Deep learning framework for subject-independent emotion detection using wireless signals
Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired fr...
Saved in:
Published in | PloS one Vol. 16; no. 2; p. e0242946 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
03.02.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences. |
---|---|
AbstractList | Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences. Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences. |
Audience | Academic |
Author | Ma, Yihan Liu, Baiyang Ihalage, Achintha Avin Liu, Yujie Hao, Yang Khan, Ahsan Noor |
AuthorAffiliation | Polytechnical Universidad de Madrid, SPAIN School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom |
AuthorAffiliation_xml | – name: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom – name: Polytechnical Universidad de Madrid, SPAIN |
Author_xml | – sequence: 1 givenname: Ahsan Noor orcidid: 0000-0003-0234-2410 surname: Khan fullname: Khan, Ahsan Noor – sequence: 2 givenname: Achintha Avin surname: Ihalage fullname: Ihalage, Achintha Avin – sequence: 3 givenname: Yihan surname: Ma fullname: Ma, Yihan – sequence: 4 givenname: Baiyang surname: Liu fullname: Liu, Baiyang – sequence: 5 givenname: Yujie surname: Liu fullname: Liu, Yujie – sequence: 6 givenname: Yang orcidid: 0000-0002-9949-7226 surname: Hao fullname: Hao, Yang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33534826$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2L1DAUhoOsuLuj_0CkIIhezJg0adLuhbCsXwMLC37hXUiT027GNhmT1tV_b-rMylREpJCEk-d9OTl9T9GR8w4QekjwilBBnm_8GJzqVttUXuGc5RXjd9AJqWi-5DmmRwfnY3Qa4wbjgpac30PHlBaUlTk_QZ9fAmyzDlRw1rVZE1QPNz58yRofsjjWG9DD0joDW0iLGzLo_WC9ywwM6Wo6jXFS3tgAHcSYRdumtuJ9dLdJGzzY7wv08fWrDxdvl5dXb9YX55dLzRkelqIEAVxz1QjNlKkaokqNjWG8JrTAhSA1rwhJN1VZK6wKamqg2GBKCc7Lii7QeudrvNrIbbC9Cj-kV1b-KvjQShUGqzuQqiiBGy0qBozlhlc5NZWhAmtcGJ6Gs0Avdl7bse7B6PTeoLqZ6fzG2WvZ-m9SlIXguEwGT_cGwX8dIQ6yt1FD1ykHfowyZyVnnOZs6vvxDm1Vas26xidHPeHynBeYE0G4SNTqL1T6DPRWpz_f2FSfCZ7NBIkZ4PvQqjFGuX7_7v_Zq09z9skBew2qG66j78YpAXEOPjqc4e_h3UYuAWc7QAcfY4BGajuoySc9zXaSYDnlW-7zLad8y32-k5j9Ib71_6fsJ9F0ATI |
CitedBy_id | crossref_primary_10_1049_rsn2_12297 crossref_primary_10_1016_j_psep_2023_04_008 crossref_primary_10_1109_TAFFC_2023_3285777 crossref_primary_10_3390_math10173159 crossref_primary_10_3390_s23010338 crossref_primary_10_3390_s22155611 crossref_primary_10_1109_JIOT_2021_3097801 crossref_primary_10_1016_j_ijleo_2022_170469 crossref_primary_10_1038_s41598_024_75909_w crossref_primary_10_1109_ACCESS_2023_3307639 crossref_primary_10_1371_journal_pone_0268962 crossref_primary_10_1007_s11042_022_14091_5 crossref_primary_10_1155_2022_2986536 crossref_primary_10_1007_s10439_023_03341_8 crossref_primary_10_1007_s10676_021_09599_7 crossref_primary_10_1371_journal_pcbi_1012645 crossref_primary_10_1016_j_heliyon_2022_e09317 crossref_primary_10_1049_ccs2_12116 crossref_primary_10_12677_ap_2024_148567 crossref_primary_10_1080_20421338_2024_2353934 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_3389_fonc_2022_998222 crossref_primary_10_3389_fphys_2022_955208 crossref_primary_10_1080_2331186X_2022_2138052 crossref_primary_10_1108_JMH_12_2022_0085 |
