fimmu_2023_1200941 crossref_primary_10_3389_fonc_2022_941454 crossref_primary_10_3390_cancers14092144 crossref_primary_10_1007_s40097_022_00504_2 crossref_primary_10_3390_cells11132114 crossref_primary_10_1016_j_coi_2024_102491 crossref_primary_10_1039_D1NR03387E crossref_primary_10_1136_jitc_2021_003353 crossref_primary_10_4103_crst_crst_316_21 crossref_primary_10_1038_s41571_021_00565_2 crossref_primary_10_1016_j_celrep_2021_109253 crossref_primary_10_1038_s41467_023_40402_x crossref_primary_10_3390_cancers12113380 crossref_primary_10_3389_fonc_2022_897927 crossref_primary_10_4143_crt_2024_237 crossref_primary_10_1053_j_gastro_2021_04_064 crossref_primary_10_1200_JCO_22_00912 crossref_primary_10_3389_fimmu_2024_1460533 crossref_primary_10_5662_wjm_v12_i1_43 crossref_primary_10_1038_s41568_024_00736_0 crossref_primary_10_2139_ssrn_4161436 crossref_primary_10_1080_14737140_2023_2152795 crossref_primary_10_1080_2162402X_2023_2259212 crossref_primary_10_3390_ijms22147511 crossref_primary_10_1016_j_intimp_2024_111947 crossref_primary_10_1016_j_rmcr_2021_101478 crossref_primary_10_1016_j_jtho_2023_03_023 crossref_primary_10_1016_j_bios_2023_115285 crossref_primary_10_1186_s12943_021_01463_y crossref_primary_10_1016_j_jid_2021_11_013 crossref_primary_10_1080_17512433_2022_2142559 crossref_primary_10_1186_s12883_022_02919_4 crossref_primary_10_3390_cancers15030830 crossref_primary_10_3892_ol_2022_13550 crossref_primary_10_1016_j_cpha_2021_11_007 crossref_primary_10_1186_s12967_025_06273_0 crossref_primary_10_1007_s12272_022_01382_6 crossref_primary_10_3389_fcell_2022_908389 crossref_primary_10_3389_fimmu_2022_934083 crossref_primary_10_1016_j_jtho_2022_04_001 crossref_primary_10_1136_jitc_2024_008876 crossref_primary_10_17650_2313_805X_2024_11_1_99_104 crossref_primary_10_1080_07357907_2024_2361295 crossref_primary_10_3389_fphar_2023_1261575 crossref_primary_10_1016_j_cej_2023_145092 crossref_primary_10_1002_iid3_1260 crossref_primary_10_1016_j_canlet_2023_216263 crossref_primary_10_1007_s00228_023_03452_0 crossref_primary_10_1186_s40364_025_00727_9 crossref_primary_10_1038_s42003_024_07341_9 crossref_primary_10_3389_fimmu_2024_1508028 crossref_primary_10_2147_OTT_S500281 crossref_primary_10_3389_fimmu_2021_726492 crossref_primary_10_1016_j_intimp_2024_113319 crossref_primary_10_3390_cancers13174401 crossref_primary_10_3390_ijms26072923 crossref_primary_10_1002_INMD_20230025 crossref_primary_10_3390_jcm11247523 crossref_primary_10_1007_s12094_024_03667_2 crossref_primary_10_1093_postmj_qgad136 crossref_primary_10_3390_cancers14030631 crossref_primary_10_1007_s00280_023_04534_7 crossref_primary_10_1007_s12032_024_02477_4 crossref_primary_10_3390_cancers13071724 crossref_primary_10_3390_cells11030320 crossref_primary_10_1007_s10120_023_01435_9 crossref_primary_10_1158_2326_6066_CIR_23_0076 crossref_primary_10_3389_fonc_2022_965277 crossref_primary_10_1186_s12935_023_03195_z crossref_primary_10_1007_s13346_022_01282_8 crossref_primary_10_1136_jitc_2023_007171 crossref_primary_10_1124_jpet_122_001514 crossref_primary_10_3389_fonc_2023_1274754 crossref_primary_10_1016_j_ejphar_2021_174365 crossref_primary_10_1080_13543784_2022_2095260 crossref_primary_10_1111_aej_12736 crossref_primary_10_1186_s13046_024_03088_7 crossref_primary_10_1016_j_ccell_2022_10_013 crossref_primary_10_1016_j_ejca_2024_114328 crossref_primary_10_1038_s42003_024_06478_x crossref_primary_10_3389_fonc_2023_1119763 crossref_primary_10_1007_s00262_024_03872_6 crossref_primary_10_1177_17588359221144099 crossref_primary_10_1007_s00270_022_03327_4 crossref_primary_10_1007_s00432_022_03918_1 crossref_primary_10_1136_jitc_2020_002195 crossref_primary_10_1136_jitc_2020_002072 crossref_primary_10_1177_15330338251329248 crossref_primary_10_1166_jbn_2023_3606 crossref_primary_10_3389_fimmu_2024_1388176 crossref_primary_10_1001_jamanetworkopen_2021_49040 crossref_primary_10_1080_08977194_2022_2087520 crossref_primary_10_1007_s00262_024_03777_4 crossref_primary_10_3390_cancers15123220 crossref_primary_10_1002_mc_23807 crossref_primary_10_1016_j_intimp_2025_114372 crossref_primary_10_3390_cancers13215295 crossref_primary_10_3389_fonc_2023_1323350 crossref_primary_10_3390_nu14081574 crossref_primary_10_1002_cam4_70462 crossref_primary_10_3390_cancers15184648 crossref_primary_10_1097_MD_0000000000035243 crossref_primary_10_2174_0118715206294031240404071838 crossref_primary_10_3390_cancers13194906 crossref_primary_10_3390_cancers15030854 crossref_primary_10_3390_cancers15123224 crossref_primary_10_1016_j_bbcan_2024_189257 crossref_primary_10_1172_jci_insight_157347 crossref_primary_10_1002_adhm_202200041 crossref_primary_10_1177_17588359241311058 crossref_primary_10_1038_s41423_023_01068_z crossref_primary_10_1038_s41467_024_53109_4 crossref_primary_10_1038_s41568_022_00503_z crossref_primary_10_3389_fimmu_2023_1238698 crossref_primary_10_3390_cancers16223870 crossref_primary_10_1158_1078_0432_CCR_23_1829 crossref_primary_10_3390_cells13030244 crossref_primary_10_1111_cas_15533 crossref_primary_10_4251_wjgo_v15_i2_215 crossref_primary_10_1016_j_jtbi_2022_111147 crossref_primary_10_1038_s41392_025_02193_z crossref_primary_10_1016_j_ejmech_2024_116472 crossref_primary_10_3390_cancers14030536 crossref_primary_10_1002_adma_202005155 crossref_primary_10_12677_ACM_2023_1381884 crossref_primary_10_1097_HC9_0000000000000209 crossref_primary_10_15252_embr_202255532 crossref_primary_10_3390_ph16020219 crossref_primary_10_1186_s12885_025_13885_8 crossref_primary_10_3389_fonc_2021_812916 crossref_primary_10_1038_s41698_024_00556_3 crossref_primary_10_1002_advs_202207650 crossref_primary_10_1002_ctm2_1647 crossref_primary_10_1038_s41417_021_00345_1 crossref_primary_10_1016_j_intimp_2024_111746 crossref_primary_10_1007_s10147_025_02699_0 crossref_primary_10_1158_1078_0432_CCR_22_2757 crossref_primary_10_1007_s00018_023_05105_y crossref_primary_10_1016_j_biopha_2024_117468 crossref_primary_10_2147_OTT_S404035 crossref_primary_10_3390_cancers13215586 crossref_primary_10_3390_pharmaceutics15082022 crossref_primary_10_1080_1040841X_2024_2311653 crossref_primary_10_1177_17588359221110176 crossref_primary_10_3389_fonc_2023_1191611 crossref_primary_10_3390_ijms25189853 crossref_primary_10_1371_journal_pone_0257972 crossref_primary_10_3390_cancers13092090 crossref_primary_10_1111_imm_13841 crossref_primary_10_3389_fimmu_2023_1133689 crossref_primary_10_3390_biomedicines11082142 crossref_primary_10_1038_s41419_024_06931_z crossref_primary_10_1200_JCO_22_02221 crossref_primary_10_2174_1386207326666230607125353 crossref_primary_10_1016_j_semcancer_2022_10_006 crossref_primary_10_3389_fimmu_2022_1070961 crossref_primary_10_1016_j_esmoop_2022_100579 crossref_primary_10_2147_JHC_S300182 crossref_primary_10_3390_biomedicines10092292 crossref_primary_10_4103_ejcrp_eJCRP_D_23_00016 