Deep learning framework for subject-independent emotion detection using wireless signals

Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired fr...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 2; p. e0242946
Main Authors Khan, Ahsan Noor, Ihalage, Achintha Avin, Ma, Yihan, Liu, Baiyang, Liu, Yujie, Hao, Yang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.02.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.
AbstractList Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.
Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.
Audience Academic
Author Ma, Yihan
Liu, Baiyang
Ihalage, Achintha Avin
Liu, Yujie
Hao, Yang
Khan, Ahsan Noor
AuthorAffiliation Polytechnical Universidad de Madrid, SPAIN
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
AuthorAffiliation_xml – name: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
– name: Polytechnical Universidad de Madrid, SPAIN
Author_xml – sequence: 1
  givenname: Ahsan Noor
  orcidid: 0000-0003-0234-2410
  surname: Khan
  fullname: Khan, Ahsan Noor
– sequence: 2
  givenname: Achintha Avin
  surname: Ihalage
  fullname: Ihalage, Achintha Avin
– sequence: 3
  givenname: Yihan
  surname: Ma
  fullname: Ma, Yihan
– sequence: 4
  givenname: Baiyang
  surname: Liu
  fullname: Liu, Baiyang
– sequence: 5
  givenname: Yujie
  surname: Liu
  fullname: Liu, Yujie
– sequence: 6
  givenname: Yang
  orcidid: 0000-0002-9949-7226
  surname: Hao
  fullname: Hao, Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33534826$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhoOsuLuj_0CkIIhezJg0adLuhbCsXwMLC37hXUiT027GNhmT1tV_b-rMylREpJCEk-d9OTl9T9GR8w4QekjwilBBnm_8GJzqVttUXuGc5RXjd9AJqWi-5DmmRwfnY3Qa4wbjgpac30PHlBaUlTk_QZ9fAmyzDlRw1rVZE1QPNz58yRofsjjWG9DD0joDW0iLGzLo_WC9ywwM6Wo6jXFS3tgAHcSYRdumtuJ9dLdJGzzY7wv08fWrDxdvl5dXb9YX55dLzRkelqIEAVxz1QjNlKkaokqNjWG8JrTAhSA1rwhJN1VZK6wKamqg2GBKCc7Lii7QeudrvNrIbbC9Cj-kV1b-KvjQShUGqzuQqiiBGy0qBozlhlc5NZWhAmtcGJ6Gs0Avdl7bse7B6PTeoLqZ6fzG2WvZ-m9SlIXguEwGT_cGwX8dIQ6yt1FD1ykHfowyZyVnnOZs6vvxDm1Vas26xidHPeHynBeYE0G4SNTqL1T6DPRWpz_f2FSfCZ7NBIkZ4PvQqjFGuX7_7v_Zq09z9skBew2qG66j78YpAXEOPjqc4e_h3UYuAWc7QAcfY4BGajuoySc9zXaSYDnlW-7zLad8y32-k5j9Ib71_6fsJ9F0ATI
CitedBy_id crossref_primary_10_1049_rsn2_12297
crossref_primary_10_1016_j_psep_2023_04_008
crossref_primary_10_1109_TAFFC_2023_3285777
crossref_primary_10_3390_math10173159
crossref_primary_10_3390_s23010338
crossref_primary_10_3390_s22155611
crossref_primary_10_1109_JIOT_2021_3097801
crossref_primary_10_1016_j_ijleo_2022_170469
crossref_primary_10_1038_s41598_024_75909_w
crossref_primary_10_1109_ACCESS_2023_3307639
crossref_primary_10_1371_journal_pone_0268962
crossref_primary_10_1007_s11042_022_14091_5
crossref_primary_10_1155_2022_2986536
crossref_primary_10_1007_s10439_023_03341_8
crossref_primary_10_1007_s10676_021_09599_7
crossref_primary_10_1371_journal_pcbi_1012645
crossref_primary_10_1016_j_heliyon_2022_e09317
crossref_primary_10_1049_ccs2_12116
crossref_primary_10_12677_ap_2024_148567
crossref_primary_10_1080_20421338_2024_2353934
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_3389_fonc_2022_998222
crossref_primary_10_3389_fphys_2022_955208
crossref_primary_10_1080_2331186X_2022_2138052
crossref_primary_10_1108_JMH_12_2022_0085
Cites_doi 10.1002/adma.201301921
10.1109/JIOT.2017.2772959
10.1016/j.inffus.2018.10.009
10.1073/pnas.1321664111
10.1038/nmat3755
10.1109/JBHI.2017.2688239
10.1109/ICME.2017.8019533
10.1145/2975167.2975212
10.1109/TBCAS.2011.2114661
10.1109/WACV.2016.7477679
10.1109/ACCESS.2018.2870063
10.1111/1469-8986.00067
10.3390/s101210837
10.1016/j.entcs.2019.04.009
10.3390/s18082414
10.1016/j.inffus.2020.01.011
10.1007/978-3-319-60639-2_2
10.1016/j.csbj.2020.06.017
10.1016/j.procs.2017.05.025
10.1016/j.bspc.2019.101646
10.1038/s41467-020-17678-4
10.1038/ncomms2832
10.1109/TSMCA.2011.2116000
10.1126/science.1076358
10.1016/j.patcog.2010.09.020
10.1002/int.21833
10.1109/IJCNN.2014.6889383
10.1073/pnas.1534743100
10.1109/JSEN.2012.2222572
10.3390/s18072074
10.1109/TPAMI.2008.52
10.1016/j.inffus.2018.09.001
10.1109/BIBM.2015.7359871
10.1016/j.artmed.2009.03.003
10.1109/TAP.2014.2342751
10.1109/JETCAS.2018.2822684
10.1038/s41598-018-34833-6
10.1145/2973750.2973762
10.1016/j.jbi.2014.08.002
10.1126/sciadv.aaw4358
10.1007/s12193-015-0195-2
10.1093/bioinformatics/btw074
10.1109/TETCI.2019.2902438
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Khan et al 2021 Khan et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Khan et al 2021 Khan et al
DBID AAYXX
CITATION
NPM
IOV
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pone.0242946
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Wireless emotion detection
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_a58e6dc794e442d6923d9d370c05d605
PMC7857608
A650617167
33534826
10_1371_journal_pone_0242946
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
IPNFZ
NPM
RIG
PMFND
7X8
PJZUB
PPXIY
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c640t-78e7e6c6af7c4ad9f1a8c0dd46b1350571b6911ad998ba0a53dbe30d033102893
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 27 01:28:00 EDT 2025
Thu Aug 21 18:19:38 EDT 2025
Mon Jul 21 10:33:54 EDT 2025
Tue Jun 17 21:11:22 EDT 2025
Tue Jun 10 20:27:25 EDT 2025
Fri Jun 27 04:03:37 EDT 2025
Fri Jun 27 04:37:21 EDT 2025
Thu May 22 21:06:17 EDT 2025
Wed Feb 19 02:28:50 EST 2025
Thu Apr 24 23:00:44 EDT 2025
Tue Jul 01 01:35:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-78e7e6c6af7c4ad9f1a8c0dd46b1350571b6911ad998ba0a53dbe30d033102893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-0234-2410
0000-0002-9949-7226
OpenAccessLink https://doaj.org/article/a58e6dc794e442d6923d9d370c05d605
PMID 33534826
PQID 2486463249
PQPubID 23479
PageCount e0242946
ParticipantIDs doaj_primary_oai_doaj_org_article_a58e6dc794e442d6923d9d370c05d605
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7857608
proquest_miscellaneous_2486463249
gale_infotracmisc_A650617167
gale_infotracacademiconefile_A650617167
gale_incontextgauss_ISR_A650617167
gale_incontextgauss_IOV_A650617167
gale_healthsolutions_A650617167
pubmed_primary_33534826
crossref_citationtrail_10_1371_journal_pone_0242946
crossref_primary_10_1371_journal_pone_0242946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-03
PublicationDateYYYYMMDD 2021-02-03
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Zhang (pone.0242946.ref024) 2020; 59
Y Chen (pone.0242946.ref034) 2016; 32
Z Zeng (pone.0242946.ref017) 2009; 31
PM Ferreira (pone.0242946.ref027) 2018; 6
M Sabeti (pone.0242946.ref043) 2009; 47
L Shu (pone.0242946.ref015) 2018; 18
L Nummenmaa (pone.0242946.ref046) 2014; 111
B Schmauch (pone.0242946.ref033) 2020; 11
MS Hossain (pone.0242946.ref012) 2018; 5
Y Kong (pone.0242946.ref037) 2018; 8
pone.0242946.ref028
H Ghasemzadeh (pone.0242946.ref042) 2013; 13
PS Hall (pone.0242946.ref001) 2012
pone.0242946.ref026
M El Ayadi (pone.0242946.ref021) 2011; 44
S Ramírez-Gallego (pone.0242946.ref045) 2017; 32
PA Kragel (pone.0242946.ref018) 2019; 5
(pone.0242946.ref020) 2017; 108
RJ Davidson (pone.0242946.ref044) 2003; 40
MM Hassan (pone.0242946.ref031) 2019; 51
RC Webb (pone.0242946.ref010) 2013; 12
SE Kahou (pone.0242946.ref019) 2016; 10
JA Domínguez-Jiménez (pone.0242946.ref025) 2020; 55
X Wang (pone.0242946.ref005) 2014; 52
R Kohavi (pone.0242946.ref040) 1995
RJ Dolan (pone.0242946.ref014) 2002; 298
MO Munoz (pone.0242946.ref002) 2014; 62
JW Jeong (pone.0242946.ref007) 2013; 25
M Egger (pone.0242946.ref023) 2019; 343
RS Dilmaghani (pone.0242946.ref004) 2011; 5
(pone.0242946.ref032) 2020; 18
pone.0242946.ref030
T Yilmaz (pone.0242946.ref008) 2010; 10
S Katsigiannis (pone.0242946.ref041) 2018; 22
G Schwartz (pone.0242946.ref009) 2013; 4
pone.0242946.ref039
pone.0242946.ref038
E Kanjo (pone.0242946.ref029) 2019; 49
pone.0242946.ref035
D Dias (pone.0242946.ref006) 2018; 18
pone.0242946.ref036
pone.0242946.ref011
G Chanel (pone.0242946.ref013) 2011; 41
C Li (pone.0242946.ref003) 2018; 8
MA Rosenkranz (pone.0242946.ref016) 2003; 100
Y Gu (pone.0242946.ref022) 2020; 4
References_xml – volume: 25
  start-page: 6839
  issue: 47
  year: 2013
  ident: pone.0242946.ref007
  article-title: Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics
  publication-title: Advanced Materials
  doi: 10.1002/adma.201301921
– volume: 5
  start-page: 2399
  issue: 4
  year: 2018
  ident: pone.0242946.ref012
  article-title: Emotion-Aware Connected Healthcare Big Data Towards 5G
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2017.2772959
– volume: 51
  start-page: 10
  year: 2019
  ident: pone.0242946.ref031
  article-title: Human emotion recognition using deep belief network architecture
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.10.009
– volume: 111
  start-page: 646
  issue: 2
  year: 2014
  ident: pone.0242946.ref046
  article-title: Bodily maps of emotions
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1321664111
– volume: 12
  start-page: 938
  issue: 10
  year: 2013
  ident: pone.0242946.ref010
  article-title: Ultrathin conformal devices for precise and continuous thermal characterization of human skin
  publication-title: Nature materials
  doi: 10.1038/nmat3755
– volume: 22
  start-page: 98
  issue: 1
  year: 2018
  ident: pone.0242946.ref041
  article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2017.2688239
– volume-title: Antennas and propagation for body-centric wireless communications
  year: 2012
  ident: pone.0242946.ref001
– ident: pone.0242946.ref030
  doi: 10.1109/ICME.2017.8019533
– ident: pone.0242946.ref036
  doi: 10.1145/2975167.2975212
– volume: 5
  start-page: 347
  issue: 4
  year: 2011
  ident: pone.0242946.ref004
  article-title: Wireless Sensor Networks for Monitoring Physiological Signals of Multiple Patients
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
  doi: 10.1109/TBCAS.2011.2114661
– ident: pone.0242946.ref028
  doi: 10.1109/WACV.2016.7477679
– volume: 6
  start-page: 53930
  year: 2018
  ident: pone.0242946.ref027
  article-title: Physiological Inspired Deep Neural Networks for Emotion Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870063
– volume: 40
  start-page: 655
  issue: 5
  year: 2003
  ident: pone.0242946.ref044
  article-title: Affective neuroscience and psychophysiology: Toward a synthesis
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.00067
– volume: 10
  start-page: 10837
  issue: 12
  year: 2010
  ident: pone.0242946.ref008
  article-title: Detecting vital signs with wearable wireless sensors
  publication-title: Sensors
  doi: 10.3390/s101210837
– volume: 343
  start-page: 35
  year: 2019
  ident: pone.0242946.ref023
  article-title: Emotion recognition from physiological signal analysis: A review
  publication-title: Electronic Notes in Theoretical Computer Science
  doi: 10.1016/j.entcs.2019.04.009
– volume: 18
  start-page: 2414
  issue: 8
  year: 2018
  ident: pone.0242946.ref006
  article-title: Wearable health devices—vital sign monitoring, systems and technologies
  publication-title: Sensors
  doi: 10.3390/s18082414
– volume: 59
  start-page: 103
  year: 2020
  ident: pone.0242946.ref024
  article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.01.011
– ident: pone.0242946.ref026
  doi: 10.1007/978-3-319-60639-2_2
– volume: 18
  start-page: 1466
  year: 2020
  ident: pone.0242946.ref032
  article-title: Deep learning models in genomics; are we there yet?
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2020.06.017
– volume: 108
  start-page: 1175
  year: 2017
  ident: pone.0242946.ref020
  article-title: Emotion recognition using facial expressions
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.05.025
– volume: 55
  start-page: 101646
  year: 2020
  ident: pone.0242946.ref025
  article-title: A machine learning model for emotion recognition from physiological signals
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2019.101646
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0242946.ref033
  article-title: A deep learning model to predict RNA-Seq expression of tumours from whole slide images
  publication-title: Nature communications
  doi: 10.1038/s41467-020-17678-4
– start-page: 1137
  volume-title: Ijcai
  year: 1995
  ident: pone.0242946.ref040
– volume: 4
  start-page: 1859
  year: 2013
  ident: pone.0242946.ref009
  article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
  publication-title: Nature communications
  doi: 10.1038/ncomms2832
– volume: 41
  start-page: 1052
  issue: 6
  year: 2011
  ident: pone.0242946.ref013
  article-title: Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans
  doi: 10.1109/TSMCA.2011.2116000
– volume: 298
  start-page: 1191
  issue: 5596
  year: 2002
  ident: pone.0242946.ref014
  article-title: Emotion, cognition, and behavior
  publication-title: science
  doi: 10.1126/science.1076358
– volume: 44
  start-page: 572
  issue: 3
  year: 2011
  ident: pone.0242946.ref021
  article-title: Survey on speech emotion recognition: Features, classification schemes, and databases
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.09.020
– volume: 32
  start-page: 134
  issue: 2
  year: 2017
  ident: pone.0242946.ref045
  article-title: Fast-mRMR: Fast minimum redundancy maximum relevance algorithm for high-dimensional big data
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.21833
– ident: pone.0242946.ref039
  doi: 10.1109/IJCNN.2014.6889383
– volume: 100
  start-page: 11148
  issue: 19
  year: 2003
  ident: pone.0242946.ref016
  article-title: Affective style and in vivo immune response: Neurobehavioral mechanisms
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1534743100
– volume: 13
  start-page: 423
  issue: 2
  year: 2013
  ident: pone.0242946.ref042
  article-title: Wireless Medical-Embedded Systems: A Review of Signal-Processing Techniques for Classification
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2012.2222572
– volume: 18
  start-page: 2074
  issue: 7
  year: 2018
  ident: pone.0242946.ref015
  article-title: A review of emotion recognition using physiological signals
  publication-title: Sensors
  doi: 10.3390/s18072074
– ident: pone.0242946.ref035
– volume: 31
  start-page: 39
  issue: 1
  year: 2009
  ident: pone.0242946.ref017
  article-title: A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.52
– volume: 49
  start-page: 46
  year: 2019
  ident: pone.0242946.ref029
  article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.09.001
– ident: pone.0242946.ref038
  doi: 10.1109/BIBM.2015.7359871
– volume: 47
  start-page: 263
  issue: 3
  year: 2009
  ident: pone.0242946.ref043
  article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2009.03.003
– volume: 62
  start-page: 5268
  issue: 10
  year: 2014
  ident: pone.0242946.ref002
  article-title: Exploring Physiological Parameters in Dynamic WBAN Channels
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.2014.2342751
– volume: 8
  start-page: 165
  issue: 2
  year: 2018
  ident: pone.0242946.ref003
  article-title: Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications
  publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems
  doi: 10.1109/JETCAS.2018.2822684
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: pone.0242946.ref037
  article-title: A deep neural network model using random forest to extract feature representation for gene expression data classification
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-34833-6
– ident: pone.0242946.ref011
  doi: 10.1145/2973750.2973762
– volume: 52
  start-page: 406
  year: 2014
  ident: pone.0242946.ref005
  article-title: All-IP wireless sensor networks for real-time patient monitoring
  publication-title: Journal of biomedical informatics
  doi: 10.1016/j.jbi.2014.08.002
– volume: 5
  issue: 7
  year: 2019
  ident: pone.0242946.ref018
  article-title: Emotion schemas are embedded in the human visual system
  publication-title: Science Advances
  doi: 10.1126/sciadv.aaw4358
– volume: 10
  start-page: 99
  issue: 2
  year: 2016
  ident: pone.0242946.ref019
  article-title: Emonets: Multimodal deep learning approaches for emotion recognition in video
  publication-title: Journal on Multimodal User Interfaces
  doi: 10.1007/s12193-015-0195-2
– volume: 32
  start-page: 1832
  issue: 12
  year: 2016
  ident: pone.0242946.ref034
  article-title: Gene expression inference with deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw074
– volume: 4
  start-page: 216
  issue: 3
  year: 2020
  ident: pone.0242946.ref022
  article-title: EmoSense: Computational Intelligence Driven Emotion Sensing via Wireless Channel Data
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2019.2902438
SSID ssj0053866
Score 2.5208476
Snippet Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0242946
SubjectTerms Biology and Life Sciences
Computer and Information Sciences
Engineering and Technology
Facial expression
Machine learning
Methods
Observations
Physical Sciences
Research and Analysis Methods
Social Sciences
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkoYBAScEjrjR07PpZHVZAACSjam-VXlkpVdkWy_5-Z2BttxKEcuK4nUXYenpnk8zeEvOQxKCt0KJs26lI4a0sbrC8VC4p7wZweT7l-_iLPL8SnZb3cG_WFmLBED5wUd2LrJsrgwW2iEFWQUJAEHbhintVBJvZSyHm7ZirtwRDFUuaDclwtTrJdjjfrLh5jVtJY8O4lopGv_-9deS8tzSGTezno7Da5lYtHepoe-pDciN0dcpjDs6evM4f0m7tk-T7GDc0jIVa03UGwKNSotN86fPtSXk4jcAca0zgfGuIwgrM6ioj4FUUq4yvYDSkCPcBV75GLsw8_3p2XeYhC6aVgQ6maqKL00rbKCxt0u7CNZyEI6RYcu5OFk7DhwYpunGW25sFFzgLjHGsPze-Tgw7U9pDQBm4D5YBzVeuFU1qDCaDf0VAUVVVjWUH4TqPGZ4ZxHHRxZcbPZgo6jaQng3Yw2Q4FKaerNolh4xr5t2isSRb5sccfwGtM9hpzndcU5Bma2qTDplOUm1MoWCUyCKmCvBglkCOjQxDOym773nz8-vMfhL5_mwm9ykLtGtThbT74AP8JubdmkkczSYh0P1t-vnNMg0sIj-vietubSjRSIPG-LsiD5KiTfjivkcAI9KZmLjxT4Hylu_w1Eo2rBrpR1jz6Hxp_TG5WCAdCwDs_IgfD7218AvXc4J6OofsHCA1K0Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep learning framework for subject-independent emotion detection using wireless signals
URI https://www.ncbi.nlm.nih.gov/pubmed/33534826
https://www.proquest.com/docview/2486463249
https://pubmed.ncbi.nlm.nih.gov/PMC7857608
https://doaj.org/article/a58e6dc794e442d6923d9d370c05d605
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLf2ceGCGJ-FUQxCAg6pnNi14wNC22gZSBtoUNRb5NhOmVSlpWkluPC3817iRosAsYsP8bOVPPt9xc-_R8hz7p0yQrsoLbyORG5MZJyxkWJOcStYrutbrmfn8nQiPkyH0x2yrdkaGFj9NbTDelKT1Xzw4_vPNyDwr-uqDSreDhosF6UfoM3RQu6SfbBNCkX1TLTnCiDd9eklei2RTBgPl-n-NUvHWNWY_n9q7iumq5tWecVOjW-Rm8HBpEfNjjggO768TQ6CCFf0ZcCZfnWHTN96v6ShbMSMFts0LQp-LK02Of6hiS7bMrlr6puSP9T5dZ3AVVLMmp9RhDueg8akmAwCbL1LJuPRl5PTKBRaiKwUbB2p1CsvrTSFssI4XcQmtcw5IfOYYwQT5xKUIvToNDfMDLnLPWeOcY7-ieb3yF4JbHtAaArTgMuQ50lhRa60tgxjIg2OU5KkhvUI33I0swGFHIthzLP6aE1BNNLwKcN1yMI69EjUjlo2KBz_oT_GxWppEUO7frBYzbIgkpkZpl46CwrJC5E4Ca6u044rBq_sIMrrkSe41FlzIbXVBNkROLUSUYZUjzyrKRBHo8REnZnZVFX2_uPXaxB9vugQvQhExQLYYU24HAHfhPhcHcrDDiVoA9vpfrrdmBl2YQpd6RebKktEKgWC8-seud9s1JY_nA8R5Aj4pjpbuMPAbk95-a0GI1cpRKwsfXjtD3hEbiSYF4SZ7_yQ7K1XG_8YHLt13ie7aqqgTU9ibMfv-mT_eHT-6aJf_yrp17KM7a_Rb1EaVQg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+framework+for+subject-independent+emotion+detection+using+wireless+signals&rft.jtitle=PloS+one&rft.au=Khan%2C+Ahsan+Noor&rft.au=Ihalage%2C+Achintha+Avin&rft.au=Ma%2C+Yihan&rft.au=Liu%2C+Baiyang&rft.date=2021-02-03&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=2&rft.spage=e0242946&rft_id=info:doi/10.1371%2Fjournal.pone.0242946&rft.externalDocID=A650617167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon