Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity

Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells deter...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 52; no. 9; pp. 1475 - 1485
Main Authors Lee, Won Suk, Yang, Hannah, Chon, Hong Jae, Kim, Chan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2020
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Subjects
Online AccessGet full text
ISSN1226-3613
2092-6413
2092-6413
DOI10.1038/s12276-020-00500-y

Cover

Loading…
Abstract Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Cancer: Combination treatment targeting tumor blood vessels and immunity Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium.
AbstractList Cancer: Combination treatment targeting tumor blood vessels and immunity Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. KCI Citation Count: 0
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Cancer: Combination treatment targeting tumor blood vessels and immunity Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.Cancer: Combination treatment targeting tumor blood vessels and immunityCombining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 T and CD4 T 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8 + T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8 + T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as T H 2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8 + T and CD4 + T H 1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment. Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune checkpoint inhibitors that promote the activation of cancer-killing immune cells offers a promising new therapeutic regimen for patients with cancer. In a review article, a team led by Chan Kim and Hong Jae Chon from the CHA University School of Medicine in Seongnam, South Korea, discuss the molecular crosstalk between blood vessels and immune cells in the tumor microenvironment, a biological interconnectedness that provides a compelling rationale for the dual treatment strategy. The researchers summarize preclinical and clinical data demonstrating the potential of combining immunotherapy with treatment targeting blood vessel growth across a range of tumor types. These data have so far led to regulatory approvals for patients with cancers of the lung, kidney, liver and endometrium.
Author Lee, Won Suk
Yang, Hannah
Chon, Hong Jae
Kim, Chan
Author_xml – sequence: 1
  givenname: Won Suk
  orcidid: 0000-0003-2753-5294
  surname: Lee
  fullname: Lee, Won Suk
  organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine
– sequence: 2
  givenname: Hannah
  surname: Yang
  fullname: Yang, Hannah
  organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine
– sequence: 3
  givenname: Hong Jae
  surname: Chon
  fullname: Chon, Hong Jae
  email: minidoctor@cha.ac.kr
  organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine
– sequence: 4
  givenname: Chan
  orcidid: 0000-0001-9780-6155
  surname: Kim
  fullname: Kim, Chan
  email: chan@cha.ac.kr
  organization: Laboratory of Translational Immuno-Oncology, Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32913278$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002625333$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9ks1u1DAUhSNURKeFF2CBIrGBReD6N8kGqRrxM1IlJFTWluPYM55J7MF2Kg1PwGPjTtpCu-jK8vV3zr22z1lx4rzTRfEawQcEpPkYEcY1rwBDBcAAqsOzYoGhxRWniJwUi3zOK8IROS3OYtwCYEZr-qI4JbhFBNfNoviz9GNnnUzWu9KbUrpkK-nW1q-1s6pMGx3k_pDrfWnHcXK6VButdntvXSq7waud7HXpfBjlYH_rWF7LqKZBhuoODz7GJIddmXy590nnDjLlunRKh9nUpsPL4rmRQ9Svbtfz4ueXz1fLb9Xl96-r5cVlpTiFVEmi2s4ojMH0skNMtW3LOb7ZY2J4zRra911Laq0pA96B4thALRUiCKtWk_Pi_ezrghE7ZYWX9riuvdgFcfHjaiVaVhMKJLOrme293Ip9sKMMh6PgWPBhLWRIVg1a9J1pQUHHwCjKlGmR5qyVzNA6F1GXvT7NXvupG3Wv8jMEOTwwfXji7CbPdC0aaIBTng3e3RoE_2vSMYnRRqWHQTrtpygwpYgDwxxn9O0jdOun4PKzZqpmQDDlLFNv_p_ofpS7cGQAz8DxC4M29wgCcZNAMSdQ5ASKYwLFIYuaRyJl0zFe-VZ2eFpKZmnMfdxah39jP6H6C4vi82E
CitedBy_id crossref_primary_10_1111_1759_7714_15167
crossref_primary_10_3389_fonc_2023_1321326
crossref_primary_10_3390_curroncol30020181
crossref_primary_10_3390_ijms25136967
crossref_primary_10_1172_JCI148549
crossref_primary_10_3390_cancers15225401
crossref_primary_10_1016_j_beem_2023_101796
crossref_primary_10_3390_cancers16244251
crossref_primary_10_1016_j_bbcan_2023_189020
crossref_primary_10_1016_j_onano_2022_100081
crossref_primary_10_1186_s12943_021_01489_2
crossref_primary_10_1038_s41467_022_33080_8
crossref_primary_10_1039_D2BM00600F
crossref_primary_10_1016_j_compbiomed_2022_106477
crossref_primary_10_3389_fimmu_2024_1487610
crossref_primary_10_1016_j_nucmedbio_2022_03_005
crossref_primary_10_3389_fphar_2022_989461
crossref_primary_10_1016_j_pharmthera_2022_108211
crossref_primary_10_1016_j_jbc_2021_101128
crossref_primary_10_1186_s40824_023_00420_8
crossref_primary_10_3390_cancers14143367
crossref_primary_10_1016_j_jconrel_2023_05_005
crossref_primary_10_34133_research_0098
crossref_primary_10_1038_s41392_023_01460_1
crossref_primary_10_1158_1078_0432_CCR_18_0900
crossref_primary_10_1155_2023_9292536
crossref_primary_10_3389_fonc_2022_755053
crossref_primary_10_1007_s00280_023_04541_8
crossref_primary_10_1007_s11894_024_00920_0
crossref_primary_10_3389_fonc_2024_1459178
crossref_primary_10_1016_j_addr_2022_114138
crossref_primary_10_34133_bmr_0068
crossref_primary_10_3389_fonc_2023_1145999
crossref_primary_10_1080_13543784_2022_2053108
crossref_primary_10_1158_0008_5472_CAN_23_1418
crossref_primary_10_3389_fimmu_2021_650486
crossref_primary_10_1016_j_jhepr_2023_100672
crossref_primary_10_1056_EVIDra2300353
crossref_primary_10_1111_ajco_14108
crossref_primary_10_1080_14737140_2023_2181162
crossref_primary_10_1038_s41591_022_01868_2
crossref_primary_10_3389_fonc_2024_1388663
crossref_primary_10_1016_j_intimp_2023_109774
crossref_primary_10_1038_s41598_024_61000_x
crossref_primary_10_3390_livers3010011
crossref_primary_10_1126_sciadv_adr1299
crossref_primary_10_1186_s12876_024_03144_8
crossref_primary_10_1136_jitc_2020_000857
crossref_primary_10_3390_cells13191666
crossref_primary_10_1042_CS20200300
crossref_primary_10_1016_j_intimp_2022_108968
crossref_primary_10_1016_j_yexcr_2021_112522
crossref_primary_10_1177_15330338231204198
crossref_primary_10_12677_ACM_2023_134883
crossref_primary_10_1038_s41467_021_26343_3
crossref_primary_10_1042_BCJ20210233
crossref_primary_10_3390_cancers14174216
crossref_primary_10_1016_j_esmoop_2023_102071
crossref_primary_10_1016_S1470_2045_24_00374_7
crossref_primary_10_1186_s12885_024_12479_0
crossref_primary_10_1007_s11684_023_1015_9
crossref_primary_10_3389_fsurg_2023_1340657
crossref_primary_10_3892_ol_2022_13254
crossref_primary_10_1039_D4SC00643G
crossref_primary_10_24060_2076_3093_2024_14_1_94_100
crossref_primary_10_3390_ijms22189795
crossref_primary_10_1186_s12964_022_00951_y
crossref_primary_10_1038_s41389_021_00335_w
crossref_primary_10_1186_s13048_022_01004_1
crossref_primary_10_3390_cancers13102288
crossref_primary_10_1016_j_actbio_2022_10_032
crossref_primary_10_1038_s12276_024_01310_2
crossref_primary_10_1002_ctd2_231
crossref_primary_10_1016_j_trsl_2021_04_008
crossref_primary_10_3389_fimmu_2024_1477146
crossref_primary_10_3389_fimmu_2023_1272133
crossref_primary_10_3390_ijms22041631
crossref_primary_10_3390_ijms24043226
crossref_primary_10_3389_fphar_2022_868695
crossref_primary_10_3390_cancers13030363
crossref_primary_10_3389_fimmu_2024_1460282
crossref_primary_10_3390_biomedicines11082160
crossref_primary_10_3390_pharmaceutics14081589
crossref_primary_10_1016_j_cej_2024_158143
crossref_primary_10_1177_17588359221118874
crossref_primary_10_1186_s40364_021_00312_w
crossref_primary_10_2147_ITT_S494670
crossref_primary_10_1016_j_radonc_2023_109795
crossref_primary_10_3390_cancers13184625
crossref_primary_10_1007_s11696_021_01588_w
crossref_primary_10_1002_smll_202300544
crossref_primary_10_1038_s41598_023_30412_6
crossref_primary_10_3892_etm_2023_12362
crossref_primary_10_3389_fcell_2022_1086835
crossref_primary_10_1080_0284186X_2021_1962971
crossref_primary_10_1007_s13346_021_01036_y
crossref_primary_10_3389_fimmu_2021_704050
crossref_primary_10_3390_jcm13051335
crossref_primary_10_2217_fon_2022_0281
crossref_primary_10_3389_fonc_2024_1390299
crossref_primary_10_3389_fonc_2021_835889
crossref_primary_10_1053_j_gastro_2022_02_024
crossref_primary_10_1186_s12885_023_10661_4
crossref_primary_10_1136_jitc_2023_008611
crossref_primary_10_3390_life12081225
crossref_primary_10_1136_jitc_2023_007402
crossref_primary_10_3389_fimmu_2023_1212577
crossref_primary_10_1016_j_critrevonc_2023_104102
crossref_primary_10_1016_j_carbpol_2023_121564
crossref_primary_10_1007_s10585_024_10309_y
crossref_primary_10_1016_j_intimp_2023_111362
crossref_primary_10_3389_fonc_2020_619010
crossref_primary_10_3390_ijms22179414
crossref_primary_10_1186_s12885_024_12708_6
crossref_primary_10_3389_fonc_2023_1310106
crossref_primary_10_1097_MD_0000000000038574
crossref_primary_10_3390_curroncol30010070
crossref_primary_10_1039_D4QI02098G
crossref_primary_10_1038_s41392_024_01857_6
crossref_primary_10_3389_fonc_2022_1039378
crossref_primary_10_1016_j_xcrm_2024_101648
crossref_primary_10_1007_s10549_021_06369_3
crossref_primary_10_1038_s41573_023_00671_z
crossref_primary_10_3390_ijms25021266
crossref_primary_10_3389_fonc_2022_846597
crossref_primary_10_3389_fonc_2024_1371307
crossref_primary_10_3390_ijms21207743
crossref_primary_10_3389_fimmu_2023_1170321
crossref_primary_10_1007_s12032_023_02289_y
crossref_primary_10_1016_j_ijbiomac_2024_132543
crossref_primary_10_1016_j_prp_2024_155370
crossref_primary_10_1016_j_semcancer_2022_02_009
crossref_primary_10_1038_s41416_023_02437_1
crossref_primary_10_3390_ijms251910486
crossref_primary_10_1038_s41416_022_01820_8
crossref_primary_10_1016_j_drup_2025_101229
crossref_primary_10_3390_biomedicines10010077
crossref_primary_10_1016_j_bbcan_2024_189162
crossref_primary_10_1111_imcb_12647
crossref_primary_10_3390_cancers16030491
crossref_primary_10_1016_j_jtho_2024_02_008
crossref_primary_10_2147_IJN_S408521
crossref_primary_10_3389_fonc_2022_942678
crossref_primary_10_1007_s00262_024_03893_1
crossref_primary_10_37349_ei_2024_00177
crossref_primary_10_1016_j_canlet_2024_217241
crossref_primary_10_1016_j_celrep_2023_112162
crossref_primary_10_1371_journal_pone_0317331
crossref_primary_10_3389_fonc_2022_956372
crossref_primary_10_1016_j_ymthe_2024_07_014
crossref_primary_10_3389_fimmu_2022_1035323
crossref_primary_10_1007_s12672_025_01966_w
crossref_primary_10_1186_s13046_021_01961_3
crossref_primary_10_2217_fon_2021_1027
crossref_primary_10_1002_mc_23442
crossref_primary_10_1186_s12967_024_05552_6
crossref_primary_10_1007_s00262_023_03520_5
crossref_primary_10_1016_j_imbio_2021_152078
crossref_primary_10_1007_s12031_022_02060_4
crossref_primary_10_1016_j_phrs_2023_107010
crossref_primary_10_3389_fonc_2022_1032844
crossref_primary_10_1038_s41598_023_35985_w
crossref_primary_10_1186_s40824_023_00391_w
crossref_primary_10_1038_s41598_022_13484_8
crossref_primary_10_1038_s41598_025_91401_5
crossref_primary_10_3389_fphar_2024_1447582
crossref_primary_10_1016_j_cclet_2022_108104
crossref_primary_10_1158_1078_0432_CCR_22_1366
crossref_primary_10_5812_hepatmon_145022
crossref_primary_10_1016_j_exer_2024_110072
crossref_primary_10_3389_fimmu_2023_1295953
crossref_primary_10_1016_j_lungcan_2023_03_009
crossref_primary_10_1038_s41392_024_01992_0
crossref_primary_10_3389_fimmu_2023_1200941
crossref_primary_10_3389_fonc_2022_941454
crossref_primary_10_3390_cancers14092144
crossref_primary_10_1007_s40097_022_00504_2
crossref_primary_10_3390_cells11132114
crossref_primary_10_1016_j_coi_2024_102491
crossref_primary_10_1039_D1NR03387E
crossref_primary_10_1136_jitc_2021_003353
crossref_primary_10_4103_crst_crst_316_21
crossref_primary_10_1038_s41571_021_00565_2
crossref_primary_10_1016_j_celrep_2021_109253
crossref_primary_10_1038_s41467_023_40402_x
crossref_primary_10_3390_cancers12113380
crossref_primary_10_3389_fonc_2022_897927
crossref_primary_10_4143_crt_2024_237
crossref_primary_10_1053_j_gastro_2021_04_064
crossref_primary_10_1200_JCO_22_00912
crossref_primary_10_3389_fimmu_2024_1460533
crossref_primary_10_5662_wjm_v12_i1_43
crossref_primary_10_1038_s41568_024_00736_0
crossref_primary_10_2139_ssrn_4161436
crossref_primary_10_1080_14737140_2023_2152795
crossref_primary_10_1080_2162402X_2023_2259212
crossref_primary_10_3390_ijms22147511
crossref_primary_10_1016_j_intimp_2024_111947
crossref_primary_10_1016_j_rmcr_2021_101478
crossref_primary_10_1016_j_jtho_2023_03_023
crossref_primary_10_1016_j_bios_2023_115285
crossref_primary_10_1186_s12943_021_01463_y
crossref_primary_10_1016_j_jid_2021_11_013
crossref_primary_10_1080_17512433_2022_2142559
crossref_primary_10_1186_s12883_022_02919_4
crossref_primary_10_3390_cancers15030830
crossref_primary_10_3892_ol_2022_13550
crossref_primary_10_1016_j_cpha_2021_11_007
crossref_primary_10_1186_s12967_025_06273_0
crossref_primary_10_1007_s12272_022_01382_6
crossref_primary_10_3389_fcell_2022_908389
crossref_primary_10_3389_fimmu_2022_934083
crossref_primary_10_1016_j_jtho_2022_04_001
crossref_primary_10_1136_jitc_2024_008876
crossref_primary_10_17650_2313_805X_2024_11_1_99_104
crossref_primary_10_1080_07357907_2024_2361295
crossref_primary_10_3389_fphar_2023_1261575
crossref_primary_10_1016_j_cej_2023_145092
crossref_primary_10_1002_iid3_1260
crossref_primary_10_1016_j_canlet_2023_216263
crossref_primary_10_1007_s00228_023_03452_0
crossref_primary_10_1186_s40364_025_00727_9
crossref_primary_10_1038_s42003_024_07341_9
crossref_primary_10_3389_fimmu_2024_1508028
crossref_primary_10_2147_OTT_S500281
crossref_primary_10_3389_fimmu_2021_726492
crossref_primary_10_1016_j_intimp_2024_113319
crossref_primary_10_3390_cancers13174401
crossref_primary_10_3390_ijms26072923
crossref_primary_10_1002_INMD_20230025
crossref_primary_10_3390_jcm11247523
crossref_primary_10_1007_s12094_024_03667_2
crossref_primary_10_1093_postmj_qgad136
crossref_primary_10_3390_cancers14030631
crossref_primary_10_1007_s00280_023_04534_7
crossref_primary_10_1007_s12032_024_02477_4
crossref_primary_10_3390_cancers13071724
crossref_primary_10_3390_cells11030320
crossref_primary_10_1007_s10120_023_01435_9
crossref_primary_10_1158_2326_6066_CIR_23_0076
crossref_primary_10_3389_fonc_2022_965277
crossref_primary_10_1186_s12935_023_03195_z
crossref_primary_10_1007_s13346_022_01282_8
crossref_primary_10_1136_jitc_2023_007171
crossref_primary_10_1124_jpet_122_001514
crossref_primary_10_3389_fonc_2023_1274754
crossref_primary_10_1016_j_ejphar_2021_174365
crossref_primary_10_1080_13543784_2022_2095260
crossref_primary_10_1111_aej_12736
crossref_primary_10_1186_s13046_024_03088_7
crossref_primary_10_1016_j_ccell_2022_10_013
crossref_primary_10_1016_j_ejca_2024_114328
crossref_primary_10_1038_s42003_024_06478_x
crossref_primary_10_3389_fonc_2023_1119763
crossref_primary_10_1007_s00262_024_03872_6
crossref_primary_10_1177_17588359221144099
crossref_primary_10_1007_s00270_022_03327_4
crossref_primary_10_1007_s00432_022_03918_1
crossref_primary_10_1136_jitc_2020_002195
crossref_primary_10_1136_jitc_2020_002072
crossref_primary_10_1177_15330338251329248
crossref_primary_10_1166_jbn_2023_3606
crossref_primary_10_3389_fimmu_2024_1388176
crossref_primary_10_1001_jamanetworkopen_2021_49040
crossref_primary_10_1080_08977194_2022_2087520
crossref_primary_10_1007_s00262_024_03777_4
crossref_primary_10_3390_cancers15123220
crossref_primary_10_1002_mc_23807
crossref_primary_10_1016_j_intimp_2025_114372
crossref_primary_10_3390_cancers13215295
crossref_primary_10_3389_fonc_2023_1323350
crossref_primary_10_3390_nu14081574
crossref_primary_10_1002_cam4_70462
crossref_primary_10_3390_cancers15184648
crossref_primary_10_1097_MD_0000000000035243
crossref_primary_10_2174_0118715206294031240404071838
crossref_primary_10_3390_cancers13194906
crossref_primary_10_3390_cancers15030854
crossref_primary_10_3390_cancers15123224
crossref_primary_10_1016_j_bbcan_2024_189257
crossref_primary_10_1172_jci_insight_157347
crossref_primary_10_1002_adhm_202200041
crossref_primary_10_1177_17588359241311058
crossref_primary_10_1038_s41423_023_01068_z
crossref_primary_10_1038_s41467_024_53109_4
crossref_primary_10_1038_s41568_022_00503_z
crossref_primary_10_3389_fimmu_2023_1238698
crossref_primary_10_3390_cancers16223870
crossref_primary_10_1158_1078_0432_CCR_23_1829
crossref_primary_10_3390_cells13030244
crossref_primary_10_1111_cas_15533
crossref_primary_10_4251_wjgo_v15_i2_215
crossref_primary_10_1016_j_jtbi_2022_111147
crossref_primary_10_1038_s41392_025_02193_z
crossref_primary_10_1016_j_ejmech_2024_116472
crossref_primary_10_3390_cancers14030536
crossref_primary_10_1002_adma_202005155
crossref_primary_10_12677_ACM_2023_1381884
crossref_primary_10_1097_HC9_0000000000000209
crossref_primary_10_15252_embr_202255532
crossref_primary_10_3390_ph16020219
crossref_primary_10_1186_s12885_025_13885_8
crossref_primary_10_3389_fonc_2021_812916
crossref_primary_10_1038_s41698_024_00556_3
crossref_primary_10_1002_advs_202207650
crossref_primary_10_1002_ctm2_1647
crossref_primary_10_1038_s41417_021_00345_1
crossref_primary_10_1016_j_intimp_2024_111746
crossref_primary_10_1007_s10147_025_02699_0
crossref_primary_10_1158_1078_0432_CCR_22_2757
crossref_primary_10_1007_s00018_023_05105_y
crossref_primary_10_1016_j_biopha_2024_117468
crossref_primary_10_2147_OTT_S404035
crossref_primary_10_3390_cancers13215586
crossref_primary_10_3390_pharmaceutics15082022
crossref_primary_10_1080_1040841X_2024_2311653
crossref_primary_10_1177_17588359221110176
crossref_primary_10_3389_fonc_2023_1191611
crossref_primary_10_3390_ijms25189853
crossref_primary_10_1371_journal_pone_0257972
crossref_primary_10_3390_cancers13092090
crossref_primary_10_1111_imm_13841
crossref_primary_10_3389_fimmu_2023_1133689
crossref_primary_10_3390_biomedicines11082142
crossref_primary_10_1038_s41419_024_06931_z
crossref_primary_10_1200_JCO_22_02221
crossref_primary_10_2174_1386207326666230607125353
crossref_primary_10_1016_j_semcancer_2022_10_006
crossref_primary_10_3389_fimmu_2022_1070961
crossref_primary_10_1016_j_esmoop_2022_100579
crossref_primary_10_2147_JHC_S300182
crossref_primary_10_3390_biomedicines10092292
crossref_primary_10_4103_ejcrp_eJCRP_D_23_00016
crossref_primary_10_3390_cancers13040585
crossref_primary_10_1007_s12032_025_02641_4
crossref_primary_10_1080_2162402X_2021_2005280
crossref_primary_10_1007_s00432_024_05606_8
crossref_primary_10_3389_fonc_2022_893820
crossref_primary_10_3390_cells12202510
crossref_primary_10_3389_fphar_2023_1239699
crossref_primary_10_3389_fphar_2022_886198
crossref_primary_10_3389_fphar_2024_1448291
crossref_primary_10_3389_fonc_2022_844801
crossref_primary_10_3390_jcm10071367
crossref_primary_10_1038_s41571_023_00816_4
crossref_primary_10_1161_HYPERTENSIONAHA_122_19865
crossref_primary_10_1038_s41591_024_03132_1
crossref_primary_10_3390_biomedicines12092152
crossref_primary_10_3390_cancers15102858
crossref_primary_10_1016_j_bbcan_2023_188997
crossref_primary_10_3389_fonc_2022_916790
crossref_primary_10_1038_s41598_024_54670_0
crossref_primary_10_3389_fcell_2021_809588
crossref_primary_10_3390_cancers13235999
crossref_primary_10_1200_EDBK_390794
crossref_primary_10_1111_cpr_13513
crossref_primary_10_3390_cancers13205207
crossref_primary_10_1016_j_phrs_2024_107150
crossref_primary_10_1016_j_lfs_2022_121009
crossref_primary_10_1016_j_tranon_2022_101525
crossref_primary_10_1038_s41551_023_01145_8
crossref_primary_10_3390_ijms25137191
crossref_primary_10_1016_j_jconrel_2024_06_052
crossref_primary_10_1016_j_annonc_2024_10_002
crossref_primary_10_1186_s13046_022_02476_1
crossref_primary_10_2139_ssrn_4153272
crossref_primary_10_1038_s41467_024_54661_9
crossref_primary_10_3389_fonc_2022_862326
crossref_primary_10_1186_s12974_024_03155_y
crossref_primary_10_1055_a_2334_8311
crossref_primary_10_3390_cancers16010018
crossref_primary_10_1002_adhm_202201399
crossref_primary_10_3390_ijms222111659
crossref_primary_10_1016_j_ajps_2025_101020
crossref_primary_10_1177_17588359221108685
Cites_doi 10.1007/s00018-019-03351-7
10.1002/hep.30889
10.1016/j.ccr.2008.09.004
10.1242/jcs.116392
10.1038/ni1141
10.1056/NEJMoa1816047
10.1158/1078-0432.CCR-18-1543
10.4049/jimmunol.179.2.977
10.1158/0008-5472.CAN-11-3687
10.1158/1535-7163.MCT-14-0968-T
10.3389/fonc.2014.00069
10.1038/nri3064
10.4049/jimmunol.1100889
10.1007/s10456-017-9552-y
10.1158/2326-6066.CIR-16-0325
10.1038/nrc.2017.51
10.1093/annonc/mdz446.002
10.1158/1078-0432.CCR-18-1932
10.1038/nrclinonc.2018.29
10.1038/s41586-019-1325-x
10.1038/nature10169
10.1158/0008-5472.CAN-04-1272
10.1016/j.bbrc.2011.03.021
10.3892/or.2010.1118
10.1038/sj.bjc.6603240
10.1126/scitranslmed.aak9679
10.1038/ncb3371
10.1242/jcs.115.12.2559
10.1016/j.ccr.2009.01.027
10.1126/science.aar4060
10.1038/cr.2008.326
10.1038/s41419-017-0061-0
10.1016/j.celrep.2015.03.055
10.1158/0008-5472.CAN-13-0992
10.1111/j.0105-2896.2009.00879.x
10.1073/pnas.0407697101
10.1200/JCO.2019.37.15_suppl.TPS4152
10.4049/jimmunol.178.3.1357
10.1038/nri.2017.145
10.3389/fonc.2014.00131
10.4049/jimmunol.175.7.4745
10.1038/nm.3541
10.1016/j.ccr.2004.08.031
10.1016/j.gde.2004.12.005
10.4049/jimmunol.164.1.217
10.1038/nature07445
10.1016/j.ccr.2009.06.018
10.1126/scitranslmed.aak9670
10.3389/fimmu.2018.00527
10.1038/nature21724
10.1016/j.ccr.2005.08.002
10.1038/ni.f.213
10.1158/0008-5472.CAN-14-3587
10.1073/pnas.1710754114
10.1038/nm1097
10.1038/nrc2444
10.1016/j.ccr.2013.12.010
10.1016/j.cell.2010.03.014
10.1200/JCO.2018.36.15_suppl.4074
10.1016/S1470-2045(19)30020-8
10.1056/NEJMoa1816714
10.1016/j.ccr.2011.02.005
10.1158/0008-5472.CAN-12-4697
10.1146/annurev-physiol-020518-114700
10.1038/nature06348
10.1038/nature22311
10.1016/j.it.2007.07.006
10.1172/JCI96582
10.4161/cbt.29184
10.3389/fimmu.2019.01719
10.4049/jimmunol.160.3.1224
10.1182/blood-2005-07-2965
10.1038/nri1001
10.1038/nm1096-1096
10.3858/emm.2012.44.1.025
10.1038/sj.gt.3301703
10.1016/B978-0-12-407704-1.00001-4
10.1126/sciimmunol.aay0555
10.1038/nrclinonc.2018.9
10.1126/science.1104819
10.1016/j.cellsig.2010.10.015
10.1056/NEJMoa1716948
10.1016/j.ccell.2016.10.018
10.1172/JCI93182
10.1186/s40425-016-0193-2
10.1073/pnas.1215397109
10.1016/j.it.2015.02.005
10.1016/j.ccell.2014.10.006
10.1002/path.4133
10.1016/j.it.2007.09.004
10.1172/JCI125413
10.1038/ni.1937
10.1084/jem.20051395
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
ACYCR
DOI 10.1038/s12276-020-00500-y
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central (NC Live)
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 1485
ExternalDocumentID oai_kci_go_kr_ARTI_9573403
oai_doaj_org_article_dbf90c0b50fc45cf91e659a5f470b51b
PMC8080646
32913278
10_1038_s12276_020_00500_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c640t-a3c9bfc220fdab15c999662220f23f67584ddb937ee4506b0c62f07ac1312c9e3
IEDL.DBID 7X7
ISSN 1226-3613
2092-6413
IngestDate Sun Mar 09 07:51:20 EDT 2025
Wed Aug 27 01:24:10 EDT 2025
Thu Aug 21 14:37:22 EDT 2025
Mon Jul 21 11:52:26 EDT 2025
Wed Aug 13 10:59:00 EDT 2025
Thu Apr 03 07:05:17 EDT 2025
Tue Jul 01 04:10:30 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Feb 21 02:40:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-a3c9bfc220fdab15c999662220f23f67584ddb937ee4506b0c62f07ac1312c9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9780-6155
0000-0003-2753-5294
OpenAccessLink https://www.proquest.com/docview/2475032465?pq-origsite=%requestingapplication%
PMID 32913278
PQID 2475032465
PQPubID 2041975
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9573403
doaj_primary_oai_doaj_org_article_dbf90c0b50fc45cf91e659a5f470b51b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8080646
proquest_miscellaneous_2441605262
proquest_journals_2475032465
pubmed_primary_32913278
crossref_primary_10_1038_s12276_020_00500_y
crossref_citationtrail_10_1038_s12276_020_00500_y
springer_journals_10_1038_s12276_020_00500_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
– name: 생화학분자생물학회
References Facciabene (CR18) 2011; 475
Baer (CR79) 2016; 18
Chen, Bonaldo (CR48) 2013; 301
Bruno (CR41) 2014; 4
Rivera, Bergers (CR44) 2015; 36
Goumans, Liu, ten Dijke (CR27) 2009; 19
Mazzieri (CR58) 2011; 19
Khan (CR25) 2019; 571
Paez-Ribes (CR34) 2009; 15
Fathallah-Shaykh, Zhao, Kafrouni, Smith, Forman (CR76) 2000; 164
Tumeh (CR32) 2017; 5
Biswas, Mantovani (CR42) 2010; 11
Jung (CR39) 2017; 114
Chon (CR10) 2019; 25
De Palma, Biziato, Petrova (CR7) 2017; 17
Baluk, Hashizume, McDonald (CR19) 2005; 15
Dikov (CR69) 2001; 61
Fukumura, Kloepper, Amoozgar, Duda, Jain (CR2) 2018; 15
Liu (CR85) 2011; 407
Zheng (CR91) 2018; 128
Kim (CR15) 2016; 7
Lugano, Ramachandran, Dimberg (CR20) 2019
Qian, Pollard (CR47) 2010; 141
Colonna, Trinchieri, Liu (CR60) 2004; 5
Motz (CR21) 2014; 20
Mantovani, Biswas, Galdiero, Sica, Locati (CR50) 2013; 229
De Palma, Murdoch, Venneri, Naldini, Lewis (CR56) 2007; 28
Bromley, Mempel, Luster (CR77) 2008; 9
Piqueras, Connolly, Freitas, Palucka, Banchereau (CR62) 2006; 107
Tian, Neil, Schiemann (CR28) 2011; 23
Nishino (CR33) 2016; 4
Curiel (CR64) 2004; 64
Cheng (CR95) 2019; 30
Gerald, Chintharlapalli, Augustin, Benjamin (CR26) 2013; 73
Allen (CR88) 2017; 9
Huang (CR37) 2012; 109
Stein (CR96) 2018; 36
Llovet (CR97) 2019; 37
Freedman (CR78) 2000; 6
Khan, Kerbel (CR3) 2018; 15
Socinski (CR92) 2018; 378
Stockmann (CR52) 2008; 456
Oyama (CR23) 1998; 160
Odorisio (CR30) 2002; 115
Xia, Zhang, Xu, Yin, Lu (CR8) 2019; 10
Asselin-Paturel, Trinchieri (CR65) 2005; 202
Iida (CR86) 2011; 25
Motzer (CR94) 2019; 380
Hughes (CR51) 2015; 75
DeNardo (CR84) 2009; 16
Stockmann, Schadendorf, Klose, Helfrich (CR43) 2014; 4
Yang (CR73) 2004; 6
Ribas, Wolchok (CR1) 2018; 359
Sozzani, Rusnati, Riboldi, Mitola, Presta (CR59) 2007; 28
Rahma, Hodi (CR6) 2019; 25
Watkins, Egilmez, Suttles, Stout (CR49) 2007; 178
Jung (CR38) 2017; 127
Huang (CR5) 2018; 18
Trinchieri (CR63) 2003; 3
Kim (CR24) 2019; 4
Heusinkveld (CR82) 2011; 187
Rini (CR93) 2019; 380
Kammertoens (CR74) 2017; 545
Reusser (CR53) 2014; 15
Schaaf, Garg, Agostinis (CR16) 2018; 9
LeCouter, Zlot, Tejada, Peale, Ferrara (CR71) 2004; 101
Ramjiawan, Griffioen, Duda (CR17) 2017; 20
Martin, Seano, Jain (CR36) 2019; 81
De Falco (CR29) 2012; 44
Balkwill, Capasso, Hagemann (CR81) 2012; 125
Yi (CR4) 2019; 18
Tian (CR80) 2017; 544
De Palma (CR57) 2005; 8
Albini, Bruno, Noonan, Mortara (CR45) 2018; 9
Conejo-Garcia (CR68) 2004; 10
De Palma (CR55) 2008; 14
Park (CR12) 2016; 30
Yang (CR75) 2019; 130
Liu, Nussenzweig (CR61) 2010; 234
Shojaei (CR72) 2007; 450
Jain (CR35) 2005; 307
Okunishi (CR67) 2005; 175
Indraccolo (CR66) 2002; 9
Murdoch, Muthana, Coffelt, Lewis (CR46) 2008; 8
Rivera (CR40) 2015; 11
Zeisberger (CR54) 2006; 95
Jain (CR14) 2014; 26
Barsoum, Smallwood, Siemens, Graham (CR9) 2014; 74
Kim (CR11) 2014; 25
Schmittnaegel (CR90) 2017; 9
Shigeta (CR89) 2019
Motz, Coukos (CR83) 2011; 11
Facciabene, Motz, Coukos (CR87) 2012; 72
Gabrilovich (CR22) 1996; 2
Makker (CR98) 2019; 20
Lee (CR13) 2015; 14
Brodsky, Mendelev, Melamed, Ramaswamy (CR31) 2007; 16
Sinha, Clements, Bunt, Albelda, Ostrand-Rosenberg (CR70) 2007; 179
R Mazzieri (500_CR58) 2011; 19
T Oyama (500_CR23) 1998; 160
A Albini (500_CR45) 2018; 9
JS Park (500_CR12) 2016; 30
L Tian (500_CR80) 2017; 544
FR Balkwill (500_CR81) 2012; 125
K Jung (500_CR38) 2017; 127
NM Reusser (500_CR53) 2014; 15
A Bruno (500_CR41) 2014; 4
A Facciabene (500_CR18) 2011; 475
M Nishino (500_CR33) 2016; 4
K Liu (500_CR61) 2010; 234
J LeCouter (500_CR71) 2004; 101
S Indraccolo (500_CR66) 2002; 9
P Chen (500_CR48) 2013; 301
D Gerald (500_CR26) 2013; 73
Y Huang (500_CR5) 2018; 18
M De Palma (500_CR57) 2005; 8
S De Falco (500_CR29) 2012; 44
SM Zeisberger (500_CR54) 2006; 95
S Sozzani (500_CR59) 2007; 28
JD Martin (500_CR36) 2019; 81
DG DeNardo (500_CR84) 2009; 16
C Murdoch (500_CR46) 2008; 8
MM Dikov (500_CR69) 2001; 61
GT Motz (500_CR83) 2011; 11
DI Gabrilovich (500_CR22) 1996; 2
A Xia (500_CR8) 2019; 10
L Yang (500_CR73) 2004; 6
F Shojaei (500_CR72) 2007; 450
M De Palma (500_CR55) 2008; 14
A-L Cheng (500_CR95) 2019; 30
MB Schaaf (500_CR16) 2018; 9
MA Socinski (500_CR92) 2018; 378
C Asselin-Paturel (500_CR65) 2005; 202
B Piqueras (500_CR62) 2006; 107
SK Biswas (500_CR42) 2010; 11
SV Brodsky (500_CR31) 2007; 16
R Hughes (500_CR51) 2015; 75
K Jung (500_CR39) 2017; 114
A Ribas (500_CR1) 2018; 359
JR Conejo-Garcia (500_CR68) 2004; 10
C Stockmann (500_CR43) 2014; 4
C Kim (500_CR11) 2014; 25
RR Ramjiawan (500_CR17) 2017; 20
D Fukumura (500_CR2) 2018; 15
IB Barsoum (500_CR9) 2014; 74
JE Lee (500_CR13) 2015; 14
RK Jain (500_CR35) 2005; 307
OE Rahma (500_CR6) 2019; 25
HJ Chon (500_CR10) 2019; 25
M Tian (500_CR28) 2011; 23
LB Rivera (500_CR44) 2015; 36
V Makker (500_CR98) 2019; 20
KA Khan (500_CR3) 2018; 15
R Lugano (500_CR20) 2019
G Trinchieri (500_CR63) 2003; 3
P Sinha (500_CR70) 2007; 179
P Baluk (500_CR19) 2005; 15
H Yang (500_CR75) 2019; 130
M Schmittnaegel (500_CR90) 2017; 9
HM Fathallah-Shaykh (500_CR76) 2000; 164
T Kammertoens (500_CR74) 2017; 545
M De Palma (500_CR7) 2017; 17
E Allen (500_CR88) 2017; 9
JM Llovet (500_CR97) 2019; 37
J Liu (500_CR85) 2011; 407
Y Kim (500_CR15) 2016; 7
T Odorisio (500_CR30) 2002; 115
RJ Motzer (500_CR94) 2019; 380
M Heusinkveld (500_CR82) 2011; 187
K Shigeta (500_CR89) 2019
LB Rivera (500_CR40) 2015; 11
T Iida (500_CR86) 2011; 25
BI Rini (500_CR93) 2019; 380
M Colonna (500_CR60) 2004; 5
CG Kim (500_CR24) 2019; 4
SK Bromley (500_CR77) 2008; 9
M Yi (500_CR4) 2019; 18
O Khan (500_CR25) 2019; 571
PC Tumeh (500_CR32) 2017; 5
GT Motz (500_CR21) 2014; 20
RK Jain (500_CR14) 2014; 26
Y Huang (500_CR37) 2012; 109
SK Watkins (500_CR49) 2007; 178
M De Palma (500_CR56) 2007; 28
MJ Goumans (500_CR27) 2009; 19
S Stein (500_CR96) 2018; 36
C Stockmann (500_CR52) 2008; 456
A Facciabene (500_CR87) 2012; 72
K Okunishi (500_CR67) 2005; 175
X Zheng (500_CR91) 2018; 128
BZ Qian (500_CR47) 2010; 141
M Paez-Ribes (500_CR34) 2009; 15
RS Freedman (500_CR78) 2000; 6
A Mantovani (500_CR50) 2013; 229
TJ Curiel (500_CR64) 2004; 64
C Baer (500_CR79) 2016; 18
References_xml – volume: 26
  start-page: 605
  year: 2014
  end-page: 622
  ident: CR14
  article-title: Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia
  publication-title: Cancer Cell
– volume: 160
  start-page: 1224
  year: 1998
  end-page: 1232
  ident: CR23
  article-title: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells
  publication-title: J. Immunol.
– volume: 61
  start-page: 2015
  year: 2001
  end-page: 2021
  ident: CR69
  article-title: Vascular endothelial growth factor effects on nuclear factor-kappaB activation in hematopoietic progenitor cells
  publication-title: Cancer Res.
– volume: 380
  start-page: 1103
  year: 2019
  end-page: 1115
  ident: CR94
  article-title: Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma
  publication-title: N. Engl. J. Med.
– volume: 15
  start-page: 220
  year: 2009
  end-page: 231
  ident: CR34
  article-title: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis
  publication-title: Cancer Cell
– volume: 3
  start-page: 133
  year: 2003
  end-page: 146
  ident: CR63
  article-title: Interleukin-12 and the regulation of innate resistance and adaptive immunity
  publication-title: Nat. Rev. Immunol.
– volume: 64
  start-page: 5535
  year: 2004
  end-page: 5538
  ident: CR64
  article-title: Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer
  publication-title: Cancer Res.
– volume: 9
  start-page: 970
  year: 2008
  end-page: 980
  ident: CR77
  article-title: Orchestrating the orchestrators: chemokines in control of T cell traffic
  publication-title: Nat. Immunol.
– volume: 229
  start-page: 176
  year: 2013
  end-page: 185
  ident: CR50
  article-title: Macrophage plasticity and polarization in tissue repair and remodelling
  publication-title: J. Pathol.
– volume: 4
  start-page: 84
  year: 2016
  ident: CR33
  article-title: Immune-related response assessment during PD-1 inhibitor therapy in advanced non-small-cell lung cancer patients
  publication-title: J. Immunother. Cancer
– volume: 380
  start-page: 1116
  year: 2019
  end-page: 1127
  ident: CR93
  article-title: Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma
  publication-title: N. Engl. J. Med.
– volume: 15
  start-page: 1061
  year: 2014
  end-page: 1067
  ident: CR53
  article-title: Clodronate inhibits tumor angiogenesis in mouse models of ovarian cancer
  publication-title: Cancer Biol. Ther.
– volume: 20
  start-page: 185
  year: 2017
  end-page: 204
  ident: CR17
  article-title: Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?
  publication-title: Angiogenesis
– volume: 450
  start-page: 825
  year: 2007
  end-page: 831
  ident: CR72
  article-title: Bv8 regulates myeloid-cell-dependent tumour angiogenesis
  publication-title: Nature
– volume: 125
  start-page: 5591
  year: 2012
  end-page: 5596
  ident: CR81
  article-title: The tumor microenvironment at a glance
  publication-title: J. Cell Sci.
– volume: 544
  start-page: 250
  year: 2017
  end-page: 254
  ident: CR80
  article-title: Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming
  publication-title: Nature
– volume: 4
  start-page: 69
  year: 2014
  ident: CR43
  article-title: The impact of the immune system on tumor: angiogenesis and vascular remodeling
  publication-title: Front. Oncol.
– volume: 25
  start-page: 1612
  year: 2019
  end-page: 1623
  ident: CR10
  article-title: Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade
  publication-title: Clin. Cancer Res.
– year: 2019
  ident: CR20
  article-title: Tumor angiogenesis: causes, consequences, challenges and opportunities
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-019-03351-7
– volume: 25
  start-page: 5449
  year: 2019
  end-page: 5457
  ident: CR6
  article-title: The intersection between tumor angiogenesis and immune suppression
  publication-title: Clin. Cancer Res.
– volume: 25
  start-page: 102
  year: 2014
  end-page: 117
  ident: CR11
  article-title: Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption
  publication-title: Cancer Cell
– volume: 6
  start-page: 409
  year: 2004
  end-page: 421
  ident: CR73
  article-title: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis
  publication-title: Cancer Cell
– volume: 407
  start-page: 348
  year: 2011
  end-page: 354
  ident: CR85
  article-title: IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 14
  start-page: 470
  year: 2015
  end-page: 479
  ident: CR13
  article-title: Novel glycosylated VEGF decoy receptor fusion protein, VEGF-Grab, efficiently suppresses tumor angiogenesis and progression
  publication-title: Mol. Cancer Ther.
– volume: 7
  year: 2016
  ident: CR15
  article-title: Methylation-dependent regulation of HIF-1alpha stability restricts retinal and tumour angiogenesis
  publication-title: Nat. Commun.
– volume: 179
  start-page: 977
  year: 2007
  end-page: 983
  ident: CR70
  article-title: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response
  publication-title: J. Immunol.
– volume: 545
  start-page: 98
  year: 2017
  end-page: 102
  ident: CR74
  article-title: Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression
  publication-title: Nature
– volume: 18
  start-page: 195
  year: 2018
  end-page: 203
  ident: CR5
  article-title: Improving immune-vascular crosstalk for cancer immunotherapy
  publication-title: Nat. Rev. Immunol.
– volume: 9
  start-page: 115
  year: 2018
  ident: CR16
  article-title: Defining the role of the tumor vasculature in antitumor immunity and immunotherapy
  publication-title: Cell Death Dis.
– volume: 4
  start-page: eaay0555
  year: 2019
  ident: CR24
  article-title: VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers
  publication-title: Sci. Immunol.
– volume: 72
  start-page: 2162
  year: 2012
  end-page: 2171
  ident: CR87
  article-title: T-regulatory cells: key players in tumor immune escape and angiogenesis
  publication-title: Cancer Res.
– volume: 115
  start-page: 2559
  year: 2002
  end-page: 2567
  ident: CR30
  article-title: Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability
  publication-title: J. Cell Sci.
– volume: 5
  start-page: 417
  year: 2017
  end-page: 424
  ident: CR32
  article-title: Liver metastasis and treatment outcome with Anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC
  publication-title: Cancer Immunol. Res.
– volume: 16
  start-page: 373
  year: 2007
  end-page: 377
  ident: CR31
  article-title: Vascular density and VEGF expression in hepatic lesions
  publication-title: J. Gastrointestin Liver Dis.
– volume: 9
  start-page: eaak9670
  year: 2017
  ident: CR90
  article-title: Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade
  publication-title: Sci. Transl. Med.
– volume: 359
  start-page: 1350
  year: 2018
  end-page: 1355
  ident: CR1
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
– volume: 74
  start-page: 665
  year: 2014
  end-page: 674
  ident: CR9
  article-title: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells
  publication-title: Cancer Res.
– volume: 475
  start-page: 226
  year: 2011
  end-page: 230
  ident: CR18
  article-title: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells
  publication-title: Nature
– volume: 127
  start-page: 3039
  year: 2017
  end-page: 3051
  ident: CR38
  article-title: Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy
  publication-title: J. Clin. Invest.
– volume: 25
  start-page: 1271
  year: 2011
  end-page: 1277
  ident: CR86
  article-title: Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer
  publication-title: Oncol. Rep.
– volume: 202
  start-page: 461
  year: 2005
  end-page: 465
  ident: CR65
  article-title: Production of type I interferons: plasmacytoid dendritic cells and beyond
  publication-title: J. Exp. Med.
– volume: 37
  start-page: abstr. TPS4152
  year: 2019
  ident: CR97
  article-title: Lenvatinib (len) plus pembrolizumab (pembro) for the first-line treatment of patients (pts) with advanced hepatocellular carcinoma (HCC): Phase 3 LEAP-002 study
  publication-title: J. Clin. Oncol.
– volume: 15
  start-page: 325
  year: 2018
  end-page: 340
  ident: CR2
  article-title: Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 28
  start-page: 385
  year: 2007
  end-page: 392
  ident: CR59
  article-title: Dendritic cell-endothelial cell cross-talk in angiogenesis
  publication-title: Trends Immunol.
– volume: 11
  start-page: 577
  year: 2015
  end-page: 591
  ident: CR40
  article-title: Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy
  publication-title: Cell Rep.
– volume: 15
  start-page: 310
  year: 2018
  end-page: 324
  ident: CR3
  article-title: Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 30
  start-page: 953
  year: 2016
  end-page: 967
  ident: CR12
  article-title: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment
  publication-title: Cancer Cell
– volume: 73
  start-page: 1649
  year: 2013
  end-page: 1657
  ident: CR26
  article-title: Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy
  publication-title: Cancer Res.
– volume: 19
  start-page: 512
  year: 2011
  end-page: 526
  ident: CR58
  article-title: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells
  publication-title: Cancer Cell
– volume: 128
  start-page: 2104
  year: 2018
  end-page: 2115
  ident: CR91
  article-title: Increased vessel perfusion predicts the efficacy of immune checkpoint blockade
  publication-title: J. Clin. Invest.
– volume: 11
  start-page: 889
  year: 2010
  end-page: 896
  ident: CR42
  article-title: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
  publication-title: Nat. Immunol.
– volume: 141
  start-page: 39
  year: 2010
  end-page: 51
  ident: CR47
  article-title: Macrophage diversity enhances tumor progression and metastasis
  publication-title: Cell
– volume: 178
  start-page: 1357
  year: 2007
  end-page: 1362
  ident: CR49
  article-title: IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo
  publication-title: J. Immunol.
– volume: 81
  start-page: 505
  year: 2019
  end-page: 534
  ident: CR36
  article-title: Normalizing function of tumor vessels: progress, opportunities, and challenges
  publication-title: Annu. Rev. Physiol.
– volume: 9
  start-page: 867
  year: 2002
  end-page: 878
  ident: CR66
  article-title: Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells
  publication-title: Gene Ther.
– volume: 9
  start-page: 527
  year: 2018
  ident: CR45
  article-title: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for Immunotherapy
  publication-title: Front. Imunol.
– volume: 101
  start-page: 16813
  year: 2004
  end-page: 16818
  ident: CR71
  article-title: Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 95
  start-page: 272
  year: 2006
  end-page: 281
  ident: CR54
  article-title: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach
  publication-title: Br. J. Cancer
– volume: 301
  start-page: 1
  year: 2013
  end-page: 35
  ident: CR48
  article-title: Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies
  publication-title: Int. Rev. Cell Mol. Biol.
– volume: 75
  start-page: 3479
  year: 2015
  end-page: 3491
  ident: CR51
  article-title: Perivascular M2 macrophages stimulate tumor relapse after chemotherapy
  publication-title: Cancer Res
– volume: 234
  start-page: 45
  year: 2010
  end-page: 54
  ident: CR61
  article-title: Origin and development of dendritic cells
  publication-title: Immunol. Rev.
– volume: 36
  start-page: 240
  year: 2015
  end-page: 249
  ident: CR44
  article-title: Intertwined regulation of angiogenesis and immunity by myeloid cells
  publication-title: Trends Immunol.
– volume: 30
  start-page: abstr. ix186
  year: 2019
  end-page: ix187
  ident: CR95
  article-title: IMbrave150: efficacy and safety results from a ph III study evaluating atezolizumab (atezo)+ bevacizumab (bev) vs sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC)
  publication-title: Ann. Oncol.
– volume: 130
  start-page: 4350
  year: 2019
  end-page: 4364
  ident: CR75
  article-title: STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade
  publication-title: J. Clin. Invest.
– volume: 16
  start-page: 91
  year: 2009
  end-page: 102
  ident: CR84
  article-title: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages
  publication-title: Cancer Cell
– volume: 14
  start-page: 299
  year: 2008
  end-page: 311
  ident: CR55
  article-title: Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis
  publication-title: Cancer Cell
– volume: 175
  start-page: 4745
  year: 2005
  end-page: 4753
  ident: CR67
  article-title: A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function
  publication-title: J. Immunol.
– volume: 107
  start-page: 2613
  year: 2006
  end-page: 2618
  ident: CR62
  article-title: Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors
  publication-title: Blood
– volume: 9
  start-page: eaak9679
  year: 2017
  ident: CR88
  article-title: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation
  publication-title: Sci. Transl. Med.
– volume: 23
  start-page: 951
  year: 2011
  end-page: 962
  ident: CR28
  article-title: Transforming growth factor-beta and the hallmarks of cancer
  publication-title: Cell Signal
– volume: 109
  start-page: 17561
  year: 2012
  end-page: 17566
  ident: CR37
  article-title: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: 211
  year: 2005
  end-page: 226
  ident: CR57
  article-title: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors
  publication-title: Cancer Cell
– volume: 8
  start-page: 618
  year: 2008
  end-page: 631
  ident: CR46
  article-title: The role of myeloid cells in the promotion of tumour angiogenesis
  publication-title: Nat. Rev. Cancer
– volume: 28
  start-page: 519
  year: 2007
  end-page: 524
  ident: CR56
  article-title: Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications
  publication-title: Trends Immunol.
– volume: 36
  start-page: abstr. 4074
  year: 2018
  ident: CR96
  article-title: Safety and clinical activity of 1L atezolizumab + bevacizumab in a phase Ib study in hepatocellular carcinoma (HCC)
  publication-title: J. Clin. Oncol.
– volume: 2
  start-page: 1096
  year: 1996
  end-page: 1103
  ident: CR22
  article-title: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells
  publication-title: Nat. Med.
– volume: 164
  start-page: 217
  year: 2000
  end-page: 222
  ident: CR76
  article-title: Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis
  publication-title: J. Immunol.
– volume: 114
  start-page: 10455
  year: 2017
  end-page: 10460
  ident: CR39
  article-title: Targeting CXCR4-dependent immunosuppressive Ly6C(low) monocytes improves antiangiogenic therapy in colorectal cancer
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 307
  start-page: 58
  year: 2005
  end-page: 62
  ident: CR35
  article-title: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy
  publication-title: Science
– volume: 20
  start-page: 711
  year: 2019
  end-page: 718
  ident: CR98
  article-title: Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial
  publication-title: Lancet Oncol.
– volume: 15
  start-page: 102
  year: 2005
  end-page: 111
  ident: CR19
  article-title: Cellular abnormalities of blood vessels as targets in cancer
  publication-title: Curr. Opin. Genet. Dev.
– volume: 571
  start-page: 211
  year: 2019
  end-page: 218
  ident: CR25
  article-title: TOX transcriptionally and epigenetically programs CD8 T cell exhaustion
  publication-title: Nature
– volume: 10
  start-page: 950
  year: 2004
  end-page: 958
  ident: CR68
  article-title: Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A
  publication-title: Nat. Med.
– volume: 18
  year: 2019
  ident: CR4
  article-title: Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment
  publication-title: Mol. Cancer
– volume: 4
  start-page: 131
  year: 2014
  ident: CR41
  article-title: Orchestration of angiogenesis by immune cells
  publication-title: Front. Oncol.
– volume: 44
  start-page: 1
  year: 2012
  end-page: 9
  ident: CR29
  article-title: The discovery of placenta growth factor and its biological activity
  publication-title: Exp. Mol. Med.
– volume: 18
  start-page: 790
  year: 2016
  end-page: 802
  ident: CR79
  article-title: Suppression of microRNA activity amplifies IFN-gamma-induced macrophage activation and promotes anti-tumour immunity
  publication-title: Nat. Cell Biol.
– volume: 10
  start-page: 1719
  year: 2019
  ident: CR8
  article-title: T Cell Dysfunction in Cancer Immunity and Immunotherapy
  publication-title: Front. Immunol.
– volume: 456
  start-page: 814
  year: 2008
  end-page: 818
  ident: CR52
  article-title: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis
  publication-title: Nature
– volume: 11
  start-page: 702
  year: 2011
  end-page: 711
  ident: CR83
  article-title: The parallel lives of angiogenesis and immunosuppression: cancer and other tales
  publication-title: Nat. Rev. Immunol.
– volume: 6
  start-page: 2268
  year: 2000
  end-page: 2278
  ident: CR78
  article-title: Clinical and biological effects of intraperitoneal injections of recombinant interferon-gamma and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma
  publication-title: Clin. Cancer Res.
– volume: 187
  start-page: 1157
  year: 2011
  end-page: 1165
  ident: CR82
  article-title: M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells
  publication-title: J. Immunol.
– year: 2019
  ident: CR89
  article-title: Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.30889
– volume: 378
  start-page: 2288
  year: 2018
  end-page: 2301
  ident: CR92
  article-title: Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC
  publication-title: N. Engl. J. Med.
– volume: 19
  start-page: 116
  year: 2009
  end-page: 127
  ident: CR27
  article-title: TGF-beta signaling in vascular biology and dysfunction
  publication-title: Cell Res.
– volume: 17
  start-page: 457
  year: 2017
  end-page: 474
  ident: CR7
  article-title: Microenvironmental regulation of tumour angiogenesis
  publication-title: Nat. Rev. Cancer
– volume: 20
  start-page: 607
  year: 2014
  end-page: 615
  ident: CR21
  article-title: Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors
  publication-title: Nat. Med.
– volume: 5
  start-page: 1219
  year: 2004
  end-page: 1226
  ident: CR60
  article-title: Plasmacytoid dendritic cells in immunity
  publication-title: Nat. Immunol.
– volume: 14
  start-page: 299
  year: 2008
  ident: 500_CR55
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.09.004
– volume: 125
  start-page: 5591
  year: 2012
  ident: 500_CR81
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.116392
– volume: 5
  start-page: 1219
  year: 2004
  ident: 500_CR60
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1141
– volume: 380
  start-page: 1103
  year: 2019
  ident: 500_CR94
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1816047
– volume: 25
  start-page: 5449
  year: 2019
  ident: 500_CR6
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-1543
– volume: 179
  start-page: 977
  year: 2007
  ident: 500_CR70
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.2.977
– volume: 72
  start-page: 2162
  year: 2012
  ident: 500_CR87
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3687
– volume: 14
  start-page: 470
  year: 2015
  ident: 500_CR13
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-14-0968-T
– volume: 4
  start-page: 69
  year: 2014
  ident: 500_CR43
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2014.00069
– volume: 6
  start-page: 2268
  year: 2000
  ident: 500_CR78
  publication-title: Clin. Cancer Res.
– volume: 11
  start-page: 702
  year: 2011
  ident: 500_CR83
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3064
– volume: 187
  start-page: 1157
  year: 2011
  ident: 500_CR82
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100889
– volume: 20
  start-page: 185
  year: 2017
  ident: 500_CR17
  publication-title: Angiogenesis
  doi: 10.1007/s10456-017-9552-y
– volume: 5
  start-page: 417
  year: 2017
  ident: 500_CR32
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-16-0325
– volume: 17
  start-page: 457
  year: 2017
  ident: 500_CR7
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.51
– volume: 30
  start-page: abstr. ix186
  year: 2019
  ident: 500_CR95
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdz446.002
– volume: 25
  start-page: 1612
  year: 2019
  ident: 500_CR10
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-1932
– volume: 15
  start-page: 325
  year: 2018
  ident: 500_CR2
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2018.29
– volume: 571
  start-page: 211
  year: 2019
  ident: 500_CR25
  publication-title: Nature
  doi: 10.1038/s41586-019-1325-x
– volume: 475
  start-page: 226
  year: 2011
  ident: 500_CR18
  publication-title: Nature
  doi: 10.1038/nature10169
– volume: 64
  start-page: 5535
  year: 2004
  ident: 500_CR64
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-1272
– volume: 407
  start-page: 348
  year: 2011
  ident: 500_CR85
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.03.021
– volume: 25
  start-page: 1271
  year: 2011
  ident: 500_CR86
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2010.1118
– volume: 95
  start-page: 272
  year: 2006
  ident: 500_CR54
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6603240
– volume: 9
  start-page: eaak9679
  year: 2017
  ident: 500_CR88
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aak9679
– volume: 18
  start-page: 790
  year: 2016
  ident: 500_CR79
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3371
– volume: 115
  start-page: 2559
  year: 2002
  ident: 500_CR30
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.115.12.2559
– volume: 16
  start-page: 373
  year: 2007
  ident: 500_CR31
  publication-title: J. Gastrointestin Liver Dis.
– volume: 15
  start-page: 220
  year: 2009
  ident: 500_CR34
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.01.027
– volume: 359
  start-page: 1350
  year: 2018
  ident: 500_CR1
  publication-title: Science
  doi: 10.1126/science.aar4060
– volume: 19
  start-page: 116
  year: 2009
  ident: 500_CR27
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.326
– volume: 9
  start-page: 115
  year: 2018
  ident: 500_CR16
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0061-0
– volume: 11
  start-page: 577
  year: 2015
  ident: 500_CR40
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.03.055
– year: 2019
  ident: 500_CR89
  publication-title: Hepatology
  doi: 10.1002/hep.30889
– volume: 74
  start-page: 665
  year: 2014
  ident: 500_CR9
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-0992
– volume: 234
  start-page: 45
  year: 2010
  ident: 500_CR61
  publication-title: Immunol. Rev.
  doi: 10.1111/j.0105-2896.2009.00879.x
– volume: 101
  start-page: 16813
  year: 2004
  ident: 500_CR71
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0407697101
– volume: 37
  start-page: abstr. TPS4152
  year: 2019
  ident: 500_CR97
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.15_suppl.TPS4152
– volume: 7
  year: 2016
  ident: 500_CR15
  publication-title: Nat. Commun.
– volume: 178
  start-page: 1357
  year: 2007
  ident: 500_CR49
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.3.1357
– volume: 18
  start-page: 195
  year: 2018
  ident: 500_CR5
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.145
– volume: 4
  start-page: 131
  year: 2014
  ident: 500_CR41
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2014.00131
– volume: 175
  start-page: 4745
  year: 2005
  ident: 500_CR67
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.175.7.4745
– volume: 20
  start-page: 607
  year: 2014
  ident: 500_CR21
  publication-title: Nat. Med.
  doi: 10.1038/nm.3541
– volume: 6
  start-page: 409
  year: 2004
  ident: 500_CR73
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.08.031
– volume: 15
  start-page: 102
  year: 2005
  ident: 500_CR19
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2004.12.005
– volume: 164
  start-page: 217
  year: 2000
  ident: 500_CR76
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.1.217
– volume: 456
  start-page: 814
  year: 2008
  ident: 500_CR52
  publication-title: Nature
  doi: 10.1038/nature07445
– volume: 16
  start-page: 91
  year: 2009
  ident: 500_CR84
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.06.018
– volume: 9
  start-page: eaak9670
  year: 2017
  ident: 500_CR90
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aak9670
– volume: 9
  start-page: 527
  year: 2018
  ident: 500_CR45
  publication-title: Front. Imunol.
  doi: 10.3389/fimmu.2018.00527
– volume: 544
  start-page: 250
  year: 2017
  ident: 500_CR80
  publication-title: Nature
  doi: 10.1038/nature21724
– volume: 8
  start-page: 211
  year: 2005
  ident: 500_CR57
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.08.002
– volume: 9
  start-page: 970
  year: 2008
  ident: 500_CR77
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.f.213
– volume: 75
  start-page: 3479
  year: 2015
  ident: 500_CR51
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3587
– volume: 114
  start-page: 10455
  year: 2017
  ident: 500_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1710754114
– volume: 10
  start-page: 950
  year: 2004
  ident: 500_CR68
  publication-title: Nat. Med.
  doi: 10.1038/nm1097
– volume: 8
  start-page: 618
  year: 2008
  ident: 500_CR46
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2444
– volume: 25
  start-page: 102
  year: 2014
  ident: 500_CR11
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.12.010
– volume: 141
  start-page: 39
  year: 2010
  ident: 500_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.014
– volume: 36
  start-page: abstr. 4074
  year: 2018
  ident: 500_CR96
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2018.36.15_suppl.4074
– volume: 20
  start-page: 711
  year: 2019
  ident: 500_CR98
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30020-8
– volume: 380
  start-page: 1116
  year: 2019
  ident: 500_CR93
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1816714
– volume: 19
  start-page: 512
  year: 2011
  ident: 500_CR58
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.02.005
– volume: 61
  start-page: 2015
  year: 2001
  ident: 500_CR69
  publication-title: Cancer Res.
– volume: 73
  start-page: 1649
  year: 2013
  ident: 500_CR26
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4697
– volume: 81
  start-page: 505
  year: 2019
  ident: 500_CR36
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-020518-114700
– volume: 450
  start-page: 825
  year: 2007
  ident: 500_CR72
  publication-title: Nature
  doi: 10.1038/nature06348
– volume: 545
  start-page: 98
  year: 2017
  ident: 500_CR74
  publication-title: Nature
  doi: 10.1038/nature22311
– volume: 28
  start-page: 385
  year: 2007
  ident: 500_CR59
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2007.07.006
– volume: 128
  start-page: 2104
  year: 2018
  ident: 500_CR91
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI96582
– volume: 15
  start-page: 1061
  year: 2014
  ident: 500_CR53
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.29184
– volume: 10
  start-page: 1719
  year: 2019
  ident: 500_CR8
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01719
– volume: 160
  start-page: 1224
  year: 1998
  ident: 500_CR23
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.160.3.1224
– volume: 107
  start-page: 2613
  year: 2006
  ident: 500_CR62
  publication-title: Blood
  doi: 10.1182/blood-2005-07-2965
– volume: 3
  start-page: 133
  year: 2003
  ident: 500_CR63
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1001
– volume: 2
  start-page: 1096
  year: 1996
  ident: 500_CR22
  publication-title: Nat. Med.
  doi: 10.1038/nm1096-1096
– volume: 44
  start-page: 1
  year: 2012
  ident: 500_CR29
  publication-title: Exp. Mol. Med.
  doi: 10.3858/emm.2012.44.1.025
– volume: 9
  start-page: 867
  year: 2002
  ident: 500_CR66
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301703
– volume: 301
  start-page: 1
  year: 2013
  ident: 500_CR48
  publication-title: Int. Rev. Cell Mol. Biol.
  doi: 10.1016/B978-0-12-407704-1.00001-4
– volume: 4
  start-page: eaay0555
  year: 2019
  ident: 500_CR24
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aay0555
– volume: 15
  start-page: 310
  year: 2018
  ident: 500_CR3
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2018.9
– volume: 307
  start-page: 58
  year: 2005
  ident: 500_CR35
  publication-title: Science
  doi: 10.1126/science.1104819
– volume: 23
  start-page: 951
  year: 2011
  ident: 500_CR28
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2010.10.015
– volume: 18
  year: 2019
  ident: 500_CR4
  publication-title: Mol. Cancer
– volume: 378
  start-page: 2288
  year: 2018
  ident: 500_CR92
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1716948
– volume: 30
  start-page: 953
  year: 2016
  ident: 500_CR12
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.10.018
– volume: 127
  start-page: 3039
  year: 2017
  ident: 500_CR38
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI93182
– volume: 4
  start-page: 84
  year: 2016
  ident: 500_CR33
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-016-0193-2
– volume: 109
  start-page: 17561
  year: 2012
  ident: 500_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215397109
– year: 2019
  ident: 500_CR20
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-019-03351-7
– volume: 36
  start-page: 240
  year: 2015
  ident: 500_CR44
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.02.005
– volume: 26
  start-page: 605
  year: 2014
  ident: 500_CR14
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.10.006
– volume: 229
  start-page: 176
  year: 2013
  ident: 500_CR50
  publication-title: J. Pathol.
  doi: 10.1002/path.4133
– volume: 28
  start-page: 519
  year: 2007
  ident: 500_CR56
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2007.09.004
– volume: 130
  start-page: 4350
  year: 2019
  ident: 500_CR75
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI125413
– volume: 11
  start-page: 889
  year: 2010
  ident: 500_CR42
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1937
– volume: 202
  start-page: 461
  year: 2005
  ident: 500_CR65
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20051395
SSID ssj0025474
Score 2.6690567
SecondaryResourceType review_article
Snippet Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME)...
Cancer: Combination treatment targeting tumor blood vessels and immunity Combining anti-angiogenesis drugs that reduce the growth of blood vessels and immune...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1475
SubjectTerms 13/1
13/21
13/31
13/51
631/67/327
64/110
64/60
692/699/67/1059/2325
692/699/67/1059/602
692/699/67/2328
692/699/67/580
Angiogenesis
Angiogenesis Inhibitors - administration & dosage
Animals
Antineoplastic Combined Chemotherapy Protocols - adverse effects
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Biomedical and Life Sciences
Biomedicine
Blood vessels
Cancer
Cancer immunotherapy
CD4 antigen
CD8 antigen
Cell activation
Cell Communication - genetics
Cell Communication - immunology
Clinical trials
Dendritic cells
Endometrium
Humans
Immune checkpoint inhibitors
Immune Checkpoint Inhibitors - administration & dosage
Immunity (Disease)
Immunomodulation - drug effects
Immunosuppressive agents
Immunotherapy
Kidneys
Liver cancer
Lung cancer
Lymphocytes T
Macrophages
Medical Biochemistry
Molecular Medicine
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - etiology
Neoplasms - metabolism
Neoplasms - pathology
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - immunology
Neovascularization, Pathologic - metabolism
Patients
Review
Review Article
Signal Transduction
Stem Cells
Treatment Outcome
Tumor microenvironment
Tumor Microenvironment - drug effects
Tumor Microenvironment - genetics
Tumor Microenvironment - immunology
Tumors
Uterine cancer
Vascular endothelial growth factor
γ-Interferon
생화학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgpZHoCCDEBeI6viV-FgQVUEqJyr1ZiWOXaK0yWo3PSy_oD-7M06ysDwvnFZxnFU839gzkxl_JuSVNFJyL0xaYm5dGl6kJX5tUiFTzplC5wEDxZPP-vhUfjpTZz8c9YU1YSM98Ci4g7oKhjlWKRacVC6YzGtlShVkDo1Zhasv2Lw5mJpCLSUj_3IGzkUqwGJN22WYKA5W0Jhj4S3uqFaMpestkxSZ-8HQdMvwO6fz19rJnxKo0S4d3SN3J4eSHo4DuU9u-W6X7B12EExfrulrGks847fzXXL7ZMqk75FrWAggKI640D5QEHCTlt1504NGNY6O-7LW0F7TBveQeArwunbRN91AKzCBbVl72qHLe9F88ys617Smc3ccLLj2LR16uugHLEsCx5Y61LPl-KcQAjwgp0cfvrw_TqdTGVKnJRvSUjhTBcc5C3VZAaIxZOJ4zUXA-EPWdQVej_dSMV0xp3lgeekykXFnvHhIdrq-848JrZkH_0bL4BSTJcBaB13UviiQQwdQTEg2A2PdRFmOJ2dc2Jg6F4UdwbQApo1g2nVC3myeWYyEHX_t_Q7x3vREsu3YACpoJxW0_1LBhLwEbbGta-Lz-Hve23ZpIST5aI3KhWQiIfuzMtlpmVhZLjGNzKVWCXmxuQ0THLM2Zef7K-wDPjOy8oA4Ho26t3ldwU0meF4kJN_Syq3xbN_pmq-RRBz5RLXUCXk76-_31_qzvJ78D3k9JXd4nH5YqbdPdobllX8Grt1QPY-z-AY88Unb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAXBC2PQEEGIS4Q4fiV-FhWVAWpnKjUm5U49hJtm6x208PyC_jZzDjJooWCxGm1ziSyPWP7m8zMF0JeSyMl98KkJcbWpeFFWuLbJhUy5ZwpdB7QUTz7ok_P5ecLdbFH-FQLE5P2I6Vl3Kan7LD364zzHNNlsQ5aMZZubpHbSN2OVj3Ts62TpWRkXgZxnQo4q8ZCGSaKG56xcxhFzn44YtpVuAlu_pk1-VvoNJ5IJ_fJvRFK0uOh8w_Inm8PyOExjKu72tA3NCZ3xrfmB-TO2RhDPyQ_YAsAdzhqhHaBwtQ2adnOmw5sqXF0qMjaQHtNG6we8RQU6xbLrml7WsHhtyhrT1sEu5fNd7-mUzZrOonjYAHUL2jf0WXXY0ISQFrq0MJWw0MB_D8k5ycfv85O0_F7DKnTkvVpKZypguOchbqsQJfRWeL4n4uAnoes6wrwjvdSMV0xp3lgeekykXFnvHhE9tuu9U8IrZkHZKNlcIrJUitTB13UviiQPQe0mJBsUox1I1k5fjPj0saguSjsoEwLyrRRmXaTkLfbe5YDVcc_pT-gvreSSLMdG7rV3I5mZ-sqGOZYpVhwUrlgMg99LVWQOTRmVUJegbXYhWvi_fg77-xiZcEZ-WSNyoVkIiFHkzHZcYNYWy4xgMylVgl5ub0MSxvjNWXru2uUAbSMfDwwHY8H29t2V3CTCZ4XCcl3rHJnPLtX2uZbpA9HJlEtdULeTfb7q1t_n6-n_yf-jNzlcaFhNt4R2e9X1_45wLe-ehHX60_4hD6y
  priority: 102
  providerName: Springer Nature
Title Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity
URI https://link.springer.com/article/10.1038/s12276-020-00500-y
https://www.ncbi.nlm.nih.gov/pubmed/32913278
https://www.proquest.com/docview/2475032465
https://www.proquest.com/docview/2441605262
https://pubmed.ncbi.nlm.nih.gov/PMC8080646
https://doaj.org/article/dbf90c0b50fc45cf91e659a5f470b51b
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002625333
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental and Molecular Medicine, 2020, 52(0), , pp.1-11
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxAvCDY-AqMyCPEC0RzHdpIn1FWbRqVNCJjUNytx7BJ1JKXNHspfwJ_NnZO2Kh97inpxKtt39v3uw2dC3ohMCG7jLMwxti4ynoY5epuki6QxWaoSh4bixaU6vxLjiZz0Drdln1a53hP9Rl02Bn3kx1xgxI0LJT_Mf4R4axRGV_srNO6SfSxdhildyWRrcEnhqzBHADHCGPRWf2iGxenxEogJpt_iuWrJWLjaUUy-fj-om3rh_gU9_86g_COM6rXT2UPyoIeVdNjJwSNyx9YH5HBYg0n9fUXfUp_o6T3oB-TeRR9PPyS_YDsA09hzhzaOwjRXYV5PqwbkqjK0O521AnpJKzxJYikw2czmTVW3tABFOMtLS2sEvtfVT7uk68zWcN0cBwsAf0bbhs6bFpOTAN5Sg9K26P4UDIHH5Ors9OvoPOzvZgiNEqwN89hkhTOcM1fmBfDVG04cf_PYoRUiyrIA7GOtkEwVzCjuWJKbKI64yWz8hOzVTW2fEVoyCyhHCWckE7mSWelUWto0xUo6wMWARGvGaNMXLsf7M661D6DHqe6YqYGZ2jNTrwLybvPNvCvbcWvrE-T3piWW3PaEZjHV_QrWZeEyZlghmTNCGpdFFvqaSycSIEZFQF6DtOiZqfz3-Jw2erbQYJh81JlMYsHigBythUn3m8VSb0U7IK82r2GZY-wmr21zg20AOWNtHpiOp53sbbob8yyKeZIGJNmRyp3x7L6pq2--lDhWFVVCBeT9Wn633fr_fD2_fRQvyH3uFxZm4h2RvXZxY18CdGuLgV-fA7I_HI6_jOF5cnr56TNQR2o08O6Q38OBRX4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKKwEXBC1LoIBBwIVGdbxkOSDUQquWLkKolXoziWOXaEoyzEyFhl_Ar-E38p6TTDUsvfUUxXEiO-_zW_wWE_JCZlJyK7IwR9-6zHga5rjbpFykjMnSOHFoKB4cxjvH8sOJOlkgv_pcGAyr7HmiZ9RlY3CPfJ1L9LhxGau3w28hnhqF3tX-CI0WFnt2-h1MtvGb3fdA35ecb28dvdsJu1MFQhNLNglzYbLCGc6ZK_MCRuRVfo73XDjUn2VZFiC1rZWKxQUzMXcsyU0kIm4yK-C718iSFGDKLJKlza3Dj59mJp6Svu5zBEpNKEBSdmk6TKTrY2hMMOAXM7kVY-F0ThT6EwNAwNUj9y9l9--YzT8ct14ebt8mtzpFlm60yLtDFmy9TFY2ajDiv07pK-pDS_2e_TK5ftB58FfIT2BAYIx7PNDGUSBsFeb1adUAkitD23ywKbSXtMLcFUsBVmYwbKp6QgsQvYO8tLRGVfus-mHHtI-lDfvuOFkwKQZ00tBhM8FwKFCoqUF8j9qPgulxlxxfCd3ukcW6qe0DQktmQa-KpTOKyTxWWenitLRpirV7gIoBiXrCaNOVSscTO860d9mLVLfE1EBM7YmppwF5PXtn2BYKubT3JtJ71hOLfPuGZnSqO56hy8JlzLBCMWekMi6LLIw1V04m0BgVAXkOaNEDU_n38Xra6MFIgym0qzOVCMlEQFZ7MOmOPY31xWIKyLPZY2As6C3Ka9ucYx_Q1bEaEPyO-y32ZsMVPIsET9KAJHOonJvP_JO6-uKLl2Md01jGAVnr8XsxrP__r4eXz-IpubFzdLCv93cP9x6Rm9wvMowDXCWLk9G5fQyK46R40q1WSj5fNYP4DbHSfnc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkSouCFqWQAGDgAtE43jJckCoUKqW0ooDlXoziWMP0ZRkmJkKDb-A38Sv4z0nmdGw9NZTFMeJ7LzPb_FbTMhTmUnJrcjCHH3rMuNpmONuk3KRMiZL48ShoXh0HO-fyPen6nSN_OpzYTCssueJnlGXjcE98gGX6HHjMlYD14VFfNzdez3-FuIJUuhp7Y_TaCFyaOffwXybvjrYBVo_43zv3ae3-2F3wkBoYslmYS5MVjjDOXNlXsDovPrP8Z4Lh7q0LMsCJLi1UrG4YCbmjiW5iUTETWYFfPcKuZoIFeEaS06Xxp6SvgJ0BOpNKEBmdgk7TKSDKTQmGPqLOd2KsXC-IhT92QEg6uqJ-5fa-3f05h8uXC8Z926Q651KS3daDN4ka7beJFs7NZjzX-f0OfVBpn73fpNsHHW-_C3yE1gRmOUeGbRxFEhchXk9rBrAdGVomxk2h_aSVpjFYikAzIzGTVXPaAFCeJSXltaodJ9VP-yU9lG1Yd8dJwvGxYjOGjpuZhgYBao1NYj0SftRMEJukZNLodptsl43tb1LaMksaFixdEYxmccqK12cljZNsYoPUDEgUU8Ybbqi6Xh2x5n2znuR6paYGoipPTH1PCAvFu-M25IhF_Z-g_Re9MRy376hmQx1xz10WbiMGVYo5oxUxmWRhbHmyskEGqMiIE8ALXpkKv8-XoeNHk00GEUHOlOJkEwEZLsHk-4Y1VQvl1VAHi8eA4tBv1Fe2-Yc-4DWjnWB4HfcabG3GK7gWSR4kgYkWUHlynxWn9TVF1_GHCuaxjIOyMsev8th_f9_3bt4Fo_IBrAF_eHg-PA-ucb9GsOAwG2yPpuc2wegQc6Kh36pUvL5snnDbziggUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+anti-angiogenic+therapy+and+immune+checkpoint+blockade+normalizes+vascular-immune+crosstalk+to+potentiate+cancer+immunity&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Lee%2C+Won+Suk&rft.au=Yang%2C+Hannah&rft.au=Chon%2C+Hong+Jae&rft.au=Kim%2C+Chan&rft.date=2020-09-01&rft.issn=1226-3613&rft.eissn=2092-6413&rft.volume=52&rft.issue=9&rft.spage=1475&rft.epage=1485&rft_id=info:doi/10.1038%2Fs12276-020-00500-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s12276_020_00500_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3613&client=summon