crossref_primary_10_3390_cancers13040585 crossref_primary_10_1007_s12032_025_02641_4 crossref_primary_10_1080_2162402X_2021_2005280 crossref_primary_10_1007_s00432_024_05606_8 crossref_primary_10_3389_fonc_2022_893820 crossref_primary_10_3390_cells12202510 crossref_primary_10_3389_fphar_2023_1239699 crossref_primary_10_3389_fphar_2022_886198 crossref_primary_10_3389_fphar_2024_1448291 crossref_primary_10_3389_fonc_2022_844801 crossref_primary_10_3390_jcm10071367 crossref_primary_10_1038_s41571_023_00816_4 crossref_primary_10_1161_HYPERTENSIONAHA_122_19865 crossref_primary_10_1038_s41591_024_03132_1 crossref_primary_10_3390_biomedicines12092152 crossref_primary_10_3390_cancers15102858 crossref_primary_10_1016_j_bbcan_2023_188997 crossref_primary_10_3389_fonc_2022_916790 crossref_primary_10_1038_s41598_024_54670_0 crossref_primary_10_3389_fcell_2021_809588 crossref_primary_10_3390_cancers13235999 crossref_primary_10_1200_EDBK_390794 crossref_primary_10_1111_cpr_13513 crossref_primary_10_3390_cancers13205207 crossref_primary_10_1016_j_phrs_2024_107150 crossref_primary_10_1016_j_lfs_2022_121009 crossref_primary_10_1016_j_tranon_2022_101525 crossref_primary_10_1038_s41551_023_01145_8 crossref_primary_10_3390_ijms25137191 crossref_primary_10_1016_j_jconrel_2024_06_052 crossref_primary_10_1016_j_annonc_2024_10_002 crossref_primary_10_1186_s13046_022_02476_1 crossref_primary_10_2139_ssrn_4153272 crossref_primary_10_1038_s41467_024_54661_9 crossref_primary_10_3389_fonc_2022_862326 crossref_primary_10_1186_s12974_024_03155_y crossref_primary_10_1055_a_2334_8311 crossref_primary_10_3390_cancers16010018 crossref_primary_10_1002_adhm_202201399 crossref_primary_10_3390_ijms222111659 crossref_primary_10_1016_j_ajps_2025_101020 crossref_primary_10_1177_17588359221108685 |
Cites_doi | 10.1007/s00018-019-03351-7 10.1002/hep.30889 10.1016/j.ccr.2008.09.004 10.1242/jcs.116392 10.1038/ni1141 10.1056/NEJMoa1816047 10.1158/1078-0432.CCR-18-1543 10.4049/jimmunol.179.2.977 10.1158/0008-5472.CAN-11-3687 10.1158/1535-7163.MCT-14-0968-T 10.3389/fonc.2014.00069 10.1038/nri3064 10.4049/jimmunol.1100889 10.1007/s10456-017-9552-y 10.1158/2326-6066.CIR-16-0325 10.1038/nrc.2017.51 10.1093/annonc/mdz446.002 10.1158/1078-0432.CCR-18-1932 10.1038/nrclinonc.2018.29 10.1038/s41586-019-1325-x 10.1038/nature10169 10.1158/0008-5472.CAN-04-1272 10.1016/j.bbrc.2011.03.021 10.3892/or.2010.1118 10.1038/sj.bjc.6603240 10.1126/scitranslmed.aak9679 10.1038/ncb3371 10.1242/jcs.115.12.2559 10.1016/j.ccr.2009.01.027 10.1126/science.aar4060 10.1038/cr.2008.326 10.1038/s41419-017-0061-0 10.1016/j.celrep.2015.03.055 10.1158/0008-5472.CAN-13-0992 10.1111/j.0105-2896.2009.00879.x 10.1073/pnas.0407697101 10.1200/JCO.2019.37.15_suppl.TPS4152 10.4049/jimmunol.178.3.1357 10.1038/nri.2017.145 10.3389/fonc.2014.00131 10.4049/jimmunol.175.7.4745 10.1038/nm.3541 10.1016/j.ccr.2004.08.031 10.1016/j.gde.2004.12.005 10.4049/jimmunol.164.1.217 10.1038/nature07445 10.1016/j.ccr.2009.06.018 10.1126/scitranslmed.aak9670 10.3389/fimmu.2018.00527 10.1038/nature21724 10.1016/j.ccr.2005.08.002 10.1038/ni.f.213 10.1158/0008-5472.CAN-14-3587 10.1073/pnas.1710754114 10.1038/nm1097 10.1038/nrc2444 10.1016/j.ccr.2013.12.010 10.1016/j.cell.2010.03.014 10.1200/JCO.2018.36.15_suppl.4074 10.1016/S1470-2045(19)30020-8 10.1056/NEJMoa1816714 10.1016/j.ccr.2011.02.005 10.1158/0008-5472.CAN-12-4697 10.1146/annurev-physiol-020518-114700 10.1038/nature06348 10.1038/nature22311 10.1016/j.it.2007.07.006 10.1172/JCI96582 10.4161/cbt.29184 10.3389/fimmu.2019.01719 10.4049/jimmunol.160.3.1224 10.1182/blood-2005-07-2965 10.1038/nri1001 10.1038/nm1096-1096 10.3858/emm.2012.44.1.025 10.1038/sj.gt.3301703 10.1016/B978-0-12-407704-1.00001-4 10.1126/sciimmunol.aay0555 10.1038/nrclinonc.2018.9 10.1126/science.1104819 10.1016/j.cellsig.2010.10.015 10.1056/NEJMoa1716948 10.1016/j.ccell.2016.10.018 10.1172/JCI93182 10.1186/s40425-016-0193-2 10.1073/pnas.1215397109 10.1016/j.it.2015.02.005 10.1016/j.ccell.2014.10.006 10.1002/path.4133 10.1016/j.it.2007.09.004 10.1172/JCI125413 10.1038/ni.1937 10.1084/jem.20051395 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA ACYCR |
DOI | 10.1038/s12276-020-00500-y |
DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central (NC Live) ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 1485 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9573403 oai_doaj_org_article_dbf90c0b50fc45cf91e659a5f470b51b PMC8080646 32913278 10_1038_s12276_020_00500_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c640t-a3c9bfc220fdab15c999662220f23f67584ddb937ee4506b0c62f07ac1312c9e3 |
IEDL.DBID | 7X7 |
ISSN | 1226-3613 2092-6413 |
IngestDate | Sun Mar 09 07:51:20 EDT 2025 Wed Aug 27 01:24:10 EDT 2025 Thu Aug 21 14:37:22 EDT 2025 Mon Jul 21 11:52:26 EDT 2025 Wed Aug 13 10:59:00 EDT 2025 Thu Apr 03 07:05:17 EDT 2025 Tue Jul 01 04:10:30 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-a3c9bfc220fdab15c999662220f23f67584ddb937ee4506b0c62f07ac1312c9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9780-6155 0000-0003-2753-5294 |
OpenAccessLink | https://www.proquest.com/docview/2475032465?pq-origsite=%requestingapplication% |
PMID | 32913278 |
PQID | 2475032465 |
PQPubID | 2041975 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9573403 doaj_primary_oai_doaj_org_article_dbf90c0b50fc45cf91e659a5f470b51b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8080646 proquest_miscellaneous_2441605262 proquest_journals_2475032465 pubmed_primary_32913278 crossref_primary_10_1038_s12276_020_00500_y crossref_citationtrail_10_1038_s12276_020_00500_y springer_journals_10_1038_s12276_020_00500_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group – name: 생화학분자생물학회 |
References | Facciabene (CR18) 2011; 475 Baer (CR79) 2016; 18 Chen, Bonaldo (CR48) 2013; 301 Bruno (CR41) 2014; 4 Rivera, Bergers (CR44) 2015; 36 Goumans, Liu, ten Dijke (CR27) 2009; 19 Mazzieri (CR58) 2011; 19 Khan (CR25) 2019; 571 Paez-Ribes (CR34) 2009; 15 Fathallah-Shaykh, Zhao, Kafrouni, Smith, Forman (CR76) 2000; 164 Tumeh (CR32) 2017; 5 Biswas, Mantovani (CR42) 2010; 11 Jung (CR39) 2017; 114 Chon (CR10) 2019; 25 De Palma, Biziato, Petrova (CR7) 2017; 17 Baluk, Hashizume, McDonald (CR19) 2005; 15 Dikov (CR69) 2001; 61 Fukumura, Kloepper, Amoozgar, Duda, Jain (CR2) 2018; 15 Liu (CR85) 2011; 407 Zheng (CR91) 2018; 128 Kim (CR15) 2016; 7 Lugano, Ramachandran, Dimberg (CR20) 2019 Qian, Pollard (CR47) 2010; 141 Colonna, Trinchieri, Liu (CR60) 2004; 5 Motz (CR21) 2014; 20 Mantovani, Biswas, Galdiero, Sica, Locati (CR50) 2013; 229 De Palma, Murdoch, Venneri, Naldini, Lewis (CR56) 2007; 28 Bromley, Mempel, Luster (CR77) 2008; 9 Piqueras, Connolly, Freitas, Palucka, Banchereau (CR62) 2006; 107 Tian, Neil, Schiemann (CR28) 2011; 23 Nishino (CR33) 2016; 4 Curiel (CR64) 2004; 64 Cheng (CR95) 2019; 30 Gerald, Chintharlapalli, Augustin, Benjamin (CR26) 2013; 73 Allen (CR88) 2017; 9 Huang (CR37) 2012; 109 Stein (CR96) 2018; 36 Llovet (CR97) 2019; 37 Freedman (CR78) 2000; 6 Khan, Kerbel (CR3) 2018; 15 Socinski (CR92) 2018; 378 Stockmann (CR52) 2008; 456 Oyama (CR23) 1998; 160 Odorisio (CR30) 2002; 115 Xia, Zhang, Xu, Yin, Lu (CR8) 2019; 10 Asselin-Paturel, Trinchieri (CR65) 2005; 202 Iida (CR86) 2011; 25 Motzer (CR94) 2019; 380 Hughes (CR51) 2015; 75 DeNardo (CR84) 2009; 16 Stockmann, Schadendorf, Klose, Helfrich (CR43) 2014; 4 Yang (CR73) 2004; 6 Ribas, Wolchok (CR1) 2018; 359 Sozzani, Rusnati, Riboldi, Mitola, Presta (CR59) 2007; 28 Rahma, Hodi (CR6) 2019; 25 Watkins, Egilmez, Suttles, Stout (CR49) 2007; 178 Jung (CR38) 2017; 127 Huang (CR5) 2018; 18 Trinchieri (CR63) 2003; 3 Kim (CR24) 2019; 4 Heusinkveld (CR82) 2011; 187 Rini (CR93) 2019; 380 Kammertoens (CR74) 2017; 545 Reusser (CR53) 2014; 15 Schaaf, Garg, Agostinis (CR16) 2018; 9 LeCouter, Zlot, Tejada, Peale, Ferrara (CR71) 2004; 101 Ramjiawan, Griffioen, Duda (CR17) 2017; 20 Martin, Seano, Jain (CR36) 2019; 81 De Falco (CR29) 2012; 44 Balkwill, Capasso, Hagemann (CR81) 2012; 125 Yi (CR4) 2019; 18 Tian (CR80) 2017; 544 De Palma (CR57) 2005; 8 Albini, Bruno, Noonan, Mortara (CR45) 2018; 9 Conejo-Garcia (CR68) 2004; 10 De Palma (CR55) 2008; 14 Park (CR12) 2016; 30 Yang (CR75) 2019; 130 Liu, Nussenzweig (CR61) 2010; 234 Shojaei (CR72) 2007; 450 Jain (CR35) 2005; 307 Okunishi (CR67) 2005; 175 Indraccolo (CR66) 2002; 9 Murdoch, Muthana, Coffelt, Lewis (CR46) 2008; 8 Rivera (CR40) 2015; 11 Zeisberger (CR54) 2006; 95 Jain (CR14) 2014; 26 Barsoum, Smallwood, Siemens, Graham (CR9) 2014; 74 Kim (CR11) 2014; 25 Schmittnaegel (CR90) 2017; 9 Shigeta (CR89) 2019 Motz, Coukos (CR83) 2011; 11 Facciabene, Motz, Coukos (CR87) 2012; 72 Gabrilovich (CR22) 1996; 2 Makker (CR98) 2019; 20 Lee (CR13) 2015; 14 Brodsky, Mendelev, Melamed, Ramaswamy (CR31) 2007; 16 Sinha, Clements, Bunt, Albelda, Ostrand-Rosenberg (CR70) 2007; 179 R Mazzieri (500_CR58) 2011; 19 T Oyama (500_CR23) 1998; 160 A Albini (500_CR45) 2018; 9 JS Park (500_CR12) 2016; 30 L Tian (500_CR80) 2017; 544 FR Balkwill (500_CR81) 2012; 125 K Jung (500_CR38) 2017; 127 NM Reusser (500_CR53) 2014; 15 A Bruno (500_CR41) 2014; 4 A Facciabene (500_CR18) 2011; 475 M Nishino (500_CR33) 2016; 4 K Liu (500_CR61) 2010; 234 J LeCouter (500_CR71) 2004; 101 S Indraccolo (500_CR66) 2002; 9 P Chen (500_CR48) 2013; 301 D Gerald (500_CR26) 2013; 73 Y Huang (500_CR5) 2018; 18 M De Palma (500_CR57) 2005; 8 S De Falco (500_CR29) 2012; 44 SM Zeisberger (500_CR54) 2006; 95 S Sozzani (500_CR59) 2007; 28 JD Martin (500_CR36) 2019; 81 DG DeNardo (500_CR84) 2009; 16 C Murdoch (500_CR46) 2008; 8 MM Dikov (500_CR69) 2001; 61 GT Motz (500_CR83) 2011; 11 DI Gabrilovich (500_CR22) 1996; 2 A Xia (500_CR8) 2019; 10 L Yang (500_CR73) 2004; 6 F Shojaei (500_CR72) 2007; 450 M De Palma (500_CR55) 2008; 14 A-L Cheng (500_CR95) 2019; 30 MB Schaaf (500_CR16) 2018; 9 MA Socinski (500_CR92) 2018; 378 C Asselin-Paturel (500_CR65) 2005; 202 B Piqueras (500_CR62) 2006; 107 SK Biswas (500_CR42) 2010; 11 SV Brodsky (500_CR31) 2007; 16 R Hughes (500_CR51) 2015; 75 K Jung (500_CR39) 2017; 114 A Ribas (500_CR1) 2018; 359 JR Conejo-Garcia (500_CR68) 2004; 10 C Stockmann (500_CR43) 2014; 4 C Kim (500_CR11) 2014; 25 RR Ramjiawan (500_CR17) 2017; 20 D Fukumura (500_CR2) 2018; 15 IB Barsoum (500_CR9) 2014; 74 JE Lee (500_CR13) 2015; 14 RK Jain (500_CR35) 2005; 307 OE Rahma (500_CR6) 2019; 25 HJ Chon (500_CR10) 2019; 25 M Tian (500_CR28) 2011; 23 LB Rivera (500_CR44) 2015; 36 V Makker (500_CR98) 2019; 20 KA Khan (500_CR3) 2018; 15 R Lugano (500_CR20) 2019 G Trinchieri (500_CR63) 2003; 3 P Sinha (500_CR70) 2007; 179 P Baluk (500_CR19) 2005; 15 H Yang (500_CR75) 2019; 130 M Schmittnaegel (500_CR90) 2017; 9 HM Fathallah-Shaykh (500_CR76) 2000; 164 T Kammertoens (500_CR74) 2017; 545 M De Palma (500_CR7) 2017; 17 E Allen (500_CR88) 2017; 9 JM Llovet (500_CR97) 2019; 37 J Liu (500_CR85) 2011; 407 Y Kim (500_CR15) 2016; 7 T Odorisio (500_CR30) 2002; 115 RJ Motzer (500_CR94) 2019; 380 M Heusinkveld (500_CR82) 2011; 187 K Shigeta (500_CR89) 2019 LB Rivera (500_CR40) 2015; 11 T Iida (500_CR86) 2011; 25 BI Rini (500_CR93) 2019; 380 M Colonna (500_CR60) 2004; 5 CG Kim (500_CR24) 2019; 4 SK Bromley (500_CR77) 2008; 9 M Yi (500_CR4) 2019; 18 O Khan (500_CR25) 2019; 571 PC Tumeh (500_CR32) 2017; 5 GT Motz (500_CR21) 2014; 20 RK Jain (500_CR14) 2014; 26 Y Huang (500_CR37) 2012; 109 SK Watkins (500_CR49) 2007; 178 M De Palma (500_CR56) 2007; 28 MJ Goumans (500_CR27) 2009; 19 S Stein (500_CR96) 2018; 36 C Stockmann (500_CR52) 2008; 456 A Facciabene (500_CR87) 2012; 72 K Okunishi (500_CR67) 2005; 175 X Zheng (500_CR91) 2018; 128 BZ Qian (500_CR47) 2010; 141 M Paez-Ribes (500_CR34) 2009; 15 RS Freedman (500_CR78) 2000; 6 A Mantovani (500_CR50) 2013; 229 TJ Curiel (500_CR64) 2004; 64 C Baer (500_CR79) 2016; 18 |
References_xml | – volume: 26 start-page: 605 year: 2014 end-page: 622 ident: CR14 article-title: Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia publication-title: Cancer Cell – volume: 160 start-page: 1224 year: 1998 end-page: 1232 ident: CR23 article-title: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells publication-title: J. Immunol. – volume: 61 start-page: 2015 year: 2001 end-page: 2021 ident: CR69 article-title: Vascular endothelial growth factor effects on nuclear factor-kappaB activation in hematopoietic progenitor cells publication-title: Cancer Res. – volume: 380 start-page: 1103 year: 2019 end-page: 1115 ident: CR94 article-title: Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma publication-title: N. Engl. J. Med. – volume: 15 start-page: 220 year: 2009 end-page: 231 ident: CR34 article-title: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis publication-title: Cancer Cell – volume: 3 start-page: 133 year: 2003 end-page: 146 ident: CR63 article-title: Interleukin-12 and the regulation of innate resistance and adaptive immunity publication-title: Nat. Rev. Immunol. – volume: 64 start-page: 5535 year: 2004 end-page: 5538 ident: CR64 article-title: Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer publication-title: Cancer Res. – volume: 9 start-page: 970 year: 2008 end-page: 980 ident: CR77 article-title: Orchestrating the orchestrators: chemokines in control of T cell traffic publication-title: Nat. Immunol. – volume: 229 start-page: 176 year: 2013 end-page: 185 ident: CR50 article-title: Macrophage plasticity and polarization in tissue repair and remodelling publication-title: J. Pathol. – volume: 4 start-page: 84 year: 2016 ident: CR33 article-title: Immune-related response assessment during PD-1 inhibitor therapy in advanced non-small-cell lung cancer patients publication-title: J. Immunother. Cancer – volume: 380 start-page: 1116 year: 2019 end-page: 1127 ident: CR93 article-title: Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma publication-title: N. Engl. J. Med. – volume: 15 start-page: 1061 year: 2014 end-page: 1067 ident: CR53 article-title: Clodronate inhibits tumor angiogenesis in mouse models of ovarian cancer publication-title: Cancer Biol. Ther. – volume: 20 start-page: 185 year: 2017 end-page: 204 ident: CR17 article-title: Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? publication-title: Angiogenesis – volume: 450 start-page: 825 year: 2007 end-page: 831 ident: CR72 article-title: Bv8 regulates myeloid-cell-dependent tumour angiogenesis publication-title: Nature – volume: 125 start-page: 5591 year: 2012 end-page: 5596 ident: CR81 article-title: The tumor microenvironment at a glance publication-title: J. Cell Sci. – volume: 544 start-page: 250 year: 2017 end-page: 254 ident: CR80 article-title: Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming publication-title: Nature – volume: 4 start-page: 69 year: 2014 ident: CR43 article-title: The impact of the immune system on tumor: angiogenesis and vascular remodeling publication-title: Front. Oncol. – volume: 25 start-page: 1612 year: 2019 end-page: 1623 ident: CR10 article-title: Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade publication-title: Clin. Cancer Res. – year: 2019 ident: CR20 article-title: Tumor angiogenesis: causes, consequences, challenges and opportunities publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-019-03351-7 – volume: 25 start-page: 5449 year: 2019 end-page: 5457 ident: CR6 article-title: The intersection between tumor angiogenesis and immune suppression publication-title: Clin. Cancer Res. – volume: 25 start-page: 102 year: 2014 end-page: 117 ident: CR11 article-title: Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption publication-title: Cancer Cell – volume: 6 start-page: 409 year: 2004 end-page: 421 ident: CR73 article-title: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis publication-title: Cancer Cell – volume: 407 start-page: 348 year: 2011 end-page: 354 ident: CR85 article-title: IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma publication-title: Biochem. Biophys. Res. Commun. – volume: 14 start-page: 470 year: 2015 end-page: 479 ident: CR13 article-title: Novel glycosylated VEGF decoy receptor fusion protein, VEGF-Grab, efficiently suppresses tumor angiogenesis and progression publication-title: Mol. Cancer Ther. – volume: 7 year: 2016 ident: CR15 article-title: Methylation-dependent regulation of HIF-1alpha stability restricts retinal and tumour angiogenesis publication-title: Nat. Commun. – volume: 179 start-page: 977 year: 2007 end-page: 983 ident: CR70 article-title: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response publication-title: J. Immunol. – volume: 545 start-page: 98 year: 2017 end-page: 102 ident: CR74 article-title: Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression publication-title: Nature – volume: 18 start-page: 195 year: 2018 end-page: 203 ident: CR5 article-title: Improving immune-vascular crosstalk for cancer immunotherapy publication-title: Nat. Rev. Immunol. – volume: 9 start-page: 115 year: 2018 ident: CR16 article-title: Defining the role of the tumor vasculature in antitumor immunity and immunotherapy publication-title: Cell Death Dis. – volume: 4 start-page: eaay0555 year: 2019 ident: CR24 article-title: VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers publication-title: Sci. Immunol. – volume: 72 start-page: 2162 year: 2012 end-page: 2171 ident: CR87 article-title: T-regulatory cells: key players in tumor immune escape and angiogenesis publication-title: Cancer Res. – volume: 115 start-page: 2559 year: 2002 end-page: 2567 ident: CR30 article-title: Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability publication-title: J. Cell Sci. – volume: 5 start-page: 417 year: 2017 end-page: 424 ident: CR32 article-title: Liver metastasis and treatment outcome with Anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC publication-title: Cancer Immunol. Res. – volume: 16 start-page: 373 year: 2007 end-page: 377 ident: CR31 article-title: Vascular density and VEGF expression in hepatic lesions publication-title: J. Gastrointestin Liver Dis. – volume: 9 start-page: eaak9670 year: 2017 ident: CR90 article-title: Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade publication-title: Sci. Transl. Med. – volume: 359 start-page: 1350 year: 2018 end-page: 1355 ident: CR1 article-title: Cancer immunotherapy using checkpoint blockade publication-title: Science – volume: 74 start-page: 665 year: 2014 end-page: 674 ident: CR9 article-title: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells publication-title: Cancer Res. – volume: 475 start-page: 226 year: 2011 end-page: 230 ident: CR18 article-title: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells publication-title: Nature – volume: 127 start-page: 3039 year: 2017 end-page: 3051 ident: CR38 article-title: Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy publication-title: J. Clin. Invest. – volume: 25 start-page: 1271 year: 2011 end-page: 1277 ident: CR86 article-title: Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer publication-title: Oncol. Rep. – volume: 202 start-page: 461 year: 2005 end-page: 465 ident: CR65 article-title: Production of type I interferons: plasmacytoid dendritic cells and beyond publication-title: J. Exp. Med. – volume: 37 start-page: abstr. TPS4152 year: 2019 ident: CR97 article-title: Lenvatinib (len) plus pembrolizumab (pembro) for the first-line treatment of patients (pts) with advanced hepatocellular carcinoma (HCC): Phase 3 LEAP-002 study publication-title: J. Clin. Oncol. – volume: 15 start-page: 325 year: 2018 end-page: 340 ident: CR2 article-title: Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges publication-title: Nat. Rev. Clin. Oncol. – volume: 28 start-page: 385 year: 2007 end-page: 392 ident: CR59 article-title: Dendritic cell-endothelial cell cross-talk in angiogenesis publication-title: Trends Immunol. – volume: 11 start-page: 577 year: 2015 end-page: 591 ident: CR40 article-title: Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy publication-title: Cell Rep. – volume: 15 start-page: 310 year: 2018 end-page: 324 ident: CR3 article-title: Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa publication-title: Nat. Rev. Clin. Oncol. – volume: 30 start-page: 953 year: 2016 end-page: 967 ident: CR12 article-title: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment publication-title: Cancer Cell – volume: 73 start-page: 1649 year: 2013 end-page: 1657 ident: CR26 article-title: Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy publication-title: Cancer Res. – volume: 19 start-page: 512 year: 2011 end-page: 526 ident: CR58 article-title: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells publication-title: Cancer Cell – volume: 128 start-page: 2104 year: 2018 end-page: 2115 ident: CR91 article-title: Increased vessel perfusion predicts the efficacy of immune checkpoint blockade publication-title: J. Clin. Invest. – volume: 11 start-page: 889 year: 2010 end-page: 896 ident: CR42 article-title: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm publication-title: Nat. Immunol. – volume: 141 start-page: 39 year: 2010 end-page: 51 ident: CR47 article-title: Macrophage diversity enhances tumor progression and metastasis publication-title: Cell – volume: 178 start-page: 1357 year: 2007 end-page: 1362 ident: CR49 article-title: IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo publication-title: J. Immunol. – volume: 81 start-page: 505 year: 2019 end-page: 534 ident: CR36 article-title: Normalizing function of tumor vessels: progress, opportunities, and challenges publication-title: Annu. Rev. Physiol. – volume: 9 start-page: 867 year: 2002 end-page: 878 ident: CR66 article-title: Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells publication-title: Gene Ther. – volume: 9 start-page: 527 year: 2018 ident: CR45 article-title: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for Immunotherapy publication-title: Front. Imunol. – volume: 101 start-page: 16813 year: 2004 end-page: 16818 ident: CR71 article-title: Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization publication-title: Proc. Natl Acad. Sci. USA – volume: 95 start-page: 272 year: 2006 end-page: 281 ident: CR54 article-title: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach publication-title: Br. J. Cancer – volume: 301 start-page: 1 year: 2013 end-page: 35 ident: CR48 article-title: Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies publication-title: Int. Rev. Cell Mol. Biol. – volume: 75 start-page: 3479 year: 2015 end-page: 3491 ident: CR51 article-title: Perivascular M2 macrophages stimulate tumor relapse after chemotherapy publication-title: Cancer Res – volume: 234 start-page: 45 year: 2010 end-page: 54 ident: CR61 article-title: Origin and development of dendritic cells publication-title: Immunol. Rev. – volume: 36 start-page: 240 year: 2015 end-page: 249 ident: CR44 article-title: Intertwined regulation of angiogenesis and immunity by myeloid cells publication-title: Trends Immunol. – volume: 30 start-page: abstr. ix186 year: 2019 end-page: ix187 ident: CR95 article-title: IMbrave150: efficacy and safety results from a ph III study evaluating atezolizumab (atezo)+ bevacizumab (bev) vs sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC) publication-title: Ann. Oncol. – volume: 130 start-page: 4350 year: 2019 end-page: 4364 ident: CR75 article-title: STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade publication-title: J. Clin. Invest. – volume: 16 start-page: 91 year: 2009 end-page: 102 ident: CR84 article-title: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages publication-title: Cancer Cell – volume: 14 start-page: 299 year: 2008 end-page: 311 ident: CR55 article-title: Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis publication-title: Cancer Cell – volume: 175 start-page: 4745 year: 2005 end-page: 4753 ident: CR67 article-title: A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function publication-title: J. Immunol. – volume: 107 start-page: 2613 year: 2006 end-page: 2618 ident: CR62 article-title: Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors publication-title: Blood – volume: 9 start-page: eaak9679 year: 2017 ident: CR88 article-title: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation publication-title: Sci. Transl. Med. – volume: 23 start-page: 951 year: 2011 end-page: 962 ident: CR28 article-title: Transforming growth factor-beta and the hallmarks of cancer publication-title: Cell Signal – volume: 109 start-page: 17561 year: 2012 end-page: 17566 ident: CR37 article-title: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: 211 year: 2005 end-page: 226 ident: CR57 article-title: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors publication-title: Cancer Cell – volume: 8 start-page: 618 year: 2008 end-page: 631 ident: CR46 article-title: The role of myeloid cells in the promotion of tumour angiogenesis publication-title: Nat. Rev. Cancer – volume: 28 start-page: 519 year: 2007 end-page: 524 ident: CR56 article-title: Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications publication-title: Trends Immunol. – volume: 36 start-page: abstr. 4074 year: 2018 ident: CR96 article-title: Safety and clinical activity of 1L atezolizumab + bevacizumab in a phase Ib study in hepatocellular carcinoma (HCC) publication-title: J. Clin. Oncol. – volume: 2 start-page: 1096 year: 1996 end-page: 1103 ident: CR22 article-title: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells publication-title: Nat. Med. – volume: 164 start-page: 217 year: 2000 end-page: 222 ident: CR76 article-title: Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis publication-title: J. Immunol. – volume: 114 start-page: 10455 year: 2017 end-page: 10460 ident: CR39 article-title: Targeting CXCR4-dependent immunosuppressive Ly6C(low) monocytes improves antiangiogenic therapy in colorectal cancer publication-title: Proc. Natl Acad. Sci. USA – volume: 307 start-page: 58 year: 2005 end-page: 62 ident: CR35 article-title: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy publication-title: Science – volume: 20 start-page: 711 year: 2019 end-page: 718 ident: CR98 article-title: Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial publication-title: Lancet Oncol. – volume: 15 start-page: 102 year: 2005 end-page: 111 ident: CR19 article-title: Cellular abnormalities of blood vessels as targets in cancer publication-title: Curr. Opin. Genet. Dev. – volume: 571 start-page: 211 year: 2019 end-page: 218 ident: CR25 article-title: TOX transcriptionally and epigenetically programs CD8 T cell exhaustion publication-title: Nature – volume: 10 start-page: 950 year: 2004 end-page: 958 ident: CR68 article-title: Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A publication-title: Nat. Med. – volume: 18 year: 2019 ident: CR4 article-title: Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment publication-title: Mol. Cancer – volume: 4 start-page: 131 year: 2014 ident: CR41 article-title: Orchestration of angiogenesis by immune cells publication-title: Front. Oncol. – volume: 44 start-page: 1 year: 2012 end-page: 9 ident: CR29 article-title: The discovery of placenta growth factor and its biological activity publication-title: Exp. Mol. Med. – volume: 18 start-page: 790 year: 2016 end-page: 802 ident: CR79 article-title: Suppression of microRNA activity amplifies IFN-gamma-induced macrophage activation and promotes anti-tumour immunity publication-title: Nat. Cell Biol. – volume: 10 start-page: 1719 year: 2019 ident: CR8 article-title: T Cell Dysfunction in Cancer Immunity and Immunotherapy publication-title: Front. Immunol. – volume: 456 start-page: 814 year: 2008 end-page: 818 ident: CR52 article-title: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis publication-title: Nature – volume: 11 start-page: 702 year: 2011 end-page: 711 ident: CR83 article-title: The parallel lives of angiogenesis and immunosuppression: cancer and other tales publication-title: Nat. Rev. Immunol. – volume: 6 start-page: 2268 year: 2000 end-page: 2278 ident: CR78 article-title: Clinical and biological effects of intraperitoneal injections of recombinant interferon-gamma and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma publication-title: Clin. Cancer Res. – volume: 187 start-page: 1157 year: 2011 end-page: 1165 ident: CR82 article-title: M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells publication-title: J. Immunol. – year: 2019 ident: CR89 article-title: Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.30889 – volume: 378 start-page: 2288 year: 2018 end-page: 2301 ident: CR92 article-title: Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC publication-title: N. Engl. J. Med. – volume: 19 start-page: 116 year: 2009 end-page: 127 ident: CR27 article-title: TGF-beta signaling in vascular biology and dysfunction publication-title: Cell Res. – volume: 17 start-page: 457 year: 2017 end-page: 474 ident: CR7 article-title: Microenvironmental regulation of tumour angiogenesis publication-title: Nat. Rev. Cancer – volume: 20 start-page: 607 year: 2014 end-page: 615 ident: CR21 article-title: Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors publication-title: Nat. Med. – volume: 5 start-page: 1219 year: 2004 end-page: 1226 ident: CR60 article-title: Plasmacytoid dendritic cells in immunity publication-title: Nat. Immunol. – volume: 14 start-page: 299 year: 2008 ident: 500_CR55 publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.09.004 – volume: 125 start-page: 5591 year: 2012 ident: 500_CR81 publication-title: J. Cell Sci. doi: 10.1242/jcs.116392 – volume: 5 start-page: 1219 year: 2004 ident: 500_CR60 publication-title: Nat. Immunol. doi: 10.1038/ni1141 – volume: 380 start-page: 1103 year: 2019 ident: 500_CR94 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1816047 – volume: 25 start-page: 5449 year: 2019 ident: 500_CR6 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1543 – volume: 179 start-page: 977 year: 2007 ident: 500_CR70 publication-title: J. Immunol. doi: 10.4049/jimmunol.179.2.977 – volume: 72 start-page: 2162 year: 2012 ident: 500_CR87 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3687 – volume: 14 start-page: 470 year: 2015 ident: 500_CR13 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-14-0968-T – volume: 4 start-page: 69 year: 2014 ident: 500_CR43 publication-title: Front. Oncol. doi: 10.3389/fonc.2014.00069 – volume: 6 start-page: 2268 year: 2000 ident: 500_CR78 publication-title: Clin. Cancer Res. – volume: 11 start-page: 702 year: 2011 ident: 500_CR83 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3064 – volume: 187 start-page: 1157 year: 2011 ident: 500_CR82 publication-title: J. Immunol. doi: 10.4049/jimmunol.1100889 – volume: 20 start-page: 185 year: 2017 ident: 500_CR17 publication-title: Angiogenesis doi: 10.1007/s10456-017-9552-y – volume: 5 start-page: 417 year: 2017 ident: 500_CR32 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0325 – volume: 17 start-page: 457 year: 2017 ident: 500_CR7 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.51 – volume: 30 start-page: abstr. ix186 year: 2019 ident: 500_CR95 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdz446.002 – volume: 25 start-page: 1612 year: 2019 ident: 500_CR10 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1932 – volume: 15 start-page: 325 year: 2018 ident: 500_CR2 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2018.29 – volume: 571 start-page: 211 year: 2019 ident: 500_CR25 publication-title: Nature doi: 10.1038/s41586-019-1325-x – volume: 475 start-page: 226 year: 2011 ident: 500_CR18 publication-title: Nature doi: 10.1038/nature10169 – volume: 64 start-page: 5535 year: 2004 ident: 500_CR64 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-1272 – volume: 407 start-page: 348 year: 2011 ident: 500_CR85 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.03.021 – volume: 25 start-page: 1271 year: 2011 ident: 500_CR86 publication-title: Oncol. Rep. doi: 10.3892/or.2010.1118 – volume: 95 start-page: 272 year: 2006 ident: 500_CR54 publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6603240 – volume: 9 start-page: eaak9679 year: 2017 ident: 500_CR88 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aak9679 – volume: 18 start-page: 790 year: 2016 ident: 500_CR79 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3371 – volume: 115 start-page: 2559 year: 2002 ident: 500_CR30 publication-title: J. Cell Sci. doi: 10.1242/jcs.115.12.2559 – volume: 16 start-page: 373 year: 2007 ident: 500_CR31 publication-title: J. Gastrointestin Liver Dis. – volume: 15 start-page: 220 year: 2009 ident: 500_CR34 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.01.027 – volume: 359 start-page: 1350 year: 2018 ident: 500_CR1 publication-title: Science doi: 10.1126/science.aar4060 – volume: 19 start-page: 116 year: 2009 ident: 500_CR27 publication-title: Cell Res. doi: 10.1038/cr.2008.326 – volume: 9 start-page: 115 year: 2018 ident: 500_CR16 publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0061-0 – volume: 11 start-page: 577 year: 2015 ident: 500_CR40 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.03.055 – year: 2019 ident: 500_CR89 publication-title: Hepatology doi: 10.1002/hep.30889 – volume: 74 start-page: 665 year: 2014 ident: 500_CR9 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-0992 – volume: 234 start-page: 45 year: 2010 ident: 500_CR61 publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2009.00879.x – volume: 101 start-page: 16813 year: 2004 ident: 500_CR71 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0407697101 – volume: 37 start-page: abstr. TPS4152 year: 2019 ident: 500_CR97 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2019.37.15_suppl.TPS4152 – volume: 7 year: 2016 ident: 500_CR15 publication-title: Nat. Commun. – volume: 178 start-page: 1357 year: 2007 ident: 500_CR49 publication-title: J. Immunol. doi: 10.4049/jimmunol.178.3.1357 – volume: 18 start-page: 195 year: 2018 ident: 500_CR5 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.145 – volume: 4 start-page: 131 year: 2014 ident: 500_CR41 publication-title: Front. Oncol. doi: 10.3389/fonc.2014.00131 – volume: 175 start-page: 4745 year: 2005 ident: 500_CR67 publication-title: J. Immunol. doi: 10.4049/jimmunol.175.7.4745 – volume: 20 start-page: 607 year: 2014 ident: 500_CR21 publication-title: Nat. Med. doi: 10.1038/nm.3541 – volume: 6 start-page: 409 year: 2004 ident: 500_CR73 publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.08.031 – volume: 15 start-page: 102 year: 2005 ident: 500_CR19 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2004.12.005 – volume: 164 start-page: 217 year: 2000 ident: 500_CR76 publication-title: J. Immunol. doi: 10.4049/jimmunol.164.1.217 – volume: 456 start-page: 814 year: 2008 ident: 500_CR52 publication-title: Nature doi: 10.1038/nature07445 – volume: 16 start-page: 91 year: 2009 ident: 500_CR84 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.06.018 – volume: 9 start-page: eaak9670 year: 2017 ident: 500_CR90 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aak9670 – volume: 9 start-page: 527 year: 2018 ident: 500_CR45 publication-title: Front. Imunol. doi: 10.3389/fimmu.2018.00527 – volume: 544 start-page: 250 year: 2017 ident: 500_CR80 publication-title: Nature doi: 10.1038/nature21724 – volume: 8 start-page: 211 year: 2005 ident: 500_CR57 publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.08.002 – volume: 9 start-page: 970 year: 2008 ident: 500_CR77 publication-title: Nat. Immunol. doi: 10.1038/ni.f.213 – volume: 75 start-page: 3479 year: 2015 ident: 500_CR51 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3587 – volume: 114 start-page: 10455 year: 2017 ident: 500_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1710754114 – volume: 10 start-page: 950 year: 2004 ident: 500_CR68 publication-title: Nat. Med. doi: 10.1038/nm1097 – volume: 8 start-page: 618 year: 2008 ident: 500_CR46 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2444 – volume: 25 start-page: 102 year: 2014 ident: 500_CR11 publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.12.010 – volume: 141 start-page: 39 year: 2010 ident: 500_CR47 publication-title: Cell doi: 10.1016/j.cell.2010.03.014 – volume: 36 start-page: abstr. 4074 year: 2018 ident: 500_CR96 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2018.36.15_suppl.4074 – volume: 20 start-page: 711 year: 2019 ident: 500_CR98 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30020-8 – volume: 380 start-page: 1116 year: 2019 ident: 500_CR93 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1816714 – volume: 19 start-page: 512 year: 2011 ident: 500_CR58 publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.02.005 – volume: 61 start-page: 2015 year: 2001 ident: 500_CR69 publication-title: Cancer Res. – volume: 73 start-page: 1649 year: 2013 ident: 500_CR26 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4697 – volume: 81 start-page: 505 year: 2019 ident: 500_CR36 publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-020518-114700 – volume: 450 start-page: 825 year: 2007 ident: 500_CR72 publication-title: Nature doi: 10.1038/nature06348 – volume: 545 start-page: 98 year: 2017 ident: 500_CR74 publication-title: Nature doi: 10.1038/nature22311 – volume: 28 start-page: 385 year: 2007 ident: 500_CR59 publication-title: Trends Immunol. doi: 10.1016/j.it.2007.07.006 – volume: 128 start-page: 2104 year: 2018 ident: 500_CR91 publication-title: J. Clin. Invest. doi: 10.1172/JCI96582 – volume: 15 start-page: 1061 year: 2014 ident: 500_CR53 publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.29184 – volume: 10 start-page: 1719 year: 2019 ident: 500_CR8 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01719 – volume: 160 start-page: 1224 year: 1998 ident: 500_CR23 publication-title: J. Immunol. doi: 10.4049/jimmunol.160.3.1224 – volume: 107 start-page: 2613 year: 2006 ident: 500_CR62 publication-title: Blood doi: 10.1182/blood-2005-07-2965 – volume: 3 start-page: 133 year: 2003 ident: 500_CR63 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1001 – volume: 2 start-page: 1096 year: 1996 ident: 500_CR22 publication-title: Nat. Med. doi: 10.1038/nm1096-1096 – volume: 44 start-page: 1 year: 2012 ident: 500_CR29 publication-title: Exp. Mol. Med. doi: 10.3858/emm.2012.44.1.025 – volume: 9 start-page: 867 year: 2002 ident: 500_CR66 publication-title: Gene Ther. doi: 10.1038/sj.gt.3301703 – volume: 301 start-page: 1 year: 2013 ident: 500_CR48 publication-title: Int. Rev. Cell Mol. Biol. doi: 10.1016/B978-0-12-407704-1.00001-4 – volume: 4 start-page: eaay0555 year: 2019 ident: 500_CR24 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aay0555 – volume: 15 start-page: 310 year: 2018 ident: 500_CR3 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2018.9 – volume: 307 start-page: 58 year: 2005 ident: 500_CR35 publication-title: Science doi: 10.1126/science.1104819 – volume: 23 start-page: 951 year: 2011 ident: 500_CR28 publication-title: Cell Signal doi: 10.1016/j.cellsig.2010.10.015 – volume: 18 year: 2019 ident: 500_CR4 publication-title: Mol. Cancer – volume: 378 start-page: 2288 year: 2018 ident: 500_CR92 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1716948 – volume: 30 start-page: 953 year: 2016 ident: 500_CR12 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.10.018 – volume: 127 start-page: 3039 year: 2017 ident: 500_CR38 publication-title: J. Clin. Invest. doi: 10.1172/JCI93182 – volume: 4 start-page: 84 year: 2016 ident: 500_CR33 publication-title: J. Immunother. Cancer doi: 10.1186/s40425-016-0193-2 – volume: 109 start-page: 17561 year: 2012 ident: 500_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215397109 – year: 2019 ident: 500_CR20 publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-019-03351-7 – volume: 36 start-page: 240 year: 2015 ident: 500_CR44 publication-title: Trends Immunol. doi: 10.1016/j.it.2015.02.005 – volume: 26 start-page: 605 year: 2014 ident: 500_CR14 publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.10.006 – volume: 229 start-page: 176 year: 2013 ident: 500_CR50 publication-title: J. Pathol. doi: 10.1002/path.4133 – volume: 28 start-page: 519 year: 2007 ident: 500_CR56 publication-title: Trends Immunol. doi: 10.1016/j.it.2007.09.004 – volume: 130 start-page: 4350 year: 2019 ident: 500_CR75 publication-title: J. Clin. Invest. doi: 10.1172/JCI125413 – volume: 11 start-page: 889 year: 2010 ident: 500_CR42 publication-title: Nat. Immunol. doi: 10.1038/ni.1937 – volume: 202 start-page: 461 year: 2005 ident: 500_CR65 publication-title: J. Exp. Med. doi: 10.1084/jem.20051395 |
SSID | ssj0025474 |
Score | 2.6690567 |
SecondaryResourceType | review_article |
Snippet | Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME)... Cancer: Combination treatment targeting tumor blood vessels and immunity Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1475 |
SubjectTerms | 13/1 13/21 13/31 13/51 631/67/327 64/110 64/60 692/699/67/1059/2325 692/699/67/1059/602 692/699/67/2328 692/699/67/580 Angiogenesis Angiogenesis Inhibitors - administration & dosage Animals Antineoplastic Combined Chemotherapy Protocols - adverse effects Antineoplastic Combined Chemotherapy Protocols - therapeutic use Biomedical and Life Sciences Biomedicine Blood vessels Cancer Cancer immunotherapy CD4 antigen CD8 antigen Cell activation Cell Communication - genetics Cell Communication - immunology Clinical trials Dendritic cells Endometrium Humans Immune checkpoint inhibitors Immune Checkpoint Inhibitors - administration & dosage Immunity (Disease) Immunomodulation - drug effects Immunosuppressive agents Immunotherapy Kidneys Liver cancer Lung cancer Lymphocytes T Macrophages Medical Biochemistry Molecular Medicine Molecular Targeted Therapy Neoplasms - drug therapy Neoplasms - etiology Neoplasms - metabolism Neoplasms - pathology Neovascularization, Pathologic - drug therapy Neovascularization, Pathologic - immunology Neovascularization, Pathologic - metabolism Patients Review Review Article Signal Transduction Stem Cells Treatment Outcome Tumor microenvironment Tumor Microenvironment - drug effects Tumor Microenvironment - genetics Tumor Microenvironment - immunology Tumors Uterine cancer Vascular endothelial growth factor γ-Interferon 생화학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgpZHoCCDEBeI6viV-FgQVUEqJyr1ZiWOXaK0yWo3PSy_oD-7M06ysDwvnFZxnFU839gzkxl_JuSVNFJyL0xaYm5dGl6kJX5tUiFTzplC5wEDxZPP-vhUfjpTZz8c9YU1YSM98Ci4g7oKhjlWKRacVC6YzGtlShVkDo1Zhasv2Lw5mJpCLSUj_3IGzkUqwGJN22WYKA5W0Jhj4S3uqFaMpestkxSZ-8HQdMvwO6fz19rJnxKo0S4d3SN3J4eSHo4DuU9u-W6X7B12EExfrulrGks847fzXXL7ZMqk75FrWAggKI640D5QEHCTlt1504NGNY6O-7LW0F7TBveQeArwunbRN91AKzCBbVl72qHLe9F88ys617Smc3ccLLj2LR16uugHLEsCx5Y61LPl-KcQAjwgp0cfvrw_TqdTGVKnJRvSUjhTBcc5C3VZAaIxZOJ4zUXA-EPWdQVej_dSMV0xp3lgeekykXFnvHhIdrq-848JrZkH_0bL4BSTJcBaB13UviiQQwdQTEg2A2PdRFmOJ2dc2Jg6F4UdwbQApo1g2nVC3myeWYyEHX_t_Q7x3vREsu3YACpoJxW0_1LBhLwEbbGta-Lz-Hve23ZpIST5aI3KhWQiIfuzMtlpmVhZLjGNzKVWCXmxuQ0THLM2Zef7K-wDPjOy8oA4Ho26t3ldwU0meF4kJN_Syq3xbN_pmq-RRBz5RLXUCXk76-_31_qzvJ78D3k9JXd4nH5YqbdPdobllX8Grt1QPY-z-AY88Unb priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAXBC2PQEEGIS4Q4fiV-FhWVAWpnKjUm5U49hJtm6x208PyC_jZzDjJooWCxGm1ziSyPWP7m8zMF0JeSyMl98KkJcbWpeFFWuLbJhUy5ZwpdB7QUTz7ok_P5ecLdbFH-FQLE5P2I6Vl3Kan7LD364zzHNNlsQ5aMZZubpHbSN2OVj3Ts62TpWRkXgZxnQo4q8ZCGSaKG56xcxhFzn44YtpVuAlu_pk1-VvoNJ5IJ_fJvRFK0uOh8w_Inm8PyOExjKu72tA3NCZ3xrfmB-TO2RhDPyQ_YAsAdzhqhHaBwtQ2adnOmw5sqXF0qMjaQHtNG6we8RQU6xbLrml7WsHhtyhrT1sEu5fNd7-mUzZrOonjYAHUL2jf0WXXY0ISQFrq0MJWw0MB_D8k5ycfv85O0_F7DKnTkvVpKZypguOchbqsQJfRWeL4n4uAnoes6wrwjvdSMV0xp3lgeekykXFnvHhE9tuu9U8IrZkHZKNlcIrJUitTB13UviiQPQe0mJBsUox1I1k5fjPj0saguSjsoEwLyrRRmXaTkLfbe5YDVcc_pT-gvreSSLMdG7rV3I5mZ-sqGOZYpVhwUrlgMg99LVWQOTRmVUJegbXYhWvi_fg77-xiZcEZ-WSNyoVkIiFHkzHZcYNYWy4xgMylVgl5ub0MSxvjNWXru2uUAbSMfDwwHY8H29t2V3CTCZ4XCcl3rHJnPLtX2uZbpA9HJlEtdULeTfb7q1t_n6-n_yf-jNzlcaFhNt4R2e9X1_45wLe-ehHX60_4hD6y priority: 102 providerName: Springer Nature |
Title | Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity |
URI | https://link.springer.com/article/10.1038/s12276-020-00500-y https://www.ncbi.nlm.nih.gov/pubmed/32913278 https://www.proquest.com/docview/2475032465 https://www.proquest.com/docview/2441605262 https://pubmed.ncbi.nlm.nih.gov/PMC8080646 https://doaj.org/article/dbf90c0b50fc45cf91e659a5f470b51b https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002625333 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental and Molecular Medicine, 2020, 52(0), , pp.1-11 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxAvCDY-AqMyCPEC0RzHdpIn1FWbRqVNCJjUNytx7BJ1JKXNHspfwJ_NnZO2Kh97inpxKtt39v3uw2dC3ohMCG7jLMwxti4ynoY5epuki6QxWaoSh4bixaU6vxLjiZz0Drdln1a53hP9Rl02Bn3kx1xgxI0LJT_Mf4R4axRGV_srNO6SfSxdhildyWRrcEnhqzBHADHCGPRWf2iGxenxEogJpt_iuWrJWLjaUUy-fj-om3rh_gU9_86g_COM6rXT2UPyoIeVdNjJwSNyx9YH5HBYg0n9fUXfUp_o6T3oB-TeRR9PPyS_YDsA09hzhzaOwjRXYV5PqwbkqjK0O521AnpJKzxJYikw2czmTVW3tABFOMtLS2sEvtfVT7uk68zWcN0cBwsAf0bbhs6bFpOTAN5Sg9K26P4UDIHH5Ors9OvoPOzvZgiNEqwN89hkhTOcM1fmBfDVG04cf_PYoRUiyrIA7GOtkEwVzCjuWJKbKI64yWz8hOzVTW2fEVoyCyhHCWckE7mSWelUWto0xUo6wMWARGvGaNMXLsf7M661D6DHqe6YqYGZ2jNTrwLybvPNvCvbcWvrE-T3piWW3PaEZjHV_QrWZeEyZlghmTNCGpdFFvqaSycSIEZFQF6DtOiZqfz3-Jw2erbQYJh81JlMYsHigBythUn3m8VSb0U7IK82r2GZY-wmr21zg20AOWNtHpiOp53sbbob8yyKeZIGJNmRyp3x7L6pq2--lDhWFVVCBeT9Wn633fr_fD2_fRQvyH3uFxZm4h2RvXZxY18CdGuLgV-fA7I_HI6_jOF5cnr56TNQR2o08O6Q38OBRX4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKKwEXBC1LoIBBwIVGdbxkOSDUQquWLkKolXoziWOXaEoyzEyFhl_Ar-E38p6TTDUsvfUUxXEiO-_zW_wWE_JCZlJyK7IwR9-6zHga5rjbpFykjMnSOHFoKB4cxjvH8sOJOlkgv_pcGAyr7HmiZ9RlY3CPfJ1L9LhxGau3w28hnhqF3tX-CI0WFnt2-h1MtvGb3fdA35ecb28dvdsJu1MFQhNLNglzYbLCGc6ZK_MCRuRVfo73XDjUn2VZFiC1rZWKxQUzMXcsyU0kIm4yK-C718iSFGDKLJKlza3Dj59mJp6Svu5zBEpNKEBSdmk6TKTrY2hMMOAXM7kVY-F0ThT6EwNAwNUj9y9l9--YzT8ct14ebt8mtzpFlm60yLtDFmy9TFY2ajDiv07pK-pDS_2e_TK5ftB58FfIT2BAYIx7PNDGUSBsFeb1adUAkitD23ywKbSXtMLcFUsBVmYwbKp6QgsQvYO8tLRGVfus-mHHtI-lDfvuOFkwKQZ00tBhM8FwKFCoqUF8j9qPgulxlxxfCd3ukcW6qe0DQktmQa-KpTOKyTxWWenitLRpirV7gIoBiXrCaNOVSscTO860d9mLVLfE1EBM7YmppwF5PXtn2BYKubT3JtJ71hOLfPuGZnSqO56hy8JlzLBCMWekMi6LLIw1V04m0BgVAXkOaNEDU_n38Xra6MFIgym0qzOVCMlEQFZ7MOmOPY31xWIKyLPZY2As6C3Ka9ucYx_Q1bEaEPyO-y32ZsMVPIsET9KAJHOonJvP_JO6-uKLl2Md01jGAVnr8XsxrP__r4eXz-IpubFzdLCv93cP9x6Rm9wvMowDXCWLk9G5fQyK46R40q1WSj5fNYP4DbHSfnc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkSouCFqWQAGDgAtE43jJckCoUKqW0ooDlXoziWMP0ZRkmJkKDb-A38Sv4z0nmdGw9NZTFMeJ7LzPb_FbTMhTmUnJrcjCHH3rMuNpmONuk3KRMiZL48ShoXh0HO-fyPen6nSN_OpzYTCssueJnlGXjcE98gGX6HHjMlYD14VFfNzdez3-FuIJUuhp7Y_TaCFyaOffwXybvjrYBVo_43zv3ae3-2F3wkBoYslmYS5MVjjDOXNlXsDovPrP8Z4Lh7q0LMsCJLi1UrG4YCbmjiW5iUTETWYFfPcKuZoIFeEaS06Xxp6SvgJ0BOpNKEBmdgk7TKSDKTQmGPqLOd2KsXC-IhT92QEg6uqJ-5fa-3f05h8uXC8Z926Q651KS3daDN4ka7beJFs7NZjzX-f0OfVBpn73fpNsHHW-_C3yE1gRmOUeGbRxFEhchXk9rBrAdGVomxk2h_aSVpjFYikAzIzGTVXPaAFCeJSXltaodJ9VP-yU9lG1Yd8dJwvGxYjOGjpuZhgYBao1NYj0SftRMEJukZNLodptsl43tb1LaMksaFixdEYxmccqK12cljZNsYoPUDEgUU8Ybbqi6Xh2x5n2znuR6paYGoipPTH1PCAvFu-M25IhF_Z-g_Re9MRy376hmQx1xz10WbiMGVYo5oxUxmWRhbHmyskEGqMiIE8ALXpkKv8-XoeNHk00GEUHOlOJkEwEZLsHk-4Y1VQvl1VAHi8eA4tBv1Fe2-Yc-4DWjnWB4HfcabG3GK7gWSR4kgYkWUHlynxWn9TVF1_GHCuaxjIOyMsev8th_f9_3bt4Fo_IBrAF_eHg-PA-ucb9GsOAwG2yPpuc2wegQc6Kh36pUvL5snnDbziggUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+anti-angiogenic+therapy+and+immune+checkpoint+blockade+normalizes+vascular-immune+crosstalk+to+potentiate+cancer+immunity&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Lee%2C+Won+Suk&rft.au=Yang%2C+Hannah&rft.au=Chon%2C+Hong+Jae&rft.au=Kim%2C+Chan&rft.date=2020-09-01&rft.issn=1226-3613&rft.eissn=2092-6413&rft.volume=52&rft.issue=9&rft.spage=1475&rft.epage=1485&rft_id=info:doi/10.1038%2Fs12276-020-00500-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s12276_020_00500_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3613&client=summon |