Cites_doi | 10.1002/adma.201301921 10.1109/JIOT.2017.2772959 10.1016/j.inffus.2018.10.009 10.1073/pnas.1321664111 10.1038/nmat3755 10.1109/JBHI.2017.2688239 10.1109/ICME.2017.8019533 10.1145/2975167.2975212 10.1109/TBCAS.2011.2114661 10.1109/WACV.2016.7477679 10.1109/ACCESS.2018.2870063 10.1111/1469-8986.00067 10.3390/s101210837 10.1016/j.entcs.2019.04.009 10.3390/s18082414 10.1016/j.inffus.2020.01.011 10.1007/978-3-319-60639-2_2 10.1016/j.csbj.2020.06.017 10.1016/j.procs.2017.05.025 10.1016/j.bspc.2019.101646 10.1038/s41467-020-17678-4 10.1038/ncomms2832 10.1109/TSMCA.2011.2116000 10.1126/science.1076358 10.1016/j.patcog.2010.09.020 10.1002/int.21833 10.1109/IJCNN.2014.6889383 10.1073/pnas.1534743100 10.1109/JSEN.2012.2222572 10.3390/s18072074 10.1109/TPAMI.2008.52 10.1016/j.inffus.2018.09.001 10.1109/BIBM.2015.7359871 10.1016/j.artmed.2009.03.003 10.1109/TAP.2014.2342751 10.1109/JETCAS.2018.2822684 10.1038/s41598-018-34833-6 10.1145/2973750.2973762 10.1016/j.jbi.2014.08.002 10.1126/sciadv.aaw4358 10.1007/s12193-015-0195-2 10.1093/bioinformatics/btw074 10.1109/TETCI.2019.2902438 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Khan et al 2021 Khan et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Khan et al 2021 Khan et al |
DBID | AAYXX CITATION NPM IOV ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0242946 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Wireless emotion detection |
EISSN | 1932-6203 |
ExternalDocumentID | oai_doaj_org_article_a58e6dc794e442d6923d9d370c05d605 PMC7857608 A650617167 33534826 10_1371_journal_pone_0242946 |
Genre | Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY IPNFZ NPM RIG PMFND 7X8 PJZUB PPXIY PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c640t-78e7e6c6af7c4ad9f1a8c0dd46b1350571b6911ad998ba0a53dbe30d033102893 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 27 01:28:00 EDT 2025 Thu Aug 21 18:19:38 EDT 2025 Mon Jul 21 10:33:54 EDT 2025 Tue Jun 17 21:11:22 EDT 2025 Tue Jun 10 20:27:25 EDT 2025 Fri Jun 27 04:03:37 EDT 2025 Fri Jun 27 04:37:21 EDT 2025 Thu May 22 21:06:17 EDT 2025 Wed Feb 19 02:28:50 EST 2025 Thu Apr 24 23:00:44 EDT 2025 Tue Jul 01 01:35:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-78e7e6c6af7c4ad9f1a8c0dd46b1350571b6911ad998ba0a53dbe30d033102893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0003-0234-2410 0000-0002-9949-7226 |
OpenAccessLink | https://doaj.org/article/a58e6dc794e442d6923d9d370c05d605 |
PMID | 33534826 |
PQID | 2486463249 |
PQPubID | 23479 |
PageCount | e0242946 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a58e6dc794e442d6923d9d370c05d605 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7857608 proquest_miscellaneous_2486463249 gale_infotracmisc_A650617167 gale_infotracacademiconefile_A650617167 gale_incontextgauss_ISR_A650617167 gale_incontextgauss_IOV_A650617167 gale_healthsolutions_A650617167 pubmed_primary_33534826 crossref_citationtrail_10_1371_journal_pone_0242946 crossref_primary_10_1371_journal_pone_0242946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-03 |
PublicationDateYYYYMMDD | 2021-02-03 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Zhang (pone.0242946.ref024) 2020; 59 Y Chen (pone.0242946.ref034) 2016; 32 Z Zeng (pone.0242946.ref017) 2009; 31 PM Ferreira (pone.0242946.ref027) 2018; 6 M Sabeti (pone.0242946.ref043) 2009; 47 L Shu (pone.0242946.ref015) 2018; 18 L Nummenmaa (pone.0242946.ref046) 2014; 111 B Schmauch (pone.0242946.ref033) 2020; 11 MS Hossain (pone.0242946.ref012) 2018; 5 Y Kong (pone.0242946.ref037) 2018; 8 pone.0242946.ref028 H Ghasemzadeh (pone.0242946.ref042) 2013; 13 PS Hall (pone.0242946.ref001) 2012 pone.0242946.ref026 M El Ayadi (pone.0242946.ref021) 2011; 44 S Ramírez-Gallego (pone.0242946.ref045) 2017; 32 PA Kragel (pone.0242946.ref018) 2019; 5 (pone.0242946.ref020) 2017; 108 RJ Davidson (pone.0242946.ref044) 2003; 40 MM Hassan (pone.0242946.ref031) 2019; 51 RC Webb (pone.0242946.ref010) 2013; 12 SE Kahou (pone.0242946.ref019) 2016; 10 JA Domínguez-Jiménez (pone.0242946.ref025) 2020; 55 X Wang (pone.0242946.ref005) 2014; 52 R Kohavi (pone.0242946.ref040) 1995 RJ Dolan (pone.0242946.ref014) 2002; 298 MO Munoz (pone.0242946.ref002) 2014; 62 JW Jeong (pone.0242946.ref007) 2013; 25 M Egger (pone.0242946.ref023) 2019; 343 RS Dilmaghani (pone.0242946.ref004) 2011; 5 (pone.0242946.ref032) 2020; 18 pone.0242946.ref030 T Yilmaz (pone.0242946.ref008) 2010; 10 S Katsigiannis (pone.0242946.ref041) 2018; 22 G Schwartz (pone.0242946.ref009) 2013; 4 pone.0242946.ref039 pone.0242946.ref038 E Kanjo (pone.0242946.ref029) 2019; 49 pone.0242946.ref035 D Dias (pone.0242946.ref006) 2018; 18 pone.0242946.ref036 pone.0242946.ref011 G Chanel (pone.0242946.ref013) 2011; 41 C Li (pone.0242946.ref003) 2018; 8 MA Rosenkranz (pone.0242946.ref016) 2003; 100 Y Gu (pone.0242946.ref022) 2020; 4 |
References_xml | – volume: 25 start-page: 6839 issue: 47 year: 2013 ident: pone.0242946.ref007 article-title: Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics publication-title: Advanced Materials doi: 10.1002/adma.201301921 – volume: 5 start-page: 2399 issue: 4 year: 2018 ident: pone.0242946.ref012 article-title: Emotion-Aware Connected Healthcare Big Data Towards 5G publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2017.2772959 – volume: 51 start-page: 10 year: 2019 ident: pone.0242946.ref031 article-title: Human emotion recognition using deep belief network architecture publication-title: Information Fusion doi: 10.1016/j.inffus.2018.10.009 – volume: 111 start-page: 646 issue: 2 year: 2014 ident: pone.0242946.ref046 article-title: Bodily maps of emotions publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1321664111 – volume: 12 start-page: 938 issue: 10 year: 2013 ident: pone.0242946.ref010 article-title: Ultrathin conformal devices for precise and continuous thermal characterization of human skin publication-title: Nature materials doi: 10.1038/nmat3755 – volume: 22 start-page: 98 issue: 1 year: 2018 ident: pone.0242946.ref041 article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2017.2688239 – volume-title: Antennas and propagation for body-centric wireless communications year: 2012 ident: pone.0242946.ref001 – ident: pone.0242946.ref030 doi: 10.1109/ICME.2017.8019533 – ident: pone.0242946.ref036 doi: 10.1145/2975167.2975212 – volume: 5 start-page: 347 issue: 4 year: 2011 ident: pone.0242946.ref004 article-title: Wireless Sensor Networks for Monitoring Physiological Signals of Multiple Patients publication-title: IEEE Transactions on Biomedical Circuits and Systems doi: 10.1109/TBCAS.2011.2114661 – ident: pone.0242946.ref028 doi: 10.1109/WACV.2016.7477679 – volume: 6 start-page: 53930 year: 2018 ident: pone.0242946.ref027 article-title: Physiological Inspired Deep Neural Networks for Emotion Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870063 – volume: 40 start-page: 655 issue: 5 year: 2003 ident: pone.0242946.ref044 article-title: Affective neuroscience and psychophysiology: Toward a synthesis publication-title: Psychophysiology doi: 10.1111/1469-8986.00067 – volume: 10 start-page: 10837 issue: 12 year: 2010 ident: pone.0242946.ref008 article-title: Detecting vital signs with wearable wireless sensors publication-title: Sensors doi: 10.3390/s101210837 – volume: 343 start-page: 35 year: 2019 ident: pone.0242946.ref023 article-title: Emotion recognition from physiological signal analysis: A review publication-title: Electronic Notes in Theoretical Computer Science doi: 10.1016/j.entcs.2019.04.009 – volume: 18 start-page: 2414 issue: 8 year: 2018 ident: pone.0242946.ref006 article-title: Wearable health devices—vital sign monitoring, systems and technologies publication-title: Sensors doi: 10.3390/s18082414 – volume: 59 start-page: 103 year: 2020 ident: pone.0242946.ref024 article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review publication-title: Information Fusion doi: 10.1016/j.inffus.2020.01.011 – ident: pone.0242946.ref026 doi: 10.1007/978-3-319-60639-2_2 – volume: 18 start-page: 1466 year: 2020 ident: pone.0242946.ref032 article-title: Deep learning models in genomics; are we there yet? publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2020.06.017 – volume: 108 start-page: 1175 year: 2017 ident: pone.0242946.ref020 article-title: Emotion recognition using facial expressions publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.05.025 – volume: 55 start-page: 101646 year: 2020 ident: pone.0242946.ref025 article-title: A machine learning model for emotion recognition from physiological signals publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2019.101646 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: pone.0242946.ref033 article-title: A deep learning model to predict RNA-Seq expression of tumours from whole slide images publication-title: Nature communications doi: 10.1038/s41467-020-17678-4 – start-page: 1137 volume-title: Ijcai year: 1995 ident: pone.0242946.ref040 – volume: 4 start-page: 1859 year: 2013 ident: pone.0242946.ref009 article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring publication-title: Nature communications doi: 10.1038/ncomms2832 – volume: 41 start-page: 1052 issue: 6 year: 2011 ident: pone.0242946.ref013 article-title: Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty publication-title: IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans doi: 10.1109/TSMCA.2011.2116000 – volume: 298 start-page: 1191 issue: 5596 year: 2002 ident: pone.0242946.ref014 article-title: Emotion, cognition, and behavior publication-title: science doi: 10.1126/science.1076358 – volume: 44 start-page: 572 issue: 3 year: 2011 ident: pone.0242946.ref021 article-title: Survey on speech emotion recognition: Features, classification schemes, and databases publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.09.020 – volume: 32 start-page: 134 issue: 2 year: 2017 ident: pone.0242946.ref045 article-title: Fast-mRMR: Fast minimum redundancy maximum relevance algorithm for high-dimensional big data publication-title: International Journal of Intelligent Systems doi: 10.1002/int.21833 – ident: pone.0242946.ref039 doi: 10.1109/IJCNN.2014.6889383 – volume: 100 start-page: 11148 issue: 19 year: 2003 ident: pone.0242946.ref016 article-title: Affective style and in vivo immune response: Neurobehavioral mechanisms publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1534743100 – volume: 13 start-page: 423 issue: 2 year: 2013 ident: pone.0242946.ref042 article-title: Wireless Medical-Embedded Systems: A Review of Signal-Processing Techniques for Classification publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2012.2222572 – volume: 18 start-page: 2074 issue: 7 year: 2018 ident: pone.0242946.ref015 article-title: A review of emotion recognition using physiological signals publication-title: Sensors doi: 10.3390/s18072074 – ident: pone.0242946.ref035 – volume: 31 start-page: 39 issue: 1 year: 2009 ident: pone.0242946.ref017 article-title: A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.52 – volume: 49 start-page: 46 year: 2019 ident: pone.0242946.ref029 article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection publication-title: Information Fusion doi: 10.1016/j.inffus.2018.09.001 – ident: pone.0242946.ref038 doi: 10.1109/BIBM.2015.7359871 – volume: 47 start-page: 263 issue: 3 year: 2009 ident: pone.0242946.ref043 article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2009.03.003 – volume: 62 start-page: 5268 issue: 10 year: 2014 ident: pone.0242946.ref002 article-title: Exploring Physiological Parameters in Dynamic WBAN Channels publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.2014.2342751 – volume: 8 start-page: 165 issue: 2 year: 2018 ident: pone.0242946.ref003 article-title: Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems doi: 10.1109/JETCAS.2018.2822684 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: pone.0242946.ref037 article-title: A deep neural network model using random forest to extract feature representation for gene expression data classification publication-title: Scientific reports doi: 10.1038/s41598-018-34833-6 – ident: pone.0242946.ref011 doi: 10.1145/2973750.2973762 – volume: 52 start-page: 406 year: 2014 ident: pone.0242946.ref005 article-title: All-IP wireless sensor networks for real-time patient monitoring publication-title: Journal of biomedical informatics doi: 10.1016/j.jbi.2014.08.002 – volume: 5 issue: 7 year: 2019 ident: pone.0242946.ref018 article-title: Emotion schemas are embedded in the human visual system publication-title: Science Advances doi: 10.1126/sciadv.aaw4358 – volume: 10 start-page: 99 issue: 2 year: 2016 ident: pone.0242946.ref019 article-title: Emonets: Multimodal deep learning approaches for emotion recognition in video publication-title: Journal on Multimodal User Interfaces doi: 10.1007/s12193-015-0195-2 – volume: 32 start-page: 1832 issue: 12 year: 2016 ident: pone.0242946.ref034 article-title: Gene expression inference with deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw074 – volume: 4 start-page: 216 issue: 3 year: 2020 ident: pone.0242946.ref022 article-title: EmoSense: Computational Intelligence Driven Emotion Sensing via Wireless Channel Data publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2019.2902438 |
SSID | ssj0053866 |
Score | 2.5208476 |
Snippet | Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0242946 |
SubjectTerms | Biology and Life Sciences Computer and Information Sciences Engineering and Technology Facial expression Machine learning Methods Observations Physical Sciences Research and Analysis Methods Social Sciences |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkoYBAScEjrjR07PpZHVZAACSjam-VXlkpVdkWy_5-Z2BttxKEcuK4nUXYenpnk8zeEvOQxKCt0KJs26lI4a0sbrC8VC4p7wZweT7l-_iLPL8SnZb3cG_WFmLBED5wUd2LrJsrgwW2iEFWQUJAEHbhintVBJvZSyHm7ZirtwRDFUuaDclwtTrJdjjfrLh5jVtJY8O4lopGv_-9deS8tzSGTezno7Da5lYtHepoe-pDciN0dcpjDs6evM4f0m7tk-T7GDc0jIVa03UGwKNSotN86fPtSXk4jcAca0zgfGuIwgrM6ioj4FUUq4yvYDSkCPcBV75GLsw8_3p2XeYhC6aVgQ6maqKL00rbKCxt0u7CNZyEI6RYcu5OFk7DhwYpunGW25sFFzgLjHGsPze-Tgw7U9pDQBm4D5YBzVeuFU1qDCaDf0VAUVVVjWUH4TqPGZ4ZxHHRxZcbPZgo6jaQng3Yw2Q4FKaerNolh4xr5t2isSRb5sccfwGtM9hpzndcU5Bma2qTDplOUm1MoWCUyCKmCvBglkCOjQxDOym773nz8-vMfhL5_mwm9ykLtGtThbT74AP8JubdmkkczSYh0P1t-vnNMg0sIj-vietubSjRSIPG-LsiD5KiTfjivkcAI9KZmLjxT4Hylu_w1Eo2rBrpR1jz6Hxp_TG5WCAdCwDs_IgfD7218AvXc4J6OofsHCA1K0Q priority: 102 providerName: Directory of Open Access Journals |
Title | Deep learning framework for subject-independent emotion detection using wireless signals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33534826 https://www.proquest.com/docview/2486463249 https://pubmed.ncbi.nlm.nih.gov/PMC7857608 https://doaj.org/article/a58e6dc794e442d6923d9d370c05d605 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLf2ceGCGJ-FUQxCAg6pnNi14wNC22gZSBtoUNRb5NhOmVSlpWkluPC3817iRosAsYsP8bOVPPt9xc-_R8hz7p0yQrsoLbyORG5MZJyxkWJOcStYrutbrmfn8nQiPkyH0x2yrdkaGFj9NbTDelKT1Xzw4_vPNyDwr-uqDSreDhosF6UfoM3RQu6SfbBNCkX1TLTnCiDd9eklei2RTBgPl-n-NUvHWNWY_n9q7iumq5tWecVOjW-Rm8HBpEfNjjggO768TQ6CCFf0ZcCZfnWHTN96v6ShbMSMFts0LQp-LK02Of6hiS7bMrlr6puSP9T5dZ3AVVLMmp9RhDueg8akmAwCbL1LJuPRl5PTKBRaiKwUbB2p1CsvrTSFssI4XcQmtcw5IfOYYwQT5xKUIvToNDfMDLnLPWeOcY7-ieb3yF4JbHtAaArTgMuQ50lhRa60tgxjIg2OU5KkhvUI33I0swGFHIthzLP6aE1BNNLwKcN1yMI69EjUjlo2KBz_oT_GxWppEUO7frBYzbIgkpkZpl46CwrJC5E4Ca6u044rBq_sIMrrkSe41FlzIbXVBNkROLUSUYZUjzyrKRBHo8REnZnZVFX2_uPXaxB9vugQvQhExQLYYU24HAHfhPhcHcrDDiVoA9vpfrrdmBl2YQpd6RebKktEKgWC8-seud9s1JY_nA8R5Aj4pjpbuMPAbk95-a0GI1cpRKwsfXjtD3hEbiSYF4SZ7_yQ7K1XG_8YHLt13ie7aqqgTU9ibMfv-mT_eHT-6aJf_yrp17KM7a_Rb1EaVQg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+framework+for+subject-independent+emotion+detection+using+wireless+signals&rft.jtitle=PloS+one&rft.au=Khan%2C+Ahsan+Noor&rft.au=Ihalage%2C+Achintha+Avin&rft.au=Ma%2C+Yihan&rft.au=Liu%2C+Baiyang&rft.date=2021-02-03&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=2&rft.spage=e0242946&rft_id=info:doi/10.1371%2Fjournal.pone.0242946&rft.externalDocID=A650617167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |